FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Shuck, CE
Frazee, M
Gillman, A
Beason, MT
Gunduz, IE
Matous, K
Winarski, R
Mukasyan, AS
AF Shuck, Christopher E.
Frazee, Mathew
Gillman, Andrew
Beason, Matthew T.
Gunduz, Ibrahim Emre
Matous, Karel
Winarski, Robert
Mukasyan, Alexander S.
TI X-ray nanotomography and focused-ion-beam sectioning for quantitative
three-dimensional analysis of nanocomposites
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE X-ray nanotomography; scanning electron microscopy; quantitative image
analysis; three-dimensional reconstruction; nanocomposite powder
ID SIZE; MICROSCOPY; COMBUSTION; SYSTEMS
AB Knowing the relationship between three-dimensional structure and properties is paramount for complete understanding of material behavior. In this work, the internal nanostructure of micrometer-size (similar to 10 mu m) composite Ni/Al particles was analyzed using two different approaches. The first technique, synchrotron-based X-ray nanotomography, is a nondestructive method that can attain resolutions of tens of nanometers. The second is a destructive technique with sub-nanometer resolution utilizing scanning electron microscopy combined with an ion beam and ` slice and view' analysis, where the sample is repeatedly milled and imaged. The obtained results suggest that both techniques allow for an accurate characterization of the larger-scale structures, while differences exist in the characterization of the smallest features. Using the Monte Carlo method, the effective resolution of the X-ray nanotomography technique was determined to be similar to 48 nm, while focused-ion-beam sectioning with 'slice and view' analysis was similar to 5 nm.
C1 [Shuck, Christopher E.; Mukasyan, Alexander S.] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA.
[Frazee, Mathew; Gillman, Andrew; Matous, Karel] Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46556 USA.
[Beason, Matthew T.; Gunduz, Ibrahim Emre] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA.
[Winarski, Robert] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Mukasyan, AS (reprint author), Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA.
EM amoukasi@nd.edu
RI Matous, Karel/A-9230-2013;
OI Shuck, Christopher/0000-0002-1274-8484
FU Department of Energy, National Nuclear Security Administration as part
of the Predictive Science Academic Alliance Program II [DE-NA0002377];
Defense Threat Reduction Agency (DTRA) [HDTRA1-10-1-0119]; National
Defense Science and Engineering Graduate Fellowship; US Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]
FX This work was supported by the Department of Energy, National Nuclear
Security Administration, under Award Number DE-NA0002377 as part of the
Predictive Science Academic Alliance Program II. Funding from the
Defense Threat Reduction Agency (DTRA), Grant Number HDTRA1-10-1-0119.
Counter-WMD basic research program, Dr Suhithi M. Peiris, Program
Director, is also gratefully acknowledged. Funding from the National
Defense Science and Engineering Graduate Fellowship is acknowledged. Use
of the Center for Nanoscale Materials and the Advanced Photon Source,
both Office of Science user facilities, was supported by the US
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
NR 29
TC 4
Z9 4
U1 4
U2 8
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD JUL
PY 2016
VL 23
BP 990
EP 996
DI 10.1107/S1600577516007992
PN 4
PG 7
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA DR5PJ
UT WOS:000379954600017
PM 27359148
ER
PT J
AU Bicer, T
Gursoy, D
Kettimuthu, R
De Carlo, F
Foster, IT
AF Bicer, Tekin
Gursoy, Doga
Kettimuthu, Rajkumar
De Carlo, Francesco
Foster, Ian T.
TI Optimization of tomographic reconstruction workflows on geographically
distributed resources
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE tomography; scientific workflows; performance modeling
ID IMAGE-RECONSTRUCTION; ITERATIVE RECONSTRUCTION; FLUORESCENCE TOMOGRAPHY;
COMPUTED-TOMOGRAPHY; SOFTWARE; SERVICES; STORAGE; TOMOPY; CLOUD; CT
AB New technological advancements in synchrotron light sources enable data acquisitions at unprecedented levels. This emergent trend affects not only the size of the generated data but also the need for larger computational resources. Although beamline scientists and users have access to local computational resources, these are typically limited and can result in extended execution times. Applications that are based on iterative processing as in tomographic reconstruction methods require high-performance compute clusters for timely analysis of data. Here, time-sensitive analysis and processing of Advanced Photon Source data on geographically distributed resources are focused on. Two main challenges are considered: (i) modeling of the performance of tomographic reconstruction workflows and (ii) transparent execution of these workflows on distributed resources. For the former, three main stages are considered: (i) data transfer between storage and computational resources, (i) wait/queue time of reconstruction jobs at compute resources, and (iii) computation of reconstruction tasks. These performance models allow evaluation and estimation of the execution time of any given iterative tomographic reconstruction workflow that runs on geographically distributed resources. For the latter challenge, a workflow management system is built, which can automate the execution of workflows and minimize the user interaction with the underlying infrastructure. The system utilizes Globus to perform secure and efficient data transfer operations. The proposed models and the workflow management system are evaluated by using three high-performance computing and two storage resources, all of which are geographically distributed. Workflows were created with different computational requirements using two compute-intensive tomographic reconstruction algorithms. Experimental evaluation shows that the proposed models and system can be used for selecting the optimum resources, which in turn can provide up to 3.13x speedup (on experimented resources). Moreover, the error rates of the models range between 2.1 and 23.3% (considering workflow execution times), where the accuracy of the model estimations increases with higher computational demands in reconstruction tasks.
C1 [Bicer, Tekin; Kettimuthu, Rajkumar; Foster, Ian T.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA.
[Gursoy, Doga; De Carlo, Francesco] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA.
[Kettimuthu, Rajkumar; Foster, Ian T.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA.
[Kettimuthu, Rajkumar; Foster, Ian T.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Foster, Ian T.] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA.
RP Bicer, T (reprint author), Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA.
EM bicer@anl.gov
OI Bicer, Tekin/0000-0002-8428-5159
FU US Department of Energy, Office of Science [DE-AC02-06CH11357]
FX This material is based upon work supported by the US Department of
Energy, Office of Science, under contract number DE-AC02-06CH11357.
NR 36
TC 0
Z9 0
U1 3
U2 6
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD JUL
PY 2016
VL 23
BP 997
EP 1005
DI 10.1107/S1600577516007980
PN 4
PG 9
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA DR5PJ
UT WOS:000379954600018
PM 27359149
ER
PT J
AU Sun, T
Fezzaa, K
AF Sun, Tao
Fezzaa, Kamel
TI HiSPoD: a program for high-speed polychromatic X-ray diffraction
experiments and data analysis on polycrystalline samples
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Software Review
DE X-ray diffraction; high speed; polychromatic beam; dynamic processes
ID DYNAMICS
AB A high-speed X-ray diffraction technique was recently developed at the 32-ID-B beamline of the Advanced Photon Source for studying highly dynamic, yet non-repeatable and irreversible, materials processes. In experiments, the microstructure evolution in a single material event is probed by recording a series of diffraction patterns with extremely short exposure time and high frame rate. Owing to the limited flux in a short pulse and the polychromatic nature of the incident X-rays, analysis of the diffraction data is challenging. Here, HiSPoD, a stand-alone Matlab-based software for analyzing the polychromatic X-ray diffraction data from polycrystalline samples, is described. With HiSPoD, researchers are able to perform diffraction peak indexing, extraction of onedimensional intensity profiles by integrating a two-dimensional diffraction pattern, and, more importantly, quantitative numerical simulations to obtain precise sample structure information.
C1 [Sun, Tao; Fezzaa, Kamel] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA.
RP Sun, T (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA.
EM taosun@aps.anl.gov
FU DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]
FX The authors would like to thank Alex Deriy at the APS, Professor Weinong
Chen's group at Purdue University, and Dr Shengnian Luo's group at The
Peac Institute of Multiscale Sciences for their contributions in
developing the highspeed diffraction technique. We thank Matt Hudspeth,
Niranjan Parab and Zherui Guo in Professor Weinong Chen's group for
sharing the diffraction data present here. We are also grateful to other
members of the Imaging Group at the APS and other user groups of the
32-ID-B beamline for the valuable discussions. This research used
resources of the Advanced Photon Source, a US Department of Energy (DOE)
Office of Science User Facility operated for the DOE Office of Science
by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
NR 17
TC 0
Z9 0
U1 2
U2 2
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 1600-5775
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD JUL
PY 2016
VL 23
BP 1046
EP 1053
DI 10.1107/S1600577516005804
PN 4
PG 8
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA DR5PJ
UT WOS:000379954600024
PM 27359155
ER
PT J
AU Bosco, N
Silverman, TJ
Kurtz, S
AF Bosco, Nick
Silverman, Timothy J.
Kurtz, Sarah
TI Climate specific thermomechanical fatigue of flat plate photovoltaic
module solder joints
SO MICROELECTRONICS RELIABILITY
LA English
DT Article
DE Photovoltaic reliability; Solder fatigue; Acceleration factor; Thermal
cycling
ID RELIABILITY
AB FEM simulations of PbSn solder fatigue damage are used to evaluate seven cities that represent a variety of climatic zones. It is shown that the rate of solder fatigue damage is not ranked with the cities' climate designations. For an accurate ranking, the mean maximum daily temperature, daily temperature change and a characteristic of clouding events are all required. A physics-based empirical equation is presented that accurately calculates solder fatigue damage according to these three factors. An FEM comparison of solder damage accumulated through service and thermal cycling demonstrates the number of cycles required for an equivalent exposure. For an equivalent 25-year exposure, the number of thermal cycles (-40 degrees C to 85 degrees C) required ranged from roughly 100 to 630 for the cities examined. It is demonstrated that increasing the maximum cycle temperature may significantly reduce the number of thermal cycles required for an equivalent exposure. Published by Elsevier Ltd.
C1 [Bosco, Nick; Silverman, Timothy J.; Kurtz, Sarah] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
RP Bosco, N (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
FU Solar Energy Research Institute for India; U.S. (SERIIUS) - U.S.
Department of Energy (Office of Science, Office of Basic Energy
Sciences, and Energy Efficiency and Renewable Energy, Solar Energy
Technology Program) [DE AC36-08G028308]; Government of India
[IUSSTF/JCERDC-SERIIUS/2012]
FX This research is based upon work supported in part under the Solar
Energy Research Institute for India and the U.S. (SERIIUS) funded
jointly by the U.S. Department of Energy subcontract DE AC36-08G028308
(Office of Science, Office of Basic Energy Sciences, and Energy
Efficiency and Renewable Energy, Solar Energy Technology Program, with
support from International Affairs) and the Government of India
subcontract IUSSTF/JCERDC-SERIIUS/2012 dated 22nd Nov. 2012.
NR 9
TC 0
Z9 0
U1 1
U2 1
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0026-2714
J9 MICROELECTRON RELIAB
JI Microelectron. Reliab.
PD JUL
PY 2016
VL 62
BP 124
EP 129
DI 10.1016/j.microrel.2016.03.024
PG 6
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA DR1ZY
UT WOS:000379705600017
ER
PT J
AU Oksuz, S
Gorantla, VS
AF Oksuz, Sinan
Gorantla, Vijay S.
TI Comments on "reflectance confocal microscopy as a useful diagnostic tool
for monitoring of skin containing vascularized allograft rejection: A
preliminary study on rats"
SO MICROSURGERY
LA English
DT Letter
C1 [Oksuz, Sinan] Gulhane Mil Med Acad, Sch Med, Dept Plast Reconstruct & Aesthet Surg, Ankara, Turkey.
[Oksuz, Sinan] Gulhane Mil Med Acad, Sch Med, Burn Unit, Ankara, Turkey.
[Gorantla, Vijay S.] UPMC, Dept Plast Surg, Pittsburgh, PA USA.
[Gorantla, Vijay S.] UPMC, Reconstruct Transplantat Program, Pittsburgh, PA USA.
[Gorantla, Vijay S.] Univ Pittsburgh, McGowan Inst Regenerat Med, Clin Initiat & Res Innovat, Pittsburgh, PA 15260 USA.
[Gorantla, Vijay S.] Univ Pittsburgh, Ctr Mil Med, Pittsburgh, PA 15260 USA.
[Gorantla, Vijay S.] Vet Affairs Pittsburgh, Vascularized Composite Allotransplantat Program, ORISE, Pittsburgh, PA USA.
[Gorantla, Vijay S.] SAMMC, Pittsburgh, PA USA.
[Gorantla, Vijay S.] USAISR, Pittsburgh, PA USA.
RP Oksuz, S (reprint author), Gulhane Askeri Tip Akad, Tip Fak, Plast Rekonstruktif & Estetik Cerrahi Klin, Gn Tevfik Saglam Caddesi, TR-06010 Ankara, Turkey.
EM sinanoksuz@gmail.com
NR 4
TC 0
Z9 0
U1 1
U2 1
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0738-1085
EI 1098-2752
J9 MICROSURG
JI Microsurgery
PD JUL
PY 2016
VL 36
IS 5
BP 435
EP 436
DI 10.1002/micr.22461
PG 2
WC Surgery
SC Surgery
GA DR6MP
UT WOS:000380016300013
ER
PT J
AU Abeysekara, AU
Archambault, S
Archer, A
Benbow, W
Bird, R
Biteau, J
Buchovecky, M
Buckley, JH
Bugaev, V
Byrum, K
Cardenzana, JV
Cerruti, M
Chen, X
Christiansen, JL
Ciupik, L
Connolly, MP
Cui, W
Dickinson, HJ
Dumm, J
Eisch, JD
Errando, M
Falcone, A
Feng, Q
Finley, JP
Fleischhack, H
Flinders, A
Fortin, P
Fortson, L
Furniss, A
Gillanders, GH
Griffin, S
Grube, J
Gyuk, G
Huetten, M
Hanna, D
Holder, J
Humensky, TB
Johnson, CA
Kaaret, P
Kar, P
Kelley-Hoskins, N
Kertzman, M
Kieda, D
Krause, M
Krennrich, F
Lang, MJ
Maier, G
McArthur, S
McCann, A
Meagher, K
Moriarty, P
Mukherjee, R
Nieto, D
O'Brien, S
de Bhroithe, AO
Ong, RA
Otte, AN
Park, N
Pelassa, V
Petrashyk, A
Petry, D
Pohl, M
Popkow, A
Pueschel, E
Quinn, J
Ragan, K
Ratliff, G
Reyes, LC
Reynolds, PT
Reynolds, K
Richards, GT
Roache, E
Rulten, C
Santander, M
Sembroski, GH
Shahinyan, K
Smith, AW
Staszak, D
Telezhinsky, I
Tucci, JV
Tyler, J
Vincent, S
Wakely, SP
Weiner, OM
Weinstein, A
Wilhelm, A
Williams, DA
Zitzer, B
AF Abeysekara, A. U.
Archambault, S.
Archer, A.
Benbow, W.
Bird, R.
Biteau, J.
Buchovecky, M.
Buckley, J. H.
Bugaev, V.
Byrum, K.
Cardenzana, J. V.
Cerruti, M.
Chen, X.
Christiansen, J. L.
Ciupik, L.
Connolly, M. P.
Cui, W.
Dickinson, H. J.
Dumm, J.
Eisch, J. D.
Errando, M.
Falcone, A.
Feng, Q.
Finley, J. P.
Fleischhack, H.
Flinders, A.
Fortin, P.
Fortson, L.
Furniss, A.
Gillanders, G. H.
Griffin, S.
Grube, J.
Gyuk, G.
Huetten, M.
Hanna, D.
Holder, J.
Humensky, T. B.
Johnson, C. A.
Kaaret, P.
Kar, P.
Kelley-Hoskins, N.
Kertzman, M.
Kieda, D.
Krause, M.
Krennrich, F.
Lang, M. J.
Maier, G.
McArthur, S.
McCann, A.
Meagher, K.
Moriarty, P.
Mukherjee, R.
Nieto, D.
O'Brien, S.
de Bhroithe, A. O'Faolain
Ong, R. A.
Otte, A. N.
Park, N.
Pelassa, V.
Petrashyk, A.
Petry, D.
Pohl, M.
Popkow, A.
Pueschel, E.
Quinn, J.
Ragan, K.
Ratliff, G.
Reyes, L. C.
Reynolds, P. T.
Reynolds, K.
Richards, G. T.
Roache, E.
Rulten, C.
Santander, M.
Sembroski, G. H.
Shahinyan, K.
Smith, A. W.
Staszak, D.
Telezhinsky, I.
Tucci, J. V.
Tyler, J.
Vincent, S.
Wakely, S. P.
Weiner, O. M.
Weinstein, A.
Wilhelm, A.
Williams, D. A.
Zitzer, B.
TI VERITAS and multiwavelength observations of the BL Lacertae object 1ES
1741+196
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE astroparticle physics; relativistic processes; galaxies: individual: 1ES
1741+196=VER J1744+195
ID SPECTRAL ENERGY-DISTRIBUTIONS; GAMMA-RAY ASTRONOMY; X-RAY; LAC OBJECTS;
SOURCE CATALOG; TEV BLAZARS; TELESCOPE; FERMI; DISCOVERY; SWIFT
AB We present results from multiwavelength observations of the BL Lacertae object 1ES 1741 + 196, including results in the very high energy gamma-ray regime using the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The VERITAS time-averaged spectrum, measured above 180 GeV, is well modelled by a power law with a spectral index of 2.7 +/- 0.7(stat) +/- 0.2(syst). The integral flux above 180 GeV is (3.9 +/- 0.8(stat) +/- 1.0(syst)) x 10(-8) m(-2) s(-1), corresponding to 1.6 per cent of the Crab nebula flux on average. The multiwavelength spectral energy distribution of the source suggests that 1ES 1741+196 is an extreme-high-frequency-peaked BL Lacertae object. The observations analysed in this paper extend over a period of six years, during which time no strong flares were observed in any band. This analysis is therefore one of the few characterizations of a blazar in a non-flaring state.
C1 [Abeysekara, A. U.; Flinders, A.; Kar, P.; Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Archambault, S.; Griffin, S.; Hanna, D.; McCann, A.; Ragan, K.; Staszak, D.; Tyler, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Archer, A.; Buckley, J. H.; Bugaev, V.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Benbow, W.; Cerruti, M.; Fortin, P.; Pelassa, V.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA.
[Bird, R.; O'Brien, S.; Pueschel, E.; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland.
[Biteau, J.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Biteau, J.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA.
[Buchovecky, M.; Ong, R. A.; Popkow, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Byrum, K.; Zitzer, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Cardenzana, J. V.; Dickinson, H. J.; Eisch, J. D.; Krennrich, F.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Chen, X.; Pohl, M.; Telezhinsky, I.; Wilhelm, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany.
[Chen, X.; Fleischhack, H.; Huetten, M.; Kelley-Hoskins, N.; Krause, M.; Maier, G.; de Bhroithe, A. O'Faolain; Pohl, M.; Telezhinsky, I.; Vincent, S.; Wilhelm, A.] DESY, Platanenallee 6, D-15738 Zeuthen, Germany.
[Christiansen, J. L.; Reyes, L. C.; Reynolds, K.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA.
[Ciupik, L.; Grube, J.; Gyuk, G.; Ratliff, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA.
[Connolly, M. P.; Gillanders, G. H.; Lang, M. J.; Moriarty, P.] Natl Univ Ireland Galway, Sch Phys, Univ Rd, Galway H91, Ireland.
[Cui, W.; Feng, Q.; Finley, J. P.; McArthur, S.; Sembroski, G. H.; Tucci, J. V.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA.
[Dumm, J.; Fortson, L.; Rulten, C.; Shahinyan, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Errando, M.; Mukherjee, R.; Santander, M.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA.
[Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA.
[Furniss, A.] Calif State Univ East Bay, Dept Phys, Hayward, CA 94542 USA.
[Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Humensky, T. B.; Nieto, D.; Petrashyk, A.; Weiner, O. M.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA.
[Kaaret, P.] Univ Iowa, Dept Phys & Astron, Van Allen Hall, Iowa City, IA 52242 USA.
[Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA.
[Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, 837 State St NW, Atlanta, GA 30332 USA.
[Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, 837 State St NW, Atlanta, GA 30332 USA.
[Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Petry, D.] ESO, ALMA Reg Ctr, Karl Schwarzschild Str 2, D-85748 Garching, Germany.
[Reynolds, P. T.] Cork Inst Technol, Dept Phys Sci, Cork T12, Ireland.
[Smith, A. W.] Univ Maryland, NASA GSFC, College Pk, MD 20742 USA.
RP Christiansen, JL (reprint author), Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA.
EM jlchrist@calpoly.edu; elisa.pueschel@ucd.ie
OI Pueschel, Elisa/0000-0002-0529-1973; Krause, Maria/0000-0001-7595-0914
FU U.S. Department of Energy Office of Science; U.S. National Science
Foundation; Smithsonian Institution; NSERC in Canada; Office of Science
of the U.S. Department of Energy [DE-AC02-05CH11231]; Marie Curie
Intra-European Fellowship within 7th European Community
FX This research is supported by grants from the U.S. Department of Energy
Office of Science, the U.S. National Science Foundation and the
Smithsonian Institution, and by NSERC in Canada. This research used
computational resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. EP acknowledges the support of a Marie Curie
Intra-European Fellowship within the 7th European Community Framework
Programme. We acknowledge the excellent work of the technical support
staff at the Fred Lawrence Whipple Observatory and at the collaborating
institutions in the construction and operation of the instrument. We are
also grateful to Grant Williams and Daniel Kiminki for their dedication
to the operation and support of the Super-LOTIS telescope. The VERITAS
Collaboration is grateful to Trevor Weekes for his seminal contributions
and leadership in the field of VHE gamma-ray astrophysics, which made
this study possible.
NR 47
TC 0
Z9 0
U1 3
U2 3
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 1
PY 2016
VL 459
IS 3
BP 2550
EP 2557
DI 10.1093/mnras/stw664
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3ZJ
UT WOS:000379840900022
ER
PT J
AU Melville, S
Schekochihin, AA
Kunz, MW
AF Melville, Scott
Schekochihin, Alexander A.
Kunz, Matthew W.
TI Pressure-anisotropy-driven microturbulence and magnetic-field evolution
in shearing, collisionless plasma
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE dynamo; magnetic fields; plasmas; turbulence; galaxies: clusters:
intracluster medium
ID PROTON TEMPERATURE ANISOTROPY; NONLINEAR MIRROR INSTABILITY; SCALE
TURBULENT DYNAMO; GALAXY CLUSTERS; INTRACLUSTER MEDIUM; SOLAR-WIND;
GYROTHERMAL INSTABILITIES; ASTROPHYSICAL PLASMAS; HEATING MECHANISM;
KINETIC PHYSICS
AB The non-linear state of a high-beta collisionless plasma is investigated where an imposed shear amplifies or diminishes a uniform mean magnetic field, driving pressure anisotropies and, therefore, firehose or mirror instabilities. To mimic the local behaviour of a macroscopic flow, the shear is switched off or reversed after one shear time, so a new macroscale configuration is superimposed on previous microscale state. A threshold plasma beta is found: when beta << Omega/S (ion cyclotron frequency/shear rate), the emergence/disappearance of firehose or mirror fluctuations is quasi-instantaneous compared to the shear time (lending some credence to popular closures that assume this). This follows from the free decay of these fluctuations being constrained by the same marginal-stability conditions as their growth in the unstable regime, giving the decay time similar to beta/Omega << S-1. In contrast, when beta greater than or similar to Omega/S, the old microscale state only disappears on the shear time-scale. In this ` ultra-high-beta' regime, driven firehose fluctuations grow secularly to order-unity amplitudes, compensating for the decrease of the mean field and thus pinning the pressure anisotropy at marginal stability without scattering particles - unlike what happens at moderate beta. After the shear reverses, the shearing away of these fluctuations compensates for the increase of the mean field and thus prevents growth of the pressure anisotropy, so the system stays close to the firehose threshold, does not go mirror-unstable, the total magnetic energy barely changing at all. Implications for various astrophysical situations, especially the origin of cosmic magnetism, are discussed: collisionless effects appear mostly beneficial to fast magnetic-field generation.
C1 [Melville, Scott; Schekochihin, Alexander A.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England.
[Melville, Scott] Queens Coll, Oxford OX1 4AW, England.
[Melville, Scott] Univ Vienna, Wolfgang Pauli Inst, A-1090 Vienna, Austria.
[Melville, Scott] Harvard Univ, Cambridge, MA 02138 USA.
[Schekochihin, Alexander A.] Univ Oxford Merton Coll, Oxford OX1 4JD, England.
[Kunz, Matthew W.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.
[Kunz, Matthew W.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Schekochihin, AA (reprint author), Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England.; Schekochihin, AA (reprint author), Univ Oxford Merton Coll, Oxford OX1 4JD, England.
EM a.schekochihin1@physics.ox.ac.uk
OI Melville, Scott/0000-0003-3516-856X
FU Lyman Spitzer, Jr. Fellowship; Max-Planck-Princeton Center for Plasma
Physics; Wolfgang Pauli Institute, Vienna
FX We are grateful to S. C. Cowley for many important discussions, without
which this work would not have been conceived. We also thank P. Catto,
F. Parra, E. Quataert, F. Rincon, and A. Spitkovsky for valuable
comments. MWK was supported by a Lyman Spitzer, Jr. Fellowship and by
the Max-Planck-Princeton Center for Plasma Physics. He thanks Merton
College, Oxford, for its support of his visits to Oxford. All three
authors also thank the Wolfgang Pauli Institute, Vienna, for its
hospitality and support.
NR 65
TC 5
Z9 5
U1 1
U2 3
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 1
PY 2016
VL 459
IS 3
BP 2701
EP 2720
DI 10.1093/mnras/stw793
PG 20
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3ZJ
UT WOS:000379840900034
ER
PT J
AU Chang, C
Pujol, A
Gaztanaga, E
Amara, A
Refregier, A
Bacon, D
Becker, MR
Bonnett, C
Carretero, J
Castander, FJ
Crocce, M
Fosalba, P
Giannantonio, T
Hartley, W
Jarvis, M
Kacprzak, T
Ross, AJ
Sheldon, E
Troxel, MA
Vikram, V
Zuntz, J
Abbott, TMC
Abdalla, FB
Allam, S
Annis, J
Benoit-Levy, A
Bertin, E
Brooks, D
Buckley-Geer, E
Burke, DL
Capozzi, D
Rosell, AC
Kind, MC
Cunha, CE
D'Andrea, CB
da Costa, LN
Desai, S
Diehl, HT
Dietrich, JP
Doel, P
Eifler, TF
Estrada, J
Evrard, AE
Flaugher, B
Frieman, J
Goldstein, DA
Gruen, D
Gruendl, RA
Gutierrez, G
Honscheid, K
Jain, B
James, DJ
Kuehn, K
Kuropatkin, N
Lahav, O
Li, TS
Lima, M
Marshall, JL
Martini, P
Melchior, P
Miller, CJ
Miquel, R
Mohr, JJ
Nichol, RC
Nord, B
Ogando, R
Plazas, AA
Reil, K
Romer, AK
Roodman, A
Rykoff, ES
Sanchez, E
Scarpine, V
Schubnell, M
Sevilla-Noarbe, I
Smith, RC
Soares-Santos, M
Sobreira, F
Suchyta, E
Swanson, MEC
Tarle, G
Thomas, D
Walker, AR
AF Chang, C.
Pujol, A.
Gaztanaga, E.
Amara, A.
Refregier, A.
Bacon, D.
Becker, M. R.
Bonnett, C.
Carretero, J.
Castander, F. J.
Crocce, M.
Fosalba, P.
Giannantonio, T.
Hartley, W.
Jarvis, M.
Kacprzak, T.
Ross, A. J.
Sheldon, E.
Troxel, M. A.
Vikram, V.
Zuntz, J.
Abbott, T. M. C.
Abdalla, F. B.
Allam, S.
Annis, J.
Benoit-Levy, A.
Bertin, E.
Brooks, D.
Buckley-Geer, E.
Burke, D. L.
Capozzi, D.
Carnero Rosell, A.
Carrasco Kind, M.
Cunha, C. E.
D'Andrea, C. B.
da Costa, L. N.
Desai, S.
Diehl, H. T.
Dietrich, J. P.
Doel, P.
Eifler, T. F.
Estrada, J.
Evrard, A. E.
Flaugher, B.
Frieman, J.
Goldstein, D. A.
Gruen, D.
Gruendl, R. A.
Gutierrez, G.
Honscheid, K.
Jain, B.
James, D. J.
Kuehn, K.
Kuropatkin, N.
Lahav, O.
Li, T. S.
Lima, M.
Marshall, J. L.
Martini, P.
Melchior, P.
Miller, C. J.
Miquel, R.
Mohr, J. J.
Nichol, R. C.
Nord, B.
Ogando, R.
Plazas, A. A.
Reil, K.
Romer, A. K.
Roodman, A.
Rykoff, E. S.
Sanchez, E.
Scarpine, V.
Schubnell, M.
Sevilla-Noarbe, I.
Smith, R. C.
Soares-Santos, M.
Sobreira, F.
Suchyta, E.
Swanson, M. E. C.
Tarle, G.
Thomas, D.
Walker, A. R.
TI Galaxy bias from the Dark Energy Survey Science Verification data:
combining galaxy density maps and weak lensing maps
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE gravitational lensing: weak; surveys; large-scale structure of Universe
ID CHALLENGE LIGHTCONE SIMULATION; PHOTOMETRIC REDSHIFT PDFS; DIGITAL SKY
SURVEY; SHEAR MEASUREMENT; HALO; LUMINOSITY; PARAMETER; MODEL; COLOR;
INFORMATION
AB We measure the redshift evolution of galaxy bias for a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a similar to 116 deg(2) area of the Dark Energy Survey (DES) Science Verification (SV) data. This method was first developed in Amara et al. and later re-examined in a companion paper with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a i < 22.5 galaxy sample. We find the galaxy bias and 1 sigma error bars in four photometric redshift bins to be 1.12 +/- 0.19 (z = 0.2-0.4), 0.97 +/- 0.15 (z = 0.4-0.6), 1.38 +/- 0.39 (z = 0.6-0.8), and 1.45 +/- 0.56 (z = 0.8-1.0). These measurements are consistent at the 2 sigma level with measurements on the same data set using galaxy clustering and cross-correlation of galaxies with cosmic microwave background lensing, with most of the redshift bins consistent within the 1 sigma error bars. In addition, our method provides the only sigma(8) independent constraint among the three. We forward model the main observational effects using mock galaxy catalogues by including shape noise, photo-z errors, and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Furthermore, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution.
C1 [Chang, C.; Amara, A.; Refregier, A.; Hartley, W.; Kacprzak, T.] Swiss Fed Inst Technol, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland.
[Pujol, A.; Gaztanaga, E.; Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.] CSIC, IEEC, Inst Ciencies Espai, Fac Ciencies, Campus UAB,Torre C5 Par 2, E-08193 Barcelona, Spain.
[Bacon, D.; Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Becker, M. R.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA.
[Becker, M. R.; Burke, D. L.; Cunha, C. E.; Gruen, D.; Roodman, A.; Rykoff, E. S.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA.
[Bonnett, C.; Carretero, J.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Giannantonio, T.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England.
[Giannantonio, T.] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England.
[Giannantonio, T.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England.
[Jarvis, M.; Eifler, T. F.; Jain, B.; Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Ross, A. J.; Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA.
[Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA.
[Troxel, M. A.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England.
[Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA.
[Abbott, T. M. C.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Optic Astron Observ, Casilla 603, La Serena, Chile.
[Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England.
[Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa.
[Allam, S.; Annis, J.; Buckley-Geer, E.; Diehl, H. T.; Estrada, J.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Benoit-Levy, A.; Bertin, E.] Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France.
[Benoit-Levy, A.; Bertin, E.] Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France.
[Burke, D. L.; Gruen, D.; Reil, K.; Roodman, A.; Rykoff, E. S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Carnero Rosell, A.; da Costa, L. N.; Lima, M.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Carnero Rosell, A.; da Costa, L. N.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil.
[Carrasco Kind, M.; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
[Carrasco Kind, M.; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA.
[D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
[Desai, S.; Dietrich, J. P.; Gruen, D.; Mohr, J. J.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany.
[Desai, S.; Dietrich, J. P.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany.
[Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA.
[Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA.
[Evrard, A. E.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA.
[Goldstein, D. A.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Gruen, D.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany.
[Honscheid, K.; Martini, P.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA.
[Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia.
[Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.
[Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA.
[Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil.
[Melchior, P.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA.
[Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain.
[Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England.
[Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, E-28040 Madrid, Spain.
RP Chang, C (reprint author), Swiss Fed Inst Technol, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland.
EM chihway.chang@phys.ethz.ch
RI Lima, Marcos/E-8378-2010; Sobreira, Flavia/F-4168-2015; Ogando,
Ricardo/A-1747-2010; Gaztanaga, Enrique/L-4894-2014;
OI Sobreira, Flavia/0000-0002-7822-0658; Ogando,
Ricardo/0000-0003-2120-1154; Gaztanaga, Enrique/0000-0001-9632-0815;
Pujol, Arnau/0000-0001-7288-6435; Abdalla, Filipe/0000-0003-2063-4345
FU Swiss National Science Foundation [200021-149442, 200021-143906]; beca
FI; Generalitat de Catalunya [2009-SGR-1398]; MICINN [AYA2012-39620];
European Research Council [240672]; US Department of Energy; US National
Science Foundation; Ministry of Science and Education of Spain; Science
and Technology Facilities Council of the United Kingdom; Higher
Education Funding Council for England; National Center for
Supercomputing Applications at the University of Illinois at
Urbana-Champaign; Kavli Institute of Cosmological Physics at the
University of Chicago; Center for Cosmology and Astro-Particle Physics
at the Ohio State University; Mitchell Institute for Fundamental Physics
and Astronomy at Texas AM University; Financiadora de Estudos e
Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do
Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche
Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy
Survey; Argonne National Laboratory; University of California at Santa
Cruz; University of Cambridge; Centro de Investigaciones Energeticas,
Medioambientales y Tecnologicas-Madrid; University of Chicago;
University College London; DES-Brazil Consortium; University of
Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi
National Accelerator Laboratory; University of Illinois at
Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut
de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory;
Ludwig-Maximilians Universitat Munchen and the associated Excellence
Cluster Universe; University of Michigan; National Optical Astronomy
Observatory; University of Nottingham; Ohio State University; University
of Pennsylvania; University of Portsmouth; SLAC National Accelerator
Laboratory; Stanford University; University of Sussex; Texas AM
University; National Science Foundation [AST-1138766]; MINECO
[AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia
Severo Ochoa [SEV-2012-0234]; European Research Council under the
European Union's Seventh Framework Programme (FP7); ERC [240672, 291329,
306478]
FX We thank Marc Manera, Donnacha Kirk, Andrina Nicola, Sebastian Seehars
for useful discussion and feedback. CC, AA, AR, and TK are supported by
the Swiss National Science Foundation grants 200021-149442 and
200021-143906. AP was supported by beca FI and 2009-SGR-1398 from
Generalitat de Catalunya and project AYA2012-39620 from MICINN. JZ and
SB acknowledge support from the European Research Council in the form of
a Starting Grant with number 240672.; Funding for the DES Projects has
been provided by the US Department of Energy, the US National Science
Foundation, the Ministry of Science and Education of Spain, the Science
and Technology Facilities Council of the United Kingdom, the Higher
Education Funding Council for England, the National Center for
Supercomputing Applications at the University of Illinois at
Urbana-Champaign, the Kavli Institute of Cosmological Physics at the
University of Chicago, the Center for Cosmology and Astro-Particle
Physics at the Ohio State University, the Mitchell Institute for
Fundamental Physics and Astronomy at Texas A&M University, Financiadora
de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa
do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e
Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating
Institutions in the Dark Energy Survey.; The Collaborating Institutions
are Argonne National Laboratory, the University of California at Santa
Cruz, the University of Cambridge, Centro de Investigaciones
Energeticas, Medioambientales y Tecnologicas-Madrid, the University of
Chicago, University College London, the DES-Brazil Consortium, the
University of Edinburgh, the Eidgenossische Technische Hochschule (ETH)
Zurich, Fermi National Accelerator Laboratory, the University of
Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai
(IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley
National Laboratory, the Ludwig-Maximilians Universitat Munchen and the
associated Excellence Cluster Universe, the University of Michigan, the
National Optical Astronomy Observatory, the University of Nottingham,
The Ohio State University, the University of Pennsylvania, the
University of Portsmouth, SLAC National Accelerator Laboratory, Stanford
University, the University of Sussex, and Texas A&M University.; The DES
data management system is supported by the National Science Foundation
under Grant Number AST-1138766. The DES participants from Spanish
institutions are partially supported by MINECO under grants
AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia
Severo Ochoa SEV-2012-0234. Research leading to these results has
received funding from the European Research Council under the European
Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant
agreements 240672, 291329, and 306478.
NR 55
TC 6
Z9 6
U1 1
U2 5
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUL 1
PY 2016
VL 459
IS 3
BP 3203
EP 3216
DI 10.1093/mnras/stw861
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA DR3ZJ
UT WOS:000379840900070
ER
PT J
AU Berman, D
Deshmukh, SA
Narayanan, B
Sankaranarayanan, SKRS
Yan, Z
Balandin, AA
Zinovev, A
Rosenmann, D
Sumant, AV
AF Berman, Diana
Deshmukh, Sanket A.
Narayanan, Badri
Sankaranarayanan, Subramanian K. R. S.
Yan, Zhong
Balandin, Alexander A.
Zinovev, Alexander
Rosenmann, Daniel
Sumant, Anirudha V.
TI Metal-induced rapid transformation of diamond into single and multilayer
graphene on wafer scale
SO NATURE COMMUNICATIONS
LA English
DT Article
ID WALLED CARBON NANOTUBES; HEXAGONAL BORON-NITRIDE; EPITAXIAL GRAPHENE;
MONOLAYER GRAPHENE; RAMAN-SPECTROSCOPY; DIRECT GROWTH; FILMS;
ULTRANANOCRYSTALLINE; TRANSISTORS; CHEMISTRY
AB The degradation of intrinsic properties of graphene during the transfer process constitutes a major challenge in graphene device fabrication, stimulating the need for direct growth of graphene on dielectric substrates. Previous attempts of metal-induced transformation of diamond and silicon carbide into graphene suffers from metal contamination and inability to scale graphene growth over large area. Here, we introduce a direct approach to transform polycrystalline diamond into high-quality graphene layers on wafer scale (4 inch in diameter) using a rapid thermal annealing process facilitated by a nickel, Ni thin film catalyst on top. We show that the process can be tuned to grow single or multilayer graphene with good electronic properties. Molecular dynamics simulations elucidate the mechanism of graphene growth on polycrystalline diamond. In addition, we demonstrate the lateral growth of free-standing graphene over micron-sized pre-fabricated holes, opening exciting opportunities for future graphene/diamond-based electronics.
C1 [Berman, Diana; Deshmukh, Sanket A.; Narayanan, Badri; Sankaranarayanan, Subramanian K. R. S.; Rosenmann, Daniel; Sumant, Anirudha V.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Yan, Zhong; Balandin, Alexander A.] Univ Calif Riverside, Bourns Coll Engn, Dept Elect & Comp Engn, Mat Sci & Engn Program, Riverside, CA 92521 USA.
[Zinovev, Alexander] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Sumant, AV (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM sumant@anl.gov
FU US Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; Office of Science of the US Department of
Energy [DE-AC02-06CH11357, DE-AC02-05CH11231]; U.S. Department of
Energy, Office of Science, Basic Energy Sciences, Materials Sciences and
Engineering Division
FX The help in the TEM data collection by Yuzi Liu is greatly appreciated.
Use of the Center for Nanoscale Materials was supported by the US
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under contract no. DE-AC02-06CH11357. This research used
resources of the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the US Department of
Energy under contract no. DE-AC02-05CH11231. This research used
resources of the Argonne Leadership Computing Facility at Argonne
National Laboratory, which is supported by the Office of Science of the
US Department of Energy under contract no. DE-AC02-06CH11357. XPS study
was supported by the U.S. Department of Energy, Office of Science, Basic
Energy Sciences, Materials Sciences and Engineering Division.
NR 43
TC 1
Z9 1
U1 52
U2 94
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD JUL
PY 2016
VL 7
AR 12099
DI 10.1038/ncomms12099
PG 8
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DR4YW
UT WOS:000379910700001
PM 27373740
ER
PT J
AU Qiu, B
Zhang, MH
Wu, LJ
Wang, J
Xia, YG
Qian, DN
Liu, HD
Hy, S
Chen, Y
An, K
Zhu, YM
Liu, ZP
Meng, YS
AF Qiu, Bao
Zhang, Minghao
Wu, Lijun
Wang, Jun
Xia, Yonggao
Qian, Danna
Liu, Haodong
Hy, Sunny
Chen, Yan
An, Ke
Zhu, Yimei
Liu, Zhaoping
Meng, Ying Shirley
TI Gas-solid interfacial modification of oxygen activity in layered oxide
cathodes for lithium-ion batteries
SO NATURE COMMUNICATIONS
LA English
DT Article
ID POSITIVE ELECTRODE MATERIAL; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET;
HIGH-CAPACITY; MANGANESE OXIDES; SURFACE; PERFORMANCE; TRANSITION; MN;
VACANCIES
AB Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas-solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAhg(-1) with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAhg(-1) still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.
C1 [Qiu, Bao; Xia, Yonggao; Liu, Zhaoping] Chinese Acad Sci, NIMTE, Ningbo 315201, Zhejiang, Peoples R China.
[Zhang, Minghao; Qian, Danna; Liu, Haodong; Hy, Sunny; Meng, Ying Shirley] Univ Calif San Diego, Dept Nano Engn, La Jolla, CA 92093 USA.
[Wu, Lijun; Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
[Wang, Jun] Univ Munster, MEET Battery Res Ctr, Inst Phys Chem, Corrensstr 46, D-48149 Munster, Germany.
[Chen, Yan; An, Ke] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37830 USA.
RP Xia, YG; Liu, ZP (reprint author), Chinese Acad Sci, NIMTE, Ningbo 315201, Zhejiang, Peoples R China.; Meng, YS (reprint author), Univ Calif San Diego, Dept Nano Engn, La Jolla, CA 92093 USA.
EM xiayg@nimte.ac.cn; liuzp@nimte.ac.cn; shirleymeng@ucsd.edu
RI An, Ke/G-5226-2011; Chen, Yan/H-4913-2014
OI An, Ke/0000-0002-6093-429X; Chen, Yan/0000-0001-6095-1754
FU NIMTE from Strategic Priority Research Program of Chinese Academy of
Sciences (CAS) [XDA09010101]; CAS [174433KYSB20150047]; Department of
Energy, USA (CAS-DOE) [174433KYSB20150047]; Ningbo Science and
Technology Innovation Team [2012B82001]; Assistant Secretary for Energy
Efficiency and Renewable Energy, Office of Vehicle Technologies of the
U.S. Department of Energy (DOE) under the Advanced Battery Materials
Research (BMR) Program [DE-AC02-05CH11231, 7073923]; U.S. DOE, Office of
Basic Energy Science, Division of Materials Science and Engineering
[DE-AC02-98CH10886]; office of Basic Energy Sciences (BES), the Office
of Science of the U.S. DOE
FX NIMTE is grateful for financial support from Strategic Priority Research
Program of Chinese Academy of Sciences (CAS, Grant No. XDA09010101), Key
Projects in Cooperation between CAS and Department of Energy, USA
(CAS-DOE, Grant No. 174433KYSB20150047), and Ningbo Science and
Technology Innovation Team (Grant No. 2012B82001). UC San Diego's
efforts are supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy, Office of Vehicle Technologies of the U.S.
Department of Energy (DOE) under Contract No. DE-AC02-05CH11231,
Subcontract No. 7073923, under the Advanced Battery Materials Research
(BMR) Program. Work at Brookhaven National Laboratory is supported by
the U.S. DOE, Office of Basic Energy Science, Division of Materials
Science and Engineering, under Contract No. DE-AC02-98CH10886. The
synchrotron XRD and XAS measurements were carried out at SSRF of the
beamline BL14B1 and BL14W1, respectively. The neutron experiments
benefit from the SNS user facilities (VULCAN beamline) sponsored by the
office of Basic Energy Sciences (BES), the Office of Science of the U.S.
DOE. We acknowledge Dr Ding-Yi Tong for the design of the schematic.
NR 55
TC 16
Z9 16
U1 67
U2 111
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD JUL
PY 2016
VL 7
AR 12108
DI 10.1038/ncomms12108
PG 10
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DR4ZA
UT WOS:000379911200001
PM 27363944
ER
PT J
AU Toma, FM
Cooper, JK
Kunzelmann, V
McDowell, MT
Yu, J
Larson, DM
Borys, NJ
Abelyan, C
Beeman, JW
Yu, KM
Yang, JH
Chen, L
Shaner, MR
Spurgeon, J
Houle, FA
Persson, KA
Sharp, ID
AF Toma, Francesca M.
Cooper, Jason K.
Kunzelmann, Viktoria
McDowell, Matthew T.
Yu, Jie
Larson, David M.
Borys, Nicholas J.
Abelyan, Christine
Beeman, Jeffrey W.
Yu, Kin Man
Yang, Jinhui
Chen, Le
Shaner, Matthew R.
Spurgeon, Joshua
Houle, Frances A.
Persson, Kristin A.
Sharp, Ian D.
TI Mechanistic insights into chemical and photochemical transformations of
bismuth vanadate photoanodes
SO NATURE COMMUNICATIONS
LA English
DT Article
ID DOPED BIVO4 PHOTOANODES; WATER-SPLITTING DEVICE; SOLAR-CELLS; OXIDATION;
EFFICIENT; SEMICONDUCTORS; MICROSCOPY; CATALYST; PHOTOELECTRODES;
ELECTRODES
AB Artificial photosynthesis relies on the availability of semiconductors that are chemically stable and can efficiently capture solar energy. Although metal oxide semiconductors have been investigated for their promise to resist oxidative attack, materials in this class can suffer from chemical and photochemical instability. Here we present a methodology for evaluating corrosion mechanisms and apply it to bismuth vanadate, a state-of-the-art photoanode. Analysis of changing morphology and composition under solar water splitting conditions reveals chemical instabilities that are not predicted from thermodynamic considerations of stable solid oxide phases, as represented by the Pourbaix diagram for the system. Computational modelling indicates that photoexcited charge carriers accumulated at the surface destabilize the lattice, and that self-passivation by formation of a chemically stable surface phase is kinetically hindered. Although chemical stability of metal oxides cannot be assumed, insight into corrosion mechanisms aids development of protection strategies and discovery of semiconductors with improved stability.
C1 [Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria; Yu, Jie; Larson, David M.; Abelyan, Christine; Beeman, Jeffrey W.; Yang, Jinhui; Chen, Le; Houle, Frances A.; Persson, Kristin A.; Sharp, Ian D.] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Toma, Francesca M.; Cooper, Jason K.; Yu, Jie; Larson, David M.; Abelyan, Christine; Houle, Frances A.; Sharp, Ian D.] Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Kunzelmann, Viktoria] Tech Univ Munich, Walter Schottky Inst, Coulombwall 4, D-85748 Garching, Germany.
[Kunzelmann, Viktoria] Tech Univ Munich, Dept Phys, Coulombwall 4, D-85748 Garching, Germany.
[McDowell, Matthew T.; Shaner, Matthew R.; Spurgeon, Joshua] CALTECH, Joint Ctr Artificial Photosynthesis, 1200 Esat Calif Blvd, Pasadena, CA 91125 USA.
[McDowell, Matthew T.; Shaner, Matthew R.; Spurgeon, Joshua] CALTECH, Div Chem & Chem Engn, 1200 Esat Calif Blvd, Pasadena, CA 91125 USA.
[Borys, Nicholas J.] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Borys, Nicholas J.; Beeman, Jeffrey W.; Yu, Kin Man; Yang, Jinhui; Chen, Le] Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Persson, Kristin A.] Lawrence Berkeley Natl Lab, Energy Technol Area, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Persson, Kristin A.] Univ Calif Berkeley, Mat Sci & Engn, 210 Hearst Mem Min Bldg, Berkeley, CA 94720 USA.
[McDowell, Matthew T.] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA.
[McDowell, Matthew T.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA.
[Yu, Kin Man] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China.
[Spurgeon, Joshua] Univ Louisville, Conn Ctr Renewable Energy Res, Louisville, KY 40292 USA.
RP Toma, FM; Sharp, ID (reprint author), Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Toma, FM; Sharp, ID (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM fmtoma@lbl.gov; idsharp@lbl.gov
OI Yu, Kin Man/0000-0003-1350-9642
FU Office of Science of the U.S. Department of Energy [DE-SC0004993];
Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy [DE-AC02-05CH11231]; Laboratory Directed Research
and Development Program of Lawrence Berkeley National Laboratory under
U.S. Department of Energy [DE-AC02-05CH11231]; BaCaTeC programme
[2015-1]
FX This study is based on work performed at the Joint Center for Artificial
Photosynthesis, a DOE Energy Innovation Hub, supported through the
Office of Science of the U.S. Department of Energy under Award Number
DE-SC0004993. Imaging work at the Molecular Foundry was supported by the
Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under contract number DE-AC02-05CH11231. The EC-AFM
part of this work was supported in part by the Laboratory Directed
Research and Development Program of Lawrence Berkeley National
Laboratory under U.S. Department of Energy contract number
DE-AC02-05CH11231. V.K. and F.M.T. acknowledge support from the BaCaTeC
programme, project number 2015-1. Craig Jones from Agilent Technologies,
Inc. is greatly acknowledged for his help with ICP-MS measurements.
NR 47
TC 10
Z9 10
U1 49
U2 83
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD JUL
PY 2016
VL 7
AR 12012
DI 10.1038/ncomms12012
PG 11
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DR6XT
UT WOS:000380045300001
PM 27377305
ER
PT J
AU Zhou, JZ
Deng, Y
Shen, LN
Wen, CQ
Yan, QY
Ning, DL
Qin, YJ
Xue, K
Wu, LY
He, ZL
Voordeckers, JW
Van Nostrand, JD
Buzzard, V
Michaletz, ST
Enquist, BJ
Weiser, MD
Kaspari, M
Waide, R
Yang, YF
Brown, JH
AF Zhou, Jizhong
Deng, Ye
Shen, Lina
Wen, Chongqing
Yan, Qingyun
Ning, Daliang
Qin, Yujia
Xue, Kai
Wu, Liyou
He, Zhili
Voordeckers, James W.
Van Nostrand, Joy D.
Buzzard, Vanessa
Michaletz, Sean T.
Enquist, Brian J.
Weiser, Michael D.
Kaspari, Michael
Waide, Robert
Yang, Yunfeng
Brown, James H.
TI Temperature mediates continental-scale diversity of microbes in forest
soils
SO NATURE COMMUNICATIONS
LA English
DT Article
ID COMMUNITY STRUCTURE; METABOLIC THEORY; CLIMATE-CHANGE; LATITUDINAL
GRADIENTS; SPECIES-DIVERSITY; BIODIVERSITY; ECOSYSTEM; ECOLOGY;
BIOGEOGRAPHY; SEQUENCES
AB Climate warming is increasingly leading to marked changes in plant and animal biodiversity, but it remains unclear how temperatures affect microbial biodiversity, particularly in terrestrial soils. Here we show that, in accordance with metabolic theory of ecology, taxonomic and phylogenetic diversity of soil bacteria, fungi and nitrogen fixers are all better predicted by variation in environmental temperature than pH. However, the rates of diversity turnover across the global temperature gradients are substantially lower than those recorded for trees and animals, suggesting that the diversity of plant, animal and soil microbial communities show differential responses to climate change. To the best of our knowledge, this is the first study demonstrating that the diversity of different microbial groups has significantly lower rates of turnover across temperature gradients than other major taxa, which has important implications for assessing the effects of human-caused changes in climate, land use and other factors.
C1 [Zhou, Jizhong; Yang, Yunfeng] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China.
[Zhou, Jizhong; Deng, Ye; Shen, Lina; Wen, Chongqing; Yan, Qingyun; Ning, Daliang; Qin, Yujia; Xue, Kai; Wu, Liyou; He, Zhili; Voordeckers, James W.; Van Nostrand, Joy D.] Univ Oklahoma, Inst Environm Genom, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.
[Zhou, Jizhong; Deng, Ye; Shen, Lina; Wen, Chongqing; Yan, Qingyun; Ning, Daliang; Qin, Yujia; Xue, Kai; Wu, Liyou; He, Zhili; Voordeckers, James W.; Van Nostrand, Joy D.] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA.
[Zhou, Jizhong] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94270 USA.
[Deng, Ye] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Environm Biotechnol, Beijing 100085, Peoples R China.
[Buzzard, Vanessa; Michaletz, Sean T.; Enquist, Brian J.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA.
[Enquist, Brian J.] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA.
[Weiser, Michael D.; Kaspari, Michael] Univ Oklahoma, Dept Biol, EEB Grad Program, Norman, OK 73019 USA.
[Kaspari, Michael] Smithsonian Trop Res Inst, Balboa 084303092, Panama.
[Waide, Robert; Brown, James H.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA.
RP Zhou, JZ (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China.; Zhou, JZ; Deng, Y (reprint author), Univ Oklahoma, Inst Environm Genom, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.; Zhou, JZ; Deng, Y (reprint author), Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94270 USA.; Deng, Y (reprint author), Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Environm Biotechnol, Beijing 100085, Peoples R China.
EM jzhou@ou.edu; yedeng@rcees.ac.cn
OI ?, ?/0000-0002-7584-0632
FU U.S. National Science Foundation MacroSystems Biology program [NSF
EF-1065844]; Office of the Vice President for Research at the University
of Oklahoma; Collaborative Innovation Center for Regional Environmental
Quality at the Tsinghua University; National Science Foundation of China
[41430856]; National Natural Science Foundation of China [31540071];
Strategic Priority Research Program of the Chinese Academy of Sciences
(CAS) [XDB15010302]; CAS 100 talent program
FX This study was supported by the U.S. National Science Foundation
MacroSystems Biology program under the contract (NSF EF-1065844), by the
Office of the Vice President for Research at the University of Oklahoma,
by the Collaborative Innovation Center for Regional Environmental
Quality at the Tsinghua University and the National Science Foundation
of China (41430856). Y.D. was also supported by the National Natural
Science Foundation of China (grant no. 31540071), Strategic Priority
Research Program of the Chinese Academy of Sciences (CAS; grant
XDB15010302) and CAS 100 talent program.
NR 68
TC 4
Z9 4
U1 55
U2 97
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD JUL
PY 2016
VL 7
AR 12083
DI 10.1038/ncomms12083
PG 10
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DR6YE
UT WOS:000380046400001
PM 27377774
ER
PT J
AU Oliver, JB
Smith, C
Spaulding, J
Rigatti, AL
Charles, B
Papernov, S
Taylor, B
Foster, J
Carr, CW
Luthi, R
Hollingsworth, B
Cross, D
AF Oliver, J. B.
Smith, C.
Spaulding, J.
Rigatti, A. L.
Charles, B.
Papernov, S.
Taylor, B.
Foster, J.
Carr, C. W.
Luthi, R.
Hollingsworth, B.
Cross, D.
TI Glancing-angle-deposited magnesium oxide films for high-fluence
applications
SO OPTICAL MATERIALS EXPRESS
LA English
DT Article
ID LASER-INDUCED DAMAGE; THIN-FILMS; SERIAL BIDEPOSITION;
OPTICAL-PROPERTIES; REFRACTIVE-INDEX; MGO FILMS; COATINGS; BIREFRINGENCE
AB Birefringent magnesium oxide thin films are formed by glancing-angle deposition to perform as quarter-wave plates at a wavelength of 351 nm. These films are being developed to fabricate a large-aperture distributed-polarization rotator for use in vacuum, with an ultimate laser-damage-threshold goal of up to 12 J/cm(2) for a 5-ns flat-in-time pulse. The laser-damage threshold, ease of deposition, and optical film properties are evaluated. While the measured large-area laser-damage threshold is limited to similar to 4 J/cm(2) in vacuum, initial results based on small-spot testing in air (> 20 J/cm(2)) suggest MgO may be suitable with further process development. (C) 2016 Optical Society of America
C1 [Oliver, J. B.; Smith, C.; Spaulding, J.; Rigatti, A. L.; Charles, B.; Papernov, S.; Taylor, B.; Foster, J.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA.
[Carr, C. W.; Luthi, R.; Hollingsworth, B.; Cross, D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Oliver, JB (reprint author), Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA.
EM joli@lle.rochester.edu
FU Department of Energy National Nuclear Security Administration
[DE-NA0001944]; University of Rochester; New York State Energy Research
and Development Authority; DOE
FX This material is based upon work supported by the Department of Energy
National Nuclear Security Administration under Award Number
DE-NA0001944, the University of Rochester, and the New York State Energy
Research and Development Authority. The support of DOE does not
constitute an endorsement by DOE of the views expressed in this article.
NR 40
TC 0
Z9 0
U1 4
U2 4
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 2159-3930
J9 OPT MATER EXPRESS
JI Opt. Mater. Express
PD JUL 1
PY 2016
VL 6
IS 7
BP 2291
EP 2303
DI 10.1364/OME.6.002291
PG 13
WC Materials Science, Multidisciplinary; Optics
SC Materials Science; Optics
GA DR2OE
UT WOS:000379743000017
ER
PT J
AU Liz-Marzan, L
Bals, S
AF Liz-Marzan, Luis
Bals, Sara
TI Advanced Particle Characterization Techniques
SO PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
LA English
DT Editorial Material
C1 [Liz-Marzan, Luis] Univ Utrecht, NL-3508 TC Utrecht, Netherlands.
[Liz-Marzan, Luis] Univ Vigo, Vigo, Spain.
[Liz-Marzan, Luis] CIC Bioma GUNE, San Sebastian, Spain.
[Bals, Sara] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA USA.
[Bals, Sara] Univ Antwerp, Electron Microscopy Mat Res EMAT Grp, Antwerp, Belgium.
RP Liz-Marzan, L (reprint author), Univ Utrecht, NL-3508 TC Utrecht, Netherlands.; Liz-Marzan, L (reprint author), CIC Bioma GUNE, San Sebastian, Spain.
NR 0
TC 0
Z9 0
U1 11
U2 11
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0934-0866
EI 1521-4117
J9 PART PART SYST CHAR
JI Part. Part. Syst. Charact.
PD JUL
PY 2016
VL 33
IS 7
SI SI
BP 350
EP 351
DI 10.1002/ppsc.201600137
PG 2
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA DR5VH
UT WOS:000379970000001
ER
PT J
AU Gao, F
Szanyi, J
Wang, YL
Schwenzer, B
Kollar, M
Peden, CHF
AF Gao, Feng
Szanyi, Janos
Wang, Yilin
Schwenzer, Birgit
Kollar, Marton
Peden, Charles H. F.
TI Hydrothermal Aging Effects on Fe/SSZ-13 and Fe/Beta NH3-SCR Catalysts
SO TOPICS IN CATALYSIS
LA English
DT Article; Proceedings Paper
CT 10th Congress on Catalysis and Automotive Pollution Control (CAPoC)
CY OCT 28-30, 2015
CL Univ Libre Bruxelles, Brussels, BELGIUM
HO Univ Libre Bruxelles
DE SCR; Fe/beta; Fe/SSZ-13; Zeolite catalyst; Emission control
ID REACTION-KINETICS; NOX; REDUCTION; AMMONIA; SCR
AB Fe/SSZ-13 and Fe/beta catalysts with similar Fe loading and Si/Al ratios were prepared via solution ion-exchange under N-2. These catalysts, in both freshly prepared and hydrothermally aged forms, were characterized with temperature-programmed reduction/desorption and a few spectroscopic methods to elucidate changes to Fe species and zeolite acidity during hydrothermal aging. The catalytic properties were further studied using standard/fast SCR and NO/NH3 oxidation reactions. For both catalysts, aging causes Fe-ion clustering and Al-Fe interactions. A clear correlation is found between standard NH3-SCR and NO oxidation activities indicating that higher NO oxidation rates enable fast SCR even under standard SCR conditions. For fast SCR, higher pore opening and lower acidity in beta zeolite-based catalysts mitigate NH4NO3 deposition.
C1 [Gao, Feng; Szanyi, Janos; Wang, Yilin; Schwenzer, Birgit; Kollar, Marton; Peden, Charles H. F.] Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
RP Gao, F (reprint author), Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
EM feng.gao@pnnl.gov
NR 15
TC 0
Z9 0
U1 23
U2 34
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1022-5528
EI 1572-9028
J9 TOP CATAL
JI Top. Catal.
PD JUL
PY 2016
VL 59
IS 10-12
BP 882
EP 886
DI 10.1007/s11244-016-0563-5
PG 5
WC Chemistry, Applied; Chemistry, Physical
SC Chemistry
GA DR3VI
UT WOS:000379830300008
ER
PT J
AU Ruggeri, MP
Selleri, T
Nova, I
Tronconi, E
Pihl, JA
Toops, TJ
Partridge, WP
AF Ruggeri, M. P.
Selleri, T.
Nova, I.
Tronconi, E.
Pihl, J. A.
Toops, T. J.
Partridge, W. P.
TI New Mechanistic Insights in the NH3-SCR Reactions at Low Temperature
SO TOPICS IN CATALYSIS
LA English
DT Article; Proceedings Paper
CT 10th Congress on Catalysis and Automotive Pollution Control (CAPoC)
CY OCT 28-30, 2015
CL Univ Libre Bruxelles, Brussels, BELGIUM
HO Univ Libre Bruxelles
DE Low temperature SCR; Cu zeolite; Fe zeolite; SCR mechanism; In situ
DRIFTS; Chemical trapping
ID SELECTIVE CATALYTIC-REDUCTION; NO OXIDATION; SITU-DRIFTS; ZEOLITE
CATALYSTS; CU-ZEOLITE; NH3; SCR; IDENTIFICATION
AB The present study is focused on the investigation of the low temperature Standard SCR reaction mechanism over Fe- and Cu-promoted zeolites. Different techniques are employed, including in situ DRIFTS, transient reaction analysis and chemical trapping techniques. The results present strong evidence of nitrite formation in the oxidative activation of NO and of their role in SCR reactions. These elements lead to a deeper understanding of the standard SCR chemistry at low temperature and can potentially improve the consistency of mechanistic mathematical models. Moreover, comprehension of the mechanism on a fundamental level can contribute to the development of improved SCR catalysts.
C1 [Ruggeri, M. P.; Selleri, T.; Nova, I.; Tronconi, E.] Politecn Milan, Dipartimento Energia, Lab Catalysis & Catalyt Proc, Via La Masa 34, I-20156 Milan, Italy.
[Pihl, J. A.; Toops, T. J.; Partridge, W. P.] Oak Ridge Natl Lab, Fuels Engines & Emission Res Ctr, Oak Ridge, TN 37831 USA.
RP Tronconi, E (reprint author), Politecn Milan, Dipartimento Energia, Lab Catalysis & Catalyt Proc, Via La Masa 34, I-20156 Milan, Italy.
EM enrico.tronconi@polimi.it
NR 13
TC 1
Z9 1
U1 14
U2 26
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1022-5528
EI 1572-9028
J9 TOP CATAL
JI Top. Catal.
PD JUL
PY 2016
VL 59
IS 10-12
BP 907
EP 912
DI 10.1007/s11244-016-0567-1
PG 6
WC Chemistry, Applied; Chemistry, Physical
SC Chemistry
GA DR3VI
UT WOS:000379830300012
ER
PT J
AU Balog, ERM
Ghosh, K
Park, YI
Hartung, V
Sista, P
Rocha, RC
Wang, HL
Martinez, JS
AF Balog, Eva Rose M.
Ghosh, Koushik
Park, Young-Il
Hartung, Vaughn
Sista, Prakash
Rocha, Reginaldo C.
Wang, Hsing-Lin
Martinez, Jennifer S.
TI Stimuli-Responsive Genetically Engineered Polymer Hydrogel Demonstrates
Emergent Optical Responses
SO ACS BIOMATERIALS SCIENCE & ENGINEERING
LA English
DT Article
DE conjugated oligomer; composite material; optically active material;
photoluminescence; polymeric material; stimuli-responsive material;
genetically encoded
ID BLOCK-COPOLYMERS; IN-SITU; ELASTIN
AB Biopolymer-based optical hydrogels represent an emerging class of materials with potential applications in biocompatible integrated optoelectronic devices, bioimaging applications, and stretchable/flexible photonics. We have synthesized stimuli-responsive three-dimensional hydrogels from genetically engineered elastin-like polymers (ELPs) and have loaded these hydrogels with an amine-containing p-phenylenevinylene oligomer (OPPV) derivative featuring highly tunable, environmentally sensitive optical properties. The composite ELP/OPPV hydrogels exhibit both pH- and temperature-dependent fluorescence emission, from which we have characterized a unique optical behavior that emerged from OPPV within the hydrogel environment. By systematic comparison with free OPPV in solution, our results suggest that this distinct behavior is due to local electronic effects arising from interactions between the hydrophobic ELP microenvironment and the nonprotonated OPPV species at pH 7 or higher.
C1 [Balog, Eva Rose M.; Ghosh, Koushik; Rocha, Reginaldo C.; Martinez, Jennifer S.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Wang, Hsing-Lin] Los Alamos Natl Lab, Div Chem, C PCS, Los Alamos, NM 87545 USA.
[Hartung, Vaughn] Los Alamos Natl Lab, Mat Sci & Technol Div, MST 7, Los Alamos, NM 87545 USA.
[Martinez, Jennifer S.] Los Alamos Natl Lab, Inst Mat Sci, Los Alamos, NM 87545 USA.
[Balog, Eva Rose M.] Univ New England, Dept Chem & Phys, Biddeford, ME 04005 USA.
[Ghosh, Koushik] Eastman Chem, Kingsport, TN 37660 USA.
[Park, Young-Il] Korean Res Inst Chem Technol, Res Ctr Green Fine Chem, Ulsan 681802, South Korea.
[Sista, Prakash] SABIC Innovat Plast, Mt Vernon, IN 47620 USA.
RP Martinez, JS (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
EM jenm@lanl.gov
RI Balog, Eva Rose/P-7661-2014
OI Balog, Eva Rose/0000-0001-6792-6914
FU Laboratory Directed Research and Development (LDRD); Basic Energy
Science, Biomolecular Materials Program, Division of Materials Science
Engineering; National Nuclear Security Administration of the U.S.
Department of Energy [DE-AC52-06NA25396]
FX The authors acknowledge financial support by the Laboratory Directed
Research and Development (LDRD) program for synthesis of conjugated
oligomers and hydrogels (E. R. M. B., K. G., P. S., R. C. R).
Photophysical and rheological characterization of ELP/OPPV hydrogels was
supported by the Basic Energy Science, Biomolecular Materials Program,
Division of Materials Science & Engineering (H.-L. W., J. S. M., and
Y.-I. P.). This work was performed, in part, at the Center for
Integrated Nanotechnologies, an Office of Science User Facility operated
for the U.S. Department of Energy (DOE) Office of Science. Los Alamos
National Laboratory, an affirmative action equal opportunity employer,
is operated by Los Alamos National Security, LLC, for the National
Nuclear Security Administration of the U.S. Department of Energy under
contract DE-AC52-06NA25396.
NR 32
TC 1
Z9 1
U1 10
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2373-9878
J9 ACS BIOMATER SCI ENG
JI ACS Biomater. Sci. Eng.
PD JUL
PY 2016
VL 2
IS 7
BP 1135
EP 1142
DI 10.1021/acsbiomaterials.6b00137
PG 8
WC Materials Science, Biomaterials
SC Materials Science
GA DR1AL
UT WOS:000379638200007
ER
PT J
AU Xie, JH
Huang, B
Yin, KH
Pham, HN
Unocic, RR
Datye, AK
Davis, RJ
AF Xie, Jiahan
Huang, Benjamin
Yin, Kehua
Pham, Hien N.
Unocic, Raymond R.
Datye, Abhaya K.
Davis, Robert J.
TI Influence of Dioxygen on the Promotional Effect of Bi during
Pt-Catalyzed Oxidation of 1,6-Hexanediol
SO ACS CATALYSIS
LA English
DT Article
DE Pt; Bi; heterogeneous catalysts; alcohol oxidation; catalyst
restructuring; promotional effect; dioxygen pressure; isotope effect
ID IRREVERSIBLY ADSORBED ADATOMS; SUPPORTED PLATINUM CATALYSTS; SELECTIVE
AEROBIC OXIDATION; FORMIC-ACID OXIDATION; METAL-CATALYSTS;
2,5-FURANDICARBOXYLIC ACID; NANOPARTICLE CATALYSTS; FUEL-CELLS;
HETEROGENEOUS ELECTROCATALYSIS; BIMETALLIC CATALYSTS
AB A series of carbon-supported, Bi-promoted Pt catalysts with various Bi/Pt atomic ratios was prepared by selectively depositing Bi on Pt nanoparticles. The catalysts were evaluated for 1,6-hexanediol oxidation activity in aqueous solvent under different dioxygen pressures. The rate of diol oxidation on the basis of Pt loading over a Bi-promoted catalyst was 3 times faster than that of an unpromoted Pt catalyst under 0.02 MPa of O-2, whereas the unpromoted catalyst was more active than the promoted catalyst under 1 MPa of O-2. After liquid-phase catalyst pretreatment and 1,6-hexanediol oxidation, migration of Bi on the carbon support was observed. The reaction order in O-2 was 0 over Bi-promoted Pt/C in comparison to 0.75 over unpromoted Pt/C in the range of 0.02-0.2 MPa of O-2. Under low O-2 pressure, rate measurements in D2O instead of H2O solvent revealed a moderate kinetic isotope effect (rate(H2O)/rate(D2O)) on 1,6-hexanediol oxidation over Pt/C (KIE = 1.4), whereas a negligible effect was observed on Bi-Pt/C (KIE = 0.9), indicating that the promotional effect of Bi could be related to the formation of surface hydroxyl groups from the reaction of dioxygen and water. No significant change in product distribution or catalyst stability was observed with Bi promotion, regardless of the dioxygen pressure.
C1 [Xie, Jiahan; Huang, Benjamin; Yin, Kehua; Davis, Robert J.] Univ Virginia, Dept Chem Engn, 102 Engn Way,POB 400741, Charlottesville, VA 22904 USA.
[Pham, Hien N.; Datye, Abhaya K.] Univ New Mexico, Dept Chem Engn, Albuquerque, NM 87131 USA.
[Pham, Hien N.; Datye, Abhaya K.] Univ New Mexico, Ctr Microengn Mat, Albuquerque, NM 87131 USA.
[Unocic, Raymond R.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Davis, RJ (reprint author), Univ Virginia, Dept Chem Engn, 102 Engn Way,POB 400741, Charlottesville, VA 22904 USA.
EM rjd4f@virginia.edu
RI Yin, Kehua/B-8353-2017; Xie, Jiahan/D-2020-2017
OI Yin, Kehua/0000-0003-2391-5329; Xie, Jiahan/0000-0003-1754-9844
FU National Science Foundation [EEC-0813570]; U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886];
Synchrotron Catalysis Consortium, U.S. Department of Energy
[DE-FG02-05ER15688]
FX This material was based upon the work supported by the National Science
Foundation under award number EEC-0813570. Use of the National
Synchrotron Light Source was supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-98CH10886. Beamline X18B at the NSLS is supported in part by the
Synchrotron Catalysis Consortium, U.S. Department of Energy Grant No.
DE-FG02-05ER15688. A portion of microscopy research was conducted at the
Center for Nanophase Materials Sciences at Oak Ridge National
Laboratory, which is a DOE Office of Science User Facility. The authors
acknowledge Dr. Dmitry Pestov and Professor Eric Carpenter in the
Nanomaterials Characterization Center at Virginia Commonwealth
University (for use of the XPS), Dr. Helge Heinrich in the Nanoscale
Materials Characterization Facility at the University of Virginia, and
the NSLS X-18B beamline personnel, Dr. Nebojsa Marinkovic and Dr. Syed
Khalid. Helpful discussions with Zachary Young and Professor Matthew
Neurock are also acknowledged.
NR 68
TC 0
Z9 0
U1 9
U2 21
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD JUL
PY 2016
VL 6
IS 7
BP 4206
EP 4217
DI 10.1021/acscatal.6b00972
PG 12
WC Chemistry, Physical
SC Chemistry
GA DQ8JO
UT WOS:000379457300020
ER
PT J
AU Yuan, KD
Zhong, JQ
Zhou, X
Xu, LL
Bergman, SL
Wu, K
Xu, GQ
Bernasek, SL
Li, HX
Chen, W
AF Yuan, Kaidi
Zhong, Jian-Qiang
Zhou, Xiong
Xu, Leilei
Bergman, Susanna L.
Wu, Kai
Xu, Guo Qin
Bernasek, Steven L.
Li, He Xing
Chen, Wei
TI Dynamic Oxygen on Surface: Catalytic Intermediate and Coking Barrier in
the Modeled CO2 Reforming of CH4 on Ni (111)
SO ACS CATALYSIS
LA English
DT Article
DE NAP-XPS; surface oxygen; dry reforming; coking; methane; carbon dioxide;
nickel
ID RAY PHOTOELECTRON-SPECTROSCOPY; SCANNING-TUNNELING-MICROSCOPY;
ORDER-DISORDER TRANSITION; DENSITY-FUNCTIONAL THEORY; CARBON-DIOXIDE;
IN-SITU; AMBIENT-PRESSURE; NI(111) SURFACES; CHEMISORBED OXYGEN;
OXIDATION REACTION
AB We identify Ni-O phases as important intermediates in a modeled dry (CO2) reforming of methane catalyzed by Ni (111), based on results from in operando near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) experiments, corroborated by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) measurements. We find that, under a CO2 or CO2-CH4 atmosphere, the Ni-O phases exist in the forms of p(2 X 2)-structured chemisorbed oxygen (Chem-O), epitaxial NiO (111), or oxygen-rich NixOy (x < y, typically Ni2O3), depending on the chemical potential. The growth rates of the Ni-O phases have a negative correlation with temperature from 600 to 900 K, proving that their dynamic concentrations in the reaction are not limited by CO2 activation, but by their thermal stability. Between 300 and 800 K (1:1 CH4 and CO, mixture), oxidation by CO, is dominant, resulting in a fully Ni-O covered surface. Between 800 and 900 K, a partially oxidized Ni (111) exists which could greatly facilitate the effective conversion of CH4. As CH4 is activation-limited and dissociates mainly on metallic nickel, the released carbon species can quickly react with the adjacent oxygen (Ni-O phases) to form CO. After combining with carbon and releasing CO molecules, the Ni-O phases can be further regenerated through oxidation by CO. In this way, the Ni-O phases participate in the catalytic process, acting as an intermediate in addition to the previously reported Ni-C phases. We also reveal the carbon phobic property of the Ni-O phases, which links to the intrinsic coking resistance of the catalysts. The low dynamic coverage of surface oxygen at higher temperatures (>900 K) is inferred to be an underlying factor causing carbon aggregation. Therefore, solutions based on Ni-O stabilization are proposed in developing coking resisting catalysts.
C1 [Yuan, Kaidi; Chen, Wei] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore.
[Yuan, Kaidi; Zhong, Jian-Qiang; Zhou, Xiong; Xu, Leilei; Wu, Kai; Xu, Guo Qin; Chen, Wei] Singapore Peking Univ, Res Ctr Sustainable Low Carbon Future, 1 CREATE Way,15-01,CREATE Tower, Singapore 138602, Singapore.
[Zhou, Xiong; Xu, Guo Qin; Chen, Wei] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore.
[Wu, Kai] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China.
[Bergman, Susanna L.; Bernasek, Steven L.] Yale NUS Coll, Sci Div, 16 Coll Ave West, Singapore 138527, Singapore.
[Bergman, Susanna L.; Bernasek, Steven L.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA.
[Chen, Wei] Natl Univ Singapore Suzhou, Res Inst, 377 Linquan St,Suzhou Ind Pk, Suzhou 215123, Jiangsu, Peoples R China.
[Zhong, Jian-Qiang] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Li, He Xing] Shanghai Normal Univ, Chinese Educ Minist, Key Lab Resource Chem, Shanghai 200234, Peoples R China.
RP Chen, W (reprint author), Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore.; Chen, W (reprint author), Singapore Peking Univ, Res Ctr Sustainable Low Carbon Future, 1 CREATE Way,15-01,CREATE Tower, Singapore 138602, Singapore.; Chen, W (reprint author), Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore.; Chen, W (reprint author), Natl Univ Singapore Suzhou, Res Inst, 377 Linquan St,Suzhou Ind Pk, Suzhou 215123, Jiangsu, Peoples R China.
EM phycw@nus.edu.sg
RI Wu, Kai/A-4903-2011; CHEN, Wei/F-4658-2010
OI Wu, Kai/0000-0002-5016-0251; CHEN, Wei/0000-0002-1131-3585
FU Singapore MOE [R143-000-542-112]; Singapore National Research Foundation
CREATE-SPURc program [R-143-001-205-592]; NFSC program [21573156];
Academia -Industry Collaborative Innovation Foundation from Jiangsu
Science and Technology Department [20121G00421, BY2014139]
FX The authors acknowledge the financial support from Singapore MOE grant
R143-000-542-112, Singapore National Research Foundation CREATE-SPURc
program R-143-001-205-592, NFSC program (21573156), and Academia
-Industry Collaborative Innovation Foundation 20121G00421 and BY2014139
from Jiangsu Science and Technology Department.
NR 87
TC 4
Z9 4
U1 37
U2 56
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD JUL
PY 2016
VL 6
IS 7
BP 4330
EP 4339
DI 10.1021/acscatal.6b00357
PG 10
WC Chemistry, Physical
SC Chemistry
GA DQ8JO
UT WOS:000379457300033
ER
PT J
AU Robinson, A
Ferguson, GA
Gallagher, JR
Cheah, S
Beckham, GT
Schaidle, JA
Hensley, JE
Medlin, JW
AF Robinson, Allison
Ferguson, Glen Allen
Gallagher, James R.
Cheah, Singfoong
Beckham, Gregg T.
Schaidle, Joshua A.
Hensley, Jesse E.
Medlin, J. Will
TI Enhanced Hydrodeoxygenation of m-Cresol over Bimetallic Pt-Mo Catalysts
through an Oxophilic Metal-Induced Tautomerization Pathway
SO ACS CATALYSIS
LA English
DT Article
DE platinum; molybdenum; bimetallic; biomass; hydrodeoxygenation; oxophilic
promoter; catalytic fast pyrolysis
ID RAY-ABSORPTION SPECTROSCOPY; PLATINUM-RHENIUM CATALYSTS;
CARBON-SUPPORTED PLATINUM; AQUEOUS-PHASE; SYNTHESIS GAS; FE CATALYSTS;
BIO-OILS; IN-SITU; SURFACE; GLYCEROL
AB Supported bimetallic catalysts consisting of a noble metal (e.g., Pt) and an oxophilic metal (e.g., Mo) have received considerable attention for the hydrodeoxygenation of oxygenated aromatic compounds produced from biomass fast pyrolysis. Here, we report that PtMo can catalyze m-cresol deoxygenation via a pathway involving an initial tautomerization step. In contrast, the dominant mechanism on monometallic Pt/Al2O3 was found to be sequential Pt-catalyzed ring hydrogenation followed by dehydration on the support. Bimetallic Pt10Mo1 and Pt1Mo1 catalysts were found to produce the completely hydrogenated and deoxygenated product, methylcyclohexane (MCH), with much higher yields than monometallic Pt catalysts with comparable metal loadings and surface areas. Over an inert carbon support, MCH formation was found to be slow over monometallic Pt catalysts, while deoxygenation was significant for PtMo catalysts even in the absence of an acidic support material. Experimental studies of m-cresol deoxygenation together with density functional theory calculations indicated that Mo sites on the PtMo bimetallic surface dramatically lower the barrier for m-cresol tautomerization and subsequent deoxygenation. The accessibility of this pathway arises from the increased interaction between the oxygen of m-cresol and the Mo sites in the Pt surface. This interaction significantly alters the configuration of the precursor and transition states for tautomerization. A suite of catalyst characterization techniques including X-ray absorption spectroscopy (XAS) and temperature-programmed reduction (TPR) indicate that Mo was present in a reduced state on the bimetallic surface under conditions relevant for reaction. Overall, these results suggest that the use of bifunctional metal catalysts can result in new reaction pathways that are unfavorable on monometallic noble metal catalysts.
C1 [Robinson, Allison; Medlin, J. Will] Univ Colorado, Chem & Biol Engn Dept, Boulder, CO 80303 USA.
[Ferguson, Glen Allen; Cheah, Singfoong; Beckham, Gregg T.; Schaidle, Joshua A.; Hensley, Jesse E.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
[Gallagher, James R.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Medlin, JW (reprint author), Univ Colorado, Chem & Biol Engn Dept, Boulder, CO 80303 USA.; Schaidle, JA (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
EM joshua.schaidle@nrel.gov; will.medlin@colorado.edu
FU Department of Energy BioEnergy Technologies Office [DE-AC36-08-GO28308];
Texas Advanced Computing Center under the National Science Foundation
Extreme Science and Engineering Discovery Environment [MCB-090159];
National Science Foundation [CHE-1149752]; Department of Education
Graduate Assistantships in Areas of National Need (GAANN); DOE Office of
Science [DE-AC02-06CH11357]
FX This work was supported by the Department of Energy BioEnergy
Technologies Office under Contract no. DE-AC36-08-GO28308. Computer time
was provided by the Texas Advanced Computing Center under the National
Science Foundation Extreme Science and Engineering Discovery Environment
Grant MCB-090159 and by the National Renewable Energy Laboratory
Computational Sciences Center. A.M.R acknowledges support from the
National Science Foundation for funding this research (Award
CHE-1149752) and partial support from the Department of Education
Graduate Assistantships in Areas of National Need (GAANN). The authors
gratefully acknowledge Dr. Susan Habas for TEM imaging. X-ray absorbance
spectroscopy experiments were conducted at the Sector 10 beamline, which
is operated by the Materials Research Collaborative Access Team. This
research used resources of the Advanced Photon Source, a DOE Office of
Science User Facility operated for the DOE Office of Science by Argonne
National Laboratory under Contract No. DE-AC02-06CH11357. We gratefully
acknowledge Dr. Jeffrey T. Miller (Purdue University) for his help and
insight related to XAS data analysis. We also thank Dr. Vassili
Vorotnikov for insightful discussions concerning the reaction pathways.
NR 91
TC 6
Z9 6
U1 26
U2 43
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD JUL
PY 2016
VL 6
IS 7
BP 4356
EP 4368
DI 10.1021/acscatal.6b01131
PG 13
WC Chemistry, Physical
SC Chemistry
GA DQ8JO
UT WOS:000379457300036
ER
PT J
AU Plata, JJ
Graciani, J
Evans, J
Rodriguez, JA
Sanz, JF
AF Plata, Jose J.
Graciani, Jesus
Evans, Jaime
Rodriguez, Jose A.
Fernandez Sanz, Javier
TI Cu Deposited on CeOx-Modified TiO2(110): Synergistic Effects at the
Metal-Oxide Interface and the Mechanism of the WGS Reaction
SO ACS CATALYSIS
LA English
DT Article
DE water gas shift reaction; DFT; carboxyl; ceria; titania; copper;
metallic clusters
ID GAS SHIFT REACTION; DENSITY-FUNCTIONAL THEORY; AUTOMOTIVE
POLLUTION-CONTROL; LOW-INDEX SURFACES; ELECTRONIC-STRUCTURE; SUPPORT
INTERACTIONS; HYDROGEN-PRODUCTION; WATER DISSOCIATION;
CATALYTIC-ACTIVITY; OXYGEN VACANCIES
AB Experimental techniques and DFT calculations have been combined to study and compare the effect of the metal-substrate interaction in Cu/TiO2(110) and Cu/CeOx/TiO2(110) catalysts for the water-gas shift (WGS) reaction. Experiments and theory show that CeOx nanoparticles affect the dispersion of copper on titania, and on the formed copper-ceria interface, there are synergistic effects which favor water dissociation and the WGS reaction. The minimum energy path for the WGS reaction on the new highly active catalytic system Cu/CeOx/TiO2(110) has been predicted by theoretical calculations. Main steps such as adsorption-dissociation of water and *OCOH carboxyl intermediate formation-deprotonation have been characterized. In this very particular system, water splitting is no longer the rate-limiting step because it can dissociate overcoming an energy barrier of only 0.92 kcal/mol. One important insight of the present work is to show that easy full hydration of the ceria particles strongly lowers the reaction barrier for the deprotonation of the *OCOH intermediate and facilitates the evolution of the WGS reaction. For the first time, a system has been found on which the WGS reaction is able to work with all the involved energy barriers below 12 kcal/mol. This remarkable behavior makes the metal/CeOx/TiO2 family a potential candidate for industrial application as catalysts in the WGS reaction. The change in the metal-support interactions when going from Cu/TiO2 to Cu/CeOx/TiO2 illustrates the importance of optimizing the oxide phase when improving the performance of metal/oxide catalysts for the WGS.
C1 [Plata, Jose J.; Graciani, Jesus; Fernandez Sanz, Javier] Univ Seville, Dept Quim Fis, E-41012 Seville, Spain.
[Evans, Jaime] Cent Univ Venezuela, Fac Ciencias, Caracas 1020A, Venezuela.
[Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Plata, Jose J.] Duke Univ, Mech Engn & Mat Sci Dept, Durham, NC 27705 USA.
RP Sanz, JF (reprint author), Univ Seville, Dept Quim Fis, E-41012 Seville, Spain.
EM sanz@us.es
FU Ministerio de Economia y Competitividad (Spain) [CTQ2015-64669-P,
CSD2008-0023]; European FEDER; U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences; Catalysis Science Program
[DE-SC0012704]
FX This work was funded by the Ministerio de Economia y Competitividad
(Spain, grants CTQ2015-64669-P and CSD2008-0023) and European FEDER.
Computational resources were provided by the Barcelona Supercomputing
Center/Centro Nacional de Supercomputacion (Spain). The work performed
at Brookhaven National Laboratory was supported by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences, and
Catalysis Science Program under contract No. DE-SC0012704.
NR 66
TC 2
Z9 2
U1 33
U2 57
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2155-5435
J9 ACS CATAL
JI ACS Catal.
PD JUL
PY 2016
VL 6
IS 7
BP 4608
EP 4615
DI 10.1021/acscatal.6b00948
PG 8
WC Chemistry, Physical
SC Chemistry
GA DQ8JO
UT WOS:000379457300065
ER
PT J
AU Payne, MA
Miller, JB
Oliveros, ME
Perez, G
Gouvea, CP
Archanjo, BS
Achete, CA
Gellman, AJ
AF Payne, Matthew A.
Miller, James B.
Oliveros, Martin E.
Perez, Geronimo
Gouvea, Cristol P.
Archanjo, Braulio S.
Achete, Carlos A.
Gellman, Andrew J.
TI Assessment of a High-Throughput Methodology for the Study of Alloy
Oxidation using AlxFeyNi1-x-y Composition Gradient Thin Films
SO ACS COMBINATORIAL SCIENCE
LA English
DT Article
DE Al-Fe-Ni; oxidation; Al2O3 passivation; thin films; materials libraries;
high-throughput screening
ID HIGH-TEMPERATURE OXIDATION; MATERIALS LIBRARIES; ALUMINUM-ALLOYS; AL
ALLOYS; FE-AL; BEHAVIOR; COMBINATORIAL; RESISTANCE; DESIGN; SCALES
AB The high-temperature oxidation of multicomponent metal alloys exhibits complex dependencies on composition, which are not fully understood for many systems. Combinatorial screening of the oxidation of many different compositions of a given alloy offers an ideal means for gaining fundamental insights into such systems. We have previously developed a high throughput methodology for studying AlxFeyNi1-x-y oxidation using similar to 100 nm thick composition spread alloy films (CSAFs). In this work, we critically assess two aspects of this methodology: the sensitivity of CSAF oxidation behavior to variations in AlxFeyNi1-x-y composition and the differences between the oxidation behavior of similar to 100 nm thick CSAFs and that of bulk AlxFeyNi1-x-y alloys. This was done by focusing specifically on AlxFe1-x and AlxNi1-x oxidation in dry air at 427 degrees C. Transitions between phenomenologically distinguishable types of oxidation behavior are found to occur over CSAF compositional ranges of <2 at. %. The oxidation of AlxFe1-x CSAFs is found to be very similar to that of bulk AlxFe1-x alloys, but some minor differences between CSAF and bulk behavior are observed for AlxNi1-x oxidation. On the basis of our assessment, high-throughput studies of CSAF oxidation appear to be an effective method for gaining fundamental insights into the composition dependence of the oxidation of bulk alloys.
C1 [Payne, Matthew A.; Miller, James B.; Gellman, Andrew J.] Carnegie Mellon Univ, Dept Chem Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA.
[Gellman, Andrew J.] Carnegie Mellon Univ, WE Scott Inst Energy Innovat, 5000 Forbes Ave, Pittsburgh, PA 15213 USA.
[Payne, Matthew A.; Miller, James B.; Gellman, Andrew J.] US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA.
[Oliveros, Martin E.; Perez, Geronimo; Gouvea, Cristol P.; Archanjo, Braulio S.; Achete, Carlos A.] Inst Nacl Metrol Qualidade & Tecnol, Div Mat Metrol, Av Nossa Senhora das Gracas 50, BR-25250020 Rio De Janeiro, Brazil.
RP Gellman, AJ (reprint author), Carnegie Mellon Univ, Dept Chem Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA.; Gellman, AJ (reprint author), Carnegie Mellon Univ, WE Scott Inst Energy Innovat, 5000 Forbes Ave, Pittsburgh, PA 15213 USA.; Gellman, AJ (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA.
EM gellman@cmu.edu
RI Gellman, Andrew/M-2487-2014
OI Gellman, Andrew/0000-0001-6618-7427
FU Cross-Cutting Technologies Program at the National Energy Technology
Laboratory; Carnegie Mellon University by NETL through the RES
[DE-FE000400]; NSF [CBET-0923083]; CNPq; Finep; Faperj
FX This work was funded by the Cross-Cutting Technologies Program at the
National Energy Technology Laboratory, managed by Susan Maley
(Technology Manager) and Charles Miller (Technical Monitor). The
research was executed through NETL Office of Research and Development's
Innovative Process Technologies (IPT) Field Work Proposal. This work was
financially supported at the Carnegie Mellon University by NETL through
the RES Contract No. DE-FE000400. NSF CBET-0923083 supported the
development of the rotatable shadow mask CSAF deposition tool used to
prepare the CSAFs for this work. The FIB and TEM microscopes at Inmetro
are partly supported by the following Brazilian agencies: CNPq, Finep,
and Faperj.
NR 25
TC 1
Z9 1
U1 1
U2 2
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2156-8952
EI 2156-8944
J9 ACS COMB SCI
JI ACS Comb. Sci.
PD JUL
PY 2016
VL 18
IS 7
BP 425
EP 436
DI 10.1021/acscombsci.6b00030
PG 12
WC Chemistry, Applied; Chemistry, Medicinal; Chemistry, Multidisciplinary
SC Chemistry; Pharmacology & Pharmacy
GA DR1AA
UT WOS:000379637100008
PM 27224644
ER
PT J
AU Babchin, AJ
Bentsen, R
Faybishenko, B
Geilikman, MB
AF Babchin, A. J.
Bentsen, R.
Faybishenko, B.
Geilikman, M. B.
TI On the capillary pressure function in porous media based on relative
permeabilities of two immiscible fluids: Application of capillary bundle
models and validation using experimental data
SO ADVANCES IN COLLOID AND INTERFACE SCIENCE
LA English
DT Article
DE Capillary pressure curve; Relative permeability functions; Wetting and
nonwetting phases; Capillary bundle models
ID INTERFACIAL AREA; SATURATION; 2-FLUID; SYSTEMS; FLOW
AB The objective of the current paper is to extend the theoretical approach and an analytical solution, which was proposed by Babchin and Faybishenko (2014), for the evaluation of a capillary pressure (P-c) curve in porous media based on the apparent specific surface area, using an explicit combination of the relative permeability functions for the wetting and nonwetting phases. Specifically, in the current paper, the authors extended this approach by the application of two types of capillary bundle models with different formulations of effective capillary radius formulae. The application of the new models allowed the authors to improve the results of calculations of the effective average contact angle given in the paper by Babchin and Faybishenko (2014). The validation of the new models for calculations of the P-c curve is also given in this paper using the results of a specifically designed core experiment, which was originally conducted by Ayub and Bentsen (2001). Published by Elsevier B.V.
C1 [Babchin, A. J.] Alberta Res Council, Edmonton, AB, Canada.
[Babchin, A. J.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel.
[Bentsen, R.] Univ Alberta, Edmonton, AB, Canada.
[Faybishenko, B.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Geilikman, M. B.] Shell Int E&P, Houston, TX USA.
RP Faybishenko, B (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA.
RI Faybishenko, Boris/G-3363-2015
OI Faybishenko, Boris/0000-0003-0085-8499
FU Sustainable Systems Scientific Focus Area (SFA) program at LBNL - U.S.
Department of Energy, Office of Science, Office of Biological and
Environmental Research, Subsurface Biogeochemical Research Program
[DE-AC02-05CH11231]
FX The work of BF was partially supported by the Sustainable Systems
Scientific Focus Area (SFA) program at LBNL, supported by the U.S.
Department of Energy, Office of Science, Office of Biological and
Environmental Research, Subsurface Biogeochemical Research Program,
through contract no. DE-AC02-05CH11231 between Lawrence Berkeley
National Laboratory and the U. S. Department of Energy. The authors are
very thankful to Dr. Christine Doughty of LBNL for her careful review
and valuable suggestions, and two anonymous reviewers, whose comments
helped the authors to improve the manuscript. The authors would like to
express their sincere appreciation to Prof. Clayton Radke, one of the
leading Chemical Engineers in the US, for his kind invitation to submit
the paper to the Special Issue of the ACIS to honor his 70th Birthday.
NR 40
TC 1
Z9 1
U1 6
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0001-8686
EI 1873-3727
J9 ADV COLLOID INTERFAC
JI Adv. Colloid Interface Sci.
PD JUL
PY 2016
VL 233
BP 176
EP 185
DI 10.1016/j.cis.2015.07.001
PG 10
WC Chemistry, Physical
SC Chemistry
GA DQ9YD
UT WOS:000379564300013
PM 26211849
ER
PT J
AU Rosler, SM
Sieber, CMK
Humpf, HU
Tudzynski, B
AF Roesler, Sarah M.
Sieber, Christian M. K.
Humpf, Hans-Ulrich
Tudzynski, Bettina
TI Interplay between pathway-specific and global regulation of the
fumonisin gene cluster in the rice pathogen Fusarium fujikuroi
SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
LA English
DT Article
DE Fusarium fujikuroi; Fumonisins; Biosynthesis; Regulation;
Over-expression
ID GIBBERELLA-FUJIKUROI; COREGULATED GENES; MAIZE KERNELS; SPHINGOLIPID
METABOLISM; LIQUID-CHROMATOGRAPHY; STRUCTURE ELUCIDATION; TRANSCRIPTION
FACTORS; BIOSYNTHETIC-PATHWAY; ASPERGILLUS-NIDULANS; MASS-SPECTROMETRY
AB The rice pathogenic fungus Fusarium fujikuroi is known to produce a large variety of secondary metabolites. Besides the gibberellins, causing the bakanae effect in infected rice seedlings, the fungus produces several mycotoxins and pigments. Among the 47 putative secondary metabolite gene clusters identified in the genome of F. fujikuroi, the fumonisin gene cluster (FUM) shows very high homology to the FUM cluster of the main fumonisin producer Fusarium verticillioides, a pathogen of maize. Despite the high level of cluster gene conservation, total fumonisin FB1 and FB2 levels (FBx) produced by F. fujikuroi were only 1-10 % compared to F. verticillioides under inducing conditions. Nitrogen repression was found to be relevant for wild-type strains of both species. However, addition of germinated maize kernels activated the FBx production only in F. verticillioides, reflecting the different host specificity of both wild-type strains. Over-expression of the pathway-specific transcription factor Fum21 in F. fujikuroi strongly activated the FUM cluster genes leading to 1000-fold elevated FBx levels. To gain further insights into the nitrogen metabolite repression of FBx biosynthesis, we studied the impact of the global nitrogen regulators AreA and AreB and demonstrated that both GATA-type transcription factors are essential for full activation of the FUM gene cluster. Loss of one of them obstructs the pathway-specific transcription factor Fum21 to fully activate expression of FUM cluster genes.
C1 [Roesler, Sarah M.; Humpf, Hans-Ulrich] Univ Munster, Inst Food Chem, Corrensstr 45, D-48149 Munster, Germany.
[Roesler, Sarah M.; Tudzynski, Bettina] Univ Munster, Inst Plant Biol & Biotechnol, Schlosspl 8, D-48143 Munster, Germany.
[Sieber, Christian M. K.] German Res Ctr Environm Hlth GmbH, Helmholtz Zentrum Munchen, Inst Bioinformat & Syst Biol, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany.
[Sieber, Christian M. K.] DOE Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA.
RP Tudzynski, B (reprint author), Univ Munster, Inst Plant Biol & Biotechnol, Schlosspl 8, D-48143 Munster, Germany.
EM tudzynsb@uni-muenster.de
FU Deutsche Forschungsgemeinschaft (DFG), Germany [Graduiertenkolleg 1409
(GRK1409)]
FX This work and the research fellowship of Sarah Rosler were supported by
funds of the Deutsche Forschungsgemeinschaft (DFG), Graduiertenkolleg
1409 (GRK1409, Germany). We thank Henning Harrer, Florian Hubner, and
Matthias Behrens for very helpful discussion; Annika Moller-Kerrut for
excellent technical assistance; and Melanie Brand for providing
FB1. We are very grateful to Brian Williamson for critical
reading of the manuscript.
NR 85
TC 6
Z9 6
U1 10
U2 15
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0175-7598
EI 1432-0614
J9 APPL MICROBIOL BIOT
JI Appl. Microbiol. Biotechnol.
PD JUL
PY 2016
VL 100
IS 13
BP 5869
EP 5882
DI 10.1007/s00253-016-7426-7
PG 14
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA DP8CO
UT WOS:000378725700018
PM 26966024
ER
PT J
AU Menapace, JA
Ehrmann, PE
Bayramian, AJ
Bullington, A
Di Nicola, JMG
Haefner, C
Jarboe, J
Marshall, C
Schaffers, KI
Smith, C
AF Menapace, Joseph A.
Ehrmann, Paul E.
Bayramian, Andrew J.
Bullington, Amber
Di Nicola, Jean-Michel G.
Haefner, Constantin
Jarboe, Jeffrey
Marshall, Christopher
Schaffers, Kathleen I.
Smith, Cal
TI Imprinting high-gradient topographical structures onto optical surfaces
using magnetorheological finishing: manufacturing corrective optical
elements for high-power laser applications
SO APPLIED OPTICS
LA English
DT Article
ID REFRACTIVE-INDEX; DENSITY; MERCURY
AB Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry, is discussed. The results of MRF imprinting a 23 mu m deep structure containing gradients over 1.6 mu m / mm onto a fused-silica window are presented as an example of the technique's capabilities. This high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory. (C) 2016 Optical Society of America
C1 [Menapace, Joseph A.; Ehrmann, Paul E.; Bayramian, Andrew J.; Bullington, Amber; Di Nicola, Jean-Michel G.; Haefner, Constantin; Jarboe, Jeffrey; Marshall, Christopher; Schaffers, Kathleen I.; Smith, Cal] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA.
RP Menapace, JA (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA.
EM menapace1@llnl.gov
FU U.S. Department of Energy (DOE) [DE-AC52-07NA27344]; Lawrence Livermore
National Laboratory (LLNL)
FX U.S. Department of Energy (DOE) (DE-AC52-07NA27344); Lawrence Livermore
National Laboratory (LLNL).
NR 27
TC 0
Z9 1
U1 8
U2 11
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1559-128X
EI 2155-3165
J9 APPL OPTICS
JI Appl. Optics
PD JUL 1
PY 2016
VL 55
IS 19
BP 5240
EP 5248
DI 10.1364/AO.55.005240
PG 9
WC Optics
SC Optics
GA DR1TH
UT WOS:000379687300039
PM 27409216
ER
PT J
AU Berger, MA
Mathew, PA
Walter, T
AF Berger, Michael A.
Mathew, Paul A.
Walter, Travis
TI Big Data Analytics In the Building Industry
SO ASHRAE JOURNAL
LA English
DT Article
C1 [Berger, Michael A.; Mathew, Paul A.; Walter, Travis] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Berger, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
FU U.S. Department of Energy's Building Technologies Office
FX The authors gratefully acknowledge the many data contributors to the
BPD, and energy professionals who shared how they use the tool. The BPD
is sponsored by the U.S. Department of Energy's Building Technologies
Office.
NR 8
TC 1
Z9 1
U1 15
U2 15
PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC,
PI ATLANTA
PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA
SN 0001-2491
EI 1943-6637
J9 ASHRAE J
JI ASHRAE J.
PD JUL
PY 2016
VL 58
IS 7
BP 38
EP +
PG 7
WC Thermodynamics; Construction & Building Technology; Engineering,
Mechanical
SC Thermodynamics; Construction & Building Technology; Engineering
GA DR1AS
UT WOS:000379638900009
ER
PT J
AU Kennamer, RA
Hepp, GR
Alexander, BW
AF Kennamer, Robert A.
Hepp, Gary R.
Alexander, Bradley W.
TI Effects of current reproductive success and individual heterogeneity on
survival and future reproductive success of female Wood Ducks
SO AUK
LA English
DT Article
DE life history tradeoffs; capture-mark-recapture; apparent survival;
reproductive success; female quality; Aix sponsa
ID PRAIRIE POTHOLE REGION; BREEDING-SEASON SURVIVAL; AMERICAN BLACK DUCKS;
BODY CONDITION; NEST SUCCESS; AIX-SPONSA; PREDATOR REDUCTION; HABITAT
CONDITIONS; CAPTURE-RECAPTURE; MALLARD FEMALES
AB Estimates of vital rates and their sources of variation are necessary to understand the population dynamics of any organism. These data have been used to test predictions of life history theory as well as to guide decisions of wildlife managers and conservation biologists. Life history theory predicts tradeoffs among life history traits, such that current reproductive effort will be negatively correlated with survival and/or future reproduction. Many studies support this prediction, but others report positive covariation between fitness traits, and attribute positive correlations to differences in individual quality. In this study, we used 11 yr of capture-mark-recapture data of breeding female Wood Ducks (Aix sponsa), along with their breeding histories, to examine sources of variation in annual survival rates and to assess the impact of current reproductive success on probabilities of survival and future reproductive success. Cormack-Jolly-Seber models indicated that apparent survival of female Wood Ducks did not vary annually and was only weakly affected by age class and breeding habitat conditions, but that there was a strong positive relationship between survival and the number of successful nests (0, 1, or 2). Next, we used a multistate analysis to examine the importance of female nest fate (successful or failed) on the probability of surviving and of nesting successfully the next year. Early incubation body mass was used to assess the nutritional status and quality of females. Females that nested successfully in year t were not less likely to nest successfully in year t + 1 than females that had nested unsuccessfully in year t. We also found strong positive covariation between nest success in year t and the probability of surviving. However, being in relatively good or poor condition had no effect on these relationships. Our results are consistent with the idea that female quality is heterogeneous, but body mass was not a good proxy of quality. Therefore, the existence of tradeoffs between female reproductive success and survival or future reproduction was less clear because of our inability to identify and control for differences in female quality.
C1 [Kennamer, Robert A.] Savannah River Ecol Lab, Aiken, SC 29831 USA.
[Hepp, Gary R.; Alexander, Bradley W.] Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA.
RP Kennamer, RA (reprint author), Savannah River Ecol Lab, Aiken, SC 29831 USA.; Hepp, GR (reprint author), Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA.
EM rkennamer@srel.uga.edu; heppgar@auburn.edu
FU Department of Energy Office of Environmental Management
[DE-FC09-07SR22506]; Alabama Agricultural Experiment Station
FX Funding statement: Financial support was provided by the Department of
Energy Office of Environmental Management under Award Number
DE-FC09-07SR22506 to the University of Georgia Research Foundation, and
the Alabama Agricultural Experiment Station to G.R.H. Neither of the
funders had any input into the content of the manuscript, nor required
approval prior to submission or publication.
NR 97
TC 0
Z9 0
U1 11
U2 12
PU AMER ORNITHOLOGISTS UNION
PI LAWRENCE
PA ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA
SN 0004-8038
EI 1938-4254
J9 AUK
JI AUK
PD JUL
PY 2016
VL 133
IS 3
BP 439
EP 450
DI 10.1642/AUK-15-183.1
PG 12
WC Ornithology
SC Zoology
GA DR1KC
UT WOS:000379663400009
ER
PT J
AU Desai, MS
Wang, E
Joyner, K
Chung, TW
Jin, HE
Lee, SW
AF Desai, Malav S.
Wang, Eddie
Joyner, Kyle
Chung, Tae Won
Jin, Hyo-Eon
Lee, Seung-Wuk
TI Elastin-Based Rubber-Like Hydrogels
SO BIOMACROMOLECULES
LA English
DT Article
ID INVERSE TEMPERATURE TRANSITION; DOUBLE-NETWORK HYDROGELS; SLIDE-RING
GELS; BIOMEDICAL APPLICATIONS; NANOCOMPOSITE HYDROGELS; POLY(ETHYLENE
GLYCOL); TOUGH HYDROGELS; CROSS-LINKING; POLYPEPTIDES; PROTEIN
AB We developed rubber-like elastomeric materials using a natural elastin derived sequence and genetic engineering to create precisely defined elastin-like polypeptides. The coiled elastin-like polypeptide chains, which behave like entropic springs, were cross-linked using an end-to-end tethering scheme to synthesize simple hydrogels with excellent extensibility and reversibility. Our hydrogels extend to strains as high as 1500% and remain highly resilient with elastic recovery as high as 94% even at 600% strain, significantly exceeding any other protein-based valuable as elastomeric hydrogels for designing extremely robust scaffolds useful for tissue engineering.
C1 [Lee, Seung-Wuk] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
Lawrence Berkeley Natl Lab, Biol Syst & Engn, Berkeley, CA 94720 USA.
[Jin, Hyo-Eon] Ajou Univ, Coll Pharm, Suwon 16499, South Korea.
RP Lee, SW (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
EM leesw@berkeley.edu
OI Desai, Malav/0000-0002-4160-6944; Wang, Eddie/0000-0002-9814-0102
FU NIH ARRA [DE 018360-02]; Tsinghua-Berkeley Shenzhen Institute; National
Research Foundation of Korea - Korean Government [NRF-2014S1A2A2027641];
Siebel Scholars Foundation; Office of Science, Office of Basic Energy
Sciences, Office of the U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by NIH ARRA supplement to an NIDCR R21 Grant (DE
018360-02) and Tsinghua-Berkeley Shenzhen Institute. It was also
partially supported by the National Research Foundation of Korea Grant
funded by the Korean Government (NRF-2014S1A2A2027641) and Siebel
Scholars Foundation. Work at the Molecular Foundry was supported by the
Office of Science, Office of Basic Energy Sciences, Office of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. The authors
thank Paul Keselman for his help in fabricating the liquid testing
chamber.
NR 37
TC 4
Z9 4
U1 23
U2 39
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1525-7797
EI 1526-4602
J9 BIOMACROMOLECULES
JI Biomacromolecules
PD JUL
PY 2016
VL 17
IS 7
BP 2409
EP 2416
DI 10.1021/acs.biomac.6b00515
PG 8
WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science
SC Biochemistry & Molecular Biology; Chemistry; Polymer Science
GA DR1AH
UT WOS:000379637800011
PM 27257908
ER
PT J
AU Rivas-Ubach, A
Hodar, JA
Sardans, J
Kyle, JE
Kim, YM
Oravec, M
Urban, O
Guenther, A
Penuelas, J
AF Rivas-Ubach, Albert
Hodar, Jose A.
Sardans, Jordi
Kyle, Jennifer E.
Kim, Young-Mo
Oravec, Michal
Urban, Otmar
Guenther, Alex
Penuelas, Josep
TI Are the metabolomic responses to folivory of closely related plant
species linked to macroevolutionary and plant-folivore coevolutionary
processes?
SO ECOLOGY AND EVOLUTION
LA English
DT Article
DE Folivory; macroevolutionary history; Pinus; plant-insect coevolution;
processionary moth
ID PINE PROCESSIONARY MOTH; CATERPILLAR THAUMETOPOEA-PITYOCAMPA; ELEMENTAL
STOICHIOMETRY; ANTIHERBIVORE DEFENSES; RANGE EXPANSION; CLIMATE-CHANGE;
GENOME SIZE; EVOLUTION; ECOSYSTEMS; HERBIVORY
AB The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but also the entire metabolome. Metabolomes are the final products of genotypes and are constrained by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from three closely related Pinus species with distant coevolutionary histories with the caterpillar of the processionary moth respond similarly to its attack. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of terpenes were in the attacked trees supporting the hypothesis that herbivores avoid plant individuals with higher concentrations. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.
C1 [Rivas-Ubach, Albert] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA.
[Rivas-Ubach, Albert; Sardans, Jordi; Penuelas, Josep] CREAF, Cerdanyola Del Valles 08913, Catalonia, Spain.
[Hodar, Jose A.] Univ Granada, Fac Ciencias, Grp Ecol Terr, Dept Biol Anim & Ecol, E-18071 Granada, Spain.
[Sardans, Jordi; Penuelas, Josep] UAB, CSIC, CEAB, Global Ecol Unit CREAF, Cerdanyola Del Valles 08913, Catalonia, Spain.
[Kyle, Jennifer E.; Kim, Young-Mo] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA.
[Oravec, Michal; Urban, Otmar] Acad Sci Czech Republic, Global Change Res Ctr, Belidla 4a, CZ-60300 Brno, Czech Republic.
[Guenther, Alex] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA.
RP Rivas-Ubach, A (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA.
EM albert.rivas.ubach@gmail.com
RI Urban, Otmar/J-7432-2012; Kim, Young-Mo/D-3282-2009;
OI Kim, Young-Mo/0000-0002-8972-7593; Sardans, Jordi/0000-0003-2478-0219;
Penuelas, Josep/0000-0002-7215-0150
FU CSIC; European Research Council Synergy grant [SyG-2013-610028]; Spanish
Government projects [CGL2013-48074-P, OAPN 022/2008]; Catalan Government
project [SGR 2014-274]; CASR [M200871201]; Ministry for Education, Youth
and Sports of the Czech Republic within the National Programme for
Sustainability I [LO1415]
FX ARU appreciates the financial support of the research fellowship (JAE)
from the CSIC. This research was supported by the European Research
Council Synergy grant SyG-2013-610028 IMBALANCE-P, the Spanish
Government projects CGL2013-48074-P and OAPN 022/2008 (PROPINOL), and
the Catalan Government project SGR 2014-274. MO and OU were supported by
the grant project M200871201 (CASR) and by the Ministry for Education,
Youth and Sports of the Czech Republic within the National Programme for
Sustainability I, grant no. LO1415.
NR 84
TC 1
Z9 1
U1 10
U2 20
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 2045-7758
J9 ECOL EVOL
JI Ecol. Evol.
PD JUL
PY 2016
VL 6
IS 13
BP 4372
EP 4386
DI 10.1002/ece3.2206
PG 15
WC Ecology; Evolutionary Biology
SC Environmental Sciences & Ecology; Evolutionary Biology
GA DQ6VU
UT WOS:000379344400012
PM 27386082
ER
PT J
AU DuPont, B
Cagan, J
Moriarty, P
AF DuPont, Bryony
Cagan, Jonathan
Moriarty, Patrick
TI An advanced modeling system for optimization of wind farm layout and
wind turbine sizing using a multi-level extended pattern search
algorithm
SO ENERGY
LA English
DT Article
DE Wind farm optimization; Wind farm modeling; Extended pattern search
algorithm; Systems optimization
ID ATMOSPHERIC STABILITY; GENETIC ALGORITHMS; DESIGN; DEPENDENCE;
PLACEMENT; EXPONENT; AGENTS
AB This paper presents a system of modeling advances that can be applied in the computational optimization of wind plants. These modeling advances include accurate cost and power modeling, partial wake interaction, and the effects of varying atmospheric stability. To validate the use of this advanced modeling system, it is employed within an Extended Pattern Search (EPS)-Multi-Agent System (MAS) optimization approach for multiple wind scenarios. The wind farm layout optimization problem involves optimizing the position and size of wind turbines such that the aerodynamic effects of upstream turbines are reduced, which increases the effective wind speed and resultant power at each turbine. The EPS-MAS optimization algorithm employs a profit objective, and an overarching search determines individual turbine positions, with a concurrent EPS-MAS determining the optimal hub height and rotor diameter for each turbine. Two wind cases are considered: (1) constant, unidirectional wind, and (2) three discrete wind speeds and varying wind directions, each of which have a probability of occurrence. Results show the advantages of applying the series of advanced models compared to previous application of an EPS with less advanced models to wind farm layout optimization, and imply best practices for computational optimization of wind farms with improved accuracy. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [DuPont, Bryony] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA.
[Cagan, Jonathan] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15232 USA.
[Moriarty, Patrick] Natl Wind Technol Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP DuPont, B (reprint author), Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA.
EM bryony.dupont@oregonstate.edu; cagan@cmu.edu; patrick.moriarty@nrel.gov
FU National Science Foundation [CMMI-0940730, CMMI-0855326]; NREL Research
Participant Program; U.S. Department of Energy [DE-AC36-08G028308];
National Renewable Energy Laboratory; DOE Office of Energy Efficiency
and Renewable Energy, Wind and Water Power Technologies Office
FX This work has been funded in part by the National Science Foundation
under grants CMMI-0940730 and CMMI-0855326, and the NREL Research
Participant Program. The NREL portion of the work was supported by the
U.S. Department of Energy under Contract No. DE-AC36-08G028308 with the
National Renewable Energy Laboratory. Funding for that work was provided
by the DOE Office of Energy Efficiency and Renewable Energy, Wind and
Water Power Technologies Office.
NR 52
TC 0
Z9 0
U1 2
U2 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-5442
EI 1873-6785
J9 ENERGY
JI Energy
PD JUL 1
PY 2016
VL 106
BP 802
EP 814
DI 10.1016/j.energy.2015.12.033
PG 13
WC Thermodynamics; Energy & Fuels
SC Thermodynamics; Energy & Fuels
GA DP7DP
UT WOS:000378659700071
ER
PT J
AU Schindler, M
Hochella, MF
AF Schindler, Michael
Hochella, Michael F., Jr.
TI Nanomineralogy as a new dimension in understanding elusive geochemical
processes in soils: The case of low-solubility-index elements
SO GEOLOGY
LA English
DT Article
ID MASS-BALANCE; CHEMISTRY; MOBILITY; DISSOLUTION; ZIRCONIUM; TRANSPORT;
MINERALS; TITANIUM; ZR
AB Nanomineralogical studies of mineral surface coatings in soils reveal insights into biogeochemical processes that heretofore were not known to exist. This is a new dimension in understanding past and present biogeochemical processes in soils, and in this study it is a way to better understand the behavior of low-solubility-index elements such as Al, Ti, and Zr. Soils were sampled from selected sites in Sudbury (Ontario, Canada) that have been affected by acidification and particulate matter emissions from base-metal smelters with subsequent remediation within the past century. These anthropogenic processes have affected an entire landscape, but are now recorded in assemblages of nano-size phases that can be only studied using a combination of focused ion beam technology (for sample preparation) and high-resolution analytical transmission electron microscopy (for phase identification). A first generation of clay minerals (pre-acidification phase), their partial replacement by nano-size hematite and amorphous silica (anthropogenic acidification), and a second generation of clay minerals (post-acidification, including soil remediation) are products of changes in soil biogeochemical processes during these natural and anthropogenic-induced weathering stages. Complex assemblages of nanophases formed prior to the second generation of clay minerals depict underlying mechanisms for the mobilization and sequestration of the low-solubility-index elements Zr and Ti under acidic conditions. The occurrence of baddeleyite (ZrO2), anatase (TiO2), and the Magneli phases Ti4O7 and Ti5O9 (all present at the nanoscale) suggest an influx of nanocolloidal Zr and Ti oxides during weathering of smelter-derived particulate matter. Kelyshite {NaZr[Si2O6(OH)]}, authigenic zircon (ZrSiO4), and kleberite [Fe3+Ti6O11(OH)(5)] are most likely products of the sequestration of the Zr- and Ti-bearing nanocolloids.
C1 [Schindler, Michael] Laurentian Univ, Dept Earth Sci, Sudbury, ON P3E 2C6, Canada.
[Hochella, Michael F., Jr.] Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA.
[Hochella, Michael F., Jr.] Pacific Northwest Natl Lab, Geosci Grp, Richland, WA 99352 USA.
RP Schindler, M (reprint author), Laurentian Univ, Dept Earth Sci, Sudbury, ON P3E 2C6, Canada.
FU Natural Sciences and Engineering Research Council of Canada; Virginia
Tech National Center for Earth and Environmental Infrastructure under
U.S. National Science Foundation (NSF) [1542100]; U.S. Environmental
Protection Agency (EPA) under NSF [EF-0830093]; NSF [ECCS 1542100]
FX We thank Editor Brendan Murphy for handling the paper, and Graeme
Spiers, reviewer Carleton Bern, and two anonymous reviewers for
constructive comments that helped improve the paper. This work was
supported by a Natural Sciences and Engineering Research Council of
Canada Discovery grant to Schindler. Hochella acknowledges the Virginia
Tech National Center for Earth and Environmental Infrastructure funded
under U.S. National Science Foundation (NSF) grant 1542100, and the NSF
and the U.S. Environmental Protection Agency (EPA) under NSF Cooperative
Agreement EF-0830093. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF or the EPA. This work
has not been subjected to EPA review and no official endorsement should
be inferred. We thank the Nanoscale Fabrication and Characterization
Laboratory staff at Virginia Tech (especially Christopher Winkler and
James Tuggle), as well as the Virginia Tech National Center for Earth
and Environmental Nanotechnology Infrastructure (NanoEarth), a member of
the National Nanotechnology Coordinated Infrastructure (NNCI) supported
by NSF Cooperative Agreement ECCS 1542100.
NR 32
TC 1
Z9 1
U1 5
U2 8
PU GEOLOGICAL SOC AMER, INC
PI BOULDER
PA PO BOX 9140, BOULDER, CO 80301-9140 USA
SN 0091-7613
EI 1943-2682
J9 GEOLOGY
JI Geology
PD JUL
PY 2016
VL 44
IS 7
BP 515
EP 518
DI 10.1130/G37774.1
PG 4
WC Geology
SC Geology
GA DQ7AH
UT WOS:000379358300011
ER
PT J
AU Ganapati, V
Steiner, MA
Yablonovitch, E
AF Ganapati, Vidya
Steiner, Myles A.
Yablonovitch, Eli
TI The Voltage Boost Enabled by Luminescence Extraction in Solar Cells
SO IEEE JOURNAL OF PHOTOVOLTAICS
LA English
DT Article
DE Luminescence; photovoltaic cells; solar energy
ID EFFICIENCY; LIMIT
AB Over the past few years, the application of the physical principle, i.e., "luminescence extraction," has produced record voltages and efficiencies in photovoltaic cells. Luminescence extraction is the use of optical design, such as a back mirror or textured surfaces, to help internal photons escape out of the front surface of a solar cell. The principle of luminescence extraction is exemplified by the mantra "a good solar cell should also be a good LED." Basic thermodynamics says that the voltage boost should be related to concentration ratio C of a resource by Delta V = (kT/q) ln{C}. In light trapping (i.e., when the solar cell is textured and has a perfect back mirror), the concentration ratio of photons C = {4n(2)}; therefore, one would expect a voltage boost of Delta V = (kT/q) ln{4n(2)} over a solar cell with no texture and zero back reflectivity, where n is the refractive index. Nevertheless, there has been ambiguity over the voltage benefit to be expected from perfect luminescence extraction. Do we gain an open-circuit voltage boost of Delta V = (kT/q) ln{n(2)}, Delta V = (kT/q) ln{2n(2)}, or Delta V = (kT/q) ln{4n(2)}? What is responsible for this voltage ambiguity Delta V= (kT/q) ln{4} approximate to 36 mV? We show that different results come about, depending on whether the photovoltaic cell is optically thin or thick to its internal luminescence. In realistic intermediate cases of optical thickness, the voltage boost falls in between: ln{n(2)} < (q Delta V/kT) < ln{4n(2)}.
C1 [Ganapati, Vidya; Yablonovitch, Eli] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
[Steiner, Myles A.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Ganapati, V (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
EM vidyag@eecs.berkeley.edu; myles.steiner@nrel.gov; eliy@eecs.berkeley.edu
FU U.S. Department of Energy "Light-Material Interactions in Energy
Conversion" Energy Frontier Research Center [DE-AC02-05CH11231]; U.S.
Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy
Laboratory
FX The work of V. Ganapati and E. Yablonovitch was supported by the U.S.
Department of Energy "Light-Material Interactions in Energy Conversion"
Energy Frontier Research Center under Grant DE-AC02-05CH11231. The work
of M. A. Steiner was supported by the U.S. Department of Energy under
Contract DE-AC36-08-GO28308 with the National Renewable Energy
Laboratory.
NR 19
TC 2
Z9 2
U1 10
U2 12
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2156-3381
J9 IEEE J PHOTOVOLT
JI IEEE J. Photovolt.
PD JUL
PY 2016
VL 6
IS 4
BP 801
EP 809
DI 10.1109/JPHOTOV.2016.2547580
PG 9
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA DR1WS
UT WOS:000379696200002
ER
PT J
AU Burton, PD
Hendrickson, A
Ulibarri, SS
Riley, D
Boyson, WE
King, BH
AF Burton, Patrick D.
Hendrickson, Alex
Ulibarri, Stephen Seth
Riley, Daniel
Boyson, William E.
King, Bruce H.
TI Pattern Effects of Soil on Photovoltaic Surfaces
SO IEEE JOURNAL OF PHOTOVOLTAICS
LA English
DT Article
DE Performance loss; soiling; standardized test methods; surface
contamination
AB The texture or patterning of soil on PV surfaces may influence light capture at various angles of incidence (AOI). Accumulated soil can be considered a microshading element, which changes with respect to AOI. Laboratory deposition of simulated soil was used to prepare test coupons for simultaneous AOI and soiling loss experiments. A mixed solvent deposition technique was used to consistently deposit patterned test soils onto glass slides. Transmission decreased as soil loading and AOI increased. Dense aggregates significantly decreased transmission. However, highly dispersed particles are less prone to secondary scattering, improving overall light collection. In order to test AOI losses on relevant systems, uniform simulated soil coatings were applied to split reference cells to further examine this effect. The measured optical transmission and area coverage correlated closely to the observed I-SC. Angular losses were significant at angles as low as 25 degrees.
C1 [Burton, Patrick D.; Ulibarri, Stephen Seth; Riley, Daniel; Boyson, William E.; King, Bruce H.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Hendrickson, Alex] Penn State Univ, State Coll, PA 16801 USA.
RP Burton, PD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM pdburto@sandia.gov; ahendri53@gmail.com; ssuliba@sandia.gov;
driley@sandia.gov; weboyso@sandia.gov; bhking@sandia.gov
FU U.S. Department of Energy SunShot Initiative; Lockheed Martin
Corporation for the U.S. Department of Energy's National Nuclear
Security Administration [DE-AC04-94AL85000]
FX This work was supported by the U.S. Department of Energy SunShot
Initiative. Sandia National Laboratories is a multiprogram laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under Contract
DE-AC04-94AL85000.
NR 12
TC 0
Z9 0
U1 3
U2 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2156-3381
J9 IEEE J PHOTOVOLT
JI IEEE J. Photovolt.
PD JUL
PY 2016
VL 6
IS 4
BP 976
EP 980
DI 10.1109/JPHOTOV.2016.2567100
PG 5
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA DR1WS
UT WOS:000379696200026
ER
PT J
AU Essig, S
Steiner, MA
Allebe, C
Geisz, JF
Paviet-Salomon, B
Ward, S
Descoeudres, A
LaSalvia, V
Barraud, L
Badel, N
Faes, A
Levrat, J
Despeisse, M
Ballif, C
Stradins, P
Young, DL
AF Essig, Stephanie
Steiner, Myles A.
Allebe, Christophe
Geisz, John F.
Paviet-Salomon, Bertrand
Ward, Scott
Descoeudres, Antoine
LaSalvia, Vincenzo
Barraud, Loris
Badel, Nicolas
Faes, Antonin
Levrat, Jacques
Despeisse, Matthieu
Ballif, Christophe
Stradins, Paul
Young, David L.
TI Realization of GaInP/Si Dual-Junction Solar Cells With 29.8% 1-Sun
Efficiency
SO IEEE JOURNAL OF PHOTOVOLTAICS
LA English
DT Article
DE Multijunction solar cell; silicon solar cells; III-V semiconductor
materials
ID SILICON; TANDEM; DEVICES; GROWTH; WAFER
AB Combining a Si solar cell with a high-bandgap top cell reduces the thermalization losses in the short wavelength and enables theoretical 1-sun efficiencies far over 30%. We have investigated the fabrication and optimization of Si-based tandem solar cells with 1.8-eV rear-heterojunction GaInP top cells. The III-V and Si heterojunction subcells were fabricated separately and joined by mechanical stacking using electrically insulating optically transparent interlayers. Our GaInP/Si dual-junction solar cells have achieved a certified cumulative 1-sun efficiency of 29.8% +/- 0.6% (AM1.5g) in four-terminal operation conditions, which exceeds the record 1-sun efficiencies achieved with both III-V and Si single-junction solar cells. The effect of luminescent coupling between the subcells has been investigated, and optical losses in the solar cell structure have been addressed.
C1 [Essig, Stephanie; Steiner, Myles A.; Geisz, John F.; Ward, Scott; LaSalvia, Vincenzo; Stradins, Paul; Young, David L.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Essig, Stephanie] Ecole Polytech Fed Lausanne, Photovolta & Thin Film Elect Lab, CH-2000 Neuchatel, Switzerland.
[Allebe, Christophe; Paviet-Salomon, Bertrand; Descoeudres, Antoine; Barraud, Loris; Badel, Nicolas; Faes, Antonin; Levrat, Jacques; Despeisse, Matthieu; Ballif, Christophe] Swiss Ctr Elect & Microtechnol CSEM, CH-2002 Neuchatel, Switzerland.
RP Essig, S (reprint author), Ecole Polytech Fed Lausanne, Photovolta & Thin Film Elect Lab, CH-2000 Neuchatel, Switzerland.
EM stephanie.essig@epfl.ch; myles.steiner@nrel.gov;
christophe.allebe@csem.ch; john.geisz@nrel.gov;
bertrand.paviet-salomon@csem.ch; scott.ward@nrel.gov;
an-toine.descoeudres@epfl.ch; vincenzo.lasalvia@nrel.gov;
loris.barraud@csem.ch; nicolas.badel@csem.ch; antonin.faes@csem.ch;
jacques.levrat@csem.ch; matthieu.despeisse@csem.ch;
christophe.ballif@csem.ch; pauls.stradins@nrel.gov; david.young@nrel.gov
RI Despeisse, Matthieu/E-3821-2017
OI Despeisse, Matthieu/0000-0002-8688-4681
FU U.S. Department of Energy [DE-EE00025783]
FX This work was supported by the U.S. Department of Energy under Contract
DE-EE00025783. The U.S. Government retains and the publisher, by
accepting the article for publication, acknowledges that the U.S.
Government retains a nonexclusive, paid up, irrevocable, worldwide
license to publish or reproduce the published form of this work, or
allow others to do so, for U.S. Government purposes.
NR 40
TC 6
Z9 6
U1 9
U2 16
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2156-3381
J9 IEEE J PHOTOVOLT
JI IEEE J. Photovolt.
PD JUL
PY 2016
VL 6
IS 4
BP 1012
EP 1019
DI 10.1109/JPHOTOV.2016.2549746
PG 8
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA DR1WS
UT WOS:000379696200031
ER
PT J
AU Hwang, M
Muljadi, E
Park, JW
Sorensen, P
Kang, YC
AF Hwang, Min
Muljadi, Eduard
Park, Jung-Wook
Sorensen, Poul
Kang, Yong Cheol
TI Dynamic Droop-Based Inertial Control of a Doubly-Fed Induction Generator
SO IEEE TRANSACTIONS ON SUSTAINABLE ENERGY
LA English
DT Article
DE Dynamic droop; frequency nadir; inertial control; rate of change of
frequency; wind turbine generator
ID WIND POWER PENETRATION; FREQUENCY CONTROL; TURBINES; SYSTEMS; ENERGY
AB If a large disturbance occurs in a power grid, two auxiliary loops for the inertial control of a wind turbine generator have been used: droop loop and rate of change of frequency (ROCOF) loop. Because their gains are fixed, difficulties arise in determining them suitable for all grid and wind conditions. This paper proposes a dynamic droop-based inertial control scheme of a doubly-fed induction generator (DFIG). The scheme aims to improve the frequency nadir (FN) and ensure stable operation of a DFIG. To achieve the first goal, the scheme uses a droop loop, but it dynamically changes its gain based on the ROCOF to release a large amount of kinetic energy during the initial stage of a disturbance. To do this, a shaping function that relates the droop to the ROCOF is used. To achieve the second goal, different shaping functions, which depend on rotor speeds, are used to give a large contribution in high wind conditions and prevent over-deceleration in low wind conditions during inertial control. The performance of the proposed scheme was investigated under various wind conditions using an EMTP-RV simulator. The results indicate that the scheme improves the FN and ensures stable operation of a DFIG.
C1 [Hwang, Min] Chonbuk Natl Univ, Dept Elect Engn, Jeonju 561756, South Korea.
[Hwang, Min] Chonbuk Natl Univ, Wind Energy Grid Adapt Technol WeGAT Res Ctr, Jeonju 561756, South Korea.
[Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Park, Jung-Wook] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120749, South Korea.
[Sorensen, Poul] Tech Univ Denmark, Dept Wind Energy, DK-4000 Roskilde, Denmark.
[Kang, Yong Cheol] Chonbuk Natl Univ, Dept Elect Engn, WeGAT Res Ctr, Jeonju 561756, South Korea.
[Kang, Yong Cheol] Chonbuk Natl Univ, Smart Grid Res Ctr, Jeonju 561756, South Korea.
RP Hwang, M (reprint author), Chonbuk Natl Univ, Dept Elect Engn, Jeonju 561756, South Korea.; Hwang, M (reprint author), Chonbuk Natl Univ, Wind Energy Grid Adapt Technol WeGAT Res Ctr, Jeonju 561756, South Korea.
EM skyway333@jbnu.ac.kr; eduard.muljadi@nrel.gov; jungpark@yonsei.ac.kr;
posq@dtu.dk; yckang@jbnu.ac.kr
RI Sorensen, Poul/C-6263-2008
OI Sorensen, Poul/0000-0001-5612-6284
FU National Research Foundation of Korea (NRF) grant - Korea government
(MSIP) [2010-0028509]; Chonbuk National University; U.S. Department of
Energy [DE-AC36-08-GO28308]; NREL
FX This work was supported in part by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIP) (no.
2010-0028509) and in part by the research funds of Chonbuk National
University in 2014. NREL's contribution to this work was supported by
the U.S. Department of Energy under Contract no. DE-AC36-08-GO28308 with
the NREL. Paper no. TSTE-00342-2015.
NR 24
TC 0
Z9 0
U1 2
U2 4
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1949-3029
J9 IEEE T SUSTAIN ENERG
JI IEEE Trans. Sustain. Energy
PD JUL
PY 2016
VL 7
IS 3
BP 924
EP 933
DI 10.1109/TSTE.2015.2508792
PG 10
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Electrical & Electronic
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA DR1WW
UT WOS:000379696600003
ER
PT J
AU Paparella, F
Bacelli, G
Paulmeno, A
Mouring, SE
Ringwood, JV
AF Paparella, Francesco
Bacelli, Giorgio
Paulmeno, Andrew
Mouring, Sarah E.
Ringwood, John V.
TI Multibody Modelling of Wave Energy Converters Using Pseudo-Spectral
Methods With Application to a Three-Body Hinge-Barge Device
SO IEEE TRANSACTIONS ON SUSTAINABLE ENERGY
LA English
DT Article
DE Multi-body wave energy converters; pseudo-spectral methods; model-based
control
ID CONSTRAINED MECHANICAL SYSTEMS; SPARSITY-ORIENTED APPROACH; DYNAMIC
ANALYSIS; EQUATIONS; DESIGN
AB Multibody wave energy converters are composed of several bodies interconnected by joints. Two different formulations are adopted to describe the dynamics of multibody systems: the differential and algebraic equations (DAEs) formulation, and the ordinary differential equations (ODEs) formulation. While the number of variables required for the description of the dynamics of a multibody system is greater in the DAE formulation than in the ODE formulation, the ODE formulation involves an extra computational effort in order to describe the dynamics of the system with a smaller number of variables. In this paper, pseudo-spectral (PS) methods are applied in order to solve the dynamics of multibody wave energy converters using both DAE and ODE formulations. Apart from providing a solution to the dynamics of multibody systems, pseudo-spectral methods provide an accurate and efficient formulation for the control of multibody wave energy converters. As an application example, this paper focuses on the dynamic modeling of a three-body hinge-barge device, where wave-tank tests are carried out in order to validate the DAE and ODE models against experimental data. Comparison of the ODE and DAE PS methods against a reference model based on the straightforward (Runge-Kutta) integration of the equations of motion shows that pseudo-spectral methods are computationally more stable and require less computational effort for short time steps.
C1 [Paparella, Francesco; Ringwood, John V.] Natl Univ Ireland Maynooth, COER, Maynooth, Kildare, Ireland.
[Bacelli, Giorgio] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Paulmeno, Andrew; Mouring, Sarah E.] US Naval Acad, Dept Naval Architecture & Ocean Engn, Annapolis, MD 21402 USA.
RP Paparella, F (reprint author), Natl Univ Ireland Maynooth, COER, Maynooth, Kildare, Ireland.
EM fpaparella@eeng.nuim.ie; gbacelli@sandia.gov; paulmenoa@yahoo.com;
mouring@usna.edu; john.ringwood@eeng.nuim.ie
OI Ringwood, John/0000-0003-0395-7943
FU Science Foundation Ireland [12/RC/2302]
FX This paper was supported by the Science Foundation Ireland under Grant
12/RC/2302 for the Marine Renewable Ireland (MaREI) Centre. Paper no.
TSTE-00644-2015.
NR 24
TC 2
Z9 2
U1 0
U2 0
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1949-3029
J9 IEEE T SUSTAIN ENERG
JI IEEE Trans. Sustain. Energy
PD JUL
PY 2016
VL 7
IS 3
BP 966
EP 974
DI 10.1109/TSTE.2015.2510699
PG 9
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Electrical & Electronic
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA DR1WW
UT WOS:000379696600007
ER
PT J
AU Wall, ME
AF Wall, Michael E.
TI Quantum crystallographic charge density of urea
SO IUCRJ
LA English
DT Article
DE charge density; quantum theory; spherical atom model
ID X-RAY-SCATTERING; ANISOTROPIC DISPLACEMENT PARAMETERS; ELECTRON
POPULATION ANALYSIS; HIRSHFELD ATOM REFINEMENT; ACCURATE DIFFRACTION
DATA; NEUTRON-DIFFRACTION; MOLECULAR-CRYSTALS; MODEL; PROTEIN;
RESOLUTION
AB Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.
C1 [Wall, Michael E.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Mail Stop B256, Los Alamos, NM 87545 USA.
RP Wall, ME (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Mail Stop B256, Los Alamos, NM 87545 USA.
EM mewall@lanl.gov
OI Alexandrov, Ludmil/0000-0003-3596-4515
FU US Department of Energy through the Laboratory-Directed Research and
Development Program at Los Alamos National Laboratory
[DE-AC52-06NA25396]
FX This study was supported by the US Department of Energy under Contract
DE-AC52-06NA25396 through the Laboratory-Directed Research and
Development Program at Los Alamos National Laboratory.
NR 54
TC 0
Z9 0
U1 5
U2 7
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 2052-2525
J9 IUCRJ
JI IUCrJ
PD JUL
PY 2016
VL 3
BP 237
EP 246
DI 10.1107/S2052252516006242
PN 4
PG 10
WC Chemistry, Multidisciplinary; Crystallography; Materials Science,
Multidisciplinary
SC Chemistry; Crystallography; Materials Science
GA DR0LQ
UT WOS:000379599400005
PM 27437111
ER
PT J
AU Piepel, GF
Kaiser, BLD
Amidan, BG
Sydor, MA
Barrett, CA
Hutchison, JR
AF Piepel, G. F.
Kaiser, B. L. Deatherage
Amidan, B. G.
Sydor, M. A.
Barrett, C. A.
Hutchison, J. R.
TI False-negative rate, limit of detection and recovery efficiency
performance of a validated macrofoam-swab sampling method for low
surface concentrations of Bacillus anthracis Sterne and Bacillus
atrophaeus spores
SO JOURNAL OF APPLIED MICROBIOLOGY
LA English
DT Article
DE Bacillus spores; false-negative rate; limit of detection; microbial
contamination; recovery efficiency
ID NONPOROUS SURFACES; COLLECTION METHOD; PROTOCOL; HYDROPHOBICITY;
CONTAMINATION
AB AimsWe sought to evaluate the effects of Bacillus species, low surface concentrations, and surface material on recovery efficiency (RE), false-negative rate (FNR) and limit of detection for recovering Bacillus spores using a validated macrofoam-swab sampling procedure.
Methods and ResultsThe performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target surface concentrations (2 to 500CFU per plate or coupon) to positive-control plates and test coupons (258064cm(2)) of four surface materials (glass, stainless steel, vinyl tile and plastic). The Bacillus species and surface material had statistically significant effects on RE, but surface concentration did not. Mean REs were the lowest for vinyl tile (508% with BAS and 402% with BG) and the highest for glass (928% with BAS and 714% with BG). FNR values (which ranged from 0 to 0833 for BAS and from 0 to 0806 for BG) increased as surface concentration decreased in the range tested. Surface material also had a statistically significant effect on FNR, with FNR the lowest for glass and highest for vinyl tile. Finally, FNR tended to be higher for BG than for BAS at lower surface concentrations, especially for glass.
ConclusionsConcentration and surface material had significant effects on FNR, with Bacillus species having a small effect. Species and surface material had significant effects on RE, with surface concentration having a nonsignificant effect.
Significance and Impact of the StudyThe results provide valuable information on the performance of the macrofoam-swab method for low surface concentrations of Bacillus spores, which can be adapted to assess the likelihood that there is no contamination when all macrofoam-swab samples fail to detect B.anthracis.
C1 [Piepel, G. F.; Amidan, B. G.] Pacific Northwest Natl Lab, Appl Stat & Computat Sci, Richland, WA USA.
[Kaiser, B. L. Deatherage; Sydor, M. A.; Hutchison, J. R.] Pacific Northwest Natl Lab, Chem & Biol Signature Sci Grp, Richland, WA USA.
[Barrett, C. A.] Pacific Northwest Natl Lab, Analyt Chem Nucl Mat, Richland, WA USA.
RP Hutchison, JR (reprint author), Pacific Northwest Natl Lab, 902 Battelle Blvd,POB 999,MSIN P7-50, Richland, WA 99352 USA.
EM janine.hutchison@pnnl.gov
FU Chemical and Biological Research and Development Branch of the Chemical
and Biological Division in the Science and Technology Directorate of the
Department of Homeland Security (DHS); U.S. Department of Energy
[DE-AC05-76RL01830]
FX The Pacific Northwest National Laboratory (PNNL) work was funded by the
Chemical and Biological Research and Development Branch of the Chemical
and Biological Division in the Science and Technology Directorate of the
Department of Homeland Security (DHS). The input, support and reviews
provided by members of the Validated Sampling Plan Working Group (VSPWG)
are also acknowledged. The intra-agency VSPWG includes representatives
from DHS, the Environmental Protection Agency and the CDC. PNNL is a
multiprogram national laboratory operated for the U.S. Department of
Energy by Battelle under Contract DE-AC05-76RL01830.
NR 41
TC 0
Z9 0
U1 3
U2 3
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1364-5072
EI 1365-2672
J9 J APPL MICROBIOL
JI J. Appl. Microbiol.
PD JUL
PY 2016
VL 121
IS 1
BP 149
EP 162
DI 10.1111/jam.13128
PG 14
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA DQ9NA
UT WOS:000379535400013
PM 26972788
ER
PT J
AU Revetta, RP
Gomez-Alvarez, V
Gerke, TL
Domingo, JW
Ashbolt, NJ
AF Revetta, R. P.
Gomez-Alvarez, V.
Gerke, T. L.
Santo Domingo, J. W.
Ashbolt, N. J.
TI Changes in bacterial composition of biofilm in a metropolitan drinking
water distribution system
SO JOURNAL OF APPLIED MICROBIOLOGY
LA English
DT Article
DE biofilm; drinking water; drinking water distribution system;
groundwater; microbial structure; surface water
ID NONTUBERCULOUS MYCOBACTERIA; MICROBIAL COMMUNITIES; DIVERSITY; RNA; 16S;
CHLORINE; NETWORK; PATHOGENS; DYNAMICS; ECOLOGY
AB AimsThis study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e. groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities.
Methods and ResultsThe biofilm community was characterized using 16S rRNA gene clone libraries and functional potential analysis, generated from total DNA extracted from coupons in biofilm annular reactors fed with onsite drinking water for up to 18months. Differences in the bacterial community structure were observed between GW and SW. Representatives that explained the dissimilarity were associated with the classes Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Firmicutes. After 9months the biofilm bacterial community from both GW and SW were dominated by Mycobacterium species. The distribution of the dominant operational taxonomic unit (OTU) (Mycobacterium) positively correlated with the drinking water distribution system (DWDS) temperature.
ConclusionsIn this study, the biofilm community structure observed between GW and SW were dissimilar, while communities from different locations receiving SW did not show significant differences. The results suggest that source water and/or the water quality shaped by their respective treatment processes may play an important role in shaping the bacterial communities in the distribution system. In addition, several bacterial groups were present in all samples, suggesting that they are an integral part of the core microbiota of this DWDS.
Significance and Impact of the StudyThese results provide an ecological insight into biofilm bacterial structure in chlorine-treated drinking water influenced by different water sources and their respective treatment processes.
C1 [Revetta, R. P.; Gomez-Alvarez, V.; Santo Domingo, J. W.; Ashbolt, N. J.] US EPA, Cincinnati, OH 45268 USA.
[Gerke, T. L.] US EPA, ORISE, Cincinnati, OH 45268 USA.
[Ashbolt, N. J.] Univ Alberta, Edmonton, AB, Canada.
RP Revetta, RP (reprint author), ORD NRMRL WSWRD, MS681,26 West MLK Dr, Cincinnati, OH USA.
EM revetta.randy@epa.gov
FU US EPA through the Office of Research and Development
FX The authors thank Jeff Swertfeger, David Hartman and Bill Fromme
(Greater Cincinnati Water Works) for valuable discussions and
suggestions during the planning process, and for assistance in obtaining
water quality data and sample access. The US EPA through the Office of
Research and Development funded and managed this research. The opinions
expressed are those of the authors, and do not necessarily reflect the
official positions and policies of the US EPA. Any mention of product or
trade names does not constitute recommendation for use by the US EPA.
NR 52
TC 1
Z9 1
U1 12
U2 20
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1364-5072
EI 1365-2672
J9 J APPL MICROBIOL
JI J. Appl. Microbiol.
PD JUL
PY 2016
VL 121
IS 1
BP 294
EP 305
DI 10.1111/jam.13150
PG 12
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA DQ9NA
UT WOS:000379535400026
PM 27037969
ER
PT J
AU Negre, CFA
Mniszewski, SM
Cawkwell, MJ
Bock, N
Wall, ME
Niklasson, AMN
AF Negre, Christian F. A.
Mniszewski, Susan M.
Cawkwell, Marc J.
Bock, Nicolas
Wall, Michael E.
Niklasson, Anders M. N.
TI Recursive Factorization of the Inverse Overlap Matrix in Linear Scaling
Quantum Molecular Dynamics Simulations
SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION
LA English
DT Article
ID ELECTRONIC-STRUCTURE CALCULATIONS; TIGHT-BINDING METHOD; DENSITY-MATRIX;
1ST PRINCIPLES; SOLIDS; FORMULATION
AB We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive, iterative refinement of an initial guess of Z (inverse square root of the overlap matrix S). The initial guess of Z is obtained beforehand by using either an approximate divide-and-conquer technique or dynamical methods, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under the incomplete, approximate, iterative refinement of Z. Linear-scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables efficient shared-memory parallelization. As we show in this article using self-consistent density-functional-based tight-binding MD, our approach is faster than conventional methods based on the diagonalization of overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4158-atom water-solvated polyalanine system, we find an average speedup factor of 122 for the computation of Z in each MD step.
C1 [Negre, Christian F. A.; Cawkwell, Marc J.; Bock, Nicolas; Niklasson, Anders M. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Mniszewski, Susan M.; Wall, Michael E.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA.
RP Negre, CFA; Niklasson, AMN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM cnegre@lanl.gov; amn@lanl.gov
NR 50
TC 1
Z9 1
U1 2
U2 2
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1549-9618
EI 1549-9626
J9 J CHEM THEORY COMPUT
JI J. Chem. Theory Comput.
PD JUL
PY 2016
VL 12
IS 7
BP 3063
EP 3073
DI 10.1021/acs.jac.6b00154
PG 11
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA DR1ZG
UT WOS:000379703800007
PM 27267207
ER
PT J
AU Sawaya, NPD
Smelyanskiy, M
McClean, JR
Aspuru-Guzik, A
AF Sawaya, Nicolas P. D.
Smelyanskiy, Mikhail
McClean, Jarrod R.
Aspuru-Guzik, Alan
TI Error Sensitivity to Environmental Noise in Quantum Circuits for
Chemical State Preparation
SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION
LA English
DT Article
ID REDUCED DENSITY-MATRICES; TENSOR PROPAGATOR; TIME EVOLUTION;
COMPUTATION; ALGORITHMS; CHEMISTRY
AB Calculating molecular energies is likely to be one of the first useful applications to achieve quantum supremacy, performing faster on a quantum than a classical computer. However, if future quantum devices are to produce accurate calculations, errors due to environmental noise and algorithmic approximations need to be characterized and reduced. In this study, we use the high performance qHiPSTER software to investigate the effects of environmental noise on the preparation of quantum chemistry states. We simulated 18 16-qubit quantum circuits under environmental noise, each corresponding to a unitary coupled cluster state preparation of a different molecule or molecular configuration. Additionally, we analyze the nature of simple gate errors in noise-free circuits of up to 40 qubits. We find that, in most cases, the Jordan-Wigner (JW) encoding produces smaller errors under a noisy environment as compared to the Bravyi-Kitaev (BK) encoding. For the JW encoding, pure dephasing noise is shown to produce substantially smaller errors than pure relaxation noise of the same magnitude. We report error trends in both molecular energy and electron particle number within a unitary coupled cluster state preparation scheme, against changes in nuclear charge, bond length, number of electrons, noise types, and noise magnitude. These trends may prove to be useful in making algorithmic and hardware-related choices for quantum simulation of molecular energies.
C1 [Sawaya, Nicolas P. D.; Aspuru-Guzik, Alan] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA.
[Sawaya, Nicolas P. D.; Smelyanskiy, Mikhail] Intel Corp, Parallel Comp Lab, Santa Clara, CA 95054 USA.
[McClean, Jarrod R.] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
RP Aspuru-Guzik, A (reprint author), Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA.
EM aspuru@chemistry.harvard.edu
NR 52
TC 0
Z9 0
U1 2
U2 2
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1549-9618
EI 1549-9626
J9 J CHEM THEORY COMPUT
JI J. Chem. Theory Comput.
PD JUL
PY 2016
VL 12
IS 7
BP 3097
EP 3108
DI 10.1021/acs.jctc.6b00220
PG 12
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA DR1ZG
UT WOS:000379703800010
PM 27254482
ER
PT J
AU Neuscamman, E
AF Neuscamman, Eric
TI Improved Optimization for the Cluster Jastrow Antisymmetric Geminal
Power and Tests on Triple-Bond Dissociations
SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION
LA English
DT Article
ID CONFIGURATION-INTERACTION METHOD; STRONGLY ORTHOGONAL GEMINALS;
MOLECULAR-ORBITAL METHODS; COUPLED-CLUSTER; WAVE-FUNCTION;
QUANTUM-CHEMISTRY; MODEL CHEMISTRY; ELECTRONIC-STRUCTURE;
PERTURBATION-THEORY; MEAN-FIELD
AB We present a novel specialization of the variational Monte Carlo linear method for the optimization of the recently introduced cluster Jastrow antisymmetric geminal power ansatz, achieving a lower-order polynomial cost scaling than would be possible with a naive application of the linear method and greatly improving optimization performance relative to that of the previously employed quasi-Newton approach. We test the methodology on highly multireference triple-bond stretches, achieving accuracy superior to those of the traditional coupled cluster theory and multireference perturbation theory in both the typical example of N-2 and the transition-metal-oxide example of [ScO](+).
C1 [Neuscamman, Eric] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Neuscamman, Eric] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Neuscamman, E (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Neuscamman, E (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
EM eneuscamman@berkeley.edu
NR 76
TC 4
Z9 4
U1 3
U2 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1549-9618
EI 1549-9626
J9 J CHEM THEORY COMPUT
JI J. Chem. Theory Comput.
PD JUL
PY 2016
VL 12
IS 7
BP 3149
EP 3159
DI 10.1021/acs.jctc.6b00288
PG 11
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA DR1ZG
UT WOS:000379703800014
PM 27281678
ER
PT J
AU Lehtola, S
Head-Gordon, M
Jonsson, H
AF Lehtola, Susi
Head-Gordon, Martin
Jonsson, Hannes
TI Complex Orbitals, Multiple Local Minima, and Symmetry Breaking in
Perdew-Zunger Self-Interaction Corrected Density Functional Theory
Calculations
SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION
LA English
DT Article
ID GENERALIZED GRADIENT APPROXIMATION; EXCHANGE-CORRELATION FUNCTIONALS;
ELECTRONIC-ENERGY BANDS; INTERACTION ERROR; THEORETICAL METHODS;
COUPLED-CLUSTER; AB-INITIO; ACCURATE; MOLECULES; SYSTEMS
AB Implentation of seminumerical stability analysis for calculations using the PerdewZunger self-interaction correction is described. It is shown that real-valued solutions of the PerdewZunger equations for gas phase atoms are unstable with respect to imaginary orbital rotations, confirming that a proper implementation of the correction requires complex-valued orbitals. The orbital density dependence of the self-interaction corrected functional is found to lead to multiple local minima in the case of the acrylic acid, H-6, and benzene molecules. In the case of benzene, symmetry breaking that results in incorrect ground state geometry is found to occur, erroneously leading to alternating bond lengths in the molecule.
C1 [Lehtola, Susi; Head-Gordon, Martin] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Jonsson, Hannes] Univ Iceland, Fac Phys Sci, IS-107 Reykjavik, Iceland.
[Jonsson, Hannes] Aalto Univ, Sch Sci, Dept Appl Phys, POB 11000, FI-00076 Espoo, Finland.
RP Lehtola, S (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
EM susi.lehtola@alumni.helsinki.fi
RI Lehtola, Susi/H-1828-2013; Jonsson, Hannes/G-2267-2013
OI Lehtola, Susi/0000-0001-6296-8103; Jonsson, Hannes/0000-0001-8285-5421
NR 124
TC 4
Z9 4
U1 4
U2 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1549-9618
EI 1549-9626
J9 J CHEM THEORY COMPUT
JI J. Chem. Theory Comput.
PD JUL
PY 2016
VL 12
IS 7
BP 3195
EP 3207
DI 10.1021/acs.jctc.6b00347
PG 13
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA DR1ZG
UT WOS:000379703800018
PM 27232582
ER
PT J
AU Breault, RW
Yarrington, CS
Weber, JM
AF Breault, Ronald W.
Yarrington, Cory S.
Weber, Justin M.
TI The Effect of Thermal Treatment of Hematite Ore for Chemical Looping
Combustion of Methane
SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME
LA English
DT Article; Proceedings Paper
CT 40th International Technical Conference on Clean Coal and Fuel Systems
CY MAY 31-JUN 04, 2015
CL Clearwater, FL
ID IRON-OXIDE; ALPHA-FE2O3(0001); REDUCTION; OXIDATION; SURFACE
AB For chemical looping processes to become an economically viable technology, an inexpensive carrier that can endure repeated reduction and oxidation cycles needs to be identified or developed. Unfortunately, the reduction of hematite ore with methane in both batch and fluidized beds has revealed that the performance (methane conversion) decreases with time. Previous analysis had shown that the grains within the particle grew with the net effect of reducing the surface area of the particles and thereby reducing the rate and net conversion for a fixed reduction time. To improve the lifespan of hematite ore, it is hypothesized that if the grain size could be stabilized, then the conversion could be stabilized. In this work, series of tests were conducted in an electrically heated fluidized bed. The hematite ore was first pretreated at a temperature higher than the subsequent reduction temperatures. After pretreatment, the hematite ore was subjected to a series of cyclic reduction/oxidation experiments. The results show that the ore can be stabilized for cycles at different conditions up to the pretreatment temperature without any degradation. Details of the pretreatment process and the test results will be presented.
C1 [Breault, Ronald W.; Yarrington, Cory S.; Weber, Justin M.] US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA.
RP Breault, RW (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA.
EM ronald.breault@netl.doe.gov
NR 25
TC 1
Z9 1
U1 8
U2 13
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0195-0738
J9 J ENERG RESOUR-ASME
JI J. Energy Resour. Technol.-Trans. ASME
PD JUL
PY 2016
VL 138
IS 4
SI SI
AR 042202
DI 10.1115/1.4032018
PG 8
WC Energy & Fuels
SC Energy & Fuels
GA DR0IA
UT WOS:000379590000005
ER
PT J
AU Schilling, O
Livescu, D
Prestridge, KP
Ramaprabhu, P
AF Schilling, Oleg
Livescu, Daniel
Prestridge, Katherine P.
Ramaprabhu, Praveen
TI SPECIAL SECTION: THE 14TH INTERNATIONAL WORKSHOP ON THE PHYSICS OF
COMPRESSIBLE TURBULENT MIXING
SO JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME
LA English
DT Editorial Material
C1 [Schilling, Oleg] Lawrence Livermore Natl Lab, Design Phys Div, Livermore, CA 94550 USA.
[Livescu, Daniel] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA.
[Prestridge, Katherine P.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA.
[Ramaprabhu, Praveen] Univ N Carolina, Mech Engn & Engn Sci, Charlotte, NC 28223 USA.
RP Schilling, O (reprint author), Lawrence Livermore Natl Lab, Design Phys Div, Livermore, CA 94550 USA.
RI Prestridge, Kathy/C-1137-2012;
OI Prestridge, Kathy/0000-0003-2425-5086; Schilling,
Oleg/0000-0002-0623-2940
NR 0
TC 0
Z9 0
U1 0
U2 1
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0098-2202
EI 1528-901X
J9 J FLUID ENG-T ASME
JI J. Fluids Eng.-Trans. ASME
PD JUL
PY 2016
VL 138
IS 7
AR 070301
PG 1
WC Engineering, Mechanical
SC Engineering
GA DR0OE
UT WOS:000379606000001
ER
PT J
AU Shimony, A
Shvarts, D
Malamud, G
Di Stefano, CA
Kuranz, CC
Drake, RP
AF Shimony, Assaf
Shvarts, Dov
Malamud, Guy
Di Stefano, Carlos A.
Kuranz, Carolyn C.
Drake, R. P.
TI The Effect of a Dominant Initial Single Mode on the Kelvin-Helmholtz
Instability Evolution: New Insights on Previous Experimental Results
SO JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME
LA English
DT Article
AB This paper brings new insights on an experiment, measuring the Kelvin-Helmholtz (KH) instability evolution, performed on the OMEGA-60 laser facility. Experimental radiographs show that the initial seed perturbations in the experiment are of multimode spectrum with a dominant single-mode of 16 mu m wavelength. In single-mode-dominated KH instability flows, the mixing zone (MZ) width saturates to a constant value comparable to the wavelength. However, the experimental MZ width at late times has exceeded 100 mu m, an order of magnitude larger. In this work, we use numerical simulations and a statistical model in order to investigate the vortex dynamics of the KH instability for the experimental initial spectrum. We conclude that the KH instability evolution in the experiment is dominated by multimode, vortex-merger dynamics, overcoming the dominant initial mode.
C1 [Shimony, Assaf; Shvarts, Dov; Malamud, Guy] NRCN, Dept Phys, IL-84190 Beer Sheva, Israel.
[Shimony, Assaf] BGU, Dept Phys, IL-84015 Beer Sheva, Israel.
[Shvarts, Dov; Malamud, Guy; Di Stefano, Carlos A.; Kuranz, Carolyn C.; Drake, R. P.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA.
[Di Stefano, Carlos A.] Los Alamos Natl Lab, Los Alamos, NM 87507 USA.
RP Shimony, A (reprint author), NRCN, Dept Phys, IL-84190 Beer Sheva, Israel.; Shimony, A (reprint author), BGU, Dept Phys, IL-84015 Beer Sheva, Israel.
EM shimonya@gmail.com
NR 16
TC 0
Z9 0
U1 4
U2 5
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0098-2202
EI 1528-901X
J9 J FLUID ENG-T ASME
JI J. Fluids Eng.-Trans. ASME
PD JUL
PY 2016
VL 138
IS 7
AR 070902
DI 10.1115/1.4032530
PG 7
WC Engineering, Mechanical
SC Engineering
GA DR0OE
UT WOS:000379606000003
ER
PT J
AU Wilson, BM
Mejia-Alvarez, R
Prestridge, KP
AF Wilson, B. M.
Mejia-Alvarez, R.
Prestridge, K. P.
TI Single-Interface Richtmyer-Meshkov Turbulent Mixing at the Los Alamos
Vertical Shock Tube
SO JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME
LA English
DT Article
ID INSTABILITY; ACCELERATION; DEPENDENCE; TRANSITION; MECHANISMS;
DIFFUSION; MIXTURES; VELOCITY; FLOW
AB Mach number and initial conditions effects on Richtmyer-Meshkov (RM) mixing are studied by the vertical shock tube (VST) at Los Alamos National Laboratory (LANL). At the VST, a perturbed stable light-to-heavy (air-SF6, A = 0.64) interface is impulsively accelerated with a shock wave to induce RM mixing. We investigate changes to both large and small scales of mixing caused by changing the incident Mach number (Ma = 1.3 and 1.45) and the three-dimensional (3D) perturbations on the interface. Simultaneous density (quantitative planar laser-induced fluorescence (PLIF)) and velocity (particle image velocimetry (PIV)) measurements are used to characterize preshock initial conditions and the dynamic shocked interface. Initial conditions and fluid properties are characterized before shock. Using two types of dynamic measurements, time series (N = 5 realizations at ten locations) and statistics (N = 100 realizations at a single location) of the density and velocity fields, we calculate several mixing quantities. Mix width, density-specific volume correlations, density-vorticity correlations, vorticity, enstrophy, strain, and instantaneous dissipation rate are examined at one downstream location. Results indicate that large-scale mixing, such as the mix width, is strongly dependent on Mach number, whereas small scales are strongly influenced by initial conditions. The enstrophy and strain show focused mixing activity in the spike regions.
C1 [Wilson, B. M.; Mejia-Alvarez, R.; Prestridge, K. P.] Los Alamos Natl Lab, Div Phys, P-23, Los Alamos, NM 87545 USA.
RP Wilson, BM (reprint author), Los Alamos Natl Lab, Div Phys, P-23, Los Alamos, NM 87545 USA.
EM bwilson@lanl.gov; rimejal@lanl.gov; kpp@lanl.gov
RI Prestridge, Kathy/C-1137-2012
OI Prestridge, Kathy/0000-0003-2425-5086
NR 27
TC 0
Z9 0
U1 8
U2 8
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0098-2202
EI 1528-901X
J9 J FLUID ENG-T ASME
JI J. Fluids Eng.-Trans. ASME
PD JUL
PY 2016
VL 138
IS 7
AR 070901
DI 10.1115/1.4032529
PG 9
WC Engineering, Mechanical
SC Engineering
GA DR0OE
UT WOS:000379606000002
ER
PT J
AU Zhou, Y
Thornber, B
AF Zhou, Ye
Thornber, Ben
TI A Comparison of Three Approaches to Compute the Effective Reynolds
Number of the Implicit Large-Eddy Simulations
SO JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME
LA English
DT Article
ID RICHTMYER-MESHKOV INSTABILITIES; NUMERICAL DISSIPATION RATE; LARGE-SCALE
STRUCTURE; TURBULENT FLOWS; ISOTROPIC TURBULENCE; RAYLEIGH-TAYLOR;
ENERGY-TRANSFER; MACH NUMBER; VISCOSITY; DRIVEN
AB The implicit large-eddy simulation (ILES) has been utilized as an effective approach for calculating many complex flows at high Reynolds number flows. Richtmyer-Meshkov instability (RMI) induced flow can be viewed as a homogeneous decaying turbulence (HDT) after the passage of the shock. In this article, a critical evaluation of three methods for estimating the effective Reynolds number and the effective kinematic viscosity is undertaken utilizing high-resolution ILES data. Effective Reynolds numbers based on the vorticity and dissipation rate, or the integral and inner-viscous length scales, are found to be the most self-consistent when compared to the expected phenomenology and wind tunnel experiments.
C1 [Zhou, Ye] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Thornber, Ben] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia.
RP Zhou, Y (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
OI Thornber, Ben/0000-0002-7665-089X
FU Lawrence Livermore National Security, LLC [DE-AC52-07NA27344];
Australian Research Council [DP150101059]
FX This work was performed under the auspices of the Lawrence Livermore
National Security, LLC under Contract No. DE-AC52-07NA27344. This
research was supported under Australian Research Council's Discovery
Projects funding scheme (Project No. DP150101059). The authors would
like to acknowledge the computational resources at the National
Computational Infrastructure through the National Computational Merit
Allocation Scheme, which were employed for all cases presented here.
NR 59
TC 0
Z9 0
U1 2
U2 3
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0098-2202
EI 1528-901X
J9 J FLUID ENG-T ASME
JI J. Fluids Eng.-Trans. ASME
PD JUL
PY 2016
VL 138
IS 7
AR 070905
DI 10.1115/1.4032532
PG 7
WC Engineering, Mechanical
SC Engineering
GA DR0OE
UT WOS:000379606000006
ER
PT J
AU Pham, VT
Fulton, JL
AF Van-Thai Pham
Fulton, John L.
TI High-resolution Measurement of Contact Ion-pair Structures in Aqueous
RbCl Solutions from the Simultaneous Corefinement of their Rb and Cl
K-edge XAFS and XRD Spectra
SO JOURNAL OF SOLUTION CHEMISTRY
LA English
DT Article
DE XADSR; EXAFS; XRD; Ion-pair; Aqueous RbCl; Ion hydration
ID HYDRATION; ELECTROLYTES; SPECTROSCOPY; DIFFRACTION; ASSOCIATION;
AMBIENT; EXAFS; WATER
AB In concentrated solutions of aqueous RbCl, all of the Rb+ and Cl- ions exist as contact ion pairs. This full structural assessment is derived from the refinement of three independent experimental measurements: the Rb and Cl K-edge X-ray absorption fine structure (XAFS) and the X-ray diffraction spectra (XRD). This simultaneous refinement of the XAFS and XRD data provides high accuracy since each method probes the structure of different local regions about the ions with high sensitivity. At high RbCl concentration (6 mol center dot kg(-1)) the solution is dominated by Rb+-Cl- contact ion pairs yielding an average of 1.5 pairs at an Rb-Cl distance of 3.24 . Upon formation of these ion pairs, approximately 1.1 waters molecules are displaced from the Rb+ and 1.4 water molecules from Cl-. The hydration shells about both the cation and anion are also determined. These results greatly improve the understanding of monovalent ions and provide a basis for testing the Rb+-Cl- interaction potentials used in molecular dynamics (MD) simulation.
C1 [Van-Thai Pham] Vietnam Acad Sci & Technol, Inst Phys, Ctr Quantum Elect, POB 429, Hanoi 10000, Vietnam.
[Van-Thai Pham] Synchrotron SOLEIL, BP48, F-91192 Gif Sur Yvette, France.
[Fulton, John L.] Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99354 USA.
RP Pham, VT (reprint author), Vietnam Acad Sci & Technol, Inst Phys, Ctr Quantum Elect, POB 429, Hanoi 10000, Vietnam.; Pham, VT (reprint author), Synchrotron SOLEIL, BP48, F-91192 Gif Sur Yvette, France.
EM pvthai@iop.vast.ac.vn; john.fulton@pnnl.gov
FU Vietnam National Foundation for Science and Technology Development
(NAFOSTED) [103.99-2013.19]; US Department of Energy, Office of Science,
Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences Biosciences; DOE/BES; Canadian Light Source; University of
Washington; Advanced Photon Source; DOE [DE-AC02-06CH11357]
FX VTP was supported by the Vietnam National Foundation for Science and
Technology Development (NAFOSTED) under Grant Number 103.99-2013.19.
Work by JLF was supported by the US Department of Energy, Office of
Science, Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL)
is a multiprogram national laboratory operated for DOE by Battelle. The
PNC/XSD facilities at the Advanced Photon Source, and research at these
facilities, are supported by DOE/BES, the Canadian Light Source and its
funding partners, the University of Washington, and the Advanced Photon
Source. Use of the Advanced Photon Source, an Office of Science User
Facility operated for the DOE Office of Science by Argonne National
Laboratory, was supported by the DOE under Contract No.
DE-AC02-06CH11357. Dr. F. Baudelet is acknowledged for constructive
discussion.
NR 33
TC 0
Z9 0
U1 2
U2 4
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0095-9782
EI 1572-8927
J9 J SOLUTION CHEM
JI J. Solut. Chem.
PD JUL
PY 2016
VL 45
IS 7
BP 1061
EP 1070
DI 10.1007/s10953-016-0487-5
PG 10
WC Chemistry, Physical
SC Chemistry
GA DQ8WP
UT WOS:000379492600007
ER
PT J
AU Munoz-Esparza, D
Sauer, JA
Linn, RR
Kosovic, B
AF Munoz-Esparza, Domingo
Sauer, Jeremy A.
Linn, Rodman R.
Kosovic, Branko
TI Limitations of One-Dimensional Mesoscale PBL Parameterizations in
Reproducing Mountain-Wave Flows
SO JOURNAL OF THE ATMOSPHERIC SCIENCES
LA English
DT Article
ID LARGE-EDDY SIMULATIONS; BOUNDARY-LAYER; TYRANNOSAURUS-REX; LEE WAVES;
WRF MODEL; TURBULENCE; WIND; IMPROVEMENT; BREAKING; DRAG
AB Mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, the authors investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill are used and compared to four commonly used PBL schemes. It is found that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocity, and turbulent kinetic energy distribution in the downhill shooting-flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift, producing errors of approximately 10m s(-1) at downstream locations because of the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore, results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex terrain and other types of flows where one-dimensional PBL assumptions are violated.
C1 [Munoz-Esparza, Domingo; Sauer, Jeremy A.; Linn, Rodman R.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Kosovic, Branko] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA.
RP Munoz-Esparza, D (reprint author), Natl Ctr Atmospher Res, Res Applicat Lab, POB 3000, Boulder, CO 80307 USA.
EM domingom@ucar.edu
FU Laboratory Directed Research and Development (LDRD) program at Los
Alamos National Laboratory [20130487ER]; U.S. Department of Energy
National Nuclear Security Administration [DE-AC52-06NA25396]
FX This research was supported by the Laboratory Directed Research and
Development (LDRD) program at Los Alamos National Laboratory
(20130487ER). This research used resources provided by the Los Alamos
National Laboratory Institutional Computing Program, which is supported
by the U.S. Department of Energy National Nuclear Security
Administration under Contract DE-AC52-06NA25396.
NR 39
TC 3
Z9 3
U1 0
U2 0
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-4928
EI 1520-0469
J9 J ATMOS SCI
JI J. Atmos. Sci.
PD JUL
PY 2016
VL 73
IS 7
BP 2603
EP 2614
DI 10.1175/JAS-D-15-0304.1
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DQ7PX
UT WOS:000379400900002
ER
PT J
AU Sauer, JA
Munoz-Esparza, D
Canfield, JM
Costigan, KR
Linn, RR
Kim, YJ
AF Sauer, Jeremy A.
Munoz-Esparza, Domingo
Canfield, Jesse M.
Costigan, Keeley R.
Linn, Rodman R.
Kim, Young-Joon
TI A Large-Eddy Simulation Study of Atmospheric Boundary Layer Influence on
Stratified Flows over Terrain
SO JOURNAL OF THE ATMOSPHERIC SCIENCES
LA English
DT Article
ID PAST 3-DIMENSIONAL OBSTACLES; WEATHER PREDICTION MODELS; WAVE-DRAG
PARAMETRIZATION; MOUNTAIN-WAVE; DOWNSLOPE WINDSTORMS; SURFACE FRICTION;
TURBULENCE; MESOSCALE; BREAKING; PREDICTABILITY
AB The impact of atmospheric boundary layer (ABL) interactions with large-scale stably stratified flow over an isolated, two-dimensional hill is investigated using turbulence-resolving large-eddy simulations. The onset of internal gravity wave breaking and leeside flow response regimes of trapped lee waves and nonlinear breakdown (or hydraulic-jump-like state) as they depend on the classical inverse Froude number, Fr-1 = Nh/U-g, is explored in detail. Here, N is the Brunt-Vaisala frequency, h is the hill height, and U-g is the geostrophic wind. The results here demonstrate that the presence of a turbulent ABL influences mountain wave (MW) development in critical aspects, such as dissipation of trapped lee waves and amplified stagnation zone turbulence through Kelvin-Helmholtz instability. It is shown that the nature of interactions between the largescale flow and the ABL is better characterized by a proposed inverse compensated Froude number, Fr-c(-1) = N(h - zi)/U-g, where zi is the ABL height. In addition, it is found that the onset of the nonlinear-breakdown regime, Fr-c(-1) approximate to 1.0, is initiated when the vertical wavelength becomes comparable to the sufficiently energetic scales of turbulence in the stagnation zone and ABL, yielding an abrupt change in leeside flow response. Finally, energy spectra are presented in the context of MW flows, supporting the existence of a clear transition in leeside flow response, and illustrating two distinct energy distribution states for the trapped-lee-wave and the nonlinear-breakdown regimes.
C1 [Sauer, Jeremy A.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM USA.
[Munoz-Esparza, Domingo] Natl Ctr Atmospher Res, Res Applicat Lab, POB 3000, Boulder, CO 80307 USA.
[Canfield, Jesse M.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM USA.
[Costigan, Keeley R.; Linn, Rodman R.; Kim, Young-Joon] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM USA.
RP Sauer, JA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA.
EM jsauer@lanl.gov
FU Laboratory Directed Research and Development (LDRD) program at Los
Alamos National Laboratory [20130487ER]; U.S. Department of Energy
National Nuclear Security Administration [DE-AC52-06NA25396]
FX The majority of efforts presented here and in preparation of this
manuscript were carried out during the postdoc tenures of JAS and DME in
the Earth and Environmental Sciences Division at Los Alamos National
Laboratory. This research was supported by the Laboratory Directed
Research and Development (LDRD) program at Los Alamos National
Laboratory (20130487ER). This research used resources provided by the
Los Alamos National Laboratory Institutional Computing Program, which is
supported by the U.S. Department of Energy National Nuclear Security
Administration under Contract DE-AC52-06NA25396. The authors thank the
three anonymous reviewers for their thorough and constructive
suggestions to improve the manuscript. We would also like to thank Dr.
Francois Pimont for his insightful advice regarding the large-scale
pressure gradient force parameterization used in this work.
NR 46
TC 1
Z9 1
U1 7
U2 10
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-4928
EI 1520-0469
J9 J ATMOS SCI
JI J. Atmos. Sci.
PD JUL
PY 2016
VL 73
IS 7
BP 2615
EP 2632
DI 10.1175/JAS-D-15-0282.1
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DQ7PX
UT WOS:000379400900003
ER
PT J
AU Borja, LJ
Zurch, M
Pemmaraju, CD
Schultze, M
Ramasesha, K
Gandman, A
Prell, JS
Prendergast, D
Neumark, DM
Leone, SR
AF Borja, Lauren J.
Zuerch, M.
Pemmaraju, C. D.
Schultze, Martin
Ramasesha, Krupa
Gandman, Andrey
Prell, James S.
Prendergast, David
Neumark, Daniel M.
Leone, Stephen R.
TI Extreme ultraviolet transient absorption of solids from femtosecond to
attosecond timescales [Invited]
SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS
LA English
DT Article
ID STRUCTURAL DYNAMICS; PHOTON-ECHOES; SPECTROSCOPY; ELECTRON;
SEMICONDUCTORS; SILICON; PHONON; TRANSITIONS; OXIDES; CARRIER
AB High-harmonic generation (HHG) produces ultrashort pulses of extreme ultraviolet radiation (XUV), which can be used for pump-probe transient absorption spectroscopy in metal oxides, semiconductors, and dielectrics. Femtosecond transient absorption on iron and cobalt oxides identifies ligand-to-metal charge transfer as the main spectroscopic transition, rather than metal-to-metal charge transfer or d-d transitions, upon photoexcitation in the visible. In silicon, attosecond transient absorption reveals that electrons tunnel into the conduction band from the valence band under strong-field excitation, to energies as high as 6 eV above the conduction band minimum. Extensions of these experiments to other semiconductors, such as germanium, and other transition metal oxides, such as vanadium dioxide, are discussed. Germanium is of particular interest because it should be possible to follow both electron and hole dynamics in a single measurement using transient XUV absorption. (C) 2016 Optical Society of America
C1 [Borja, Lauren J.; Zuerch, M.; Schultze, Martin; Ramasesha, Krupa; Gandman, Andrey; Prell, James S.; Neumark, Daniel M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Pemmaraju, C. D.; Prendergast, David] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Pemmaraju, C. D.; Neumark, Daniel M.; Leone, Stephen R.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Schultze, Martin] Ludwig Maximilians Univ Munchen, Fak Phys, Coulombwall 1, D-85748 Garching, Germany.
[Ramasesha, Krupa] Sandia Natl Labs, Combust Res Facil, Mail Stop 9055, Livermore, CA 94551 USA.
[Gandman, Andrey] Technion Israel Inst Technol, Inst Solid State, IL-32000 Haifa, Israel.
[Prell, James S.] Univ Oregon, Dept Chem & Biochem, Eugene, OR 97403 USA.
RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Leone, SR (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.; Leone, SR (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM srl@berkeley.edu
RI Zuerch, Michael/C-8945-2013; Neumark, Daniel/B-9551-2009
OI Neumark, Daniel/0000-0002-3762-9473
FU Army Research Office (ARO), Multidisciplinary University Research
Initiative [WN911NF-14-1-0383]; Multidisciplinary University Research
Initiatives from the Air Force Office of Scientific Research
[FA9550-15-1-0037]; Air Force Office of Scientific Research (AFOSR)
[FA9550-14-1-0154]; Humboldt Foundation; Office of Science (SC); Basic
Energy Sciences (BES); U.S. Department of Energy (DOE)
[DE-AC02-05CH11231]; National Energy Research Scientific Computing
Center (NERSC); Lawrence Berkeley National Laboratory; National Security
Science and Engineering Faculty Fellowship (NSSEFF) [FA9550-10-1-0195];
W.M. Keck Foundation [DE-AC03-76SF00098]; National Science Foundation
(NSF) [CHE-1361226]; Defense Advanced Research Projects Agency (DARPA)
[W31P4Q1310017]
FX Army Research Office (ARO), Multidisciplinary University Research
Initiative (WN911NF-14-1-0383); Multidisciplinary University Research
Initiatives from the Air Force Office of Scientific Research
(FA9550-15-1-0037); Air Force Office of Scientific Research (AFOSR)
(FA9550-14-1-0154); The Humboldt Foundation; Office of Science (SC);
Basic Energy Sciences (BES); U.S. Department of Energy (DOE)
(DE-AC02-05CH11231); National Energy Research Scientific Computing
Center (NERSC); Lawrence Berkeley National Laboratory; National Security
Science and Engineering Faculty Fellowship (NSSEFF) (FA9550-10-1-0195);
W.M. Keck Foundation (DE-AC03-76SF00098); National Science Foundation
(NSF) (CHE-1361226); Defense Advanced Research Projects Agency (DARPA)
(W31P4Q1310017).
NR 80
TC 3
Z9 3
U1 8
U2 20
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0740-3224
EI 1520-8540
J9 J OPT SOC AM B
JI J. Opt. Soc. Am. B-Opt. Phys.
PD JUL 1
PY 2016
VL 33
IS 7
DI 10.1364/JOSAB.33.000C57
PG 8
WC Optics
SC Optics
GA DR2PT
UT WOS:000379747100008
ER
PT J
AU Gehl, M
Gibson, R
Zandbergen, S
Keiffer, P
Sears, J
Khitrova, G
AF Gehl, Michael
Gibson, Ricky
Zandbergen, Sander
Keiffer, Patrick
Sears, Jasmine
Khitrova, Galina
TI Superconductivity in epitaxially grown self-assembled indium islands:
progress towards hybrid superconductor/semiconductor optical sources
[Invited]
SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS
LA English
DT Article
ID SEMICONDUCTOR; SUPERCURRENT; JUNCTIONS; CIRCUITS; GRAPHENE; CURRENTS;
DEVICES; ENERGY
AB Currently, superconducting qubits lead the way in potential candidates for quantum computing. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. One promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors, with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductors and semiconductors is the next obvious step for improving these hybrid systems. Here, we report on our observation of superconductivity in a 2.3 mu m diameter self-assembled indium structure grown epitaxially on the surface of a semiconductor material. (C) 2016 Optical Society of America
C1 [Gehl, Michael; Gibson, Ricky; Zandbergen, Sander; Keiffer, Patrick; Sears, Jasmine; Khitrova, Galina] Univ Arizona, Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA.
[Gehl, Michael] Sandia Natl Labs, Appl Photon Microsyst, POB 5800, Albuquerque, NM 87185 USA.
RP Gehl, M (reprint author), Univ Arizona, Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA.; Gehl, M (reprint author), Sandia Natl Labs, Appl Photon Microsyst, POB 5800, Albuquerque, NM 87185 USA.
EM mgehl@sandia.gov
FU Air Force Office of Scientific Research (AFOSR) [FA9550-13-1-0003];
National Science Foundation (NSF) [1205031, 0812072]; U.S. Department of
Defense (DOD); Arizona Technology and Research Initiative Funding
(TRIF); U.S. Department of Energy (DOE) [DE-AC05-06OR23100]
FX Air Force Office of Scientific Research (AFOSR) (FA9550-13-1-0003);
National Science Foundation (NSF) (1205031, 0812072); U.S. Department of
Defense (DOD); Arizona Technology and Research Initiative Funding
(TRIF); U.S. Department of Energy (DOE) (DE-AC05-06OR23100).
NR 45
TC 1
Z9 1
U1 3
U2 3
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0740-3224
EI 1520-8540
J9 J OPT SOC AM B
JI J. Opt. Soc. Am. B-Opt. Phys.
PD JUL 1
PY 2016
VL 33
IS 7
DI 10.1364/JOSAB.33.000C50
PG 7
WC Optics
SC Optics
GA DR2PT
UT WOS:000379747100007
ER
PT J
AU Naumann, NL
Droenner, L
Chow, WW
Kabuss, J
Carmele, A
AF Naumann, Nicolas L.
Droenner, Leon
Chow, Weng W.
Kabuss, Julia
Carmele, Alexander
TI Solid-state-based analog of optomechanics
SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS
LA English
DT Article
ID CAVITY OPTOMECHANICS; RADIATION-PRESSURE; QUANTUM DOTS; SINGLE
AB We investigate a semiconductor quantum dot as a microscopic analog of a basic optomechanical setup. We show that optomechanical features can be reproduced by the solid-state platform, arising from parallels of the underlying interaction processes, which in the optomechanical case is the radiation pressure coupling and in the semiconductor case the electron-phonon coupling. We discuss bistabilities, lasing, and phonon damping, and recover the same qualitative behaviors for the semiconductor and the optomechanical cases expected for low driving strengths. However, in contrast to the optomechanical case, distinct signatures of higher order processes arise in the semiconductor model. (C) 2016 Optical Society of America
C1 [Naumann, Nicolas L.; Droenner, Leon; Kabuss, Julia] Tech Univ Berlin, Inst Theoret Phys Nichtlineare Opt & Quantenelekt, Hardenbergstr 36, D-10623 Berlin, Germany.
[Chow, Weng W.; Carmele, Alexander] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Naumann, NL (reprint author), Tech Univ Berlin, Inst Theoret Phys Nichtlineare Opt & Quantenelekt, Hardenbergstr 36, D-10623 Berlin, Germany.
EM naumann@itp.tu-berlin.de
FU Deutsche Forschungsgemeinschaft (DFG) [SFB 910, SFB 787]; Sandia
Laboratory Directed Research and Development (LDRD); U.S. Department of
Energy (DOE) [DE-AC04-94AL85000]
FX Deutsche Forschungsgemeinschaft (DFG) (SFB 910, SFB 787); Sandia
Laboratory Directed Research and Development (LDRD); U.S. Department of
Energy (DOE) (DE-AC04-94AL85000).
NR 44
TC 0
Z9 0
U1 2
U2 2
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0740-3224
EI 1520-8540
J9 J OPT SOC AM B
JI J. Opt. Soc. Am. B-Opt. Phys.
PD JUL 1
PY 2016
VL 33
IS 7
DI 10.1364/JOSAB.33.001492
PG 10
WC Optics
SC Optics
GA DR2PT
UT WOS:000379747100043
ER
PT J
AU Yao, FR
Tang, JY
Wang, F
Liu, KH
AF Yao, Fengrui
Tang, Jingyi
Wang, Feng
Liu, Kaihui
TI Structure-property relations in individual carbon nanotubes [Invited]
SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS
LA English
DT Article
ID THERMAL TRANSPORT; RAMAN-SCATTERING; YOUNGS MODULUS; SINGLE;
SPECTROSCOPY; TRANSISTORS; CONDUCTIVITY; FLUORESCENCE; ELECTRONICS;
RESONANCES
AB After more than a quarter century's intense research and exploration for their distinctive physical properties and potential applications, carbon nanotubes remain an active research field with many surprises and opportunities. Recent advances in nano-optics provide a powerful tool to optically characterize carbon nanotubes with a defined chiral index at the single-nanotube level. Here we review our recent effort along this direction, including (1) combining transmission electron microscopy and single-nanotube optical spectroscopy to establish an atlas for carbon nanotube optical transitions and (2) developing a high-contrast polarization microscope for real-time optical imaging and in situ spectroscopy of individual nanotubes in devices. We will also discuss the importance of such characterizations for controlled nanotube growth and for understanding chirality-dependent device behaviors. (C) 2016 Optical Society of America
C1 [Yao, Fengrui; Tang, Jingyi; Liu, Kaihui] Peking Univ, Sch Phys, Collaborat Innovat Ctr Quantum Matter, Ctr Nanochem,State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China.
[Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Wang, Feng] Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA.
[Wang, Feng] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Liu, KH (reprint author), Peking Univ, Sch Phys, Collaborat Innovat Ctr Quantum Matter, Ctr Nanochem,State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China.; Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Wang, F (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA.; Wang, F (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM fengwang76@berkeley.edu; khliu@pku.edu.cn
RI wang, Feng/I-5727-2015; Liu, Kaihui/A-9938-2014
FU National Science Foundation (NSF) [DMR-1404865]; National Natural
Science Foundation of China (NSFC) [51522201, 11474006, 91433102]
FX National Science Foundation (NSF) (DMR-1404865); National Natural
Science Foundation of China (NSFC) (51522201, 11474006, 91433102).
NR 65
TC 1
Z9 1
U1 10
U2 20
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0740-3224
EI 1520-8540
J9 J OPT SOC AM B
JI J. Opt. Soc. Am. B-Opt. Phys.
PD JUL 1
PY 2016
VL 33
IS 7
AR C102
DI 10.1364/JOSAB.33.00C102
PG 6
WC Optics
SC Optics
GA DR2PT
UT WOS:000379747100012
ER
PT J
AU Liu, F
Huang, L
Porter, LM
Davis, RF
Schreiber, DK
AF Liu, Fang
Huang, Li
Porter, Lisa M.
Davis, Robert F.
Schreiber, Daniel K.
TI Analysis of compositional uniformity in AlxGa1-xN thin films using atom
probe tomography and electron microscopy
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; SPECIMEN PREPARATION; ANALYSIS DIRECTION;
LAYERS; COMPLEX; ALLOYS
AB Calculated frequency distributions of atom probe tomography reconstructions (similar to 80 nm field of view) of very thin AlxGa1-xN(0.18 <= x <= 0.51) films grown via metalorganic vapor phase epitaxy on both (0001) GaN/AlN/SiC and (0001) GaN/sapphire heterostructures revealed homogeneous concentrations of Al and chemically abrupt AlxGa1-xN/GaN interfaces. The results of scanning transmission electron microscopy and selected area diffraction corroborated these results and revealed that neither superlattice ordering nor phase separation was present at nanometer length scales. (C) 2016 American Vacuum Society.
C1 [Liu, Fang; Huang, Li; Porter, Lisa M.; Davis, Robert F.] Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA.
[Schreiber, Daniel K.] Pacific Northwest Natl Lab, Energy & Environm Directorate, POB 999, Richland, WA 99352 USA.
RP Davis, RF (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA.
EM rfd@andrew.cmu.edu
RI Davis, Robert/A-9376-2011
OI Davis, Robert/0000-0002-4437-0885
FU Department of Energy's (DOE) Office of Biological and Environmental
Research; U.S. DOE, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering; [MCF-677785]
FX A portion of the research was performed at the Environmental Molecular
Science Laboratory (EMSL), a national scientific user facility sponsored
by the Department of Energy's (DOE) Office of Biological and
Environmental Research and located at Pacific Northwest National
Laboratory (PNNL). An alternate Sponsored Fellowship at PNNL awarded to
one of the authors (F.L.) was particularly helpful in completing this
research. D.K.S. acknowledges support from the U.S. DOE, Office of Basic
Energy Sciences, Division of Materials Sciences and Engineering in
preparing this manuscript. PNNL is a multiprogram national laboratory
operated for DOE by Battelle. The authors also acknowledge use of the
Materials Characterization Facility at CMU supported by Grant No.
MCF-677785.
NR 40
TC 0
Z9 0
U1 7
U2 7
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0734-2101
EI 1520-8559
J9 J VAC SCI TECHNOL A
JI J. Vac. Sci. Technol. A
PD JUL
PY 2016
VL 34
IS 4
AR 041510
DI 10.1116/1.4953410
PG 8
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA DR0HG
UT WOS:000379588000028
ER
PT J
AU Provo, JL
AF Provo, James L.
TI Use of aluminum oxide as a permeation barrier for producing thin films
on aluminum substrates
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A
LA English
DT Article
ID ELECTRON-BEAM GUN; EVAPORATION CHARACTERISTICS; THICKNESS; SPECTROSCOPY;
INTERFACE; DIFFUSION; CONTACTS; TITANIUM; SILICON; LAYERS
AB Aluminum has desirable characteristics of good thermal properties, good electrical characteristics, good optical properties, and the characteristic of being nonmagnetic and having a low atomic weight (26.98 g atoms), but because of its low melting point (660 degrees C) and ability as a reactive metal to alloy with most common metals in use, it has been ignored as a substrate material for use in processing thin films. The author developed a simple solution to this problem, by putting a permeation barrier of alumina (Al2O3) onto the surface of pure Al substrates by using a standard chemical oxidation process of the surface (i.e., anodization), before additional film deposition of reactive metals at temperatures up to 500 degrees C for 1-h, without the formation of alloys or intermetallic compounds to affect the good properties of Al substrates. The chromic acid anodization process used (MIL-A-8625) produced a film barrier of similar to(500-1000) nm of alumina. The fact that refractory Al2O3 can inhibit the reaction of metals with Al at temperatures below 500 degrees C suggests that Al is a satisfactory substrate if properly oxidized prior to film deposition. To prove this concept, thin film samples of Cr, Mo, Er, Sc, Ti, and Zr were prepared on anodized Al substrates and studied by x-ray diffraction, Rutherford ion back scattering, and Auger/argon sputter surface profile analysis to determine any film substrate interactions. In addition, a major purpose of our study was to determine if ErD2 thin films could be produced on Al substrates with fully hydrided Er films. Thus, a thin film of ErD2 on an anodized Al substrate was prepared and studied, with and without the alumina permeation barrier. Films for study were prepared on 1.27 cm diameter Al substrates with similar to 500 nm of the metals studied after anodization. Substrates were weighed, cleaned, and vacuum fired at 500 degrees C prior to use. The Al substrates were deposited using standard electron beam cold crucible evaporation techniques, and after deposition the Er film was hydrided with D-2 gas using a standard nonair exposure hydriding technique. All processing was conducted in an all metal ion pumped ultrahigh vacuum system. Results showed that e-beam deposition of films studied onto Al substrates could be successfully performed, if a permeation barrier of Al2O3 from 500 to 1000 nm was made prior to thin film deposition up to temperatures of 500 degrees C for 1-h. Hydrides also, could be produced with full gas/metal atomic ratios of similar to 2.0 as evidenced by the ErD2 films produced. Thus, the use of a simple permeation barrier of Al2O3 on Al substrates prior to additional metal film deposition was proven to be a successful method of producing both thin metal films and hydride films of various types for many applications. (C) 2016 American Vacuum Society.
C1 [Provo, James L.] JL Provo Consulting, Trinity, FL 34655 USA.
[Provo, James L.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
RP Provo, JL (reprint author), JL Provo Consulting, Trinity, FL 34655 USA.
EM jlprovo@verizon.net
FU U.S. Department of Energy [AT-(29-2)-656]
FX The author wishes to thank D. M. Holloway (Deceased) of the General
Electric Company, Largo, FL, and George Moore of Sandia National
Laboratories, Albuquerque, NM, for the Auger/argon sputter profile
surface oxide and depth profile measurements, R. Kuhnhardt (retired) of
the General Electric Company, Largo, FL, and T. K. Mehrhoff (retired) of
Sandia National Laboratories, Albuquerque, NM, for mass spectrometer
analyses, R. J. Antepenko (retired) of Sandia National Laboratories,
Albuquerque, NM, for metal analyses for determination of gas/metal
atomic Ratios, L. E. Burkett (deceased), R. P. Gross (deceased), and T.
Beal, Jr., for help with the processing studies, all previously with the
General Electric Company, Largo, FL, and R. G. Muscat, for ion-beam
analyses and x-ray diffraction analyses, and J. M. Harris for processing
studies, all with Sandia National Laboratories, Albuquerque, NM. Also,
the author is thankful to the U.S. Department of Energy, previously the
U.S. Energy Research and Development Administration under Contract No.
AT-(29-2)-656 to the General Electric Company at the Pinellas Plant,
Largo, FL, for their support.
NR 65
TC 0
Z9 0
U1 16
U2 20
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0734-2101
EI 1520-8559
J9 J VAC SCI TECHNOL A
JI J. Vac. Sci. Technol. A
PD JUL
PY 2016
VL 34
IS 4
AR 041503
DI 10.1116/1.4950884
PG 7
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA DR0HG
UT WOS:000379588000021
ER
PT J
AU Falcucci, G
Succi, S
Montessori, A
Melchionna, S
Prestininzi, P
Barroo, C
Bell, DC
Biener, MM
Biener, J
Zugic, B
Kaxiras, E
AF Falcucci, Giacomo
Succi, Sauro
Montessori, Andrea
Melchionna, Simone
Prestininzi, Pietro
Barroo, Cedric
Bell, David C.
Biener, Monika M.
Biener, Juergen
Zugic, Branko
Kaxiras, Efthimios
TI Mapping reactive flow patterns in monolithic nanoporous catalysts
SO MICROFLUIDICS AND NANOFLUIDICS
LA English
DT Article
DE Catalysis; Nanomaterials; Nanoporous gold; Lattice Boltzmann method
ID LATTICE BOLTZMANN SIMULATION; GOLD CATALYSTS; COMPLEX FLOWS; MODEL;
HYDRODYNAMICS; OXIDATION; ALCOHOLS; EQUATION; FLUIDS; AU
AB The development of high-efficiency porous catalyst membranes critically depends on our understanding of where the majority of the chemical conversions occur within the porous structure. This requires mapping of chemical reactions and mass transport inside the complex nanoscale architecture of porous catalyst membranes which is a multiscale problem in both the temporal and spatial domains. To address this problem, we developed a multiscale mass transport computational framework based on the lattice Boltzmann method that allows us to account for catalytic reactions at the gas-solid interface by introducing a new boundary condition. In good agreement with experiments, the simulations reveal that most catalytic reactions occur near the gas-flow facing side of the catalyst membrane if chemical reactions are fast compared to mass transport within the porous catalyst membrane.
C1 [Falcucci, Giacomo] Univ Roma Tor Vergata, Dept Enterprise Engn Mario Lucertini, Via Politecn 1, I-00100 Rome, Italy.
[Falcucci, Giacomo; Succi, Sauro; Barroo, Cedric; Bell, David C.; Kaxiras, Efthimios] Harvard Univ, John A Paulson Sch Engn & Appl Sci, 29 Oxford St, Cambridge, MA 02138 USA.
[Succi, Sauro] CNR, Ist Applicaz Calcolo, Via Taurini 19, I-00159 Rome, Italy.
[Montessori, Andrea; Prestininzi, Pietro] Univ Rome Roma Tre, Dept Engn, Via Vasca Navale 79, I-00141 Rome, Italy.
[Melchionna, Simone] CNR, ISC, Via Taurini 19, I-00185 Rome, Italy.
[Melchionna, Simone] Univ Roma La Sapienza, Dipt Phys, Ple A Moro 2, I-00185 Rome, Italy.
[Bell, David C.] Ctr Nanoscale Syst, 11 Oxford St, Cambridge, MA 02138 USA.
[Biener, Monika M.; Biener, Juergen] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
[Zugic, Branko] Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA.
[Kaxiras, Efthimios] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA.
RP Falcucci, G (reprint author), Univ Roma Tor Vergata, Dept Enterprise Engn Mario Lucertini, Via Politecn 1, I-00100 Rome, Italy.; Falcucci, G (reprint author), Harvard Univ, John A Paulson Sch Engn & Appl Sci, 29 Oxford St, Cambridge, MA 02138 USA.
EM giacomo.falcucci@uniroma2.it
OI Falcucci, Giacomo/0000-0001-6446-4697; Barroo,
Cedric/0000-0002-3085-4934
FU Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC)
Energy Frontier Research Center (EFRC) of the Department of Energy,
Basic Energy Sciences [DE-SC0012573]; U.S. Department of Energy by LLNL
[DE-AC52-07NA27344]; Belgian American Educational Foundation (BAEF);
Wallonie-Bruxelles International (Excellence Grant WBI. WORLD)
foundations
FX This work is supported by the Integrated Mesoscale Architectures for
Sustainable Catalysis (IMASC) Energy Frontier Research Center (EFRC) of
the Department of Energy, Basic Energy Sciences, Award DE-SC0012573.
Work at LLNL was performed under the auspices of the U.S. Department of
Energy by LLNL under Contract DE-AC52-07NA27344. We thank the Research
Computing group of the Faculty of Arts and Sciences, Harvard University,
for computational resources and support. We thank Prof. Elio Jannelli,
G. Di Staso and members of the IMASC EFRC, C. M. Friend, R. J. Madix, M.
Flytzani-Stephanopoulos, for many valuable discussions. C. B.
acknowledges postdoctoral fellowships through the Belgian American
Educational Foundation (BAEF) as well as Wallonie-Bruxelles
International (Excellence Grant WBI. WORLD) foundations.
NR 47
TC 2
Z9 2
U1 8
U2 12
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1613-4982
EI 1613-4990
J9 MICROFLUID NANOFLUID
JI Microfluid. Nanofluid.
PD JUL
PY 2016
VL 20
IS 7
AR 105
DI 10.1007/s10404-016-1767-5
PG 13
WC Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics,
Fluids & Plasmas
SC Science & Technology - Other Topics; Instruments & Instrumentation;
Physics
GA DQ8ZJ
UT WOS:000379499900011
ER
PT J
AU Tran, IC
Tunuguntla, RH
Kim, K
Lee, JRI
Willey, TM
Weiss, TM
Noy, A
van Buuren, T
AF Tran, Ich C.
Tunuguntla, Ramya H.
Kim, Kyunghoon
Lee, Jonathan R. I.
Willey, Trevor M.
Weiss, Thomas M.
Noy, Aleksandr
van Buuren, Tony
TI Structure of Carbon Nanotube Porins in Lipid Bilayers: An in Situ
Small-Angle X-ray Scattering (SAXS) Study
SO NANO LETTERS
LA English
DT Article
DE Phospholipid; small-angle X-ray scattering (SAXS); carbon nanotube;
porins
ID NEUTRON-SCATTERING; DRUG-DELIVERY; PHOSPHOLIPID-BILAYERS; SPONTANEOUS
INSERTION; GENE DELIVERY; PLASMID DNA; MEMBRANES; SURFACTANTS; CELLS;
WATER
AB Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. In order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers. Our results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs.
C1 [Tran, Ich C.; Tunuguntla, Ramya H.; Kim, Kyunghoon; Lee, Jonathan R. I.; Willey, Trevor M.; Weiss, Thomas M.; van Buuren, Tony] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Weiss, Thomas M.] SLAC Natl Accelerator Ctr, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Tran, Ich C.] Univ Calif Irvine, Irvine Mat Res Inst, Irvine, CA 92697 USA.
[Kim, Kyunghoon] Sungkyunkwan Univ, Sch Mech Engn, Seoul, South Korea.
RP van Buuren, T (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
EM vanbuuren1@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering [SCW0972]; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-76SF00515]; DOE Office of Biological and Environmental
Research; National Institutes of Health, National Institute of General
Medical Sciences [P41GM103393]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. This work was supported by the U.S. Department of
Energy, Office of Basic Energy Sciences, Division of Materials Sciences
and Engineering under award SCW0972. Use of the Stanford Synchrotron
Radiation Lightsource, SLAC National Accelerator Laboratory, is
supported by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The SSRL
Structural Molecular Biology Program is supported by the DOE Office of
Biological and Environmental Research, and by the National Institutes of
Health, National Institute of General Medical Sciences (including
P41GM103393). The contents of this publication are solely the
responsibility of the authors and do not necessarily represent the
official views of NIGMS or NIH. The authors thank Georg Pabst,
University of Graz, Graz, Austria, for providing GAP code to analyze
SAXS data.
NR 67
TC 2
Z9 2
U1 17
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2016
VL 16
IS 7
BP 4019
EP 4024
DI 10.1021/acs.nanolett.6b00466
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DR3HL
UT WOS:000379794200009
PM 27322135
ER
PT J
AU Kiriya, D
Lobaccaro, P
Nyein, HYY
Taheri, P
Hettick, M
Shiraki, H
Sutter-Fella, CM
Zhao, PD
Gao, W
Maboudian, R
Ager, JW
Javey, A
AF Kiriya, Daisuke
Lobaccaro, Peter
Nyein, Hnin Yin Yin
Taheri, Peyman
Hettick, Mark
Shiraki, Hiroshi
Sutter-Fella, Carolin M.
Zhao, Peida
Gao, Wei
Maboudian, Roya
Ager, Joel W.
Javey, Ali
TI General Thermal Texturization Process of MoS2 for Efficient
Electrocatalytic Hydrogen Evolution Reaction
SO NANO LETTERS
LA English
DT Article
DE MoS2; edge site; hydrogen evolution reaction; thermal texturization;
hydrogen thermal processing
ID ACTIVE EDGE SITES; NANOSHEETS; CATALYST; WS2; PERFORMANCE; TRANSITION;
CHALLENGES; GRAPHENE; PLANET
AB Molybdenum disulfide (MoS2) has been widely examined as a catalyst containing no precious metals for the hydrogen evolution reaction (HER); however, these examinations have utilized synthesized MoS2 because the pristine MoS2 mineral is known to be a poor catalyst. The fundamental challenge with pristine MoS2 is the inert HER activity of the predominant (0001) basal surface plane. In order to achieve high HER performance with pristine MoS2, it is essential to activate the basal plane. Here, we report a general thermal process in which the basal plane is texturized to increase the density of HER-active edge sites. This texturization is achieved through a simple thermal annealing procedure in a hydrogen environment, removing sulfur from the MoS2 surface to form edge sites. As a result, the process generates high HER catalytic performance in pristine MoS2 across various morphologies such as the bulk mineral, films composed of micron-scale flakes, and even films of a commercially available spray of nanoflake MoS2. The lowest overpotential (eta) observed for these samples was eta = 170 mV to obtain 10 mA/cm(2) of HER current density.
C1 [Kiriya, Daisuke; Nyein, Hnin Yin Yin; Taheri, Peyman; Hettick, Mark; Shiraki, Hiroshi; Sutter-Fella, Carolin M.; Zhao, Peida; Gao, Wei; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
[Lobaccaro, Peter; Maboudian, Roya] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Kiriya, Daisuke; Nyein, Hnin Yin Yin; Hettick, Mark; Shiraki, Hiroshi; Sutter-Fella, Carolin M.; Zhao, Peida; Gao, Wei; Ager, Joel W.; Javey, Ali] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Kiriya, Daisuke; Lobaccaro, Peter; Nyein, Hnin Yin Yin; Taheri, Peyman; Hettick, Mark; Shiraki, Hiroshi; Sutter-Fella, Carolin M.; Zhao, Peida; Gao, Wei; Maboudian, Roya; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA.
[Lobaccaro, Peter; Hettick, Mark; Ager, Joel W.] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA.
RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.; Javey, A (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Javey, A (reprint author), Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA.
EM ajavey@berkeley.edu
RI Gao, Wei/A-1347-2011;
OI Gao, Wei/0000-0002-8503-4562; Sutter-Fella, Carolin/0000-0002-7769-0869
FU Office of Science of the U.S. Department of Energy [DE-SC0004993];
Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division, of the U.S. Department of Energy
[DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences,
of the U.S. Department of Energy [DE-AC02-05CH11231]
FX XPS, SEM, XRD, and the final electrochemical characterization work was
performed in collaboration with the Joint Center for Artificial
Photosynthesis (JCAP), a DOE Energy Innovation Hub, supported through
the Office of Science of the U.S. Department of Energy under Award
Number DE-SC0004993. Processing and initial electrochemical
characterization were performed in the Electronic Materials Program,
which is supported by Director, Office of Science, Office of Basic
Energy Sciences, Materials Sciences and Engineering Division, of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231. TEM work
was performed in collaboration with Mary Scott at the Molecular Foundry,
which is supported by the Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 29
TC 5
Z9 5
U1 45
U2 96
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2016
VL 16
IS 7
BP 4047
EP 4053
DI 10.1021/acs.nanolett.6b00569
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DR3HL
UT WOS:000379794200013
PM 27322506
ER
PT J
AU Lee, J
Lee, W
Lim, J
Yu, Y
Kong, Q
Urban, JJ
Yang, PD
AF Lee, Jaeho
Lee, Woochul
Lim, Jongwoo
Yu, Yi
Kong, Qiao
Urban, Jeffrey J.
Yang, Peidong
TI Thermal Transport in Silicon Nanowires at High Temperature up to 700 K
SO NANO LETTERS
LA English
DT Article
DE Thermal conductivity; thermoelectric; phonon transport; single nanowire;
nanomaterial; ZT
ID THERMOELECTRIC PROPERTIES; PHONON TRANSPORT; HOLEY SILICON;
CONDUCTIVITY; SI; SCATTERING
AB Thermal transport in silicon nanowires has captured the attention of scientists for understanding phonon transport at the nanoscale, and the thermoelectric figure-of-merit (ZT) reported in rough nanowires has inspired engineers to develop cost-effective waste heat recovery systems. Thermoelectric generators composed of silicon target high-temperature applications due to improved efficiency beyond 550 K. However, there have been no studies of thermal transport in silicon nanowires beyond room temperature. High-temperature measurements also enable studies of unanswered questions regarding the impact of surface boundaries and varying mode contributions as the highest vibrational modes are activated (Debye temperature of silicon is 645 K). Here, we develop a technique to investigate thermal transport in nanowires up to 700 K. Our thermal conductivity measurements on smooth silicon nanowires show the classical diameter dependence from 40 to 120 nm. In conjunction with Boltzmann transport equation, we also probe an increasing contribution of high-frequency phonons (optical phonons) in smooth silicon nanowires as the diameter decreases and the temperature increases. Thermal conductivity of rough silicon nanowires is significantly reduced throughout the temperature range, demonstrating a potential for efficient thermoelectric generation (e.g., ZT = 1 at 700 K).
C1 [Lee, Jaeho; Lim, Jongwoo; Yu, Yi; Kong, Qiao; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Lee, Woochul; Urban, Jeffrey J.] Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA.
[Lee, Jaeho; Lim, Jongwoo; Yang, Peidong] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Yang, Peidong] Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA.
[Lee, Jaeho] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA.
RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Urban, JJ (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA.
EM jjurban@lbl.gov; p_yang@berkeley.edu
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX We thank Dr. Kedar Hippalgaonkar for help with thermal device
fabrication and thank Dr. Sean Andrews and Dr. Anthony Fu for fruitful
discussion. Work at the Molecular Foundry was supported by Office of
Science, Office of Basic Energy Sciences, Materials Sciences and
Engineering Division, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.
NR 42
TC 2
Z9 2
U1 27
U2 45
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2016
VL 16
IS 7
BP 4133
EP 4140
DI 10.1021/acs.nanolett.6b00956
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DR3HL
UT WOS:000379794200025
PM 27243378
ER
PT J
AU Phatak, C
Heinonen, O
De Graef, M
Petford-Long, A
AF Phatak, Charudatta
Heinonen, Olle
De Graef, Marc
Petford-Long, Amanda
TI Nanoscale Skyrmions in a Nonchiral Metallic Multiferroic: Ni2MnGa
SO NANO LETTERS
LA English
DT Article
DE Skyrmions; multiferroic material; Lorentz transmission electron
microscopy
ID MAGNETIC SKYRMIONS; TOPOLOGICAL INSULATORS; CHIRAL MAGNET; DYNAMICS;
CRYSTAL; LATTICE; MOTION
AB Magnetic skyrmions belong to a set of topologically nontrivial spin textures at the nanoscale that have received increased attention due to their emergent behavior and novel potential spintronic applications. Discovering materials systems that can host skyrmions at room temperature in the absence of external magnetic field is of crucial importance not only from a fundamental aspect, but also from a technological point of view. So far, the observations of skyrmions in bulk metallic ferromagnets have been limited to low temperatures and to materials that exhibit strong chiral interactions. Here we show the formation of nanoscale skyrmions in a nonchiral multiferroic material, which is ferromagnetic and ferroelastic, Ni2MnGa at room temperature without the presence of external magnetic fields. By using Lorentz transmission electron microscopy in combination with micromagnetic simulations, we elucidate their formation, behavior, and stability under applied magnetic fields at room temperature. The formation of skyrmions in a multiferroic material with no broken inversion symmetry presents new exciting opportunities for the exploration of the fundamental physics of topologically nontrivial spin textures.
C1 [Phatak, Charudatta; Heinonen, Olle; Petford-Long, Amanda] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
[De Graef, Marc] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA.
[Petford-Long, Amanda] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
RP Phatak, C (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM cd@anl.gov
FU U.S. Department of Energy (DOE), Office of Science, Basic Energy
Sciences, Materials Sciences and Engineering Division; U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-
06CH11357]; National Science Foundation [DMR-1306296]
FX Work by C.P., A.P.-L., and O.H. was supported by the U.S. Department of
Energy (DOE), Office of Science, Basic Energy Sciences, Materials
Sciences and Engineering Division. Use of the Center for Nanoscale
Materials, an Office of Science user facility, was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02- 06CH11357. M.DG. would like to
acknowledge support from the National Science Foundation, Grant No.
DMR-1306296. We gratefully acknowledge the computing resources provided
on Blues and Fusion, high-performance computing clusters operated by the
Laboratory Computing Resource Center at Argonne National Laboratory.
NR 35
TC 1
Z9 1
U1 18
U2 31
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2016
VL 16
IS 7
BP 4141
EP 4148
DI 10.1021/acs.nanolett.6b01011
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DR3HL
UT WOS:000379794200026
PM 27186990
ER
PT J
AU Hobbs, RG
Manfrinato, VR
Yang, YJ
Goodman, SA
Zhang, LH
Stach, EA
Berggren, KK
AF Hobbs, Richard G.
Manfrinato, Vitor R.
Yang, Yujia
Goodman, Sarah A.
Zhang, Lihua
Stach, Eric A.
Berggren, Karl K.
TI High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm
Aluminum Nanostructures
SO NANO LETTERS
LA English
DT Article
DE Volume plasmon; aluminum; nanodisk EELS; UV plasmonics; lithography
ID ELECTRON-BEAM LITHOGRAPHY; METAL NANOSTRUCTURES; RESOLUTION LIMITS;
RESONANCE RAMAN; NANOWIRE DIMERS; NANOPARTICLES; MODES; NANOCLUSTERS;
NANOCRYSTALS; SPECTROSCOPY
AB In this work, we use electron energy-loss spectroscopy to map the complete plasmonic spectrum of aluminum nanodisks with diameters ranging from 3 to 120 nm fabricated by high-resolution electron-beam lithography. Our nanopatterning approach allows us to produce localized surface plasmon resonances across a wide spectral range spanning 2-8 eV. Electromagnetic simulations using the finite element method support the existence of dipolar, quadrupolar, and hexapolar surface plasmon modes as well as centrosymmetric breathing modes depending on the location of the electron beam excitation. In addition, we have developed an approach using nanolithography that is capable of meV control over the energy and attosecond control over the lifetime of volume plasmons in these nanodisks. The precise measurement of volume plasmon lifetime may also provide an opportunity to probe and control the DC electrical conductivity of highly confined metallic nanostructures. Lastly, we show the strong influence of the nanodisk boundary in determining both the energy and lifetime of surface plasmons and volume plasmons locally across individual aluminum nanodisks, and we have compared these observations to similar effects produced by scaling the nanodisk diameter.
C1 [Hobbs, Richard G.; Manfrinato, Vitor R.; Yang, Yujia; Goodman, Sarah A.; Berggren, Karl K.] MIT, Elect Res Lab, Cambridge, MA 02139 USA.
[Zhang, Lihua; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Berggren, KK (reprint author), MIT, Elect Res Lab, Cambridge, MA 02139 USA.
EM berggren@mit.edu
RI Stach, Eric/D-8545-2011
OI Stach, Eric/0000-0002-3366-2153
FU U.S. DOE Office of Science Facility, at Brookhaven National Laboratory
[DE-SC0012704]; Gordon and Betty Moore Foundation; Department of Defense
(DoD) through the National Defense Science & Engineering Graduate
Fellowship (NDSEG) Program; Center for Excitonics, an Energy Frontier
Research Center - U.S. Department of Energy, Office of Science, Office
of Basic Energy Sciences [DE-SC0001088]
FX This research used the Hitachi HD2700C STEM at the Center for Functional
Nanomaterials, which is a U.S. DOE Office of Science Facility, at
Brookhaven National Laboratory under Contract No. DE-SC0012704. R.G.H.,
V.R.M., Y.Y., and K.K.B. would like to also acknowledge support from the
Gordon and Betty Moore Foundation. S.A.G. was supported by the
Department of Defense (DoD) through the National Defense Science &
Engineering Graduate Fellowship (NDSEG) Program. This work was supported
as part of the Center for Excitonics, an Energy Frontier Research Center
funded by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, under Award Number DE-SC0001088. We thank James
Daley and Mark Mondol for assistance and advice related to nanodisk
fabrication. We also would like to thank Prof. Philip Batson for helpful
discussions and assistance with measurements at Rutgers University.
NR 68
TC 4
Z9 4
U1 18
U2 54
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2016
VL 16
IS 7
BP 4149
EP 4157
DI 10.1021/acs.nanolett.6b01012
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DR3HL
UT WOS:000379794200027
PM 27295061
ER
PT J
AU Shen, YD
Chen, RJ
Yu, XC
Wang, QJ
Jungjohann, KL
Dayeh, SA
Wu, T
AF Shen, Youde
Chen, Renjie
Yu, Xuechao
Wang, Qijie
Jungjohann, Katherine L.
Dayeh, Shadi A.
Wu, Tom
TI Gibbs-Thomson Effect in Planar Nanowires: Orientation and Doping
Modulated Growth
SO NANO LETTERS
LA English
DT Article
DE nanowire; In2O3; ITO; Gibbs-Thomson effect; vapor-liquid-solid
mechanism; surface energy
ID INDIUM-TIN-OXIDE; MOLECULAR-BEAM EPITAXY; LIQUID-SOLID GROWTH;
SEMICONDUCTOR NANOWIRES; GUIDED GROWTH; VLS GROWTH; TRANSPARENT;
NANOSTRUCTURES; ELECTRONICS; ARRAYS
AB Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic super saturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy dependent growth model within the Gibbs Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.
C1 [Shen, Youde] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore.
[Chen, Renjie; Dayeh, Shadi A.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA.
[Yu, Xuechao; Wang, Qijie] Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore.
[Jungjohann, Katherine L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA.
[Wu, Tom] King Abdullah Univ Sci & Technol KAUST, Mat Sci & Engn, Thuwal 23955, Saudi Arabia.
RP Dayeh, SA (reprint author), Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA.; Wu, T (reprint author), King Abdullah Univ Sci & Technol KAUST, Mat Sci & Engn, Thuwal 23955, Saudi Arabia.
EM sdayeh@ece.ucsd.edu; Tao.Wu@kaust.edu.sa
RI Wang, Qi Jie/E-6987-2010; Wu, Tom/A-1158-2012; Chen, Renjie/B-5639-2017
OI Wu, Tom/0000-0003-0845-4827; Chen, Renjie/0000-0002-3145-6882
FU U.S. Department of Energy, Office of Basic Energy Sciences User Facility
at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National
Laboratories [DE-AC04-94AL85000]; NSF [ECCS-1351980, DMR-1503595]
FX The FIB preparations, AFM and TEM characterizations in this work were
performed at the Center for Integrated Nanotechnologies (CINT), a U.S.
Department of Energy, Office of Basic Energy Sciences User Facility at
Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia
National Laboratories (Contract DE-AC04-94AL85000). S.A.D. acknowledges
support of an NSF CAREER Award under ECCS-1351980 and an NSF DMR-1503595
award.
NR 60
TC 0
Z9 0
U1 12
U2 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2016
VL 16
IS 7
BP 4158
EP 4165
DI 10.1021/acs.nanolett.6b01037
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DR3HL
UT WOS:000379794200028
PM 27254592
ER
PT J
AU Zhang, BM
Wu, LJ
Yin, WG
Sun, CJ
Yang, P
Venkatesan, T
Chen, JS
Zhu, YM
Chow, GM
AF Zhang, Bangmin
Wu, Lijun
Yin, Wei-Guo
Sun, Cheng-Jun
Yang, Ping
Venkatesan, T.
Chen, Jingsheng
Zhu, Yimei
Chow, Gan Moog
TI Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite
Film
SO NANO LETTERS
LA English
DT Article
DE Interfacial coupling; perovskite; STEM; ferromagnetic insulator phase;
thickness dependence
ID THIN-FILMS; PEROVSKITES; TRANSITION; LA1-XSRXMNO3; RESISTIVITY
AB Interfaces with subtle differences in atomic and electronic structures in perovskite ABO(3) heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 film on SrTiO3 substrate. The variations in the out-of-plane lattice constant and BO6 octahedral rotation across the Pr0.67Sr0.33MnO3/SrTiO3 interface strongly depend on the thickness of the Pr0.67Sr0.33MnO3 film. In the 12 rim film, a new interface-sensitive ferromagnetic polaronic insulator (FI') phase is formed during the cubic-to-tetragonal phase transition of SrTiO3, apparently due to the enhanced electron-phonon interaction and atomic disorder in the film. The transport properties of the FI' phase in the 30 nm film are masked because of the reduced interfacial coupling and smaller interface-to-volume ratio. This work demonstrates how thickness dependent interfacial coupling leads to the formation of a theoretically predicted ferromagnetic polaronic insulator, as illustrated in a new phase diagram, that is otherwise ferromagnetic metal (FM) in bulk form.
C1 [Zhang, Bangmin; Chen, Jingsheng; Chow, Gan Moog] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117576, Singapore.
[Wu, Lijun; Yin, Wei-Guo; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA.
[Sun, Cheng-Jun] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Yang, Ping] Natl Univ Singapore, Singapore Synchrotron Light Source SSLS, 5 Res Link, Singapore 117603, Singapore.
[Venkatesan, T.] Natl Univ Singapore, NUSNNI Nanocore, Singapore 117411, Singapore.
[Venkatesan, T.] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore.
[Venkatesan, T.] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore.
RP Chow, GM (reprint author), Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117576, Singapore.; Zhu, YM (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA.
EM zhu@bnl.gov; msecgm@nus.edu.sg
RI Yin, Weiguo/A-9671-2014
OI Yin, Weiguo/0000-0002-4965-5329
FU Singapore National Research Foundation under CRP Award
[NRF-CRP10-2012-02]; Singapore Ministry of Education [MOE2015-T2-1-016];
U.S. Department of Energy, Office of Basic Energy Science, Division of
Materials Science and Engineering [DESC0012704]; SSLS via NUS Core
Support [C-380-003-003-001]; US Department of Energy - Basic Energy
Sciences; Canadian Light Source; University of Washington; Advanced
Photon Source; U.S. DOE [DE-AC02-06CH11357]
FX The research is supported by the Singapore National Research Foundation
under CRP Award No. NRF-CRP10-2012-02 and the Singapore Ministry of
Education Academic Research Fund Tier 2 under the Project No.
MOE2015-T2-1-016. Work at Brookhaven National Laboratory was supported
by the U.S. Department of Energy, Office of Basic Energy Science,
Division of Materials Science and Engineering, under Contract No.
DESC0012704. P.Y. is supported from SSLS via NUS Core Support
C-380-003-003-001. Sector 20 facilities at the Advanced Photon Source,
and research at these facilities, are supported by the US Department of
Energy - Basic Energy Sciences, the Canadian Light Source and its
funding partners, the University of Washington, and the Advanced Photon
Source. Use of the Advanced Photon Source, an Office of Science User
Facility operated for the U.S. Department of Energy (DOE) Office of
Science by Argonne National Laboratory, was supported by the U.S. DOE
under Contract No. DE-AC02-06CH11357.
NR 43
TC 1
Z9 1
U1 11
U2 21
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2016
VL 16
IS 7
BP 4174
EP 4180
DI 10.1021/acs.nanolett.6b01056
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DR3HL
UT WOS:000379794200030
PM 27276032
ER
PT J
AU Li, B
Liu, J
Nie, Z
Wang, W
Reed, D
Liu, J
McGrail, P
Sprenkle, V
AF Li, Bin
Liu, Jian
Nie, Zimin
Wang, Wei
Reed, David
Liu, Jun
McGrail, Pete
Sprenkle, Vincent
TI Metal Organic Frameworks as Highly Active Electrocatalysts for
High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries
SO NANO LETTERS
LA English
DT Article
DE Energy storage; redox flow battery; catalysts; metal-organic frameworks;
polyiodide
ID SENSITIZED SOLAR-CELLS; STORAGE; STABILITY; PROGRESS; ZR
AB The new aqueous zinc-polyiodide redox flow battery (RFB) system with highly soluble active materials as well as ambipolar and bifunctional designs demonstrated significantly enhanced energy density, which shows great potential to reduce RFB cost. However, the poor kinetic reversibility and electrochemical activity of the redox reaction of I-3(-)/I- couples on graphite felts (GFs) electrode can result in low energy efficiency. Two nanoporous metal-organic frameworks (MOFs), MIL-125-NH2 and UiO-66-CH3, that have high surface areas when introduced to GF surfaces accelerated the I-3(-)/I- redox reaction. The flow cell with MOF-modified GFs serving as a positive electrode showed higher energy efficiency than the pristine GFs; increases of about 6.4% and 2.7% occurred at the current density of 30 mA/cm(2) for MIL-125-NH2 and UiO-66-CH3, respectively. Moreover, UiO-66-CH3 is more promising due to its excellent chemical stability in the weakly acidic electrolyte. This letter highlights a way for MOFs to be used in the field of RFBs.
C1 [Li, Bin; Liu, Jian; Nie, Zimin; Wang, Wei; Reed, David; Liu, Jun; McGrail, Pete; Sprenkle, Vincent] Pacific Northwest Natl Lab, POB 999, Richland, WA 99352 USA.
RP Li, B; Liu, J (reprint author), Pacific Northwest Natl Lab, POB 999, Richland, WA 99352 USA.
EM bin.li@pnnl.gov; jian.liu@pnnl.gov
RI Wang, Wei/F-4196-2010; Liu, Jian/D-3393-2009
OI Wang, Wei/0000-0002-5453-4695; Liu, Jian/0000-0001-5329-7408
FU U.S. Department of Energy's (DOE) Office of Electricity Delivery and
Energy Reliability (OE) [57558]; DOE [DE-AC05-76RL01830]
FX The authors would like to acknowledge financial support from the U.S.
Department of Energy's (DOE) Office of Electricity Delivery and Energy
Reliability (OE) (under Contract No. 57558). We also are grateful for
insightful discussions with Dr. Imre Gyuk of the DOE-OE Grid Storage
Program. Pacific Northwest National Laboratory is a multiprogram
national laboratory operated by Battelle for DOE under Contract
DE-AC05-76RL01830.
NR 31
TC 2
Z9 2
U1 70
U2 145
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2016
VL 16
IS 7
BP 4335
EP 4340
DI 10.1021/acs.nanolett.6b01426
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DR3HL
UT WOS:000379794200053
PM 27267589
ER
PT J
AU Sutter, E
Huang, Y
Komsa, HP
Ghorbani-Asl, M
Krasheninnikov, AV
Sutter, P
AF Sutter, E.
Huang, Y.
Komsa, H. -P.
Ghorbani-Asl, M.
Krasheninnikov, A. V.
Sutter, P.
TI Electron-Beam Induced Transformations of Layered Tin Dichalcogenides
SO NANO LETTERS
LA English
DT Article
DE two-dimensional materials; defects; electron irradiation; structural
transformation; sulfide; selenide
ID STRUCTURAL PHASE-TRANSITION; LITHIUM-ION BATTERIES;
MOLYBDENUM-DISULFIDE; ATOMIC MECHANISM; THIN-FILMS; MOS2; MONOLAYER;
SNS2; INTERCALATION; PERFORMANCE
AB By combining high-resolution transmission electron microscopy and associated analytical methods with first-principles calculations, we study the behavior of layered tin dichalcogenides under electron beam irradiation. We demonstrate that the controllable removal of chalcogen atoms due to electron irradiation, at both room and elevated temperatures, gives rise to transformations in the atomic structure of Sn-S and Sn-Se systems so that new phases with different properties can be induced. In particular, rhombohedral layered SnS2 and SnSe2 can be transformed via electron beam induced loss of chalcogen atoms into highly anisotropic orthorhombic layered SnS and SnSe. A striking dependence of the layer orientation of the resulting SnS parallel to the layers of ultrathin SnS2 starting material, but slanted for transformations of thicker few-layer SnS2 is rationalized by a transformation pathway in which vacancies group into ordered S-vacancy lines, which convert via a Sn2S3 intermediate to SnS. Absence of a stable Sn2Se3 intermediate precludes this pathway for the selenides, hence SnSe2 always transforms into basal plane oriented SnSe. Our results provide microscopic insights into the transformation mechanism and show how irradiation can be used to tune the properties of layered tin chalcogenides for applications in electronics, catalysis, or energy storage.
C1 [Sutter, E.] Univ Nebraska Lincoln, Dept Mech & Mat Engn, Lincoln, NE 68588 USA.
[Huang, Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Komsa, H. -P.; Krasheninnikov, A. V.] Aalto Univ, Dept Appl Phys, POB 11100, FI-00076 Aalto, Finland.
[Ghorbani-Asl, M.] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany.
[Sutter, P.] Univ Nebraska Lincoln, Dept Elect & Comp Engn, Lincoln, NE 68588 USA.
RP Sutter, E (reprint author), Univ Nebraska Lincoln, Dept Mech & Mat Engn, Lincoln, NE 68588 USA.; Sutter, P (reprint author), Univ Nebraska Lincoln, Dept Elect & Comp Engn, Lincoln, NE 68588 USA.
EM esutter@unl.edu; psutter@unl.edu
RI Krasheninnikov, Arkady/L-3866-2016; Ghorbani-Asl, Mahdi/A-4951-2013
OI Krasheninnikov, Arkady/0000-0003-0074-7588; Ghorbani-Asl,
Mahdi/0000-0003-3060-4369
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering; U.S. Army RDECOM [W911NF-15-1-0606];
Academy of Finland [263416, 286279]; Centres of Excellence Programme
[251748]; [DE-SC0012704]
FX This research used resources of the Center for Functional Nanomaterials,
which is a U.S. DOE Office of Science Facility at Brookhaven National
Laboratory under Contract No. DE-SC0012704. P.S. and E.S. acknowledge
support by the U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering. A.V.K and
H.P.K. acknowledge support from the U.S. Army RDECOM via contract No.
W911NF-15-1-0606, Academy of Finland through Project Nos. 263416 and
286279, and Centres of Excellence Programme (2012-2017) under Project
No. 251748. We also thank CSC-IT Center for Science Ltd. and Aalto
Science-IT project for generous grants of computer time.
NR 48
TC 2
Z9 2
U1 76
U2 135
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2016
VL 16
IS 7
BP 4410
EP 4416
DI 10.1021/acs.nanolett.6b01541
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DR3HL
UT WOS:000379794200064
PM 27336595
ER
PT J
AU Huang, WK
Zhang, KW
Yang, CL
Ding, HF
Wan, XG
Li, SC
Evans, JW
Han, Y
AF Huang, Wen-Kai
Zhang, Kai-Wen
Yang, Chao-Long
Ding, Haifeng
Wan, Xiangang
Li, Shao-Chun
Evans, James W.
Han, Yong
TI Tailoring Kinetics on a Topological Insulator Surface by Defect-Induced
Strain: Pb Mobility on Bi2Te3
SO NANO LETTERS
LA English
DT Article
DE Surface strain; topological insulator surface; surface adsorption and
diffusion; heteroepitaxial film growth; density functional theory
calculations; kinetic Monte Carlo simulations
ID SINGLE DIRAC CONE; FILM GROWTH; THIN-FILMS; SUPERCONDUCTIVITY;
DIFFUSION; BI2SE3; STRESS; STATES; 3D
AB Heteroepitaxial structures based on Bi2Te3-type topological insulators (TIs) exhibit exotic quantum phenomena. For optimal characterization of these phenomena, it is desirable to control the interface structure during film growth on such TIs. In this process, adatom mobility is a key factor. We demonstrate that Pb mobility on the Bi2Te3(111) surface can be modified by the engineering local strain, epsilon, which is induced around the point-like defects intrinsically forming in the Bi2Te3(111) thin film grown on a Si(111)-7 x 7 substrate. Scanning tunneling microscopy observations of Pb adatom and cluster distributions and first-principles density functional theory (DFT) analyses of the adsorption energy and diffusion barrier E-d of Pb adatom on Bi2Te3(111) surface show a significant influence of epsilon. Surprisingly, E-d reveals a cusp-like dependence on epsilon due to a bifurcation in the position of the stable adsorption site at the critical tensile strain epsilon(c) approximate to 0.8%. This constitutes a very different strain-dependence of diffusivity from all previous studies focusing on conventional metal or semiconductor surfaces. Kinetic Monte Carlo simulations of Pb deposition, diffusion, and irreversible aggregation incorporating the DFT results reveal adatom and cluster distributions compatible with our experimental observations.
C1 [Huang, Wen-Kai; Zhang, Kai-Wen; Yang, Chao-Long; Ding, Haifeng; Wan, Xiangang; Li, Shao-Chun] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China.
[Ding, Haifeng; Wan, Xiangang; Li, Shao-Chun] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China.
[Evans, James W.; Han, Yong] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Evans, James W.; Han, Yong] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
RP Li, SC (reprint author), Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China.; Li, SC (reprint author), Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China.; Han, Y (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.; Han, Y (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
EM scli@nju.edu.cn; yong@ameslab.gov
RI Ding, haifeng/B-4221-2010
OI Ding, haifeng/0000-0001-7524-0779
FU State Key Program for Basic Research of China [2014CB921103,
2013CB922103]; National Natural Science Foundation of China [11374140,
11374145]; NSF [CHE-1111500, CHE-1507223]
FX The work at Nanjing University is supported by the State Key Program for
Basic Research of China (Grants No. 2014CB921103, No. 2013CB922103) and
National Natural Science Foundation of China (Grants No. 11374140, No.
11374145). Y.H. and J.W.E. are supported by NSF grants CHE-1111500 and
CHE-1507223 utilizing NERSC, XSEDE, and OLCF resources.
NR 47
TC 0
Z9 0
U1 27
U2 48
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2016
VL 16
IS 7
BP 4454
EP 4461
DI 10.1021/acs.nanolett.6b01604
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DR3HL
UT WOS:000379794200070
PM 27302741
ER
PT J
AU Zhao, H
Yang, Q
Yuca, N
Ling, M
Higa, K
Battaglia, VS
Parkinson, DY
Srinivasan, V
Liu, G
AF Zhao, Hui
Yang, Qing
Yuca, Neslihan
Ling, Min
Higa, Kenneth
Battaglia, Vincent S.
Parkinson, Dilworth Y.
Srinivasan, Venkat
Liu, Gao
TI A Convenient and Versatile Method To Control the Electrode
Microstructure toward High-Energy Lithium-Ion Batteries
SO NANO LETTERS
LA English
DT Article
DE Porosity; high-capacity anode; conductive polymer binder; X-ray
tomography; high loading; lithium-ion battery
ID CONDUCTIVE POLYMER BINDER; PERFORMANCE SILICON ANODES; HIGH-CAPACITY;
DESIGN
AB Control over porous electrode microstructure is critical for the continued improvement of electrochemical performance of lithium ion batteries. 6 This paper describes a convenient and economical method for controlling electrode porosity, thereby enhancing material loading and stabilizing the cycling performance. Sacrificial NaCl is added to a Si-based electrode, which demonstrates an areal capacity of similar to 4 mAh/cm(2) at a C/10 rate (0.51 mA/cm(2)) and an areal capacity of 3 mAh/cm(2) at a C/3 rate (1.7 mA/cm(2)), one of the highest material loadings reported for a Si-based anode at such a high cycling rate. X-ray microtomography confirmed the improved porous architecture of the SiO electrode with NaCl. The method developed here is expected to be compatible with the state-of-the-art lithium ion battery industrial fabrication processes and therefore holds great promise as a practical technique for boosting the electrochemical performance of lithium ion batteries without changing material systems.
C1 [Zhao, Hui; Ling, Min; Higa, Kenneth; Battaglia, Vincent S.; Srinivasan, Venkat; Liu, Gao] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA.
[Yang, Qing; Parkinson, Dilworth Y.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Yuca, Neslihan] Istanbul Tech Univ, Energy Inst, TR-34469 Istanbul, Turkey.
RP Liu, G (reprint author), Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA.
EM gliu@lbl.gov
RI Yang, Qing/C-9775-2017
FU Vehicle Technologies Office of the U.S. Department of Energy (U.S. DOE)
under the Advanced Battery Materials Research (BMR) Program; Vehicle
Technologies Office of the U.S. Department of Energy (U.S. DOE) under
Applied Battery Research (ABR) Program; Office of Science, Office of
Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05
CH11231]; Scientific and Technological Research Council of Turkey
(TUBITAK) in Ankara, Turkey
FX This work was funded by the Assistant Secretary for Energy Efficiency,
Vehicle Technologies Office of the U.S. Department of Energy (U.S. DOE)
under the Advanced Battery Materials Research (BMR) and Applied Battery
Research (ABR) Programs. X-ray tomography measurements and analysis were
performed at Beamline 8.3.2 of the Advanced Light Source (ALS). Nuclear
magnetic resonance spectroscopy (NMR) was performed at the Molecular
Foundry. TEM was performed at the National Center for Electron
Microscopy. All of these projects and facilities are supported by the
Director, Office of Science, Office of Basic Energy Sciences, of the
U.S. Department of Energy, under Contract No. DE-AC02-05 CH11231. N.Y.
expresses thanks for the funding provided by The Scientific and
Technological Research Council of Turkey (TUBITAK) in Ankara, Turkey.
NR 16
TC 0
Z9 0
U1 38
U2 101
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2016
VL 16
IS 7
BP 4686
EP 4690
DI 10.1021/acs.nanolett.6b02156
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DR3HL
UT WOS:000379794200103
PM 27336856
ER
PT J
AU Wurch, L
Giannone, RJ
Belisle, BS
Swift, C
Utturkar, S
Hettich, RL
Reysenbach, AL
Podar, M
AF Wurch, Louie
Giannone, Richard J.
Belisle, Bernard S.
Swift, Carolyn
Utturkar, Sagar
Hettich, Robert L.
Reysenbach, Anna-Louise
Podar, Mircea
TI Genomics-informed isolation and characterization of a symbiotic
Nanoarchaeota system from a terrestrial geothermal environment
SO NATURE COMMUNICATIONS
LA English
DT Article
ID YELLOWSTONE-NATIONAL-PARK; IGNICOCCUS-HOSPITALIS;
THERMOCOCCUS-KODAKARENSIS; CARBOHYDRATE-METABOLISM; PEPTIDE
IDENTIFICATION; MICROBIAL COMMUNITIES; ARCHAEAL EVOLUTION;
HIGH-TEMPERATURE; DOMAIN ARCHAEA; HOT-SPRINGS
AB Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism's physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota ('Nanopusillus acidilobi') and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of 'Nanopusillus' are among the smallest known cellular organisms (100300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea.
C1 [Wurch, Louie; Giannone, Richard J.; Belisle, Bernard S.; Swift, Carolyn; Utturkar, Sagar; Hettich, Robert L.; Podar, Mircea] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Wurch, Louie; Belisle, Bernard S.; Swift, Carolyn; Hettich, Robert L.; Podar, Mircea] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.
[Reysenbach, Anna-Louise] Portland State Univ, Dept Biol, Portland, OR 97207 USA.
[Wurch, Louie] James Madison Univ, Dept Biol, Harrisonburg, VA 22807 USA.
RP Podar, M (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.; Podar, M (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.
EM podarm@ornl.gov
RI Hettich, Robert/N-1458-2016
OI Hettich, Robert/0000-0001-7708-786X
FU National Science Foundation [DEB1134877]; U.S. Department of Energy,
Office of Biological and Environmental Research [DE-SC0006654]; U.S.
Department of Energy [DE-AC05-00OR22725]
FX This research was supported by grants from the National Science
Foundation (DEB1134877) and from the U.S. Department of Energy, Office
of Biological and Environmental Research (DE-SC0006654). Oak Ridge
National Laboratory is managed by UT-Battelle, LLC, for the U.S.
Department of Energy under contract DE-AC05-00OR22725. We thank the
administration of Yellowstone National Park for the permit
YELL-2008-SCI-5714 and Christie Hendrix and Stacey Gunther for
coordinating the sampling activities. We acknowledge the University of
Tennessee Advanced Microscopy and Imaging Center for instrument use,
scientific and technical assistance with scanning electron microscopy.
We acknowledge the Genomics Resource Center of the University of
Maryland Institute for Genome Science for PacBio sequencing and the
Genomics Core at the University of Tennessee Knoxville for Sanger
sequencing. We also thank Steve Allman, Zamin Yang and Dawn Klingeman
for assistance with cell sorting, molecular biology techniques and MiSeq
sequencing.
NR 56
TC 4
Z9 4
U1 3
U2 15
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2041-1723
J9 NAT COMMUN
JI Nat. Commun.
PD JUL
PY 2016
VL 7
AR 12115
DI 10.1038/ncomms12115
PG 10
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DR6YP
UT WOS:000380047500001
PM 27378076
ER
PT J
AU Yao, GR
Zhang, SC
Mahrhold, S
Lam, KH
Stern, D
Bagramyan, K
Perry, K
Kalkum, M
Rummel, A
Dong, M
Jin, RS
AF Yao, Guorui
Zhang, Sicai
Mahrhold, Stefan
Lam, Kwok-ho
Stern, Daniel
Bagramyan, Karine
Perry, Kay
Kalkum, Markus
Rummel, Andreas
Dong, Min
Jin, Rongsheng
TI N-linked glycosylation of SV2 is required for binding and uptake of
botulinum neurotoxin A
SO NATURE STRUCTURAL & MOLECULAR BIOLOGY
LA English
DT Article
ID SYNAPTIC VESICLE PROTEIN; MONOCLONAL-ANTIBODIES; RECEPTOR-BINDING;
STRUCTURAL BASIS; SEROTYPE H; RECOGNITION; ENTRY; SITE; GANGLIOSIDES;
ANCHORAGE
AB Botulinum neurotoxin serotype A1 (BoNT/A1), a licensed drug widely used for medical and cosmetic applications, exerts its action by invading motoneurons. Here we report a 2.0-angstrom-resolution crystal structure of the BoNT/A1 receptor-binding domain in complex with its neuronal receptor, glycosylated human SV2C. We found that the neuronal tropism of BoNT/A1 requires recognition of both the peptide moiety and an N-linked glycan on SV2. This N-glycan-which is conserved in all SV2 isoforms across vertebrates is essential for BoNT/A1 binding to neurons and for its potent neurotoxicity. The glycan-binding interface on SV2 is targeted by a human BoNT/A1-neutralizing antibody currently licensed as an antibotulism drug. Our studies reveal a new paradigm of host-pathogen interactions, in which pathogens exploit conserved host post-translational modifications, thereby achieving highly specific receptor binding while also tolerating genetic changes across multiple isoforms of receptors.
C1 [Yao, Guorui; Lam, Kwok-ho; Jin, Rongsheng] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92717 USA.
[Zhang, Sicai; Dong, Min] Harvard Med Sch, Dept Urol, Boston Childrens Hosp, Boston, MA 02115 USA.
[Zhang, Sicai; Dong, Min] Harvard Med Sch, Dept Microbiol & Immunobiol, Boston, MA 02115 USA.
[Zhang, Sicai; Dong, Min] Harvard Med Sch, Dept Surg, Boston, MA 02115 USA.
[Mahrhold, Stefan; Rummel, Andreas] Hannover Med Sch, Inst Toxikol, Hannover, Germany.
[Stern, Daniel] Ctr Biol Threats & Special Pathogens Biol Toxins, Robert Koch Inst, Berlin, Germany.
[Bagramyan, Karine; Kalkum, Markus] Beckman Res Inst City Hope, Dept Mol Immunol, Duarte, CA USA.
[Perry, Kay] Cornell Univ, Dept Chem & Chem Biol, Argonne Natl Lab, NE CAT, Argonne, IL USA.
RP Jin, RS (reprint author), Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92717 USA.; Dong, M (reprint author), Harvard Med Sch, Dept Urol, Boston Childrens Hosp, Boston, MA 02115 USA.; Dong, M (reprint author), Harvard Med Sch, Dept Microbiol & Immunobiol, Boston, MA 02115 USA.; Dong, M (reprint author), Harvard Med Sch, Dept Surg, Boston, MA 02115 USA.; Rummel, A (reprint author), Hannover Med Sch, Inst Toxikol, Hannover, Germany.
EM rummel.andreas@mh-hannover.de; min.dong@childrens.harvard.edu;
r.jin@uci.edu
OI Stern, Daniel/0000-0001-9057-4283
FU National Institute of Allergy and Infectious Diseases (NIAID)
[R01AI091823, R21AI123920, R01AI096169]; National Institute of
Neurological Disorders and Stroke (NINDS) [R01NS080833];
Bundesministerium fur Bildung and Forschung [FK031A212A, FK031A212B];
National Institute of General Medical Sciences [P41 GM103403]; NIH-ORIP
HEI [S10 RR029205]; US Department of Energy (DOE) Office of Science by
Argonne National Laboratory - US DOE [DE-AC02-06CH11357]
FX This work was partly supported by National Institute of Allergy and
Infectious Diseases (NIAID) grants R01AI091823 and R21AI123920 to R.J.
and R01AI096169 to M.K.; by National Institute of Neurological Disorders
and Stroke (NINDS) grant R01NS080833 to M.D.; and by Bundesministerium
fur Bildung and Forschung grants FK031A212A to A.R. and FK031A212B to
B.G. Dorner (RKI). NE-CAT at the Advanced Photon Source (APS) is
supported by a grant from the National Institute of General Medical
Sciences (P41 GM103403). The Pilatus 6M detector at the 24-ID-C beamline
is funded by a NIH-ORIP HEI grant (S10 RR029205). Use of the APS, an
Office of Science User Facility operated for the US Department of Energy
(DOE) Office of Science by Argonne National Laboratory, was supported by
the US DOE under contract no. DE-AC02-06CH11357. We thank J. Weisemann
for cloning HCHA and N. Krez for dissecting the MPN
hemidiaphragm tissue. We thank E. Chapman (University of
Wisconsin-Madison), E. Johnson (University of Wisconsin-Madison), J.
Marks (University of California, San Francisco), and R. Janz (The
University of Texas Health Science Center at Houston) for generously
providing reagents.
NR 38
TC 8
Z9 8
U1 1
U2 2
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1545-9993
EI 1545-9985
J9 NAT STRUCT MOL BIOL
JI Nat. Struct. Mol. Biol.
PD JUL
PY 2016
VL 23
IS 7
BP 656
EP 662
DI 10.1038/nsmb.3245
PG 7
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA DQ7DX
UT WOS:000379368200007
PM 27294781
ER
PT J
AU Horowitz, S
Salmon, L
Koldewey, P
Ahlstrom, LS
Martin, R
Quan, S
Afonine, PV
van den Bedem, H
Wang, LL
Xu, QP
Trievel, RC
Brooks, CL
Bardwell, JCA
AF Horowitz, Scott
Salmon, Loic
Koldewey, Philipp
Ahlstrom, Logan S.
Martin, Raoul
Quan, Shu
Afonine, Pavel V.
van den Bedem, Henry
Wang, Lili
Xu, Qingping
Trievel, Raymond C.
Brooks, Charles L., III
Bardwell, James C. A.
TI Visualizing chaperone-assisted protein folding
SO NATURE STRUCTURAL & MOLECULAR BIOLOGY
LA English
DT Article
ID CRYSTAL-STRUCTURE; SUBSTRATE RECOGNITION; TRIGGER FACTOR; COMPLEX;
GROEL; SPY; IM7; ASYMMETRY; DYNAMICS; SEARCH
AB Challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone assisted protein folding. Obtaining structural ensembles of chaperone-substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a new structural biology approach based on X-ray crystallography, termed residual electron and anomalous density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the Escherichia coli chaperone Spy, and to capture a series of snapshots depicting the various folding states of Im7 bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded to native-like states and reveals how a substrate can explore its folding landscape while being bound to a chaperone.
C1 [Horowitz, Scott; Salmon, Loic; Koldewey, Philipp; Ahlstrom, Logan S.; Martin, Raoul; Wang, Lili; Bardwell, James C. A.] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA.
[Horowitz, Scott; Salmon, Loic; Koldewey, Philipp; Ahlstrom, Logan S.; Martin, Raoul; Wang, Lili; Bardwell, James C. A.] Howard Hughes Med Inst, Ann Arbor, MI USA.
[Ahlstrom, Logan S.; Brooks, Charles L., III] Univ Michigan, Dept Chem & Biophys Program, Ann Arbor, MI USA.
[Quan, Shu] East China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai Collaborat Innovat Ctr Biomfg, Shanghai, Peoples R China.
[Afonine, Pavel V.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[van den Bedem, Henry] Stanford Univ, SLAC Natl Accelerator Lab, Div Biosci, Stanford, CA USA.
[Xu, Qingping] SLAC Natl Lab, Stanford Synchrotron Radiat Lightsource, Joint Ctr Struct Genom, Menlo Pk, CA USA.
[Trievel, Raymond C.] Univ Michigan, Dept Biol Chem, Ann Arbor, MI USA.
[Martin, Raoul] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA USA.
RP Horowitz, S; Bardwell, JCA (reprint author), Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA.; Horowitz, S; Bardwell, JCA (reprint author), Howard Hughes Med Inst, Ann Arbor, MI USA.
EM horowsah@umich.edu; jbardwel@umich.edu
OI van den Bedem, Henry/0000-0003-2358-841X
FU US DOE [DE-AC02-06CH1135]; Michigan Economic Development Corporation;
Michigan Technology Tri-Corridor [085P1000817]; NRSA National Institutes
of Health (NIH) grant [GM108298]; Boehringer Ingelheim Fonds fellowship;
National Natural Science Foundation of China (NSFC) grant [31400664];
Shanghai Pujiang Program; NIH grant [GM102829, GM107233, 1P01 GM063210];
Phenix Industrial Consortium; US Department of Energy
[DE-AC02-05CH11231]; NSF grant [CHE1506273]; Howard Hughes Medical
Institute Investigator
FX The authors would like to thank J. Smith, D. Akey, U. Jakob, D. Smith,
Z. Wawrzak, and F. Stull for critical comments and suggestions. Use of
the Advanced Photon Source, an Office of Science User Facility operated
for the US Department of Energy (DOE) Office of Science by Argonne
National Laboratory, was supported by the US DOE under contract no.
DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the
Michigan Economic Development Corporation and the Michigan Technology
Tri-Corridor (grant 085P1000817). This work was funded by an NRSA
National Institutes of Health (NIH) grant GM108298 (L.S.A.), a
Boehringer Ingelheim Fonds fellowship (P.K.), a National Natural Science
Foundation of China (NSFC) grant 31400664 (S.Q.), the Shanghai Pujiang
Program (S.Q.), NIH grant GM102829 (J.C.A.B.), NIH grant GM107233
(C.L.B.), NIH grant 1P01 GM063210 (P.V.), the Phenix Industrial
Consortium and the US Department of Energy Contract No.
DE-AC02-05CH11231 (RV.) and NSF grant CHE1506273 (C.L.B.). J.C.A.B. is
supported as a Howard Hughes Medical Institute Investigator.
NR 33
TC 4
Z9 4
U1 13
U2 23
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1545-9993
EI 1545-9985
J9 NAT STRUCT MOL BIOL
JI Nat. Struct. Mol. Biol.
PD JUL
PY 2016
VL 23
IS 7
BP 691
EP 697
DI 10.1038/nsmb.3237
PG 7
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA DQ7DX
UT WOS:000379368200011
PM 27239796
ER
PT J
AU Binks, O
Meir, P
Rowland, L
da Costa, ACL
Vasconcelos, SS
de Oliveira, AAR
Ferreira, L
Christoffersen, B
Nardini, A
Mencuccini, M
AF Binks, Oliver
Meir, Patrick
Rowland, Lucy
Lola da Costa, Antonio Carlos
Silva Vasconcelos, Steel
Antonio Ribeiro de Oliveira, Alex
Ferreira, Leandro
Christoffersen, Bradley
Nardini, Andrea
Mencuccini, Maurizio
TI Plasticity in leaf-level water relations of tropical rainforest trees in
response to experimental drought
SO NEW PHYTOLOGIST
LA English
DT Article
DE Amazon rainforest; experimental drought; leaf anatomy; osmotic
adjustment; plasticity; water relations
ID ABOVEGROUND LIVE BIOMASS; SOIL-MOISTURE DEFICIT; MIXED-EFFECTS MODELS;
TURGOR LOSS POINT; DRY-SEASON; CLIMATE; TRANSPORT; LEAVES; PRESSURE;
HYDRAULICS
AB The tropics are predicted to become warmer and drier, and understanding the sensitivity of tree species to drought is important for characterizing the risk to forests of climate change. This study makes use of a long-term drought experiment in the Amazon rainforest to evaluate the role of leaf-level water relations, leaf anatomy and their plasticity in response to drought in six tree genera.
The variables (osmotic potential at full turgor, turgor loss point, capacitance, elastic modulus, relative water content and saturated water content) were compared between seasons and between plots (control and through-fall exclusion) enabling a comparison between short- and long-term plasticity in traits. Leaf anatomical traits were correlated with water relation parameters to determine whether water relations differed among tissues.
The key findings were: osmotic adjustment occurred in response to the long-term drought treatment; species resistant to drought stress showed less osmotic adjustment than drought-sensitive species; and water relation traits were correlated with tissue properties, especially the thickness of the abaxial epidermis and the spongy mesophyll.
These findings demonstrate that cell-level water relation traits can acclimate to long-term water stress, and highlight the limitations of extrapolating the results of short-term studies to temporal scales associated with climate change.
C1 [Binks, Oliver; Meir, Patrick; Rowland, Lucy; Mencuccini, Maurizio] Univ Edinburgh, Sch GeoSci, Edinburgh EH9 3FE, Midlothian, Scotland.
[Meir, Patrick] Australian Natl Univ, Res Sch Biol, Canberra, ACT 2601, Australia.
[Lola da Costa, Antonio Carlos; Antonio Ribeiro de Oliveira, Alex] Fed Univ Para, Ctr Geosci, BR-66075110 Belem, Para, Brazil.
[Silva Vasconcelos, Steel] EMBRAPA Amazonia Oriental, BR-66095903 Belem, Para, Brazil.
[Ferreira, Leandro] Museu Paraense Emilio Goeldi, BR-66077830 Belem, Para, Brazil.
[Christoffersen, Bradley] Los Alamos Natl Lab, Earth & Environm Sci, Los Alamos, NM 87545 USA.
[Nardini, Andrea] Univ Trieste, Dipartimento Sci Vita, Via L Giorgieri 10, I-34127 Trieste, Italy.
[Mencuccini, Maurizio] CREAF, ICREA, Cerdanyola Del Valles 08193, Spain.
RP Binks, O (reprint author), Univ Edinburgh, Sch GeoSci, Edinburgh EH9 3FE, Midlothian, Scotland.
EM O.Binks@ed.ac.uk
RI Nardini, Andrea/C-6525-2009; Mencuccini, Maurizio/B-9052-2011; Binks,
Oliver/Q-7821-2016
OI Mencuccini, Maurizio/0000-0003-0840-1477; Binks,
Oliver/0000-0002-6291-3644
FU UK Natural Environment Research Council [NE/J011002/1]; ARC
[FT110100457]; EU FP7 Research Consortium 'Amazalert'
FX This work was a product of a UK Natural Environment Research Council PhD
studentship tied to grant NE/J011002/1 to P.M. and M.M. P.M. also
gratefully acknowledges support from ARC FT110100457 and the EU FP7
Research Consortium 'Amazalert'.
NR 59
TC 3
Z9 3
U1 19
U2 49
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0028-646X
EI 1469-8137
J9 NEW PHYTOL
JI New Phytol.
PD JUL
PY 2016
VL 211
IS 2
BP 477
EP 488
DI 10.1111/nph.13927
PG 12
WC Plant Sciences
SC Plant Sciences
GA DQ4ZI
UT WOS:000379213200012
PM 27001030
ER
PT J
AU van Hecke, H
AF van Hecke, H.
CA PHENIX Collaboration
TI Hard Probe Results from PHENIX
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
ID DETECTOR
AB We report on selected recent results from the PHENIX collaboration. For thermal photons, total yields and flow coefficients in root s(NN) = 200 GeV Au+Au collisions are reported. Results from small systems (d+Au and He-3+Au) colliding at root s(NN) = 200 GeV show collective behavior for transverse momenta up to approximately 6 GeV/c. How small systems develop collective behavior remains a challenge for modelers.
C1 [van Hecke, H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP van Hecke, H (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
NR 9
TC 0
Z9 0
U1 2
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 7
EP 10
DI 10.1016/j.nuclphysbps.2016.05.003
PG 4
GA DQ5ZD
UT WOS:000379282900003
ER
PT J
AU Kang, ZB
AF Kang, Zhong-Bo
TI Recent developments in NLO corrections to in-medium jets
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
DE jet quenching; next-to-leading order; effective field theory; QCD
evolution
ID PB-PB COLLISIONS; CHARGED-PARTICLE PRODUCTION; LARGE
TRANSVERSE-MOMENTUM; ROOT-S(NN)=2.76 TEV; CENTRALITY DEPENDENCE;
INCLUSIVE JET; SUPPRESSION; GLUONS; PP
AB We present some recent progress in studying the jet quenching phenomena. In the first part of the talk, we study how to improve the standard energy loss picture by going beyond the "soft-gluon" (small-x) approximation and formulating the multi-gluon emission through the usual DGLAP evolution equations in the nuclear medium. We demonstrate that the numerical results based on such an approach describe well the suppression of single hadron production in A+A collisions at the LHC. In the second part of the talk, we present how to study the next-to-leading order corrections to the energy loss formalism. In particular, we compute the full next-to-leading order QCD corrections to the transverse momentum broadening in both e+A and p+A collisions, from which we identify a QCD evolution equation for the related quark-gluon correlation function, in turn, the QCD evolution of jet transport parameter (q) over cap.
C1 [Kang, Zhong-Bo] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Kang, ZB (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RI Kang, Zhongbo/P-3645-2014
NR 52
TC 0
Z9 0
U1 2
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 48
EP 53
DI 10.1016/j.nuclphysbps.2016.05.010
PG 6
GA DQ5ZD
UT WOS:000379282900010
ER
PT J
AU Dong, X
AF Dong, Xin
TI Recent Developments in Open Heavy Flavor Experiments
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
DE open heavy flavor; heavy quark diffusion; nuclear modification factor;
elliptic flow; silicon pixel detector
AB Heavy quark program has been one of the focused programs at RHIC and LHC to study detail properties of strongly coupled Quark-Gluon Plasma (sQGP). I will review recent experimental achievements on open heavy flavor production in heavy ion collisions, including measurements of nuclear modification factors, elliptic flow and heavy quark triggered correlations. By comparing with most sophisticated theoretical models, I will comment on physics implications on current understanding of sQGP medium properties. In the end, I will discuss future plans of utilizing heavy flavor quarks to probe emergent QCD properties in heavy ion collisions at both RHIC and LHC.
C1 [Dong, Xin] Lawrence Berkeley Natl Lab, Div Nucl Sci, MS70R0319,One Cyclotron Rd, Berkeley, CA 94720 USA.
RP Dong, X (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, MS70R0319,One Cyclotron Rd, Berkeley, CA 94720 USA.
NR 17
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 54
EP 59
DI 10.1016/j.nuclphysbps.2016.05.011
PG 6
GA DQ5ZD
UT WOS:000379282900011
ER
PT J
AU Cao, SS
AF Cao, Shanshan
TI Transport Theory of Heavy Flavor in Relativistic Nuclear Collisions
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
DE relativistic nuclear collisions; heavy flavor; transport theory
ID ENERGY-LOSS; QUARKS; LHC
AB A short overview is presented for the recent progress in the theory of heavy flavor transport in ultra-relativistic nuclear collisions, including a summary of different transport models, their phenomenological results of heavy meson quenching and flow at RHIC and LHC, a possible solution to the R-AA vs. V-2 puzzle and predictions for heavy flavor observables beyond the current measurements.
C1 [Cao, Shanshan] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Cao, SS (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
NR 49
TC 1
Z9 1
U1 1
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 60
EP 65
DI 10.1016/j.nuclphysbps.2016.05.012
PG 6
GA DQ5ZD
UT WOS:000379282900012
ER
PT J
AU Perepelitsa, DV
AF Perepelitsa, Dennis V.
TI Hard probes of small systems
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
ID P-PB COLLISIONS; ROOT-S(NN)=5.02 TEV; PPB COLLISIONS; JET PRODUCTION;
ROOT(NN)-N-S=5.02 TEV; DISTRIBUTIONS; DEPENDENCE; CENTRALITY; COLLIDER;
EVENTS
AB This proceedings discusses the experimental status of high-pT jet, hadron, and electroweak boson production measurements in proton and deuteron nucleus (p/d+A) collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), with an emphasis on results presented for the first time at the Hard and Electromagnetic Probes conference at McGill University in June 2015.
C1 [Perepelitsa, Dennis V.] Brookhaven Natl Lab, Phys Bldg, Upton, NY 11973 USA.
RP Perepelitsa, DV (reprint author), Brookhaven Natl Lab, Phys Bldg, Upton, NY 11973 USA.
NR 42
TC 0
Z9 0
U1 2
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 78
EP 83
DI 10.1016/j.nuclphysbps.2016.05.015
PG 6
GA DQ5ZD
UT WOS:000379282900015
ER
PT J
AU Kharzeev, DE
AF Kharzeev, Dmitri E.
TI Entropic destruction of heavy quarkonium in the quark-gluon plasma
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
DE quark-gluon plasma; heavy quarkonium; entropy; holography
ID J/PSI SUPPRESSION; STRING THEORY; COLLISIONS; LEPTONS; PHOTONS; PSIONS;
ENERGY; QCD
AB The excitations of a bound state immersed in a strongly coupled system are often delocalized and characterized by a large entropy, so that the state is strongly entangled with the rest of the statistical system. If this entropy S increases with the separation r between the constituents of the bound state, S = S (r), then the resulting entropic force F = T partial derivative S/partial derivative r (T is temperature) can drive the dissociation process. Lattice QCD indicates a large amount of entropy associated with the heavy quark pair in strongly coupled quark-gluon plasma. This entropy S (r) peaks at temperatures 0.9 T-c <= T <= 1.5 T-c (T-c is the deconfinement temperature) and grows with the inter-quark distance r. This peak in the holographic description arises because the heavy quark pair acts as an eyewitness to the black hole formation in the bulk - the process that describes the deconfinement transition. In terms of the boundary theory, this entropy likely emerges from the entanglement of a "long string" connecting the quark and antiquark with the rest of the system. We argue that the entropic mechanism results in an anomalously strong quarkonium suppression in the temperature range near T-c. This entropic destruction may thus explain why the experimentally measured quarkonium nuclear modification factor at RHIC (lower energy density) is smaller than at LHC (higher energy density), possibly resolving the "quarkonium suppression puzzle" - all of the previously known mechanisms of quarkonium dissociation operate more effectively at higher energy densities, and this contradicts the data.
C1 [Kharzeev, Dmitri E.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Kharzeev, Dmitri E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Kharzeev, Dmitri E.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA.
RP Kharzeev, DE (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.; Kharzeev, DE (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.; Kharzeev, DE (reprint author), Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA.
NR 40
TC 0
Z9 0
U1 1
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 90
EP 95
DI 10.1016/j.nuclphysbps.2016.05.017
PG 6
GA DQ5ZD
UT WOS:000379282900017
ER
PT J
AU Schenke, B
AF Schenke, Bjoern
TI Theory @ Hard Probes 2015
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
DE Heavy Ion Collisions; Quark Gluon Plasma; Quantum Chromodynamics
ID RADIATIVE ENERGY-LOSS; QUARK-GLUON PLASMA; JET PRODUCTION; COLLISIONS;
QCD; CENTRALITY; DYNAMICS; MATTER; LHC
AB Overview of the latest theory developments presented at the Hard Probes 2015 conference, held at McGill University, Montreal, Canada, in July 2015.
C1 [Schenke, Bjoern] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Schenke, B (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
NR 92
TC 0
Z9 0
U1 1
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 103
EP 110
DI 10.1016/j.nuclphysbps.2016.05.019
PG 8
GA DQ5ZD
UT WOS:000379282900019
ER
PT J
AU Vujanovic, G
Shen, C
Denicol, GS
Schenke, B
Jeon, S
Gale, C
AF Vujanovic, Gojko
Shen, Chun
Denicol, Gabriel S.
Schenke, Bjoern
Jeon, Sangyong
Gale, Charles
TI Probing the dissipative properties of a strongly interacting medium with
dileptons
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
DE Dilepton radiation; dissipative hydrodynamics; diffusion of net baryon
number density; net baryon number conductivity; RHIC Beam Energy Scan
Program
AB We investigate the effects of the presence of a non-vanishing net baryon number density and its diffusion on dilepton production, within a hydrodynamical description of the medium created at root S-NN = 7.7 GeV collision energy. This energy value is explored within the Beam Energy Scan (BES) program at Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Particular attention is devoted to a new dissipative degree of freedom: the net baryon number diffusion (V-mu), and to the net baryon number conductivity (kappa) - a transport coefficients governing the overall magnitude of V-mu. The effects of kappa on dilepton production are assessed, with an outlook on how future experimental dilepton data can be used to learn more about kappa.
C1 [Vujanovic, Gojko; Shen, Chun; Denicol, Gabriel S.; Jeon, Sangyong; Gale, Charles] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada.
[Denicol, Gabriel S.; Schenke, Bjoern] Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA.
RP Vujanovic, G (reprint author), McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada.
RI Silveira Denicol, Gabriel/L-5048-2016
NR 6
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 113
EP 114
DI 10.1016/j.nuclphysbps.2016.05.021
PG 2
GA DQ5ZD
UT WOS:000379282900021
ER
PT J
AU Vogt, R
AF Vogt, R.
TI Nuclear Modification of Quarkonium Production in p plus Pb Collisions at
the LHC
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
ID PARTON DISTRIBUTIONS
AB We make a systematic study of the modifications of J/Psi and Upsilon(1S) production in p+Pb collisions at root s(NN) = 5 TeV at the LHC. We compare the uncertainties in the EPS09 shadowing parameterization to the calculated mass and scale uncertainties obtained employing the EPS09 NLO central set. We study the dependence of the results on the proton parton density and the choice of the nuclear modifications. We check whether the results obtained are consistent at leading and next-to-leading order. We determine whether the calculated AA results can be factorized into the convolution of results from pA and Ap collisions. The calculations are compared to the available ALICE and LHCb nuclear modification factors, R-pA(y) and R-pA(pT), as well as the forward-backward asymmetries, R-FB(y) and R-FB(p(T)).
C1 [Vogt, R.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA.
[Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA.; Vogt, R (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
NR 17
TC 0
Z9 0
U1 2
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 153
EP 156
DI 10.1016/j.nuclphysbps.2016.05.032
PG 4
GA DQ5ZD
UT WOS:000379282900032
ER
PT J
AU Luo, T
He, YY
Wang, EK
Wang, XN
AF Luo, Tan
He, Yayun
Wang, Enke
Wang, Xin-Nian
TI Medium Recoil and Jet Modification in Heavy Ion Collisions
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
DE Jet quenching; Boltzmann Transport; quark-gluon plasma
AB A complete set of elastic processes and induced gluon radiation within the higher-twist approach have been implemented in the Linear Boltzmann Transport model for jet propagation and interaction with quark-gluon plasma in high-energy heavy-ion collisions. We impose global energy momentum conservation in the 2 -> n processes of induced radiation which will influence the final gluon spectra. We will compare the elastic and the radiative energy loss of partons and their effects on reconstructed jets. The energy loss of a leading parton is found to have a quadratic distance dependence only for a short distance, but will have much weak distance dependence because of the accumulated energy loss and the strong energy dependence of the local energy loss rate. Since reconstructed jets recover some of the energy lost by the leading parton, the quadratic path length dependence persists for a longer distance. The spatial distribution and time evolution of the jet-induced medium excitation are also discussed.
C1 [Luo, Tan; He, Yayun; Wang, Enke; Wang, Xin-Nian] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.
[Luo, Tan; He, Yayun; Wang, Enke; Wang, Xin-Nian] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China.
[Wang, Xin-Nian] Lawrence Berkeley Natl Lab, Nucl Sci Div MS70R0319, Berkeley, CA 94720 USA.
RP Luo, T (reprint author), Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.; Luo, T (reprint author), Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China.
NR 10
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 169
EP 172
DI 10.1016/j.nuclphysbps.2016.05.036
PG 4
GA DQ5ZD
UT WOS:000379282900036
ER
PT J
AU Abir, R
Cao, SS
Majumder, A
Qin, GY
AF Abir, Raktim
Cao, Shanshan
Majumder, Abhijit
Qin, Guang-You
TI Drag induced radiative energy loss of semi-hard heavy quarks
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
DE energy loss; drag; heavy-quark; bremsstrahlung radiation
AB We revisited gluon bremsstrahlung off a heavy quark in nuclear matter within higher twist formalism. In this work, we demonstrate that, in addition to transverse momentum diffusion parameter ((q) over cap), the gluon emission spectrum for a heavy quark is quite sensitive to (e) over cap, which quantify the amount of light-cone drag experienced by a parton. This effect leads to an additional energy loss term for heavy-quarks. From heavy flavor suppression data in ultra-relativistic heavy-ion collisions one can now estimate the value of this sub-leading non-perturbative jet transport parameter ((e) over cap) from our results.
C1 [Abir, Raktim; Majumder, Abhijit] Wayne State Univ, Dept Phys & Astron, 666 W Hancock St, Detroit, MI 48201 USA.
[Cao, Shanshan] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
[Qin, Guang-You] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China.
[Qin, Guang-You] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.
RP Abir, R (reprint author), Wayne State Univ, Dept Phys & Astron, 666 W Hancock St, Detroit, MI 48201 USA.
NR 6
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 177
EP 180
DI 10.1016/j.nuclphysbps.2016.05.038
PG 4
GA DQ5ZD
UT WOS:000379282900038
ER
PT J
AU Qiu, H
AF Qiu, Hao
CA STAR Collaboration
TI Open charm hadron measurements at STAR
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
DE open charm; nuclear modification factor; Heavy Flavor Tracker
ID QCD MATTER; HEAVY; COLLISIONS; MESONS
AB The interaction of the charm quark with the QCD medium created in heavy-ion collisions is sensitive to the medium properties. At the STAR experiment, charm quarks can be studied through open charm hadrons, such as D-0 and D*(+/-). We report various measurements of p(T) spectra of open charm mesons in p+p, Au+Au and U+U collisions and the nuclear modification factors (R-AA) extracted from these results. The measured D meson p(T) spectrum in p+p collisions is consistent with FONLL calculations within uncertainties. In Au+Au and U+U collisions, a significant suppression at high p(T) and indication of enhancement at intermediate p(T) are observed for D-0 production, which can be described by model calculations with strong charm-medium interaction and coalescence hadronization. In order to improve open heavy flavor measurements, a new Heavy Flavor Tracker (HFT) detector has been built and installed into STAR successfully before the RHIC year 2014 running. The signal significance of reconstructed D-0 has been enhanced tremendously with the HFT.
C1 [Qiu, Hao; STAR Collaboration] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
RP Qiu, H (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
NR 20
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 213
EP 216
DI 10.1016/j.nuclphysbps.2016.05.047
PG 4
GA DQ5ZD
UT WOS:000379282900047
ER
PT J
AU Monnai, A
AF Monnai, Akihiko
TI Chemically non-equilibrated QGP and thermal photon elliptic flow
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
DE Heavy-ion collisions; Quark-gluon plasma; Photons; Chemical
equilibration
ID GLUON DISTRIBUTION-FUNCTIONS; NUCLEAR COLLISIONS; COLLECTIVE FLOW;
QUARK; QCD
AB It has been discovered in recent heavy-ion experiments that elliptic and triangular flow of direct photons are underpredicted by most hydrodynamic models. I discuss possible enhancement mechanisms based on late chemical equilibration of the QGP and in-medium modification of parton distributions. Numerical hydrodynamic analyses indicate that they suppress early photon emission and visibly enhance thermal photon elliptic flow.
C1 [Monnai, Akihiko] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
RP Monnai, A (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
NR 20
TC 0
Z9 0
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 233
EP 236
DI 10.1016/j.nuclphysbps.2016.05.052
PG 4
GA DQ5ZD
UT WOS:000379282900052
ER
PT J
AU Ma, RR
AF Ma, Rongrong
CA STAR Collaboration
TI Measurement of J/psi production in p plus p collisions at root s=500 GeV
at STAR experiment
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
DE J/psi; Event Activity; STAR; MTD
ID TEV
AB Quarkonium measurements in heavy-ion collisions play an essential role in understanding the hot, dense medium created in such collisions. As a reference, their production mechanism in p + p collisions needs to be thoroughly understood. In this paper, we report the measurement of inclusive cross section of J/psi with transverse momentum (p(T)) above 4 GeV/c at mid-rapidity in p + p collisions at root s = 500 GeV by the STAR experiment. The ratio of the yield of psi(2S) to J/psi integrated over 4 < p(T) < 12 GeV/c is also presented. Furthermore, the J/psi yields are studied in different event multiplicity bins in different J/psi p(T) regions, where the low p(T) measurement is enabled by the newly installed Muon Telescope Detector. A strong increase of the relative J/psi yield with the event multiplicity is observed for all p(T) with significant p(T) dependence.
C1 [Ma, Rongrong; STAR Collaboration] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Ma, RR (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
NR 12
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 261
EP 264
DI 10.1016/j.nuclphysbps.2016.05.059
PG 4
GA DQ5ZD
UT WOS:000379282900059
ER
PT J
AU Xing, HX
Huang, JR
Kang, ZB
Vitev, I
AF Xing, Hongxi
Huang, Jinrui
Kang, Zhong-Bo
Vitev, Ivan
TI Quenching of inclusive and tagged b-jets at the LHC
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
DE Jet quenching; b-jets; heavy flavor
AB We present theoretical predictions for the nuclear-induced attenuation of the differential cross sections for inclusive and tagged b-jet production in heavy ion collisions at the LHC. We find that for inclusive b-jet production at high transverse momentum the mass effects are negligible, and that the attenuation is comparable to the one observed for light jets. On the other hand, for isolated-photon and B-meson-tagged b-jets the sample of events with heavy quarks produced at the early stages of the collision is greatly enhanced. Thus, these tagged b-jet final-states have a much more direct connection to the physics of b-quark energy loss. We present theoretical predictions for the quenching of such tagged b-jet events at the LHC and the QGP-induced modification of the related momentum imbalance and asymmetry. We demonstrate that these tagged processes can be used to accurately study the physics of heavy quark production and propagation in dense QCD matter.
C1 [Xing, Hongxi; Huang, Jinrui; Kang, Zhong-Bo; Vitev, Ivan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Xing, HX (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RI Kang, Zhongbo/P-3645-2014
NR 13
TC 0
Z9 0
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 281
EP 284
DI 10.1016/j.nuclphysbps.2016.05.064
PG 4
GA DQ5ZD
UT WOS:000379282900064
ER
PT J
AU Hattori, K
Itakura, K
AF Hattori, Koichi
Itakura, Kazunori
TI Photon and dilepton spectra from nonlinear QED effects in supercritical
magnetic fields induced by heavy-ion collisions
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
DE Supercritical magnetic field; Vacuum birefringence; Real-photon decay;
Photon splitting
ID VACUUM BIREFRINGENCE; POLARIZATION
AB We discuss properties of photons in extremely strong magnetic fields induced by the relativistic heavy-ion collisions. We investigate the vacuum birefringence, the real-photon decay, and the photon splitting which are all forbidden in the ordinary vacuum, but become possible in strong magnetic fields. These effects potentially give rise to anisotropies in photon and dilepton spectra.
C1 [Hattori, Koichi] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
[Hattori, Koichi] RIKEN, Nishina Ctr, Theoret Res Div, Wako, Saitama 3510198, Japan.
[Itakura, Kazunori] High Energy Accelerator Res Org, IPNS, KEK Theory Ctr, Oho, Ibaraki 3050801, Japan.
[Itakura, Kazunori] Grad Univ Adv Studies SOKENDAI, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan.
RP Hattori, K (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.; Hattori, K (reprint author), RIKEN, Nishina Ctr, Theoret Res Div, Wako, Saitama 3510198, Japan.
EM koichi.hattori@riken.jp; kazunori.itakura@kek.jp
NR 20
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 313
EP 316
DI 10.1016/j.nuclphysbps.2016.05.072
PG 4
GA DQ5ZD
UT WOS:000379282900072
ER
PT J
AU Steinberg, P
AF Steinberg, Peter
CA ATLAS Collaboration
TI Measurement of the dependence of transverse energy production at large
pseudorapidity on the hard scattering kinematics of proton-proton
collisions at root s=2.76 TeV with the ATLAS detector
SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS
LA English
DT Proceedings Paper
CT 7th International Conference on Hard and Electromagnetic Probes of High
Energy Nuclear Collisions
CY JUN 29-JUL 03, 2015
CL McGill Univ, Montreal, CANADA
SP McGill Univ, Dept Phys, Fac Sci, Canadian Inst Nucl Phys, TRIUMF, Brookhaven Natl Lab, CERN, ExtreMe Matter Inst, Cent China Normal Univ, Inst Particle Phys, Lawrence Berkeley Natl Lab, Lawrence Livermore Natl Lab, Los Alamos Natl Lab, Oak Ridge Natl Lab
HO McGill Univ
ID LEAD COLLISIONS; CENTRALITY; EVENTS
AB The relationship between jet production in the central region and the underlying event activity in a pseudorapidity-separated region is studied in 4.0 pb(-1) of root s = 2.76 TeV pp events recorded with the ATLAS detector at the LHC. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. Results are also presented as a function of the scaled longitudinal momenta of the hard scattered partons in the target and projectile beam-protons. Transverse energy production at large pseudorapidity is observed to vary strongly with the longitudinal momentum fraction in the target proton and only weakly with that in the projectile proton.
C1 [Steinberg, Peter] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Steinberg, P (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
NR 21
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2405-6014
EI 1873-3832
J9 NUCL PART PHYS P
JI Nucl. Part. Phys. Proc.
PD JUL-SEP
PY 2016
VL 276
BP 357
EP 360
DI 10.1016/j.nuclphysbps.2016.05.083
PG 4
GA DQ5ZD
UT WOS:000379282900083
ER
PT J
AU Yang, DL
Pacheco, R
Edwards, S
Henderson, K
Wu, RL
Labouriau, A
Stark, P
AF Yang, Dali
Pacheco, Robin
Edwards, Stephanie
Henderson, Kevin
Wu, Ruilian
Labouriau, Andrea
Stark, Peter
TI Thermal stability of a eutectic mixture of bis(2,2-dinitropropyl) acetal
and formal: Part A. Degradation mechanisms in air and under nitrogen
atmosphere
SO POLYMER DEGRADATION AND STABILITY
LA English
DT Article
DE Nitroplasticizer; BDNPA; BDNPF; Stability; Degradation; Condensed phase
ID POLY(ESTER URETHANE) ELASTOMER; DECOMPOSITION
AB We investigated the chemical and thermal stability of a eutectic mixture of bis(2,2-dinitropropyl) acetal (BDNPA) and formal (BDNPF) (referred to as NP) in various environments at temperatures below 70 degrees C. Changes in the chemical composition of samples aged up to two years were characterized using TGA, FTIR, GPC, ESI-MS, and H-1 NMR spectroscopies. The results show that the initial signs of NP degradation can be detected as early as in 12 months at 70 degrees C in air. The initial step in the degradation is the elimination of HONO molecules, followed by the formation of nitroso-alcohol isomers. While temperature plays a key role in determining the degradation kinetics of the initial stages, the absence or presence of oxygen determines the types and formation rates of various isomers and intermediates during thermal decomposition. In addition, oxygen accelerates the decomposition of the isomers and intermediates, whereas nitrogen has a stabilizing effect. BDNPA shows higher reactivity than BDNPF regardless of the aging conditions, which is attributed to the presence of an extra methyl group in its structure. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Yang, Dali; Pacheco, Robin; Edwards, Stephanie; Henderson, Kevin] Los Alamos Natl Lab, Div Mat Sci & Technol, MST 7,MS E549, Los Alamos, NM 87545 USA.
[Wu, Ruilian] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA.
[Labouriau, Andrea; Stark, Peter] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
RP Yang, DL (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MST 7,MS E549, Los Alamos, NM 87545 USA.
EM dyang@lanl.gov
OI Labouriau, Andrea/0000-0001-8033-9132
FU enhanced Surveillance Campaign (C8); US Department of Energy's National
Nuclear Security Administration [DE-AC52-06NA25396]
FX The authors would like to thank Milan Sykora and Sheldon Larson for
fruitful discussions and suggestions for this study. This work is funded
by enhanced Surveillance Campaign (C8) and the US Department of Energy's
National Nuclear Security Administration under the contract
DE-AC52-06NA25396.
NR 35
TC 1
Z9 1
U1 5
U2 7
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0141-3910
EI 1873-2321
J9 POLYM DEGRAD STABIL
JI Polym. Degrad. Stabil.
PD JUL
PY 2016
VL 129
BP 380
EP 398
DI 10.1016/j.polymdegradstab.2016.05.017
PG 19
WC Polymer Science
SC Polymer Science
GA DQ7FL
UT WOS:000379372200040
ER
PT J
AU Ferreira, FAS
Battirola, LC
Lewicki, JP
Worsley, MA
Pereira-da-Silva, MA
Amaral, T
Lepienski, CM
Rodrigues, UP
AF Ferreira, Fabio A. S.
Battirola, Liliane C.
Lewicki, James P.
Worsley, Marcus A.
Pereira-da-Silva, Marcelo A.
Amaral, Thiago
Lepienski, Carlos M.
Rodrigues-Filho, Ubirajara P.
TI Influence of thermal treatment time on structural and physical
properties of polyimide films at beginning of carbonization
SO POLYMER DEGRADATION AND STABILITY
LA English
DT Article
DE Polyimide; Carbon-rich derivatives; Thermal degradation; Structural
rearrangement
ID KAPTON((R)) POLYIMIDE; GRAPHENE SHEETS; EVOLUTION; MEMBRANES; POLYMER;
SURFACE; CARBON; CRYSTALLIZATION; INTERMEDIATE; DEGRADATION
AB Poly(4,4'-oxydiphenylene-oxydiphthalimide) (POO) was thermally treated at 773 K for 1, 15 and 60 min under argon atmosphere resulting in free-standing films with intermingled characteristics between polymer and carbon-rich derivatives. Degradative thermal analysis performed by pyrolysis-gas chromatography/mass spectroscopy (Py-GC/MS) revealed CO2 among the major products of thermal decomposition which according to electron paramagnetic resonance (EPR) passed through a radical process. X-ray diffraction (XRD) revealed thermal treated samples with semicrystalline organization that was attributed to the development of lamellae structure. Moreover, Atomic force microscopy (AFM) showed an increase in the roughness of the samples that acquired pronounced roughcast-like surface. Hence, there was an enhancement of mechanical strength and dielectric permittivity. From the data collected a mechanism of thermal decomposition was proposed. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Ferreira, Fabio A. S.; Rodrigues-Filho, Ubirajara P.] Univ Sao Paulo, Grp Quim Mat Hibridos & Inorgan, Inst Quim Sao Carlos, BR-13563120 Sao Carlos, SP, Brazil.
[Battirola, Liliane C.] Univ Estadual Campinas, Inst Quim, Campinas, SP, Brazil.
[Lewicki, James P.; Worsley, Marcus A.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Pereira-da-Silva, Marcelo A.] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
[Pereira-da-Silva, Marcelo A.] UNICEP, Ctr Univ Cent Paulista, BR-13563470 Sao Carlos, SP, Brazil.
[Amaral, Thiago] Univ Sao Paulo, Inst Fis Sao Carlos, Grp Crescimento Cristais & Mat Ceram, BR-13560970 Sao Carlos, SP, Brazil.
[Lepienski, Carlos M.] Univ Fed Parana, Dept Fis, BR-80060000 Curitiba, Parana, Brazil.
RP Ferreira, FAS (reprint author), Univ Sao Paulo, Grp Quim Mat Hibridos & Inorgan, Inst Quim Sao Carlos, BR-13563120 Sao Carlos, SP, Brazil.
EM ferreira.fabio.a.s@gmail.com
RI Pereira-da-Silva, Marcelo/J-6733-2012; Sao Carlos Institute of Physics,
IFSC/USP/M-2664-2016; Battirola, Liliane/L-9371-2013;
OI Battirola, Liliane/0000-0001-8396-6836; Ferreira,
Fabio/0000-0002-6928-8511
FU CNPq [142910/2010-4]; FAPESP [CEPID 2013/07793-6]; U.S. Department of
Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344];
Brazilian Synchrotron Light Source (LNLS) [GAR-14024]
FX This research work was supported by CNPq (Grant 142910/2010-4) and
FAPESP (CEPID 2013/07793-6) and also under auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under
contract DE-AC52-07NA27344. The authors acknowledge the Brazilian
Synchrotron Light Source (LNLS) for the WAXS experiments (Proposal:
GAR-14024), especially Dr. Matheus Cardoso for all assistance on
training on the equipment and data manipulation. The authors also
acknowledge the Brazilian Agricultural Research Corporation linked to
the Ministry of Agriculture, Liverstock, and Food Supply for the
collaboration in the T-FTNIR analysis. We also would like to extend
thanks to Prof. Dr. Antonio Carlos Hernandes and the technician Geraldo
Frigo both from Grupo de Crescimento de Cristais e Materiais Ceramicos
of the IFSC for the collaboration in the TGA analysis; to Prof. Dr.
Maria do Carmo Goncalves of the Institute of Chemistry of UNICAMP for
the collaboration in the SEM analysis, and to the technician Sara Blunk
of the Department of Physics of UFPR for the collaboration in the
nanoindentation analysis.
NR 28
TC 0
Z9 0
U1 22
U2 34
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0141-3910
EI 1873-2321
J9 POLYM DEGRAD STABIL
JI Polym. Degrad. Stabil.
PD JUL
PY 2016
VL 129
BP 399
EP 407
DI 10.1016/j.polymdegradstab.2016.05.001
PG 9
WC Polymer Science
SC Polymer Science
GA DQ7FL
UT WOS:000379372200041
ER
PT J
AU Benioff, P
AF Benioff, Paul
TI Effects of a scalar scaling field on quantum mechanics
SO QUANTUM INFORMATION PROCESSING
LA English
DT Article
DE Scalar scaling fields; Entangled quantum states; Mathematical
structures; Fiber bundles
ID COHERENT THEORY; FIBER-BUNDLES; PHYSICS; MATHEMATICS; UNIVERSE
AB This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. The lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.
C1 [Benioff, Paul] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RP Benioff, P (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
EM pbenioff@anl.gov
FU US Department of Energy, Office of Science, Office of Nuclear Physics
[DE-AC02-06CH11357]
FX This material is based upon work supported by the US Department of
Energy, Office of Science, Office of Nuclear Physics, under contract
number DE-AC02-06CH11357.
NR 35
TC 0
Z9 0
U1 1
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1570-0755
EI 1573-1332
J9 QUANTUM INF PROCESS
JI Quantum Inf. Process.
PD JUL
PY 2016
VL 15
IS 7
BP 3005
EP 3034
DI 10.1007/s11128-016-1312-1
PG 30
WC Physics, Multidisciplinary; Physics, Mathematical
SC Physics
GA DR0UX
UT WOS:000379623500022
ER
PT J
AU Lin, SC
Hatab, NA
Gu, BH
Chao, BK
Li, JH
Hsueh, CH
AF Lin, Shih-Che
Hatab, Nahla A.
Gu, Baohua
Chao, Bo-Kai
Li, Jia-Han
Hsueh, Chun-Hway
TI Free-standing gold elliptical nanoantenna with tunable wavelength in
near-infrared region for enhanced Raman spectroscopy
SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
LA English
DT Article
ID SURFACE-PLASMON RESONANCE; METAL NANOPARTICLE PAIRS; SILVER
NANOPARTICLES; BOWTIE NANOANTENNAS; DIMERS; SIZE; HYBRIDIZATION;
LITHOGRAPHY; DEPENDENCE; PARTICLES
AB The purpose of this work is to present a surface-enhanced Raman scattering (SERS) amplifying antenna for the possible usage in the near-infrared region. Instead of the visible-light range amplifying antenna such as a bowtie, the finite-difference time-domain (FDTD) simulation results indicate that elliptical antenna could provide large electromagnetic field enhancement at near-infrared wavelength by combining the free-standing enhancement property with large aspect ratios of the ellipse geometry. The simulation results consist with the enhancement factors characterized by SERS measurements at the excited wavelength of 785 nm for different aspect ratios and periodicities. In addition to the redshift of the resonance wavelength as the aspect ratio of ellipse increases, the freestanding structure modifies the resonance behavior and the dielectric environment of antenna by elevating the elliptical disk from the substrate. To interpret the simulation results, the analytical solution of resonance wavelength for ellipsoid dimmer is derived based on Lorentz-Mie theory, and comparisons are made between the analytical solution and simulation results. The quasi-static analytical solution provides a way to characterize the resonance behavior of two ellipsoid particles as a function of the gap distance, aspect ratio, and dielectric environment. The electrodynamic analysis for the periodic structure was performed in our FDTD simulations.
C1 [Lin, Shih-Che; Chao, Bo-Kai; Hsueh, Chun-Hway] Natl Taiwan Univ, Dept Mat Sci & Engn, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan.
[Hatab, Nahla A.] Univ Tennessee, Dept Chem, 552 Buehler Hall,1420 Circle Dr, Knoxville, TN 37996 USA.
[Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, POB 2008,MS 6036, Oak Ridge, TN 37831 USA.
[Gu, Baohua] Oak Ridge Natl Lab, Div Technol, POB 2008,MS 6036, Oak Ridge, TN 37831 USA.
[Li, Jia-Han] Natl Taiwan Univ, Dept Engn Sci & Ocean Engn, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan.
RP Hsueh, CH (reprint author), Natl Taiwan Univ, Dept Mat Sci & Engn, 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan.
EM hsuehc@ntu.edu.tw
FU Ministry of Science and Technology, Taiwan [MOST
103-2221-E-002-076-MY3]; Excellent Research Projects of National Taiwan
University [104R8918]; DOE Scientific User Facilities Division
FX The analytical derivation and simulation work were jointly supported by
the Ministry of Science and Technology, Taiwan under Contract No. MOST
103-2221-E-002-076-MY3 and Excellent Research Projects of National
Taiwan University under Project No. 104R8918. The fabrication of the
gold elliptical nanoantenna was conducted at the Center for Nanophase
Materials Sciences of Oak Ridge National Laboratory sponsored by DOE
Scientific User Facilities Division.
NR 43
TC 0
Z9 0
U1 15
U2 25
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0947-8396
EI 1432-0630
J9 APPL PHYS A-MATER
JI Appl. Phys. A-Mater. Sci. Process.
PD JUL
PY 2016
VL 122
IS 7
AR 674
DI 10.1007/s00339-016-0168-7
PG 9
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA DQ2AH
UT WOS:000379002100045
ER
PT J
AU Calloway, B
AF Calloway, Bond
TI Tomorrow's Technology is a Reality Today
SO CHEMICAL ENGINEERING PROGRESS
LA English
DT Editorial Material
C1 [Calloway, Bond] Savannah River Natl Lab, Aiken, SC USA.
RP Calloway, B (reprint author), Savannah River Natl Lab, Aiken, SC USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER INST CHEMICAL ENGINEERS
PI NEW YORK
PA 3 PARK AVE, NEW YORK, NY 10016-5901 USA
SN 0360-7275
EI 1945-0710
J9 CHEM ENG PROG
JI Chem. Eng. Prog.
PD JUL
PY 2016
VL 112
IS 7
BP 32
EP 32
PG 1
WC Engineering, Chemical
SC Engineering
GA DQ1VK
UT WOS:000378988300015
ER
PT J
AU Satyapal, S
Vora, S
AF Satyapal, Sunita
Vora, Shailesh
TI Establishing the Fuel Cell Industry
SO CHEMICAL ENGINEERING PROGRESS
LA English
DT Article
C1 [Satyapal, Sunita] US DOE, Fuel Cell Technol Off, 1000 Independence Ave SW, Washington, DC 20585 USA.
[Vora, Shailesh] US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA.
RP Satyapal, S (reprint author), US DOE, Fuel Cell Technol Off, 1000 Independence Ave SW, Washington, DC 20585 USA.
NR 4
TC 0
Z9 0
U1 1
U2 1
PU AMER INST CHEMICAL ENGINEERS
PI NEW YORK
PA 3 PARK AVE, NEW YORK, NY 10016-5901 USA
SN 0360-7275
EI 1945-0710
J9 CHEM ENG PROG
JI Chem. Eng. Prog.
PD JUL
PY 2016
VL 112
IS 7
BP 38
EP 43
PG 6
WC Engineering, Chemical
SC Engineering
GA DQ1VK
UT WOS:000378988300017
ER
PT J
AU Reddi, K
Elgowainy, A
Wang, M
AF Reddi, Krishna
Elgowainy, Amgad
Wang, Michael
TI Fuel Cells for Mobile Applications
SO CHEMICAL ENGINEERING PROGRESS
LA English
DT Article
C1 [Reddi, Krishna; Elgowainy, Amgad] Argonne Natl Lab, Argonne, IL 60439 USA.
[Elgowainy, Amgad] Argonne Natl Lab, Life Cycle Anal, Argonne, IL 60439 USA.
[Wang, Michael] Argonne Natl Lab, Div Energy Syst, Syst Assessment Grp, Argonne, IL 60439 USA.
RP Reddi, K (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA.
FU Fuel Cell Technologies Office of the U.S. Dept. of Energy's (DOE) Office
of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357]
FX The work on which this article is based was supported by the Fuel Cell
Technologies Office of the U.S. Dept. of Energy's (DOE) Office of Energy
Efficiency and Renewable Energy under Contract No. DE-AC02-06CH11357.
NR 8
TC 0
Z9 0
U1 2
U2 2
PU AMER INST CHEMICAL ENGINEERS
PI NEW YORK
PA 3 PARK AVE, NEW YORK, NY 10016-5901 USA
SN 0360-7275
EI 1945-0710
J9 CHEM ENG PROG
JI Chem. Eng. Prog.
PD JUL
PY 2016
VL 112
IS 7
BP 50
EP 54
PG 5
WC Engineering, Chemical
SC Engineering
GA DQ1VK
UT WOS:000378988300019
ER
PT J
AU Garret, CK
Hauck, CD
AF Garret, C. Kristopher
Hauck, Cory D.
TI On the eigenstructure of spherical harmonic equations for radiative
transport
SO COMPUTERS & MATHEMATICS WITH APPLICATIONS
LA English
DT Article; Proceedings Paper
CT 11th ICMMES Conference
CY JUL 14-18, 2014
CL New York, NY
DE Spherical harmonics; Radiation transport; Odd/even parity;
Eigenstructure
ID NEUTRON-TRANSPORT
AB The spherical harmonic equations for radiative transport are a linear, hyperbolic set of balance laws that describe the state of a system of particles as they advect through and collide with a material medium. For regimes in which the collisionality of the system is light to moderate, significant qualitative differences have been observed between solutions, based on whether the angular approximation used to derive the equations occurs in a subspace of even or odd degree. This difference can be traced back to the eigenstructure of the coefficient matrices in the advection operator of the hyperbolic system. In this paper, we use classical properties of the spherical harmonic's to examine this structure. In particular, we show how elements in the null space of the coefficient matrices depend on the parity of the spherical harmonic approximation and we relate these results to observed differences in even and odd expansions. (C) 2015 Elsevier Ltd. All rights reserved.
C1 [Garret, C. Kristopher; Hauck, Cory D.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
[Hauck, Cory D.] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA.
RP Garret, CK (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
EM garrettck@ornl.gov; hauckc@ornl.gov
OI Garrett, Charles/0000-0003-1469-3381
NR 14
TC 1
Z9 1
U1 0
U2 0
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0898-1221
EI 1873-7668
J9 COMPUT MATH APPL
JI Comput. Math. Appl.
PD JUL
PY 2016
VL 72
IS 2
BP 264
EP 270
DI 10.1016/j.camwa.2015.05.030
PG 7
WC Mathematics, Applied
SC Mathematics
GA DQ5YK
UT WOS:000379281000003
ER
PT J
AU Artusa, DR
Balzoni, A
Beeman, JW
Bellini, F
Biassoni, M
Brofferio, C
Camacho, A
Capelli, S
Cardani, L
Carniti, P
Casali, N
Cassina, L
Clemenza, M
Cremonesi, O
Cruciani, A
D'Addabbo, A
Dafinei, I
Di Domizio, S
di Vacri, ML
Ferroni, F
Gironi, L
Giuliani, A
Gotti, C
Keppel, G
Maino, M
Mancuso, M
Martinez, M
Morganti, S
Nagorny, S
Nastasi, M
Nisi, S
Nones, C
Orio, F
Orlandi, D
Pagnanini, L
Pallavicini, M
Palmieri, V
Pattavina, L
Pavan, M
Pessina, G
Pettinacci, V
Pirro, S
Pozzi, S
Previtali, E
Puiu, A
Rusconi, C
Schaffner, K
Tomei, C
Vignati, M
Zolotarova, A
AF Artusa, D. R.
Balzoni, A.
Beeman, J. W.
Bellini, F.
Biassoni, M.
Brofferio, C.
Camacho, A.
Capelli, S.
Cardani, L.
Carniti, P.
Casali, N.
Cassina, L.
Clemenza, M.
Cremonesi, O.
Cruciani, A.
D'Addabbo, A.
Dafinei, I.
Di Domizio, S.
di Vacri, M. L.
Ferroni, F.
Gironi, L.
Giuliani, A.
Gotti, C.
Keppel, G.
Maino, M.
Mancuso, M.
Martinez, M.
Morganti, S.
Nagorny, S.
Nastasi, M.
Nisi, S.
Nones, C.
Orio, F.
Orlandi, D.
Pagnanini, L.
Pallavicini, M.
Palmieri, V.
Pattavina, L.
Pavan, M.
Pessina, G.
Pettinacci, V.
Pirro, S.
Pozzi, S.
Previtali, E.
Puiu, A.
Rusconi, C.
Schaffner, K.
Tomei, C.
Vignati, M.
Zolotarova, A.
TI First array of enriched (ZnSe)-Se-82 bolometers to search for double
beta decay
SO EUROPEAN PHYSICAL JOURNAL C
LA English
DT Article
ID SCINTILLATING BOLOMETERS; TEO2 BOLOMETERS; LIGHT DETECTORS; CUORICINO;
SIGNALS; ZNMOO4; MO-100
AB The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in Se-82, the (ZnSe)-Se-82 crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three (ZnSe)-Se-82 crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution, background rejection capability and intrinsic radiopurity complies with the requirements of CUPID-0.
C1 [Artusa, D. R.; D'Addabbo, A.; di Vacri, M. L.; Nisi, S.; Orlandi, D.; Pattavina, L.; Pirro, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67010 Laquila, Italy.
[Artusa, D. R.] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
[Balzoni, A.; Bellini, F.; Casali, N.; Cruciani, A.; Ferroni, F.; Martinez, M.; Pettinacci, V.] Sapienza Univ Roma, Dipartimento Fis, I-00185 Rome, Italy.
[Balzoni, A.; Bellini, F.; Cardani, L.; Casali, N.; Cruciani, A.; Dafinei, I.; Ferroni, F.; Martinez, M.; Morganti, S.; Orio, F.; Pettinacci, V.; Tomei, C.; Vignati, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Beeman, J. W.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Clemenza, M.; Gironi, L.; Gotti, C.; Maino, M.; Nastasi, M.; Pavan, M.; Pozzi, S.; Puiu, A.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy.
[Biassoni, M.; Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Gironi, L.; Gotti, C.; Maino, M.; Nastasi, M.; Pavan, M.; Pessina, G.; Pozzi, S.; Previtali, E.; Puiu, A.; Rusconi, C.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy.
[Camacho, A.; Keppel, G.; Palmieri, V.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy.
[Cardani, L.] Princeton Univ, Dept Phys, Washington Rd, Princeton, NJ 08544 USA.
[Di Domizio, S.; Pallavicini, M.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy.
[Di Domizio, S.; Pallavicini, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Giuliani, A.; Mancuso, M.] Univ Paris Saclay, Univ Paris 11, CSNSM, CNRS,IN2P3, F-91405 Orsay, France.
[Giuliani, A.; Mancuso, M.; Rusconi, C.] Univ Insubria, DiSAT, I-22100 Como, Italy.
[Nones, C.; Zolotarova, A.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France.
[Nagorny, S.; Pagnanini, L.; Schaffner, K.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy.
[Mancuso, M.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
RP Cardani, L (reprint author), Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.; Cardani, L (reprint author), Princeton Univ, Dept Phys, Washington Rd, Princeton, NJ 08544 USA.
EM laura.cardani@roma1.infn.it
RI Gironi, Luca/P-2860-2016; Pattavina, Luca/I-7498-2015; Pagnanini,
Lorenzo/E-5348-2016; capelli, silvia/G-5168-2012; Martinez,
Maria/K-4827-2012; Casali, Nicola/C-9475-2017;
OI Gironi, Luca/0000-0003-2019-0967; Pattavina, Luca/0000-0003-4192-849X;
Pagnanini, Lorenzo/0000-0001-9498-5055; capelli,
silvia/0000-0002-0300-2752; Martinez, Maria/0000-0002-9043-4691; Casali,
Nicola/0000-0003-3669-8247; Gotti, Claudio/0000-0003-2501-9608
FU LUCIFER; ERC under European Union/ERC [247115]
FX This work was partially supported by the LUCIFER experiment, funded by
ERC under the European Union's Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement n. 247115, funded within the ASPERA
2nd Common Call for R&D Activities. We are particularly grateful to M.
Iannone for its help in all the stages of the detector construction, to
M. Guetti for the assistance in the cryogenic operations and to the
mechanical workshop of LNGS (in particular E. Tatananni, A. Rotilio, A.
Corsi, and B. Romualdi) for continuous and constructive help in the
overall set-up design.
NR 54
TC 4
Z9 4
U1 5
U2 5
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1434-6044
EI 1434-6052
J9 EUR PHYS J C
JI Eur. Phys. J. C
PD JUL 1
PY 2016
VL 76
IS 7
AR 364
DI 10.1140/epjc/s10052-016-4223-5
PG 10
WC Physics, Particles & Fields
SC Physics
GA DQ4JX
UT WOS:000379171200003
PM 28280442
ER
PT J
AU Sharma, P
Tsang, CF
Kukkonen, IT
Niemi, A
AF Sharma, Prabhakar
Tsang, Chin-Fu
Kukkonen, Ilmo T.
Niemi, Auli
TI Analysis of 6-year fluid electric conductivity logs to evaluate the
hydraulic structure of the deep drill hole at Outokumpu, Finland
SO INTERNATIONAL JOURNAL OF EARTH SCIENCES
LA English
DT Article
DE Flowing fluid electric conductivity logging; Long-term monitoring; Deep
formation water electrical conductivity; Salinity diffusion; Outokumpu
deep drill hole
ID LOGGING METHOD; SALINE WATERS; BOREHOLE; PARAMETERS; DEPTH; WELLS;
CRUST; SITE; FLOW; GAS
AB Over the last two decades, the flowing fluid electric conductivity (FFEC) logging method has been applied in boreholes in the well-testing mode to evaluate the transmissivity, hydraulic head, and formation water electrical conductivity as a function of depth with a resolution of about 10-20 cm. FFEC profiles along the borehole are obtained under both shut-in and pumping conditions in a logging procedure that lasts only 3 or 4 days. A method for analyzing these FFEC logs has been developed and successfully employed to obtain formation parameters in a number of field studies. The present paper concerns the analysis of a unique set of FFEC logs that were taken from a deep borehole reaching down to 2.5 km at Outokumpu, Finland, over a 6-year time period. The borehole intersects paleoproterozoic metasedimentary, granitoid, and ophiolite-derived rocks. After the well was drilled, completed, and cleaned up, FFEC logs were obtained after 7, 433, 597, 948, and 2036 days. In analyzing these five profiles, we discovered the need to account for salinity diffusion from water in the formation to the borehole. Analysis results include the identification of 15 hydraulically conducting zones along the borehole, the calculation of flow rates associated with these 15 zones, as well as the estimation of the variation of formation water electrical conductivity as a function of depth. The calculated flow rates were used to obtain the tentative hydraulic conductivity values at these 15 depth levels.
C1 [Sharma, Prabhakar] Nalanda Univ, Sch Ecol & Environm Studies, Nalanda 803116, Bihar, India.
[Sharma, Prabhakar; Tsang, Chin-Fu; Niemi, Auli] Uppsala Univ, Dept Earth Sci, Uppsala, Sweden.
[Tsang, Chin-Fu] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA.
[Kukkonen, Ilmo T.] Univ Helsinki, Dept Phys, Helsinki, Finland.
RP Sharma, P (reprint author), Nalanda Univ, Sch Ecol & Environm Studies, Nalanda 803116, Bihar, India.; Sharma, P (reprint author), Uppsala Univ, Dept Earth Sci, Uppsala, Sweden.
EM psharma@nalandauniv.com
FU Swedish Geological Survey (SGU) [1724]
FX The authors cordially acknowledge the Swedish Geological Survey (SGU),
Grant Number 1724, for providing financial support to the research
reported in this paper. We are most grateful to the NEDRA and ICDP-OSG
logging teams, especially Jochem Kueck, Christian Carnein, and Karl Bohn
for collecting the logging data. We also acknowledge ICDP for supporting
the post-drilling logs.
NR 32
TC 0
Z9 0
U1 2
U2 3
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1437-3254
EI 1437-3262
J9 INT J EARTH SCI
JI Int. J. Earth Sci.
PD JUL
PY 2016
VL 105
IS 5
BP 1549
EP 1562
DI 10.1007/s00531-015-1268-x
PG 14
WC Geosciences, Multidisciplinary
SC Geology
GA DQ2IL
UT WOS:000379025900015
ER
PT J
AU Sabau, AS
Greer, CM
Chen, J
Warren, CD
Daniel, C
AF Sabau, Adrian S.
Greer, Clayton M.
Chen, Jian
Warren, Charles D.
Daniel, Claus
TI Surface Characterization of Carbon Fiber Polymer Composites and Aluminum
Alloys After Laser Interference Structuring
SO JOM
LA English
DT Article
ID EXCIMER-LASER; CO2-LASER TREATMENT; METALLURGY; METALS; FILMS
AB The increasing use of carbon fiber-reinforced polymer matrix composites (CFPC) and aluminum alloys as lightweight materials in the automotive and aerospace industries demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using an Nd:YAG laser in a two-beam interference setup, enabling the (1) structuring of the AL 5182 surface, (2) removal of the resin layer on top of carbon fibers, and (3) structuring of the carbon fibers. CFPC specimens of T700S carbon fiber, Prepreg-T83 epoxy, 5 ply thick, 0A degrees/90A degrees plaques were used. The effects of laser fluence, scanning speed, and number of shots-per-spot were investigated on the removal rate of the resin without an excessive damage of the fibers. Optical micrographs, 3D imaging, and scanning electron microscope imaging were used to study the effect of the laser processing on the surface morphology. It was found that an effective resin ablation and a low density of broken fibers for CFPC specimens was attained using laser fluences of 1-2 J/cm(2) and number of 2-4 pulses per spot. A relatively large area of periodic line structures due to energy interference were formed on the aluminum surface at laser fluences of 12 J/cm(2) and number of 4-6 pulses per spot.
C1 [Sabau, Adrian S.; Chen, Jian; Warren, Charles D.; Daniel, Claus] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Greer, Clayton M.] Univ Tennessee, Knoxville, TN 37996 USA.
RP Sabau, AS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM sabaua@ornl.gov
RI Chen, Jihua/F-1417-2011; Sabau, Adrian/B-9571-2008
OI Chen, Jihua/0000-0001-6879-5936; Sabau, Adrian/0000-0003-3088-6474
FU U.S. Department of Energy [DE-AC05-00OR22725]; Office of Energy
Efficiency and Renewable Energy, Vehicle Technologies Office,
Lightweight Materials Program
FX This research was conducted at UT-Battelle, LLC, under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy for the project
"Laser-Assisted Joining Process for Aluminum and Carbon Fiber
Components" and has been funded by the Office of Energy Efficiency and
Renewable Energy, Vehicle Technologies Office, Lightweight Materials
Program. The authors would like to thank Timothy Skszek of Magna
International, Troy, MI for providing the AL 5182 specimens.
NR 26
TC 0
Z9 0
U1 16
U2 20
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
EI 1543-1851
J9 JOM-US
JI JOM
PD JUL
PY 2016
VL 68
IS 7
BP 1882
EP 1889
DI 10.1007/s11837-016-1936-8
PG 8
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA DQ2IX
UT WOS:000379027100016
ER
PT J
AU Das, S
Martinez, NY
Das, S
Mishra, RS
Grant, GJ
Jana, S
Polikarpov, E
AF Das, Shamiparna
Martinez, Nelson Y.
Das, Santanu
Mishra, Rajiv S.
Grant, Glenn J.
Jana, Saumyadeep
Polikarpov, Evgueni
TI Magnetic Properties of Friction Stir Processed Composite
SO JOM
LA English
DT Article
ID MECHANICAL-PROPERTIES; MATRIX COMPOSITES; IN-SITU; ALUMINUM;
FABRICATION; ALLOYS
AB Of the many existing inspection or monitoring systems, each has its own advantages and drawbacks. These systems are usually comprised of semi-remote sensors that frequently cause difficulty in reaching complex areas of a component. This study proposes to overcome that difficulty by developing embedded functional composites, so that embedding can be achieved in virtually any component part and periodically can be interrogated by a reading device. The "reinforcement rich" processed areas can then be used to record properties such as strain, temperature, and stress state, to name a few, depending on the reinforcement material. Friction stir processing was used to fabricate a magnetostrictive composite by embedding galfenol particles into a nonmagnetic aluminum matrix. The aim was to develop a composite that produces strain in response to a varying magnetic field. Reinforcements were distributed uniformly in the matrix. Magnetization curves were studied using a vibrating sample magnetometer. A simple and cost-effective setup was developed to measure the magnetostrictive strain of the composites. Important factors affecting the magnetic properties were identified and the processing route was modified to improve the magnetic response.
C1 [Das, Shamiparna; Martinez, Nelson Y.; Das, Santanu; Mishra, Rajiv S.] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA.
[Grant, Glenn J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA.
[Jana, Saumyadeep; Polikarpov, Evgueni] Pacific NW Natl Lab, Appl Mat & Performance, Richland, WA 99352 USA.
RP Das, S (reprint author), Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA.
EM shamiparnadas@my.unt.edu; nelsonmartinez@my.unt.edu; sd0211@hotmail.com;
rajiv.mishra@unt.edu; glenn.grant@pnnl.gov; saumyadeep.jana@pnnl.gov;
evgueni.Polikarpov@pnnl.gov
RI Mishra, Rajiv/A-7985-2009
OI Mishra, Rajiv/0000-0002-1699-0614
FU Pacific Northwest National Laboratory (PNNL)
FX The authors thank Pacific Northwest National Laboratory (PNNL) for the
financial support for this work.
NR 21
TC 0
Z9 0
U1 4
U2 4
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
EI 1543-1851
J9 JOM-US
JI JOM
PD JUL
PY 2016
VL 68
IS 7
BP 1925
EP 1931
DI 10.1007/s11837-016-1881-6
PG 7
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA DQ2IX
UT WOS:000379027100021
ER
PT J
AU Rios, O
McCall, SK
AF Rios, Orlando
McCall, Scott K.
TI Applied Magnetism: A Supply-Driven Materials Challenge
SO JOM
LA English
DT Article
C1 [Rios, Orlando] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[McCall, Scott K.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Rios, O (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM rioso@ornl.gov; mccall10@llnl.gov
RI McCall, Scott/G-1733-2014; Rios, Orlando/E-6856-2017
OI McCall, Scott/0000-0002-7979-4944; Rios, Orlando/0000-0002-1814-7815
FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department
of Energy, Office of Energy Efficiency and Renewable Energy, Advanced
Manufacturing Office; LLNL [DE-AC52-07NA27344]; ORNL [DE-AC05-00OR22725]
FX This work was supported by the Critical Materials Institute, an Energy
Innovation Hub funded by the U.S. Department of Energy, Office of Energy
Efficiency and Renewable Energy, Advanced Manufacturing Office. Work
prepared by LLNL under Contract DE-AC52-07NA27344 and by ORNL under
contract DE-AC05-00OR22725.
NR 0
TC 0
Z9 0
U1 1
U2 3
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
EI 1543-1851
J9 JOM-US
JI JOM
PD JUL
PY 2016
VL 68
IS 7
BP 1938
EP 1939
DI 10.1007/s11837-016-1962-6
PG 2
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA DQ2IX
UT WOS:000379027100023
ER
PT J
AU Sims, ZC
Weiss, D
McCall, SK
McGuire, MA
Ott, RT
Geer, T
Rios, O
Turchi, PAE
AF Sims, Zachary C.
Weiss, D.
McCall, S. K.
McGuire, M. A.
Ott, R. T.
Geer, Tom
Rios, Orlando
Turchi, P. A. E.
TI Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy:
High-Volume Co-product Development
SO JOM
LA English
DT Article
ID SI ALLOYS; PRECIPITATION; PHASE; SC
AB Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.
C1 [Sims, Zachary C.; McGuire, M. A.; Geer, Tom; Rios, Orlando] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Weiss, D.] Eck Ind, Manitowoc, WI USA.
[McCall, S. K.; Turchi, P. A. E.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Ott, R. T.] Ames Natl Lab, Ames, IA USA.
RP Rios, O (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA.
EM orios@ornl.gov
RI McGuire, Michael/B-5453-2009; McCall, Scott/G-1733-2014; Rios,
Orlando/E-6856-2017
OI McGuire, Michael/0000-0003-1762-9406; McCall, Scott/0000-0002-7979-4944;
Rios, Orlando/0000-0002-1814-7815
FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department
of Energy, Office of Energy Efficiency and Renewable Energy, Advanced
Manufacturing Office; U.S. Department of Energy; Lawrence Livermore
National Laboratory [DE-AC52-07NA27344]; Oak Ridge National Laboratory
under U.S. Department of Energy [DE-AC05-00OR22725]; Office of Science,
Office of Basic Energy Sciences, of the U.S. Department of Energy
[DE-AC02-05CH11231]; Oak Ridge National Laboratory Directed Research and
Development funds
FX This research was sponsored by the Critical Materials Institute, an
Energy Innovation Hub funded by the U.S. Department of Energy, Office of
Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.
This work was performed under the auspices of the U.S. Department of
Energy with Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 and with Oak Ridge National Laboratory under U.S.
Department of Energy contract DE-AC05-00OR22725. Work at the Molecular
Foundry was supported by the Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. 3D printed molds and engine testing was funded by Oak
Ridge National Laboratory Directed Research and Development funds. We
acknowledge the support of Scott Curran and Claus Daniel with engine
assembly and testing.
NR 19
TC 0
Z9 0
U1 8
U2 17
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
EI 1543-1851
J9 JOM-US
JI JOM
PD JUL
PY 2016
VL 68
IS 7
BP 1940
EP 1947
DI 10.1007/s11837-016-1943-9
PG 8
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA DQ2IX
UT WOS:000379027100024
ER
PT J
AU Nguyen, RT
Imholte, DD
AF Nguyen, Ruby Thuy
Imholte, D. Devin
TI China's Rare Earth Supply Chain: Illegal Production, and Response to new
Cerium Demand
SO JOM
LA English
DT Article
AB As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China's supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructed a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the US market starting from 2018. Results showed that market share of the illegal sector has grown since 2007-2015, ranging between 22% and 25% of China's rare earth supply, translating into 59-65% illegal heavy rare earths and 14-16% illegal light rare earths. There will be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Finally, we illustrate revenue streams for different ore compositions in China in 2015.
C1 [Nguyen, Ruby Thuy; Imholte, D. Devin] Idaho Natl Lab, Idaho Falls, ID USA.
RP Imholte, DD (reprint author), Idaho Natl Lab, Idaho Falls, ID USA.
EM devin.imholte@inl.gov
RI Nguyen, Ruby/B-9058-2017;
OI Nguyen, Ruby/0000-0002-5791-5004; Imholte, Daniel/0000-0001-8415-0409
FU Critical Materials Institute, an Energy Innovation Hub - US Department
of Energy, Office of Energy Efficiency and Renewable Energy, Advanced
Manufacturing Office; US Department of Energy [DE-AC07-05ID14517]
FX This work is supported by the Critical Materials Institute, an Energy
Innovation Hub funded by the US Department of Energy, Office of Energy
Efficiency and Renewable Energy, Advanced Manufacturing Office. We thank
professor Rod Eggert and his students, Maxwell Brown and Braeton Smith,
at the Colorado School of Mines in supporting us with data collection.
We thank Bobby Jeffers and Calvin Shaneyfelt of Sandia National
Laboratories for assisting with modeling techniques and economic
mechanisms. (C) This manuscript has been authored by Battelle Energy
Alliance, LLC under Contract No. DE-AC07-05ID14517 with the US
Department of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that
the United States Government retains a nonexclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States
Government purposes.
NR 39
TC 0
Z9 0
U1 10
U2 13
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
EI 1543-1851
J9 JOM-US
JI JOM
PD JUL
PY 2016
VL 68
IS 7
BP 1948
EP 1956
DI 10.1007/s11837-016-1894-1
PG 9
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA DQ2IX
UT WOS:000379027100025
ER
PT J
AU Geng, J
Nlebedim, IC
Besser, MF
Simsek, E
Ott, RT
AF Geng, J.
Nlebedim, I. C.
Besser, M. F.
Simsek, E.
Ott, R. T.
TI Bulk Combinatorial Synthesis and High Throughput Characterization for
Rapid Assessment of Magnetic Materials: Application of Laser Engineered
Net Shaping (LENS (TM))
SO JOM
LA English
DT Article
ID FE-CO ALLOYS
AB A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS (TM); i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS (TM) system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. The Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.
C1 [Geng, J.; Nlebedim, I. C.; Besser, M. F.; Simsek, E.; Ott, R. T.] US DOE, Crit Mat Inst, Ames Lab, Ames, IA 50010 USA.
[Geng, J.; Besser, M. F.; Simsek, E.; Ott, R. T.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50010 USA.
RP Geng, J (reprint author), US DOE, Crit Mat Inst, Ames Lab, Ames, IA 50010 USA.; Geng, J (reprint author), US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50010 USA.
EM geng@ameslab.gov
RI Geng, Jie/B-8899-2009
OI Geng, Jie/0000-0003-0422-0230
FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department
of Energy, Office of Energy Efficiency and Renewable Energy, Advanced
Manufacturing Office; Iowa State University [DE-AC02-07CH11358]
FX This work is supported by the Critical Materials Institute, an Energy
Innovation Hub funded by the U.S. Department of Energy, Office of Energy
Efficiency and Renewable Energy, Advanced Manufacturing Office. The Ames
Laboratory is operated by Iowa State University under Contract No.
DE-AC02-07CH11358.
NR 25
TC 1
Z9 1
U1 16
U2 26
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
EI 1543-1851
J9 JOM-US
JI JOM
PD JUL
PY 2016
VL 68
IS 7
BP 1972
EP 1977
DI 10.1007/s11837-016-1918-x
PG 6
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA DQ2IX
UT WOS:000379027100028
ER
PT J
AU Paranthaman, MP
Shafer, CS
Elliott, AM
Siddel, DH
McGuire, MA
Springfield, RM
Martin, J
Fredette, R
Ormerod, J
AF Paranthaman, M. Parans
Shafer, Christopher S.
Elliott, Amy M.
Siddel, Derek H.
McGuire, Michael A.
Springfield, Robert M.
Martin, Josh
Fredette, Robert
Ormerod, John
TI Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process
SO JOM
LA English
DT Article
ID PERMANENT-MAGNETS
AB The goal of this research is to fabricate near-net-shape isotropic (Nd)(2)Fe14B-based (NdFeB) bonded magnets using a three dimensional printing process to compete with conventional injection molding techniques used for bonded magnets. Additive manufacturing minimizes the waste of critical materials and allows for the creation of complex shapes and sizes. The binder jetting process works similarly to an inkjet printer. A print-head passes over a bed of NdFeB powder and deposits a polymer binding agent to bind the layer of particles together. The bound powder is then coated with another layer of powder, building the desired shape in successive layers of bonded powder. Upon completion, the green part and surrounding powders are placed in an oven at temperatures between 100A degrees C and 150A degrees C for 4-6 h to cure the binder. After curing, the excess powder can be brushed away to reveal the completed "green" part. Green magnet parts were then infiltrated with a clear urethane resin to achieve the measured density of the magnet of 3.47 g/cm(3) close to 46% relative to the NdFeB single crystal density of 7.6 g/cm(3). Magnetic measurements indicate that there is no degradation in the magnetic properties. This study provides a new pathway for preparing near-net-shape bonded magnets for various magnetic applications.
C1 [Paranthaman, M. Parans; Shafer, Christopher S.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Shafer, Christopher S.; Siddel, Derek H.] Univ Tennessee, Knoxville, TN 37996 USA.
[Elliott, Amy M.; Siddel, Derek H.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA.
[McGuire, Michael A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Springfield, Robert M.; Martin, Josh] Tru Design LLC, Knoxville, TN 37938 USA.
[Fredette, Robert; Ormerod, John] Magnet Applicat Inc, Duboise, PA 15801 USA.
RP Paranthaman, MP (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM paranthamanm@ornl.gov
RI McGuire, Michael/B-5453-2009;
OI McGuire, Michael/0000-0003-1762-9406; Paranthaman,
Mariappan/0000-0003-3009-8531
FU Critical Material Institute, an Energy Innovation Hub - U.S. Department
of Energy, Office of Energy Efficiency and Renewable Energy, Advanced
Manufacturing Office; U.S. Department of Energy, Office of Science,
Office of Workforce Development for Teachers and Scientists (WDTS) under
the Science Undergraduate Laboratory Internship program
FX This work was supported in part by the Critical Material Institute, an
Energy Innovation Hub funded by the U.S. Department of Energy, Office of
Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.
The research on the printing was supported by the U.S. Department of
Energy, Office of Science, Office of Workforce Development for Teachers
and Scientists (WDTS) under the Science Undergraduate Laboratory
Internship program. Access to the MDF facilities and use of additive
instrument time and labor are supported by the MDF Tech Collaborations
between ORNL and Magnet Applications Inc. and Tru-Design LLC.
NR 18
TC 1
Z9 1
U1 13
U2 23
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
EI 1543-1851
J9 JOM-US
JI JOM
PD JUL
PY 2016
VL 68
IS 7
BP 1978
EP 1982
DI 10.1007/s11837-016-1883-4
PG 5
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA DQ2IX
UT WOS:000379027100029
ER
PT J
AU Craig, N
Knapen, S
Longhi, P
Strassler, M
AF Craig, Nathaniel
Knapen, Simon
Longhi, Pietro
Strassler, Matthew
TI The vector-like twin Higgs
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Beyond Standard Model; Discrete Symmetries; Global Symmetries
ID SUPERSYMMETRY BREAKING; MODEL
AB We present a version of the twin Higgs mechanism with vector-like top partners. In this setup all gauge anomalies automatically cancel, even without twin leptons. The matter content of the most minimal twin sector is therefore just two twin tops and one twin bottom. The LHC phenomenology, illustrated with two example models, is dominated by twin glueball decays, possibly in association with Higgs bosons. We further construct an explicit four-dimensional UV completion and discuss a variety of UV completions relevant for both vector-like and fraternal twin Higgs models.
C1 [Craig, Nathaniel] Univ Calif Santa Barbara, Dept Phys, Broida Hall, Santa Barbara, CA 93106 USA.
[Knapen, Simon] Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, 366 Le Conte Hall, Berkeley, CA 94720 USA.
[Knapen, Simon] Lawrence Berkeley Natl Lab, Theoret Phys Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Longhi, Pietro] Uppsala Univ, Dept Phys, Regementsvagen 1, SE-75237 Uppsala, Sweden.
[Strassler, Matthew] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA.
RP Craig, N (reprint author), Univ Calif Santa Barbara, Dept Phys, Broida Hall, Santa Barbara, CA 93106 USA.
EM ncraig@physics.ucsb.edu; smknapen@lbl.gov; pietro.longhi@physics.uu.se;
strassler@physics.harvard.edu
FU Department of Energy [DE-SC0014129]; LDRD Program of LBNL under U.S.
Department of Energy [DE-AC02-05CH11231]; Carl Tryggers Stiftelsen
FX We thank Hsin-Chia Cheng, Tim Cohen, Csaba Csaki, Michael Geller, Adam
Falkowski, Roni Harnik, Yonit Hochberg, Eric Kuflik, Tim Lou, John
March-Russell, Michele Papucci, Dean Robinson and Yuhsin Tsai for useful
conversations. NC is supported by the Department of Energy under the
grant DE-SC0014129. The work of SK was supported by the LDRD Program of
LBNL under U.S. Department of Energy Contract No. DE-AC02-05CH11231. The
work of PL is supported by the Carl Tryggers Stiftelsen. SK and MJS
thank the Gallileo Galilei Institute for Theoretical Physics where part
of this work was completed.
NR 42
TC 2
Z9 2
U1 0
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD JUL 1
PY 2016
IS 7
AR 002
DI 10.1007/JHEP07(2016)002
PG 32
WC Physics, Particles & Fields
SC Physics
GA DQ4MN
UT WOS:000379178100002
ER
PT J
AU Cecil, T
Gades, L
Madden, T
Yan, D
Miceli, A
AF Cecil, T.
Gades, L.
Madden, T.
Yan, D.
Miceli, A.
TI Tuning the Transition Temperature of WSi Alloys for Use in Cryogenic
Microcalorimeters
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article; Proceedings Paper
CT 16th International Workshop on Low Temperature Particle Detection (LTD)
CY JUL 20-24, 2015
CL Grenoble, FRANCE
SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA
DE Low temperature detector; kinetic inductance detector; Materials;
Tungsten silicide
AB Microwave kinetic inductance detectors (MKID) provide a pathway to highly multiplexed, high-resolution, detectors. Over the past several years we have introduced the concept of the thermal kinetic inductance detector (TKID), which operates as a microcalorimeter. As with other microcalorimeters, the thermal noise of a TKID is reduced when the operating temperature is decreased. However, because the sensitivity of a TKID decreases as the operating temperature drops below 20 % of , the of the resonator material must be tuned to match the desired operating temperature. We have investigated the WSi alloy system as a material for these detectors. By co-sputtering from a Si and WSi target, we have deposited WSi films with a tunable that ranges from 5 K down to 500 mK. These films provide a large kinetic inductance fraction and relatively low noise levels. We provide results of these studies showing the , resistivity, quality factors, and noise as a function of deposition conditions. These results show that WSi is a good candidate for TKIDs.
C1 [Cecil, T.; Gades, L.; Madden, T.; Miceli, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Yan, D.] Northwestern Univ, Dept Appl Phys, Evanston, IL 60208 USA.
RP Cecil, T (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM cecil@aps.anl.gov
NR 8
TC 0
Z9 0
U1 0
U2 0
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD JUL
PY 2016
VL 184
IS 1-2
BP 17
EP 22
DI 10.1007/s10909-016-1588-7
PG 6
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DP7OX
UT WOS:000378689800004
ER
PT J
AU Tartari, A
Belier, B
Bleurvacq, N
Calvo, M
Cammilleri, D
Decourcelle, T
Monfardini, A
Moric, I
Piat, M
Prele, D
Smoot, GF
AF Tartari, A.
Belier, B.
Bleurvacq, N.
Calvo, M.
Cammilleri, D.
Decourcelle, T.
Monfardini, A.
Moric, I.
Piat, M.
Prele, D.
Smoot, G. F.
TI LEKIDs as mm-Wave Polarisation Analysers: Fabrication, Test Bench and
Early Results
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article; Proceedings Paper
CT 16th International Workshop on Low Temperature Particle Detection (LTD)
CY JUL 20-24, 2015
CL Grenoble, FRANCE
SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA
DE LEKIDs; Polarimetry; Cosmic microwave background
ID 30 M TELESCOPE; PERFORMANCE; CAMERA
AB We have demonstrated in an earlier paper that LEKIDs can be used in a polarisation selective way in a filled array configuration. A polarised response can be achieved by means of thick Nb polarising grids lithographed on the rear side of a 300 microns silicon wafer, on which Al resonators have been previously patterned. In the most interesting scheme that we have investigated, a unit cell formed by 4 pixels (2 by 2) responds simultaneously to two orthogonal (cartesian) polarisation states. To assess the effectiveness of this detection scheme, we have fabricated a first generation of devices (9 small arrays, 20-25 pixels each, on a 4 Silicon wafer) by using a double-sided mask aligner suitable for a precise positioning of the individual grids in correspondence of each resonator's meander, for the different LEKID geometries. We describe here the realisation of these first devices. The construction of a dedicated polarimetric test bench is also described in this contribution, together with the first characterisation results. We consider this activity as a first and necessary step to evaluate the polarisation purity attainable with polarisation-sensitive pixels whose size is comparable to the wavelength. This is a fundamental information to drive further studies.
C1 [Tartari, A.; Bleurvacq, N.; Decourcelle, T.; Moric, I.; Piat, M.; Prele, D.; Smoot, G. F.] Univ Paris Diderot, CNRS, Lab APC, F-75205 Paris, France.
[Belier, B.] Univ Paris 11, CNRS, IEF, Orsay, France.
[Calvo, M.; Monfardini, A.] CNRS, Inst Neel, Grenoble, France.
[Cammilleri, D.] Univ Paris 11, CNRS, LPGP, Orsay, France.
[Smoot, G. F.] LBNL, Berkeley, CA 94720 USA.
RP Tartari, A (reprint author), Univ Paris Diderot, CNRS, Lab APC, F-75205 Paris, France.
EM tartari@apc.univ-paris7.fr
NR 10
TC 0
Z9 0
U1 2
U2 2
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD JUL
PY 2016
VL 184
IS 1-2
BP 167
EP 172
DI 10.1007/s10909-015-1421-8
PG 6
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DP7OX
UT WOS:000378689800027
ER
PT J
AU Bates, C
Pies, C
Kempf, S
Hengstler, D
Fleischmann, A
Gastaldo, L
Enss, C
Friedrich, S
AF Bates, C.
Pies, C.
Kempf, S.
Hengstler, D.
Fleischmann, A.
Gastaldo, L.
Enss, C.
Friedrich, S.
TI Direct Detection of Pu-242 with a Metallic Magnetic Calorimeter
Gamma-Ray Detector
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article; Proceedings Paper
CT 16th International Workshop on Low Temperature Particle Detection (LTD)
CY JUL 20-24, 2015
CL Grenoble, FRANCE
SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA
DE Metallic magnetic calorimeters; Nuclear safeguards; Gamma spectroscopy;
Non-destructive assay; Plutonium isotopics; Pu-242
AB Cryogenic high-resolution -ray detectors can improve the accuracy of non-destructive assay (NDA) of nuclear materials in cases where conventional high-purity germanium detectors are limited by line overlap or by the Compton background. We have improved the performance of gamma detectors based on metallic magnetic calorimeters (MMCs) by separating the 0.5 2 0.25 mm Au absorber from the Au:Er sensor with sixteen 30-m-diameter Au posts. This ensures that the entire -ray energy thermalizes in the absorber before heating the Au:Er sensor, and improves the energy resolution at 35 mK to as low as 90 eV FWHM at 60 keV. This energy resolution enables the direct detection of -rays from Pu-242, an isotope that cannot be measured by traditional NDA and whose concentration is therefore inferred through correlations with other Pu isotopes. The Pu-242 concentration of 11.11 0.42 % measured by NDA with MMCs agrees with mass spectrometry results and exceeds the accuracy of correlation measurements.
C1 [Bates, C.; Friedrich, S.] Lawrence Livermore Natl Lab, 7000 East Ave L-188, Livermore, CA 94550 USA.
[Pies, C.; Kempf, S.; Hengstler, D.; Fleischmann, A.; Gastaldo, L.; Enss, C.] Heidelberg Univ, Kirchhoff Inst Phys, INF 227, D-69120 Heidelberg, Germany.
[Bates, C.] Los Alamos Natl Lab, POB 1663 F663, Los Alamos, NM 87545 USA.
RP Friedrich, S (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave L-188, Livermore, CA 94550 USA.
EM friedrich1@llnl.gov
RI Kempf, Sebastian/P-7612-2016
OI Kempf, Sebastian/0000-0002-3303-128X
NR 11
TC 1
Z9 1
U1 1
U2 1
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD JUL
PY 2016
VL 184
IS 1-2
BP 351
EP 355
DI 10.1007/s10909-015-1348-0
PG 5
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DP7OX
UT WOS:000378689800054
ER
PT J
AU Yan, D
Cecil, T
Gades, L
Jacobsen, C
Madden, T
Miceli, A
AF Yan, D.
Cecil, T.
Gades, L.
Jacobsen, C.
Madden, T.
Miceli, A.
TI Processing of X-ray Microcalorimeter Data with Pulse Shape Variation
using Principal Component Analysis
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article; Proceedings Paper
CT 16th International Workshop on Low Temperature Particle Detection (LTD)
CY JUL 20-24, 2015
CL Grenoble, FRANCE
SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA
DE Principal component analysis (PCA); Pulse processing; Shape variance;
Microcalorimeter
ID KINETIC INDUCTANCE DETECTORS
AB We present a method using principal component analysis (PCA) to process x-ray pulses with severe shape variation where traditional optimal filter methods fail. We demonstrate that PCA is able to noise-filter and extract energy information from x-ray pulses despite their different shapes. We apply this method to a dataset from an x-ray thermal kinetic inductance detector which has severe pulse shape variation arising from position-dependent absorption.
C1 [Yan, D.; Jacobsen, C.] Northwestern Univ, Evanston, IL 60208 USA.
[Yan, D.; Cecil, T.; Gades, L.; Jacobsen, C.; Madden, T.; Miceli, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Miceli, A (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM amiceli@anl.gov
RI Jacobsen, Chris/E-2827-2015
OI Jacobsen, Chris/0000-0001-8562-0353
NR 7
TC 1
Z9 1
U1 1
U2 6
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD JUL
PY 2016
VL 184
IS 1-2
BP 397
EP 404
DI 10.1007/s10909-016-1480-5
PG 8
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DP7OX
UT WOS:000378689800062
ER
PT J
AU Rotermund, K
Barch, B
Chapman, S
Hattori, K
Lee, A
Palaio, N
Shirley, I
Suzuki, A
Tran, C
AF Rotermund, K.
Barch, B.
Chapman, S.
Hattori, K.
Lee, A.
Palaio, N.
Shirley, I.
Suzuki, A.
Tran, C.
TI Planar Lithographed Superconducting LC Resonators for Frequency-Domain
Multiplexed Readout Systems
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article; Proceedings Paper
CT 16th International Workshop on Low Temperature Particle Detection (LTD)
CY JUL 20-24, 2015
CL Grenoble, FRANCE
SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA
DE Cosmic microwave background; Multiplexing; Fabrication technique;
Lithography; Superconducting resonators
AB Cosmic microwave background (CMB) polarization experiments are increasing the number of transition edge sensor (TES) bolometers to increase sensitivity. In order to maintain low thermal loading of the sub-Kelvin stage, the frequency-domain multiplexing (FDM) factor has to increase accordingly. FDM is achieved by placing TES bolometers in series with inductor-capacitor (LC) resonators, which select the readout frequency. The multiplexing factor can be raised with a large total readout bandwidth and small frequency spacing between channels. The inductance is kept constant to maintain a uniform readout bandwidth across detectors, while the maximum acceptable value is determined by bolometer stability. Current technology relies on commercially available ceramic chip capacitors. These have high scatter in their capacitance thereby requiring large frequency spacing. Furthermore, they have high equivalent series resistance (ESR) at higher frequencies and are time consuming and tedious to hand assemble via soldering. A solution lies in lithographed, planar spiral inductors (currently in use by some experiments) combined with interdigitated capacitors on a silicon (Si) substrate. To maintain reasonable device dimensions, we have reduced trace and gap widths of the LCs to 4 m. We increased the inductance from 16 to 60 H to achieve a higher packing density, a requirement for FDM systems with large multiplexing factors. Additionally, the Si substrate yields low ESR values across the entire frequency range and lithography makes mass production of LC pairs possible. We reduced mutual inductance between inductors by placing them in a checkerboard pattern with the capacitors, thereby increasing physical distances between adjacent inductors. We also reduce magnetic coupling of inductors with external sources by evaporating a superconducting ground plane onto the backside of the substrate. We report on the development of lithographed LCs in the 1-5 MHz range for use with FDM systems. These resonators will be used by CMB polarization experiments such as Polarbear-2, Simons Array, and SPT-3G. Existing FDM systems have multiplexing factors up to 16. We report the extension to 40, i.e., Polarbear-2, and 68, i.e., SPT-3G. We present the design criteria of Polarbear-2's LC circuits, the fabrication techniques, and the testing. Concerns such as yield, accuracy in frequency, loss, and mutual inductance between spatially neighboring channels will be discussed.
C1 [Rotermund, K.; Chapman, S.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada.
[Barch, B.; Lee, A.; Shirley, I.; Suzuki, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Palaio, N.; Tran, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Phys, Berkeley, CA 94720 USA.
[Hattori, K.] Univ Tokyo, Kavli Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan.
RP Rotermund, K (reprint author), Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada.
EM kaja@dal.ca
NR 8
TC 1
Z9 1
U1 6
U2 6
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD JUL
PY 2016
VL 184
IS 1-2
BP 486
EP 491
DI 10.1007/s10909-016-1554-4
PG 6
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DP7OX
UT WOS:000378689800076
ER
PT J
AU Hattori, K
Akiba, Y
Arnold, K
Barron, D
Bender, AN
Cukierman, A
de Haan, T
Dobbs, M
Elleflot, T
Hasegawa, M
Hazumi, M
Holzapfel, W
Hori, Y
Keating, B
Kusaka, A
Lee, A
Montgomery, J
Rotermund, K
Shirley, I
Suzuki, A
Whitehorn, N
AF Hattori, K.
Akiba, Y.
Arnold, K.
Barron, D.
Bender, A. N.
Cukierman, A.
de Haan, T.
Dobbs, M.
Elleflot, T.
Hasegawa, M.
Hazumi, M.
Holzapfel, W.
Hori, Y.
Keating, B.
Kusaka, A.
Lee, A.
Montgomery, J.
Rotermund, K.
Shirley, I.
Suzuki, A.
Whitehorn, N.
TI Development of Readout Electronics for POLARBEAR-2 Cosmic Microwave
Background Experiment
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article; Proceedings Paper
CT 16th International Workshop on Low Temperature Particle Detection (LTD)
CY JUL 20-24, 2015
CL Grenoble, FRANCE
SP Air Liquide, Cryoconcept, CRYOGEN Ltd, Entropy, XIA
DE TES bolometer; Frequency-domain multiplexing; Cosmic microwave
background; POLARBEAR-2; Digital feedback
AB The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2 (Suzuki in J Low Temp Phys 176:719, 2014), having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors for LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. We have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).
C1 [Hattori, K.] Univ Tokyo, Kavli IPMU WPI, UTIAS, Kashiwa, Chiba 2778583, Japan.
[Akiba, Y.; Hasegawa, M.; Hazumi, M.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan.
[Arnold, K.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.
[Barron, D.; Cukierman, A.; de Haan, T.; Holzapfel, W.; Hori, Y.; Lee, A.; Shirley, I.; Suzuki, A.; Whitehorn, N.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Bender, A. N.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Dobbs, M.; Montgomery, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 0G4, Canada.
[Elleflot, T.; Keating, B.] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA.
[Kusaka, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Rotermund, K.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada.
RP Hattori, K (reprint author), Univ Tokyo, Kavli IPMU WPI, UTIAS, Kashiwa, Chiba 2778583, Japan.
EM khattori@berkeley.edu
NR 10
TC 4
Z9 4
U1 4
U2 4
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD JUL
PY 2016
VL 184
IS 1-2
BP 512
EP 518
DI 10.1007/s10909-015-1448-x
PG 7
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DP7OX
UT WOS:000378689800080
ER
PT J
AU Lupini, AR
Chi, M
Jesse, S
AF Lupini, A. R.
Chi, M.
Jesse, S.
TI Rapid aberration measurement with pixelated detectors
SO JOURNAL OF MICROSCOPY
LA English
DT Article
DE STEM; aberration; ptychography
ID ELECTRON-MICROSCOPY; ATOMIC-RESOLUTION; STEM INSTRUMENT; PTYCHOGRAPHY;
RECONSTRUCTION; IMPLEMENTATION; RONCHIGRAM
AB Aberration-corrected microscopy in a scanning transmission electron microscope requires the fast and accurate measurement of lens aberrations to align or tune' the corrector. Here, we demonstrate a method to measure aberrations based on acquiring a 4D data set on a pixelated detector. Our method is compared to existing procedures and the choice of experimental parameters is examined. The accuracy is similar to existing methods, but in principle this procedure can be performed in a few seconds and extended to arbitrary order. This method allows rapid measurement of aberrations and represents a step towards more automated electron microscopy.
Lay description Imperfections of the electron-optical lenses provide the main resolution limit in modern high-performance transmission electron microscopy. Correction of these aberrations' in a scanning transmission electron microscope requires the fast and accurate measurement of lens aberrations to align or tune' the corrector. Here, we demonstrate a method to measure aberrations based on acquiring the scattering distribution at every probe position. This procedure results in 4D data set, which can be transformed to give an array of real-space images. Cross-correlating these images gives the gradient of the aberration function, from which the aberrations can be determined by a least-squares fit. The method is compared to existing procedures to measure aberrations and how various experimental parameters affect the accuracy is examined. The accuracy is found to be similar to the best existing methods, but in principle this procedure can be performed in a few seconds and extended to arbitrary order measurement. This method allows rapid measurement of aberrations and represents a step towards more automated electron microscopy.
C1 [Lupini, A. R.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA.
[Chi, M.; Jesse, S.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA.
[Lupini, A. R.; Jesse, S.] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN USA.
RP Lupini, AR (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM arl1000@ornl.gov
RI Chi, Miaofang/Q-2489-2015
OI Chi, Miaofang/0000-0003-0764-1567
FU Materials Sciences and Engineering Division, Basic Energy Sciences,
Office of Science, U.S. Department of Energy; Oak Ridge National
Laboratory's Center for Nanophase Materials Sciences - Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy; Laboratory-Directed Research and Development Program of Oak
Ridge National Laboratory
FX Research supported by the Materials Sciences and Engineering Division,
Basic Energy Sciences, Office of Science, U.S. Department of Energy
(A.R.L.) and by Oak Ridge National Laboratory's Center for Nanophase
Materials Sciences, which is sponsored by the Scientific User Facilities
Division, Office of Basic Energy Sciences, U.S. Department of Energy
(M.C.). Research supported by the Laboratory-Directed Research and
Development Program of Oak Ridge National Laboratory, managed by
UT-Battelle, LLC, for the U.S. Department of Energy (S.J.). We also
acknowledge J.C. Idrobo, S.V. Kalinin, A.Y. Borisevich and M.F. Chisholm
for critical reading of this manuscript.
NR 28
TC 0
Z9 0
U1 6
U2 11
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0022-2720
EI 1365-2818
J9 J MICROSC-OXFORD
JI J. Microsc..
PD JUL
PY 2016
VL 263
IS 1
BP 43
EP 50
DI 10.1111/jmi.12372
PG 8
WC Microscopy
SC Microscopy
GA DQ4II
UT WOS:000379167100005
PM 26832842
ER
PT J
AU Morales, AG
Stempinski, ES
Xiao, X
Patel, A
Panna, A
Olivier, KN
Mcshane, PJ
Robinson, C
George, AJ
Donahue, DR
Chen, P
Wen, H
AF Morales, A. G.
Stempinski, E. S.
Xiao, X.
Patel, A.
Panna, A.
Olivier, K. N.
Mcshane, P. J.
Robinson, C.
George, A. J.
Donahue, D. R.
Chen, P.
Wen, H.
TI Micro-CT scouting for transmission electron microscopy of human tissue
specimens
SO JOURNAL OF MICROSCOPY
LA English
DT Article
DE bench-top micro-CT scanner; micro-CT scouting; three-dimensional
visualization; transmission electron microscopy
ID COMPUTED-TOMOGRAPHY; LIGHT
AB Transmission electron microscopy (TEM) provides sub-nanometre-scale details in volumetric samples. Samples such as pathology tissue specimens are often stained with a metal element to enhance contrast, which makes them opaque to optical microscopes. As a result, it can be a lengthy procedure to find the region of interest inside a sample through sectioning. We describe micro-CT scouting for TEM that allows noninvasive identification of regions of interest within a block sample to guide the sectioning step. In a tissue pathology study, a bench-top micro-CT scanner with 10 m resolution was used to determine the location of patches of the mucous membrane in osmium-stained human nasal scraping samples. Once the regions of interest were located, the sample block was sectioned to expose that location, followed by ultra-thin sectioning and TEM to inspect the internal structure of the cilia of the membrane epithelial cells with nanometre resolution. This method substantially reduced the time and labour of the search process from typically 20 sections for light microscopy to three sections with no added sample preparation.
Lay description Electron microscopy provides very high levels of detail in a small area, and thus the question of where to look in an opaque sample, such as a stained tissue specimen, needs to be answered by sectioning the sample in small steps and examining the sections under a light microscope, until the region of interest is found. The search process can be lengthy and labor intensive, especially for a study involving a large number of samples. Small areas of interest can be missed in the process if not enough regions are examined. We describe a method to directly locate the region of interest within a whole sample using micro-CT imaging, bypassing the need of blindly sectioning. Micro-CT enables locating the region within 3D space; this information provides a guide for sectioning the sample to expose that precise location for high resolution electron microscopy imaging. In a human tissue specimen study, this method considerably reduced the time and labor of the search process.
C1 [Morales, A. G.; Stempinski, E. S.; Patel, A.; Panna, A.; Olivier, K. N.; Mcshane, P. J.; Robinson, C.; George, A. J.; Chen, P.; Wen, H.] NHLBI, NIH, Bldg 10, Bethesda, MD 20892 USA.
[Xiao, X.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Donahue, D. R.] NINDS, NIH, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA.
RP Wen, H (reprint author), NHLBI, NIH, Bldg 10, Bethesda, MD 20892 USA.
EM wenh@nhlbi.nih.gov
RI Wen, Han/G-3081-2010
OI Wen, Han/0000-0001-6844-2997
FU DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]
FX The authors thank Patricia Connelly of the NHLBIEM Core for her
assistance with electron microscopy. The authors thank Douglas Morris of
the NIH Mouse Imaging Facility for his assistance with micro-CT. This
research used resources of the Advanced Photon Source, a U.S. Department
of Energy (DOE) Office of Science User Facility operated for the DOE
Office of Science by Argonne National Laboratory under Contract No.
DE-AC02-06CH11357.
NR 11
TC 0
Z9 0
U1 2
U2 2
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0022-2720
EI 1365-2818
J9 J MICROSC-OXFORD
JI J. Microsc..
PD JUL
PY 2016
VL 263
IS 1
BP 113
EP 117
DI 10.1111/jmi.12385
PG 5
WC Microscopy
SC Microscopy
GA DQ4II
UT WOS:000379167100012
PM 26854176
ER
PT J
AU Ansari, F
Gludovatz, B
Kozak, A
Ritchie, RO
Pruitt, LA
AF Ansari, Farzana
Gludovatz, Bernd
Kozak, Adam
Ritchie, Robert O.
Pruitt, Lisa A.
TI Notch fatigue of ultrahigh molecular weight polyethylene (UHMWPE) used,
in total joint replacements
SO JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS
LA English
DT Article
DE UHMWPE; Notch fatigue; Fatigue crack propagation; Cross-linking; Vitamin
E
ID CROSS-LINKED UHMWPE; CRACK-PROPAGATION; VITAMIN-E;
MECHANICAL-PROPERTIES; STRESS-CONCENTRATIONS; ACETABULAR LINERS; EARLY
FAILURE; TIBIAL POST; RESISTANCE; BEHAVIOR
AB Ultrahigh molecular weight polyethylene (UHMWPE) has remained the primary polymer used in hip, knee and shoulder replacements for over 50 years. Recent case studies have demonstrated that catastrophic fatigue fracture of the polymer can severely limit device lifetime and are often associated with stress concentration (notches) integrated into the design. This study evaluates the influence of notch geometry on the fatigue of three formulations of UHMWPE that are in use today. A linear-elastic fracture mechanics approach is adopted to evaluate crack propagation as a function of notch root radius, heat treatment and Vitamin E additions. Specifically, a modified stress-intensity factor that accounts for notch geometry was utilized to model the crack driving force. The degree of notch plasticity for each material/notch combination was further evaluated using finite element methods. Experimental evaluation of crack speed as a function of stress intensity was conducted under cyclic tensile loading, taking crack length and notch plasticity into consideration. Results demonstrated that crack propagation in UHMWPE emanating from a notch was primarily affected by microstructural influences (cross-linking) rather than differences in notch geometry. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Ansari, Farzana; Ritchie, Robert O.; Pruitt, Lisa A.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Gludovatz, Bernd; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Kozak, Adam] Cambridge Polymer Grp, Boston, MA USA.
[Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Ansari, F (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
EM ansari.farzana@gmail.com
RI Ritchie, Robert/A-8066-2008;
OI Ritchie, Robert/0000-0002-0501-6998; Gludovatz,
Bernd/0000-0002-2420-3879
FU Mechanical Behavior of Materials Program at the Lawrence Berkeley
National Laboratory by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, Materials Sciences and Engineering
Division [KC 13]
FX We would like to acknowledge the assistance of Gio Gajudo, Connor
Purivance, and Noah Bonnheim in the completion of computational and
experimental portions of this study. The involvement of BG and ROR was
supported through the Mechanical Behavior of Materials Program (KC 13)
at the Lawrence Berkeley National Laboratory by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division.
NR 60
TC 0
Z9 0
U1 4
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1751-6161
EI 1878-0180
J9 J MECH BEHAV BIOMED
JI J. Mech. Behav. Biomed. Mater.
PD JUL
PY 2016
VL 60
BP 267
EP 279
DI 10.1016/j.jmbbm.2016.02.014
PG 13
WC Engineering, Biomedical; Materials Science, Biomaterials
SC Engineering; Materials Science
GA DQ1OA
UT WOS:000378969100025
PM 26919563
ER
PT J
AU Bhandari, YR
Jiang, W
Stahlberg, EA
Stagno, JR
Wang, YX
AF Bhandari, Yuba R.
Jiang, Wei
Stahlberg, Eric A.
Stagno, Jason R.
Wang, Yun-Xing
TI Modeling RNA topological structures using small angle X-ray scattering
SO METHODS
LA English
DT Article
DE SAXS; RNA; Conformation; Motif; Moves; Topological
ID REV RESPONSE ELEMENT; STRUCTURE PREDICTION; SECONDARY STRUCTURE;
FLEXIBLE PROTEINS; RESOLUTION; CONSTRAINTS; MECHANISMS; PATHWAYS;
RIBOZYME; IFOLDRNA
AB Detailed understanding of the structure and function relationship of RNA requires knowledge about RNA three-dimensional (3D) topological folding. However, there are very few unique RNA entries in structure databases. This is due to challenges in determining 3D structures of RNA using conventional methods, such as X-ray crystallography and NMR spectroscopy, despite significant advances in both of these technologies. Computational methods have come a long way in accurately predicting the 3D structures of small (<50 nt) RNAs to within a few angstroms compared to their native folds. However, lack of an apparent correlation between an RNA primary sequence and its 3D fold ultimately limits the success of purely computational approaches. In this context, small angle X-ray scattering (SAXS) serves as a valuable tool by providing global shape information of RNA. In this article, we review the progress in determining RNA 3D topological structures, including a new method that combines secondary structural information and SAXS data to sample conformations generated through hierarchical moves of commonly observed RNA motifs. (C) 2016 Published by Elsevier Inc.
C1 [Bhandari, Yuba R.; Stagno, Jason R.; Wang, Yun-Xing] NCI, Prot Nucle Acid Interact Sect, Struct Biophys Lab, Ctr Canc Res,NIH, Frederick, MD 21702 USA.
[Jiang, Wei] Argonne Natl Lab, Lemont, IL USA.
[Stahlberg, Eric A.] Frederick Natl Lab Canc Res, Data Sci & Informat Technol Program, Frederick, MD 21702 USA.
RP Bhandari, YR (reprint author), NCI, Prot Nucle Acid Interact Sect, Struct Biophys Lab, Ctr Canc Res,NIH, Frederick, MD 21702 USA.
EM bhandariyr@mail.nih.gov
FU Intramural Research Programs of the National Cancer Institute; DOE
Office of Science User Facility [DE-AC02-06CH11357]
FX This work was supported by the Intramural Research Programs of the
National Cancer Institute. The content of this publication does not
necessarily reflect the views or policies of the Department of Health
and Human Services, nor does mention of trade names, commercial
products, or organizations imply endorsement by the US government. This
research utilized the computational resources of the NIH HPC Biowulf
cluster (http://hpc.nih.gov) and resources of the Argonne Leadership
Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC02-06CH11357.
NR 47
TC 2
Z9 2
U1 7
U2 12
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1046-2023
EI 1095-9130
J9 METHODS
JI Methods
PD JUL 1
PY 2016
VL 103
BP 18
EP 24
DI 10.1016/j.ymeth.2016.04.015
PG 7
WC Biochemical Research Methods; Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA DQ1ST
UT WOS:000378981400004
PM 27090001
ER
PT J
AU Hulscher, RM
Bohon, J
Rappe, MC
Gupta, S
D'Mello, R
Sullivan, M
Ralston, CY
Chance, MR
Woodson, SA
AF Hulscher, Ryan M.
Bohon, Jen
Rappe, Mollie C.
Gupta, Sayan
D'Mello, Rhijuta
Sullivan, Michael
Ralston, Cone Y.
Chance, Mark R.
Woodson, Sarah A.
TI Probing the structure of ribosome assembly intermediates in vivo using
DMS and hydroxyl radical footprinting
SO METHODS
LA English
DT Article
DE RNA structure; Ribosome assembly; Hydroxyl radical footprinting;
Dimethylsulfate; 4-Thiouridine; Synchrotron X-ray beamline
ID QUANTITATIVE MASS-SPECTROMETRY; ESCHERICHIA-COLI RIBOSOMES; RNA
STRUCTURE; LIVING CELLS; 30 S; PROTEIN; SUBUNITS; DYNAMICS; ASSOCIATION;
BIOGENESIS
AB The assembly of the Escherichia coli ribosome has been widely studied and characterized in vitro. Despite this, ribosome biogenesis in living cells is only partly understood because assembly is coupled with transcription, modification and processing of the pre-ribosomal RNA. We present a method for footprinting and isolating pre-rRNA as it is synthesized in E. coli cells. Pre-rRNA synthesis is synchronized by starvation, followed by nutrient upshift. RNA synthesized during outgrowth is metabolically labeled to facilitate isolation of recent transcripts. Combining this technique with two in vivo RNA probing methods, hydroxyl radical and DMS footprinting, allows the structure of nascent RNA to be probed over time. Together, these can be used to determine changes in the structures of ribosome assembly intermediates as they fold in vivo. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Hulscher, Ryan M.; Rappe, Mollie C.; Woodson, Sarah A.] Johns Hopkins Univ, TC Jenkins Dept Biophys, 3400 N Charles St, Baltimore, MD 21218 USA.
[Bohon, Jen; D'Mello, Rhijuta; Sullivan, Michael; Chance, Mark R.] Case Western Reserve Univ, Ctr Prote & Bioinformat, 10900 Euclid Ave, Cleveland, OH 44106 USA.
[Bohon, Jen; D'Mello, Rhijuta; Sullivan, Michael; Chance, Mark R.] Case Western Reserve Univ, Ctr Synchrotron Biosci, 10900 Euclid Ave, Cleveland, OH 44106 USA.
[Gupta, Sayan; Ralston, Cone Y.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA.
RP Woodson, SA (reprint author), Johns Hopkins Univ, TC Jenkins Dept Biophys, 3400 N Charles St, Baltimore, MD 21218 USA.
EM swoodson@jhu.edu
OI Woodson, Sarah/0000-0003-0170-1987
FU National Institutes of Health [R01 GM60819]; Office of Science, Office
of Basic Energy Sciences, of the U.S. Department of Energy
[DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-AC02-98CH10886]; NIBIB [P30-EB0966];
National Science Foundation [DBI-1228549]
FX The authors thank Donald Abel, Rich Celestre, and John Toomey for
technical assistance. This work was supported by a grant from the
National Institutes of Health (R01 GM60819 to S.A.W.). The Advanced
Light Source is supported by the Director, Office of Science, Office of
Basic Energy Sciences, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. The National Synchrotron Light Source, Brookhaven
National Laboratory, was supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-98CH10886. The Center for Synchrotron Biosciences at the
National Synchrotron Light Sources is supported by NIBIB under
P30-EB0966, with research instrumentation development supported by the
National Science Foundation under DBI-1228549.
NR 54
TC 3
Z9 3
U1 4
U2 6
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1046-2023
EI 1095-9130
J9 METHODS
JI Methods
PD JUL 1
PY 2016
VL 103
BP 49
EP 56
DI 10.1016/j.ymeth.2016.03.012
PG 8
WC Biochemical Research Methods; Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA DQ1ST
UT WOS:000378981400007
PM 27016143
ER
PT J
AU Ye, Y
Xiao, J
Wang, HL
Ye, ZL
Zhu, HY
Zhao, M
Wang, Y
Zhao, JH
Yin, XB
Zhang, X
AF Ye, Yu
Xiao, Jun
Wang, Hailong
Ye, Ziliang
Zhu, Hanyu
Zhao, Mervin
Wang, Yuan
Zhao, Jianhua
Yin, Xiaobo
Zhang, Xiang
TI Electrical generation and control of the valley carriers in a monolayer
transition metal dichalcogenide
SO NATURE NANOTECHNOLOGY
LA English
DT Article
ID EXCITON BINDING-ENERGY; P-N DIODES; MOLYBDENUM-DISULFIDE; WS2;
POLARIZATION; MOS2; SPIN; SEMICONDUCTOR; HELICITY
AB Electrically controlling the flow of charge carriers is the foundation of modern electronics. By accessing the extra spin degree of freedom (DOF) in electronics, spintronics allows for information processes such as magnetoresistive random-access memory(1). Recently, atomic membranes of transitionmetal dichalcogenides (TMDCs) were found to support unequal and distinguishable carrier distribution in different crystal momentum valleys. This valley polarization of carriers enables a new DOF for information processing(2-4). A variety of valleytronic devices such as valley filters and valves have been proposed(5), and optical valley excitation has been observed(2-4). However, to realize its potential in electronics it is necessary to electrically control the valley DOF, which has so far remained a significant challenge. Here, we experimentally demonstrate the electrical generation and control of valley polarization. This is achieved through spin injection via a diluted ferromagnetic semiconductor and measured through the helicity of the electroluminescence due to the spin-valley locking in TMDC monolayers(6). We also report a new scheme of electronic devices that combine both the spin and valley DOFs. Such direct electrical generation and control of valley carriers opens up new dimensions in utilizing both the spin and valley DOFs for next-generation electronics and computing.
C1 [Ye, Yu; Xiao, Jun; Ye, Ziliang; Zhu, Hanyu; Zhao, Mervin; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA.
[Wang, Hailong; Zhao, Jianhua] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, POB 912, Beijing 10083, Peoples R China.
[Yin, Xiaobo] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA.
[Yin, Xiaobo] Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80309 USA.
[Zhang, Xiang] Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Zhang, Xiang] King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia.
RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA.; Zhang, X (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Zhang, X (reprint author), King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia.
EM xiang@berkeley.edu
RI Wang, Yuan/F-7211-2011; Wang, Hailong/C-7859-2013
FU Office of Naval Research Multidisciplinary University Research
Initiative program [N00014-13-1-0649]; National Science Foundation
[EFMA-1542741]; MOST of China [2015CB921503]; NSFC [61334006]
FX The authors acknowledge financial support from Office of Naval Research
Multidisciplinary University Research Initiative program under grant no.
N00014-13-1-0649, and National Science Foundation (EFMA-1542741). J.Z.
and H.W. acknowledge support from MOST of China (grant no. 2015CB921503)
and NSFC (grant no. 61334006). Y.Y. thanks T. Cao of the University of
California, Berkeley for helpful discussions.
NR 32
TC 7
Z9 7
U1 41
U2 91
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1748-3387
EI 1748-3395
J9 NAT NANOTECHNOL
JI Nat. Nanotechnol.
PD JUL
PY 2016
VL 11
IS 7
BP 597
EP +
DI 10.1038/NNANO.2016.49
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA DQ9BY
UT WOS:000379506600009
PM 27043196
ER
PT J
AU Su, YD
Liu, C
Brittman, S
Tang, JY
Fu, A
Kornienko, N
Kong, Q
Yang, PD
AF Su, Yude
Liu, Chong
Brittman, Sarah
Tang, Jinyao
Fu, Anthony
Kornienko, Nikolay
Kong, Qiao
Yang, Peidong
TI Single-nanowire photoelectrochemistry
SO NATURE NANOTECHNOLOGY
LA English
DT Article
ID SILICON NANOWIRES; CO2; REDUCTION; ARRAYS; CELLS; EVOLUTION
AB Photoelectrochemistry(1-3) is one of several promising approaches(4,5) for the realization of efficient solar-to-fuel conversion. Recent work has shown that photoelectrodes made of semiconductor nano-/microwire arrays can have better photoelectrochemical performance(6-8) than their planar counterparts because of their unique properties, such as high surface area(9-11). Although considerable research effort has focused on studying wire arrays, the inhomogeneity in the geometry, doping, defects and catalyst loading present in such arrays can obscure the link between these properties and the photoelectrochemical performance of the wires, and correlating performance with the specific properties of individual wires is difficult because of ensemble averaging. Here, we show that a single-nanowire-based photoelectrode platform can be used to reliably probe the current-voltage (I-V) characteristics of individual nanowires. We find that the photovoltage output of ensemble array samples can be limited by poorly performing individual wires, which highlights the importance of improving nanowire homogeneity within an array. Furthermore, the platform allows the flux of photogenerated electrons to be quantified as a function of the lengths and diameters of individual nanowires, and we find that the flux over the entire nanowire surface (7-30 electrons nm(-2) s(-1)) is significantly reduced as compared with that of a planar analogue (similar to 1,200 electrons nm(-2) s(-1)). Such characterization of the photogenerated carrier flux at the semiconductor/electrolyte interface is essential for designing nanowire photoelectrodes that match the activity of their loaded electrocatalysts.
C1 [Su, Yude; Liu, Chong; Brittman, Sarah; Tang, Jinyao; Fu, Anthony; Kornienko, Nikolay; Kong, Qiao; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Liu, Chong; Brittman, Sarah; Tang, Jinyao; Fu, Anthony; Kornienko, Nikolay; Yang, Peidong] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Yang, Peidong] Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA.
RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA.
EM p_yang@berkeley.edu
OI Liu, Chong/0000-0001-5546-3852
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division, of the US Department of Energy
[DE-AC02-05CH11231]; USTC-Suzhou Industrial Park
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the US Department of Energy (contract no. DE-AC02-05CH11231, Pchem).
Y.S. is supported by graduate fellowship support from USTC-Suzhou
Industrial Park. High-resolution transmission electron microscopy was
performed at the National Center of Electron Microscopy (NCEM) in the
Molecular Foundry at Lawrence Berkeley National Laboratory. The authors
thank K. Sakimoto, J. Resasco, A. Wong, S. Eaton and J. Lim for
discussions. The authors acknowledge the Marvell Nanofabrication
Laboratory for use of their facilities.
NR 30
TC 7
Z9 7
U1 64
U2 129
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1748-3387
EI 1748-3395
J9 NAT NANOTECHNOL
JI Nat. Nanotechnol.
PD JUL
PY 2016
VL 11
IS 7
BP 609
EP +
DI 10.1038/NNANO.2016.30
PG 5
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA DQ9BY
UT WOS:000379506600011
PM 27018660
ER
PT J
AU He, XW
Gao, WL
Xie, LJ
Li, B
Zhang, Q
Lei, SD
Robinson, JM
Haroz, EH
Doorn, SK
Wang, WP
Vajtai, R
Ajayan, PM
Adams, WW
Hauge, RH
Kono, J
AF He, Xiaowei
Gao, Weilu
Xie, Lijuan
Li, Bo
Zhang, Qi
Lei, Sidong
Robinson, John M.
Haroz, Erik H.
Doorn, Stephen K.
Wang, Weipeng
Vajtai, Robert
Ajayan, Pulickel M.
Adams, W. Wade
Hauge, Robert H.
Kono, Junichiro
TI Wafer-scale monodomain films of spontaneously aligned single-walled
carbon nanotubes
SO NATURE NANOTECHNOLOGY
LA English
DT Article
ID ELECTRONIC-PROPERTIES; LIQUID-CRYSTALS; THIN-FILMS; BROAD-BAND;
TRANSPARENT; ALIGNMENT; PHOTOLUMINESCENCE; PHOTODETECTOR; CONDUCTIVITY;
PERFORMANCE
AB The one-dimensional character of electrons, phonons and excitons in individual single-walled carbon nanotubes leads to extremely anisotropic electronic, thermal and optical properties. However, despite significant efforts to develop ways to produce large-scale architectures of aligned nanotubes, macroscopic manifestations of such properties remain limited. Here, we show that large (>cm(2)) monodomain films of aligned single-walled carbon nanotubes can be prepared using slow vacuum filtration. The produced films are globally aligned within +/- 1.5 degrees (a nematic order parameter of similar to 1) and are highly packed, containing 1 x 10(6) nanotubes in a cross-sectional area of 1 mu m(2). The method works for nanotubes synthesized by various methods, and film thickness is controllable from a few nanometres to similar to 100 nm. We use the approach to create ideal polarizers in the terahertz frequency range and, by combining the method with recently developed sorting techniques, highly aligned and chirality-enriched nanotube thin-film devices. Semiconductor-enriched devices exhibit polarized light emission and polarization-dependent photocurrent, as well as anisotropic conductivities and transistor action with high on/off ratios.
C1 [He, Xiaowei; Gao, Weilu; Zhang, Qi; Robinson, John M.; Kono, Junichiro] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA.
[Xie, Lijuan] Zhejiang Univ, Coll Biosyst Engn & Food Sci, Hangzhou 310058, Zhejiang, Peoples R China.
[Li, Bo; Lei, Sidong; Wang, Weipeng; Vajtai, Robert; Ajayan, Pulickel M.; Adams, W. Wade; Hauge, Robert H.; Kono, Junichiro] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA.
[Haroz, Erik H.; Doorn, Stephen K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Hauge, Robert H.] Rice Univ, Dept Chem, Houston, TX 77005 USA.
[Kono, Junichiro] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
[Robinson, John M.] Univ Colorado, Dept Phys, Boulder, CO 80302 USA.
RP Kono, J (reprint author), Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA.; Kono, J (reprint author), Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA.; Kono, J (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
EM kono@rice.edu
RI Gao, Weilu/O-7521-2016; Lei, Sidong/A-8600-2016; Li, Bo/A-2634-2014
OI Lei, Sidong/0000-0001-9129-2202; Li, Bo/0000-0001-9766-7925
FU Basic Energy Sciences (BES) programme of the US Department of Energy
[DE-FG02-06ER46308]; Robert A. Welch Foundation [C-1509]; LANL LDRD
programme
FX This work was supported by the Basic Energy Sciences (BES) programme of
the US Department of Energy through grant no. DE-FG02-06ER46308 (for the
preparation and characterization of aligned carbon nanotube films) and
the Robert A. Welch Foundation through grant no. C-1509 (for terahertz
and infrared characterization). S.K.D. and E.H.H. acknowledge support
from the LANL LDRD programme. Portions of this work were performed at
the Center for Integrated Nanotechnologies, a US Department of Energy,
Office of Science user facility. The authors thank H. Kasai, A. Zubair,
C. Sewell, S. Peters and T. Higashira for their assistance with
terahertz characterization measurements and I. Kurganskaya, A. Luttge,
R. Headrick and M. Pasquali for discussions.
NR 38
TC 14
Z9 14
U1 25
U2 57
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1748-3387
EI 1748-3395
J9 NAT NANOTECHNOL
JI Nat. Nanotechnol.
PD JUL
PY 2016
VL 11
IS 7
BP 633
EP +
DI 10.1038/NNANO.2016.44
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA DQ9BY
UT WOS:000379506600015
PM 27043199
ER
PT J
AU Tunuguntla, RH
Allen, FI
Kim, K
Belliveau, A
Noy, A
AF Tunuguntla, Ramya H.
Allen, Frances I.
Kim, Kyunghoon
Belliveau, Allison
Noy, Aleksandr
TI Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins
SO NATURE NANOTECHNOLOGY
LA English
DT Article
ID ION-CHANNEL; MEMBRANES; WATER; PERMEABILITY; CONDUCTANCE; ENERGIES;
VESICLES; BILAYERS; FORCE; MODEL
AB Proton transport plays an important role in many biological processes due to the ability of protons to rapidly translocate along chains of hydrogen-bonded water molecules. Molecular dynamics simulations have predicted that confinement in hydrophobic nanochannels should enhance the rate of proton transport. Here, we show that 0.8-nm-diameter carbon nanotube porins, which promote the formation of one-dimensional water wires, can support proton transport rates exceeding those of bulk water by an order of magnitude. The transport rates in these narrow nanotube pores also exceed those of biological channels and Nafion. With larger 1.5-nm-diameter nanotube porins, proton transport rates comparable to bulk water are observed. We also show that the proton conductance of these channels can be modulated by the presence of Ca2+ ions. Our results illustrate the potential of small-diameter carbon nanotube porins as a proton conductor material and suggest that strong spatial confinement is a key factor in enabling efficient proton transport.
C1 [Tunuguntla, Ramya H.; Kim, Kyunghoon; Belliveau, Allison; Noy, Aleksandr] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, 7000 East Ave, Livermore, CA 94550 USA.
[Allen, Frances I.] Univ Calif Berkeley, Dept Mat Sci & Engn, 210 Hearst Ave, Berkeley, CA 94720 USA.
[Allen, Frances I.] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Noy, Aleksandr] Univ Calif Merced, Sch Nat Sci, 5200 N Lake Rd, Merced, CA 94343 USA.
[Kim, Kyunghoon] Sungkyunkwan Univ, Sch Mech Engn, 2066 Seobu Ro, Suwon 16419, South Korea.
RP Noy, A (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, 7000 East Ave, Livermore, CA 94550 USA.; Noy, A (reprint author), Univ Calif Merced, Sch Nat Sci, 5200 N Lake Rd, Merced, CA 94343 USA.
EM noy1@llnl.gov
FU US Department of Energy [DE-AC52-07NA27344]; US Department of Energy,
Office of Basic Energy Sciences, Division of Materials Sciences and
Engineering [SCW0972]; Office of Science, Office of Basic Energy
Sciences, of the US Department of Energy [DE-AC02-05CH11231]
FX We thank A.T. Pham for the images used in Fig. 1b,c, and Y. Yu for
assistance with cryo-EM imaging. A.B. acknowledges SULI summer
internship programme funding from the US Department of Energy. This work
was supported by the US Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering under Award
SCW0972. Work at the Lawrence Livermore National Laboratory was
performed under the auspices of the US Department of Energy under
Contract DE-AC52-07NA27344. Work at the Molecular Foundry was supported
by the Office of Science, Office of Basic Energy Sciences, of the US
Department of Energy under Contract No. DE-AC02-05CH11231.
NR 38
TC 7
Z9 7
U1 18
U2 31
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1748-3387
EI 1748-3395
J9 NAT NANOTECHNOL
JI Nat. Nanotechnol.
PD JUL
PY 2016
VL 11
IS 7
BP 639
EP +
DI 10.1038/NNANO.2016.43
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA DQ9BY
UT WOS:000379506600016
PM 27043198
ER
PT J
AU Wu, Y
Wang, LL
Mun, E
Johnson, DD
Mou, DX
Huang, LN
Lee, Y
Bud'ko, SL
Canfield, PC
Kaminski, A
AF Wu, Yun
Wang, Lin-Lin
Mun, Eundeok
Johnson, D. D.
Mou, Daixiang
Huang, Lunan
Lee, Yongbin
Bud'ko, S. L.
Canfield, P. C.
Kaminski, Adam
TI Dirac node arcs in PtSn4
SO NATURE PHYSICS
LA English
DT Article
ID WEYL FERMION SEMIMETAL; ULTRAHIGH MOBILITY; MAGNETORESISTANCE;
DISCOVERY; CD3AS2; SURFACE
AB In topological quantum materials(1-3) the conduction and valence bands are connected at points or along lines in the momentum space. A number of studies have demonstrated that several materials are indeed Dirac/Weyl semimetals(4-8). However, there is still no experimental confirmation of materials with line nodes, in which the Dirac nodes form closed loops in the momentum space(2,3). Here we report the discovery of a novel topological structure-Dirac node arcs-in the ultrahigh magnetoresistive material PtSn4 using laser-based angle-resolved photoemission spectroscopy data and density functional theory calculations. Unlike the closed loops of line nodes, the Dirac node arc structure arises owing to the surface states and resembles the Dirac dispersion in graphene that is extended along a short line in the momentum space. We propose that this reported Dirac node arc structure is a novel topological state that provides an exciting platform for studying the exotic properties of Dirac fermions.
C1 [Wu, Yun; Wang, Lin-Lin; Mun, Eundeok; Johnson, D. D.; Mou, Daixiang; Huang, Lunan; Lee, Yongbin; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA.
[Wu, Yun; Mun, Eundeok; Johnson, D. D.; Mou, Daixiang; Huang, Lunan; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Johnson, D. D.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
[Mun, Eundeok] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
RP Canfield, PC; Kaminski, A (reprint author), Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA.; Canfield, PC; Kaminski, A (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
EM canfield@ameslab.gov; kaminski@ameslab.gov
RI Mou, Daixiang/D-1752-2014;
OI Mun, Eundeok/0000-0001-5120-1492; Mou, Daixiang/0000-0002-1316-4384;
Johnson, Duane/0000-0003-0794-7283
FU US Department of Energy, Office of Science, Basic Energy Sciences,
Materials Science and Engineering Division; US Department of Energy by
Iowa State University [DE-AC02-07CH11358]
FX This work was supported by the US Department of Energy, Office of
Science, Basic Energy Sciences, Materials Science and Engineering
Division. Ames Laboratory is operated for the US Department of Energy by
Iowa State University under contract No. DE-AC02-07CH11358.
NR 32
TC 16
Z9 16
U1 29
U2 51
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1745-2473
EI 1745-2481
J9 NAT PHYS
JI Nat. Phys.
PD JUL
PY 2016
VL 12
IS 7
BP 667
EP +
DI 10.1038/NPHYS3712
PG 6
WC Physics, Multidisciplinary
SC Physics
GA DQ5UG
UT WOS:000379269900023
ER
PT J
AU Schmid, EM
Bakalar, MH
Choudhuri, K
Weichsel, J
Ann, HS
Geissler, PL
Dustin, ML
Fletcher, DA
AF Schmid, Eva M.
Bakalar, Matthew H.
Choudhuri, Kaushik
Weichsel, Julian
Ann, Hyoung Sook
Geissler, Phillip L.
Dustin, Michael L.
Fletcher, Daniel A.
TI Size-dependent protein segregation at membrane interfaces
SO NATURE PHYSICS
LA English
DT Article
ID T-CELL-RECEPTOR; GREEN FLUORESCENT PROTEIN; IMMUNOGLOBULIN SUPERFAMILY;
CAENORHABDITIS-ELEGANS; IMMUNOLOGICAL SYNAPSE; ACTIVATION; ADHESION;
MECHANISMS; FUSION; ORGANIZATION
AB Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane proteins whose organization is critical for intracellular signalling. To isolate the role of membrane protein size in pattern formation, we reconstituted model membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between membrane proteins can drastically alter their organization at membrane interfaces, with as little as a similar to 5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally driven membrane height fluctuations that transiently limit access to the interface. This sensitive and highly effective means of physically segregating proteins has implications for cell-cell contacts such as T-cell immunological synapses (for example, CD45 exclusion) and epithelial cell junctions (for example, E-cadherin enrichment), as well as for protein sorting at intracellular contact points between membrane-bound organelles.
C1 [Schmid, Eva M.; Bakalar, Matthew H.; Ann, Hyoung Sook; Fletcher, Daniel A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
[Schmid, Eva M.; Bakalar, Matthew H.; Ann, Hyoung Sook; Fletcher, Daniel A.] Univ Calif Berkeley, Biophys Program, Berkeley, CA 94720 USA.
[Bakalar, Matthew H.; Fletcher, Daniel A.] Univ Calif Berkeley, UC San Francisco Grad Grp Bioengn, Berkeley, CA 94720 USA.
[Choudhuri, Kaushik; Dustin, Michael L.] NYU, Sch Med, Skirball Inst, New York, NY 10016 USA.
[Weichsel, Julian; Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Dustin, Michael L.] Univ Oxford, NDORMS, Kennedy Inst, Oxford OX3 7DL, England.
[Fletcher, Daniel A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Choudhuri, Kaushik] Univ Michigan, Sch Med, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA.
[Ann, Hyoung Sook] Univ Illinois, Inst Genom Biol, Champaign, IL 61820 USA.
RP Fletcher, DA (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.; Fletcher, DA (reprint author), Univ Calif Berkeley, Biophys Program, Berkeley, CA 94720 USA.; Fletcher, DA (reprint author), Univ Calif Berkeley, UC San Francisco Grad Grp Bioengn, Berkeley, CA 94720 USA.; Fletcher, DA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
EM fletch@berkeley.edu
OI Dustin, Michael/0000-0003-4983-6389
FU National Science Foundation (NSF); Cancer Research Institute Post
Doctoral Fellowship; National Institute of Health (NIH) [K99AI093884,
R00AI093884]; Forschungsstipendium of the Deutsche
Forschungsgemeinschaft (DFG) [We 5004/2]; NIH [R37AI043542, GM114344];
NIGMS Nanomedicine Development Center grant [PN2EY016586]; Wellcome
Trust; NIH Nanomedicine Development Center [PN2EY016546]; Chemical
Sciences, Geosciences and Biosciences Division, Office of Basic Energy
Sciences, Office of Science, US Department of Energy, FWP [SISGRKN]
FX We acknowledge R. Vale and C. Peel for helpfu discussions. This work was
supported by a Graduate Fellows Research Program grant from the National
Science Foundation (NSF) for M.H.B.; a Cancer Research Institute Post
Doctoral Fellowship and a K99 grant from the National Institute of
Health (NIH, K99AI093884 and R00AI093884) for K.C.; Forschungsstipendium
of the Deutsche Forschungsgemeinschaft (DFG grant no. We 5004/2) for
J.W.; a NIH grant (R37AI043542), a NIGMS Nanomedicine Development Center
grant (PN2EY016586) and a Wellcome Trust Principal Research Fellowship
to M.L.D.; and a NIH Nanomedicine Development Center grant (PN2EY016546)
and an NIH R01 grant (GM114344) to D.A.F. This research was also
supported by the Chemical Sciences, Geosciences and Biosciences
Division, Office of Basic Energy Sciences, Office of Science, US
Department of Energy, FWP number SISGRKN.
NR 48
TC 4
Z9 4
U1 13
U2 24
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1745-2473
EI 1745-2481
J9 NAT PHYS
JI Nat. Phys.
PD JUL
PY 2016
VL 12
IS 7
BP 704
EP +
DI 10.1038/NPHYS3678
PG 10
WC Physics, Multidisciplinary
SC Physics
GA DQ5UG
UT WOS:000379269900030
PM 27980602
ER
PT J
AU Kostka, JE
Weston, DJ
Glass, JB
Lilleskov, EA
Shaw, AJ
Turetsky, MR
AF Kostka, Joel E.
Weston, David J.
Glass, Jennifer B.
Lilleskov, Erik A.
Shaw, A. Jonathan
Turetsky, Merritt R.
TI The Sphagnum microbiome: new insights from an ancient plant lineage
SO NEW PHYTOLOGIST
LA English
DT Review
DE bacteria; fungi; methanotroph; microbiome; nitrogen fixation; peatland;
plant growth promotion; Sphagnum
ID RHIZOSPHERE MICROBIOME; BACTERIAL COMMUNITIES; METHANE PRODUCTION;
GLOBAL CHANGE; RAISED BOGS; NITROGEN; MOSSES; CARBON; PEATLANDS;
METHANOTROPHS
AB Peat mosses of the genus Sphagnum play a major role in global carbon storage and dominate many northern peatland ecosystems, which are currently being subjected to some of the most rapid climate changes on Earth. A rapidly expanding database indicates that a diverse community of microorganisms is intimately associated with Sphagnum, inhabiting the tissues and surface of the plant. Here we summarize the current state of knowledge regarding the Sphagnum microbiome and provide a perspective for future research directions. Although the majority of the microbiome remains uncultivated and its metabolic capabilities uncharacterized, prokaryotes and fungi have the potential to act as mutualists, symbionts, or antagonists of Sphagnum. For example, methanotrophic and nitrogen-fixing bacteria may benefit the plant host by providing up to 20-30% of Sphagnum carbon and nitrogen, respectively. Next-generation sequencing approaches have enabled the detailed characterization of microbiome community composition in peat mosses. However, as with other ecologically or economically important plants, our knowledge of Sphagnum-microbiome associations is in its infancy. In order to attain a predictive understanding of the role of the microbiome in Sphagnum productivity and ecosystem function, the mechanisms of plant-microbiome interactions and the metabolic potential of constituent microbial populations must be revealed.
C1 [Kostka, Joel E.; Glass, Jennifer B.] Georgia Inst Technol, Sch Biol Sci, Atlanta, GA 30332 USA.
[Kostka, Joel E.; Glass, Jennifer B.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
[Weston, David J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Lilleskov, Erik A.] US Forest Serv, No Res Stn, USDA, Houghton, MI 49931 USA.
[Shaw, A. Jonathan] Duke Univ, Dept Biol, Durham, NC 27708 USA.
[Turetsky, Merritt R.] Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada.
RP Kostka, JE (reprint author), Georgia Inst Technol, Sch Biol Sci, Atlanta, GA 30332 USA.; Kostka, JE (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
EM joel.kostka@biology.gatech.edu
FU US Department of Energy, Office of Science, Office of Biological and
Environmental Research; Terrestrial Ecosystem Science (TES) Program
under US Department of Energy [DE-SC0012088]; US Department of Energy
[DE-AC05-00OR22725]
FX This review was supported in part by the US Department of Energy, Office
of Science, Office of Biological and Environmental Research. J.E.K. was
supported by the Terrestrial Ecosystem Science (TES) Program, under US
Department of Energy contract # DE-SC0012088. Oak Ridge National
Laboratory is managed by UT-Battelle, LLC, for the US Department of
Energy under contract DE-AC05-00OR22725.
NR 61
TC 2
Z9 3
U1 21
U2 42
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0028-646X
EI 1469-8137
J9 NEW PHYTOL
JI New Phytol.
PD JUL
PY 2016
VL 211
IS 1
BP 57
EP 64
DI 10.1111/nph.13993
PG 8
WC Plant Sciences
SC Plant Sciences
GA DQ4ZE
UT WOS:000379212800007
PM 27173909
ER
PT J
AU Yang, JD
Worley, E
Ma, Q
Li, J
Torres-Jerez, I
Li, GY
Zhao, PX
Xu, Y
Tang, YH
Udvardi, M
AF Yang, Jiading
Worley, Eric
Ma, Qin
Li, Jun
Torres-Jerez, Ivone
Li, Gaoyang
Zhao, Patrick X.
Xu, Ying
Tang, Yuhong
Udvardi, Michael
TI Nitrogen remobilization and conservation, and underlying
senescence-associated gene expression in the perennial switchgrass
Panicum virgatum
SO NEW PHYTOLOGIST
LA English
DT Article
DE gene expression; nitrogen remobilization; senescence; switchgrass
(Panicum virgatum); transcription factors
ID ARABIDOPSIS LEAF SENESCENCE; TRANSCRIPTION FACTOR FAMILY; MISCANTHUS X
GIGANTEUS; BELOW-GROUND BIOMASS; SEASONAL DYNAMICS; PLANT SENESCENCE;
STRESS RESPONSES; NUTRIENT REMOVAL; L.; TOLERANCE
AB Improving nitrogen (N) remobilization from aboveground to underground organs during yearly shoot senescence is an important goal for sustainable production of switchgrass (Panicum virgatum) as a biofuel crop. Little is known about the genetic control of senescence and N use efficiency in perennial grasses such as switchgrass, which limits our ability to improve the process.
Switchgrass aboveground organs (leaves, stems and inflorescences) and underground organs (crowns and roots) were harvested every month over a 3-yr period. Transcriptome analysis was performed to identify genes differentially expressed in various organs during development.
Total N content in aboveground organs increased from spring until the end of summer, then decreased concomitant with senescence, while N content in underground organs exhibited an increase roughly matching the decrease in shoot N during fall. Hundreds of senescence-associated genes were identified in leaves and stems. Functional grouping indicated that regulation of transcription and protein degradation play important roles in shoot senescence. Coexpression networks predict important roles for five switchgrass NAC (NAM, ATAF1,2, CUC2) transcription factors (TFs) and other TF family members in orchestrating metabolism of carbohydrates, N and lipids, protein modification/degradation, and transport processes during senescence.
This study establishes a molecular basis for understanding and enhancing N remobilization and conservation in switchgrass.
C1 [Yang, Jiading; Worley, Eric; Li, Jun; Torres-Jerez, Ivone; Zhao, Patrick X.; Tang, Yuhong; Udvardi, Michael] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA.
[Yang, Jiading; Worley, Eric; Xu, Ying; Tang, Yuhong; Udvardi, Michael] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA.
[Ma, Qin] S Dakota State Univ, Dept Plant Sci, Brookings, SD 57007 USA.
[Li, Gaoyang; Xu, Ying] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA.
RP Udvardi, M (reprint author), Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA.; Udvardi, M (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA.
EM mudvardi@noble.org
OI Ma, Qin/0000-0002-3264-8392
FU BioEnergy Science Center (BESC) [DE-PS02-06ER64304]; Office of
Biological and Environmental Research in the DOE Office of Science
FX This work was carried out under the auspices of the BioEnergy Science
Center (BESC) (grant number DE-PS02-06ER64304), which is a US Department
of Energy Bioenergy Research Center supported by the Office of
Biological and Environmental Research in the DOE Office of Science.
NR 85
TC 2
Z9 2
U1 21
U2 39
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0028-646X
EI 1469-8137
J9 NEW PHYTOL
JI New Phytol.
PD JUL
PY 2016
VL 211
IS 1
BP 75
EP 89
DI 10.1111/nph.13898
PG 15
WC Plant Sciences
SC Plant Sciences
GA DQ4ZE
UT WOS:000379212800009
PM 26935010
ER
PT J
AU Bozhenkov, SA
Lazerson, S
Otte, M
Gates, DA
Pedersen, TS
Wolf, RC
AF Bozhenkov, S. A.
Lazerson, S.
Otte, M.
Gates, D. A.
Pedersen, T. Sunn
Wolf, R. C.
TI Methods for measuring 1/1 error field in Wendelstein 7-X stellarator
SO NUCLEAR FUSION
LA English
DT Article
DE error fields; flux surface mapping; island divertor; W7-X
ID OPERATION; W7-X
AB Wendelstein 7-X is an optimized helical axis stellarator that came into operation at the end of 2015. A m/n = 5/5 island chain is used in most of its configurations to form a divertor. This island chain at (sic) = 1 is sensitive to symmetry-breaking error fields, with the resonant 1/1 field being of particular concern because of its influence on the divertor heat flux distribution. Measurement and compensation of the 1/1 mode is therefore necessary. Experimentally, vacuum error fields in W7-X will be studied with a flux surface mapping diagnostic. In this paper numerical simulations for planning and analysing such measurements are presented. Two methods for determining the 1/1 mode are considered: measurement of the island width and measurement of a helical shift of the magnetic axis. Measurement of the resonant island width is a sensitive technique, but the island structure is also affected by other co-resonant components. A complementary method is to measure a helical shift of the magnetic axis in a configuration close to the resonance. This method has a simple interpretation and isolates the 1/1 error field from higher order resonant modes.
C1 [Bozhenkov, S. A.; Otte, M.; Pedersen, T. Sunn; Wolf, R. C.] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany.
[Lazerson, S.; Gates, D. A.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
RP Bozhenkov, SA (reprint author), Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany.
EM sergey.bozhenkov@ipp.mpg.de
RI Lazerson, Samuel/E-4816-2014
OI Lazerson, Samuel/0000-0001-8002-0121
FU Euratom research and training programme [633053]; EUROFUSION [633053]
FX This work has been carried out within the framework of the EUROfusion
Consortium and has received funding from the Euratom research and
training programme 2014-2018 under grant agreement No 633053. The views
and opinions expressed herein do not necessarily reflect those of the
European Commission. This work was supported by EUROFUSION 633053.
NR 25
TC 1
Z9 1
U1 3
U2 10
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2016
VL 56
IS 7
AR 076002
DI 10.1088/0029-5515/56/7/076002
PG 10
WC Physics, Fluids & Plasmas
SC Physics
GA DQ0YV
UT WOS:000378928600004
ER
PT J
AU Chen, X
Burrell, KH
Ferraro, NM
Osborne, TH
Austin, ME
Garofalo, AM
Groebner, RJ
Kramer, GJ
Luhmann, NC
McKee, GR
Muscatello, CM
Nazikian, R
Ren, X
Snyder, PB
Solomon, WM
Tobias, BJ
Yan, Z
AF Chen, Xi
Burrell, K. H.
Ferraro, N. M.
Osborne, T. H.
Austin, M. E.
Garofalo, A. M.
Groebner, R. J.
Kramer, G. J.
Luhmann, N. C., Jr.
McKee, G. R.
Muscatello, C. M.
Nazikian, R.
Ren, X.
Snyder, P. B.
Solomon, W. M.
Tobias, B. J.
Yan, Z.
TI Rotational shear effects on edge harmonic oscillations in DIII-D
quiescent H-mode discharges
SO NUCLEAR FUSION
LA English
DT Article
DE QH-mode; DIII-D; EHO; M3D-C1; rotational shear; ELM control; E x B shear
ID D TOKAMAK; COLLISIONALITY REGIME; ASDEX UPGRADE; SPECTROSCOPY;
STABILITY; PEDESTAL; PLASMAS; PHYSICS; JT-60U
AB In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHOs) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n <= 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended magentoohydrodynamics (MHD) code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE. Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by rotation and/or rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHOs can be destabilized in principle with rotation in either direction. The modeling results are consistent with observations of EHO, support the proposed theory of the EHO as a low-n kink/peeling mode destabilized by edge E x B rotational shear, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.
C1 [Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Garofalo, A. M.; Groebner, R. J.; Muscatello, C. M.; Snyder, P. B.] Gen Atom, POB 85608, San Diego, CA 92186 USA.
[Austin, M. E.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA.
[Kramer, G. J.; Nazikian, R.; Solomon, W. M.; Tobias, B. J.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
[Luhmann, N. C., Jr.; Ren, X.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA.
[Luhmann, N. C., Jr.; Ren, X.] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA.
[McKee, G. R.; Yan, Z.] Univ Wisconsin, Dept Engn, Madison, WI 53706 USA.
RP Chen, X (reprint author), Gen Atom, POB 85608, San Diego, CA 92186 USA.
EM chenxi@fusion.gat.com
OI Solomon, Wayne/0000-0002-0902-9876
FU US Department of Energy, Office of Science, Office of Fusion Energy
Sciences [DE-FC02-04ER54698, DE-FG03-97ER54415, DE-AC02-09CH11466,
DE-FG02-99ER54531, DE-FG02-08ER54999]
FX This material is based upon work supported by the US Department of
Energy, Office of Science, Office of Fusion Energy Sciences, using the
DIII-D National Fusion Facility, a DOE Office of Science user facility,
under Awards DE-FC02-04ER54698, DE-FG03-97ER54415, DE-AC02-09CH11466,
DE-FG02-99ER54531, and DE-FG02-08ER54999. DIII-D data shown in this
paper can be obtained in digital format by following the links at
https://fusion.gat.com/global/D3D_DMP. The author (XC) would like to
thank T. Strait, C. Paz-Soldan, C. Petty, G. Canal, Y. Zhao, M. Chen,
and the DIII-D team.
NR 49
TC 1
Z9 1
U1 7
U2 15
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2016
VL 56
IS 7
AR 076011
DI 10.1088/0029-5515/56/7/076011
PG 16
WC Physics, Fluids & Plasmas
SC Physics
GA DQ0YV
UT WOS:000378928600013
ER
PT J
AU Lanctot, MJ
Olofsson, KEJ
Capella, M
Humphreys, DA
Eidietis, N
Hanson, JM
Paz-Soldan, C
Strait, EJ
Walker, ML
AF Lanctot, M. J.
Olofsson, K. E. J.
Capella, M.
Humphreys, D. A.
Eidietis, N.
Hanson, J. M.
Paz-Soldan, C.
Strait, E. J.
Walker, M. L.
TI Error field optimization in DIII-D using extremum seeking control
SO NUCLEAR FUSION
LA English
DT Article
DE error field optimization; real-time control; non-axisymmetric fields
ID HIGH-BETA; MAGNETIC-FIELDS; D PLASMAS; TOKAMAK; TRANSPORT; MODE; NSTX
AB DIII-D experiments have demonstrated a new real-time approach to tokamak error field control based on maximizing the toroidal angular momentum. This approach uses extremum seeking control theory to optimize the error field in real time without inducing instabilities. Slowly-rotating n = 1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coil currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.
C1 [Lanctot, M. J.; Humphreys, D. A.; Eidietis, N.; Paz-Soldan, C.; Strait, E. J.; Walker, M. L.] Gen Atom, POB 85608, San Diego, CA 92186 USA.
[Olofsson, K. E. J.] Oak Ridge Associated Univ, POB 117, Oak Ridge, TN 37831 USA.
[Capella, M.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Hanson, J. M.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
RP Lanctot, MJ (reprint author), Gen Atom, POB 85608, San Diego, CA 92186 USA.
EM lanctot@fusion.gat.com
RI Lanctot, Matthew J/O-4979-2016
OI Lanctot, Matthew J/0000-0002-7396-3372
FU U.S. Department of Energy, Office of Science, Office of Fusion Energy
Sciences [DE-FC02-04ER54698, DE-AC05-06OR23100, DE-FG02-04ER54761]; U.S.
Department of Energy, Office of Science, Office of Workforce Development
for Teachers and Scientists (WDTS) under the Science Undergraduate
Laboratory Internships Program (SULI)
FX The authors thank R. Johnson, B. Penaflor and B. Sammuli for their
assistance in the development of the PCS code for the ESEFC algorithm.
They acknowledge R. Groebner for his development of the real-time CER
analysis code in the DIII-D PCS. They also gratefully acknowledge
helpful discussions with Drs. W.M. Solomon and A.M. Garofalo and thank
them for suggestions on the original manuscript. This material is based
upon work supported in part by the U.S. Department of Energy, Office of
Science, Office of Fusion Energy Sciences, using the DIII-D National
Fusion Facility, a DOE Office of Science user facility, under Awards
DE-FC02-04ER54698, DE-AC05-06OR23100 and DE-FG02-04ER54761. M. Capella
was supported in part by the U.S. Department of Energy, Office of
Science, Office of Workforce Development for Teachers and Scientists
(WDTS) under the Science Undergraduate Laboratory Internships Program
(SULI). DIII-D data shown in this paper can be obtained in digital
format by following the links at https://fusion.gat.com/global/D3D_DMP
NR 40
TC 0
Z9 0
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2016
VL 56
IS 7
AR 076003
DI 10.1088/0029-5515/56/7/076003
PG 12
WC Physics, Fluids & Plasmas
SC Physics
GA DQ0YV
UT WOS:000378928600005
ER
PT J
AU Gilbert, I
Nisoli, C
Schiffer, P
AF Gilbert, Ian
Nisoli, Cristiano
Schiffer, Peter
TI FRUSTRATION by design
SO PHYSICS TODAY
LA English
DT Article
ID ARTIFICIAL SPIN ICE
AB Geometrical frustration is a condition that occurs when a material's lattice geometry precludes minimizing the energy of all the interactions among pairs of neighbors simultaneously. The simplest example is three antiferromagnetically coupled Ising spins, pointing up or down, on the corners of an equilateral triangle: It is impossible to arrange the spins so that each pair is antiparallel. In more complex magnetic lattices, the frustrated state can arise from the combination of lattice geometry and the strength and sign of the interactions among the magnetic dipole moments. 1 (See the article by Roderich Moessner and Art Ramirez, PHYSICS TODAY, February 2006, page 24.) A wide variety of exotic and collective phenomena sometimes arises from the competing interactions. A prime example is spin liquids, materials in which the local atomic moments fluctuate down to the lowest accessible temperatures and never settle into a static ground-state configuration.
C1 [Gilbert, Ian] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA.
[Nisoli, Cristiano] Los Alamos Natl Lab, Los Alamos, NM USA.
[Schiffer, Peter] Univ Illinois, Phys, Champaign, IL USA.
[Schiffer, Peter] Univ Illinois, Res, Champaign, IL USA.
RP Gilbert, I (reprint author), NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA.
FU US Department of Energy, Office of Basic Energy Sciences, Materials
Science and Engineering Division
FX We are grateful for assistance and feedback from our many collaborators
and colleagues and for financial support from the US Department of
Energy, Office of Basic Energy Sciences, Materials Science and
Engineering Division. Alex David Jerez Roman created the title-page
image, and Katelyn Gamble prepared other images.
NR 19
TC 5
Z9 5
U1 5
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0031-9228
EI 1945-0699
J9 PHYS TODAY
JI Phys. Today
PD JUL
PY 2016
VL 69
IS 7
BP 54
EP 59
PG 6
WC Physics, Multidisciplinary
SC Physics
GA DQ4KT
UT WOS:000379173500020
ER
PT J
AU Glownia, J
Misewich, J
AF Glownia, James
Misewich, James
TI Peter Pitirimovich Sorokin OBITUARY
SO PHYSICS TODAY
LA English
DT Biographical-Item
C1 [Glownia, James] US DOE, Germantown, MD 20874 USA.
[Misewich, James] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Glownia, J (reprint author), US DOE, Germantown, MD 20874 USA.
NR 0
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0031-9228
EI 1945-0699
J9 PHYS TODAY
JI Phys. Today
PD JUL
PY 2016
VL 69
IS 7
BP 71
EP 72
PG 3
WC Physics, Multidisciplinary
SC Physics
GA DQ4KT
UT WOS:000379173500023
ER
PT J
AU Ma, J
Qin, H
Yu, Z
Li, DH
AF Ma Jun
Qin Hong
Yu Zhi
Li Dehui
TI Nonlinear Simulations of Coalescence Instability Using a Flux Difference
Splitting Method
SO PLASMA SCIENCE & TECHNOLOGY
LA English
DT Article
DE magnetohydrodynamics; nonlinear simulation; finite volume method;
instability
ID HYPERBOLIC CONSERVATION-LAWS; APPROXIMATE RIEMANN SOLVER; IDEAL
MAGNETOHYDRODYNAMICS; SCHEMES; MHD
AB A flux difference splitting numerical scheme based on the finite volume method is applied to study ideal/resistive magnetohydrodynamics. The ideal/resistive MHD equations are cast as a set of hyperbolic conservation laws, and we develop a numerical capability to solve the weak solutions of these hyperbolic conservation laws by combining a multi-state Harten-Lax-Van Leer approximate Riemann solver with the hyperbolic divergence cleaning technique, high order shock-capturing reconstruction schemes, and a third order total variance diminishing Runge-Kutta time evolving scheme. The developed simulation code is applied to study the long time nonlinear evolution of the coalescence instability. It is verified that small structures in the instability oscillate with time and then merge into medium structures in a coherent manner. The medium structures then evolve and merge into large structures, and this trend continues through all scale-lengths. The physics of this interesting nonlinear dynamics is numerically analyzed.
C1 [Ma Jun; Yu Zhi; Li Dehui] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China.
[Qin Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China.
[Qin Hong] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
RP Ma, J (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China.
EM junma@ipp.ac.cn
FU National Magnetic Confinement Fusion Science Program of China
[2013GB111002, 2013GB105003, 2013CB111000, 2014GB124005, 2015GB111003];
National Natural Science Foundation of China [11305171, 11405208];
JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics
[NSFC-11261140328]; Science Foundation of the Institute of Plasma
Physics, Chinese Academy of Sciences [DSJJ-15-JC02]; CAS Program for the
Interdisciplinary Collaboration Team
FX supported by the National Magnetic Confinement Fusion Science Program of
China (Nos. 2013GB111002, 2013GB105003, 2013CB111000, 2014GB124005,
2015GB111003), National Natural Science Foundation of China (Nos.
11305171, 11405208), JSPS-NRF-NSFC A3 Foresight Program in the field of
Plasma Physics (NSFC-11261140328), the Science Foundation of the
Institute of Plasma Physics, Chinese Academy of Sciences (DSJJ-15-JC02)
and the CAS Program for the Interdisciplinary Collaboration Team
NR 27
TC 0
Z9 0
U1 4
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1009-0630
J9 PLASMA SCI TECHNOL
JI Plasma Sci. Technol.
PD JUL
PY 2016
VL 18
IS 7
BP 714
EP 719
DI 10.1088/1009-0630/18/7/03
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA DQ1BK
UT WOS:000378935600003
ER
PT J
AU Green, MA
Emery, K
Hishikawa, Y
Warta, W
Dunlop, ED
AF Green, Martin A.
Emery, Keith
Hishikawa, Yoshihiro
Warta, Wilhelm
Dunlop, Ewan D.
TI Solar cell efficiency tables (version 48)
SO PROGRESS IN PHOTOVOLTAICS
LA English
DT Article
DE solar cell efficiency; photovoltaic efficiency; energy conversion
efficiency
ID CONVERSION EFFICIENCY; CONCENTRATOR; STABILITY; MODULE
AB Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2016 are reviewed. Copyright (c) 2016 John Wiley & Sons, Ltd.
C1 [Green, Martin A.] Univ New S Wales, Australian Ctr Adv Photovolta, Sydney, NSW 2052, Australia.
[Emery, Keith] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Denver, CO 80401 USA.
[Hishikawa, Yoshihiro] Natl Inst Adv Ind Sci & Technol, Res Ctr Photovolta RCPV, Cent 2,Umezono 1-1-1, Tsukuba, Ibaraki 3058568, Japan.
[Warta, Wilhelm] Fraunhofer Inst Solar Energy Syst, Characterisat & Simulat CalLab Cells, Heidenhofstr 2, D-79110 Freiburg, Germany.
[Dunlop, Ewan D.] European Commiss, Joint Res Ctr, Renewable Energy Unit, Inst Energy, Via E Fermi 2749, IT-21027 Ispra, VA, Italy.
RP Green, MA (reprint author), Univ New S Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia.
EM m.green@unsw.edu.au
FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable
Energy Laboratory; Japanese New Energy and Industrial Technology
Development Organisation (NEDO); Japanese Ministry of Economy, Trade and
Industry (METI)
FX The Australian Centre for Advanced Photovoltaics commenced operation in
February 2013 with support from the Australian Government through the
Australian Renewable Energy Agency (ARENA). The Australian Government
does not accept responsibility for the views, information or advice
expressed herein. The work by K. Emery was supported by the U.S.
Department of Energy under contract no. DE-AC36-08-GO28308 with the
National Renewable Energy Laboratory. The work at AIST was supported in
part by the Japanese New Energy and Industrial Technology Development
Organisation (NEDO) and by the Japanese Ministry of Economy, Trade and
Industry (METI).
NR 54
TC 85
Z9 86
U1 96
U2 142
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1062-7995
EI 1099-159X
J9 PROG PHOTOVOLTAICS
JI Prog. Photovoltaics
PD JUL
PY 2016
VL 24
IS 7
BP 905
EP 913
DI 10.1002/pip.2788
PG 9
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA DQ4DN
UT WOS:000379154200001
ER
PT J
AU Welch, AW
Baranowski, LL
Zawadzki, P
DeHart, C
Johnston, S
Lany, S
Wolden, CA
Zakutayev, A
AF Welch, Adam W.
Baranowski, Lauryn L.
Zawadzki, Pawel
DeHart, Clay
Johnston, Steve
Lany, Stephan
Wolden, Colin A.
Zakutayev, Andriy
TI Accelerated development of CuSbS2 thin film photovoltaic device
prototypes
SO PROGRESS IN PHOTOVOLTAICS
LA English
DT Article
DE combinatorial; CuSbS2; chalcogenide; thin film; earth abundant;
sputtering
ID SOLAR-CELLS; HIGH-EFFICIENCY; DESIGN; LAYERS; OXIDE
AB Development of alternative thin film photovoltaic technologies is an important research topic because of the potential of low-cost, high-efficiency solar cells to produce terawatt levels of clean power. However, this development of unexplored yet promising absorbers can be hindered by complications that arise during solar cell fabrication. Here, a high-throughput combinatorial method is applied to accelerate development of photovoltaic devices, in this case, using the novel CuSbS2 absorber via a newly developed three-stage self-regulated growth process to control absorber purity and orientation. Photovoltaic performance of the absorber, using the typical substrate CuInxGa1-xSe2 (CIGS) device architecture, is explored as a function of absorber quality and thickness using a variety of back contacts. This study yields CuSbS2 device prototypes with similar to 1% conversion efficiency, suggesting that the optimal CuSbS2 device fabrication parameters and contact selection criteria are quite different than for CIGS, despite the similarity of these two absorbers. The CuSbS2 device efficiency is at present limited by low short-circuit current because of bulk recombination related to defects, and a small open-circuit voltage because of a theoretically predicted cliff-type conduction band offset between CuSbS2 and CdS. Overall, these results illustrate both the potential and limits of combinatorial methods to accelerate the development of thin film photovoltaic devices using novel absorbers. Copyright (c) 2016 John Wiley & Sons, Ltd.
C1 [Welch, Adam W.; Baranowski, Lauryn L.; Zawadzki, Pawel; DeHart, Clay; Johnston, Steve; Lany, Stephan; Zakutayev, Andriy] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Welch, Adam W.; Baranowski, Lauryn L.; Wolden, Colin A.] Colorado Sch Mines, Golden, CO 80401 USA.
RP Welch, AW; Zakutayev, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM adam.w.welch@gmail.com; Andriy.Zakutayev@nrel.gov
OI Zakutayev, Andriy/0000-0002-3054-5525; Lany, Stephan/0000-0002-8127-8885
FU U.S. Department of Energy, Office of Energy Efficiency and Renewable
Energy, as a part of the SunShot initiative [DE-AC36-08GO28308];
Department of Defense
FX The "Rapid Development of Earth-abundant Thin Film Solar Cells" project
is supported by the U.S. Department of Energy, Office of Energy
Efficiency and Renewable Energy, as a part of the SunShot initiative,
under contract no. DE-AC36-08GO28308 to NREL. L. L. B. was supported by
the Department of Defense through the National Defense Science and
Engineering Graduate Fellowship. We would like to acknowledge our NREL
colleagues Ingrid Repins and Miguel Contreras for discussion and help
with thin film chalcogenide device fabrication and characterization,
Jeff Alleman, Steven Robbins, and Danny Yerks for assistance minimizing
chamber down time and building the J-V mapping tool, and Bobby To for
SEM characterization.
NR 44
TC 5
Z9 5
U1 18
U2 32
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1062-7995
EI 1099-159X
J9 PROG PHOTOVOLTAICS
JI Prog. Photovoltaics
PD JUL
PY 2016
VL 24
IS 7
BP 929
EP 939
DI 10.1002/pip.2735
PG 11
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA DQ4DN
UT WOS:000379154200004
ER
PT J
AU Muller, M
Marion, B
Kurtz, S
Ghosal, K
Burroughs, S
Libby, C
Enbar, N
AF Muller, Matthew
Marion, Bill
Kurtz, Sarah
Ghosal, Kanchan
Burroughs, Scott
Libby, Cara
Enbar, Nadav
TI A side-by-side comparison of CPV module and system performance
SO PROGRESS IN PHOTOVOLTAICS
LA English
DT Article
DE concentrator PV; CPV system; derates; performance losses
AB A side-by-side comparison is made between concentrator photovoltaic module and system direct current aperture efficiency data with a focus on quantifying system performance losses. The individual losses measured/calculated, when combined, are in good agreement with the total loss seen between the module and the system. Results indicate that for the given test period, the largest individual loss of 3.7% relative is due to the baseline performance difference between the individual module and the average for the 200 modules in the system. A basic empirical model is derived based on module spectral performance data and the tabulated losses between the module and the system. The model predicts instantaneous system direct current aperture efficiency with a root mean square error of 2.3% relative. Copyright (c) 2016 John Wiley & Sons, Ltd.
C1 [Muller, Matthew; Marion, Bill; Kurtz, Sarah] Natl Renewable Energy Lab, Golden, CO USA.
[Ghosal, Kanchan; Burroughs, Scott] Semprius Inc, 4915 Prospectus Dr,Suite C, Durham, NC 27713 USA.
[Libby, Cara; Enbar, Nadav] Elect Power Res Inst, 3420 Hillview Ave, Palo Alto, CA 94304 USA.
RP Muller, M (reprint author), Natl Renewable Energy Lab, Golden, CO USA.
EM Matthew.Muller@nrel.gov
FU U.S. Department of Energy [DE-AC36-99GO10337]
FX The authors wish to thank J. Rodriguez and B. Sekulic for technical
assistance with data collection at NREL and SolarTAC. Special thanks are
given to EPRI for sharing the Semprius system data that have made this
research possible. This work was completed under Contract No.
DE-AC36-99GO10337 with the U.S. Department of Energy.
NR 31
TC 0
Z9 0
U1 1
U2 1
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1062-7995
EI 1099-159X
J9 PROG PHOTOVOLTAICS
JI Prog. Photovoltaics
PD JUL
PY 2016
VL 24
IS 7
BP 940
EP 954
DI 10.1002/pip.2736
PG 15
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA DQ4DN
UT WOS:000379154200005
ER
PT J
AU Jordan, DC
Kurtz, SR
VanSant, K
Newmiller, J
AF Jordan, Dirk C.
Kurtz, Sarah R.
VanSant, Kaitlyn
Newmiller, Jeff
TI Compendium of photovoltaic degradation rates
SO PROGRESS IN PHOTOVOLTAICS
LA English
DT Article
DE photovoltaic modules; photovoltaic systems; performance; outdoor
testing; degradation rates; non-linearity; photovoltaic ageing
ID SYSTEMS
AB Published data on photovoltaic (PV) degradation measurements were aggregated and re-examined. The subject has seen an increased interest in recent years resulting in more than 11000 degradation rates in almost 200 studies from 40 different countries. As studies have grown in number and size, we found an impact from sampling bias attributable to size and accuracy. Because of the correlational nature of this study we examined the data in several ways to minimize this bias. We found median degradation for x-Si technologies in the 0.5-0.6%/year range with the mean in the 0.8-0.9%/year range. Hetero-interface technology (HIT) and microcrystalline silicon (mu c-Si) technologies, although not as plentiful, exhibit degradation around 1%/year and resemble thin-film products more closely than x-Si. Several studies showing low degradation for copper indium gallium selenide (CIGS) have emerged. Higher degradation for cadmium telluride (CdTe) has been reported, but these findings could reflect a convolution of less accurate studies and longer stabilization periods for some products. Significant deviations for beginning-of-life measurements with respect to nameplate rating have been documented over the last 35years. Therefore, degradation rates that use nameplate rating as reference may be significantly impacted. Studies that used nameplate rating as reference but used solar simulators showed less variation than similar studies using outdoor measurements, even when accounting for different climates. This could be associated with confounding effects of measurement uncertainty and soiling that take place outdoors. Hotter climates and mounting configurations that lead to sustained higher temperatures may lead to higher degradation in some, but not all, products. Wear-out non-linearities for the worst performing modules have been documented in a few select studies that took multiple measurements of an ensemble of modules during the lifetime of the system. However, the majority of these modules exhibit a fairly linear decline. Modeling these non-linearities, whether they occur at the beginning-of-life or end-of-life in the PV life cycle, has an important impact on the levelized cost of energy. Copyright (c) 2016 John Wiley & Sons, Ltd.
C1 [Jordan, Dirk C.; Kurtz, Sarah R.] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Denver, CO 80401 USA.
[VanSant, Kaitlyn] Colorado Sch Mines, 1500 Illinois St, Golden, CO 80401 USA.
[Newmiller, Jeff] DNV GL, 2420 Camino Ramon,Suite 300, San Ramon, CA 95483 USA.
RP Jordan, DC (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Denver, CO 80401 USA.
EM dirk.jordan@nrel.gov
FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable
Energy Laboratory
FX We would like to thank Timothy Silverman and Katherine Jordan. This work
was supported by the U.S. Department of Energy under contract no.
DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.
NR 35
TC 4
Z9 4
U1 8
U2 10
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1062-7995
EI 1099-159X
J9 PROG PHOTOVOLTAICS
JI Prog. Photovoltaics
PD JUL
PY 2016
VL 24
IS 7
BP 978
EP 989
DI 10.1002/pip.2744
PG 12
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA DQ4DN
UT WOS:000379154200008
ER
PT J
AU Basore, PA
AF Basore, Paul A.
TI Paths to future growth in photovoltaics manufacturing
SO PROGRESS IN PHOTOVOLTAICS
LA English
DT Article
DE photovoltaics; manufacturing; capex
ID COST
AB The past decade has seen rapid growth in the photovoltaics industry, followed in the past few years by a period of much slower growth. A simple model that is consistent with this historical record can be used to predict the future evolution of the industry. Two key parameters are identified that determine the outcome. One is the annual global investment in manufacturing capacity normalized to the manufacturing capacity for the previous year (capacity-normalized capital investment rate, CapIR, units $/W). The other is how much capital investment is required for each watt of annual manufacturing capacity, normalized to the service life of the assets (capacity-normalized capital demand rate, CapDR, units $/W). If these two parameters remain unchanged from the values they have held for the past few years, global manufacturing capacity will peak in the next few years and then decline. However, it only takes a modest improvement in CapIR to ensure future growth in photovoltaics. Several approaches are presented that can enable the required improvement in CapIR. If, in addition, there is an accompanying improvement in CapDR, the rate of growth can be substantially accelerated. Copyright (c) 2016 John Wiley & Sons, Ltd.
C1 [Basore, Paul A.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Basore, PA (reprint author), POB 18726, Golden, CO 80402 USA.
EM pvspecialist@gmail.com
FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy
Laboratory; DOE Solar Energy Technologies Office
FX This work was supported by the U.S. Department of Energy under Contract
No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory.
Funding was provided by the DOE Solar Energy Technologies Office. The
U.S. Government retains and the publisher, by accepting the article for
publication, acknowledges that the U.S. Government retains a
nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this work, or allow others to do so, for
U.S. Government purposes.
NR 9
TC 1
Z9 1
U1 4
U2 9
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1062-7995
EI 1099-159X
J9 PROG PHOTOVOLTAICS
JI Prog. Photovoltaics
PD JUL
PY 2016
VL 24
IS 7
BP 1024
EP 1031
DI 10.1002/pip.2761
PG 8
WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied
SC Energy & Fuels; Materials Science; Physics
GA DQ4DN
UT WOS:000379154200013
ER
PT J
AU Zhang, YX
Hu, C
Hu, Y
Zhao, L
Ding, Y
Sun, X
Liang, AJ
Zhang, Y
He, SL
Liu, DF
Yu, L
Liu, GD
Dong, XL
Gu, GD
Chen, CT
Xu, ZY
Zhou, XJ
AF Zhang, Yuxiao
Hu, Cheng
Hu, Yong
Zhao, Lin
Ding, Ying
Sun, Xuan
Liang, Aiji
Zhang, Yan
He, Shaolong
Liu, Defa
Yu, Li
Liu, Guodong
Dong, Xiaoli
Gu, Genda
Chen, Chuangtian
Xu, Zuyan
Zhou, Xingjiang
TI In situ carrier tuning in high temperature superconductor
Bi2Sr2CaCu2O8+delta by potassium deposition
SO SCIENCE BULLETIN
LA English
DT Article
DE Bi2212; Superconductor; K-deposition; Photoemission; Fermi surface
ID ANGLE-RESOLVED PHOTOEMISSION; T-C; ELECTRONIC-STRUCTURE; NORMAL-STATE;
PHASE; SURFACE; DISPERSION; PSEUDOGAP; GAP
AB We report a successful tuning of the hole doping level over a wide range in high temperature superconductor Bi2Sr2CaCu2O8+delta (Bi2212) through successive in situ potassium (K) deposition. By taking high resolution angle-resolved photoemission measurements on the Fermi surface and band structure of an overdoped Bi2212 (T-c - 76K) at different stages of K deposition, we found that the area of the hole-like Fermi surface around the Brillouin zone corner (pi,pi) shrinks with increasing K deposition. This indicates a continuous hole concentration change from initial similar to 0.26 to eventual 0.09 after extensive K deposition, a net doping level change of 0.17 that makes it possible to bring Bi2212 from being originally overdoped, to optimally-doped, and eventually becoming heavily underdoped. The electronic behaviors with K deposition are consistent with those of Bi2212 samples with different hole doping levels. These results demonstrate that K deposition is an effective way of in situ controlling the hole concentration in Bi2212. This work opens a good way of studying the doping evolution of electronic structure and establishing the electronic phase diagram in Bi2212 that can be extended to other cuprate superconductors.
C1 [Zhang, Yuxiao; Hu, Cheng; Hu, Yong; Zhao, Lin; Ding, Ying; Sun, Xuan; Liang, Aiji; Zhang, Yan; He, Shaolong; Liu, Defa; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhou, Xingjiang] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Natl Lab Superconduct, Beijing 100190, Peoples R China.
[Gu, Genda] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, New York, NY 11973 USA.
[Chen, Chuangtian; Xu, Zuyan] Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100190, Peoples R China.
[Zhou, Xingjiang] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China.
RP Zhao, L; Zhou, XJ (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Natl Lab Superconduct, Beijing 100190, Peoples R China.
EM lzhao@iphy.ac.cn; xjzhou@iphy.ac.cn
FU National Natural Science foundation of China [11190022, 11334010,
11534007]; National Basic Research Program of China [2015CB921000];
Strategic Priority Research Program (B) of Chinese Academy of Sciences
[XDB07020300]
FX XJZ thanks financial support from the National Natural Science
foundation of China (11190022,11334010 and 11534007), the National Basic
Research Program of China (2015CB921000) and the Strategic Priority
Research Program (B) of Chinese Academy of Sciences (XDB07020300).
NR 36
TC 1
Z9 1
U1 7
U2 11
PU SCIENCE PRESS
PI BEIJING
PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA
SN 2095-9273
EI 2095-9281
J9 SCI BULL
JI Sci. Bull.
PD JUL
PY 2016
VL 61
IS 13
BP 1037
EP 1043
DI 10.1007/s11434-016-1106-y
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DQ2GV
UT WOS:000379021600006
ER
PT J
AU Hasan, MM
Dholabhai, PP
Castro, RHR
Uberuaga, BP
AF Hasan, Md. M.
Dholabhai, Pratik P.
Castro, Ricardo H. R.
Uberuaga, Blas P.
TI Stabilization of MgAl2O4 spinel surfaces via doping
SO SURFACE SCIENCE
LA English
DT Article
DE Surfaces; Spinel; Doping; Atomistic calculations
ID VACANCY FORMATION ENERGIES; REDUCING GRAIN-BOUNDARY; EFFECTIVE
IONIC-RADII; ATOMISTIC SIMULATION; SOLUTE SEGREGATION; CRYSTAL-SURFACES;
DISLOCATION LINE; DOPED CERIA; OXIDES; NONSTOICHIOMETRY
AB Surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. Here, we report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl2O4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111). The surfaces were subsequently doped with three trivalent dopants (Y3+, Gd3+, La3+) and one tetravalent dopant (Zr4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nano particle shapes and therefore on applications sensitive to surface properties. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Hasan, Md. M.; Castro, Ricardo H. R.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
[Dholabhai, Pratik P.; Uberuaga, Blas P.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA.
RP Uberuaga, BP (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA.
EM blas@lanl.gov
FU U.S. Department of Energy-Early Career Program Award [BES ER46795]; UC
Lab Fees Research Program [12-LF-239032]; U.S. Department of Energy,
Office of Science, Basic Energy Sciences, Materials Sciences and
Engineering Division [2013LANL8400]; National Nuclear Security
Administration of the (U.S.) Department of Energy [DE-AC52-06NA25396]
FX RC. and M.H. thank the U.S. Department of Energy-Early Career Program
Award BES ER46795 for support. P.P.D. acknowledges support by the UC Lab
Fees Research Program 12-LF-239032. B.P.U. acknowledges support by the
U.S. Department of Energy, Office of Science, Basic Energy Sciences,
Materials Sciences and Engineering Division (2013LANL8400). Los Alamos
National Laboratory is operated by Los Alamos National Security, LLC,
for the National Nuclear Security Administration of the (U.S.)
Department of Energy under contract DE-AC52-06NA25396. M.H. acknowledges
the computational resources provided by Professor Roland Faller at UC
Davis.
NR 49
TC 3
Z9 3
U1 12
U2 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
EI 1879-2758
J9 SURF SCI
JI Surf. Sci.
PD JUL
PY 2016
VL 649
BP 138
EP 145
DI 10.1016/j.susc.2016.01.028
PG 8
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA DQ3IW
UT WOS:000379097000020
ER
PT J
AU Fortman, JL
Mukhopadhyay, A
AF Fortman, Jeffrey L.
Mukhopadhyay, Aindrila
TI The Future of Antibiotics: Emerging Technologies and Stewardship
SO TRENDS IN MICROBIOLOGY
LA English
DT Editorial Material
ID THERAPY
AB Antibiotic resistance is on the rise while the number of antibiotics being brought to market continues to drop. While this is a dire situation, a number of emerging technologies have the potential to reverse this trend. These, and supporting legislative initiatives, promise to stave off the post-antibiotic era.
C1 [Fortman, Jeffrey L.] Amer Assoc Advancement Sci, Washington, DC 20301 USA.
[Mukhopadhyay, Aindrila] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Syst & Engn, Berkeley, CA 94720 USA.
RP Mukhopadhyay, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Syst & Engn, Berkeley, CA 94720 USA.
EM amukhopadhyay@lbl.gov
FU US Department of Defense (DOD) American Association for the Advancement
of Science (AAAS) Fellowship; DOE [DE-AC05-06OR23100]; Lawrence Berkeley
National Laboratory [DE-AC02-050H11231]; US Department of Energy, Office
of Science, Office of Biological and Environmental Research
[DE-AC02-050H11231]
FX JLF is supported by a US Department of Defense (DOD) American
Association for the Advancement of Science (AAAS) Fellowship,
administered by Oak Ridge Institute for Science and Education (ORISE)
through an interagency agreement between DOD and the U.S. Department of
Energy (DOE). ORISE is managed by ORAU under DOE contract number
DE-AC05-06OR23100. AM is supported through contract DE-AC02-050H11231
between Lawrence Berkeley National Laboratory and the US Department of
Energy, Office of Science, Office of Biological and Environmental
Research. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes. All opinions expressed in this paper are the authors' opinions
and do not necessarily reflect the policies and views of the DOD, DOE,
or ORAU/ORISE.
NR 10
TC 1
Z9 1
U1 8
U2 30
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0966-842X
EI 1878-4380
J9 TRENDS MICROBIOL
JI Trends Microbiol.
PD JUL
PY 2016
VL 24
IS 7
BP 515
EP 517
DI 10.1016/j.tim.2016.04.003
PG 3
WC Biochemistry & Molecular Biology; Microbiology
SC Biochemistry & Molecular Biology; Microbiology
GA DQ3KD
UT WOS:000379100300001
PM 27229181
ER
PT J
AU Meagher, RJ
Negrete, OA
Van Rompay, KK
AF Meagher, Robert J.
Negrete, Oscar A.
Van Rompay, Koen K.
TI Engineering Paper-Based Sensors for Zika Virus
SO TRENDS IN MOLECULAR MEDICINE
LA English
DT Editorial Material
ID AMPLIFICATION
AB The emergence of Zika virus (ZIKV) infections in Latin America and Southeast Asia has created an urgent need for new, simple, yet sensitive, diagnostic tests. We highlight recent work using paper-based sensors coupled with CRISPR/Cas9 to detect ZIKV RNA as a new approach to achieve rapid development and deployment of field-ready diagnostics for emerging infectious diseases.
C1 [Meagher, Robert J.; Negrete, Oscar A.] Sandia Natl Labs, Biotechnol & Bioengn Dept, Livermore, CA 94551 USA.
[Van Rompay, Koen K.] Univ Calif Davis, Calif Natl Primate Res Ctr, Davis, CA 95616 USA.
RP Meagher, RJ (reprint author), Sandia Natl Labs, Biotechnol & Bioengn Dept, Livermore, CA 94551 USA.
EM rmeaghe@sandia.gov
NR 9
TC 1
Z9 1
U1 20
U2 39
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1471-4914
EI 1471-499X
J9 TRENDS MOL MED
JI Trends Mol. Med
PD JUL
PY 2016
VL 22
IS 7
BP 529
EP 530
DI 10.1016/j.molmed.2016.05.009
PG 2
WC Biochemistry & Molecular Biology; Cell Biology; Medicine, Research &
Experimental
SC Biochemistry & Molecular Biology; Cell Biology; Research & Experimental
Medicine
GA DQ3ID
UT WOS:000379095100001
PM 27255410
ER
PT J
AU Telang, A
Gill, AS
Kumar, M
Teysseyre, S
Qian, D
Mannava, SR
Vasudevan, VK
AF Telang, Abhishek
Gill, Amrinder S.
Kumar, Mukul
Teysseyre, Sebastien
Qian, Dong
Mannava, Seetha R.
Vasudevan, Vijay K.
TI Iterative thermomechanical processing of alloy 600 for improved
resistance to corrosion and stress corrosion cracking
SO ACTA MATERIALIA
LA English
DT Article
DE EBSD; Corrosion; Stress corrosion cracking; Grain boundary;
Thermo-mechanical processing
ID GRAIN-BOUNDARY-CHARACTER; AUSTENITIC STAINLESS-STEEL; INTERGRANULAR
CORROSION; CARBIDE PRECIPITATION; SENSITIZATION; 304-STAINLESS-STEEL;
SUSCEPTIBILITY; BEHAVIOR; IGSCC; MISORIENTATIONS
AB The effects of thermomechanical processing (TMP) with iterative cycles of 10% cold work and strain annealing, on corrosion and stress corrosion cracking (SCC) behavior of alloy 600 was studied. The associated microstructural and cracking mechanisms were elucidated using transmission (TEM) and scanning electron microscopy (SEM), coupled with precession electron diffraction (PED) and electron back scatter diffraction (EBSD) mapping. TMP resulted in increased fraction of low coincident site lattice (CSL) grain boundaries whilst decreasing the connectivity of random high angle grain boundaries. This disrupted random grain boundary network and large fraction of low CSL boundaries reduced the propensity to sensitization, i.e. carbide precipitation and Cr depletion. After TMP, alloy 600 (GBE) also showed higher intergranular corrosion resistance. Slow strain rate tests in 0.01 M Na2S4O6 solution at room temperature show TMP lowered susceptibility to intergranular SCC. To better understand the improvements in corrosion and SCC resistance, orientation maps of regions around cracks were used to analyze the interactions between cracks and various types of grain boundaries and triple junctions (TJs). Detailed analysis showed that cracks were arrested at J1 (1-CSL) and J2 (2-CSL) type of TJs. The probability for crack arrest at special boundaries and TJs, calculated using percolative models, was found to have increased after TMP, which also explains the increase in resistance to corrosion and SCC in GBE alloy 600. A clear correlation and mechanistic understanding relating grain boundary character, sensitization, carbide precipitation and susceptibility to corrosion and stress corrosion cracking was established. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Telang, Abhishek; Mannava, Seetha R.; Vasudevan, Vijay K.] Univ Cincinnati, Dept Mech & Mat Engn, Cincinnati, OH 45221 USA.
[Gill, Amrinder S.] AK Steel, Res Ctr, 705 Curtis St, Middletown, OH USA.
[Kumar, Mukul] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Teysseyre, Sebastien] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Qian, Dong] Univ Texas Dallas, Richardson, TX 75083 USA.
RP Vasudevan, VK (reprint author), Univ Cincinnati, Dept Mech & Mat Engn, Cincinnati, OH 45221 USA.
EM vijay.vasudevan@uc.edu
RI Qian, Dong/B-2326-2008;
OI Qian, Dong/0000-0001-9367-0924; kumar, mukul/0000-0003-3544-0869
FU Nuclear Energy University Program (NEUP) of the US Department of Energy
[102835, DE-AC07-051D14517]; U.S. Department of Energy by Lawrence
Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of
Energy (DOE), Office of Basic Energy Sciences, Division of Materials
Science and Engineering under FWP [SCW0939]; State of Ohio, Department
of Development; Third Frontier Commission
FX The authors are grateful for financial support of this research by the
Nuclear Energy University Program (NEUP) of the US Department of Energy
Contract #102835 issued under prime contract DE-AC07-051D14517 to
Battelle Energy Alliance, LLC. This work was partly performed under the
auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. The efforts of MK were
supported by the U.S. Department of Energy (DOE), Office of Basic Energy
Sciences, Division of Materials Science and Engineering under FWP#
SCW0939. We also gratefully acknowledge the contribution of the State of
Ohio, Department of Development and Third Frontier Commission, which
provided funding in support of the "Ohio Center for Laser Shock
Processing for Advanced Materials and Devices" and the equipment in the
Center that was used in this work. The authors would also like to thank
Dr. Kai Zweiacker and Prof. Jorg M. K. Wiezorek at the University of
Pittsburgh for help with the TEM/PED characterization. Any opinions,
findings, conclusions, or recommendations expressed in these documents
are those of the author(s) and do not necessarily reflect the views of
the DOE or the State of Ohio, Department of Development.
NR 44
TC 1
Z9 1
U1 17
U2 17
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD JUL
PY 2016
VL 113
BP 180
EP 193
DI 10.1016/j.actamat.2016.05.009
PG 14
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA DP7HR
UT WOS:000378670300019
ER
PT J
AU Zhang, RF
Beyerlein, IJ
Zheng, SJ
Zhang, SH
Stukowski, A
Germann, TC
AF Zhang, R. F.
Beyerlein, I. J.
Zheng, S. J.
Zhang, S. H.
Stukowski, A.
Germann, T. C.
TI Manipulating dislocation nucleation and shear resistance of bimetal
interfaces by atomic steps
SO ACTA MATERIALIA
LA English
DT Article
DE MD simulations; Interface; Dislocation; Plasticity; Mechanical strength
ID MOLECULAR-DYNAMICS SIMULATIONS; SEVERE PLASTIC-DEFORMATION;
HIGH-STRENGTH; FCC METALS; NANOSTRUCTURED METALS; BICRYSTAL INTERFACES;
CU; COMPOSITES; TWIN; BEHAVIOR
AB By means of atomistic simulations and interface dislocation theory, the mechanism of dislocation nucleation and shear resistance of various stepped fcc/bcc interfaces are comparatively studied using the Kurdjumov-Sachs (KS) Cu/Nb interface as a prototype. It is found that the introduction of atomic steps at the flat Cu{111}/{110}Nb KS interface does not change the most preferred slip systems, but influences the nucleation sites at the interface during tension loading, indicating that the flat and stepped interfaces possesses comparable energetic barriers for dislocation nucleation. During shear loading, the steps may significantly enhance the resistance to interface sliding by propagating partial dislocations that facilitate the emission and growth of parallel twins via cross slip. When the parallel twins are not favored or are hindered, the interface sliding will dominate in a "climbing peak-to-valley" manner. These results provide an effective pathway to solve the trade-off dilemma between dislocation nucleation and interface sliding by appropriately manipulating atomic steps at the flat interface in the design of high-strength metallic materials. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Zhang, R. F.; Zhang, S. H.] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China.
[Zhang, R. F.; Zhang, S. H.] Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China.
[Beyerlein, I. J.; Germann, T. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Zheng, S. J.] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China.
[Stukowski, A.] Tech Univ Darmstadt, Jovanka Bontschits Str 2, D-64287 Darmstadt, Germany.
RP Zhang, RF (reprint author), Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China.; Zhang, RF (reprint author), Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China.
EM zrf@buaa.edu.cn
OI Germann, Timothy/0000-0002-6813-238X
FU Fundamental Research Funds for the Central Universities; National
Natural Science Foundation of China [51471018]; National Thousand Young
Talents Program of China
FX This work is supported by the Fundamental Research Funds for the Central
Universities, National Natural Science Foundation of China (51471018),
and National Thousand Young Talents Program of China.
NR 50
TC 1
Z9 1
U1 8
U2 17
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD JUL
PY 2016
VL 113
BP 194
EP 205
DI 10.1016/j.actamat.2016.05.015
PG 12
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA DP7HR
UT WOS:000378670300020
ER
PT J
AU Kumar, NAPK
Li, C
Leonard, KJ
Bei, H
Zinkle, SJ
AF Kumar, N. A. P. Kiran
Li, C.
Leonard, K. J.
Bei, H.
Zinkle, S. J.
TI Microstructural stability and mechanical behavior of FeNiMnCr high
entropy alloy under ion irradiation
SO ACTA MATERIALIA
LA English
DT Article
DE High entropy alloy; Radiation-induced segregation; Dislocation loops;
Concentrated multi-component solid solution alloy; Irradiation defects
ID RADIATION-INDUCED SEGREGATION; AUSTENITIC STAINLESS-STEEL; CR-NI ALLOYS;
GRAIN-BOUNDARY; FERRITIC/MARTENSITIC STEELS; NEUTRON-IRRADIATION;
ELECTRON-IRRADIATION; FUSION APPLICATIONS; PRINCIPAL ELEMENTS;
MARTENSITIC STEEL
AB In recent years, high entropy alloys (HEAs) have attracted significant attention due to their excellent mechanical properties and good corrosion resistance, making them potential candidates for high temperature fission and fusion structural applications. However there is very little known about their radiation resistance, particularly at elevated temperatures relevant for energy applications. In the present study, a single phase (face centered cubic) concentrated solid solution alloy of composition 27%Fe-28%Ni-27%Mn-18%Cr was irradiated with 3 or 5.8 MeV Ni ions at temperatures ranging from room temperature to 700 degrees C and midrange doses from 0.03 to 10 displacements per atom (dpa). Transmission electron microscopy (TEM), scanning transmission electron microscopy with energy dispersive x-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterize the radiation defects and microstructural changes. Irradiation at higher temperatures showed evidence of relatively sluggish solute diffusion with limited solute depletion or enrichment at grain boundaries. The main microstructural feature at all temperatures was high-density small dislocation loops. Voids were not observed at any irradiation condition. Nano-indentation tests on specimens irradiated at room temperature showed a rapid increase in hardness similar to 35% and similar to 80% higher than the unirradiated value at 0.03 and 0.3 dpa midrange doses, respectively. The irradiation-induced hardening was less pronounced for 500 degrees C irradiations (<20% increase after 3 dpa). Overall, the examined HEA material exhibits superior radiation resistance compared to conventional single phase Fe-Cr-Ni austenitic alloys such as stainless steels. The present study provides insight on the fundamental irradiation behavior of a single phase HEA material over a broad range of irradiation temperatures. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Kumar, N. A. P. Kiran; Leonard, K. J.; Bei, H.; Zinkle, S. J.] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Li, C.; Zinkle, S. J.] Univ Tennessee, Knoxville, TN USA.
RP Kumar, NAPK (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA.
EM anantha.nimishakavi@mail.mcgill.ca
OI Zinkle, Steven/0000-0003-2890-6915; Bei, Hongbin/0000-0003-0283-7990
FU Office of Fusion Energy Science, US Department of Energy
[DE-AC05-00OR22725]; UT-Battelle, LLC
FX The authors gratefully acknowledge Dr. Yanwen Zhang, Dr. Lin Shao and
research staff at IBML-UTK and REF-TAMU, for performing the ion
irradiations. We thank Dr. Chad Parish for his assistance in operating
Talos F200X microscope. This research and operation of the Talos F200X
transmission electron microscope was supported by the Office of Fusion
Energy Science, US Department of Energy under contract DE-AC05-00OR22725
with, UT-Battelle, LLC.
NR 118
TC 7
Z9 7
U1 57
U2 96
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD JUL
PY 2016
VL 113
BP 230
EP 244
DI 10.1016/j.actamat.2016.05.007
PG 15
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA DP7HR
UT WOS:000378670300024
ER
PT J
AU Thomas, SL
King, AH
Srolovitz, DJ
AF Thomas, Spencer L.
King, Alexander H.
Srolovitz, David J.
TI When twins collide: Twin junctions in nanocrystalline nickel
SO ACTA MATERIALIA
LA English
DT Article
DE Five-fold twins; Annealing twin; Grain growth; Molecular dynamics;
Nanocrystalline; Disclination
ID ANNEALING TWINS; GRAIN-GROWTH; DEFORMATION MECHANISMS; METALS;
PARTICLES; FILMS; GOLD; RECRYSTALLIZATION; DISCLINATIONS; NUCLEATION
AB We present the results of large-scale molecular dynamics simulations of grain growth in polycrystalline nickel with nanoscale grains. The simulations show that grain growth is accompanied by coherent twin boundary (013) generation. As the grains grow, twins collide; such collisions result in twin junctions. We catalog all possible twin junctions and show examples of each from the simulations. These include junctions of 2-4 CTBs with grain boundaries and five-fold twin junctions (penta-twins). We elucidate the mechanisms by which all of these junctions form and their relative frequencies. Penta-twins, which are rare in coarse microstructures, occur frequently in nanocrystalline metals. Their absence in macro scale samples can be traced to the wedge-disclination character (and, consequently, an elastic energy that diverges with sample size). In the nanocrystalline case, the presence of penta-twins can be traced to this twin collision formation mechanism, which is responsible for their wedge-disclination dipole character (relatively small elastic energy). We demonstrate how all CTB junctions, especially penta-twins, retard grain growth. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Thomas, Spencer L.; Srolovitz, David J.] Univ Penn, Philadelphia, PA 19104 USA.
[King, Alexander H.] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA.
RP Srolovitz, DJ (reprint author), Univ Penn, Philadelphia, PA 19104 USA.
EM thospe@seas.upenn.edu; alexking@ameslab.gov; srol@seas.upenn.edu
RI King, Alexander/P-6497-2015
OI King, Alexander/0000-0001-7101-6585
FU DOE, Office of Science, BES [DE-AC02-07CH11358]; National Science
Foundation [ACI-1053575]
FX The authors gratefully acknowledge useful discussions with Prof. Kun
Zhou and Dr. Hui Feng from the Nanyang Technological University and
Prof. Nikolaos Aravas of the University of Thessaly on disclination
elasticity and thank Dr. Emanuel Lazar of the University of Pennsylvania
for providing Fig. 1a. SLT and DJS at the University of Pennsylvania
designed this research, performed and analyzed the computer simulations,
and performed the theoretical analysis. Work at the Ames Laboratory was
supported by DOE, Office of Science, BES under Contract #
DE-AC02-07CH11358. AHK provided geometrical analyses and interpretation
of the structures, and contributed to the interpretation of the
processes that produced them. This work used the Extreme Science and
Engineering Discovery Environment (XSEDE), which is supported by
National Science Foundation grant number ACI-1053575 [52].
NR 52
TC 2
Z9 2
U1 14
U2 28
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD JUL
PY 2016
VL 113
BP 301
EP 310
DI 10.1016/j.actamat.2016.04.030
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA DP7HR
UT WOS:000378670300030
ER
PT J
AU Pyatina, T
Sugama, T
AF Pyatina, Tatiana
Sugama, Toshifumi
TI Acid resistance of calcium aluminate cement-fly ash F blends
SO ADVANCES IN CEMENT RESEARCH
LA English
DT Article
DE admixtures; aluminous cement; cement paste
ID SULFATE ATTACK; INFRARED-SPECTROSCOPY; SILICATE HYDRATE;
PORTLAND-CEMENT; TRICALCIUM PHOSPHATE; HARDENED PASTE; SULFURIC-ACID;
PART I; DURABILITY; GEL
AB The short-term resistance to sulfuric acid at 90 degrees C of four calcium aluminate cement (CAC)-fly ash class F (FAF) blends activated with sodium metasilicate (thermal shock resistant cements (TSRCs)), cured at 300 degrees C, was compared to that of a calcium phosphate cement (CPC) (CAC-FAF blend activated with sodium hexametaphosphate) and a Portland cement class G/silica blend. The mechanical properties and compositions of the acid-exposed samples were evaluated by measuring their compressive strength and by means of x-ray diffraction, mu EDX (energy-dispersive x-ray spectrometry), thermogravimetric and Fourier transform infrared analyses. All calcium-containing hydrates were sensitive to the conditions of acid exposure. In the TSRC blends, these hydrates included hydrogrossular, feldspar family minerals and zeolites; in CPC, feldspar minerals and phosphate phases; and in the class G/silica blend, portlandite and tobermorite. Crystalline calcium sulfates formed in the acid-exposed surfaces with the exception of the most aluminium-rich TSRC samples where only potassium(sodium) aluminium sulfate, alunite, was detected. This sample underwent the least changes in weight, compressive strength and had the lowest sulfur permeation into the sample core. Calcium sulfates precipitated on sample surfaces limited sulfur penetration into the core of calcium-rich TSRC, CPC and G/silica blends.
C1 [Pyatina, Tatiana; Sugama, Toshifumi] Brookhaven Natl Lab, Sustainable Energy Technol, Upton, NY 11973 USA.
RP Pyatina, T (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol, Upton, NY 11973 USA.
FU Geothermal Technologies Office in the US Department of Energy (DOE)
Office of Energy Efficiency and Renewable Energy (EERE) under the US
DOE, Washington, DC [DE-AC02-98CH 10886]; US Department of Energy,
Office of Basic Energy Sciences [DE-SC0012704]
FX This publication was based on work supported by the Geothermal
Technologies Office in the US Department of Energy (DOE) Office of
Energy Efficiency and Renewable Energy (EERE), under the auspices of the
US DOE, Washington, DC, under contract DE-AC02-98CH 10886. The research
was carried out in part at the Center for Functional Nanomaterials,
Brookhaven National Laboratory, which is supported by the US Department
of Energy, Office of Basic Energy Sciences, under contract DE-SC0012704.
NR 61
TC 0
Z9 0
U1 7
U2 9
PU ICE PUBLISHING
PI WESTMINISTER
PA INST CIVIL ENGINEERS, 1 GREAT GEORGE ST, WESTMINISTER SW 1P 3AA, ENGLAND
SN 0951-7197
EI 1751-7605
J9 ADV CEM RES
JI Adv. Cem. Res.
PD JUL
PY 2016
VL 28
IS 7
BP 433
EP 457
DI 10.1680/jadcr.15.00139
PG 25
WC Construction & Building Technology; Materials Science, Multidisciplinary
SC Construction & Building Technology; Materials Science
GA DP6OM
UT WOS:000378616500002
ER
PT J
AU Austin, KG
Price, LL
McGraw, SM
Leahy, G
Lieberman, HR
AF Austin, Krista G.
Price, Lori Lyn
McGraw, Susan M.
Leahy, Guy
Lieberman, Harris R.
TI Demographic, Lifestyle Factors, and Reasons for Use of Dietary
Supplements by Air Force Personnel
SO AEROSPACE MEDICINE AND HUMAN PERFORMANCE
LA English
DT Article
DE multivitamin; protein supplements; deployment history; military
operations; Armed Forces; occupational health
ID PREVALENT; ADULTS
AB BACKGROUND: Dietary supplement (DS) use is common among U.S. Army personnel to purportedly improve health, provide energy, and increase strength. However, a comprehensive analysis of DS use among U.S. Air Force (USAF) personnel has not been conducted using the same survey instrument, which would permit direct comparisons to DS use by Army personnel.
METHODS: A standardized questionnaire was used to assess DS use, demographic factors, and reasons for use of DS by USAF personnel (N = 1750). Logistic regression models adjusted for age, sex, and rank were used to determine relationships among categories of DS (multivitamin and multimineral, individual vitamins and minerals, protein/amino acid supplements, combination products, herbal supplements, purported steroid analogs, and other) and demographic factors. Findings were compared to reports from other military services and civilian populations.
RESULTS: DS were used by 68% of USAF personnel: 35% used 1-2 DS >= 1 time/wk, 13% 3-4 DS >= 1 time/wk, and 20% >= 5 DS >= 1 time/wk. There were 45% of personnel who used a multivitamin and mineral, 33% protein supplements, 22% individual vitamins/minerals, 22% combination products, and 7% herbals. Logistic regression demonstrated aerobic exercise duration and strength training were associated with increased DS use. Individuals who previously deployed were more likely to use DS.
CONCLUSIONS: Like Army personnel, college students and athletes, USAF personnel use more DS than the general population and are more likely to use purported performance enhancing DS, such as protein supplements, and concurrently consume multiple DS.
C1 [Austin, Krista G.; McGraw, Susan M.; Lieberman, Harris R.] US Army, Environm Med Res Inst, Natick, MA 01760 USA.
[Austin, Krista G.] Oak Ridge Inst Sci & Educ, Belcamp, MD USA.
[Price, Lori Lyn] Tufts Med Ctr, Inst Clin Res & Hlth Policy Studies, Boston, MA USA.
[Price, Lori Lyn] Tufts Univ, Tufts Clin & Translat Sci Inst, Boston, MA 02111 USA.
[Leahy, Guy] Vet Adm Med Ctr, Durham, NC USA.
RP Lieberman, HR (reprint author), US Army, Mil Nutr Div, Environm Med Res Inst, Natick, MA 01760 USA.
EM harris.r.lieberman.civ@mail.mil
FU U.S. Army Medical Research and Materiel Command (USAMRMC); Department of
Defence Center Alliance for Nutrition and Dietary Supplements Research
FX This work was supported by the U.S. Army Medical Research and Materiel
Command (USAMRMC) and the Department of Defence Center Alliance for
Nutrition and Dietary Supplements Research. The opinions contained
herein are the private views of the authors and are not to be construed
as official or as reflecting the views of the Army or the Department of
Defense. Citations of commercial organizations and trade names in this
report do not constitute an official Department of the Army endorsement
or approval of the products or services of these organizations.
NR 26
TC 2
Z9 2
U1 3
U2 4
PU AEROSPACE MEDICAL ASSOC
PI ALEXANDRIA
PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA
SN 2375-6314
EI 2375-6322
J9 AEROSP MED HUM PERF
JI Aerosp. Med.Hum. Perform.
PD JUL
PY 2016
VL 87
IS 7
BP 628
EP 637
DI 10.3357/AMHP.4513.2016
PG 10
WC Biophysics; Public, Environmental & Occupational Health; Medicine,
Research & Experimental
SC Biophysics; Public, Environmental & Occupational Health; Research &
Experimental Medicine
GA DP4LB
UT WOS:000378466300007
PM 27503043
ER
PT J
AU Wu, WH
Davis, RW
AF Wu, Weihua
Davis, Ryan W.
TI One-pot bioconversion of algae biomass into terpenes for advanced
biofuels and bioproducts
SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS
LA English
DT Article
DE One-pot conversion; Terpene; Microbial consortium; Algal biofuel;
Caryophyllene; Chamigrene
ID ESSENTIAL OIL; CARYOPHYLLENE; LIMONENE
AB Under robust algae growth conditions, algal carbohydrates and proteins typically comprise up to similar to 80% of the ash-free dry weight of microalgae biomass. Therefore, production of algal biofuel through comprehensive utilization of all algal components and the addition of high energy density fuel compoundswith "fit for purpose" properties or high-value bioproducts will both diminish the process cost and improve the overall process feasibility. In this study, we firstly demonstrated the concept of a "one-pot" bioconversion of algal carbohydrate and protein into value-added terpene compounds as advanced biofuel and high value bioproducts to improve the overall process feasibility through the development of engineered microbial consortium. The consortium for caryophyllene production yielded the highest titer of total terpene, up to 507.4 mg/L, including 471 mg/L of sesquiterpene, 36.4 mg/L of monoterpene, and 124.4 mg/L of caryophyllene on algal hydrolysate from Nannochloropsis sp. Additionally, the consortium expressing chamigrene synthase produced 187 mg/L total terpene including 87 mg/L of monoterpene, 100 mg/L of sesquiterpene, and 62 mg/L chamigrene on hydrolysate from benthic polyculture biomass. Compared to the yields of terpene extracted from plant tissue, both consortia increased the terpene yield about 3-40 times, which makes it a promising alternative pathway for terpene production. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Wu, Weihua; Davis, Ryan W.] Sandia Natl Labs, Dept Biomass Sci & Convers Technol, 7011 East Ave, Livermore, CA USA.
RP Wu, WH; Davis, RW (reprint author), Sandia Natl Labs, Dept Biomass Sci & Convers Technol, 7011 East Ave, Livermore, CA USA.
EM wwu@sandia.gov; rwdavis@sandia.gov
FU United States Department of Energy [DE-ACO4-94AL85000]; DOE-EERE
BioEnergy Technologies Office (BETO) [26336]
FX The authors would like to thank Mark J. Zivojnovich, VP of Project
Development at HydroMentia, Inc. for providing benthic algae biomass
samples for this effort. We would also like to thank Prof. James Liao,
Chair of the Department of Chemical and Biomolecular Engineering at UCLA
for providing the E. coli YH40 strain. Special thanks to Jay Keasling,
Taek-Soon Lee, and Jorge Alanzo-Gutierrez for providing strains and
giving advice on expressing TS. Sandia is a multi-program laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy under Contract DE-ACO4-94AL85000.
Support is acknowledged from DOE-EERE BioEnergy Technologies Office
(BETO) under agreement number 26336.
NR 29
TC 2
Z9 2
U1 12
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2211-9264
J9 ALGAL RES
JI Algal Res.
PD JUL
PY 2016
VL 17
BP 316
EP 320
DI 10.1016/j.algal.2016.05.005
PG 5
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA DQ0BV
UT WOS:000378863700036
ER
PT J
AU Carney, LT
Wilkenfeld, JS
Lane, PD
Solberg, OD
Fuqua, ZB
Cornelius, NG
Gillespie, S
Williams, KP
Samocha, TM
Lane, TW
AF Carney, Laura T.
Wilkenfeld, Joshua S.
Lane, Pam D.
Solberg, Owen D.
Fuqua, Zachary B.
Cornelius, Nina G.
Gillespie, Shaunette
Williams, Kelly P.
Samocha, Tzachi M.
Lane, Todd W.
TI Pond Crash Forensics: Presumptive identification of pond crash agents by
next generation sequencing in replicate raceway mass cultures of
Nannochloropsis salina
SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS
LA English
DT Article
DE Algae mass culture; Biocontamination; Biomass algal crash; Second
generation sequencing; Microbiome analysis
ID ROTIFER; GROWTH; DIVERSITY; BACTERIA; ALGAE; COMMUNITIES; MICROALGAE;
ECOLOGY; READS; WATER
AB Productivity of algal mass culture can be severely reduced by contaminating organisms. It is, therefore, important to identify contaminants, determine their effect on productivity and, ultimately, develop countermeasures against such contamination. In the present study we utilized microbiome analysis by second-generation sequencing of small subunit rRNA genes to characterize the predator and pathogen burden of open raceway cultures of Nannochloropsis salina. Samples were analyzed from replicate raceways before and after crashes. In one culture cycle, we identified two algivorous species, the rotifer Brachionus and gastrotrich Chaetonotus, the presence of which may have contributed to the loss of algal biomass. In the second culture cycle, the raceways were treated with hypochlorite in an unsuccessful attempt to interdict the crash. Our analyses were shown to be an effective strategy for the identification of the biological contaminants and the characterization of intervention strategies. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Carney, Laura T.; Lane, Pam D.; Solberg, Owen D.; Williams, Kelly P.; Lane, Todd W.] Sandia Natl Labs, Syst Biol, POB 969,MS 9671, Livermore, CA 94551 USA.
[Wilkenfeld, Joshua S.; Fuqua, Zachary B.; Cornelius, Nina G.; Gillespie, Shaunette; Samocha, Tzachi M.] Texas A&M AgriLife Res Mariculture Lab Flour Bluf, 4301 Waldron Rd, Corpus Christi, TX 78418 USA.
[Carney, Laura T.; Wilkenfeld, Joshua S.] Heliae Dev LLC, 578 E Germann Rd, Gilbert, AZ 85297 USA.
RP Lane, TW (reprint author), Sandia Natl Labs, Syst Biol, POB 969,MS 9292, Livermore, CA 94551 USA.
EM twlane@sandia.gov
OI Samocha, Tzachi/0000-0001-8051-499X
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]; BioEnergy Technology Office, U.S. Department of
Energy [NL0022897]
FX Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000. Microbiome
analysis at Sandia National Laboratories was supported by the BioEnergy
Technology Office, U.S. Department of Energy under Award #NL0022897.
NR 37
TC 1
Z9 1
U1 13
U2 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 2211-9264
J9 ALGAL RES
JI Algal Res.
PD JUL
PY 2016
VL 17
BP 341
EP 347
DI 10.1016/j.algal.2016.05.011
PG 7
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA DQ0BV
UT WOS:000378863700039
ER
PT J
AU Hu, Z
Mao, JH
Curtis, C
Huang, G
Gu, SD
Heiser, L
Lenburg, ME
Korkola, JE
Bayani, N
Samarajiwa, S
Seoane, JA
Dane, MA
Esch, A
Feiler, HS
Wang, NJ
Hardwicke, MA
Laquerre, S
Jackson, J
Wood, KW
Weber, B
Spellman, PT
Aparicio, S
Wooster, R
Caldas, C
Gray, JW
AF Hu, Zhi
Mao, Jian-Hua
Curtis, Christina
Huang, Ge
Gu, Shenda
Heiser, Laura
Lenburg, Marc E.
Korkola, James E.
Bayani, Nora
Samarajiwa, Shamith
Seoane, Jose A.
Dane, Mark A.
Esch, Amanda
Feiler, Heidi S.
Wang, Nicholas J.
Hardwicke, Mary Ann
Laquerre, Sylvie
Jackson, Jeff
Wood, Kenneth W.
Weber, Barbara
Spellman, Paul T.
Aparicio, Samuel
Wooster, Richard
Caldas, Carlos
Gray, Joe W.
TI Genome co-amplification upregulates a mitotic gene network activity that
predicts outcome and response to mitotic protein inhibitors in breast
cancer
SO BREAST CANCER RESEARCH
LA English
DT Article
DE Breast cancer; Mitotic index; Predictive biomarker; Novel therapeutics
ID PROLIFERATION SIGNATURE; TUMOR-SUSCEPTIBILITY; ANTITUMOR-ACTIVITY;
PROGNOSTIC VALUE; AURORA B; EXPRESSION; IDENTIFICATION; ARCHITECTURE;
GSK1070916; THERAPY
AB Background: High mitotic activity is associated with the genesis and progression of many cancers. Small molecule inhibitors of mitotic apparatus proteins are now being developed and evaluated clinically as anticancer agents. With clinical trials of several of these experimental compounds underway, it is important to understand the molecular mechanisms that determine high mitotic activity, identify tumor subtypes that carry molecular aberrations that confer high mitotic activity, and to develop molecular markers that distinguish which tumors will be most responsive to mitotic apparatus inhibitors.
Methods: We identified a coordinately regulated mitotic apparatus network by analyzing gene expression profiles for 53 malignant and non-malignant human breast cancer cell lines and two separate primary breast tumor datasets. We defined the mitotic network activity index (MNAI) as the sum of the transcriptional levels of the 54 coordinately regulated mitotic apparatus genes. The effect of those genes on cell growth was evaluated by small interfering RNA (siRNA).
Results: High MNAI was enriched in basal-like breast tumors and was associated with reduced survival duration and preferential sensitivity to inhibitors of the mitotic apparatus proteins, polo-like kinase, centromere associated protein E and aurora kinase designated GSK462364, GSK923295 and GSK1070916, respectively. Co-amplification of regions of chromosomes 8q24, 10p15-p12, 12p13, and 17q24-q25 was associated with the transcriptional upregulation of this network of 54 mitotic apparatus genes, and we identify transcription factors that localize to these regions and putatively regulate mitotic activity. Knockdown of the mitotic network by siRNA identified 22 genes that might be considered as additional therapeutic targets for this clinically relevant patient subgroup.
Conclusions: We define a molecular signature which may guide therapeutic approaches for tumors with high mitotic network activity.
C1 [Hu, Zhi; Huang, Ge; Gu, Shenda; Heiser, Laura; Korkola, James E.; Dane, Mark A.; Esch, Amanda; Feiler, Heidi S.; Wang, Nicholas J.; Spellman, Paul T.; Gray, Joe W.] Oregon Hlth & Sci Univ, Sch Med, Dept Biomed Engn, 3303 SW Bond Ave,CH13B, Portland, OR 97239 USA.
[Mao, Jian-Hua; Bayani, Nora] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94127 USA.
[Curtis, Christina; Seoane, Jose A.] Stanford Univ, Sch Med, Div Oncol, Dept Med, Stanford, CA 94305 USA.
[Curtis, Christina; Seoane, Jose A.] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA.
[Lenburg, Marc E.] Boston Univ, Dept Pathol & Lab Med, Sch Med, Boston, MA 02215 USA.
[Samarajiwa, Shamith] Univ Cambridge, MRC Canc Unit, Cambridge CB2 0XZ, England.
[Hardwicke, Mary Ann; Laquerre, Sylvie; Jackson, Jeff; Weber, Barbara; Wooster, Richard] GlaxoSmithKline, Collegeville, PA 19425 USA.
[Wood, Kenneth W.] Cytokinetics Inc, San Francisco, CA 94080 USA.
[Aparicio, Samuel] BC Canc Res Ctr, Mol Oncol, Vancouver, BC, Canada.
[Caldas, Carlos] Canc Res UK, Cambridge Inst, Cambridge, England.
RP Gray, JW (reprint author), Oregon Hlth & Sci Univ, Sch Med, Dept Biomed Engn, 3303 SW Bond Ave,CH13B, Portland, OR 97239 USA.; Caldas, C (reprint author), Canc Res UK, Cambridge Inst, Cambridge, England.
EM carlos.caldas@cancer.org.uk; Grayjo@ohsu.edu
RI Lenburg, Marc/B-8027-2008;
OI Lenburg, Marc/0000-0002-5760-4708; Curtis,
Christina/0000-0003-0166-3802; Samarajiwa, Shamith/0000-0003-1046-0601;
Caldas, Carlos/0000-0003-3547-1489
FU Office of Science, Office of Biological & Environmental Research, of the
U.S. Department of Energy [DE-AC02-05CH11231]; National Institutes of
Health, National Cancer Institute [P50 CA 58207, U54 CA 112970, U24
CA143799, R01 CA115481]; SmithKline Beecham Corporation; Stand Up to
Cancer American Association for Cancer Research Dream Team Translational
Cancer Research Grant [SU2C-AACR-DT0409]; Cancer Research UK; British
Columbia Cancer Agency
FX The research was supported by the Director, Office of Science, Office of
Biological & Environmental Research, of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231, by the National Institutes of
Health, National Cancer Institute grants P50 CA 58207 (JWG), U54 CA
112970 (JWG), U24 CA143799 (JWG), R01 CA115481 (JHM), SmithKline Beecham
Corporation (JWG), and by the Stand Up to Cancer American Association
for Cancer Research Dream Team Translational Cancer Research Grant
SU2C-AACR-DT0409. CaC is funded by Cancer Research UK. SA is funded by
the British Columbia Cancer Agency.
NR 45
TC 1
Z9 1
U1 2
U2 3
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1465-542X
EI 1465-5411
J9 BREAST CANCER RES
JI Breast Cancer Res.
PD JUL 1
PY 2016
VL 18
AR 70
DI 10.1186/s13058-016-0728-y
PG 12
WC Oncology
SC Oncology
GA DQ0OJ
UT WOS:000378898900001
PM 27368372
ER
PT J
AU Hanemann, M
Sayre, SS
Dale, L
AF Hanemann, Michael
Sayre, Susan Stratton
Dale, Larry
TI The downside risk of climate change in California's Central Valley
agricultural sector
SO CLIMATIC CHANGE
LA English
DT Article
ID UTILITY FUNCTIONS; LOSS AVERSION; MODEL; SYSTEM
AB Downscaled climate change projections for California, when translated into changes in irrigation water delivery and then into profit from agriculture in the Central Valley, show an increase in conventional measures of variability such as the variance. However, these increases are modest and mask a more pronounced increase in downside risk, defined as the probability of unfavorable outcomes of water supply or profit. This paper describes the concept of downside risk and measures it as it applies to outcomes for Central Valley agriculture projected under four climate change scenarios. We compare the effect of downside risk aversion versus conventional risk aversion or risk neutrality when assessing the impact of climate change on the profitability of Central Valley agriculture. We find that, when downside risk is considered, the assessment of losses due to climate change increases substantially.
C1 [Hanemann, Michael] Arizona State Univ, Tempe, AZ USA.
[Sayre, Susan Stratton] Smith Coll, Northampton, MA 01063 USA.
[Dale, Larry] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Dale, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM lldale@lbl.gov
OI Sayre, Susan/0000-0003-4755-8362
FU NSF [1204774]
FX Dr. Hanemann's research was supported by NSF Award 1204774 to Arizona
State University. Our research relies on modeling results provided to us
by California Department of Water Resources and CVPM computer code
provided by Steven Hatchett. We thank Sydny Fujita and Nathaniel Bush
for research assistance. This draft has benefitted from the helpful
suggestions of several anonymous reviewers and the associate editor. Any
remaining errors are our own.
NR 35
TC 0
Z9 0
U1 10
U2 15
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0165-0009
EI 1573-1480
J9 CLIMATIC CHANGE
JI Clim. Change
PD JUL
PY 2016
VL 137
IS 1-2
BP 15
EP 27
DI 10.1007/s10584-016-1651-z
PG 13
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA DP8IP
UT WOS:000378741900002
ER
PT J
AU Minamoto, Y
Chen, JH
AF Minamoto, Yuki
Chen, Jacqueline H.
TI DNS of a turbulent lifted DME jet flame
SO COMBUSTION AND FLAME
LA English
DT Article
DE Direct numerical simulation (DNS); Dimethyl ether (DME); Negative
temperature coefficient (NTC); Low-temperature heat release (LTHR);
Lifted flame; Diesel combustion
ID DIMETHYL ETHER; BOUNDARY-CONDITIONS; NONPREMIXED FLAMES; PREMIXED
FLAMES; STABILIZATION; SIMULATIONS; TEMPERATURE; COMBUSTION; IGNITION;
METHANE
AB A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a "pentabrachial" structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatial locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. This suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
C1 [Minamoto, Yuki; Chen, Jacqueline H.] Sandia Natl Labs, Livermore, CA 94550 USA.
[Minamoto, Yuki] Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan.
RP Minamoto, Y (reprint author), Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan.
EM yminamot@gmail.com
OI Minamoto, Yuki/0000-0002-6157-8370
FU Office of Science of the U.S. Department of Energy [DE-AC05-000R22725];
NSF/DOE Partnership on Advanced Combustion Engines [BET-1258646]; US
Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences, and Biosciences; United States
Department of Energy [DE-AC04-94AL85000]
FX This research used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract
DE-AC05-000R22725. The work at Sandia National Laboratories was
supported by NSF/DOE Partnership on Advanced Combustion Engines under
Contract BET-1258646 and by the US Department of Energy, Office of Basic
Energy Sciences, Division of Chemical Sciences, Geosciences, and
Biosciences. Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United States Department
of Energy under contract DE-AC04-94AL85000.
NR 39
TC 3
Z9 3
U1 16
U2 21
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0010-2180
EI 1556-2921
J9 COMBUST FLAME
JI Combust. Flame
PD JUL
PY 2016
VL 169
BP 38
EP 50
DI 10.1016/j.combustflame.2016.04.007
PG 13
WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary;
Engineering, Chemical; Engineering, Mechanical
SC Thermodynamics; Energy & Fuels; Engineering
GA DP6CD
UT WOS:000378583600005
ER
PT J
AU Karami, S
Hawkes, ER
Talei, M
Chen, JH
AF Karami, Shahram
Hawkes, Evatt R.
Talei, Mohsen
Chen, Jacqueline H.
TI Edge flame structure in a turbulent lifted flame: A direct numerical
simulation study
SO COMBUSTION AND FLAME
LA English
DT Article
DE Lifted flame; Edge flame; DNS; Curvature; Strain rate; Scalar
dissipation rate
ID JET DIFFUSION FLAMES; PREMIXED METHANE-AIR; REACTION-ZONES REGIME;
STRAIN-RATE; TRIPLE FLAMES; MIXING LAYERS; PLIF MEASUREMENTS;
STABILIZATION MECHANISM; PROPAGATION VELOCITY; SCALAR DISSIPATION
AB This paper presents a statistical analysis of edge flames in a turbulent lifted flame using direct numerical simulation (DNS). To investigate the dynamics of edge flames, a theoretical framework describing the edge-flame propagation velocity as a function of propagation velocities of mixture-fraction and product mass fraction iso-surfaces at the flame base is used. The correlations between these propagation velocities and several other variables are then studied, including iso-surface curvatures, iso-surface orientations, strain rates, scalar dissipation rate and gradients of product mass fraction. The contribution of these parameters to the overall behaviour of the edge flame is also investigated using conditional averaging on two-dimensional spatial locations at the flame base. The analysis reveals that the tangential and normal strain rates in addition to the curvatures and scalar dissipation rates have significant contributions to the overall behaviour of the edge flame. The elliptical motion of the flame base described in our earlier study [1] is extended to provide a clearer picture of how these various parameters affect the large fluctuations of edge-flame velocity observed at the flame base. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
C1 [Karami, Shahram; Hawkes, Evatt R.] Univ New S Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia.
[Hawkes, Evatt R.] Univ New S Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia.
[Talei, Mohsen] Univ Melbourne, Dept Mech Engn, Melbourne, Vic 3010, Australia.
[Chen, Jacqueline H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA.
RP Karami, S (reprint author), Univ New S Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia.
EM s.karami@unsw.edu.au
RI Hawkes, Evatt/C-5307-2012;
OI Hawkes, Evatt/0000-0003-0539-7951; Karami, Shahram/0000-0003-0254-4733
FU Australian Research Council; Australian Government; US Department of
Energy, Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences; US Department of Energy
[DE-AC04-94-AL85000]
FX This work was supported by the Australian Research Council. The research
benefited from computational resources provided through the National
Computational Merit Allocation Scheme, supported by the Australian
Government. The computational facilities supporting this project
included the Australian NCI National Facility, the partner share of the
NCI facility provided by Intersect Australia Pty Ltd., the Peak
Computing Facility of the Victorian Life Sciences Computation Initiative
(VLSCI), iVEC (Western Australia), and the UNSW Faculty of Engineering.
This research was sponsored by the US Department of Energy, Office of
Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and
Biosciences. Sandia National Laboratories is a multi-program laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the US
Department of Energy under Contract DE-AC04-94-AL85000.
NR 106
TC 3
Z9 3
U1 4
U2 8
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0010-2180
EI 1556-2921
J9 COMBUST FLAME
JI Combust. Flame
PD JUL
PY 2016
VL 169
BP 110
EP 128
DI 10.1016/j.combustflame.2016.03.006
PG 19
WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary;
Engineering, Chemical; Engineering, Mechanical
SC Thermodynamics; Energy & Fuels; Engineering
GA DP6CD
UT WOS:000378583600011
ER
PT J
AU Sarathy, SM
Kukkadapu, G
Mehl, M
Javed, T
Ahmed, A
Naser, N
Tekawade, A
Kosiba, G
AlAbbad, M
Singh, E
Park, S
Al Rashidi, M
Chung, SH
Roberts, WL
Oehlschlaeger, MA
Sung, CJ
Farooq, A
AF Sarathy, S. Mani
Kukkadapu, Goutham
Mehl, Marco
Javed, Tamour
Ahmed, Ahfaz
Naser, Nimal
Tekawade, Aniket
Kosiba, Graham
AlAbbad, Mohammed
Singh, Eshan
Park, Sungwoo
Al Rashidi, Mariam
Chung, Suk Ho
Roberts, William L.
Oehlschlaeger, Matthew A.
Sung, Chih-Jen
Farooq, Aamir
TI Compositional effects on the ignition of FACE gasolines
SO COMBUSTION AND FLAME
LA English
DT Article
DE Surrogate fuels; Chemical kinetic modeling; Octane number; Shock tube;
Rapid compression machine; Ignition
ID RAPID COMPRESSION MACHINE; HEPTANE/ISO-OCTANE/TOLUENE MIXTURES;
LOW-TEMPERATURE AUTOIGNITION; INTERNAL-COMBUSTION ENGINES; ADVANCED
DISTILLATION CURVE; TOLUENE REFERENCE FUELS; MOLE BLENDING RULE; OCTANE
NUMBERS; SHOCK-TUBE; N-HEPTANE
AB As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. This study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressures of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. A key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
C1 [Sarathy, S. Mani; Javed, Tamour; Ahmed, Ahfaz; Naser, Nimal; AlAbbad, Mohammed; Singh, Eshan; Park, Sungwoo; Al Rashidi, Mariam; Chung, Suk Ho; Roberts, William L.; Farooq, Aamir] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal, Saudi Arabia.
[Kukkadapu, Goutham; Sung, Chih-Jen] Univ Connecticut, Dept Mech Engn, Storrs, CT USA.
[Mehl, Marco] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Tekawade, Aniket; Kosiba, Graham; Oehlschlaeger, Matthew A.] Rensselaer Polytech Inst, Mech Aerosp & Nucl Engn, Troy, NY USA.
RP Sarathy, SM (reprint author), King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal, Saudi Arabia.
EM mani.sarathy@kaust.edu.sa
RI Mehl, Marco/A-8506-2009;
OI Mehl, Marco/0000-0002-2227-5035; Singh, Eshan/0000-0001-8851-4724;
Sarathy, S. Mani/0000-0002-3975-6206
FU Clean Combustion Research Center; Saudi Aramco under the FUELCOM
program; National Science Foundation [CBET-1402231]; U.S. Air Force
Office of Scientific Research [FA9550-11-1-0261]; US Department of
Energy by Lawrence Livermore National Laboratory [DE- AC52-07NA27344];
U.S. Department of Energy, Office of Vehicle Technologies
FX The authors are grateful to Hendrik Muller (Saudi Aramco R&DC), Jihad
Badra (Saudi Aramco R&DC), Abdulla Algam (Saudi Aramco R&DC), Emad Alawi
(Saudi Aramco R&DC), and Nadim Hourani (KAUST) for the DHA results. The
KAUST authors acknowledge funding support from the Clean Combustion
Research Center and from Saudi Aramco under the FUELCOM program. The
work at the University of Connecticut was supported by the National
Science Foundation under Grant No. CBET-1402231. The Rensselaer group
was supported by the U.S. Air Force Office of Scientific Research (Grant
No. FA9550-11-1-0261) with Dr. Chiping Li as technical monitor. The LLNL
work was performed under the auspices of the US Department of Energy by
Lawrence Livermore National Laboratory under Contract DE- AC52-07NA27344
and was supported by the U.S. Department of Energy, Office of Vehicle
Technologies, Gurpreet Singh, program manager.
NR 98
TC 12
Z9 12
U1 5
U2 9
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0010-2180
EI 1556-2921
J9 COMBUST FLAME
JI Combust. Flame
PD JUL
PY 2016
VL 169
BP 171
EP 193
DI 10.1016/j.combustflame.2016.04.010
PG 23
WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary;
Engineering, Chemical; Engineering, Mechanical
SC Thermodynamics; Energy & Fuels; Engineering
GA DP6CD
UT WOS:000378583600015
ER
PT J
AU Baver, DA
Myra, JR
Umansky, MV
AF Baver, D. A.
Myra, J. R.
Umansky, M. V.
TI Eigenvalue Solver for Fluid and Kinetic Plasma Models in Arbitrary
Magnetic Topology
SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS
LA English
DT Article
DE Plasma; eigensolver; finite difference method; finite element method;
SLEPc; PETSc; field-line following coordinates; snowflake divertor
ID RESISTIVE BALLOONING MODES; TOKAMAK EDGE PLASMAS; TURBULENCE;
SIMULATIONS; TRANSITION; FLUCTUATIONS; GEOMETRY; CODE
AB ArbiTER (Arbitrary Topology Equation Reader) is a new code for solving linear eigenvalue problems arising from a broad range of physics and geometry models. The primary application area envisioned is boundary plasma physics in magnetic confinement devices; however ArbiTER should be applicable to other science and engineering fields as well. The code permits a variable numbers of dimensions, making possible application to both fluid and kinetic models. The use of specialized equation and topology parsers permits a high degree of flexibility in specifying the physics and geometry.
C1 [Baver, D. A.; Myra, J. R.] Lodestar Res Corp, Boulder, CO 80301 USA.
[Umansky, M. V.] Lawrence Livermore Natl Lab, Lawrence, KS USA.
RP Baver, DA (reprint author), Lodestar Res Corp, Boulder, CO 80301 USA.
EM dabaver65@hotmail.com; jrmyra@lodestar.com; umansky1@llnl.gov
FU U.S. Department of Energy Office of Science, Office of Fusion Energy
Sciences [DE-SC0006562]
FX This material is based upon work supported by the U.S. Department of
Energy Office of Science, Office of Fusion Energy Sciences under Award
Number DE-SC0006562.
NR 30
TC 0
Z9 0
U1 2
U2 4
PU GLOBAL SCIENCE PRESS
PI WANCHAI
PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000,
PEOPLES R CHINA
SN 1815-2406
EI 1991-7120
J9 COMMUN COMPUT PHYS
JI Commun. Comput. Phys.
PD JUL
PY 2016
VL 20
IS 1
BP 136
EP 155
DI 10.4208/cicp.191214.021015a
PG 20
WC Physics, Mathematical
SC Physics
GA DP9RZ
UT WOS:000378835800005
ER
PT J
AU Gedenk, E
AF Gedenk, Eric
TI Illuminating the Universe's Ignition
SO COMPUTING IN SCIENCE & ENGINEERING
LA English
DT Article
C1 [Gedenk, Eric] Oak Ridge Natl Lab, Oak Ridge, TN USA.
RP Gedenk, E (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA.
EM gedenked@ornl.gov
FU DOE Office of Science [DE-AC05-00OR22725]; US Department of Energy
[DE-AC05-00OR22725]
FX The Oak Ridge Leadership Computing Facility is a DOE Office of Science
User Facility supported under contract DE-AC05-00OR22725.; This
manuscript has been authored by UT-Battelle, LLC under contract number
DE-AC05-00OR22725 with the US Department of Energy. The US government
retains and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive, paid-up,
irrevocable,
NR 0
TC 0
Z9 0
U1 0
U2 0
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1521-9615
EI 1558-366X
J9 COMPUT SCI ENG
JI Comput. Sci. Eng.
PD JUL-AUG
PY 2016
VL 18
IS 4
BP 80
EP 83
PG 4
WC Computer Science, Interdisciplinary Applications
SC Computer Science
GA DP7FA
UT WOS:000378663400011
ER
PT J
AU Sariyuce, AE
Gedik, B
Jacques-Silva, G
Wu, KL
Catalyurek, UV
AF Sariyuce, Ahmet Erdem
Gedik, Bugra
Jacques-Silva, Gabriela
Wu, Kun-Lung
Catalyurek, Umit V.
TI SONIC: streaming overlapping community detection
SO DATA MINING AND KNOWLEDGE DISCOVERY
LA English
DT Article
DE Streaming graph processing; Community detection; Overlapping communities
ID COMPLEX NETWORKS
AB A community within a graph can be broadly defined as a set of vertices that exhibit high cohesiveness (relatively high number of edges within the set) and low conductance (relatively low number of edges leaving the set). Community detection is a fundamental graph processing analytic that can be applied to several application domains, including social networks. In this context, communities are often overlapping, as a person can be involved in more than one community (e.g., friends, and family); and evolving, since the structure of the network changes. We address the problem of streaming overlapping community detection, where the goal is to maintain communities in the presence of streaming updates. This way, the communities can be updated more efficiently. To this end, we introduce SONIC-a find-and-merge type of community detection algorithm that can efficiently handle streaming updates. SONIC first detects when graph updates yield significant community changes. Upon the detection, it updates the communities via an incremental merge procedure. The SONIC algorithm incorporates two additional techniques to speed-up the incremental merge; min-hashing and inverted indexes. Results show that SONIC can provide high quality overlapping communities, while handling streaming updates several orders of magnitude faster than the alternatives performing from-scratch computation.
C1 [Sariyuce, Ahmet Erdem] Sandia Natl Labs, Livermore, CA USA.
[Gedik, Bugra] Bilkent Univ, Ankara, Turkey.
[Jacques-Silva, Gabriela; Wu, Kun-Lung] IBM Res, IBM Thomas J Watson Res Ctr, New York, NY USA.
[Catalyurek, Umit V.] Ohio State Univ, Columbus, OH 43210 USA.
RP Sariyuce, AE (reprint author), Sandia Natl Labs, Livermore, CA USA.
EM asariyu@sandia.gov; bgedik@cs.bilkent.edu.tr; g.jacques@us.ibm.com;
klwu@us.ibm.com; umit@bmi.osu.edu
NR 43
TC 0
Z9 0
U1 7
U2 7
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1384-5810
EI 1573-756X
J9 DATA MIN KNOWL DISC
JI Data Min. Knowl. Discov.
PD JUL
PY 2016
VL 30
IS 4
BP 819
EP 847
DI 10.1007/s10618-015-0440-z
PG 29
WC Computer Science, Artificial Intelligence; Computer Science, Information
Systems
SC Computer Science
GA DP9SV
UT WOS:000378838400003
ER
PT J
AU Sadler, NC
Nandhikonda, P
Webb-Robertson, BJ
Ansong, C
Anderson, LN
Smith, JN
Corley, RA
Wright, AT
AF Sadler, Natalie C.
Nandhikonda, Premchendar
Webb-Robertson, Bobbie-Jo
Ansong, Charles
Anderson, Lindsey N.
Smith, Jordan N.
Corley, Richard A.
Wright, Aaron T.
TI Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout
Human Development
SO DRUG METABOLISM AND DISPOSITION
LA English
DT Article
ID DRUG-METABOLIZING-ENZYMES; ACTIVITY-BASED PROBES; HUMAN LIVER; HUMAN
TISSUES; MESSENGER-RNA; PROTEOMICS DATA; ACCURATE MASS; HUMAN ADULT;
IN-VIVO; ONTOGENY
AB Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography-mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics.
C1 [Sadler, Natalie C.; Nandhikonda, Premchendar; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.; Wright, Aaron T.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Webb-Robertson, Bobbie-Jo] Pacific NW Natl Lab, Computat & Stat Analyt Div, Richland, WA 99352 USA.
RP Wright, AT (reprint author), 902 Battelle Blvd,Box 999,MSIN J4-02, Richland, WA 99352 USA.
EM aaron.wright@pnnl.gov
RI Anderson, Lindsey /S-6375-2016;
OI Anderson, Lindsey /0000-0002-8741-7823; Wright,
Aaron/0000-0002-3172-5253
FU National Institutes of Health National Institute of Environmental Health
Sciences [P42 ES016465]; National Institute for General Medical Sciences
[P41 GM103493-11]; Intramural Research Program of the National
Institutes of Health National Institute of Environmental Health Sciences
FX This research was supported by the National Institutes of Health
National Institute of Environmental Health Sciences [P42 ES016465]. Mass
spectrometry analyses were performed in the Environmental Molecular
Sciences Laboratory, a US Department of Energy Biological and
Environmental Research national scientific user facility at Pacific
Northwest National Laboratory. Additionally, this work used
instrumentation and capabilities developed under support from the
National Institute for General Medical Sciences [P41 GM103493-11]. This
work was supported by the Intramural Research Program of the National
Institutes of Health National Institute of Environmental Health
Sciences.
NR 49
TC 3
Z9 3
U1 7
U2 9
PU AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3995 USA
SN 0090-9556
EI 1521-009X
J9 DRUG METAB DISPOS
JI Drug Metab. Dispos.
PD JUL
PY 2016
VL 44
IS 7
BP 984
EP 991
DI 10.1124/dmd.115.068593
PG 8
WC Pharmacology & Pharmacy
SC Pharmacology & Pharmacy
GA DP7TJ
UT WOS:000378701800013
PM 27084891
ER
PT J
AU Chen, GY
Li, M
Kuttiyiel, KA
Sasaki, K
Kong, FP
Du, CY
Gao, YZ
Yin, GP
Adzic, RR
AF Chen, Guangyu
Li, Meng
Kuttiyiel, Kurian A.
Sasaki, Kotaro
Kong, Fanpeng
Du, Chunyu
Gao, Yunzhi
Yin, Geping
Adzic, Radoslav R.
TI Evaluation of Oxygen Reduction Activity by the Thin-Film Rotating Disk
Electrode Methodology: the Effects of Potentiodynamic Parameters
SO ELECTROCATALYSIS
LA English
DT Article
DE ORR; TF-RDE; Electrocatalyst; Catalytic activity; Potentiodynamic
parameters
ID KINETIC-PARAMETERS; OXIDE FORMATION; FUEL-CELLS; ELECTROCATALYSTS;
SURFACE; PLATINUM; PT(111); PT/C; CATALYST; ALLOY
AB An accurate and efficient assessment of activity is critical for the research and development of electrocatalysts for oxygen reduction reaction (ORR). Currently, the methodology combining the thin-film rotating disk electrode (TF-RDE) and potentiodynamic polarization is the most commonly used to pre-evaluate ORR activity, acquire kinetic data (i.e., kinetic current, Tafel slope, etc.), and gain understanding of the ORR mechanism. However, it is often neglected that appropriate potentiodynamic parameters have to be chosen to obtain reliable results. We first evaluate the potentiodynamic and potentiostatic polarization measurements with TF-RDE to examine the ORR activity of Pt nanoelectrocatalyst. Furthermore, our results demonstrate that besides depending on the nature of electrocatalyst, the apparent ORR kinetics also strongly depends on the associated potentiodynamic parameters, such as scan rate and scan region, which have a great effect on the coverage of adsorbed OHad/O-ad on Pt surface, thereby affecting the ORR activities of both nanosized and bulk Pt. However, the apparent Tafel slopes remained nearly the same, indicating that the ORR mechanism in all the measurements was not affected by different potentiodynamic parameters.
C1 [Chen, Guangyu; Kong, Fanpeng; Du, Chunyu; Gao, Yunzhi; Yin, Geping] Harbin Inst Technol, Sch Chem Engn & Technol, State Key Lab Urban Water Resource & Environm, Harbin 150001, Peoples R China.
[Chen, Guangyu; Li, Meng; Kuttiyiel, Kurian A.; Sasaki, Kotaro; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP Yin, GP (reprint author), Harbin Inst Technol, Sch Chem Engn & Technol, State Key Lab Urban Water Resource & Environm, Harbin 150001, Peoples R China.; Adzic, RR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
EM yingphit@hit.edu.cn; adzic@bnl.gov
FU US Department of Energy, Office of Basic Energy Science, Material
Science and Engineering Division, Division of Chemical Sciences,
Geosciences and Biosciences Division [DE-SC0012704]; National Natural
Science Foundation of China [21276058, 21433003]; State Key Laboratory
of Urban Water Resource and Environment, Harbin Institute of Technology
[2014DX10]; China Scholarship Council; Brookhaven National Laboratory
(BNL)
FX This research was supported by the US Department of Energy, Office of
Basic Energy Science, Material Science and Engineering Division,
Division of Chemical Sciences, Geosciences and Biosciences Division,
under the contract no. DE-SC0012704, by the National Natural Science
Foundation of China (project nos. 21276058 and 21433003), and by the
State Key Laboratory of Urban Water Resource and Environment, Harbin
Institute of Technology (project no. 2014DX10). G.Y. Chen acknowledges
the financial support from both the China Scholarship Council and
Brookhaven National Laboratory (BNL) to perform his work at BNL.
NR 52
TC 0
Z9 0
U1 16
U2 27
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1868-2529
EI 1868-5994
J9 ELECTROCATALYSIS-US
JI Electrocatalysis
PD JUL
PY 2016
VL 7
IS 4
BP 305
EP 316
DI 10.1007/s12678-016-0309-y
PG 12
WC Chemistry, Physical; Electrochemistry
SC Chemistry; Electrochemistry
GA DP9GT
UT WOS:000378805400006
ER
PT J
AU Gillingham, K
Deng, H
Wiser, R
Darghouth, NR
Nemet, G
Barbose, G
Rai, V
Dong, CG
AF Gillingham, Kenneth
Deng, Hao
Wiser, Ryan
Darghouth, Naim Richard
Nemet, Gregory
Barbose, Galen
Rai, Varun
Dong, Changgui
TI Deconstructing Solar Photovoltaic Pricing: The Role of Market Structure,
Technology, and Policy
SO ENERGY JOURNAL
LA English
DT Article
DE residential photovoltaic; solar; price dispersion
ID UNITED-STATES; DISPERSION; PRICES; ECONOMICS; IMPACT; ELECTRICITY;
PERSISTENCE; COMPETITION; CALIFORNIA; INDUSTRY
AB Solar photovoltaic (PV) system prices in the United States display considerable heterogeneity both across geographic locations and within a given location. Such heterogeneity may arise due to state and federal policies, differences in market structure, and other factors that influence demand and costs. This paper examines the relative importance of such factors on equilibrium solar PV system prices in the United States using a detailed dataset of roughly 100,000 recent residential and small commercial installations. As expected, we find that PV system prices differ based on characteristics of the systems. More interestingly, we find evidence suggesting that search costs and imperfect competition affect solar PV pricing. Installer density substantially lowers prices, while regions with relatively generous financial incentives for solar PV are associated with higher prices.
C1 [Gillingham, Kenneth] Yale Univ, Sch Forestry & Environm Studies, Sch Management, Dept Econ, 195 Prospect St, New Haven, CT 06510 USA.
[Deng, Hao] Yale Univ, 195 Prospect St, New Haven, CT 06510 USA.
[Wiser, Ryan; Darghouth, Naim Richard; Barbose, Galen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Nemet, Gregory] Univ Wisconsin, 1225 Observ Dr, Madison, WI 53706 USA.
[Rai, Varun] Univ Texas Austin, 2315 Red River St,SRH 3-256, Austin, TX 78712 USA.
[Dong, Changgui] Natl Renewable Energy Lab, 15013 Denver W Pkwy, Golden, CO 80401 USA.
RP Gillingham, K (reprint author), Yale Univ, Sch Forestry & Environm Studies, Sch Management, Dept Econ, 195 Prospect St, New Haven, CT 06510 USA.
EM kenneth.gillingham@yale.edu
FU Office of Energy Efficiency and Renewable Energy (Solar Energy
Technologies Office) of the U.S. DOE [DE-AC02-05CH11231]
FX We thank Tsvetan Tsvetanov, Hilary Staver, Paige Weber, and Divita
Bhandari for research assistance. For reviewing earlier versions of this
paper, we thank David Arfin, Justin Baca, James Tong, Carolyn Davidson,
Gireesh Shrimali, Chris Ercoli, Valerie Thomas, the editor Jim Smith,
and two anonymous referees. Finally, for their support of this work, we
thank Elaine Ulrich, Christina Nichols, Joshua Huneycutt and Minh Le of
the U.S. Department of Energy (DOE). This work was supported by the
Office of Energy Efficiency and Renewable Energy (Solar Energy
Technologies Office) of the U.S. DOE under Contract No.
DE-AC02-05CH11231. All errors are the sole responsibility of the
authors.
NR 49
TC 3
Z9 3
U1 11
U2 20
PU INT ASSOC ENERGY ECONOMICS
PI CLEVELAND
PA 28790 CHAGRIN BLVD, STE 210, CLEVELAND, OH 44122 USA
SN 0195-6574
EI 1944-9089
J9 ENERG J
JI Energy J.
PD JUL
PY 2016
VL 37
IS 3
BP 231
EP 250
DI 10.5547/01956574.37.3.kgil
PG 20
WC Economics; Energy & Fuels; Environmental Studies
SC Business & Economics; Energy & Fuels; Environmental Sciences & Ecology
GA DP8OL
UT WOS:000378757400009
ER
PT J
AU Weir, SM
Flynn, RW
Scott, DE
Yu, SY
Lance, SL
AF Weir, Scott M.
Flynn, R. Wesley
Scott, David E.
Yu, Shuangying
Lance, Stacey L.
TI Environmental levels of Zn do not protect embryos from Cu toxicity in
three species of amphibians
SO ENVIRONMENTAL POLLUTION
LA English
DT Article
DE Metals; Anurans; Mixtures; Maternal effects; Populations
ID COAL-COMBUSTION WASTES; FLOW CONSTRUCTED WETLAND; CHRONIC COPPER
EXPOSURE; TOADS BUFO-TERRESTRIS; SOUTHERN TOADS; HEAVY-METALS; RAINBOW
TROUT; ZINC; MIXTURES; FROG
AB Contaminants often occur as mixtures in the environment, but investigations into toxicity usually employ a single chemical. Metal contaminant mixtures from anthropogenic activities such as mining and coal combustion energy are widespread, yet relatively little research has been performed on effects of these mixtures on amphibians. Considering that amphibians tend to be highly sensitive to copper (Cu) and that metal contaminants often occur as mixtures in the environment, it is important to understand the interactive effects that may result from multiple metals. Interactive effects of Cu and zinc (Zn) on amphibians have been reported as antagonistic and, conversely, synergistic. The goal of our study was to investigate the role of Zn in Cu toxicity to amphibians throughout the embryonic developmental period. We also considered maternal effects and population differences by collecting multiple egg masses from contaminated and reference areas for use in four experiments across three species. We performed acute toxicity experiments with Cu concentrations that cause toxicity (10-200 mu g/L) in the absence of other contaminants combined with sublethal concentrations of Zn (100 and 1000 mu g/L). Our results suggest very few effects of Zn on Cu toxicity at these concentrations of Zn. As has been previously reported, we found that maternal effects and population history had significant influence on Cu toxicity. The explanation for a lack of interaction between Cu and Zn in this experiment is unknown but may be due to the use of sublethal Zn concentrations when previous experiments have used Zn concentrations associated with acute toxicity. Understanding the inconsistency of amphibian Cu/Zn mixture toxicity studies is an important research direction in order to create generalities that can be used to understand risk of contaminant mixtures in the environment. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Weir, Scott M.; Flynn, R. Wesley; Scott, David E.; Yu, Shuangying; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29803 USA.
[Weir, Scott M.] Queens Univ Charlotte, Dept Biol, Charlotte, NC 28274 USA.
[Yu, Shuangying] Queens Univ Charlotte, Chem & Environm Sci Dept, Charlotte, NC 28274 USA.
RP Lance, SL (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29803 USA.
EM weirs@queens.edu; yus@queens.edu; lance@srel.uga.edu
OI Lance, Stacey/0000-0003-2686-1733
FU U.S. Department of Energy [DE-FC09-07SR22506]; DOE National Nuclear
Security Administration [1021RR267432]
FX We would like to thank D. Soteropoulos for field and laboratory
assistance. This research was partially supported by U.S. Department of
Energy under Award Number DE-FC09-07SR22506 to the University of Georgia
Research Foundation, and was also made possible by the status of the SRS
as a National Environmental Research Park (NERP), as well as the
protection of research wetlands in the SRS Set-Aside Program. Project
funding was provided by the DOE National Nuclear Security Administration
(Grant no: 1021RR267432). Animals were collected under SCDNR permit
#G-09-03 following IACUC procedures (AUP A2009 10-175-Y2-A0) from the
University of Georgia. We thank two anonymous reviewers for helpful
comments that improved the manuscript.
NR 56
TC 0
Z9 0
U1 6
U2 13
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0269-7491
EI 1873-6424
J9 ENVIRON POLLUT
JI Environ. Pollut.
PD JUL
PY 2016
VL 214
BP 161
EP 168
DI 10.1016/j.envpol.2016.04.005
PG 8
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA DP4EI
UT WOS:000378448600018
PM 27086071
ER
PT J
AU Yang, ZM
Fang, W
Lu, X
Sheng, GP
Graham, DE
Liang, LY
Wullschleger, SD
Gu, BH
AF Yang, Ziming
Fang, Wei
Lu, Xia
Sheng, Guo-Ping
Graham, David E.
Liang, Liyuan
Wullschleger, Stan D.
Gu, Baohua
TI Warming increases methylmercury production in an Arctic soil
SO ENVIRONMENTAL POLLUTION
LA English
DT Article
DE Permafrost; Soil organic carbon; Mercury; Methylmercury production;
Climate change
ID DISSOLVED ORGANIC-MATTER; MERCURY METHYLATION; CLIMATE-CHANGE;
ANAEROBIC-BACTERIA; MARINE-SEDIMENTS; BIOAVAILABILITY; DEMETHYLATION;
CARBON; AVAILABILITY; TEMPERATURE
AB Rapid temperature rise in Arctic permafrost impacts not only the degradation of stored soil organic carbon (SOC) and climate feedback, but also the production and bioaccumulation of methylmercury (MeHg) toxin that can endanger humans, as well as wildlife in terrestrial and aquatic ecosystems. Currently little is known concerning the effects of rapid permafrost thaw on microbial methylation and how SOC degradation is coupled to MeHg biosynthesis. Here we describe the effects of warming on MeHg production in an Arctic soil during an 8-month anoxic incubation experiment. Net MeHg production increased >10 fold in both organic- and mineral-rich soil layers at warmer (8 degrees C) than colder (-2 degrees C) temperatures. The type and availability of labile SOC, such as reducing sugars and ethanol, were particularly important in fueling the rapid initial biosynthesis of MeHg. Freshly amended mercury was more readily methylated than preexisting mercury in the soil. Additionally, positive correlations between mercury methylation and methane and ferrous ion production indicate linkages between SOC degradation and MeHg production. These results show that climate warming and permafrost thaw could potentially enhance MeHg production by an order of magnitude, impacting Arctic terrestrial and aquatic ecosystems by increased exposure to mercury through bioaccumulation and biomagnification in the food web. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Yang, Ziming; Fang, Wei; Lu, Xia; Liang, Liyuan; Wullschleger, Stan D.; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
[Fang, Wei; Sheng, Guo-Ping] Univ Sci & Technol China, Dept Chem, CAS Key Lab Urban Pollutant Convers, Hefei 230026, Peoples R China.
[Graham, David E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA.
[Liang, Liyuan] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN USA.
[Wullschleger, Stan D.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA.
RP Gu, BH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
EM gub1@ornl.gov
RI Graham, David/F-8578-2010; Wullschleger, Stan/B-8297-2012;
OI Graham, David/0000-0001-8968-7344; Wullschleger,
Stan/0000-0002-9869-0446; Gu, Baohua/0000-0002-7299-2956
FU Office of Biological and Environmental Research in the DOE Office of
Science, through the Next Generation Ecosystem Experiments (NGEE-Arctic)
project; Office of Biological and Environmental Research in the DOE
Office of Science, through Mercury Science Focus Area project; Chinese
Scholarship Council (CSC) of China; Laboratory Directed R&D fund at Oak
Ridge National Laboratory (ORNL)
FX We thank Xiangping Yin, Todd Olsen, Hui Lin, and Yurong Liu for
technical assistance and chemical analysis. This research was supported
by the Office of Biological and Environmental Research in the DOE Office
of Science, through the Next Generation Ecosystem Experiments
(NGEE-Arctic) project and the Mercury Science Focus Area project. WF and
XL are supported in part by the Chinese Scholarship Council (CSC) of
China, and LL by the Laboratory Directed R&D fund at Oak Ridge National
Laboratory (ORNL). All data are available in an online data repository
(NGEE-Arctic Data Portal, DOI:10.5440/1235032).
NR 42
TC 1
Z9 1
U1 27
U2 43
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0269-7491
EI 1873-6424
J9 ENVIRON POLLUT
JI Environ. Pollut.
PD JUL
PY 2016
VL 214
BP 504
EP 509
DI 10.1016/j.envpol.2016.04.069
PG 6
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA DP4EI
UT WOS:000378448600057
PM 27131808
ER
PT J
AU Tuberville, TD
Scott, DE
Metts, BS
Finger, JW
Hamilton, MT
AF Tuberville, Tracey D.
Scott, David E.
Metts, Brian S.
Finger, John W., Jr.
Hamilton, Matthew T.
TI Hepatic and renal trace element concentrations in American alligators
(Alligator mississippiensis) following chronic dietary exposure to coal
fly ash contaminated prey
SO ENVIRONMENTAL POLLUTION
LA English
DT Article
DE Crocodilian; Bioaccumulation; Chronic dietary exposure; Growth; Coal
combustion waste
ID CROCODILES CROCODYLUS-POROSUS; SNAKES NERODIA-FASCIATA; BURNING
POWER-PLANT; MATERNAL TRANSFER; SELENIUM CONCENTRATIONS; SOUTHERN TOADS;
HEAVY-METAL; FOOD-CHAIN; MERCURY CONCENTRATIONS; COMBUSTION WASTES
AB Little is known about the propensity of crocodilians to bioaccumulate trace elements as a result of chronic dietary exposure. We exposed 36 juvenile alligators (Alligator mississippiensis) to one of four dietary treatments that varied in the relative frequency of meals containing prey from coal combustion waste (CCW)-contaminated habitats vs. prey from uncontaminated sites, and evaluated tissue residues and growth rates after 12 mo and 25 mo of exposure. Hepatic and renal concentrations of arsenic (As), cadmium (Cd) and selenium (Se) varied significantly among dietary treatment groups in a dose dependent manner and were higher in kidneys than in livers. Exposure period did not affect Se or As levels but Cd levels were significantly higher after 25 mo than 12 mo of exposure. Kidney As and Se levels were negatively correlated with body size but neither growth rates nor body condition varied significantly among dietary treatment groups. Our study is among the first to experimentally examine bio-accumulation of trace element contaminants in crocodilians as a result of chronic dietary exposure. A combination of field surveys and laboratory experiments will be required to understand the effects of different exposure scenarios on tissue residues, and ultimately link these concentrations with effects on individual health. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Tuberville, Tracey D.; Scott, David E.; Metts, Brian S.; Finger, John W., Jr.; Hamilton, Matthew T.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Finger, John W., Jr.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA.
[Hamilton, Matthew T.] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA.
[Metts, Brian S.] Grovetown Middle Sch, Grovetown, GA 30813 USA.
[Finger, John W., Jr.] Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA.
RP Tuberville, TD (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
EM tubervil@uga.edu
OI Finger, John/0000-0003-0661-7821
FU Savannah River Nuclear Solutions-Area Completions Projects; Department
of Energy [DE-FC09-07SR22506]
FX We would like to thank Ruth Elsey and her staff at the Rockefeller
Wildlife Refuge in Louisiana for providing the alligators used in the
study and Andrew Grosse and Brett DeGregorio for transporting them to
SREL. We thank Brett DeGregorio for setting up the tanks, Caitlin Kupar
for assistance with prey collection and animal husbandry, Bess Harris
for help with food preparation and animal husbandry, Nick Bossenbroek
for help with tissue sample preparation, and Stacey Lance and Travis
Glenn for assistance with dissections. Two anonymous reviewers provided
comments that improved earlier versions of this manuscript. All
procedures were approved by the University of Georgia's Institutional
Animal Care and Use Committee (AUP #A2010 11-561-Y1-A0). We obtained
permission to transport alligators from Louisiana Department of Wildlife
and Fisheries and from South Carolina Department of Natural Resources.
Prey fish were collected under SC collecting permit #F-12-12. Funding
was provided by Savannah River Nuclear Solutions-Area Completions
Projects and by Department of Energy under Award No. DE-FC09-07SR22506
to the University of Georgia Research Foundation.
NR 88
TC 2
Z9 2
U1 8
U2 15
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0269-7491
EI 1873-6424
J9 ENVIRON POLLUT
JI Environ. Pollut.
PD JUL
PY 2016
VL 214
BP 680
EP 689
DI 10.1016/j.envpol.2016.04.003
PG 10
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA DP4EI
UT WOS:000378448600077
PM 27149145
ER
PT J
AU McKenney, JR
Sato, N
Melnitchouk, W
Ji, CR
AF McKenney, J. R.
Sato, Nobuo
Melnitchouk, W.
Ji, Chueng-Ryong
TI SU(2) Flavor Asymmetry of the Proton Sea in Chiral Effective Theory
SO FEW-BODY SYSTEMS
LA English
DT Article; Proceedings Paper
CT Light Cone Meeting
CY SEP 21-26, 2015
CL Natl Labs Inst Nazl Fis Nucl, Frascati, ITALY
SP Int Light Cone Advisory Comm
HO Natl Labs Inst Nazl Fis Nucl
ID LEADING NEUTRON-PRODUCTION; DEEP-INELASTIC SCATTERING; DRELL-YAN;
NUCLEON; DISTRIBUTIONS; HERA; BREAKING; TUNGSTEN
AB We refine the computation of the dI" - A << flavor asymmetry in the proton sea with a complementary effort to reveal the dynamics of pion exchange in high-energy processes. In particular, we discuss the efficacy of pion exchange models to simultaneously describe leading neutron electroproduction at HERA along with the dI" - A << flavor asymmetry in the proton. A detailed analysis of the ZEUS and H1 data, when combined with constraints on the pion flux from Drell-Yan data, allows regions of applicability of one-pion exchange to be delineated. Based on the fit results, we also address a possible estimate for leading proton structure functions in upcoming tagged deep-inelastic scattering experiments at Jefferson Lab on the deuteron with forward protons.
C1 [McKenney, J. R.] Univ N Carolina, Chapel Hill, NC 27599 USA.
[Sato, Nobuo; Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA.
[Ji, Chueng-Ryong] N Carolina State Univ, Raleigh, NC 27695 USA.
RP Ji, CR (reprint author), N Carolina State Univ, Raleigh, NC 27695 USA.
EM crji@ncsu.edu
NR 42
TC 0
Z9 0
U1 0
U2 0
PU SPRINGER WIEN
PI WIEN
PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA
SN 0177-7963
EI 1432-5411
J9 FEW-BODY SYST
JI Few-Body Syst.
PD JUL
PY 2016
VL 57
IS 7
BP 593
EP 599
DI 10.1007/s00601-016-1047-7
PG 7
WC Physics, Multidisciplinary
SC Physics
GA DP8YQ
UT WOS:000378784300017
ER
PT J
AU Estiarte, M
Vicca, S
Penuelas, J
Bahn, M
Beier, C
Emmett, BA
Fay, PA
Hanson, PJ
Hasibeder, R
Kigel, J
Kroel-Dulay, G
Larsen, KS
Lellei-Kovacs, E
Limousin, JM
Ogaya, R
Ourcival, JM
Reinsch, S
Sala, OE
Schmidt, IK
Sternberg, M
Tielborger, K
Tietema, A
Janssens, IA
AF Estiarte, Marc
Vicca, Sara
Penuelas, Josep
Bahn, Michael
Beier, Claus
Emmett, Bridget A.
Fay, Philip A.
Hanson, Paul J.
Hasibeder, Roland
Kigel, Jaime
Kroel-Dulay, Gyorgy
Larsen, Klaus Steenberg
Lellei-Kovacs, Eszter
Limousin, Jean-Marc
Ogaya, Roma
Ourcival, Jean-Marc
Reinsch, Sabine
Sala, Osvaldo E.
Schmidt, Inger Kappel
Sternberg, Marcelo
Tielboerger, Katja
Tietema, Albert
Janssens, Ivan A.
TI Few multiyear precipitation-reduction experiments find ashift in the
productivity-precipitation relationship
SO GLOBAL CHANGE BIOLOGY
LA English
DT Article
DE aboveground productivity; drought; precipitation;
precipitation-reduction experiments; spatial fit; temporal fit
ID CARBON-CYCLE MODELS; HOLM OAK FOREST; MANIPULATION EXPERIMENTS;
CLIMATE-CHANGE; USE EFFICIENCY; TREE GROWTH; DROUGHT; VARIABILITY;
GRASSLAND; MORTALITY
AB Well-defined productivity-precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity-precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation-reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effects of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation-manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity-precipitation relationship downward the spatial fit. The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation-reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need for experiments with multiple, including more extreme, dry treatments, to identify the precipitation boundaries within which the current temporal fits remain valid.
C1 [Estiarte, Marc; Penuelas, Josep] CSIC, Global Ecol Unit CREAF CSIC UAB, E-08193 Cerdanyola Del Valles, Catalonia, Spain.
[Estiarte, Marc; Penuelas, Josep; Ogaya, Roma] CREAF, E-08193 Barcelona, Catalonia, Spain.
[Vicca, Sara; Janssens, Ivan A.] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium.
[Bahn, Michael; Hasibeder, Roland] Univ Innsbruck, Inst Ecol, Sternwarte Str 15, A-6020 Innsbruck, Austria.
[Beier, Claus; Larsen, Klaus Steenberg; Schmidt, Inger Kappel] Univ Copenhagen, Dept Geosci & Nat Resource Management, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark.
[Beier, Claus; Reinsch, Sabine] NIVA, Ctr Catchments & Urban Water Res, NO-0349 Oslo, Norway.
[Emmett, Bridget A.] Environm Ctr Wales, Ctr Ecol & Hydrol, Bangor LL57 2UW, Gwynedd, Wales.
[Fay, Philip A.] USDA ARS, 808 E Blackland Rd, Temple, TX 76502 USA.
[Hanson, Paul J.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA.
[Kigel, Jaime] Hebrew Univ Jerusalem, Inst Plant Sci & Genet, Robert H Smith Fac Agr Food & Environm, IL-76100 Rehovot, Israel.
[Kroel-Dulay, Gyorgy; Lellei-Kovacs, Eszter] MTA Ctr Ecol Res, Inst Ecol & Bot, H-2163 Vacratot, Hungary.
[Limousin, Jean-Marc; Ourcival, Jean-Marc] Univ Montpellier 3, Univ Montpellier, CNRS, CEFE,UMR5175,EPHE, 1919 Route Mende, F-34293 Montpellier 5, France.
[Sala, Osvaldo E.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA.
[Sala, Osvaldo E.] Arizona State Univ, Sch Sustainabil, Tempe, AZ 85287 USA.
[Sternberg, Marcelo] Tel Aviv Univ, Fac Life Sci, Dept Mol Biol & Ecol Plants, IL-69978 Tel Aviv, Israel.
[Tielboerger, Katja] Univ Tubingen, Plant Ecol Grp, Dept Biol, Morgenstelle 3, D-72076 Tubingen, Germany.
[Tietema, Albert] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, POB 94240, NL-1090 GE Amsterdam, Netherlands.
RP Estiarte, M (reprint author), CSIC, Global Ecol Unit CREAF CSIC UAB, E-08193 Cerdanyola Del Valles, Catalonia, Spain.; Estiarte, M (reprint author), CREAF, E-08193 Barcelona, Catalonia, Spain.
EM m.estiarte@creaf.uab.cat
RI Hanson, Paul J./D-8069-2011; Vicca, Sara/I-3637-2012; Bahn,
Michael/I-3536-2013; Emmett, Bridget/D-6199-2011; Janssens,
Ivan/P-1331-2014; Estiarte, Marc/G-2001-2016;
OI Hanson, Paul J./0000-0001-7293-3561; Vicca, Sara/0000-0001-9812-5837;
Bahn, Michael/0000-0001-7482-9776; Emmett, Bridget/0000-0002-2713-4389;
Janssens, Ivan/0000-0002-5705-1787; Estiarte, Marc/0000-0003-1176-8480;
Larsen, Klaus Steenberg/0000-0002-1421-6182; Penuelas,
Josep/0000-0002-7215-0150
FU European Community [FP7-ENV-2008-1-226701]; ESF-network CLIMMANI; COST
action [5ES1308]; Spanish Government [CGL2013-48074-P]; Catalan
Government [SGR 2014-274]; European Research Council [ERC-2013-SyG
610028-IMBALANCE-P]; US National Science Foundation [DEB-1235828, DEB
1354732]; USDA-NIFA [2010-65615-20632]; Israel Ministry of Science and
Technology (MOST); German Ministry of Science and Education (BMBF); FP7
(INCREASE) programmes [227628]; Hungarian Scientific Research Fund [OTKA
K112576, PD 115637]; Austrian Science Fund-FWF [P22214-B17]; ERA-Net
BiodivERsA project REGARDS [FWF-I-1056]; U.S. Department of Energy,
Office of Science, Office of Biological and Environmental Research
FX This work emerged from the Carbo-Extreme project funded by the European
Community's 7th Framework Programme under grant agreement
FP7-ENV-2008-1-226701 and has been supported by the ESF-network CLIMMANI
and the COST action 5ES1308. ME, JP and RO were supported by the Spanish
Government grants CGL2013-48074-P, the Catalan Government grant SGR
2014-274 and the European Research Council grant ERC-2013-SyG
610028-IMBALANCE-P. SV is a postdoctoral fellow of the Research
Foundation - Flanders (FWO). OES acknowledges support from the US
National Science Foundation DEB-1235828 and DEB 1354732. PAF
acknowledges support from USDA-NIFA (2010-65615-20632). MS and JK were
supported by the Israel Ministry of Science and Technology (MOST).
Research by KT, MS and JK was part of the GLOWA Jordan River project,
funded by the German Ministry of Science and Education (BMBF). GK-D and
EL-K were supported by the FP7 (INCREASE: 227628) programmes, and by the
Hungarian Scientific Research Fund (OTKA K112576 and PD 115637). MB and
RH were supported by the Austrian Science Fund-FWF grant P22214-B17 and
the ERA-Net BiodivERsA project REGARDS (FWF-I-1056). PJH was supported
by the U.S. Department of Energy, Office of Science, Office of
Biological and Environmental Research. We thank Roberto Molowny for his
advice on data treatment. AT thanks Joke Westerveld for assistance with
the experiment.
NR 46
TC 3
Z9 3
U1 29
U2 54
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1354-1013
EI 1365-2486
J9 GLOBAL CHANGE BIOL
JI Glob. Change Biol.
PD JUL
PY 2016
VL 22
IS 7
BP 2570
EP 2581
DI 10.1111/gcb.13269
PG 12
WC Biodiversity Conservation; Ecology; Environmental Sciences
SC Biodiversity & Conservation; Environmental Sciences & Ecology
GA DP8BD
UT WOS:000378722000023
PM 26946322
ER
PT J
AU Venkatakrishnan, SV
Farmand, M
Yu, YS
Majidi, H
van Benthem, K
Marchesini, S
Shapiro, DA
Hexemer, A
AF Venkatakrishnan, Singanallur V.
Farmand, Maryam
Yu, Young-Sang
Majidi, Hasti
van Benthem, Klaus
Marchesini, Stefano
Shapiro, David A.
Hexemer, Alexander
TI Robust X-Ray Phase Ptycho-Tomography
SO IEEE SIGNAL PROCESSING LETTERS
LA English
DT Article
DE Computed tomography; iterative methods; ptychography; X-ray tomography
ID COMPUTED-TOMOGRAPHY; RECONSTRUCTION; OPTIMIZATION; ALGORITHMS;
RESOLUTION; CT
AB Synchrotron-based soft X-ray ptychography has enabled the reconstruction of both the phase and attenuation projections of samples relevant to the physical and biological sciences. The phase projection images typically have higher fidelity and hence are used for tomographic reconstruction. In practice, three-dimensional tomographic reconstruction can be challenging because the measurements may have outliers, a fluctuating background and may be restricted to a limited angular range of sample rotations. Thus, conventional reconstruction algorithms such as filtered back projection can result in reconstructions with strong artifacts. In this paper, we present a robust model-based iterative reconstruction algorithm for X-ray ptychography-based phase tomography. Our method casts the reconstruction as a regularized inverse problem, involving a novel data fitting term that accounts for noise, the fluctuating background as well as outliers, combined with an image model term that enforces regularity on the volume to be reconstructed. We use a majorization-minimization strategy to find a minimum of the formulated cost function. Reconstructions on a simulated as well as a real dataset show that it is possible to acquire high-quality phase reconstructions compared to the typically used filtered-back projection algorithm as well as conventional regularized inversion approaches.
C1 [Venkatakrishnan, Singanallur V.; Farmand, Maryam; Yu, Young-Sang; Marchesini, Stefano; Shapiro, David A.; Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Yu, Young-Sang] Univ Illinois, Dept Chem, Chicago, IL 60607 USA.
[Majidi, Hasti; van Benthem, Klaus] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA.
RP Venkatakrishnan, SV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
EM svvenkatakrishnan@gmail.com; mfarmand@lbl.gov; ysyu@lbl.gov;
hmajidi@ucdavis.edu; benthem@ucdavis.edu; SMarchesini@lbl.gov;
dashapiro@lbl.gov; ahexemer@lbl.gov
FU Office of Science, Office of Basic Energy Sciences, the U.S. Department
of Energy [DE-AC02-05CH11231]; Center for Applied Mathematics for Energy
Research Applications, a joint ASCR-BES within the Office of Science,
U.S. Department of Energy [DOE-DE-AC03-76SF00098]; DOE; Army Research
Office [W911NF1210491]
FX The Advanced Light Source, Berkeley, CA, USA was supported by the
Director, Office of Science, Office of Basic Energy Sciences, the U.S.
Department of Energy under Contract DE-AC02-05CH11231. This work was
supported in part by the Center for Applied Mathematics for Energy
Research Applications, a joint ASCR-BES funded project within the Office
of Science, U.S. Department of Energy, under Contract
DOE-DE-AC03-76SF00098. The work of S.V. Venkatakrishnan and A. Hexemer
was supported by A. H's DOE Early Career Award. The work of H. Majidi
and K. van Benthem was supported by the Army Research Office under Grant
#W911NF1210491 (program managers: Dr. Suveen Mathaudu and Dr. David
Stepp). The associate editor coordinating the review of this manuscript
and approving it for publication was Charles Kervrann.
NR 24
TC 0
Z9 0
U1 8
U2 12
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1070-9908
EI 1558-2361
J9 IEEE SIGNAL PROC LET
JI IEEE Signal Process. Lett.
PD JUL
PY 2016
VL 23
IS 7
BP 944
EP 948
DI 10.1109/LSP.2016.2562504
PG 5
WC Engineering, Electrical & Electronic
SC Engineering
GA DP5JJ
UT WOS:000378531800005
ER
PT J
AU Bendall, ML
Stevens, SLR
Chan, LK
Malfatti, S
Schwientek, P
Tremblay, J
Schackwitz, W
Martin, J
Pati, A
Bushnell, B
Froula, J
Kang, DW
Tringe, SG
Bertilsson, S
Moran, MA
Shade, A
Newton, RJ
McMahon, KD
Malmstrom, RR
AF Bendall, Matthew L.
Stevens, Sarah L. R.
Chan, Leong-Keat
Malfatti, Stephanie
Schwientek, Patrick
Tremblay, Julien
Schackwitz, Wendy
Martin, Joel
Pati, Amrita
Bushnell, Brian
Froula, Jeff
Kang, Dongwan
Tringe, Susannah G.
Bertilsson, Stefan
Moran, Mary A.
Shade, Ashley
Newton, Ryan J.
McMahon, Katherine D.
Malmstrom, Rex R.
TI Genome-wide selective sweeps and gene-specific sweeps in natural
bacterial populations
SO ISME JOURNAL
LA English
DT Article
ID DNA-SEQUENCING DATA; RIBOSOMAL-RNA GENE; PROCHLOROCOCCUS ECOTYPES;
MICROBIAL GENOMES; ESCHERICHIA-COLI; PHYLOGENETIC ANALYSIS; DIVERSITY;
RECOMBINATION; METAGENOMES; DIVERGENCE
AB Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Here, from a 9-year metagenomic study of a freshwater lake (2005-2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by 41000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. These patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the 'ecotype model' of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment.
C1 [Bendall, Matthew L.; Chan, Leong-Keat; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Froula, Jeff; Kang, Dongwan; Tringe, Susannah G.; Malmstrom, Rex R.] DOE Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA.
[Stevens, Sarah L. R.; McMahon, Katherine D.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA.
[Bertilsson, Stefan] Uppsala Univ, Dept Ecol & Genet, Limnol & Sci Life Lab, Uppsala, Sweden.
[Moran, Mary A.] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA.
[Shade, Ashley] Michigan State Univ, Microbiol & Mol Genet, E Lansing, MI 48824 USA.
[Newton, Ryan J.] Univ Wisconsin, Sch Freshwater Sci, Milwaukee, WI 53201 USA.
[McMahon, Katherine D.] Univ Wisconsin, Civil & Environm Engn, Madison, WI USA.
RP Malmstrom, RR (reprint author), DOE Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA.
EM rrmalmstrom@lbl.gov
OI Moran, Mary Ann/0000-0002-0702-8167; McMahon, Katherine
D./0000-0002-7038-026X; Shade, Ashley/0000-0002-7189-3067
FU DOE Office of Science [DE-AC02-05CH11231]; United States National
Science Foundation Microbial Observatories program [MCB-0702395]; Long
Term Ecological Research program [NTL-LTER DEB-0822700]; INSPIRE award
[DEB- 1344254]; CAREER award [CBET-0738309]; National Institute of Food
and Agriculture, United States Department of Agriculture [WIS01516]
FX We thank JF Cheng, T Woyke, C Rinke, T Glavina del Rio, M Huntemann, N
Ivanova, B Oyserman, B Foster and B Crary for their assistance with data
analyses. We also thank J Shapiro and R Stepanauskus for their comments
on an early draft of the manuscript. Work conducted by the US Department
of Energy Joint Genome Institute was supported by the DOE Office of
Science (DE-AC02-05CH11231). KDM acknowledges funding from the United
States National Science Foundation Microbial Observatories program
(MCB-0702395), the Long Term Ecological Research program (NTL-LTER
DEB-0822700), an INSPIRE award (DEB- 1344254) and a CAREER award
(CBET-0738309). This material is based upon work supported by the
National Institute of Food and Agriculture, United States Department of
Agriculture, under ID number WIS01516 (to KDM).
NR 61
TC 9
Z9 9
U1 8
U2 24
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1751-7362
EI 1751-7370
J9 ISME J
JI ISME J.
PD JUL
PY 2016
VL 10
IS 7
BP 1589
EP 1601
DI 10.1038/ismej.2015.241
PG 13
WC Ecology; Microbiology
SC Environmental Sciences & Ecology; Microbiology
GA DP2BC
UT WOS:000378292100005
PM 26744812
ER
PT J
AU Weiss, S
Van Treuren, W
Lozupone, C
Faust, K
Friedman, J
Deng, Y
Xia, LC
Xu, ZZ
Ursell, L
Alm, EJ
Birmingham, A
Cram, JA
Fuhrman, JA
Raes, J
Sun, FZ
Zhou, JZ
Knight, R
AF Weiss, Sophie
Van Treuren, Will
Lozupone, Catherine
Faust, Karoline
Friedman, Jonathan
Deng, Ye
Xia, Li Charlie
Xu, Zhenjiang Zech
Ursell, Luke
Alm, Eric J.
Birmingham, Amanda
Cram, Jacob A.
Fuhrman, Jed A.
Raes, Jeroen
Sun, Fengzhu
Zhou, Jizhong
Knight, Rob
TI Correlation detection strategies in microbial data sets vary widely in
sensitivity and precision
SO ISME JOURNAL
LA English
DT Article
ID HUMAN GUT MICROBIOME; LOCAL SIMILARITY ANALYSIS; STATISTICAL
SIGNIFICANCE; DISEASE; TIME; ASSOCIATIONS; COMMUNITIES; INFECTION;
BACTERIAL; NETWORKS
AB Disruption of healthy microbial communities has been linked to numerous diseases, yet microbial interactions are little understood. This is due in part to the large number of bacteria, and the much larger number of interactions (easily in the millions), making experimental investigation very difficult at best and necessitating the nascent field of computational exploration through microbial correlation networks. We benchmark the performance of eight correlation techniques on simulated and real data in response to challenges specific to microbiome studies: fractional sampling of ribosomal RNA sequences, uneven sampling depths, rare microbes and a high proportion of zero counts. Also tested is the ability to distinguish signals from noise, and detect a range of ecological and time-series relationships. Finally, we provide specific recommendations for correlation technique usage. Although some methods perform better than others, there is still considerable need for improvement in current techniques.
C1 [Weiss, Sophie] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA.
[Van Treuren, Will] Univ Colorado, BioFrontiers Inst, Boulder, CO 80309 USA.
[Lozupone, Catherine] Univ Colorado, Dept Med, Denver, CO USA.
[Faust, Karoline; Raes, Jeroen] Rega Inst KU Leuven, Dept Microbiol & Immunol, Leuven, Belgium.
[Faust, Karoline; Raes, Jeroen] VIB, VIB Ctr Biol Dis, Leuven, Belgium.
[Faust, Karoline; Raes, Jeroen] Vrije Univ Brussel, Lab Microbiol, Brussels, Belgium.
[Friedman, Jonathan] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Deng, Ye] Chinese Acad Sci, CAS Key Lab Environm Biotechnol, Beijing, Peoples R China.
[Deng, Ye; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.
[Xia, Li Charlie] Stanford Univ, Sch Med, Dept Med, Div Oncol, Stanford, CA 94305 USA.
[Xia, Li Charlie] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA.
[Xu, Zhenjiang Zech; Knight, Rob] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA.
[Ursell, Luke] Biota Technol Inc, Denver, CO USA.
[Alm, Eric J.] MIT, Dept Biol Engn, Ctr Microbiome Informat & Therapeut, Cambridge, MA USA.
[Birmingham, Amanda] Univ Calif San Diego, Dept Med, Ctr Computat Biol & Bioinformat, La Jolla, CA 92093 USA.
[Cram, Jacob A.; Fuhrman, Jed A.] Univ So Calif, Dept Biol Sci, Los Angeles, CA USA.
[Sun, Fengzhu] Univ So Calif, Mol & Computat Biol Program, Los Angeles, CA USA.
[Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Sci Div, Berkeley, CA 94720 USA.
[Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China.
[Knight, Rob] Univ Calif San Diego, Dept Comp Sci & Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA.
RP Knight, R (reprint author), Univ Calif San Diego, Dept Comp Sci & Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA.
EM robknight@ucsd.edu
RI Sun, Fengzhu /G-4373-2010; Xia, Charlie/H-4755-2012;
OI Xia, Charlie/0000-0003-0868-1923; ?, ?/0000-0002-7584-0632; Faust,
Karoline/0000-0001-7129-2803
FU National Human Genome Research Institute Grant [3 R01 HG004872-03S2];
National Institute of Health Grant [5 U01 HG004866-04]; Gordon and Betty
Moore Foundation Grant [GBMF3779]; NSF Grant [1136818]; Howard Hughes
Medical Institute
FX WVT and SJW were supported by the National Human Genome Research
Institute Grant# 3 R01 HG004872-03S2, and the National Institute of
Health Grant# 5 U01 HG004866-04. JAF and JAC were supported by the
Gordon and Betty Moore Foundation Grant# GBMF3779 and NSF Grant#
1136818. This work was supported in part by the Howard Hughes Medical
Institute (RK was an HHMI Early Career Scientist). The National Human
Genome Research Institute Grant# 3 R01 HG004872-03S2, the National
Institute of Health Grant# 5 U01 HG004866-04, the Gordon and Betty Moore
Foundation Grant# GBMF3779, NSF Grant# 1136818 and the Howard Hughes
Medical Institute.
NR 53
TC 11
Z9 11
U1 30
U2 57
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1751-7362
EI 1751-7370
J9 ISME J
JI ISME J.
PD JUL
PY 2016
VL 10
IS 7
BP 1669
EP 1681
DI 10.1038/ismej.2015.235
PG 13
WC Ecology; Microbiology
SC Environmental Sciences & Ecology; Microbiology
GA DP2BC
UT WOS:000378292100011
PM 26905627
ER
PT J
AU Waterman, DM
Liu, XF
Motta, D
Garcia, MH
AF Waterman, David M.
Liu, Xiaofeng
Motta, Davide
Garcia, Marcelo H.
TI Analytical Lagrangian Model of Sediment Oxygen Demand and Reaeration
Flux Coevolution in Streams
SO JOURNAL OF ENVIRONMENTAL ENGINEERING
LA English
DT Article
ID DIFFUSIONAL MASS-TRANSFER; NEAR-BED TURBULENCE; DISSOLVED-OXYGEN; WATER
INTERFACE; FLOW
AB An analytical model is developed for unidirectional-flow waterways in which the dissolved oxygen (DO) mass balance is dominated by reaeration and sediment oxygen demand (SOD) fluxes. To accurately represent the feedback between the two principal fluxes and the resulting spatial distribution of depth-averaged DO concentration (CDO) in the water column, formulations for the fluxes are implemented that are consistent with mass transfer theory rather than commonly used formulations (e.g.,zeroth-order SOD) that neglect mass transfer physics. Water-side and sediment-side processes are incorporated into the SOD formulation; the sediment-side processes are simplified and parameterized empirically. The resulting DO mass conservation equation is expressed as a first-order linear ordinary differential equation. The model has similarities to the classic Streeter-Phelps model in the following respects: (1)it implements a Lagrangian control volume, (2)it expresses the competition between two flux or source/sink terms in the DO mass balance, and (3)it applies downstream of a flow or DO introduction location. The analytical solution yields a steady-state longitudinal CDO profile that spatially evolves to an asymptotic condition whereby reaeration and SOD fluxes have equal values. The difference in CDO evolution when implementing a zeroth-order SOD formulation versus the first-order SOD formulation is highlighted. The flow management implications are discussed and an example calculation is presented for the case of flow augmentation in Bubbly Creek in Chicago, Illinois.
C1 [Waterman, David M.; Garcia, Marcelo H.] Univ Illinois, Ven Te Chow Hydrosyst Lab, Dept Civil & Environm Engn, Urbana, IL 61801 USA.
[Waterman, David M.] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA.
[Liu, Xiaofeng] Penn State Univ, Dept Civil & Environm Engn, 223B Sackett, State Coll, PA 16802 USA.
[Motta, Davide] Amec Foster Wheeler Plc, Philadelphia, PA 19107 USA.
RP Waterman, DM (reprint author), Univ Illinois, Ven Te Chow Hydrosyst Lab, Dept Civil & Environm Engn, Urbana, IL 61801 USA.; Waterman, DM (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA.
EM waterma3@illinois.edu; xliu@engr.psu.edu; davide.motta3@gmail.com;
mhgarcia@illinois.edu
FU Metropolitan Water Reclamation District of Greater Chicago; Argonne
National Laboratory; Ben Chie Yen Fellowship
FX This work was an extension of a project originally funded by the
Metropolitan Water Reclamation District of Greater Chicago. The first
author received financial support from the Argonne National Laboratory
and the Ben Chie Yen Fellowship during various stages of manuscript
preparation. Thanks are extended to Ben L. O'Connor for providing
helpful comments on an early version of the manuscript. Two anonymous
reviewers are acknowledged for their comments, which led to improvement
of the manuscript.
NR 47
TC 1
Z9 1
U1 6
U2 6
PU ASCE-AMER SOC CIVIL ENGINEERS
PI RESTON
PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA
SN 0733-9372
EI 1943-7870
J9 J ENVIRON ENG
JI J. Environ. Eng.-ASCE
PD JUL
PY 2016
VL 142
IS 7
AR 04016028
DI 10.1061/(ASCE)EE.1943-7870.0001095
PG 13
WC Engineering, Environmental; Engineering, Civil; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA DQ0AJ
UT WOS:000378859100005
ER
PT J
AU Wojnarowicz, M
Tagge, C
Fisher, A
Gaudreau, A
Minaeva, O
Moncaster, J
Casey, N
Zhang, XL
Miry, O
Vose, LR
Sugah, G
Gopaul, K
Hall, G
Cleveland, R
Moss, W
Anderson, A
Huber, B
Alvarez, V
Stein, T
Stanton, P
McKee, A
Goldstein, L
AF Wojnarowicz, Mark
Tagge, Chad
Fisher, Andrew
Gaudreau, Amanda
Minaeva, Olga
Moncaster, Juliet
Casey, Noel
Zhang, X. L.
Miry, Omid
Vose, L. R.
Sugah, G.
Gopaul, K.
Hall, Garth
Cleveland, Robin
Moss, William
Anderson, Andrew
Huber, Bertrand
Alvarez, Victor
Stein, Thor
Stanton, Patric
McKee, Ann
Goldstein, Lee
TI CHRONIC TRAUMATIC ENCEPHALOPATHY IN ATHLETES IN THE SUBACUTE PERIOD
AFTER CONCUSSIVE IMPACT AND A MOUSE MODEL OF IMPACT CONCUSSION
SO JOURNAL OF NEUROTRAUMA
LA English
DT Meeting Abstract
CT 34th Annual National Neurotrauma Symposium
CY JUN 26-29, 2016
CL Lexington, KY
DE modeling; preclinical animal model; neuroinflammation; imaging
C1 [Wojnarowicz, Mark; Tagge, Chad; Fisher, Andrew; Gaudreau, Amanda; Minaeva, Olga; Moncaster, Juliet; Casey, Noel; Huber, Bertrand; Alvarez, Victor; Stein, Thor; McKee, Ann; Goldstein, Lee] Boston Univ, Sch Med, Boston, MA 02118 USA.
[Tagge, Chad; Fisher, Andrew; Gaudreau, Amanda; Minaeva, Olga] Boston Univ, Coll Engn, Boston, MA 02215 USA.
[Miry, Omid; Vose, L. R.; Sugah, G.; Gopaul, K.; Stanton, Patric] New York Med Coll, Valhalla, NY 10595 USA.
[Hall, Garth] UMass Lowell, Lowell, MA USA.
[Cleveland, Robin] Univ Oxford, Oxford, England.
[Moss, William; Anderson, Andrew] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Huber, Bertrand; Alvarez, Victor; Stein, Thor; McKee, Ann; Goldstein, Lee] Boston VA Med Ctr JamaicaPlain, Boston, MA USA.
[Huber, Bertrand; Alvarez, Victor; Stein, Thor; McKee, Ann; Goldstein, Lee] Boston Univ, Alzheimers Dis & CTE Ctr, Boston, MA 02215 USA.
NR 0
TC 0
Z9 0
U1 2
U2 2
PU MARY ANN LIEBERT, INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 0897-7151
EI 1557-9042
J9 J NEUROTRAUM
JI J. Neurotrauma
PD JUL 1
PY 2016
VL 33
IS 13
MA PSA-051
BP A31
EP A31
PG 1
WC Critical Care Medicine; Clinical Neurology; Neurosciences
SC General & Internal Medicine; Neurosciences & Neurology
GA DP2QY
UT WOS:000378336200081
ER
PT J
AU Lin, PH
Woodward, PR
AF Lin, Pei-Hung
Woodward, Paul R.
TI Transforming the multifluid PPM algorithm to run on GPUs
SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
LA English
DT Article
DE Precompilation; Code transformation; GPU computation; Computational
fluid dynamics
ID PERFORMANCE
AB In the past several years, there has been much success in adapting numerical algorithms involving linear algebra and pairwise N-body force calculations to run well on GPUs. These numerical algorithms share the feature that high computational intensity can be achieved while holding only small amounts of data in on-chip storage. In previous work, we combined a briquette data structure and a heavily pipelined CFD processing of these data briquettes in sequence that results in a very small on-chip data workspace and high performance for our multifluid PPM gas dynamics algorithm on CPUs with standard sized caches. The on-chip data workspace produced in that earlier work is not small enough to meet the requirements of today's GPUs, which demand that no more than 32 kB of on-chip data be associated with a single thread of control (a warp). Here we report a variant of our earlier technique that allows a user-controllable trade-off between workspace size and redundant computation that can be a win on GPUs. We use our multifluid PPM gas dynamics algorithm to illustrate this technique. Performance results for this algorithm in 32-bit precision on a recently introduced dual-chip GPU, the Nvidia K80, are 1.7 times that on a similarly recent dual CPU node using two 16-core Intel Haswell chips. The redundant computation that allows the on-chip data context for each thread of control to be less than 32 kB is roughly 9% of the total. We have built an automatic translator from a Fortran expression to CUDA to ease the programming burden that is involved in applying our technique. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Lin, Pei-Hung] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
[Woodward, Paul R.] Univ Minnesota, 117 Pleasant St SE, Minneapolis, MN 55455 USA.
RP Lin, PH (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
EM lin32@llnl.gov; paul@lcse.umn.edu
OI Lin, Pei-Hung/0000-0003-4977-814X
FU Los Alamos National Laboratory [237111]; Sandia National Laboratory
[1254431]; National Science Foundation [1413548]; US Department of
Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344.
LLNL-JRNL-673849]; PRAC grant [1440025]
FX Development of PPM algorithms and codes, beginning with our work on the
Los Alamos Roadrunner machine, that has led to the work reported here
has been supported by contracts from the Los Alamos National Laboratory
subcontract 237111 and Sandia National Laboratory subcontract 1254431.
Our work at the University of Minnesota has also been supported by
National Science Foundation through grant 1413548 and PRAC grant 1440025
for access to NCSA's Blue Waters system. We have also carried out tests
on early examples of advanced hardware at Sandia's CSRI. This work was
also performed under the auspices of the US Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL-JRNL-673849.
NR 20
TC 0
Z9 0
U1 0
U2 0
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0743-7315
EI 1096-0848
J9 J PARALLEL DISTR COM
JI J. Parallel Distrib. Comput.
PD JUL
PY 2016
VL 93-94
BP 56
EP 65
DI 10.1016/j.jpdc.2016.04.005
PG 10
WC Computer Science, Theory & Methods
SC Computer Science
GA DP8PF
UT WOS:000378759400005
ER
PT J
AU Stenfeldt, C
Eschbaumer, M
Rekant, SI
Pacheco, JM
Smoliga, GR
Hartwig, EJ
Rodriguez, LL
Arzt, J
AF Stenfeldt, Carolina
Eschbaumer, Michael
Rekant, Steven I.
Pacheco, Juan M.
Smoliga, George R.
Hartwig, Ethan J.
Rodriguez, Luis L.
Arzt, Jonathan
TI The Foot-and-Mouth Disease Carrier State Divergence in Cattle
SO JOURNAL OF VIROLOGY
LA English
DT Article
ID POLYMERASE CHAIN-REACTION; BUFFALO SYNCERUS CAFFER; KIDNEY-CELL LINE;
VIRUS-INFECTION; VIRAL PATHWAYS; SECRETORY IGA; PATHOGENESIS; ANTIBODY;
REPLICATION; PERSISTENCE
AB The pathogenesis of persistent foot-and-mouth disease virus (FMDV) infection was investigated in 46 cattle that were either naive or had been vaccinated using a recombinant, adenovirus-vectored vaccine 2 weeks before challenge. The prevalence of FMDV persistence was similar in both groups (62% in vaccinated cattle, 67% in nonvaccinated cattle), despite vaccinated cattle having been protected from clinical disease. Analysis of antemortem infection dynamics demonstrated that the subclinical divergence between FMDV carriers and animals that cleared the infection had occurred by 10 days postinfection (dpi) in vaccinated cattle and by 21 dpi in nonvaccinated animals. The anatomic distribution of virus in subclinically infected, vaccinated cattle was restricted to the pharynx throughout both the early and the persistent phases of infection. In nonvaccinated cattle, systemically disseminated virus was cleared from peripheral sites by 10 dpi, while virus selectively persisted within the nasopharynx of a subset of animals. The quantities of viral RNA shed in oropharyngeal fluid during FMDV persistence were similar in vaccinated and nonvaccinated cattle. FMDV structural and nonstructural proteins were localized to follicle-associated epithelium of the dorsal soft palate and dorsal nasopharynx in persistently infected cattle. Host transcriptome analysis of tissue samples processed by laser capture microdissection indicated suppression of antiviral host factors (interferon regulatory factor 7, CXCL10 [gamma interferon-inducible protein 10], gamma interferon, and lambda interferon) in association with persistent FMDV. In contrast, during the transitional phase of infection, the level of expression of IFN-lambda mRNA was higher in follicle-associated epithelium of animals that had cleared the infection. This work provides novel insights into the intricate mechanisms of FMDV persistence and contributes to further understanding of this critical aspect of FMDV pathogenesis.
C1 [Stenfeldt, Carolina; Eschbaumer, Michael; Rekant, Steven I.; Pacheco, Juan M.; Smoliga, George R.; Hartwig, Ethan J.; Rodriguez, Luis L.; Arzt, Jonathan] ARS, Plum Isl Anim Dis Ctr, Foreign Anim Dis Res Unit, USDA, Greenport, NY 11944 USA.
[Stenfeldt, Carolina; Eschbaumer, Michael; Rekant, Steven I.] Oak Ridge Inst Sci & Educ, PIADC Res Participat Program, Oak Ridge, TN 37830 USA.
RP Stenfeldt, C; Arzt, J (reprint author), ARS, Plum Isl Anim Dis Ctr, Foreign Anim Dis Res Unit, USDA, Greenport, NY 11944 USA.; Stenfeldt, C (reprint author), Oak Ridge Inst Sci & Educ, PIADC Res Participat Program, Oak Ridge, TN 37830 USA.
EM Carolina.Stenfeldt@ars.usda.gov; Jonathan.Arzt@ars.usda.gov
OI Pacheco, Juan/0000-0001-5477-0201; Arzt, Jonathan/0000-0002-7517-7893
FU USDA | Agricultural Research Service (ARS) (CRIS) [1940-32000-057-00D];
DHS | Science and Technology Directorate (ST) [HSHQPM-13-X-00131]
FX This work, including the efforts of Juan M. Pacheco, George R. Smoliga,
Ethan J. Hartwig, Luis Rodriguez, and Jonathan Arzt, was funded by USDA
| Agricultural Research Service (ARS) (CRIS 1940-32000-057-00D). This
work, including the efforts of Carolina Stenfeldt, Michael Eschbaumer,
and Steven I. Rekant, was funded by DHS | Science and Technology
Directorate (S&T) (HSHQPM-13-X-00131).
NR 67
TC 2
Z9 2
U1 3
U2 5
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0022-538X
EI 1098-5514
J9 J VIROL
JI J. Virol.
PD JUL
PY 2016
VL 90
IS 14
BP 6344
EP 6364
DI 10.1128/JVI.00388-16
PG 21
WC Virology
SC Virology
GA DP7DG
UT WOS:000378658800015
PM 27147736
ER
PT J
AU Zhang, W
Krishnan, KM
AF Zhang, Wei
Krishnan, Kannan M.
TI Epitaxial exchange-bias systems: From fundamentals to future
spin-orbitronics
SO MATERIALS SCIENCE & ENGINEERING R-REPORTS
LA English
DT Review
ID LAYER THICKNESS DEPENDENCE; FERROMAGNETIC/ANTIFERROMAGNETIC BILAYERS;
ANTIFERROMAGNETIC SPINTRONICS; TEMPERATURE-DEPENDENCE; MAGNETIZATION
REVERSAL; ANGULAR-DEPENDENCE; THIN-FILMS; FIELD; NANOSTRUCTURES;
ANISOTROPY
AB Exchange bias has been investigated for more than half a century and several insightful reviews, published around the year 2000, have already summarized many key experimental and theoretical aspects related to this phenomenon. Since then, due to developments in thin-film fabrication and sophisticated characterization methods, exchange bias continues to show substantial advances; in particular, recent studies on epitaxial systems, which is the focus of this review, allow many long-standing mysteries of exchange bias to be unambiguously resolved. The advantage of epitaxial samples lies in the well-defined interface structures, larger coherence lengths, and competing magnetic anisotropies, which are often negligible in polycrystalline samples. Beginning with a discussion of the microscopic spin properties at the ferromagnetic/antiferromagnetic interface, we correlate the details of spin lattices with phenomenological anisotropies, and finally connect the two by introducing realistic measurement approaches and models. We conclude by providing a brief perspective on the future of exchange bias and related studies in the context of the rapidly evolving interest in antiferromagnetic spintronics. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Zhang, Wei] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Krishnan, Kannan M.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA.
RP Zhang, W (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM zwei@anl.gov; kannanmk@uw.edu
FU NSF [1063489]; U.S. Department of Energy, Office of Science, Materials
Science and Engineering Division
FX W.Z. is very grateful for the enormous help, support and encouragement
received from his collaborators throughout these years: Dr. Qingfeng
Zhan (NIMTE), Dr. Mark Bowden (PNNL), Dr. Sebastian Bruck (West
Australia), Dr. Thomas Eimuller (Kempten), Dr. Yu Fu (Duisburg), Prof.
Mingzhong Wu (CSU), Dr. Matt Ferguson (UW), Dr. Yufeng Hou (Western
Digital), Dr. Zheng Li (Apple), Dr. Axel Hoffmann (ANL), Dr. Suzanne to
Velthuis (ANL), and Dr. Yaohua Liu (ORNL). We also thank NSF for
financial support under grant No. 1063489. Work at Argonne, including
finalization of the manuscript, is supported by the U.S. Department of
Energy, Office of Science, Materials Science and Engineering Division.
NR 262
TC 3
Z9 3
U1 28
U2 44
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0927-796X
EI 1879-212X
J9 MAT SCI ENG R
JI Mater. Sci. Eng. R-Rep.
PD JUL
PY 2016
VL 105
BP 1
EP 20
DI 10.1016/j.mser.2016.04.001
PG 20
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA DQ1IJ
UT WOS:000378954400001
ER
PT J
AU Luo, XY
Lu, J
Sohm, E
Ma, L
Wu, TP
Wen, JG
Qiu, DT
Xu, YK
Ren, Y
Miller, DJ
Amine, K
AF Luo, Xiangyi
Lu, Jun
Sohm, Evan
Ma, Lu
Wu, Tianpin
Wen, Jianguo
Qiu, Dantong
Xu, YunKai
Ren, Yang
Miller, Dean J.
Amine, Khalil
TI Uniformly dispersed FeOx atomic clusters by pulsed arc plasma
deposition: An efficient electrocatalyst for improving the performance
of Li-O-2 battery
SO NANO RESEARCH
LA English
DT Article
DE Li-O-2 battery; FeOx atomic cluster; electrocatalyst; pulsed arc plasma
deposition (APD)
ID LITHIUM-OXYGEN BATTERIES; FUEL-CELLS; CATALYSTS; ELECTROLYTES; ANODE;
INSIGHTS; SOLVENT; AIR
AB The present study explored a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. Highly ionized Fe plasma produced by arc discharge was uniformly deposited on a porous carbon substrate and formed atomic clusters on the carbon surface. The as-prepared FeOx/C material was tested as a cathode material in a rechargeable Li-O-2 battery under different current rates. The results showed significant improvement in battery performance in terms of both cycle life and reaction rate. Furthermore, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the as-prepared cathode material stabilized the cathode and reduced side reactions and that the current rate was a critical factor in the nucleation of the discharge products.
C1 [Luo, Xiangyi; Xu, YunKai] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Lu, Jun; Qiu, Dantong; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Sohm, Evan] ULVAC Technol Inc, Methuen, MA 01844 USA.
[Ma, Lu; Wu, Tianpin; Ren, Yang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Ctr Nanoscale Mat Nanosci & Technol, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM junlu@anl.gov
FU US Department of Energy from the Vehicle Technologies Office, Department
of Energy, Office of Energy Efficiency and Renewable Energy (EERE)
[DE-AC0206CH11357]; US Department of Energy, Office of Basic Energy
Sciences [DE-AC0206CH11357]
FX This project was supported by the US Department of Energy under contract
(No. DE-AC0206CH11357) from the Vehicle Technologies Office, Department
of Energy, Office of Energy Efficiency and Renewable Energy (EERE). Use
of the Advanced Photon Source and the Electron Microscopy Center-Center
for Nanoscale Materials supported by the US Department of Energy, Office
of Basic Energy Sciences, under contract (No. DE-AC0206CH11357).
NR 25
TC 1
Z9 1
U1 10
U2 50
PU TSINGHUA UNIV PRESS
PI BEIJING
PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA
SN 1998-0124
EI 1998-0000
J9 NANO RES
JI Nano Res.
PD JUL
PY 2016
VL 9
IS 7
BP 1913
EP 1920
DI 10.1007/s12274-016-1083-0
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DP5GC
UT WOS:000378523300005
ER
PT J
AU Li, K
Zeng, XQ
Gao, SM
Ma, L
Wang, QY
Xu, H
Wang, ZY
Huang, BB
Dai, Y
Lu, J
AF Li, Kai
Zeng, Xiaoqiao
Gao, Shanmin
Ma, Lu
Wang, Qingyao
Xu, Hui
Wang, Zeyan
Huang, Baibiao
Dai, Ying
Lu, Jun
TI Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2-x/g-C3N4
heterojunctions: Enhance photoelectrochemical and photocatalytic
activity under visible LED light irradiation
SO NANO RESEARCH
LA English
DT Article
DE reduced SnO2-x; g-C3N4; heterojunctions; photoelectrochemical;
light-emitting diode light source
ID GRAPHITIC CARBON NITRIDE; HYDROGEN-PRODUCTION; OXYGEN VACANCIES;
COMPOSITE PHOTOCATALYST; SNO2 NANOPARTICLES; DYE DEGRADATION; TIN OXIDE;
PERFORMANCE; NANOSHEETS; EVOLUTION
AB Novel SnO2-x/g-C3N4 heterojunction nanocomposites composed of reduced SnO2-x nanoparticles and exfoliated g-C3N4 nanosheets were prepared by a convenient one-step pyrolysis method. The structural, morphological, and optical properties of the as-prepared nanocomposites were characterized in detail, indicating that the aggregation of g-C3N4 nanosheets was prevented by small, well-dispersed SnO2-x nanoparticles. The ultraviolet-visible spectroscopy absorption bands of the nanocomposites were shifted to a longer wavelength region than those exhibited by pure SnO2 or g-C3N4. The charge transfer and recombination processes occurring in the nanocomposites were investigated using linear scan voltammetry and electrochemical impedance spectroscopy. Under 30-W visible-light-emitting diode irradiation, the heterojunction containing 27.4 wt.% SnO2-x exhibited the highest photocurrent density of 0.0468 mA.cm(-2), which is 33.43 and 5.64 times larger than that of pure SnO2 and g-C3N4, respectively. The photocatalytic activity of the heterojunction material was investigated by degrading rhodamine B under irradiation from the same light source. Kinetic study revealed a promising degradation rate constant of 0.0226 min(-1) for the heterojunction containing 27.4 wt.% SnO2-x, which is 32.28 and 5.79 times higher than that of pure SnO2 and g-C3N4, respectively. The enhanced photoelectrochemical and photocatalytic performances of the nanocomposite may be due to its appropriate SnO2-x content and the compact structure of the junction between the SnO2-x nanoparticles and the g-C3N4 nanosheets, which inhibits the recombination of photogenerated electrons and holes.
C1 [Li, Kai; Gao, Shanmin; Wang, Qingyao; Xu, Hui] Ludong Univ, Coll Chem & Mat Sci, Yantai 264025, Peoples R China.
[Zeng, Xiaoqiao; Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Gao, Shanmin; Wang, Zeyan; Huang, Baibiao; Dai, Ying] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China.
[Ma, Lu] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Gao, SM (reprint author), Ludong Univ, Coll Chem & Mat Sci, Yantai 264025, Peoples R China.; Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.; Gao, SM (reprint author), Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China.
EM gaosm@ustc.edu; junlu@anl.gov
FU Natural Science Foundation of Shandong Province [ZR2013EMZ001]; Science
and Technology Development Plan Project of Shandong Province
[2014GSF117015]; National Basic Research Program of China
[2013CB632401]; National Natural Science Foundation of China [51402145];
U.S. Department of Energy [DE-AC0206CH11357]; Vehicle Technologies
Office, Department of Energy (DOE) Office of Energy Efficiency and
Renewable Energy (EERE)
FX This work was supported by the Key Project of Natural Science Foundation
of Shandong Province (No. ZR2013EMZ001), the Science and Technology
Development Plan Project of Shandong Province (No. 2014GSF117015), the
National Basic Research Program of China (No. 2013CB632401) and the
National Natural Science Foundation of China (No. 51402145). This work
was also supported by the U.S. Department of Energy under Contract
DE-AC0206CH11357 with the main support provided by the Vehicle
Technologies Office, Department of Energy (DOE) Office of Energy
Efficiency and Renewable Energy (EERE).
NR 52
TC 2
Z9 2
U1 51
U2 82
PU TSINGHUA UNIV PRESS
PI BEIJING
PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 100084, PEOPLES R CHINA
SN 1998-0124
EI 1998-0000
J9 NANO RES
JI Nano Res.
PD JUL
PY 2016
VL 9
IS 7
BP 1969
EP 1982
DI 10.1007/s12274-016-1088-8
PG 14
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DP5GC
UT WOS:000378523300010
ER
PT J
AU Hallegatte, S
Rogelj, J
Allen, M
Clarke, L
Edenhofer, O
Field, CB
Friedlingstein, P
van Kesteren, L
Knutti, R
Mach, KJ
Mastrandrea, M
Michel, A
Minx, J
Oppenheimer, M
Plattner, GK
Riahi, K
Schaeffer, M
Stocker, TF
van Vuuren, DP
AF Hallegatte, Stephane
Rogelj, Joeri
Allen, Myles
Clarke, Leon
Edenhofer, Ottmar
Field, Christopher B.
Friedlingstein, Pierre
van Kesteren, Line
Knutti, Reto
Mach, Katharine J.
Mastrandrea, Michael
Michel, Adrien
Minx, Jan
Oppenheimer, Michael
Plattner, Gian-Kasper
Riahi, Keywan
Schaeffer, Michiel
Stocker, Thomas F.
van Vuuren, Detlef P.
TI Mapping the climate change challenge
SO NATURE CLIMATE CHANGE
LA English
DT Article
ID MITIGATION; TARGETS; CO2; UNCERTAINTY; POLICY; DOOR
AB Discussions on a long-term global goal to limit climate change, in the form of an upper limit to warming, were only partially resolved at the United Nations Framework Convention on Climate Change negotiations in Paris, 2015. Such a political agreement must be informed by scientific knowledge. One way to communicate the costs and benefits of policies is through a mapping that systematically explores the consequences of different choices. Such a multi-disciplinary effort based on the analysis of a set of scenarios helped structure the IPCC AR5 Synthesis Report. This Perspective summarizes this approach, reviews its strengths and limitations, and discusses how decision-makers can use its results in practice. It also identifies research needs that can facilitate integrated analysis of climate change and help better inform policy-makers and the public.
C1 [Hallegatte, Stephane] World Bank, Climate Change Policy Team, 1818 H St NW, Washington, DC 20433 USA.
[Rogelj, Joeri; Riahi, Keywan] IIASA, Energy Program, Schlosspl 1, A-2361 Laxenburg, Austria.
[Rogelj, Joeri; Knutti, Reto] FIN Zurich, Inst Atmospher & Climate Sci, Univ Str 16, CH-8092 Zurich, Switzerland.
[Allen, Myles] Univ Oxford, Dept Phys, Oxford OX1 3PU, England.
[Allen, Myles] Univ Oxford, Environm Change Inst, Oxford OX1 3QY, England.
[Clarke, Leon] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
[Edenhofer, Ottmar; Minx, Jan] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany.
[Edenhofer, Ottmar] Tech Univ Berlin, D-10623 Berlin, Germany.
[Edenhofer, Ottmar; Minx, Jan] Mercator Res Inst Global Commons & Climate Change, Torgauer Str 12, D-10829 Berlin, Germany.
[Field, Christopher B.] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA.
[Field, Christopher B.; Mach, Katharine J.; Mastrandrea, Michael] Carnegie Inst Sci, Dept Global Ecol, 260 Panama St, Stanford, CA 94305 USA.
[Friedlingstein, Pierre] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England.
[van Kesteren, Line; van Vuuren, Detlef P.] PBL Netherlands Environm Assessment Agcy, POB 303, NL-3720 AH Bilthoven, Netherlands.
[Michel, Adrien; Plattner, Gian-Kasper; Stocker, Thomas F.] Univ Bern, Inst Phys, Climate & Environm Phys, Sidlerstr 5, CH-3012 Bern, Switzerland.
[Michel, Adrien; Stocker, Thomas F.] Univ Bern, Oeschger Ctr Climate Change Res, Falkenpl 16, CH-3012 Bern, Switzerland.
[Minx, Jan] Hertie Sch Governance, Friedrichstr 189, D-10117 Berlin, Germany.
[Oppenheimer, Michael] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA.
[Oppenheimer, Michael] Princeton Univ, Woodrow Wilson Sch, Princeton, NJ 08544 USA.
[Riahi, Keywan] Graz Univ Technol, A-8010 Graz, Austria.
[Schaeffer, Michiel] Climate Analyt GmbH, Friedrichstr 231,Haus B, D-10969 Berlin, Germany.
[Schaeffer, Michiel] Wageningen Univ & Res Ctr, Environm Syst Anal Grp, POB 47, NL-6700 AA Wageningen, Netherlands.
[van Vuuren, Detlef P.] Univ Utrecht, Copernicus Inst Sustainable Dev, Utrecht, Netherlands.
[Plattner, Gian-Kasper] Swiss Fed Res Inst WSL, CH-8903 Birmensdorf, Switzerland.
RP Hallegatte, S (reprint author), World Bank, Climate Change Policy Team, 1818 H St NW, Washington, DC 20433 USA.
EM shallegatte@worldbank.org
RI Friedlingstein, Pierre/H-2700-2014; Knutti, Reto/B-8763-2008; Edenhofer,
Ottmar/E-1886-2013; Plattner, Gian-Kasper/A-5245-2016; Jones,
Chris/I-2983-2014;
OI Knutti, Reto/0000-0001-8303-6700; Edenhofer, Ottmar/0000-0001-6029-5208;
Plattner, Gian-Kasper/0000-0002-3765-0045; Rogelj,
Joeri/0000-0003-2056-9061; Minx, Jan Christoph/0000-0002-2862-0178
NR 34
TC 5
Z9 5
U1 31
U2 51
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1758-678X
EI 1758-6798
J9 NAT CLIM CHANGE
JI Nat. Clim. Chang.
PD JUL
PY 2016
VL 6
IS 7
BP 663
EP 668
DI 10.1038/NCLIMATE3057
PG 6
WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric
Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA DP6LP
UT WOS:000378608900014
ER
PT J
AU Zhang, N
Han, C
Xu, YJ
Foley, JJ
Zhang, DT
Codrington, J
Gray, SK
Sun, YG
AF Zhang, Nan
Han, Chuang
Xu, Yi-Jun
Foley, Jonathan J.
Zhang, Dongtang
Codrington, Jason
Gray, Stephen K.
Sun, Yugang
TI Near-field dielectric scattering promotes optical absorption by platinum
nanoparticles
SO NATURE PHOTONICS
LA English
DT Article
ID VISIBLE-LIGHT; SILVER NANOSTRUCTURES; SLIVER NANOPARTICLES; GOLD
NANOPARTICLES; AEROBIC OXIDATION; DIFFERENT SHAPES; CHARGE-CARRIERS;
ENERGY-TRANSFER; SURFACE; METAL
AB Recent years have seen a surge of interest in tuning the optical properties of metals for a wide range of applications. In contrast to the well-studied plasmonic metals (mainly Au and Ag), which have distinct absorption peaks, tuning the absorption peak of small (<10 nm) Pt nanoparticles in the visible spectral region, but without increasing their size, has been a major challenge. Here we report, for the first time, a new light absorption model to modulate the absorption peak of supported small Pt nanoparticles in the visible spectral region by adjusting their dielectric environment instead of changing their size. In this model, the Pt nanoparticles can absorb the scattered light in the near field of the dielectric surface of a spherical SiO2 support, thereby exhibiting well-defined visible-light absorption peaks and driving photocatalytic redox reactions. This discovery could open a promising new route to using Pt nanoparticles as visible-light photon absorbers for solar energy conversion.
C1 [Zhang, Nan; Han, Chuang; Xu, Yi-Jun] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Peoples R China.
[Zhang, Nan; Han, Chuang; Xu, Yi-Jun] Fuzhou Univ, Coll Chem, New Campus, Fuzhou 350108, Peoples R China.
[Foley, Jonathan J.; Codrington, Jason] William Paterson Univ, Dept Chem, 300 Pompton Rd, Wayne, NJ 07470 USA.
[Foley, Jonathan J.; Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Zhang, Dongtang; Sun, Yugang] Temple Univ, Dept Chem, 1901 North 13th St, Philadelphia, PA 19122 USA.
RP Xu, YJ (reprint author), Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Peoples R China.; Xu, YJ (reprint author), Fuzhou Univ, Coll Chem, New Campus, Fuzhou 350108, Peoples R China.; Sun, YG (reprint author), Temple Univ, Dept Chem, 1901 North 13th St, Philadelphia, PA 19122 USA.
EM yjxu@fzu.edu.cn; ygsun@temple.edu
RI Sun, Yugang /A-3683-2010
OI Sun, Yugang /0000-0001-6351-6977
FU National Natural Science Foundation of China (NSFC) [U1463204, 20903023,
21173045]; Award Program for Minjiang Scholar Professorship; Natural
Science Foundation (NSF) of Fujian Province [2012J06003]; State Key
Laboratory of Photocatalysis on Energy and Environment [2014A05]; 1st
Program of Fujian Province for Top Creative Young Talents; Program for
Returned High-Level Overseas Chinese Scholars of Fujian Province; Center
for Nanoscale Materials, a US Department of Energy, Office of Science,
Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357];
Temple University; William Paterson University
FX The authors acknowledge support from the National Natural Science
Foundation of China (NSFC) (U1463204, 20903023, 21173045), the Award
Program for Minjiang Scholar Professorship, the Natural Science
Foundation (NSF) of Fujian Province for Distinguished Young Investigator
Grant (2012J06003), the Independent Research Project of State Key
Laboratory of Photocatalysis on Energy and Environment (no. 2014A05),
the 1st Program of Fujian Province for Top Creative Young Talents and
the Program for Returned High-Level Overseas Chinese Scholars of Fujian
Province. This work was performed, in part, at the Center for Nanoscale
Materials, a US Department of Energy, Office of Science, Office of Basic
Energy Sciences User Facility (contract no. DE-AC02-06CH11357). Y.S.
acknowledges start-up fund support from Temple University. J.J.F.
acknowledges start-up funds from William Paterson University.
NR 49
TC 23
Z9 23
U1 24
U2 44
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1749-4885
EI 1749-4893
J9 NAT PHOTONICS
JI Nat. Photonics
PD JUL
PY 2016
VL 10
IS 7
BP 473
EP +
DI 10.1038/NPHOTON.2016.76
PG 11
WC Optics; Physics, Applied
SC Optics; Physics
GA DP9TG
UT WOS:000378839600014
ER
PT J
AU Kuepper, K
Kuschel, O
Pathe, N
Schemme, T
Schmalhorst, J
Thomas, A
Arenholz, E
Gorgoi, M
Ovsyannikov, R
Bartkowski, S
Reiss, G
Wollschlager, J
AF Kuepper, K.
Kuschel, O.
Pathe, N.
Schemme, T.
Schmalhorst, J.
Thomas, A.
Arenholz, E.
Gorgoi, M.
Ovsyannikov, R.
Bartkowski, S.
Reiss, G.
Wollschlaeger, J.
TI Electronic and magnetic structure of epitaxial Fe3O4(001)/NiO
heterostructures grown on MgO(001) and Nb-doped SrTiO3(001)
SO PHYSICAL REVIEW B
LA English
DT Article
ID MEAN FREE PATHS; THIN-FILMS; PHOTOELECTRON-SPECTROSCOPY;
EXCHANGE-ANISOTROPY; FE3O4/NIO BILAYERS; RANGE; FERROMAGNETS; DEFECTS;
SURFACE; XPS
AB We study the underlying chemical, electronic, and magnetic properties of a number of magnetite-based thin films. The main focus is placed onto Fe3O4(001)/NiO bilayers grown on MgO(001) and Nb-SrTiO3(001) substrates. We compare the results with those obtained on pure Fe3O4(001) thin films. It is found that the magnetite layers are oxidized and Fe3+ dominates at the surfaces due to maghemite (gamma-Fe2O3) formation, which decreases with increasingmagnetite layer thickness. For layer thicknesses of around 20 nm and above, the cationic distribution is close to that of stoichiometric Fe3O4. At the interface between NiO and Fe3O4 we find the Ni to be in a divalent valence state, with unambiguous spectral features in the Ni 2p core level x-ray photoelectron spectra typical for NiO. The formation of a significant NiFe2O4 interlayer can be excluded by means of x-ray magnetic circular dichroism. Magneto-optical Kerr effect measurements reveal significant higher coercive fields compared to magnetite thin films grown on MgO(001), and an altered in-plane easy axis pointing in the < 100 > direction. We discuss the spin magnetic moments of the magnetite layers and find that a thickness of 20 nm or above leads to spin magnetic moments close to that of bulk magnetite.
C1 [Kuepper, K.; Kuschel, O.; Pathe, N.; Schemme, T.; Bartkowski, S.; Wollschlaeger, J.] Univ Osnabruck, Dept Phys, D-49076 Osnabruck, Germany.
[Kuepper, K.; Kuschel, O.; Pathe, N.; Schemme, T.; Bartkowski, S.; Wollschlaeger, J.] Univ Osnabruck, Ctr Phys & Chem New Mat, D-49076 Osnabruck, Germany.
[Schmalhorst, J.; Thomas, A.; Reiss, G.] Univ Bielefeld, Dept Phys, Ctr Spinelect Mat & Devices, Univ Str 25, D-33615 Bielefeld, Germany.
[Thomas, A.] Leibniz Inst Solid State & Mat Res Dresden IFW Dr, Inst Metall Mat, Helmholtzstr 20, D-01069 Dresden, Germany.
[Arenholz, E.; Ovsyannikov, R.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Gorgoi, M.] Helmholtz Zentrum Mat & Energie GmbH, D-12489 Berlin, Germany.
RP Kuepper, K (reprint author), Univ Osnabruck, Dept Phys, D-49076 Osnabruck, Germany.; Kuepper, K (reprint author), Univ Osnabruck, Ctr Phys & Chem New Mat, D-49076 Osnabruck, Germany.
EM kkuepper@uos.de
RI Thomas, Andy/C-7210-2008; Reiss, Gunter/A-3423-2010; Kupper,
Karsten/G-1397-2016
OI Thomas, Andy/0000-0001-8594-9060; Reiss, Gunter/0000-0002-0918-5940;
FU Deutsche Forschungsgemeinschaft (DFG) [KU2321/2-1]; Advanced Light
Source, ALS, Lawrence Berkeley National Laboratory, Berkeley, USA
[DE-AC03-76SF00098]
FX Financial support by the Deutsche Forschungsgemeinschaft (DFG)
(KU2321/2-1) is gratefully acknowledged. Part of this work has been
performed at the Advanced Light Source, ALS, Lawrence Berkeley National
Laboratory, Berkeley, USA, which is operated under Contract No.
DE-AC03-76SF00098. We acknowledge Helmholtz-Zentrum Berlin for provision
of synchrotron radiation beam time at beamline KMC-1 of Bessy II.
NR 72
TC 0
Z9 0
U1 21
U2 42
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD JUL 1
PY 2016
VL 94
IS 2
AR 024401
DI 10.1103/PhysRevB.94.024401
PG 10
WC Physics, Condensed Matter
SC Physics
GA DQ0SH
UT WOS:000378909700002
ER
PT J
AU Ismail, A
Izaguirre, E
Shuve, B
AF Ismail, Ahmed
Izaguirre, Eder
Shuve, Brian
TI Illuminating new electroweak states at hadron colliders
SO PHYSICAL REVIEW D
LA English
DT Article
ID DARK-MATTER; SUPERSYMMETRY; PHENOMENOLOGY; COLLISIONS; SEARCH; LEVEL
AB In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Our proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. We demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.
C1 [Ismail, Ahmed] Univ Illinois, 845 W Taylor St, Chicago, IL 60607 USA.
[Ismail, Ahmed] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Izaguirre, Eder] Perimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada.
[Shuve, Brian] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
RP Ismail, A (reprint author), Univ Illinois, 845 W Taylor St, Chicago, IL 60607 USA.; Ismail, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
FU INFN; U.S. Department of Energy [DE-AC02-06CH11357, DE-FG02-12ER41811];
Perimeter Institute for Theoretical Physics; Government of Canada
through Industry Canada; Province of Ontario through the Ministry of
Economic Development Innovation
FX We are grateful to Valentin Hirschi, Wai-Yee Keung, Bryan Ostdiek,
Stefan Prestel, and Scott Thomas for helpful conversations. We
particularly thank Bryan Ostdiek for providing us with UFO files for the
quintuplet model. A. I. thanks the Galileo Galilei Institute for
Theoretical Physics and Perimeter Institute for their hospitality, and
INFN for partial support, during the completion of this work. The work
of A. I. is supported in part by the U.S. Department of Energy under
Grants No. DE-AC02-06CH11357 and No. DE-FG02-12ER41811. This research
was supported in part by Perimeter Institute for Theoretical Physics.
Research at Perimeter Institute is supported by the Government of Canada
through Industry Canada and by the Province of Ontario through the
Ministry of Economic Development & Innovation.
NR 68
TC 3
Z9 3
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD JUL 1
PY 2016
VL 94
IS 1
AR 015001
DI 10.1103/PhysRevD.94.015001
PG 9
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA DQ0SP
UT WOS:000378910500003
ER
PT J
AU Chen, CY
Zanette, DH
Guest, JR
Czaplewski, DA
Lopez, D
AF Chen, Changyao
Zanette, Damian H.
Guest, Jeffrey R.
Czaplewski, David A.
Lopez, Daniel
TI Self-Sustained Micromechanical Oscillator with Linear Feedback
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FREQUENCY; NONLINEARITIES; DISSIPATION; SYSTEMS
AB Autonomous oscillators, such as clocks and lasers, produce periodic signals without any external frequency reference. In order to sustain stable periodic motion, there needs to be an external energy supply as well as nonlinearity built into the oscillator to regulate the amplitude. Usually, nonlinearity is provided by the sustaining feedback mechanism, which also supplies energy, whereas the constituent resonator that determines the output frequency stays linear. Here, we propose a new self-sustaining scheme that relies on the nonlinearity originating from the resonator itself to limit the oscillation amplitude, while the feedback remains linear. We introduce a model for describing the working principle of the self-sustained oscillations and validate it with experiments performed on a nonlinear microelectromechanical oscillator.
C1 [Chen, Changyao; Guest, Jeffrey R.; Czaplewski, David A.; Lopez, Daniel] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Zanette, Damian H.] Consejo Nacl Invest Cient & Tecn, Comis Nacl Energia Atom, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
[Zanette, Damian H.] Consejo Nacl Invest Cient & Tecn, Comis Nacl Energia Atom, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
RP Lopez, D (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM dlopez@anl.gov
RI Guest, Jeffrey/B-2715-2009;
OI Guest, Jeffrey/0000-0002-9756-8801; Zanette, Damian/0000-0003-0681-0592
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX Use of the Center for Nanoscale Materials at the Argonne National
Laboratory was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. We thank D. Antonio for the helpful discussions.
NR 35
TC 2
Z9 2
U1 4
U2 20
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUL 1
PY 2016
VL 117
IS 1
AR 017203
DI 10.1103/PhysRevLett.117.017203
PG 5
WC Physics, Multidisciplinary
SC Physics
GA DQ0SZ
UT WOS:000378911900008
PM 27419587
ER
PT J
AU Hammond, KC
Anichowski, A
Brenner, PW
Pedersen, TS
Raftopoulos, S
Traverso, P
Volpe, FA
AF Hammond, K. C.
Anichowski, A.
Brenner, P. W.
Pedersen, T. S.
Raftopoulos, S.
Traverso, P.
Volpe, F. A.
TI Experimental and numerical study of error fields in the CNT stellarator
SO PLASMA PHYSICS AND CONTROLLED FUSION
LA English
DT Article
DE error field; stellarator; CNT; optimization
ID COLUMBIA-NONNEUTRAL-TORUS; WENDELSTEIN 7-X; RECONSTRUCTION; DESIGN;
COILS
AB Sources of error fields were indirectly inferred in a stellarator by reconciling computed and numerical flux surfaces. Sources considered so far include the displacements and tilts of the four circular coils featured in the simple CNT stellarator. The flux surfaces were measured by means of an electron beam and fluorescent rod, and were computed by means of a Biot-Savart field-line tracing code. If the ideal coil locations and orientations are used in the computation, agreement with measurements is poor. Discrepancies are ascribed to errors in the positioning and orientation of the in-vessel interlocked coils. To that end, an iterative numerical method was developed. A Newton-Raphson algorithm searches for the coils' displacements and tilts that minimize the discrepancy between the measured and computed flux surfaces. This method was verified by misplacing and tilting the coils in a numerical model of CNT, calculating the flux surfaces that they generated, and testing the algorithm's ability to deduce the coils' displacements and tilts. Subsequently, the numerical method was applied to the experimental data, arriving at a set of coil displacements whose resulting field errors exhibited significantly improved agreement with the experimental results.
C1 [Hammond, K. C.; Anichowski, A.; Brenner, P. W.; Pedersen, T. S.; Traverso, P.; Volpe, F. A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
[Raftopoulos, S.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
[Pedersen, T. S.] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany.
[Traverso, P.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA.
RP Volpe, FA (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
EM fvolpe@columbia.edu
RI Volpe, Francesco/D-2994-2009;
OI Volpe, Francesco/0000-0002-7193-7090; Hammond,
Kenneth/0000-0002-1104-4434
FU Department of Energy; National Science Foundation of the United States
[NSF-PHY-04-49813]
FX The authors would like to thank S Lazerson for assistance with the field
line tracing code employed in this study, as well as R Diaz-Pacheco and
Y Wei for their assistance with data collection. The authors would also
like to acknowledge the financial support of the Department of Energy
and the National Science Foundation of the United States, Grant No.
NSF-PHY-04-49813.
NR 29
TC 2
Z9 2
U1 1
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0741-3335
EI 1361-6587
J9 PLASMA PHYS CONTR F
JI Plasma Phys. Control. Fusion
PD JUL
PY 2016
VL 58
IS 7
SI SI
AR 074002
DI 10.1088/0741-3335/58/7/074002
PG 13
WC Physics, Fluids & Plasmas
SC Physics
GA DP6OK
UT WOS:000378616300002
ER
PT J
AU Horacek, J
Pitts, RA
Adamek, J
Arnoux, G
Bak, JG
Brezinsek, S
Dimitrova, M
Goldston, RJ
Gunn, JP
Havlicek, J
Hong, SH
Janky, F
LaBombard, B
Marsen, S
Maddaluno, G
Nie, L
Pericoli, V
Popov, T
Panek, R
Rudakov, D
Seidl, J
Seo, DS
Shimada, M
Silva, C
Stangeby, PC
Viola, B
Vondracek, P
Wang, H
Xu, GS
Xu, Y
AF Horacek, J.
Pitts, R. A.
Adamek, J.
Arnoux, G.
Bak, J-G
Brezinsek, S.
Dimitrova, M.
Goldston, R. J.
Gunn, J. P.
Havlicek, J.
Hong, S-H
Janky, F.
LaBombard, B.
Marsen, S.
Maddaluno, G.
Nie, L.
Pericoli, V.
Popov, Tsv
Panek, R.
Rudakov, D.
Seidl, J.
Seo, D. S.
Shimada, M.
Silva, C.
Stangeby, P. C.
Viola, B.
Vondracek, P.
Wang, H.
Xu, G. S.
Xu, Y.
CA JET Contributors
TI Multi-machine scaling of the main SOL parallel heat flux width in
tokamak limiter plasmas
SO PLASMA PHYSICS AND CONTROLLED FUSION
LA English
DT Article
DE tokamak; ITER; SOL decay length; SOL width; scaling
ID SCRAPE-OFF-LAYER; TORE-SUPRA TOKAMAK; TRANSPORT; TEMPERATURE; POWER
AB As in many of today's tokamaks, plasma start-up in ITER will be performed in limiter configuration on either the inner or outer midplane first wall (FW). The massive, beryllium armored ITER FW panels are toroidally shaped to protect panel-to-panel misalignments, increasing the deposited power flux density compared with a purely cylindrical surface. The chosen shaping should thus be optimized for a given radial profile of parallel heat flux, q(parallel to) in the scrape-off layer (SOL) to ensure optimal power spreading. For plasmas limited on the outer wall in tokamaks, this profile is commonly observed to decay exponentially as q(parallel to) = q(0)exp (-r/lambda(omp)(q)), or, for inner wall limiter plasmas with the double exponential decay comprising a sharp near-SOL feature and a broader main SOL width, lambda(omp)(q). The initial choice of lambda(omp)(q), which is critical in ensuring that current ramp-up or down will be possible as planned in the ITER scenario design, was made on the basis of an extremely restricted L-mode divertor dataset, using infra-red thermography measurements on the outer divertor target to extrapolate to a heat flux width at the main plasma midplane. This unsatisfactory situation has now been significantly improved by a dedicated multi-machine ohmic and L-mode limiter plasma study, conducted under the auspices of the International Tokamak Physics Activity, involving 11 tokamaks covering a wide parameter range with R = 0.4-2.8 m, B-0 = 1.2-7.5T, I-p = 9-2500 kA. Measurements of lambda(omp)(q) in the database are made exclusively on all devices using a variety of fast reciprocating Langmuir probes entering the plasma at a variety of poloidal locations, but with the majority being on the low field side. Statistical analysis of the database reveals nine reasonable engineering and dimensionless scalings. All yield, however, similar predicted values of lambda(omp)(q) mapped to the outside midplane. The engineering scaling with the highest statistical significance, lambda(omp)(q) = 10(P-tot/V(W m(-3)))(-0.38)(a/R/kappa)(1.3), dependent on input power density, aspect ratio and elongation, yields lambda(omp)(q) = [7, 4, 5] cm for I-p = [2.5, 5.0, 7.5] MA, the three reference limiter plasma currents specified in the ITER heat and nuclear load specifications. Mapped to the inboard midplane, the worst case (7.5 MA) corresponds to lambda(omp)(q) similar to 57 +/- 14 imp mm, thus consolidating the 50 mm width used to optimize the FW panel toroidal shape.
C1 [Horacek, J.; Adamek, J.; Dimitrova, M.; Havlicek, J.; Janky, F.; Panek, R.; Seidl, J.; Vondracek, P.] Acad Sci Czech Republic, Inst Plasma Phys, Za Slovankou 3, Prague 18000, Czech Republic.
[Pitts, R. A.] ITER Org, CS 90 046, F-13067 St Paul Les Durance, France.
[Arnoux, G.] JET, Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.
[Bak, J-G; Hong, S-H; Seo, D. S.] Natl Fus Res Inst, 113 Yuseong Gu, Daejeon 305333, South Korea.
[Brezinsek, S.; Xu, Y.] Forschungszentrum Julich, D-52425 Julich, Germany.
[Goldston, R. J.] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
[Gunn, J. P.] CEA, IRFM, F-13108 St Paul Les Durance, France.
[Havlicek, J.; Janky, F.; Vondracek, P.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[LaBombard, B.] MIT, Plasma Sci & Fus Ctr, 175 Albany St, Cambridge, MA 02139 USA.
[Marsen, S.] Max Planck Inst Plasma Phys, Teilinst Greifswald, D-17491 Greifswald, Germany.
[Maddaluno, G.; Pericoli, V.; Viola, B.] ENEA UT Fusione, Ctr Ric Frascati, Rome, Italy.
[Nie, L.] Southwestern Inst Phys, Chengdu, Peoples R China.
[Popov, Tsv] Sofia Univ St Kliment Ohridski, Fac Phys, J Bourchier Blvd, Sofia 1164, Bulgaria.
[Rudakov, D.] Univ Calif San Diego, Energy Res Ctr, Fus Div, 9500 Gilman Dr,Mail Code 0417,EBU II,Rm 468, La Jolla, CA 92093 USA.
[Shimada, M.] Japan Atom Energy Agcy, 2-166 Oaza Obuchi Aza Omotedate, Aomori 0393212, Japan.
[Silva, C.] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1699 Lisbon, Portugal.
[Stangeby, P. C.] Univ Toronto, Inst Aerosp Studies, N York, ON M3H 5T6, Canada.
[Wang, H.; Xu, G. S.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China.
RP Horacek, J (reprint author), Acad Sci Czech Republic, Inst Plasma Phys, Za Slovankou 3, Prague 18000, Czech Republic.
EM horacek@ipp.cas.cz
RI Horacek, Jan/G-8301-2014; Havlicek, Josef/G-2897-2014; Adamek,
Jiri/G-7421-2014; Janky, Filip/G-9283-2014; Seidl, Jakub/G-3413-2014;
Brezinsek, Sebastijan/B-2796-2017; Vondracek, Petr/G-6786-2014
OI Horacek, Jan/0000-0002-4276-3124; Havlicek, Josef/0000-0002-7047-5007;
Brezinsek, Sebastijan/0000-0002-7213-3326; Vondracek,
Petr/0000-0003-0125-9252
FU Czech Science Foundation [GA CR P205/12/2327, GA15-10723S, MSMT
LM2011021]; US DOE [DE-FG02-07ER54917, DE-AC02-09CH11466,
DE-FC02-04ER54698]; Euratom research and training programme withing the
European Union's Horizon 2020 [633053]
FX This work was supported in part by the projects of Czech Science
Foundation GA CR P205/12/2327, GA15-10723S and MSMT LM2011021, the US
DOE under DE-FG02-07ER54917 and DE-AC02-09CH11466, DE-FC02-04ER54698.
This work has been carried out within the Framework of the EUROfusion
Consortium and has received funding from the Euratom research and
training programme 2014-2018 under grant agreement number 633053 withing
the European Union's Horizon 2020. The views and opinions expressed
herein do not necessarily reflect those of the ITER Organization and of
the European Commission. ITER is the Nuclear Facility INB-174. We
acknowledge useful discussions with Renaud Dejarnac, Federico Halpern
and Petr Dobias.
NR 28
TC 3
Z9 3
U1 13
U2 24
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0741-3335
EI 1361-6587
J9 PLASMA PHYS CONTR F
JI Plasma Phys. Control. Fusion
PD JUL
PY 2016
VL 58
IS 7
SI SI
AR 074005
DI 10.1088/0741-3335/58/7/074005
PG 11
WC Physics, Fluids & Plasmas
SC Physics
GA DP6OK
UT WOS:000378616300005
ER
PT J
AU Orlov, DM
Evans, TE
Moyer, RA
Lyons, BC
Ferraro, NM
Park, GY
AF Orlov, D. M.
Evans, T. E.
Moyer, R. A.
Lyons, B. C.
Ferraro, N. M.
Park, G-Y
TI Impact of resistive MHD plasma response on perturbation field sidebands
SO PLASMA PHYSICS AND CONTROLLED FUSION
LA English
DT Article
DE resonant magnetic perturbation; edge stochastic layer; ELM control;
plasma response; tokamak
ID TOKAMAK; EDGE
AB Single fluid linear simulations of a KSTAR RMP ELM suppressed discharge with the M3D-C-1 resistive magnetohydrodynamic code have been performed for the first time. The simulations show that the application of the n = 1 perturbation using the KSTAR in-vessel control coils (IVCC), which apply modest levels of n = 3 sidebands (similar to 20% of the n = 1), leads to levels of n = 3 sideband that are comparable to the n = 1 when plasma response is included. This is due to the reduced level of screening of the rational-surface-resonant n = 3 component relative to the rational-surface-resonant n = 1 component. The n = 3 sidebands could play a similar role in ELM suppression on KSTAR as the toroidal sidebands (n = 1, 2, 4) in DIII-D n = 3 ELM suppression with missing I-coil segments (Paz Soldan et al 2014 Nucl. Fusion 54 073013). This result may help to explain the uniqueness of ELM suppression with n = 1 perturbations in KSTAR since the effective perturbation
C1 [Orlov, D. M.; Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Evans, T. E.; Lyons, B. C.] Gen Atom Co, San Diego, CA USA.
[Lyons, B. C.] Oak Ridge Inst Sci Educ, Oak Ridge, TN USA.
[Ferraro, N. M.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
[Park, G-Y] Natl Fus Res Inst, Daejeon, South Korea.
RP Orlov, DM (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA.
EM orlov@fusion.gat.com
RI Orlov, Dmitriy/D-2406-2016;
OI Orlov, Dmitriy/0000-0002-2230-457X; Ferraro,
Nathaniel/0000-0002-6348-7827
FU U.S. Department of Energy, Office of Science, Office of Fusion Energy
Sciences [DE-FG02-05ER54809, DE-FC02-04ER54698, DE-FC02-06ER54873,
DE-AC02-09CH11466]; U.S. Department of Energy Fusion Energy Sciences
Postdoctoral Research Program; DOE [DE-AC05-06OR23100]
FX The authors would like to thank Dr C Paz-Soldan for helpful discussions.
This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Fusion Energy Sciences, using the
DIII-D National Fusion Facility, a DOE Office of Science user facility
under Award Numbers DE-FG02-05ER54809, DE-FC02-04ER54698,
DE-FC02-06ER54873, and DE-AC02-09CH11466. This research was supported by
the U.S. Department of Energy Fusion Energy Sciences Postdoctoral
Research Program administered by the Oak Ridge Institute for Science and
Education (ORISE) for the DOE. ORISE is managed by Oak Ridge Associated
Universities (ORAU) under DOE contract number DE-AC05-06OR23100. All
opinions expressed in this paper are the authors' and do not necessarily
reflect the policies and views of DOE, ORAU, or ORISE. DIII-D data shown
in this paper can be obtained in digital format by following the links
at https://fusion.gat.com/global/D3D_DMP.
NR 27
TC 1
Z9 1
U1 4
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0741-3335
EI 1361-6587
J9 PLASMA PHYS CONTR F
JI Plasma Phys. Control. Fusion
PD JUL
PY 2016
VL 58
IS 7
SI SI
AR 075009
DI 10.1088/0741-3335/58/7/075009
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA DP6OK
UT WOS:000378616300019
ER
PT J
AU Zhang, WT
Miller, T
Smallwood, CL
Yoshida, Y
Eisaki, H
Kaindl, RA
Lee, DH
Lanzara, A
AF Zhang, Wentao
Miller, Tristan
Smallwood, Christopher L.
Yoshida, Yoshiyuki
Eisaki, Hiroshi
Kaindl, R. A.
Lee, Dung-Hai
Lanzara, Alessandra
TI Stimulated emission of Cooper pairs in a high-temperature cuprate
superconductor
SO SCIENTIFIC REPORTS
LA English
DT Article
ID ANGLE-RESOLVED PHOTOEMISSION
AB The concept of stimulated emission of bosons has played an important role in modern science and technology, and constitutes the working principle for lasers. In a stimulated emission process, an incoming photon enhances the probability that an excited atomic state will transition to a lower energy state and generate a second photon of the same energy. It is expected, but not experimentally shown, that stimulated emission contributes significantly to the zero resistance current in a superconductor by enhancing the probability that scattered Cooper pairs will return to the macroscopically occupied condensate instead of entering any other state. Here, we use time-and angle-resolved photoemission spectroscopy to study the initial rise of the non-equilibrium quasiparticle population in a Bi2Sr2CaCu2O8+delta cuprate superconductor induced by an ultrashort laser pulse. Our finding reveals significantly slower buildup of quasiparticles in the superconducting state than in the normal state. The slower buildup only occurs when the pump pulse is too weak to deplete the superconducting condensate, and for cuts inside the Fermi arc region. We propose this is a manifestation of stimulated recombination of broken Cooper pairs, and signals an important momentum space dichotomy in the formation of Cooper pairs inside and outside the Fermi arc region.
C1 [Zhang, Wentao; Miller, Tristan; Smallwood, Christopher L.; Kaindl, R. A.; Lee, Dung-Hai; Lanzara, Alessandra] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Zhang, Wentao] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China.
[Miller, Tristan; Smallwood, Christopher L.; Lee, Dung-Hai; Lanzara, Alessandra] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Yoshida, Yoshiyuki; Eisaki, Hiroshi] Natl Inst Adv Ind Sci & Technol, Elect & Photon Res Inst, Tsukuba 3058568, Japan.
RP Zhang, WT; Lanzara, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Zhang, WT (reprint author), Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China.; Lanzara, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM wentaozhang@sjtu.edu.cn; alanzara@lbl.gov
RI ZHANG, Wentao/B-3626-2011; Smallwood, Christopher/D-4925-2011
OI Smallwood, Christopher/0000-0002-4103-8748
FU Berkeley Lab's program on Ultrafast Materials Sciences; U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division [DE-AC02-05CH11231]
FX This work was supported by Berkeley Lab's program on Ultrafast Materials
Sciences, funded by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, Materials Sciences and Engineering
Division, under Contract No. DE-AC02-05CH11231.
NR 17
TC 1
Z9 1
U1 7
U2 11
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD JUL 1
PY 2016
VL 6
AR 29100
DI 10.1038/srep29100
PG 7
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA DP9WX
UT WOS:000378849700001
PM 27364682
ER
PT J
AU Chan, GCY
Hieftje, GM
AF Chan, George C. -Y.
Hieftje, Gary M.
TI Local cooling, plasma reheating and thermal pinching induced by single
aerosol droplets injected into an inductively coupled plasma
SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
LA English
DT Article
DE Inductively coupled plasma-atomic emission spectrometry; Monodisperse
droplets; Local cooling; Plasma pinch; Plasma impedance
ID ATOMIC EMISSION-SPECTROMETRY; DRIED MICROPARTICULATE INJECTOR; SAMPLE
INTRODUCTION; ARGON PLASMA; MONODISPERSE DROPLETS; FLAME SPECTROMETRY;
MASS-SPECTROMETER; OPTICAL-EMISSION; ICP-OES; TRANSPORT
AB The injection of a single micrometer-sized droplet into an analytical inductively coupled plasma (ICP) perturbs the plasma and involves three sequential effects: local cooling, thermal pinching and plasma reheating. Time-resolved two-dimensional monochromatic imaging of the load-coil region of an ICP was used to monitor this sequence of plasma perturbations. When a microdroplet enters the plasma, it acts as a local heat sink and cools the nearby plasma region. The cooling effect is considered local, although the cooling volume can be large and extends 6 mm from the physical location of the vaporizing droplet The liberated hydrogen, from decomposition of water, causes a thermal pinch effect by increasing the thermal conductivity of the bulk plasma and accelerating heat loss at the plasma periphery. As a response to the heat loss, the plasma shrinks in size, which increases its power density. Plasma shrinkage starts around the same time when the microdroplet enters the plasma and lasts at least 2 ms after the droplet leaves the load-coil region. Once the vaporizing droplet passes through a particular plasma volume, that volume is reheated to an even higher temperature than under steady-state conditions. Because of the opposing effects of plasma cooling and reheating, the plasma conditions are different upstream (downward) and downstream (upward) from a vaporizing droplet cooling dominates the downstream region whereas reheating controls in the upstream domain. The boundary between the local cooling and reheating zones is sharp and is only similar to 1 mm thick. The reheating effect persists a relatively long time in the plasma, at least up to 4 ms after the droplet moves out of the load-coil region. The restoration of plasma equilibrium after the perturbation induced by microdroplet injection is slow. Microdroplet injection also induces a momentary change in plasma impedance, and the impedance change was found to correlate qualitatively with the different stages of plasma perturbation. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Chan, George C. -Y.; Hieftje, Gary M.] Indiana Univ, Dept Chem, 800 E Kirkwood Ave, Bloomington, IN 47405 USA.
[Chan, George C. -Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
RP Chan, GCY (reprint author), Indiana Univ, Dept Chem, 800 E Kirkwood Ave, Bloomington, IN 47405 USA.; Chan, GCY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM gcchan@lbl.gov
FU U.S. Department of Energy [DE-FG02-98ER14890]
FX This research was supported by the U.S. Department of Energy through
Grant DE-FG02-98ER14890 awarded to Indiana University.
NR 58
TC 0
Z9 0
U1 5
U2 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0584-8547
J9 SPECTROCHIM ACTA B
JI Spectroc. Acta Pt. B-Atom. Spectr.
PD JUL 1
PY 2016
VL 121
BP 55
EP 66
DI 10.1016/j.sab.2016.05.006
PG 12
WC Spectroscopy
SC Spectroscopy
GA DQ1MF
UT WOS:000378964400008
ER
PT J
AU Barozzi, I
Visel, A
Dickel, DE
AF Barozzi, Iros
Visel, Axel
Dickel, Diane E.
TI Fishing for Function in the Human Gene Pool
SO TRENDS IN GENETICS
LA English
DT Editorial Material
ID HUMAN GENOME; VARIANTS; TRANSCRIPTION; BINDING
AB Identification and characterization of causal non-coding variants in human genomes is challenging and requires substantial experimental resources. A new study by Tehranchi et al. describes a cost-effective approach for accurate mapping of molecular quantitative trait loci (QTLs) from pooled samples, a powerful way to link disease associated changes to molecular functions.
C1 [Barozzi, Iros; Visel, Axel; Dickel, Diane E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Visel, Axel] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.
[Visel, Axel] Univ Calif, Sch Nat Sci, Merced, CA USA.
RP Dickel, DE (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Visel, A (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.; Visel, A (reprint author), Univ Calif, Sch Nat Sci, Merced, CA USA.
EM avisel@lbl.gov; dedickel@lbl.gov
RI Visel, Axel/A-9398-2009;
OI Visel, Axel/0000-0002-4130-7784; Dickel, Diane/0000-0001-5497-6824
FU NHGRI NIH HHS [R01 HG003988, U54 HG006997]; NHLBI NIH HHS [R24 HL123879,
UM1 HL098166]; NIDCR NIH HHS [U01 DE024427]
NR 10
TC 0
Z9 0
U1 0
U2 1
PU ELSEVIER SCIENCE LONDON
PI LONDON
PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND
SN 0168-9525
J9 TRENDS GENET
JI Trends Genet.
PD JUL
PY 2016
VL 32
IS 7
BP 392
EP 394
DI 10.1016/j.tig.2016.05.002
PG 3
WC Genetics & Heredity
SC Genetics & Heredity
GA DQ1MS
UT WOS:000378965700003
PM 27220646
ER
PT J
AU Yoon, S
Nissen, S
Park, D
Sanford, RA
Loffler, FE
AF Yoon, Sukhwan
Nissen, Silke
Park, Doyoung
Sanford, Robert A.
Loffler, Frank E.
TI Nitrous Oxide Reduction Kinetics Distinguish Bacteria Harboring Clade I
NosZ from Those Harboring Clade II NosZ
SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID LOIHICA STRAIN PV-4; WOLINELLA-SUCCINOGENES; MANAGEMENT-PRACTICES; CH4
EMISSIONS; RIBOSOMAL-RNA; N2O SINK; SOIL; DENITRIFICATION; PATHWAYS;
GENES
AB Bacteria capable of reduction of nitrous oxide (N2O) to N-2 separate into clade I and clade II organisms on the basis of nos operon structures and nosZ sequence features. To explore the possible ecological consequences of distinct nos clusters, the growth of bacterial isolates with either clade I (Pseudomonas stutzeri strain DCP-Ps1, Shewanella loihica strain PV-4) or clade II (Dechloromonas aromatica strain RCB, Anaeromyxobacter dehalogenans strain 2CP-C) nosZ with N2O was examined. Growth curves did not reveal trends distinguishing the clade I and clade II organisms tested; however, the growth yields of clade II organisms exceeded those of clade I organisms by 1.5- to 1.8-fold. Further, whole-cell half-saturation constants (K(s)s) for N2O distinguished clade I from clade II organisms. The apparent Ks values of 0.324 +/- 0.078 mu M for D. aromatica and 1.34 +/- 0.35 mu M for A. dehalogenans were significantly lower than the values measured for P. stutzeri (35.5 +/- 9.3 mu M) and S. loihica (7.07 +/- 1.13 mu M). Genome sequencing demonstrated that Dechloromonas denitrificans possessed a clade II nosZ gene, and a measured Ks of 1.01 +/- 0.18 mu M for N2O was consistent with the values determined for the other clade II organisms tested. These observations provide a plausible mechanistic basis for why the relative activity of bacteria with clade I nos operons compared to that of bacteria with clade II nos operons may control N2O emissions and determine a soil's N2O sink capacity.
C1 [Yoon, Sukhwan; Loffler, Frank E.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA.
[Yoon, Sukhwan; Nissen, Silke; Loffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.
[Yoon, Sukhwan; Park, Doyoung] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Daejeon, South Korea.
[Nissen, Silke; Loffler, Frank E.] Univ Tennessee, Oak Ridge, TN USA.
[Nissen, Silke; Loffler, Frank E.] Oak Ridge Natl Lab UT ORNL, JIBS, Oak Ridge, TN USA.
[Nissen, Silke; Loffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA.
[Sanford, Robert A.] Univ Illinois, Dept Geol, Urbana, IL 61801 USA.
[Loffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA.
RP Yoon, S; Loffler, FE (reprint author), Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA.; Yoon, S; Loffler, FE (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.; Yoon, S (reprint author), Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Daejeon, South Korea.; Loffler, FE (reprint author), Univ Tennessee, Oak Ridge, TN USA.; Loffler, FE (reprint author), Oak Ridge Natl Lab UT ORNL, JIBS, Oak Ridge, TN USA.; Loffler, FE (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA.; Loffler, FE (reprint author), Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA.
EM syoon80@kaist.ac.kr; frank.loeffler@utk.edu
RI Yoon, Sukhwan/I-1605-2014; Yoon, Sukhwan/E-2503-2017
OI Yoon, Sukhwan/0000-0002-9933-7054
FU U.S. Department of Energy, Office of Biological and Environmental
Research, Genomic Science Program [DE-SC0006662]; National Research
Foundation of Korea [2014R1A1A2058543]
FX This work was supported by the U.S. Department of Energy, Office of
Biological and Environmental Research, Genomic Science Program, award
DE-SC0006662, and in part by the National Research Foundation of Korea,
award 2014R1A1A2058543.
NR 56
TC 1
Z9 1
U1 16
U2 28
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0099-2240
EI 1098-5336
J9 APPL ENVIRON MICROB
JI Appl. Environ. Microbiol.
PD JUL
PY 2016
VL 82
IS 13
BP 3793
EP 3800
DI 10.1128/AEM.00409-16
PG 8
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA DO8QP
UT WOS:000378048800011
PM 27084012
ER
PT J
AU Morrow, BM
Lebensohn, RA
Trujillo, CP
Martinez, DT
Addessio, FL
Bronkhorst, CA
Lookman, T
Cerreta, EK
AF Morrow, B. M.
Lebensohn, R. A.
Trujillo, C. P.
Martinez, D. T.
Addessio, F. L.
Bronkhorst, C. A.
Lookman, T.
Cerreta, E. K.
TI Characterization and modeling of mechanical behavior of single crystal
titanium deformed by split-Hopkinson pressure bar
SO INTERNATIONAL JOURNAL OF PLASTICITY
LA English
DT Article
DE Microstructures; Twinning; Crystal plasticity; Electron microscopy;
Kolsky bar
ID COMMERCIALLY PURE TITANIUM; TWIN-TWIN INTERACTIONS; CLOSE-PACKED METALS;
ALPHA-TITANIUM; STRAIN-RATE; DEFORMATION MECHANISMS; TEXTURE
DEVELOPMENT; CONSTITUTIVE DESCRIPTION; POLYCRYSTAL PLASTICITY; HARDENING
EVOLUTION
AB Single crystal titanium samples were dynamically loaded using split-Hopkinson pressure bar (SHPB) and the resulting microstructures were examined. Characterization of the twins and dislocations present in the microstructure was conducted to understand the pathway for observed mechanical behavior. Electron backscatter diffraction (EBSD) was used to measure textures and quantify twinning. Microstructures were profusely twinned after loading, and twin variants and corresponding textures were different as a function of initial orientation. Focused ion beam (FIB) foils were created to analyze dislocation content using transmission electron microscopy (TEM). Large amounts of dislocations were present, indicating that plasticity was achieved through slip and twinning together. Viscoplastic self-consistent (VPSC) modeling was used to confirm the complex order of operations during deformation. The activation of different mechanisms was highly dependent upon crystal orientation. For [0001] and [10 (1) over bar1]-oriented crystals, compressive twinning was observed, followed by secondary tensile twinning. Dislocations, though prevalent in the microstructure, contributed to final texture far less than twinning. Published by Elsevier Ltd.
C1 [Morrow, B. M.; Lebensohn, R. A.; Trujillo, C. P.; Martinez, D. T.; Addessio, F. L.; Bronkhorst, C. A.; Lookman, T.; Cerreta, E. K.] Los Alamos Natl Lab, POB 1663,MS G755, Los Alamos, NM 87545 USA.
RP Morrow, BM (reprint author), Los Alamos Natl Lab, POB 1663,MS G755, Los Alamos, NM 87545 USA.
EM morrow@lanl.gov
RI Lebensohn, Ricardo/A-2494-2008; Morrow, Benjamin/F-3509-2012;
OI Lebensohn, Ricardo/0000-0002-3152-9105; Morrow,
Benjamin/0000-0003-1925-4302; Bronkhorst, Curt/0000-0002-2709-1964
FU NNSA of the U.S. Department of Energy [DE-AC52-06NA25396]; Campaign 2
programs
FX Los Alamos National Laboratory is operated by LANS, LLC, for the NNSA of
the U.S. Department of Energy under contract DE-AC52-06NA25396. Campaign
2 programs supported this work. The authors are grateful to Program
Managers Rick Martineau, Russ Olson, and Sherri Bingert. LA-UR-15-26741.
NR 49
TC 4
Z9 4
U1 10
U2 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0749-6419
EI 1879-2154
J9 INT J PLASTICITY
JI Int. J. Plast.
PD JUL
PY 2016
VL 82
BP 225
EP 240
DI 10.1016/j.ijplas.2016.03.006
PG 16
WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics
SC Engineering; Materials Science; Mechanics
GA DP0PB
UT WOS:000378190600012
ER
PT J
AU Li, HF
Pan, C
Zhao, SJ
Liu, P
Zhu, YM
Rafailovich, MH
AF Li, Hongfei
Pan, Cheng
Zhao, Sijia
Liu, Ping
Zhu, Yimei
Rafailovich, Miriam H.
TI Enhancing performance of PEM fuel cells: Using the Au
nanoplatelet/Nafion interface to enable CO oxidation under ambient
conditions
SO JOURNAL OF CATALYSIS
LA English
DT Article
DE PEM fuel cell; Gold nanoplatelets; CO oxidation
ID SUPPORTED GOLD CATALYSTS; LOW-TEMPERATURE; CARBON-MONOXIDE;
NANOPARTICLES; EXCHANGE; MOLECULES; MEMBRANES; SOLIDS; OXYGEN; SITES
AB We have developed a method for fabrication of Au nanoparticle platelets which can be coated onto the Nafion membranes of polymer electrolyte membrane (PEM) fuel cells simply by Langmuir-Blodgett (LB) trough lift off from the air water interface. Incorporating the coated membranes into fuel cells with one membrane electrode assembly (MEA) enhanced the maximum power output by more than 50% when operated under ambient conditions. An enhancement of more than 200% was observed when 0.1% CO was incorporated into the H-2 input gas stream and minimal enhancement was observed when the PEM fuel cell was operated with 100% O-2 gas at the cathode, or when particles were deposited on the electrodes. Density function theory (DFT) calculations were carried out to understand the origin of improved output power. Au NPs with 3-atomic layer in height and 2 nm in size were constructed to model the experimentally synthesized Au NPs. The results indicated that the Au NPs interacted synergistically with the SO3 groups, attached at end of Nafion side chains, to reduce the energy barrier for the oxidation of CO occurring at the perimeter of the Au NPs, from 1.292 eV to 0.518 eV, enabling the reaction to occur at T < 300 K. (C) 2016 Published by Elsevier inc.
C1 [Li, Hongfei; Pan, Cheng; Zhao, Sijia; Rafailovich, Miriam H.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA.
[Liu, Ping] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
RP Rafailovich, MH (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA.
EM miriam.rafailovich@stonybrook.edu
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-SC-00112704]; PowerbridgeNY [NYSERDA29750]; SGRID3 of the Long
Island Regional Economic Development Council
FX Funds for research work at Brookhaven National Laboratory were provided
by the U.S. Department of Energy, Office of Basic Energy Sciences, under
Contract No. DE-SC-00112704. DFT calculations were performed using
computational resources at the Center for Functional Nanomaterials, a
user facility at Brookhaven National Laboratory. The work at Stony Brook
University was funded in part by PowerbridgeNY under a NYSERDA29750
grant, and by a grant from SGRID3 of the Long Island Regional Economic
Development Council 2014.
NR 29
TC 2
Z9 2
U1 29
U2 29
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9517
EI 1090-2694
J9 J CATAL
JI J. Catal.
PD JUL
PY 2016
VL 339
BP 31
EP 37
DI 10.1016/j.jcat.2016.03.031
PG 7
WC Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA DP4GF
UT WOS:000378453700005
ER
PT J
AU Sun, H
Shen, BX
Wu, D
Guo, XF
Li, D
AF Sun, Hui
Shen, Benxian
Wu, Di
Guo, Xiaofeng
Li, Deng
TI Supported Al-Ti bimetallic catalysts for 1-decene oligomerization:
Activity, stability and deactivation mechanism
SO JOURNAL OF CATALYSIS
LA English
DT Article
DE Al-Ti bimetallic catalysts; 1-Decene oligomerization; Activity;
Stability; Deactivation mechanism
ID HOMOGENEOUS CHROMIUM CATALYSTS; SOLID ACID CATALYST; OLEFIN
POLYMERIZATION; ALUMINUM-CHLORIDE; PROPYLENE POLYMERIZATION;
METAL-CATALYSTS; SILICA; LUBRICANTS; COMPLEXES; ETHYLENE
AB A variety of supported bimetallic catalysts were prepared through immobilization of AlCl3 and TiCl4 on different porous materials and used for the oligomerization of 1-decene in a fixed-bed reactor. The supported catalysts were characterized by various techniques including X-ray photoelectron spectroscopy (XPS), Al-27 MAS NMR, N-2 adsorption, adsorbed pyridine infrared (Py-IR), thermogravimetry and differential scanning calorimetry (TG-DSC), energy-dispersive spectrometry (EDS), and content measurement of active species. Their catalytic activity was examined and the underlying deactivation mechanism was explored. The initial catalytic activity was observed to be a linear function of the chlorine content of the supported catalyst. A catalyst using a coal-derived activated carbon support has the highest loading and exhibits the highest yield of polyalphaolefin (PAO), while a gamma-Al2O3-supported catalyst gives higher stability. In addition, thermal treatment of the gamma-Al2O3-supported catalyst results in reduced initial activity but enhanced stability. Both the loss of active species and the blockage and coverage of the pore structure by oligomers account for the deactivation of the supported catalyst. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Sun, Hui; Shen, Benxian; Li, Deng] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China.
[Wu, Di] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA.
[Wu, Di] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA.
[Guo, Xiaofeng] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
RP Sun, H (reprint author), E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China.
EM sunhui@ecust.edu.cn
RI Wu, Di/A-3039-2014;
OI Wu, Di/0000-0001-6879-321X; Guo, Xiaofeng/0000-0003-3129-493X
FU National Natural Science Foundation of China [21201063]; Natural Science
Foundation of Shanghai, China [16ZR1408100]; Specialized Research
Foundation for the Doctoral Program of Higher Education of China
[20110074120020]
FX This work was financially supported by the National Natural Science
Foundation of China (21201063), the Natural Science Foundation of
Shanghai, China (16ZR1408100) and the Specialized Research Foundation
for the Doctoral Program of Higher Education of China (20110074120020).
NR 43
TC 0
Z9 0
U1 17
U2 26
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9517
EI 1090-2694
J9 J CATAL
JI J. Catal.
PD JUL
PY 2016
VL 339
BP 84
EP 92
DI 10.1016/j.jcat.2016.03.023
PG 9
WC Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA DP4GF
UT WOS:000378453700011
ER
PT J
AU Otto, T
Zones, SI
Iglesia, E
AF Otto, Trenton
Zones, Stacey I.
Iglesia, Enrique
TI Challenges and strategies in the encapsulation and stabilization of
monodisperse Au clusters within zeolites
SO JOURNAL OF CATALYSIS
LA English
DT Article
DE Au catalyst; Stable clusters; Encapsulation; LTA zeolite; MFI zeolite;
Hydrothermal synthesis; Oxidative dehydrogenation
ID SUPPORTED GOLD NANOPARTICLES; WATER-GAS SHIFT; CARBON-MONOXIDE;
SELECTIVE OXIDATION; CATALYTIC-ACTIVITY; THERMAL-STABILITY;
METAL-CLUSTERS; CO OXIDATION; BULK GOLD; SURFACE
AB This study describes successful strategies and guiding principles for the synthesis of small and monodisperse Au clusters protected against coalescence and poisoning by their uniform dispersion throughout the void space of LTA and MFI zeolites. These protocols involve hydrothermal zeolite crystallization around Au3+ precursors stabilized by mercaptosilane ligands, which prevent their premature reduction and enforce connectivity with incipient crystalline frameworks. The confining nanometer scale voids restrict cluster mobility during thermal treatment and allow the selection of reactants, products, and transition states and the exclusion of organosulfur poisons in catalytic applications based on molecular size. UV-visible spectra show that Au3+ forms Au-0 clusters in O-2 or H-2 in a narrow temperature range that sets the dynamics of nucleation and growth and thus cluster size. Reduction protocols that maintain stable temperatures at the lower end of this range lead to small clusters uniform in size (LTA: 1.3 nm, MFI: 2.0 nm; 1.06-1.09 dispersity indices) with clean and accessible surfaces, as shown by their infrared spectra upon chemisorption of CO. Their unprecedented size and monodispersity are retained during oxidative treatments (773-823 K) that sinter Au clusters on mesoporous supports. Oxidative dehydrogenation rates of small (ethanol) and large (isobutanol) alkanols and the poisoning of unprotected clusters by organosulfur titrants show that >90% of the Au surfaces reside within intracrystalline LTA and MFI voids. Their very different structures, compositions, and synthesis protocols suggest that these encapsulation strategies can be adapted readily to other zeolite frameworks with apertures too small for post synthesis exchange of Au precursors. This study illustrates how confinement favors small, uniquely stable, and monodisperse clusters, even for Au, a metal prone to cluster growth at conditions often required for its catalytic use. (C) 2016 Published by Elsevier Inc.
C1 [Otto, Trenton; Iglesia, Enrique] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Zones, Stacey I.] Chevron Energy Technol Co, Richmond, CA 94804 USA.
[Iglesia, Enrique] EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Iglesia, E (reprint author), Univ Calif Berkeley, 103 Gilman Hall, Berkeley, CA 94720 USA.
EM iglesia@berkeley.edu
RI Iglesia, Enrique/D-9551-2017
OI Iglesia, Enrique/0000-0003-4109-1001
FU Chevron Energy Technology Co.; ARCS Foundation Fellowship
FX We gratefully acknowledge the generous financial support of the Chevron
Energy Technology Co., and an ARCS Foundation Fellowship (for TO). We
thank Dr. Reena Zalpuri (Electron Microscope Lab) for help with TEM
instrumentation, Dr. Antonio DiPasquale (X-Ray Facility) for assistance
with XRD, Professor Prashant Deshlahra for discussions on IR
spectroscopy, as well as Stanley Herrmann and Alexandra Landry for
review of the manuscript.
NR 64
TC 2
Z9 2
U1 35
U2 69
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9517
EI 1090-2694
J9 J CATAL
JI J. Catal.
PD JUL
PY 2016
VL 339
BP 195
EP 208
DI 10.1016/j.jcat.2016.04.015
PG 14
WC Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA DP4GF
UT WOS:000378453700022
ER
PT J
AU Licht, RB
Vogt, D
Bell, AT
AF Licht, Rachel B.
Vogt, Diana
Bell, Alexis T.
TI The mechanism and kinetics of propene ammoxidation over alpha-bismuth
molybdate
SO JOURNAL OF CATALYSIS
LA English
DT Article
DE Bismuth molybdate; Selective ammoxidation; Propene; Ammonia;
Acrylonitrile
ID DENSITY-FUNCTIONAL THEORY; METAL OXIDE CATALYSTS; SELECTIVE OXIDATION;
PROPYLENE OXIDATION; NITROGEN INSERTION; MOLYBDENUM OXIDE; ACROLEIN;
ACRYLONITRILE; COMPLEXES; AMMONIA
AB Propene ammoxidation over Bi2Mo3O12 was investigated to elucidate product (acrylonitrile, acetonitrile, HCN, acrolein, N-2, etc.) formation pathways. Propene consumption rate is first order in propene and zero order in ammonia (for NH3/C3H6 = 0-2) and oxygen (for O-2/C3H6 >= 1.5) partial pressures, with an activation energy (E-a = 22 kcal/mol) comparable to that for propene oxidation, suggesting the same rate-limiting step for both reactions. We propose two N-containing species are relevant at ammoxidation conditions: adsorbed NH3 on surface Bi3+ ions that reacts with a propene derivative to form products with C-N bonds, and a few metastable M-NHx (M = Mo, Bi; x = 1, 2) groups that are very sensitive to destruction by water, but that are responsible for NH3 oxidation to N-2. A proposed reaction mechanism and model that captures the experimental trends in product distribution as a function of partial pressures and temperature are presented. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Bell, Alexis T.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Bell, AT (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
EM alexbell@berkeley.edu
FU Division of Chemical Sciences, Geosciences, and Biosciences of the U.S.
Department of Energy at Lawrence Berkeley National Laboratory
[DE-AC02-05CH11231]; Molecular Graphics and Computation Facility at the
University of California, Berkeley under National Science Foundation
[CHE-0840505]
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, and by the Division of Chemical Sciences,
Geosciences, and Biosciences of the U.S. Department of Energy at
Lawrence Berkeley National Laboratory under Contract No.
DE-AC02-05CH11231. Theoretical calculations were performed with the
resources of the Molecular Graphics and Computation Facility at the
University of California, Berkeley under National Science Foundation
grant CHE-0840505. The authors would like to acknowledge Dr. Joseph
Gomes with his help with the DFT calculations. The authors would also
like to acknowledge Prof. T. Don Tilley, Dr. Andrew "Bean" Getsoian, Dr.
Gregory Johnson, Dr. Edwin Yik, James Dombrowski, and Micah Ziegler for
useful discussions.
NR 48
TC 2
Z9 2
U1 15
U2 23
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9517
EI 1090-2694
J9 J CATAL
JI J. Catal.
PD JUL
PY 2016
VL 339
BP 228
EP 241
DI 10.1016/j.jcat.2016.04.012
PG 14
WC Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA DP4GF
UT WOS:000378453700024
ER
PT J
AU Im, J
Yip, D
Lee, J
Loffler, FE
AF Im, Jeongdae
Yip, Dan
Lee, Jaejin
Loffler, Frank E.
TI Simplified extraction of bisphenols from bacterial culture suspensions
and solid matrices
SO JOURNAL OF MICROBIOLOGICAL METHODS
LA English
DT Article
DE Bisphenols; Adsorption; Methanol; Ultrasonic solvent extraction
ID CHROMATOGRAPHY-MASS-SPECTROMETRY; GAS-CHROMATOGRAPHY; ENVIRONMENTAL
FATE; PHASE EXTRACTION; WASTE-WATER; PHARMACEUTICALS; DERIVATIZATION;
XENOESTROGENS
AB We demonstrate the utility of a simple and fast methanol extraction method that achieves similar bisphenols recovery efficiencies from microbial culture suspensions and sediment material than more laborious and costly extraction procedures. The methanol extraction method may have broad application for the rapid analysis of hydrophobic compounds in biodegradation studies. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Im, Jeongdae; Yip, Dan] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA.
[Lee, Jaejin; Loffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.
[Lee, Jaejin; Loffler, Frank E.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA.
[Loffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA.
[Loffler, Frank E.] Univ Tennessee, Oak Ridge, TN 37831 USA.
[Loffler, Frank E.] UT ORNL, JIBS, Oak Ridge, TN 37831 USA.
[Yip, Dan; Loffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Lee, Jaejin] Korea Polar Res Inst, Div Life Sci, Inchon, South Korea.
RP Im, J (reprint author), Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA.
EM jeongdae.im@umass.edu
RI Im, Jeongdae/K-8500-2013;
OI Im, Jeongdae/0000-0002-6871-5366; Lee, Jaejin/0000-0002-9793-9473
FU Polycarbonate/BPA Global Group of the American Chemistry Council (ACC),
Washington, DC
FX This work was supported by the Polycarbonate/BPA Global Group of the
American Chemistry Council (ACC), Washington, DC.
NR 17
TC 1
Z9 1
U1 2
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-7012
EI 1872-8359
J9 J MICROBIOL METH
JI J. Microbiol. Methods
PD JUL
PY 2016
VL 126
BP 35
EP 37
DI 10.1016/j.mimet.2016.05.005
PG 3
WC Biochemical Research Methods; Microbiology
SC Biochemistry & Molecular Biology; Microbiology
GA DP4HR
UT WOS:000378457500007
PM 27179438
ER
PT J
AU Horn, T
Roberts, CD
AF Horn, Tanja
Roberts, Craig D.
TI The pion: an enigma within the Standard Model
SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS
LA English
DT Review
DE Abelian anomaly; confinement; dynamical chiral symmetry breaking;
elastic and transition form factors; pi-and K-mesons; non-perturbative
QCD; parton distribution amplitudes and functions
ID ELECTROMAGNETIC FORM-FACTOR; CHIRAL-SYMMETRY-BREAKING; HARD EXCLUSIVE
ELECTROPRODUCTION; DYSON-SCHWINGER EQUATIONS; DEEP INELASTIC-SCATTERING;
GREEN-TAKAHASHI IDENTITIES; VIRTUAL COMPTON-SCATTERING; LARGE
MOMENTUM-TRANSFER; AXIAL-VECTOR CURRENT; QUANTUM CHROMODYNAMICS
AB Quantum chromodynamics (QCDs) is the strongly interacting part of the Standard Model. It is supposed to describe all of nuclear physics; and yet, almost 50 years after the discovery of gluons and quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: neutrons and protons, and the pions that bind them together. QCD is characterised by two emergent phenomena: confinement and dynamical chiral symmetry breaking (DCSB). They have far-reaching consequences, expressed with great force in the character of the pion; and pion properties, in turn, suggest that confinement and DCSB are intimately connected. Indeed, since the pion is both a Nambu-Goldstone boson and a quark-antiquark bound-state, it holds a unique position in nature and, consequently, developing an understanding of its properties is critical to revealing some very basic features of the Standard Model. We describe experimental progress toward meeting this challenge that has been made using electromagnetic probes, highlighting both dramatic improvements in the precision of charged-pion form factor data that have been achieved in the past decade and new results on the neutral-pion transition form factor, both of which challenge existing notions of pion structure. We also provide a theoretical context for these empirical advances, which begins with an explanation of how DCSB works to guarantee that the pion is un-naturally light; but also, nevertheless, ensures that the pion is the best object to study in order to reveal the mechanisms that generate nearly all the mass of hadrons. In canvassing advances in these areas, our discussion unifies many aspects of pion structure and interactions, connecting the charged-pion elastic form factor, the neutral-pion transition form factor and the pion's leading-twist parton distribution amplitude. It also sketches novel ways in which experimental and theoretical studies of the charged-kaon electromagnetic form factor can provide significant contributions. Importantly, it appears that recent predictions for the large-Q(2) behaviour of the charged-pion form factor can be tested by experiments planned at the upgraded 12 GeV Jefferson Laboratory. Those experiments will extend precise charged-pion form factor data up to momentum transfers that it now appears may be large enough to serve in validating factorisation theorems in QCD. If so, they may expose the transition between the non-perturbative and perturbative domains and thereby reach a goal that has driven hadro-particle physics for around 35 years.
C1 [Horn, Tanja] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA.
[Horn, Tanja] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RP Horn, T (reprint author), Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA.; Horn, T (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
EM hornt@jlab.org; cdroberts@anl.gov
FU NSF [PHY-1306227]; US Department of Energy, Office of Science, Office of
Nuclear Physics [DE-AC02-06CH11357]
FX Both the results described and the insights drawn herein are fruits from
collaborations we have joined with many colleagues and friends
throughout the world; and we are very grateful to them all. This work
was supported in part by NSF grant PHY-1306227; and by the US Department
of Energy, Office of Science, Office of Nuclear Physics, under contract
no. DE-AC02-06CH11357.
NR 267
TC 9
Z9 9
U1 4
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0954-3899
EI 1361-6471
J9 J PHYS G NUCL PARTIC
JI J. Phys. G-Nucl. Part. Phys.
PD JUL
PY 2016
VL 43
IS 7
AR 073001
DI 10.1088/0954-3899/43/7/073001
PG 45
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA DP2AK
UT WOS:000378290300003
ER
PT J
AU Yao, XJ
Mehen, T
Muller, B
AF Yao, Xiaojun
Mehen, Thomas
Muller, Berndt
TI An effective field theory approach to the stabilization of Be-8 in a QED
plasma
SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS
LA English
DT Article
DE effective field theory; QED plasma; alpha-alpha resonant scattering;
bound state
ID ALPHA-ALPHA SCATTERING; LIGHT; WMAP
AB We use effective field theory to study the alpha-alpha resonant scattering in a finite-temperature QED plasma. The static plasma screening effect causes the resonance state Be-8 to live longer and eventually leads to the formation of a bound state when m(D) greater than or similar to 0.3 MeV. We speculate that this effect may have implications on the rates of cosmologically and astrophysically relevant nuclear reactions involving alpha particles.
C1 [Yao, Xiaojun; Mehen, Thomas; Muller, Berndt] Duke Univ, Dept Phys, Durham, NC 27708 USA.
[Muller, Berndt] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Yao, XJ (reprint author), Duke Univ, Dept Phys, Durham, NC 27708 USA.
EM xiaojun.yao@duke.edu
FU US Department of Energy research grant [DE-FG02-05ER41367,
DE-FG02-05ER41368]
FX We thank Sean Fleming, Robert Pisarski and Johann Rafelski for very
helpful discussions. BM and XY are supported by US Department of Energy
research grant DE-FG02-05ER41367, TM is supported by US Department of
Energy research grant DE-FG02-05ER41368. TM and XY would like to thank
the theory group at Brookhaven National Laboratory for their hospitality
during the completion of this work.
NR 22
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0954-3899
EI 1361-6471
J9 J PHYS G NUCL PARTIC
JI J. Phys. G-Nucl. Part. Phys.
PD JUL
PY 2016
VL 43
IS 7
AR 07LT02
DI 10.1088/0954-3899/43/7/07LT02
PG 11
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA DP2AK
UT WOS:000378290300002
ER
PT J
AU King, CB
Hong, YL
Dehart, SP
Defeo, PA
Pan, R
AF King, Caleb B.
Hong, Yili
Dehart, Stephanie P.
Defeo, Patrick A.
Pan, Rong
TI Planning Fatigue Tests for Polymer Composites
SO JOURNAL OF QUALITY TECHNOLOGY
LA English
DT Article
DE Fatigue Lifetime Model; Large-Sample Approximate Variance; Log-Normal;
Optimal Design; Tolerance Limits; Weibull
ID LIFE TEST PLANS; LIMIT MODEL; DISTRIBUTIONS; WEIBULL; CURVES
AB Polymer-composite materials have become key components in the transportation and alternative-energy industries, as they are more lightweight than homogeneous metals and alloys yet still retain comparable levels of strength and endurance. To understand how these polymer composites perform after long periods of use, material manufacturers commonly use cyclic fatigue testing. The current industrial standards include test plans with balanced designs and equal spacing of stress levels which, in many cases, are not the most statistically efficient designs. In this paper, we present optimal designs with the goal of minimizing the weighted sum of asymptotic variances of an estimated lifetime percentile at selected design stress levels. These designs are based on a physical model adapted from the fatigue literature, which is more suitable for modeling cyclic fatigue of polymer composites than the model used in the current industrial standards. We provide a comparison between our optimal designs and the traditional designs currently in use and ultimately propose a compromise design for use by practitioners in order to ensure robustness against deviations from the underlying assumptions.
C1 [King, Caleb B.] Sandia Natl Labs, Stat Sci Grp, Albuquerque, NM 87123 USA.
[Hong, Yili] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA.
[Dehart, Stephanie P.] Eastman Chem Co, Appl Stat Grp, Kingsport, TN 37662 USA.
[Defeo, Patrick A.] DuPont Co Inc, Appl Stat Grp, Wilmington, DE 19803 USA.
[Pan, Rong] Arizona State Univ, Sch CIDSE, Tempe, AZ 85287 USA.
RP Hong, YL (reprint author), Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA.
EM calking@sandia.gov; yilihong@vt.edu; stephaniedehart@eastman.com;
rong.pan@asu.edu
FU National Science Foundation [CMMI-1068933]; DuPont Young Professor Grant
FX We would like to thank the Editor, an associate editor, and two referees
for their valuable comments that lead to improvement of this paper. The
Advanced Research Computing at Virginia Tech is acknowledged for
providing computational resources. The work by Hong and King was
supported by the National Science Foundation under Grant CMMI-1068933 to
Virginia Tech and the 2011 DuPont Young Professor Grant.
NR 27
TC 0
Z9 0
U1 3
U2 3
PU AMER SOC QUALITY CONTROL-ASQC
PI MILWAUKEE
PA 600 N PLANKINTON AVE, MILWAUKEE, WI 53203 USA
SN 0022-4065
J9 J QUAL TECHNOL
JI J. Qual. Technol.
PD JUL
PY 2016
VL 48
IS 3
BP 227
EP 245
PG 19
WC Engineering, Industrial; Operations Research & Management Science;
Statistics & Probability
SC Engineering; Operations Research & Management Science; Mathematics
GA DP4JV
UT WOS:000378463100002
ER
PT J
AU Hamada, MS
AF Hamada, Michael S.
TI A Bayesian Approach to Multivariate Measurement System Assessment
SO JOURNAL OF QUALITY TECHNOLOGY
LA English
DT Article
DE Gauge R & R Study; Markov-Chain Monte Carlo; Multivariate Normal
Distribution; Random Effects; Repeatability; Reproducibility; Scaled
Inverse Wishart Prior Distribution; Uncertainty; Variance Components
AB This article considers system assessment for multivariate measurements and presents a Bayesian approach to analyzing gauge R & R study data. The evaluation of variances for univariate measurement becomes the evaluation of covariance matrices for multivariate measurements. The Bayesian approach ensures positive definite estimates of the covariance matrices and easily provides their uncertainty. Moreover, various measurement-system assessment criteria are easily evaluated. The approach is illustrated with data from a real gauge R & R study as well as simulated data.
C1 [Hamada, Michael S.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RP Hamada, MS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM hamada@lanl.gov
NR 17
TC 0
Z9 0
U1 7
U2 7
PU AMER SOC QUALITY CONTROL-ASQC
PI MILWAUKEE
PA 600 N PLANKINTON AVE, MILWAUKEE, WI 53203 USA
SN 0022-4065
J9 J QUAL TECHNOL
JI J. Qual. Technol.
PD JUL
PY 2016
VL 48
IS 3
BP 246
EP 252
PG 7
WC Engineering, Industrial; Operations Research & Management Science;
Statistics & Probability
SC Engineering; Operations Research & Management Science; Mathematics
GA DP4JV
UT WOS:000378463100003
ER
PT J
AU Perdikaris, P
Insley, JA
Grinberg, L
Yu, Y
Papka, ME
Karniadakis, GE
AF Perdikaris, Paris
Insley, Joseph A.
Grinberg, Leopold
Yu, Yue
Papka, Michael E.
Karniadakis, George Em.
TI Visualizing multiphysics, fluid-structure interaction phenomena in
intracranial aneurysms
SO PARALLEL COMPUTING
LA English
DT Article
DE Fluid-structure interactions; Blood flow; Cerebral aneurysms; High
performance computing; Parallel visualization
ID NONLINEAR ELASTICITY
AB This work presents recent advances in visualizing multi-physics, fluid-structure interaction (FSI) phenomena in cerebral aneurysms. Realistic FSI simulations produce very large and complex data sets, yielding the need for parallel data processing and visualization. Here we present our efforts to develop an interactive visualization tool which enables the visualization of such FSI simulation data. Specifically, we present a ParaView-NekTar interface that couples the ParaView-visualization engine with NekTar's parallel libraries, which are employed for the calculation of derived fields in both the fluid and solid domains with spectral accuracy. This interface allows the flexibility of independently choosing the resolution for visualizing both the volume data and the surface data from each of the solid and fluid domains, which significantly facilitates the visualization of complex structures under large deformations. The animation of the fluid and structure data is synchronized in time, while the ParaView-NekTar interface enables the visualization of different fields to be superimposed, e.g. fluid jet and structural stress, to better understand the interactions in this multi-physics environment. Such visualizations are key towards elucidating important biophysical interactions in health and disease, as well as disseminating the insight gained from our simulations and further engaging the medical community in this effort of bringing computational science to the bedside. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Perdikaris, Paris] MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
[Karniadakis, George Em.] Brown Univ, Div Appl Math, Providence, RI 02912 USA.
[Grinberg, Leopold] IBM TJ Watson Res Ctr, Cambridge, MA 02142 USA.
[Yu, Yue] Lehigh Univ, Dept Math, 27 Mem Dr W, Bethlehem, PA 18015 USA.
[Insley, Joseph A.; Papka, Michael E.] Argonne Natl Lab, Argonne Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Karniadakis, GE (reprint author), Brown Univ, Div Appl Math, Providence, RI 02912 USA.
EM George_Karniadakis@brown.edu
FU Air Force Office of Scientific Research [FA9550-12-1-0463]; National
Institutes of Health [1U01HL116323-01]; DOE Office of Science
[DE-AC02-06CH11357]
FX An award of computer time was provided by the Innovative and Novel
Computational Impact on Theory and Experiment (INCITE) program. This
research used resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract
DE-AC02-06CH11357. This work also received partial support by the Air
Force Office of Scientific Research under Grant no. FA9550-12-1-0463,
and the National Institutes of Health under Grant no. 1U01HL116323-01.
Last but not least, we thank Kitware Inc. for support in developing and
distributing the NekTar-ParaView plug-in.
NR 9
TC 0
Z9 0
U1 2
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8191
EI 1872-7336
J9 PARALLEL COMPUT
JI Parallel Comput.
PD JUL
PY 2016
VL 55
SI SI
BP 9
EP 16
DI 10.1016/j.parco.2015.10.016
PG 8
WC Computer Science, Theory & Methods
SC Computer Science
GA DP4KG
UT WOS:000378464200003
ER
PT J
AU O'Leary, P
Ahrens, J
Jourdain, S
Wittenburg, S
Rogers, DH
Petersen, M
AF O'Leary, Patrick
Ahrens, James
Jourdain, Sebastien
Wittenburg, Scott
Rogers, David H.
Petersen, Mark
TI Cinema image-based in situ analysis and visualization of MPAS-ocean
simulations
SO PARALLEL COMPUTING
LA English
DT Article
DE High performance computing; In situ; Image-based; Analysis and
visualization
ID VOLUME DATA
AB Due to power and I/O constraints associated with extreme scale scientific simulations, in situ analysis and visualization will become a critical component to scientific exploration and discovery. Current analysis and visualization options at extreme scale are presented in opposition: write files to disk for interactive, exploratory analysis, or perform in situ analysis to save data products about phenomena that a scientists knows about in advance. In this paper, we, demonstrate extreme scale visualization of MPAS-Ocean simulations leveraging a third option based on Cinema, which is a novel framework for highly interactive, image-based in situ analysis and visualization that promotes exploration. (C) 2015 Elsevier B.V. All rights reserved.
C1 [O'Leary, Patrick; Jourdain, Sebastien; Wittenburg, Scott] Kitware Inc, 1800 Old Pecos Trail,Suite G, Santa Fe, NM 87505 USA.
[Ahrens, James; Rogers, David H.; Petersen, Mark] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RP O'Leary, P (reprint author), Kitware Inc, 1800 Old Pecos Trail,Suite G, Santa Fe, NM 87505 USA.
EM patrick.oleary@kitware.com
OI Petersen, Mark/0000-0001-7170-7511
FU DOE Office of Nuclear Energy Fast Track SBIR award [DE-SC0010119]; ASCR
Program, Office of Science and ASC, Department of Energy (DOE)
FX This work was funded by Dr. Lucy Nowell, ASCR Program, Office of Science
and ASC, Department of Energy (DOE). Patrick O'Leary, Sebastien Jourdain
and Scott Wittenburg were also funded by a DOE Office of Nuclear Energy
Fast Track SBIR award DE-SC0010119.
NR 13
TC 0
Z9 0
U1 1
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8191
EI 1872-7336
J9 PARALLEL COMPUT
JI Parallel Comput.
PD JUL
PY 2016
VL 55
SI SI
BP 43
EP 48
DI 10.1016/j.parco.2015.10.005
PG 6
WC Computer Science, Theory & Methods
SC Computer Science
GA DP4KG
UT WOS:000378464200007
ER
PT J
AU Haberkorn, N
Coulter, Y
Condo, AM
Granell, P
Golmar, F
Ha, HS
Moon, SH
AF Haberkorn, N.
Coulter, Y.
Condo, A. M.
Granell, P.
Golmar, F.
Ha, H. S.
Moon, S. H.
TI Vortex creep and critical current densities J(c) in a 2 mu m thick
SmBa2Cu3O7-d coated conductor with mixed pinning centers grown by
co-evaporation
SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
LA English
DT Article
DE coated conductors; vortex dynamics; glassy exponents
ID HIGH-TEMPERATURE SUPERCONDUCTORS; FLUX-CREEP; FILMS; WIRES; YBA2CU3O7-X
AB We report the critical current densities J(c) and flux creep rates in a 2 mu m thick SmBa2Cu3O7-delta coated conductor produced by co-evaporation. The sample presents strong pinning produced by correlated disorder (CD) (boundaries between growth islands, dislocations and twin boundaries) as well as random nanoparticles. Correlated pinning along the c-axis was evidenced due to the appearance of a large peak in the angular critical current, centered at H parallel to c. The analysis of the critical current density J(c) (with the magnetic field applied parallel (H parallel to c) and at 45 degrees of the c-axis (H parallel to 45 degrees)) indicates that CD assists pinning throughout the temperature range. For all temperatures and at both angles the in-field dependence of J(c) exhibits a power-law behavior. The contribution of CD drops when the field is rotated to intermediate angles between the c axis and a-b axis (i. e. H parallel to 45 degrees), which derives in a reduction of the absolute Jc value and poorer in-field dependences. The flux creep rate depends on the angle and its values remain approximately constant within the power-law regime. For H parallel to c and H parallel to 45 degrees and for magnetic fields lower than 20 kOe, the flux relaxation presents characterizing glassy exponents mu = 1.70 and mu = 1.32, respectively.
C1 [Haberkorn, N.; Condo, A. M.] Ctr Atom Bariloche, Consejo Nacl Invest Cient & Tecn, Av Bustillo 9500, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
[Coulter, Y.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Granell, P.; Golmar, F.] Consejo Nacl Invest Cient & Tecn, INTI CMNB, Av Gral Paz 5445 B1650KNA, Buenos Aires, DF, Argentina.
[Golmar, F.] UNSAM, Escuela Ciencia & Tecnol, Campus Miguelete 1650, Buenos Aires, DF, Argentina.
[Ha, H. S.] Korea Electrotechnol Res Inst, Chang Won 641120, South Korea.
[Moon, S. H.] SuNAM Co Ltd, Ansung 430817, Gyeonggi Do, South Korea.
RP Haberkorn, N (reprint author), Ctr Atom Bariloche, Consejo Nacl Invest Cient & Tecn, Av Bustillo 9500, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
EM nhaberk@cab.cnea.gov.ar
RI Golmar, Federico/C-2933-2017
OI Golmar, Federico/0000-0002-4023-2899
NR 41
TC 0
Z9 0
U1 2
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-2048
EI 1361-6668
J9 SUPERCOND SCI TECH
JI Supercond. Sci. Technol.
PD JUL
PY 2016
VL 29
IS 7
AR 075011
DI 10.1088/0953-2048/29/7/075011
PG 7
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DO9QJ
UT WOS:000378121300019
ER
PT J
AU Emery, JM
Grigoriu, MD
Field, RV
AF Emery, J. M.
Grigoriu, M. D.
Field, R. V., Jr.
TI Bayesian methods for characterizing unknown parameters of material
models
SO APPLIED MATHEMATICAL MODELLING
LA English
DT Article
DE Stochastic reduced order models; Bayesian method; Uncertain material
parameters
ID PARTIAL-DIFFERENTIAL-EQUATIONS; REDUCED-ORDER MODELS; STOCHASTIC
COLLOCATION; PROBABILISTIC APPROACH; APPROXIMATIONS; COEFFICIENTS;
SELECTION; GALERKIN
AB A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). The Bayesian method is also employed to characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Emery, J. M.; Field, R. V., Jr.] Sandia Natl Labs, POB 5800 MS 0346, Albuquerque, NM 87185 USA.
[Grigoriu, M. D.] Cornell Univ, Sch Civil & Environm Engn, 220 Hollister Hall, Ithaca, NY 14853 USA.
RP Emery, JM (reprint author), Sandia Natl Labs, POB 5800 MS 0346, Albuquerque, NM 87185 USA.
EM jmemery@sandia.gov; mdg12@cornell.edu; rvfield@sandia.gov
OI Field, Richard/0000-0002-2765-7032; Emery, John /0000-0001-6671-4952
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Company, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.
NR 23
TC 0
Z9 0
U1 2
U2 6
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0307-904X
EI 1872-8480
J9 APPL MATH MODEL
JI Appl. Math. Model.
PD JUL
PY 2016
VL 40
IS 13-14
BP 6395
EP 6411
DI 10.1016/j.apm.2016.01.046
PG 17
WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary
Applications; Mechanics
SC Engineering; Mathematics; Mechanics
GA DO6VP
UT WOS:000377921900014
ER
PT J
AU Shahrukh, H
Oyedun, AO
Kumar, A
Ghiasi, B
Kumar, L
Sokhansanj, S
AF Shahrukh, Hassan
Oyedun, Adetoyese Olajire
Kumar, Amit
Ghiasi, Bahman
Kumar, Linoj
Sokhansanj, Shahab
TI Comparative net energy ratio analysis of pellet produced from steam
pretreated biomass from agricultural residues and energy crops
SO BIOMASS & BIOENERGY
LA English
DT Article
DE Agricultural residue; Energy crop; Pelletization; Process model; Steam
pretreatment
ID WESTERN CANADA; INFESTED WOOD; SIZE; GENERATION; LOGISTICS; PATHWAYS;
QUALITY; COST; GAS
AB A process model was developed to determine the net energy ratio (NER) for the production of pellets from steam pretreated agricultural residue (wheat straw) and energy crops (i.e., switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated wheat straw and switchgrass pellets. The NERs for the base case at 6 kg h(-1) are 1.76 and 1.37 for steam-pretreated wheat straw and switchgrass-based pellets, respectively. The reason behind the difference is that more energy is required to dry switch grass pellets than wheat straw pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 degrees C with 50% pretreatment (i.e. 50 % steam treated material is blended with the raw biomass and then pelletised). The uncertainty results for NER for steam pretreated wheat straw and switch grass pellets are 1.62 +/- 0.10 and 1.42 +/- 0.11, respectively. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit] Univ Alberta, Dept Mech Engn, Donadeo Innovat Ctr Engn 10 263, Edmonton, AB T6G 1H9, Canada.
[Ghiasi, Bahman; Kumar, Linoj; Sokhansanj, Shahab] Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
[Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
RP Kumar, A (reprint author), Univ Alberta, Dept Mech Engn, Donadeo Innovat Ctr Engn 10 263, Edmonton, AB T6G 1H9, Canada.
EM Amit.Kumar@ualberta.ca
FU BioFuelNet Canada Inc.; University of Alberta
FX The authors would like to acknowledge BioFuelNet Canada Inc.
(59_Kumar_West_SEES) and the University of Alberta for funding this
project. Technical support during the experimental stage from the
departments of Chemical and Biological Engineering and Wood Sciences,
University of British Columbia, is highly appreciated. The authors would
especially like to mention Dr. Jack Saddler from the University of
British Columbia for his support and cooperation in carrying out steam
pretreatment experiment in his lab. Astrid Blodgett is acknowledged for
editorial assistance.
NR 31
TC 1
Z9 1
U1 7
U2 13
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0961-9534
EI 1873-2909
J9 BIOMASS BIOENERG
JI Biomass Bioenerg.
PD JUL
PY 2016
VL 90
BP 50
EP 59
DI 10.1016/j.biombioe.2016.03.022
PG 10
WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy &
Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA DO4GQ
UT WOS:000377740200007
ER
PT J
AU Lacey, JA
Emerson, RM
Thompson, DN
Westover, TL
AF Lacey, Jeffrey A.
Emerson, Rachel M.
Thompson, David N.
Westover, Tyler L.
TI Ash reduction strategies in corn stover facilitated by anatomical and
size fractionation
SO BIOMASS & BIOENERGY
LA English
DT Article
DE Ash reduction; Fractionation; Mechanical separations; Preprocessing
ID CARRIERE REHDER POACEAE; WHEAT-STRAW; ENZYMATIC-HYDROLYSIS; SILICA
ACCUMULATION; GLUCOSE-PRODUCTION; PLANT NUTRIENT; BAMBUSOIDEAE; BIOMASS;
LEAF; PRETREATMENT
AB There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stover was hand separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. Based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Lacey, Jeffrey A.; Thompson, David N.] EG&G Idaho Inc, Idaho Natl Engn Lab, Biol & Chem Proc, POB 1625, Idaho Falls, ID 83401 USA.
[Emerson, Rachel M.; Westover, Tyler L.] EG&G Idaho Inc, Idaho Natl Engn Lab, Biofuels & Renewable Energy Technol, POB 1625, Idaho Falls, ID 83401 USA.
RP Lacey, JA (reprint author), EG&G Idaho Inc, Idaho Natl Engn Lab, Biol & Chem Proc, POB 1625, Idaho Falls, ID 83401 USA.
EM Jeffrey.lacey@inl.gov; Rachel.emerson@inl.gov; David.Thompson@inl.gov;
Tyler.Westover@inl.gov
OI Lacey, Jeffrey/0000-0002-2349-1354
FU U.S. Department of Energy, Office of Energy Efficiency and Renewable
Energy, Bioenergy Technologies Office, under DOE Idaho Operations Office
[DE-AC07-05ID14517]
FX This work is supported by the U.S. Department of Energy, Office of
Energy Efficiency and Renewable Energy, Bioenergy Technologies Office,
under DOE Idaho Operations Office Contract DE-AC07-05ID14517.
NR 42
TC 2
Z9 2
U1 8
U2 9
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0961-9534
EI 1873-2909
J9 BIOMASS BIOENERG
JI Biomass Bioenerg.
PD JUL
PY 2016
VL 90
BP 173
EP 180
DI 10.1016/j.biombioe.2016.04.006
PG 8
WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy &
Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA DO4GQ
UT WOS:000377740200021
ER
PT J
AU Collette, NM
Yee, CS
Hum, NR
Murugesh, DK
Christiansen, BA
Xie, LQ
Economides, AN
Manilay, JO
Robling, AG
Loots, GG
AF Collette, Nicole M.
Yee, Cristal S.
Hum, Nicholas R.
Murugesh, Deepa K.
Christiansen, Blaine A.
Xie, LiQin
Economides, Aris N.
Manilay, Jennifer O.
Robling, Alexander G.
Loots, Gabriela G.
TI Sostdc1 deficiency accelerates fracture healing by promoting the
expansion of periosteal mesenchymal stem cells
SO BONE
LA English
DT Article
DE Sostdc1; Wise; Ectodin; Sost-like; Usag-1; Sost; Wnt signaling;
Periosteum; Bone regeneration; Fracture repair
ID SENSITIZATION-ASSOCIATED GENE-1; BMP ANTAGONIST; BONE-MARROW; WNT;
SCLEROSTIN; WISE; DIFFERENTIATION; SHH; INHIBITOR; FEEDBACK
AB Loss of Sostdc1, a growth factor paralogous to Sost, causes the formation of ectopic incisors, fused molars, abnormal hair follicles, and resistance to kidney disease. Sostdc1 is expressed in the periosteum, a source of osteoblasts, fibroblasts and mesenchymal progenitor cells, which are critically important for fracture repair. Here, we investigated the role of Sostdc1 in bone metabolism and fracture repair. Mice lacking Sostdc1 (Sostdc1(-/-)) had a low bone mass phenotype associated with loss of trabecular bone in both lumbar vertebrae and in the appendicular skeleton. In contrast, Sostdc1(-/-) cortical bone measurements revealed larger bones with higher BMD, suggesting that Sostdc1 exerts differential effects on cortical and trabecular bone. Mid-diaphyseal femoral fractures induced in Sostdc1(-/-) mice showed that the periosteal population normally positive for Sostdc1 rapidly expands during periosteal thickening and these cells migrate into the fracture callus at 3 days post fracture. Quantitative analysis of mesenchymal stem cell (MSC) and osteoblast populations determined that MSCs express Sostdc1, and that Sostdc1(-/-) 5 day calluses harbor >2-fold more MSCs than fractured wildtype controls. Histologically a fraction of Sostdc1-positive cells also expressed nestin and alpha-smooth muscle actin, suggesting that Sostdc1 marks a population of osteochondral progenitor cells that actively participate in callus formation and bone repair. Elevated numbers of MSCs in D5 calluses resulted in a larger, more vascularized cartilage callus at day 7, and a more rapid turnover of cartilage with significantly more remodeled bone and a thicker cortical shell at 21 days post fracture. These data support accelerated or enhanced bone formation/remodeling of the callus in Sostdc1 mice, suggesting that Sostdc1 may promote and maintain mesenchymal stem cell quiescence in the periosteum. (C) 2016 The Authors. Published by Elsevier Inc.
C1 [Collette, Nicole M.; Yee, Cristal S.; Hum, Nicholas R.; Murugesh, Deepa K.; Loots, Gabriela G.] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, 7000 East Ave,L-452, Livermore, CA 94550 USA.
[Yee, Cristal S.; Manilay, Jennifer O.; Loots, Gabriela G.] Univ Calif Merced, Sch Nat Sci, Mol & Cell Biol Unit, Merced, CA USA.
[Christiansen, Blaine A.] Univ Calif Davis, Med Ctr, Sacramento, CA 95817 USA.
[Xie, LiQin; Economides, Aris N.] Regeneron Pharmaceut Inc, 777 Old Saw Mill River Rd, Tarrytown, NY 10591 USA.
[Robling, Alexander G.] Indiana Univ, Indianapolis, IN 46204 USA.
RP Loots, GG (reprint author), Lawrence Livermore Natl Lab, Biol & Biotechnol Div, 7000 East Ave,L-452, Livermore, CA 94550 USA.
EM loots1@llnl.gov
OI Economides, Aris/0000-0002-6508-8942
FU NIH [DK075730]; LLNL LDRD ER [11-ERD-060]; U.S. Department of Energy by
Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
FX We would like to thank the National Institutes of Health (NIH) Knock-Out
Mouse Program (KOMP) and Regeneron for providing the Sostdc1 knockout
mice. We are also grateful to David Gravano for his assistance with FACS
analysis. NMC, CSY, DKM and GGL were supported in part by NIH grant
DK075730. NMC and GGL were also supported in part by LLNL LDRD ER
(11-ERD-060). This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.
NR 40
TC 1
Z9 1
U1 2
U2 5
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 8756-3282
EI 1873-2763
J9 BONE
JI Bone
PD JUL
PY 2016
VL 88
BP 20
EP 30
DI 10.1016/j.bone.2016.04.005
PG 11
WC Endocrinology & Metabolism
SC Endocrinology & Metabolism
GA DO6WV
UT WOS:000377925100003
PM 27102547
ER
PT J
AU Hong, LX
Zhou, N
Feng, W
Khanna, N
Fridley, D
Zhao, YQ
Sandholt, K
AF Hong, Lixuan
Zhou, Nan
Feng, Wei
Khanna, Nina
Fridley, David
Zhao, Yongqiang
Sandholt, Kaare
TI Building stock dynamics and its impacts on materials and energy demand
in China
SO ENERGY POLICY
LA English
DT Article
DE Building floor space; Annual new construction; Retrofit; Materials;
Energy demand
ID CLIMATE-CHANGE; RESIDENTIAL BUILDINGS; RENEWABLE ENERGY; CONSTRUCTION;
ENVELOPES; EMISSIONS
AB China hosts a large amount of building stocks, which is nearly 50 billion square meters. Moreover, annual new construction is growing fast, representing half of the world's total. The trend is expected to continue through the year 2050. Impressive demand for new residential and commercial construction, relative shorter average building lifetime, and higher material intensities have driven massive domestic production of energy intensive building materials such as cement and steel. This paper developed a bottom-up building stock turnover model to project the growths, retrofits and retirements of China's residential and commercial building floor space from 2010 to 2050. It also applied typical material intensities and energy intensities to estimate building materials demand and energy consumed to produce these building materials. By conducting scenario analyses of building lifetime, it identified significant potentials of building materials and energy demand conservation. This study underscored the importance of addressing building material efficiency, improving building lifetime and quality, and promoting compact urban development to reduce energy and environment consequences in China. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Hong, Lixuan] Chongqing Univ, Sch Urban Construct & Environm Engn, Chongqing 400045, Peoples R China.
[Hong, Lixuan] Chongqing Univ, Joint Int Res Lab Green Bldg & Built Environm, Minist Educ, Chongqing 400045, Peoples R China.
[Zhou, Nan; Feng, Wei; Khanna, Nina; Fridley, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Zhao, Yongqiang; Sandholt, Kaare] China Natl Renewable Energy Ctr, 11 Muxidibeili Jia, Beijing 100038, Peoples R China.
RP Hong, LX (reprint author), Chongqing Univ, Sch Urban Construct & Environm Engn, Chongqing 400045, Peoples R China.; Hong, LX (reprint author), Chongqing Univ, Joint Int Res Lab Green Bldg & Built Environm, Minist Educ, Chongqing 400045, Peoples R China.
EM lixuan.hong@gmail.com
FU China Sustainable Energy Program of the Energy Foundation; Rocky
Mountain Institute; China National Renewable Energy Center; UK
Children's Investment Fund Foundation
FX We are grateful to the China Sustainable Energy Program of the Energy
Foundation, Rocky Mountain Institute, China National Renewable Energy
Center and UK Children's Investment Fund Foundation for funding this
work. We would like to thank all colleagues from the Rocky Mountain
Institute and the Energy Research Institute of the National Development
and Reform Commission who provided valuable comments for this research.
NR 55
TC 0
Z9 0
U1 8
U2 9
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0301-4215
EI 1873-6777
J9 ENERG POLICY
JI Energy Policy
PD JUL
PY 2016
VL 94
BP 47
EP 55
DI 10.1016/j.enpol.2016.03.024
PG 9
WC Energy & Fuels; Environmental Sciences; Environmental Studies
SC Energy & Fuels; Environmental Sciences & Ecology
GA DO4AU
UT WOS:000377725000007
ER
PT J
AU Gonzalez-Mejia, AM
Eason, TN
Cabezas, H
AF Gonzalez-Mejia, Alejandra M.
Eason, Tarsha N.
Cabezas, Heriberto
TI System learning approach to assess sustainability and forecast trends in
regional dynamics: The San Luis Basin study, Colorado, USA
SO ENVIRONMENTAL MODELLING & SOFTWARE
LA English
DT Article
DE Artificial neural network; Fisher information; Forecast; Prediction;
Baseline scenario; Sustainability; Regional system
ID ARTIFICIAL NEURAL-NETWORKS; FISHER INFORMATION; INDICATORS; FUTURE
AB This paper presents a methodology that combines the power of an Artificial Neural Network and Information Theory to forecast variables describing the condition of a regional system. The novelty and strength of this approach is in the application of Fisher information, a key method in Information Theory, to preserve trends in the historical data and prevent over fitting projections. The methodology was applied to demographic, environmental, food and energy consumption, and agricultural production in the San Luis Basin regional system in Colorado, U.S.A. These variables are important for tracking conditions in human and natural systems. However, available data are often so far out of date that they limit the ability to manage these systems. Results indicate that the approaches developed provide viable tools for forecasting outcomes with the aim of assisting management toward sustainable trends. This methodology is also applicable for modeling different scenarios in other dynamic systems. Published by Elsevier Ltd.
C1 [Gonzalez-Mejia, Alejandra M.; Eason, Tarsha N.; Cabezas, Heriberto] US EPA, Sustainable Technol Div, Natl Risk Management Res Lab, Off Res & Dev, 26 W Martin Luther King Dr, Cincinnati, OH 45268 USA.
[Gonzalez-Mejia, Alejandra M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA.
[Gonzalez-Mejia, Alejandra M.] Bangor Univ, Bangor, Gwynedd, Wales.
[Gonzalez-Mejia, Alejandra M.] Ser Cymru Natl Res Network Low Carbon Energy & En, Sch Environm Nat Resources & Geog, Bangor, Gwynedd, Wales.
RP Cabezas, H (reprint author), US EPA, Sustainable Technol Div, Natl Risk Management Res Lab, Off Res & Dev, 26 W Martin Luther King Dr, Cincinnati, OH 45268 USA.
EM gonzalez.alejandra@epa.gov; eason.tarsha@epa.gov;
cabezas.heriberto@epa.gov
NR 53
TC 1
Z9 1
U1 2
U2 5
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1364-8152
EI 1873-6726
J9 ENVIRON MODELL SOFTW
JI Environ. Modell. Softw.
PD JUL
PY 2016
VL 81
BP 1
EP 11
DI 10.1016/j.envsoft.2016.03.002
PG 11
WC Computer Science, Interdisciplinary Applications; Engineering,
Environmental; Environmental Sciences
SC Computer Science; Engineering; Environmental Sciences & Ecology
GA DO4CJ
UT WOS:000377729100001
ER
PT J
AU Snider, JL
Collins, GD
Whitaker, J
Chapman, KD
Horn, P
AF Snider, John L.
Collins, Guy D.
Whitaker, Jared
Chapman, Kent D.
Horn, Patrick
TI The impact of seed size and chemical composition on seedling vigor,
yield, and fiber quality of cotton in five production environments
SO FIELD CROPS RESEARCH
LA English
DT Article
DE Seedling vigor; Seed mass; Seed composition; Lint yield; Gossypium
hirsutum
ID GOSSYPIUM-HIRSUTUM L; GERMPLASM COLLECTION; EMERGENCE; CULTIVARS;
DENSITY; GERMINATION; TOLERANCE; GROWTH
AB Seed mass and oil content of the quiescent cotton seed are positively associated with seedling vigor. In contrast, seed size has been negatively associated with lint yield due to selection for cultivars with greater lint percent. The current study addressed the hypothesis that planting seed mass and total oil + protein calorie content of the quiescent cotton seed would be strongly predictive of seedling vigor across most field conditions and that the impact of seed traits on yield would be dependent upon yield environment. When considered in each yield environment, seedling vigor was positively associated with seed size and the total oil + protein calorie content per seed in four out five environments tested. Regression analysis of cultivar mean oil + protein kcal content per seed versus seedling vigor across all environments indicated a strong, positive relationship between the two parameters (r(2) = 0.65). Although lint percent was positively correlated with lint yield in every environment, planting seed mass and calorie content were not correlated with lint yield in four of the five environments tested or when cultivar means for lint yield and seed characteristics were averaged across all environments. Thus, it is concluded that individual planting seed mass and total energy content for oil + protein are strong predictors of early seedling vigor. Furthermore, selecting commercially available cultivars with characteristics indicative of seedling vigor does not appear to limit lint yield in most environments tested. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Snider, John L.; Whitaker, Jared] Univ Georgia, Dept Crop & Soil Sci, 115 Coastal Way, Tifton, GA 31794 USA.
[Collins, Guy D.] N Carolina State Univ, Dept Crop Sci, Upper Coastal Plains Res Stn, 2811 Nobles Mill Pond Rd, Rocky Mount, NC 27801 USA.
[Chapman, Kent D.] Univ N Texas, Dept Biol Sci, Denton, TX 76203 USA.
[Horn, Patrick] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA.
RP Snider, JL (reprint author), Univ Georgia, Dept Crop & Soil Sci, 115 Coastal Way, Tifton, GA 31794 USA.
EM jlsnider@uga.edu
OI Chapman, Kent/0000-0003-0489-3072
FU Georgia Cotton Commission; Cotton Incorporated
FX The authors thank the Georgia Cotton Commission and Cotton Incorporated
for providing financial support of this project. We also thank Lola
Sexton, Jenna Pitts, Becca Carroll, and Chandler Rowe for their
assistance.
NR 35
TC 0
Z9 0
U1 11
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4290
EI 1872-6852
J9 FIELD CROP RES
JI Field Crop. Res.
PD JUL
PY 2016
VL 193
BP 186
EP 195
DI 10.1016/j.fcr.2016.05.002
PG 10
WC Agronomy
SC Agriculture
GA DO4GG
UT WOS:000377739200018
ER
PT J
AU Harris, K
White, D
Melanson, D
Samson, C
Daley, TM
AF Harris, Kyle
White, Don
Melanson, Dave
Samson, Claire
Daley, Thomas M.
TI Feasibility of time-lapse VSP monitoring at the Aquistore CO2 storage
site using a distributed acoustic sensing system
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Article
DE VSP; DAS; Aquistore; Monitoring; Seismic; CO2
ID MIGRATION; ARRAY
AB The Aquistore carbon storage project, located near Estevan, Saskatchewan, Canada, aims to employ 3D time-lapse seismic techniques to monitor injected CO2 at depths of 3100-3350m. During early stages of the injection schedule, vertical seismic profiling (VSP) will primarily be utilized, given its inherent advantages in imaging close to the borehole. Distributed acoustic sensing (DAS) possesses the capability of providing a cost-efficient, high-resolution alternative to traditional geophone methods in VSP. In this study, an evaluation is made of baseline DAS and traditional geophone VSP data from an observation well located 150 m away from the injection well. Comparative images are analyzed for quantities of injected CO2, ranging from 27 kt to 330 kt to determine the visibility of the CO2 plume over time. The study demonstrated that DAS VSP is a feasible technique for reservoir monitoring at the Aquistore site. The CO2 plume should be visible near the borehole after 90 days (27 kt of CO2) of injection, with increasing clarity over a three-year duration. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Harris, Kyle; Samson, Claire] Carleton Univ, Dept Earth Sci, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada.
[White, Don; Melanson, Dave] Geol Survey Canada, NRCan, 601 Booth St Ottawa, Ottawa, ON K1A 0E8, Canada.
[Daley, Thomas M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 74R-316C, Berkeley, CA 94720 USA.
RP Harris, K (reprint author), Carleton Univ, Dept Earth Sci, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada.
EM kyle.harris@carleton.ca; don.white@canada.ca;
davemelanson@cmail.carleton.ca; clairesamson@cunet.carleton.ca;
tmdaley@lbl.gov
RI Daley, Thomas/G-3274-2015
OI Daley, Thomas/0000-0001-9445-0843
FU Carbon Storage Program, U.S. DOE, Assistant Secretary for Fossil Energy,
Office of Clean Coal and Carbon Management through the National Energy
Technology Laboratory, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX The authors would like to thank the Petroleum Technology Research Centre
and Kyle Worth in particular for project management, and SaskPower. We
would also like to acknowledge J. A. Hole for the use of the 3D eikonal
solver. Brian Roberts, Lisa Roach and Michelle Robertson are thanked for
their fieldwork at Aquistore. The seismic data were acquired by Silixa,
Schlumberger Carbon Services, Tesla Exploration, Geospace Technologies
and the Geological Survey of Canada. Funding for LBNL was provided
through the Carbon Storage Program, U.S. DOE, Assistant Secretary for
Fossil Energy, Office of Clean Coal and Carbon Management through the
National Energy Technology Laboratory, of the U.S. Department of Energy,
under contract No. DE-AC02-05CH11231. We would also like to thank
Chevron for their contributions. This is publication 20150496 of the
Geological Survey of Canada.
NR 36
TC 1
Z9 1
U1 2
U2 3
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
EI 1878-0148
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD JUL
PY 2016
VL 50
BP 248
EP 260
DI 10.1016/j.ijggc.2016.04.016
PG 13
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA DO8AF
UT WOS:000378003700023
ER
PT J
AU Xiao, T
McPherson, B
Pan, F
Esser, R
Jia, W
Bordelon, A
Bacon, D
AF Xiao, Ting
McPherson, Brian
Pan, Feng
Esser, Rich
Jia, Wei
Bordelon, Amanda
Bacon, Diana
TI Potential chemical impacts of CO2 leakage on underground source of
drinking water assessed by quantitative risk analysis
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Article
DE CO2 leakage; USDWs; Groundwater quality; Risk analysis
ID CARBON SEQUESTRATION; GROUNDWATER RESOURCES; GEOCHEMICAL IMPACTS; WELL
CEMENT; NEW-MEXICO; AQUIFERS; SITE; MECHANISMS; CAPACITY; POROSITY
AB Many geologic carbon storage site options include not only excellent storage reservoirs bounded by effective seal layers, but also Underground Sources of Drinking Water (USDWs). An effective risk assessment and mitigation plan provides maximum protection for USDWs, to respect not only current policy but also to accommodate likely future USDW-specific regulatory protections. The goal of this study is to quantify possible risks to USDWs, specifically risks associated with chemical impacts on USDWs. Reactive transport models involve tremendous computational expense. Therefore, a secondary purpose of this study is to develop, calibrate and test reduced order models specifically for assessing risks of USDW chemical impacts by CO2 leakage from a storage reservoir. In order to achieve these goals, a geochemical model was developed to interpret changes in water chemistry following CO2 intrusion. A response surface methodology (RSM) based on these geochemical simulations was used to quantify associated risks. The case study example for this analysis is the Ogallala aquifer overlying the Farnsworth unit (FWU), an active commercial-scale CO2-enhanced oil recovery field. Specific objectives of this study include: (1) to understand how CO2 leakage is likely to influence geochemical processes in aquifer sediments; (2) to quantify potential risks to the Ogallala groundwater aquifer due to CO2 leakage from the FWU oil reservoir; and (3) to identify water chemistry factors for early detection criteria.
Results indicate that the leakage rate would most likely range between 10-(14)-10-(10) kg/(m(2) year) for typical and likely leakage pathway permeability ranges. Within this range of CO2 leakage rate, groundwater quality is not likely to be significantly impacted. The worst-case scenario yields trace metal concentrations approximately twice as much as the initial value, but these predicted concentrations are still less than one-fifth of regulation-stipulated maximum contamination levels and do not exceed the no-impact thresholds. Finally, the results of this analysis suggest that pH may be an effective geochemical indicator of CO2 leakage. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Xiao, Ting; McPherson, Brian; Pan, Feng; Esser, Rich; Jia, Wei; Bordelon, Amanda] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84112 USA.
[Xiao, Ting; McPherson, Brian; Pan, Feng; Esser, Rich; Jia, Wei] Univ Utah, Energy & Geosci Inst, Salt Lake City, UT 84108 USA.
[Bacon, Diana] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
RP Xiao, T (reprint author), Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84112 USA.
EM txiao@egi.utah.edu
FU U.S. Department of Energy; NETL (National Energy Technology Laboratory)
[DE-FC26-05NT42591]
FX This study is supported by the U.S. Department of Energy and NETL
(National Energy Technology Laboratory), contract DE-FC26-05NT42591.
NR 53
TC 4
Z9 4
U1 3
U2 13
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
EI 1878-0148
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD JUL
PY 2016
VL 50
BP 305
EP 316
DI 10.1016/j.ijggc.2016.04.009
PG 12
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA DO8AF
UT WOS:000378003700026
ER
PT J
AU Hall, R
Murdoch, L
Falta, R
Looney, B
Riha, B
AF Hall, R.
Murdoch, L.
Falta, R.
Looney, B.
Riha, B.
TI Evaluation of liquid aerosol transport through porous media
SO JOURNAL OF CONTAMINANT HYDROLOGY
LA English
DT Article
DE Aerosol; Vadose zone; Model; Remediation; Contamination; Oxidation;
Bioremediation; Transport; Oil
ID DEEP-BED FILTRATION; COLLECTION; PARTICLES; MODEL
AB Application of remediation methods in contaminated vadose zones has been hindered by an inability to effectively distribute liquid- or solid-phase amendments. Injection as aerosols in a carrier gas could be a viable method for achieving useful distributions of amendments in unsaturated materials. The objectives of this work were to characterize radial transport of aerosols in unsaturated porous media, and to develop capabilities for predicting results of aerosol injection scenarios at the field-scale. Transport processes were investigated by conducting lab-scale injection experiments with radial flow geometry, and predictive capabilities were obtained by developing and validating a numerical model for simulating coupled aerosol transport, deposition, and multi-phase flow in porous media. Soybean oil was transported more than 2 m through sand by injecting it as micron-scale aerosol droplets. Oil saturation in the sand increased with time to a maximum of 0.25, and decreased with radial distance in the experiments. The numerical analysis predicted the distribution of oil saturation with only minor calibration. The results indicated that evolution of oil saturation was controlled by aerosol deposition and subsequent flow of the liquid oil, and simulation requires including these two coupled processes. The calibrated model was used to evaluate field applications. The results suggest that amendments can be delivered to the vadose zone as aerosols, and that gas injection rate and aerosol particle size will be important controls on the process. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Hall, R.; Murdoch, L.; Falta, R.] Clemson Univ, Environm Engn & Earth Sci, Clemson, SC 29634 USA.
[Looney, B.; Riha, B.] Savannah River Natl Lab, Aiken, SC USA.
[Murdoch, L.] Clemson Univ, 445 Brackett Hall, Clemson, SC 29634 USA.
RP Hall, R (reprint author), Clemson Univ, Environm Engn & Earth Sci, Clemson, SC 29634 USA.
EM rhall@clemson.edu
NR 24
TC 0
Z9 0
U1 2
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0169-7722
EI 1873-6009
J9 J CONTAM HYDROL
JI J. Contam. Hydrol.
PD JUL
PY 2016
VL 190
BP 15
EP 28
DI 10.1016/j.jconhyd.2016.03.003
PG 14
WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources
SC Environmental Sciences & Ecology; Geology; Water Resources
GA DO4ED
UT WOS:000377733700002
PM 27149690
ER
PT J
AU Park, JS
Ray, AK
Dawson, PR
Lienert, U
Miller, MP
AF Park, Jun-Sang
Ray, Atish K.
Dawson, Paul R.
Lienert, Ulrich
Miller, Matthew P.
TI Determination of residual stress in a microtextured alpha titanium
component using high-energy synchrotron X-rays
SO JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN
LA English
DT Article
DE Residual stress; high-energy synchrotron X-rays; diffraction; lattice
strain; multiscale; titanium alloy
ID STRAIN POLE FIGURES; NEUTRON-DIFFRACTION; FATIGUE PERFORMANCE;
ORIENTATION; DISTRIBUTIONS; ANISOTROPY; TI-6AL-4V; TEXTURE; STATE; FILMS
AB A shrink-fit sample is manufactured with a Ti-8Al-1Mo-1V alloy to introduce a multiaxial residual stress field in the disk of the sample. A set of strain and orientation pole figures are measured at various locations across the disk using synchrotron high-energy X-ray diffraction. Two approaches-the traditional sin(2) Psi method and the bi-scale optimization method-are taken to determine the stresses in the disk based on the measured strain and orientation pole figures, to explore the range of solutions that are possible for the stress field within the disk. While the stress components computed using the sin(2) Psi method and the bi-scale optimization method have similar trends, their magnitudes are significantly different. It is suspected that the local texture variation in the material is the cause of this discrepancy.
C1 [Park, Jun-Sang] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA.
[Ray, Atish K.] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L8, Canada.
[Dawson, Paul R.; Miller, Matthew P.] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA.
[Lienert, Ulrich] DESY, Photon Sci, Hamburg, Germany.
RP Park, JS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA.
EM parkjs@aps.anl.gov
RI Miller, Matthew/D-7903-2017
FU U.S. Air Force Office of Scientific Research Multi-Scale Structural
Mechanics Program [FA9550-09-1-0642]
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This work
was supported by the U.S. Air Force Office of Scientific Research
Multi-Scale Structural Mechanics Program (contract number
FA9550-09-1-0642).
NR 44
TC 0
Z9 0
U1 5
U2 9
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0309-3247
EI 2041-3130
J9 J STRAIN ANAL ENG
JI J. Strain Anal. Eng. Des.
PD JUL
PY 2016
VL 51
IS 5
BP 358
EP 374
DI 10.1177/0309324716640419
PG 17
WC Engineering, Mechanical; Mechanics; Materials Science, Characterization
& Testing
SC Engineering; Mechanics; Materials Science
GA DO9GR
UT WOS:000378093800004
ER
PT J
AU Aliev, AE
de Andrade, MJ
Salamon, MB
AF Aliev, Ali E.
de Andrade, Monica Jung
Salamon, Myron B.
TI Paramagnetic Meissner Effect in Electrochemically Doped Indium-Tin Oxide
Films
SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM
LA English
DT Article
DE Superconductivity; Paramagnetic Meissner effect; Vortex compression;
Thin films; Electrochemical intercalation; Electrochromism
ID HIGH-TEMPERATURE SUPERCONDUCTORS; DISK-SHAPED SUPERCONDUCTORS; HIGH-TC
SUPERCONDUCTORS; CRITICAL-STATE; NIOBIUM DISKS; THIN-FILMS
AB Transparent conductive indium-tin oxide (ITO) thin films, electrochemically intercalated with alkali (Li+, Na+, K+, Rb+, Cs+), alkali earth (Mg+2, Ca+2), or complex NH ions, show tunable superconducting transitions with dome-shaped behavior of T (c) versus electron density around the maximum at similar to 5 K. On field cooling, the transition into the superconducting state is accompanied by a paramagnetic response, i.e., an increase of magnetization, rather than the usual diamagnetic Meissner response. We provide an extensive study of this so-called paramagnetic Meissner effect (PME), using DC SQUID, transport measurements and a variety of sample sizes and growth conditions. We show that the PME in electrochemically doped ITO films results from a higher T (c) at the sample edges than at the center of disk-shaped samples, causing flux to be expelled towards the center of the disk, following the flux-compression theory of Koshelev and Larkin. Changing to the opposite spatial T (c) profile largely removes the paramagnetic response. The paramagnetic magnetization is strongly influenced by sample geometry and flux pinning conditions. The reduction of pinning defects by thermal annealing removes the paramagnetic response. An alternation of the external magnetic field restores the usual Meissner diamagnetism.
C1 [Aliev, Ali E.; de Andrade, Monica Jung] Univ Texas Dallas, Alan G MacDiarmid NanoTech Inst, Richardson, TX 75083 USA.
[Salamon, Myron B.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA.
[Salamon, Myron B.] Los Alamos Natl Lab, MPA CMMS, POB 1663, Los Alamos, NM 87545 USA.
RP Aliev, AE (reprint author), Univ Texas Dallas, Alan G MacDiarmid NanoTech Inst, Richardson, TX 75083 USA.
EM Ali.Aliev@utdallas.edu
FU Air Force Office of Scientific Research [FA9550-09-1-0384]; Office of
Naval Research [N00014-14-1-0152]
FX We acknowledge helpful discussions with A. Koshelev and Y. Kapelevich.
This work was partially supported by the Air Force Office of Scientific
Research grant FA9550-09-1-0384 and Office of Naval Research grant
N00014-14-1-0152.
NR 34
TC 1
Z9 1
U1 2
U2 7
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1557-1939
EI 1557-1947
J9 J SUPERCOND NOV MAGN
JI J. Supercond. Nov. Magn
PD JUL
PY 2016
VL 29
IS 7
BP 1793
EP 1803
DI 10.1007/s10948-016-3501-7
PG 11
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA DO4XQ
UT WOS:000377788600014
ER
PT J
AU Damci-Kurt, P
Kucukyavuz, S
Rajan, D
Atamturk, A
AF Damci-Kurt, Pelin
Kucukyavuz, Simge
Rajan, Deepak
Atamturk, Alper
TI A polyhedral study of production ramping
SO MATHEMATICAL PROGRAMMING
LA English
DT Article
DE Ramping; Unit commitment; Co-generation; Production smoothing; Convex
hull; Polytope; Valid inequalities; Facets; Computation
ID UNIT COMMITMENT PROBLEMS; CONSTRAINTS; ALGORITHM; COSTS
AB We give strong formulations of ramping constraints-used to model the maximum change in production level for a generator or machine from one time period to the next-and production limits. For the two-period case, we give a complete description of the convex hull of the feasible solutions. The two-period inequalities can be readily used to strengthen ramping formulations without the need for separation. For the general case, we define exponential classes of multi-period variable upper bound and multi-period ramping inequalities, and give conditions under which these inequalities define facets of ramping polyhedra. Finally, we present exact polynomial separation algorithms for the inequalities and report computational experiments on using them in a branch-and-cut algorithm to solve unit commitment problems in power generation.
C1 [Damci-Kurt, Pelin; Kucukyavuz, Simge] Ohio State Univ, Dept Integrated Syst Engn, Columbus, OH 43210 USA.
[Rajan, Deepak] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA.
[Atamturk, Alper] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA.
RP Kucukyavuz, S (reprint author), Ohio State Univ, Dept Integrated Syst Engn, Columbus, OH 43210 USA.
EM damci-kurt.1@osu.edu; kucukyavuz.2@osu.edu; rajan3@llnl.gov;
atamturk@berkeley.edu
OI Kucukyavuz, Simge/0000-0001-6548-9378
FU National Science Foundation [1055668, 0970180]; U.S. Department of
Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344];
Office of Assistant Secretary of Defense for Research and Engineering
FX Pelin Damci-Kurt and Simge Kucukyavuz are supported, in part, by the
National Science Foundation Grant #1055668, and an allocation of
computing time from the Ohio Supercomputer Center. Deepak Rajan's work
is performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Alper Atamturk is supported, in part, by the Office of Assistant
Secretary of Defense for Research and Engineering and the National
Science Foundation Grant #0970180.
NR 38
TC 1
Z9 1
U1 0
U2 0
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0025-5610
EI 1436-4646
J9 MATH PROGRAM
JI Math. Program.
PD JUL
PY 2016
VL 158
IS 1-2
BP 175
EP 205
DI 10.1007/s10107-015-0919-9
PG 31
WC Computer Science, Software Engineering; Operations Research & Management
Science; Mathematics, Applied
SC Computer Science; Operations Research & Management Science; Mathematics
GA DO8AB
UT WOS:000378003300007
ER
PT J
AU Griewank, A
Walther, A
Fiege, S
Bosse, T
AF Griewank, Andreas
Walther, Andrea
Fiege, Sabrina
Bosse, Torsten
TI On Lipschitz optimization based on gray-box piecewise linearization
SO MATHEMATICAL PROGRAMMING
LA English
DT Article
DE Bundle methods; Piecewise linearity; Algorithmic differentiation;
Abs-normal form; Nonsmooth Optimization
ID DIFFERENTIATION
AB We address the problem of minimizing objectives from the class of piecewise differentiable functions whose nonsmoothness can be encapsulated in the absolute value function. They possess local piecewise linear approximations with a discrepancy that can be bounded by a quadratic proximal term. This overestimating local model is continuous but generally nonconvex. It can be generated in its abs-normal form by a minor extension of standard algorithmic differentiation tools. Here we demonstrate how the local model can be minimized by a bundle-type method, which benefits from the availability of additional gray-box information via the abs-normal form. In the convex case our algorithm realizes the consistent steepest descent trajectory for which finite convergence was established earlier, specifically covering counterexamples where steepest descent with exact line-search famously fails. The analysis of the abs-normal representation and the design of the optimization algorithm are geared toward the general case, whereas the convergence proof so far covers only the convex case.
C1 [Griewank, Andreas] Yachaytech, Sch Informat Sci, Urcuqui, Ecuador.
[Walther, Andrea; Fiege, Sabrina] Univ Paderborn, Dept Math, Warburger Str 100, D-33098 Paderborn, Germany.
[Bosse, Torsten] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Walther, A (reprint author), Univ Paderborn, Dept Math, Warburger Str 100, D-33098 Paderborn, Germany.
EM andrea.walther@uni-paderborn.de
OI Griewank, Andreas/0000-0001-9839-1473
FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]
FX We thank the anonymous referees for their valuable comments, which
helped us to improve the quality of the paper. This material was based
upon work supported in part by the U.S. Department of Energy, Office of
Science, under Contract DE-AC02-06CH11357.
NR 29
TC 1
Z9 1
U1 0
U2 0
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 0025-5610
EI 1436-4646
J9 MATH PROGRAM
JI Math. Program.
PD JUL
PY 2016
VL 158
IS 1-2
BP 383
EP 415
DI 10.1007/s10107-015-0934-x
PG 33
WC Computer Science, Software Engineering; Operations Research & Management
Science; Mathematics, Applied
SC Computer Science; Operations Research & Management Science; Mathematics
GA DO8AB
UT WOS:000378003300014
ER
PT J
AU Geng, HF
Sale, KL
Tran-Gyamfi, MB
Lane, TW
Yu, ET
AF Geng, Haifeng
Sale, Kenneth L.
Tran-Gyamfi, Mary Bao
Lane, Todd W.
Yu, Eizadora T.
TI Longitudinal Analysis of Microbiota in Microalga Nannochloropsis salina
Cultures
SO MICROBIAL ECOLOGY
LA English
DT Article
DE Biosystem; Microbiota; Algae; Stability
ID TROPODITHIETIC ACID BIOSYNTHESIS; MARINE ROSEOBACTER LINEAGE; BACTERIAL
COMMUNITIES; PHYTOPLANKTON BLOOM; ALGAL BLOOM; OCEAN; SEA; BIOLOGY;
METAGENOME; POPULATION
AB Large-scale open microalgae cultivation has tremendous potential to make a significant contribution to replacing petroleum-based fuels with biofuels. Open algal cultures are unavoidably inhabited with a diversity of microbes that live on, influence, and shape the fate of these ecosystems. However, there is little understanding of the resilience and stability of the microbial communities in engineered semicontinuous algal systems. To evaluate the dynamics and resilience of the microbial communities in microalgae biofuel cultures, we conducted a longitudinal study on open systems to compare the temporal profiles of the microbiota from two multigenerational algal cohorts, which include one seeded with the microbiota from an in-house culture and the other exogenously seeded with a natural-occurring consortia of bacterial species harvested from the Pacific Ocean. From these month-long, semicontinuous open microalga Nannochloropsis salina cultures, we sequenced a time-series of 46 samples, yielding 8804 operational taxonomic units derived from 9,160,076 high-quality partial 16S rRNA sequences. We provide quantitative evidence that clearly illustrates the development of microbial community is associated with microbiota ancestry. In addition, N. salina growth phases were linked with distinct changes in microbial phylotypes. Alteromonadeles dominated the community in the N. salina exponential phase whereas Alphaproteobacteria and Flavobacteriia were more prevalent in the stationary phase. We also demonstrate that the N. salina-associated microbial community in open cultures is diverse, resilient, and dynamic in response to environmental perturbations. This knowledge has general implications for developing and testing design principles of cultivated algal systems.
C1 [Geng, Haifeng; Lane, Todd W.; Yu, Eizadora T.] Sandia Natl Labs, Dept Syst Biol, 7011 East Ave, Livermore, CA 94550 USA.
[Sale, Kenneth L.; Tran-Gyamfi, Mary Bao] Sandia Natl Labs, Dept Biomass Sci & Convers Technol, 7011 East Ave, Livermore, CA 94550 USA.
[Yu, Eizadora T.] Univ Philippines, Inst Chem, Natl Sci Complex, Diliman Quezon City 1101, Philippines.
RP Lane, TW (reprint author), Sandia Natl Labs, Dept Syst Biol, 7011 East Ave, Livermore, CA 94550 USA.
EM twlane@sandia.gov
OI Lane, Todd/0000-0002-5816-2649
FU Laboratory Directed Research and Development Program at Sandia National
Laboratories; US Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]; US Department of Energy (DOE)
Genomic Science Program [SCW1039]
FX This work was supported by the Laboratory Directed Research and
Development Program at Sandia National Laboratories, which is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the US Department of Energy's National Nuclear
Security Administration under Contract DE-AC04-94AL85000. Additional
funding was provided by the US Department of Energy (DOE) Genomic
Science Program under contract SCW1039.
NR 51
TC 1
Z9 1
U1 6
U2 22
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0095-3628
EI 1432-184X
J9 MICROB ECOL
JI Microb. Ecol.
PD JUL
PY 2016
VL 72
IS 1
BP 14
EP 24
DI 10.1007/s00248-016-0746-4
PG 11
WC Ecology; Marine & Freshwater Biology; Microbiology
SC Environmental Sciences & Ecology; Marine & Freshwater Biology;
Microbiology
GA DO7YK
UT WOS:000377998800004
PM 26956183
ER
PT J
AU Wang, C
AF Wang, Cheng
TI A joint probability approach for coincidental flood frequency analysis
at ungauged basin confluences
SO NATURAL HAZARDS
LA English
DT Article
DE Flood frequency analysis; Goodness-of-fit; Joint probability; Monte
Carlo simulation; Confluence point
ID PEARSON TYPE-3 DISTRIBUTION; COPULA; DISTRIBUTIONS; RIVER; DURATION;
VOLUME
AB A reliable and accurate flood frequency analysis at the confluence of streams is of importance. Given that long-term peak flow observations are often unavailable at tributary confluences, at a practical level, this paper presents a joint probability approach (JPA) to address the coincidental flood frequency analysis at the ungauged confluence of two streams based on the flow rate data from the upstream tributaries. One case study is performed for comparison against several traditional approaches, including the position-plotting formula, the univariate flood frequency analysis, and the National Flood Frequency Program developed by US Geological Survey. It shows that the results generated by the JPA approach agree well with the floods estimated by the plotting position and univariate flood frequency analysis based on the observation data.
C1 [Wang, Cheng] Iowa State Univ, Dept Agr & Biosyst Engn, Ames, IA 50010 USA.
[Wang, Cheng] Argonne Natl Lab, Div Environm Sci, Lemont, IL 60521 USA.
RP Wang, C (reprint author), Iowa State Univ, Dept Agr & Biosyst Engn, Ames, IA 50010 USA.; Wang, C (reprint author), Argonne Natl Lab, Div Environm Sci, Lemont, IL 60521 USA.
EM wangcheng@anl.gov
FU US Department of Energy [DE-AC02-06CH11357]
FX Argonne National Laboratory's work was supported under US Department of
Energy contract DE-AC02-06CH11357.
NR 39
TC 0
Z9 0
U1 6
U2 13
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0921-030X
EI 1573-0840
J9 NAT HAZARDS
JI Nat. Hazards
PD JUL
PY 2016
VL 82
IS 3
BP 1727
EP 1741
DI 10.1007/s11069-016-2265-5
PG 15
WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences;
Water Resources
SC Geology; Meteorology & Atmospheric Sciences; Water Resources
GA DO4YZ
UT WOS:000377792100013
ER
PT J
AU Tian, SL
Liu, J
Cowley, RE
Hosseinzadeh, P
Marshall, NM
Yu, Y
Robinson, H
Nilges, MJ
Blackburn, NJ
Solomon, EI
Lu, Y
AF Tian, Shiliang
Liu, Jing
Cowley, Ryan E.
Hosseinzadeh, Parisa
Marshall, Nicholas M.
Yu, Yang
Robinson, Howard
Nilges, Mark J.
Blackburn, Ninian J.
Solomon, Edward I.
Lu, Yi
TI Reversible S-nitrosylation in an engineered azurin
SO NATURE CHEMISTRY
LA English
DT Article
ID ZERO COPPER PROTEINS; NITRIC-OXIDE DONORS; NITROSOTHIOL FORMATION;
NITROSOMONAS-EUROPAEA; PSEUDOMONAS-AERUGINOSA; SUPEROXIDE-DISMUTASE;
ELECTRONIC-STRUCTURE; ACTIVE-SITE; NO; CERULOPLASMIN
AB S-Nitrosothiols are known as reagents for NO storage and transportation and as regulators in many physiological processes. Although the S-nitrosylation catalysed by haem proteins is well known, no direct evidence of S-nitrosylation in copper proteins has been reported. Here, we report reversible insertion of NO into a copper-thiolate bond in an engineered copper centre in Pseudomonas aeruginosa azurin by rational design of the primary coordination sphere and tuning its reduction potential by deleting a hydrogen bond in the secondary coordination sphere. The results not only provide the first direct evidence of S-nitrosylation of Cu(II)-bound cysteine in metalloproteins, but also shed light on the reaction mechanism and structural features responsible for stabilizing the elusive Cu(I)-S(Cys) NO species. The fast, efficient and reversible S-nitrosylation reaction is used to demonstrate its ability to prevent NO inhibition of cytochrome bo(3) oxidase activity by competing for NO binding with the native enzyme under physiologically relevant conditions.
C1 [Tian, Shiliang; Liu, Jing; Marshall, Nicholas M.; Nilges, Mark J.; Lu, Yi] Univ Illinois, Dept Chem, 600 South Mathews Ave, Urbana, IL 61801 USA.
[Cowley, Ryan E.; Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA.
[Hosseinzadeh, Parisa; Lu, Yi] Univ Illinois, Dept Biochem, 600 South Mathews Ave, Urbana, IL 61801 USA.
[Yu, Yang; Lu, Yi] Univ Illinois, Ctr Biophys & Computat Biol, 600 South Mathews Ave, Urbana, IL 61801 USA.
[Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Blackburn, Ninian J.] Oregon Hlth & Sci Univ, Inst Environm Hlth, Portland, OR 97239 USA.
RP Lu, Y (reprint author), Univ Illinois, Dept Chem, 600 South Mathews Ave, Urbana, IL 61801 USA.; Solomon, EI (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA.; Lu, Y (reprint author), Univ Illinois, Dept Biochem, 600 South Mathews Ave, Urbana, IL 61801 USA.; Lu, Y (reprint author), Univ Illinois, Ctr Biophys & Computat Biol, 600 South Mathews Ave, Urbana, IL 61801 USA.; Blackburn, NJ (reprint author), Oregon Hlth & Sci Univ, Inst Environm Hlth, Portland, OR 97239 USA.
EM blackbni@ohsu.edu; edward.solomon@stanford.edu; yi-lu@illinois.edu
RI Lu, Yi/B-5461-2010
OI Lu, Yi/0000-0003-1221-6709
FU US National Science Foundation [CHE 14-13328]; National Institutes of
Health (NIH) [DK31450, GM054803]; US Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; DOE Office
of Biological and Environmental Research; NIH; National Institute of
General Medical Sciences (NIGMS) [P41GM103393]
FX This material is based on work supported by the US National Science
Foundation (award no. CHE 14-13328 to Y.L.) and the National Institutes
of Health (NIH award no. DK31450 to E.I.S. and award no. GM054803 to
N.J.B.). The authors thank H. Matsumura and P. Moenne-Loccoz for
performing an initial investigation using resonance Raman spectroscopy,
Z. Ding for providing E. coli cytochrome bo3 oxidase and K.
Hwang for discussions and revisions of the manuscript. Use of the
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator
Laboratory, is supported by the US Department of Energy, Office of
Science, Office of Basic Energy Sciences (contract no.
DE-AC02-76SF00515). The SSRL Structural Molecular Biology Program is
supported by the DOE Office of Biological and Environmental Research and
by the NIH and the National Institute of General Medical Sciences
(NIGMS, including P41GM103393). The contents of this publication are
solely the responsibility of the authors and do not necessarily
represent the official views of NIGMS or NIH.
NR 52
TC 1
Z9 1
U1 9
U2 26
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1755-4330
EI 1755-4349
J9 NAT CHEM
JI Nat. Chem.
PD JUL
PY 2016
VL 8
IS 7
BP 670
EP 677
DI 10.1038/nchem.2489
PG 8
WC Chemistry, Multidisciplinary
SC Chemistry
GA DP1WP
UT WOS:000378280400010
PM 27325093
ER
PT J
AU Riss, A
Paz, AP
Wickenburg, S
Tsai, HZ
De Oteyza, DG
Bradley, AJ
Ugeda, MM
Gorman, P
Jung, HS
Crommie, MF
Rubio, A
Fischer, FR
AF Riss, Alexander
Perez Paz, Alejandro
Wickenburg, Sebastian
Tsai, Hsin-Zon
De Oteyza, Dimas G.
Bradley, Aaron J.
Ugeda, Miguel M.
Gorman, Patrick
Jung, Han Sae
Crommie, Michael F.
Rubio, Angel
Fischer, Felix R.
TI Imaging single-molecule reaction intermediates stabilized by surface
dissipation and entropy
SO NATURE CHEMISTRY
LA English
DT Article
ID ATOMIC-FORCE MICROSCOPY; SCANNING TUNNELING MICROSCOPE; TERMINAL
ALKYNES; CHEMICAL-STRUCTURE; METAL-SURFACES; NOBLE-METAL;
POLYMERIZATION; IDENTIFICATION; DIMERIZATION; HYDROCARBON
AB Chemical transformations at the interface between solid/liquid or solid/gaseous phases of matter lie at the heart of key industrial-scale manufacturing processes. A comprehensive study of the molecular energetics and conformational dynamics that underlie these transformations is often limited to ensemble-averaging analytical techniques. Here we report the detailed investigation of a surface-catalysed cross-coupling and sequential cyclization cascade of 1,2-bis( 2-ethynyl phenyl)ethyne on Ag(100). Using non-contact atomic force microscopy, we imaged the single-bond-resolved chemical structure of transient metastable intermediates. Theoretical simulations indicate that the kinetic stabilization of experimentally observable intermediates is determined not only by the potential-energy landscape, but also by selective energy dissipation to the substrate and entropic changes associated with key transformations along the reaction pathway. The microscopic insights gained here pave the way for the rational design and control of complex organic reactions at the surface of heterogeneous catalysts.
C1 [Riss, Alexander; Wickenburg, Sebastian; Tsai, Hsin-Zon; Bradley, Aaron J.; Ugeda, Miguel M.; Jung, Han Sae; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Riss, Alexander] Vienna Univ Technol, Inst Appl Phys, A-1040 Vienna, Austria.
[Perez Paz, Alejandro; Rubio, Angel] Univ Basque Country, Nanobio Spect Grp, San Sebastian 20018, Spain.
[Perez Paz, Alejandro; Rubio, Angel] Univ Basque Country, ETSF, San Sebastian 20018, Spain.
[Wickenburg, Sebastian; Crommie, Michael F.; Fischer, Felix R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[De Oteyza, Dimas G.] Donostia Int Phys Ctr, San Sebastian 20018, Spain.
[De Oteyza, Dimas G.; Ugeda, Miguel M.] Ikerbasque, Basque Fdn Sci, Bilbao 48013, Spain.
[De Oteyza, Dimas G.] Univ Basque Country, Ctr Phys Mat, CSIC, Ctr Fis Mat, San Sebastian 20018, Spain.
[Ugeda, Miguel M.] CIC NanoGUNE, San Sebastian 20018, Spain.
[Jung, Han Sae; Fischer, Felix R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Crommie, Michael F.; Fischer, Felix R.] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.
[Crommie, Michael F.; Fischer, Felix R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Rubio, Angel] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.
[Rubio, Angel] Ctr Free Electron Laser Sci CFEL, Luruper Chaussee 149, D-22761 Hamburg, Germany.
[Riss, Alexander] Tech Univ Munich, Dept Phys E20, James Franck Str 1, D-85748 Garching, Germany.
RP Riss, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Riss, A (reprint author), Vienna Univ Technol, Inst Appl Phys, A-1040 Vienna, Austria.; Rubio, A (reprint author), Univ Basque Country, Nanobio Spect Grp, San Sebastian 20018, Spain.; Rubio, A (reprint author), Univ Basque Country, ETSF, San Sebastian 20018, Spain.; Crommie, MF; Fischer, FR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Fischer, FR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Crommie, MF; Fischer, FR (reprint author), Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Crommie, MF; Fischer, FR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Rubio, A (reprint author), Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany.; Rubio, A (reprint author), Ctr Free Electron Laser Sci CFEL, Luruper Chaussee 149, D-22761 Hamburg, Germany.; Riss, A (reprint author), Tech Univ Munich, Dept Phys E20, James Franck Str 1, D-85748 Garching, Germany.
EM a.riss@tum.de; crommie@berkeley.edu; angel.rubio@mpsd.mpg.de;
ffischer@berkeley.edu
RI DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014; Moreno Ugeda,
Miguel/N-3006-2016; de Oteyza, Dimas/H-5955-2013; Rubio,
Angel/A-5507-2008; nanoGUNE, CIC/A-2623-2015; CSIC-UPV/EHU,
CFM/F-4867-2012;
OI de Oteyza, Dimas/0000-0001-8060-6819; Rubio, Angel/0000-0003-2060-3151;
Riss, Alexander/0000-0002-3212-7925
FU US Department of Energy, Office of Basic Energy Sciences Nanomachine
Program [DE-AC02-05CH11231]; Office of Naval Research BRC Program;
European Research Council Advanced Grant DYNamo [ERC-2010-AdG-267374];
Grupos Consolidados UPV/EHU del Gobierno Vasco [IT-578-13]; Austrian
Science Fund (FWF) [J3026-N16]; Ayuda para la Especializacion de
Personal Investigador del Vicerrectorado de Investigacion de la
[UPV/EHU-2013]; Miller Institute for Basic Research in Science of the
University of California at Berkeley (Miller Visiting Research Professor
program); [FIS2013-46159-C3-1-P]
FX Research supported by the US Department of Energy, Office of Basic
Energy Sciences Nanomachine Program under contract No. DE-AC02-05CH11231
(STM and nc-AFM instrumentation development, AFM imaging), the Office of
Naval Research BRC Program (molecular synthesis, characterization and
STM imaging), the European Research Council Advanced Grant DYNamo No.
ERC-2010-AdG-267374 (computer resources and support), Spanish Grant No.
FIS2013-46159-C3-1-P (MD calculations) and Grupos Consolidados UPV/EHU
del Gobierno Vasco No. IT-578-13 (DFTB calculations). A.Ri. acknowledges
fellowship support from the Austrian Science Fund (FWF) No. J3026-N16.
A.P.P. acknowledges fellowship support from the Ayuda para la
Especializacion de Personal Investigador del Vicerrectorado de
Investigacion de la UPV/EHU-2013. A.Ru. acknowledges fellowship support
from the Miller Institute for Basic Research in Science of the
University of California at Berkeley (Miller Visiting Research Professor
program). We thank P. Jelinek and P. Hapala for their help with the
nc-AFM simulations and D. J. Mowbray for useful discussions.
NR 47
TC 9
Z9 9
U1 30
U2 66
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1755-4330
EI 1755-4349
J9 NAT CHEM
JI Nat. Chem.
PD JUL
PY 2016
VL 8
IS 7
BP 678
EP 683
DI 10.1038/NCHEM.2506
PG 6
WC Chemistry, Multidisciplinary
SC Chemistry
GA DP1WP
UT WOS:000378280400011
PM 27325094
ER
PT J
AU Luo, K
Roberts, MR
Hao, R
Guerrini, N
Pickup, DM
Liu, YS
Edstrom, K
Guo, JH
Chadwick, AV
Duda, LC
Bruce, PG
AF Luo, Kun
Roberts, Matthew R.
Hao, Rong
Guerrini, Niccolo
Pickup, David M.
Liu, Yi-Sheng
Edstrom, Kristina
Guo, Jinghua
Chadwick, Alan V.
Duda, Laurent C.
Bruce, Peter G.
TI Charge-compensation in 3d-transition-metal-oxide intercalation cathodes
through the generation of localized electron holes on oxygen
SO NATURE CHEMISTRY
LA English
DT Article
ID LITHIUM-ION BATTERIES; X-RAY-ABSORPTION; LAYERED OXIDE
LI1.20MN0.54CO0.13NI0.13O2; TRANSITION-METAL OXIDES; ANIONIC REDOX;
CAPACITY; CHEMISTRY; LI1.16NI0.15CO0.19MN0.50O2; ELECTROCHEMISTRY;
PARTICIPATION
AB During the charging and discharging of lithium-ion-battery cathodes through the de-and reintercalation of lithium ions, electroneutrality is maintained by transition-metal redox chemistry, which limits the charge that can be stored. However, for some transition-metal oxides this limit can be broken and oxygen loss and/or oxygen redox reactions have been proposed to explain the phenomenon. We present operando mass spectrometry of O-18-labelled Li-1.2[Ni0.132+Co0.133+Mn0.544+]O-2, which demonstrates that oxygen is extracted from the lattice on charging a Li-1.2[Ni0.132+Co0.133+Mn0.544+]O-2 cathode, although we detected no O-2 evolution. Combined soft X-ray absorption spectroscopy, resonant inelastic X-ray scattering spectroscopy, X-ray absorption near edge structure spectroscopy and Raman spectroscopy demonstrates that, in addition to oxygen loss, Li+ removal is charge compensated by the formation of localized electron holes on O atoms coordinated by Mn4+ and Li+ ions, which serve to promote the localization, and not the formation, of true O-2(2-)( peroxide, O-O similar to 1.45 angstrom) species. The quantity of charge compensated by oxygen removal and by the formation of electron holes on the O atoms is estimated, and for the case described here the latter dominates.
C1 [Luo, Kun; Roberts, Matthew R.; Hao, Rong; Guerrini, Niccolo; Bruce, Peter G.] Univ Oxford, Dept Mat & Chem, Parks Rd, Oxford OX1 3PH, England.
[Pickup, David M.; Chadwick, Alan V.] Univ Kent, Sch Phys Sci, Canterbury CT2 7NH, Kent, England.
[Liu, Yi-Sheng; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Edstrom, Kristina] Uppsala Univ, Dept Chem, Angstrom Lab, Box 538, SE-75121 Uppsala, Sweden.
[Duda, Laurent C.] Uppsala Univ, Div Mol & Condensed Matter Phys, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden.
RP Bruce, PG (reprint author), Univ Oxford, Dept Mat & Chem, Parks Rd, Oxford OX1 3PH, England.
EM peter.bruce@materials.ox.ac.uk
FU Engineering and Physical Sciences Research Council; SUPERGEN program; US
Department of Energy [DE-AC02-05CH11231]
FX P.G.B. is indebted to the Engineering and Physical Sciences Research
Council, including the SUPERGEN program, for financial support. The
Advanced Light Source is supported by the Director, Office of Science,
Office of Basic Energy Sciences, US Department of Energy, under Contract
No. DE-AC02-05CH11231. The authors are also grateful to A. Dent and G.
Cibin for contributing to the collection of hard XAS data and R. Smith
for the collection of neutron diffraction data.
NR 50
TC 26
Z9 26
U1 78
U2 142
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1755-4330
EI 1755-4349
J9 NAT CHEM
JI Nat. Chem.
PD JUL
PY 2016
VL 8
IS 7
BP 684
EP 691
DI 10.1038/NCHEM.2471
PG 8
WC Chemistry, Multidisciplinary
SC Chemistry
GA DP1WP
UT WOS:000378280400012
PM 27325095
ER
PT J
AU Seo, DH
Lee, J
Urban, A
Malik, R
Kang, S
Ceder, G
AF Seo, Dong-Hwa
Lee, Jinhyuk
Urban, Alexander
Malik, Rahul
Kang, ShinYoung
Ceder, Gerbrand
TI The structural and chemical origin of the oxygen redox activity in
layered and cation-disordered Li-excess cathode materials
SO NATURE CHEMISTRY
LA English
DT Article
ID LITHIUM-ION BATTERIES; LI-1-XCO1/3NI1/3MN1/3O2 ELECTRODE SYSTEM; CHARGE
COMPENSATION MECHANISM; RAY-ABSORPTION SPECTROSCOPY; HIGH-ENERGY
DENSITY; ROCK-SALT STRUCTURE; HIGH-CAPACITY; ANIONIC REDOX; AB-INITIO;
LICOO2
AB Lithium-ion batteries are now reaching the energy density limits set by their electrode materials, requiring new paradigms for Li+ and electron hosting in solid-state electrodes. Reversible oxygen redox in the solid state in particular has the potential to enable high energy density as it can deliver excess capacity beyond the theoretical transition-metal redox-capacity at a high voltage. Nevertheless, the structural and chemical origin of the process is not understood, preventing the rational design of better cathode materials. Here, we demonstrate how very specific local Li-excess environments around oxygen atoms necessarily lead to labile oxygen electrons that can be more easily extracted and participate in the practical capacity of cathodes. The identification of the local structural components that create oxygen redox sets a new direction for the design of high-energy-density cathode materials.
C1 [Seo, Dong-Hwa; Lee, Jinhyuk; Malik, Rahul; Kang, ShinYoung; Ceder, Gerbrand] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.
[Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander; Ceder, Gerbrand] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Ceder, Gerbrand] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Ceder, G (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.; Ceder, G (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Ceder, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM gceder@berkeley.edu
OI Seo, Dong-Hwa/0000-0002-7200-7186
FU Umicore Specialty Oxides and Chemicals; Robert Bosch Corporation; US
Department of Energy under Batteries for Advanced Transportation
Technologies (BATT) Program [DE-AC02-05CH11231, 7056411]; National
Science Foundation [ACI-1053575]; Office of Science of the US Department
of Energy [DE-C02-05CH11231]; Basic Science Research Program through
National Research Foundation of Korea (NRF) - Ministry of Education
[2014R1A6A3A03056034]; Samsung Scholarship
FX This work was supported by Robert Bosch Corporation and Umicore
Specialty Oxides and Chemicals, and by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Office of Vehicle Technologies
of the US Department of Energy under contract no. DE-AC02-05CH11231,
under the Batteries for Advanced Transportation Technologies (BATT)
Program subcontract no. 7056411. This work used the Extreme Science and
Engineering Discovery Environment (XSEDE), which is supported by
National Science Foundation grant no. ACI-1053575, and resources of the
National Energy Research Scientific Computing Center (NERSC), a DOE
Office of Science User Facility supported by the Office of Science of
the US Department of Energy under contract no. DE-C02-05CH11231. D.-H.S.
acknowledges support from the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Education (2014R1A6A3A03056034). J.L. acknowledges financial support
from a Samsung Scholarship.
NR 43
TC 19
Z9 19
U1 79
U2 159
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1755-4330
EI 1755-4349
J9 NAT CHEM
JI Nat. Chem.
PD JUL
PY 2016
VL 8
IS 7
BP 692
EP 697
DI 10.1038/NCHEM.2524
PG 6
WC Chemistry, Multidisciplinary
SC Chemistry
GA DP1WP
UT WOS:000378280400013
PM 27325096
ER
PT J
AU Banerjee, A
Bridges, CA
Yan, JQ
Aczel, AA
Li, L
Stone, MB
Granroth, GE
Lumsden, MD
Yiu, Y
Knolle, J
Bhattacharjee, S
Kovrizhin, DL
Moessner, R
Tennant, DA
Mandrus, DG
Nagler, SE
AF Banerjee, A.
Bridges, C. A.
Yan, J. -Q.
Aczel, A. A.
Li, L.
Stone, M. B.
Granroth, G. E.
Lumsden, M. D.
Yiu, Y.
Knolle, J.
Bhattacharjee, S.
Kovrizhin, D. L.
Moessner, R.
Tennant, D. A.
Mandrus, D. G.
Nagler, S. E.
TI Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet
SO NATURE MATERIALS
LA English
DT Article
ID ANTIFERROMAGNET; EXCITATIONS; CRITICALITY; ANYONS; STATE
AB Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. Whereas their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting owing to the emergence of fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. These we report here for a ruthenium-based material, alpha-RuCl3, continuing a major search (so far concentrated on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of alpha-RuCl3 as a prime candidate for fractionalized Kitaev physics.
C1 [Banerjee, A.; Aczel, A. A.; Stone, M. B.; Granroth, G. E.; Lumsden, M. D.; Nagler, S. E.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37830 USA.
[Bridges, C. A.] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37830 USA.
[Yan, J. -Q.; Mandrus, D. G.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA.
[Yan, J. -Q.; Mandrus, D. G.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Li, L.; Yiu, Y.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA.
[Granroth, G. E.] Oak Ridge Natl Lab, Neutron Data Anal & Visualizat Div, Oak Ridge, TN 37830 USA.
[Knolle, J.; Kovrizhin, D. L.] Univ Cambridge, Cavendish Lab, Dept Phys, JJ Thomson Ave, Cambridge CB3 0HE, England.
[Bhattacharjee, S.; Moessner, R.] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany.
[Bhattacharjee, S.] TIFR, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India.
[Tennant, D. A.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37830 USA.
[Nagler, S. E.] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37966 USA.
RP Banerjee, A; Nagler, SE (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37830 USA.; Nagler, SE (reprint author), Univ Tennessee, Bredesen Ctr, Knoxville, TN 37966 USA.
EM banerjeea@ornl.gov; naglerse@ornl.gov
RI Granroth, Garrett/G-3576-2012; Stone, Matthew/G-3275-2011; Yiu,
Yuen/A-4353-2010; Tennant, David/Q-2497-2015; Nagler,
Stephen/E-4908-2010; Lumsden, Mark/F-5366-2012;
OI Granroth, Garrett/0000-0002-7583-8778; Stone,
Matthew/0000-0001-7884-9715; Yiu, Yuen/0000-0002-1466-6191; Tennant,
David/0000-0002-9575-3368; Nagler, Stephen/0000-0002-7234-2339; Lumsden,
Mark/0000-0002-5472-9660; Banerjee, Arnab/0000-0002-3088-6071
FU US Department of Energy, Office of Science, Basic Energy Sciences (BES),
Scientific User Facilities Division; US Department of Energy, Office of
Science, Basic Energy Sciences, Materials Sciences and Engineering
Division - Gordon and Betty Moore Foundation's EPiQS Initiative
[GBMF4416]; DFG [SFB 1143]; Postdoc-Program of the German Academic
Exchange Service (DAAD); EPSRC [EP/M007928/1]; Helmholtz Virtual
Institute 'New States of Matter and their Excitations' initiative
FX Research using ORNL's HFIR and SNS facilities was sponsored by the US
Department of Energy, Office of Science, Basic Energy Sciences (BES),
Scientific User Facilities Division. A part of the synthesis and the
bulk characterization performed at ORNL was supported by the US
Department of Energy, Office of Science, Basic Energy Sciences,
Materials Sciences and Engineering Division (C.A.B. and J.-Q.Y.). The
work at University of Tennessee was funded in part by the Gordon and
Betty Moore Foundation's EPiQS Initiative through Grant GBMF4416 (D.G.M.
and L.L.). The work at Dresden was in part supported by DFG grant SFB
1143 (J.K. and R.M.), and by a fellowship within the Postdoc-Program of
the German Academic Exchange Service (DAAD) (J.K.). D.L.K. is supported
by EPSRC Grant No. EP/M007928/1. The collaboration as a whole was
supported by the Helmholtz Virtual Institute 'New States of Matter and
their Excitations' initiative. We thank B. Chakoumakos for overall
support in the project, and J. Chalker, J. Rau, S. Toth, G. Khaliullin
and F. Ye for valuable discussions. We thank P. Whitfield from the
POWGEN beamline and Z. Gai from the CNMS facility for helping with
neutron diffraction and magnetic susceptibility measurements.
NR 49
TC 48
Z9 48
U1 56
U2 98
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
EI 1476-4660
J9 NAT MATER
JI Nat. Mater.
PD JUL
PY 2016
VL 15
IS 7
BP 733
EP +
DI 10.1038/NMAT4604
PG 9
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA DP2UF
UT WOS:000378347800022
PM 27043779
ER
PT J
AU Lopez-Martens, A
Lauritsen, T
Leoni, S
Dossing, T
Khoo, TL
Siem, S
AF Lopez-Martens, A.
Lauritsen, T.
Leoni, S.
Dossing, T.
Khoo, T. L.
Siem, S.
TI Population and decay of superdeformed nuclei probed by discrete and
quasi-continuum gamma-ray spectroscopy
SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS
LA English
DT Review
DE Superdeformation; Gamma-ray spectroscopy; Collective levels; Statistical
theory and fluctuations; Chaos in nuclear systems
ID HIGH ANGULAR-MOMENTUM; WARM ROTATING NUCLEI; K-QUANTUM NUMBER; NORMAL
DEFORMED STATES; HIGH-SPIN STATES; FLUCTUATION ANALYSIS; LINKING
TRANSITIONS; COINCIDENCE DATA; YRAST BAND; LIFETIME MEASUREMENTS
AB Nuclear superdeformation at high spin was discovered a little over 30 years ago. Since then, a large body of data has been collected on the subject and many new and interesting phenomena have been discovered. In particular, the way superdeformed states are populated and depopulated offers a unique laboratory to study rotational motion as a function of excitation energy and the evolution of nuclear structure over a large interval in energy and spin. This article focuses on the experimental techniques and methods developed to study the quasicontinuous spectra of gamma rays emitted by rapidly rotating superdeformed nuclei and presents the results regarding rotational damping, the transition from ordered to chaotic motion and quantum tunnelling in a complex environment. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Lopez-Martens, A.] Univ Paris 11, CNRS, IN2P3, CSNSM, Bat 104-108, F-91405 Orsay, France.
[Lopez-Martens, A.] Univ Paris Saclay, Bat 104-108, F-91405 Orsay, France.
[Lauritsen, T.; Khoo, T. L.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Leoni, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Leoni, S.] Univ Milan, Dipartimento Fis, I-20122 Milan, Italy.
[Dossing, T.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Siem, S.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway.
RP Lopez-Martens, A (reprint author), Univ Paris 11, CNRS, IN2P3, CSNSM, Bat 104-108, F-91405 Orsay, France.; Lopez-Martens, A (reprint author), Univ Paris Saclay, Bat 104-108, F-91405 Orsay, France.
EM Araceli.Lopez-Martens@csnsm.in2p3.fr
FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics
[DE-AC02-06CH11357]; CNRS/IN2P3; INFN; NBI; Norwegian Research Council
FX This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Nuclear Physics, under contract
number DE-AC02-06CH11357. This research used resources of the ANL/ATLAS
facility, which is a DOE Office of Science User Facility. Support from
the CNRS/IN2P3, INFN, NBI and the Norwegian Research Council is also
acknowledged.
NR 217
TC 0
Z9 0
U1 3
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0146-6410
EI 1873-2224
J9 PROG PART NUCL PHYS
JI Prog. Part. Nucl. Phys.
PD JUL
PY 2016
VL 89
BP 137
EP 186
DI 10.1016/j.ppnp.2016.02.003
PG 50
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA DO5OE
UT WOS:000377831600004
ER
PT J
AU Granderson, J
Touzani, S
Custodio, C
Sohn, MD
Jump, D
Fernandes, S
AF Granderson, Jessica
Touzani, Samir
Custodio, Claudine
Sohn, Michael D.
Jump, David
Fernandes, Samuel
TI Accuracy of automated measurement and verification (M&V) techniques for
energy savings in commercial buildings
SO APPLIED ENERGY
LA English
DT Article
DE Baseline model; Measurement and verification; Whole-building energy;
Predictive performance accuracy; Building energy analysis; M&V 2.0
ID BASE-LINE MODELS
AB Trustworthy savings calculations are critical to convincing investors in energy efficiency projects of the benefit and cost-effectiveness of such investments and their ability to replace or defer supply-side capital investments. However, today's methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of efficiency projects. They also require time-consuming manual data acquisition and often do not deliver results until years after the program period has ended. The rising availability of "smart" meters, combined with new analytical approaches to quantifying savings, has opened the door to conducting M&V more quickly and at lower cost, with comparable or improved accuracy. These meter- and software-based approaches, increasingly referred to as "M&V 2.0", are the subject of surging industry interest, particularly in the context of utility energy efficiency programs. Program administrators, evaluators, and regulators are asking how M&V 2.0 compares with more traditional methods, how proprietary software can be transparently performance tested, how these techniques can be integrated into the next generation of whole-building focused efficiency programs.
This paper expands recent analyses of public-domain whole-building M&V methods, focusing on more novel M&V 2.0 modeling approaches that are used in commercial technologies, as well as approaches that are documented in the literature, and/or developed by the academic building research community. We present a testing procedure and metrics to assess the performance of whole-building M&V methods. We then illustrate the test procedure by evaluating the accuracy of ten baseline energy use models, against measured data from a large dataset of 537 buildings. The results of this study show that the already available advanced interval data baseline models hold great promise for scaling the adoption of building measured savings calculations using Advanced Metering Infrastructure (AMI) data. Median coefficient of variation of the root mean squared error (CV(RMSE)) was less than 25% for every model tested when twelve months of training data were used. With even six months of training data, median CV(RMSE) for daily energy total was under 25% for all models tested. These findings can be used to build confidence in model robustness, and the readiness of these approaches for industry uptake and adoption. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Granderson, Jessica; Touzani, Samir; Custodio, Claudine; Sohn, Michael D.; Fernandes, Samuel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Jump, David] Quantum Energy Serv & Technol Inc, 2001 Addison St,Suite 300, Berkeley, CA 94704 USA.
RP Granderson, J (reprint author), 1 Cyclotron Rd,MS 90-3111, Berkeley, CA 94720 USA.
EM JGranderson@lbl.gov
FU Assistant Secretary for Energy Efficiency and Renewable Energy, Building
Technologies Program, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX This work was supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy, Building Technologies Program, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.
NR 28
TC 2
Z9 2
U1 3
U2 5
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0306-2619
EI 1872-9118
J9 APPL ENERG
JI Appl. Energy
PD JUL 1
PY 2016
VL 173
BP 296
EP 308
DI 10.1016/j.apenergy.2016.04.049
PG 13
WC Energy & Fuels; Engineering, Chemical
SC Energy & Fuels; Engineering
GA DN7DJ
UT WOS:000377235200026
ER
PT J
AU Cheng, MD
Kabela, ED
AF Cheng, Meng-Dawn
Kabela, Erik D.
TI Effects of downscaled high-resolution meteorological data on the PSCF
identification of emission sources
SO ATMOSPHERIC ENVIRONMENT
LA English
DT Article
DE Aerosol; Black carbon; Arctic; Climate change; WRF; Downscale
ID BALANCE RECEPTOR MODEL; LONG-TERM TRENDS; BLACK CARBON; NUMERICAL
COMPUTATIONS; ATMOSPHERIC TRANSPORT; WRF MODEL; CONVECTION; AEROSOL
AB The Potential Source Contribution Function (PSCF) model has been successfully used for identifying regions of emission source at a long distance in this study, the PSCF model relies on backward trajectories calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. In this study, we investigated the impacts of grid resolution and Planetary Boundary Layer (PBL) parameterization (e.g., turbulent transport of pollutants) on the PSCF analysis. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YUS) parameterization schemes were selected to model the turbulent transport in the PBL within the Weather Research and Forecasting (WRF version 3.6) model. Two separate domain grid sizes (83 and 27 km) were chosen in the WRF downscaling in generating the wind data for driving the HYSPLIT calculation. The effects of grid size and PBL parameterization are important in incorporating the influence of regional and local meteorological processes such as jet streaks, blocking patterns, Rossby waves, and terrain-induced convection on the transport of pollutants by a wind trajectory. We found high resolution PSCF did discover and locate source areas more precisely than that with lower resolution meteorological inputs. The lack of anticipated improvement could also be because a PBL scheme chosen to produce the WRF data was only a local parameterization and unable to faithfully duplicate the real atmosphere on a global scale. The MYJ scheme was able to replicate PSCF source identification by those using the Reanalysis and discover additional source areas that was not identified by the Reanalysis data. A potential benefit for using high-resolution wind data in the PSCF modeling is that it could discover new source location in addition to those identified by using the Reanalysis data input. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Cheng, Meng-Dawn] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
[Kabela, Erik D.] Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, Oak Ridge, TN USA.
RP Cheng, MD (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
EM cheng.mengdawn@gmail.com
OI Cheng, Meng-Dawn/0000-0003-1407-9576
FU U.S. Department of Energy [DE-AC05-00OR22725]
FX This work was unfunded and performed by the authors at their own time,
there were no conflicts of interest. The authors acknowledge the
Canadian Environment Canada for making the Alert data available on the
NAtChem web site (http://www.ec.gc.ca/natchem/) and the Air Resources
Laboratory of the National Oceanic and Atmospheric Administration for
making the HYSPLIT model available online at
http://ready.arl.noaa.gov/HYSPLIT.php. Oak Ridge National Laboratory is
managed by UT-Battelle, LLC, for the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.
NR 28
TC 0
Z9 0
U1 6
U2 15
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1352-2310
EI 1873-2844
J9 ATMOS ENVIRON
JI Atmos. Environ.
PD JUL
PY 2016
VL 137
BP 146
EP 154
DI 10.1016/j.atmosenv.2016.04.043
PG 9
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA DN8HQ
UT WOS:000377320200014
ER
PT J
AU Scheinker, A
Scheinker, D
AF Scheinker, Alexander
Scheinker, David
TI Bounded extremum seeking with discontinuous dithers
SO AUTOMATICA
LA English
DT Article
DE Extremum seeking; Stabilization; Unknown systems
ID NONLINEAR DYNAMIC-SYSTEMS; SLIDING MODE; STABILITY; FEEDBACK; FLOW
AB The analysis of discontinuous extremum seeking (ES) controllers, e.g. those applicable to digital systems, has historically been more complicated than that of continuous controllers. We establish a simple and general extension of a recently developed bounded form of ES to a general class of oscillatory functions, including functions discontinuous with respect to time, such as triangle or square waves with dead time. We establish our main results by combining a novel idea for oscillatory control with an extension of functional analytic techniques originally utilized by Kurzweil, Jarnik, Sussmann, and Liu in the late 80s and early 90s and recently studied by Dtirr et al. We demonstrate the value of the result with an application to inverter switching control. Published by Elsevier Ltd.
C1 [Scheinker, Alexander] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
[Scheinker, David] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
RP Scheinker, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM ascheink@lanl.gov; dscheink@mit.edu
FU Los Alamos National Laboratory; Massachusetts Institute of Technology
FX This research was supported by Los Alamos National Laboratory and the
Massachusetts Institute of Technology. The material in this paper was
not presented at any conference. This paper was recommended for
publication in revised form by Associate Editor Raul Ordonez under the
direction of Editor Miroslav Krstic.
NR 50
TC 0
Z9 0
U1 1
U2 1
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0005-1098
EI 1873-2836
J9 AUTOMATICA
JI Automatica
PD JUL
PY 2016
VL 69
BP 250
EP 257
DI 10.1016/j.automatica.2016.02.023
PG 8
WC Automation & Control Systems; Engineering, Electrical & Electronic
SC Automation & Control Systems; Engineering
GA DN8EU
UT WOS:000377312800027
ER
PT J
AU Noskov, SY
Rostovtseva, TK
Chamberlin, AC
Teijido, O
Jiang, W
Bezrukov, SM
AF Noskov, Sergei Yu.
Rostovtseva, Tatiana K.
Chamberlin, Adam C.
Teijido, Oscar
Jiang, Wei
Bezrukov, Sergey M.
TI Current state of theoretical and experimental studies of the
voltage-dependent anion channel (VDAC)
SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
LA English
DT Article
DE VDAC; Molecular Dynamics simulations; Brownian Dynamics simulations;
Mitochondrial transport; Beta-barrel channel reconstitution; pH
regulation
ID FACILITATED MEMBRANE-TRANSPORT; MITOCHONDRIAL OUTER-MEMBRANE;
MOLECULAR-DYNAMICS METHOD; FREE-ENERGY CALCULATIONS; REPLICA EXCHANGE
METHOD; ISCHEMIA-REPERFUSION INJURY; PROTEIN-FOLDING SIMULATION;
HISTOGRAM ANALYSIS METHOD; BROWNIAN DYNAMICS; ION PERMEATION
AB Voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane provides a controlled pathway for respiratory metabolites in and out of the mitochondria. In spite of the wealth of experimental data from structural, biochemical, and biophysical investigations, the exact mechanisms governing selective ion and metabolite transport, especially the role of titratable charged residues and interactions with soluble cytosolic proteins, remain hotly debated in the field. The computational advances hold a promise to provide a much sought-after solution to many of the scientific disputes around solute and ion transport through VDAC and hence, across the mitochondrial outer membrane. In this review, we examine how Molecular Dynamics, Free Energy, and Brownian Dynamics simulations of the large beta-barrel channel, VDAC, advanced our understanding. We will provide a short overview of non-conventional techniques and also discuss examples of how the modeling excursions into VDAC biophysics prospectively aid experimental efforts. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Noskov, Sergei Yu.] Univ Calgary, Dept Biol Sci, 2500 Univ Dr N-W, Calgary, AB T2N 1N4, Canada.
[Noskov, Sergei Yu.] Univ Calgary, Ctr Mol Simulat, 2500 Univ Dr N-W, Calgary, AB T2N 1N4, Canada.
[Rostovtseva, Tatiana K.; Teijido, Oscar; Bezrukov, Sergey M.] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, Sect Mol Transport, NIH, Bethesda, MD 20892 USA.
[Chamberlin, Adam C.] Ambry Genet, 15 Argonaut, Aliso Viejo, CA 92656 USA.
[Teijido, Oscar] Inst Med Sci & Genom Med, Dept Med Epigenet, EuroEspes Sta Marta de Babio S-N, Bergondo 15165, A Coruna, Spain.
[Jiang, Wei] Argonne Natl Lab, Leadership Comp Facil, 9700S Cass Ave, Lemont, IL 60439 USA.
RP Noskov, SY (reprint author), Univ Calgary, Dept Biol Sci, 2500 Univ Dr N-W, Calgary, AB T2N 1N4, Canada.; Noskov, SY (reprint author), Univ Calgary, Ctr Mol Simulat, 2500 Univ Dr N-W, Calgary, AB T2N 1N4, Canada.; Rostovtseva, TK; Bezrukov, SM (reprint author), Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, Sect Mol Transport, NIH, Bethesda, MD 20892 USA.
EM snoskov@ucalgary.ca; rostovtt@mail.nih.gov; bezrukos@mail.nih.gov
FU NICHD/NIH; National Sciences and Engineering Research Council
[RGPIN-315019]; Alberta Innovates Technical Futures Strategic Chair in
BioMolecular Simulations; Canadian Foundation for Innovation; Intramural
Research Program of the National Institutes of Health (NIH), Eunice
Kennedy Shriver National Institute of Child Health and Human Development
FX We would like to thank cordially Drs. Michael Grabe, Joshua Adelman and
Om Choudray for sharing their structural data on the VDAC-ATP
simulations. Drs. Wonpil Im, Benoit Roux and Pablo De Biase were
instrumental in implementing, developing and extending GCMC-BD
algorithms to a variety of systems providing excellent tools and advice
for modeling data shown in this submission. The work in S.Y.N. lab was
supported with intramural funding from NICHD/NIH and the National
Sciences and Engineering Research Council (discovery grant RGPIN-315019
to S.Y.N.). S.Y.N. was supported by the Alberta Innovates Technical
Futures Strategic Chair in BioMolecular Simulations. Computations were
performed on the West-Grid/Compute Canada facilities and the University
of Calgary TNK cluster supported by the Canadian Foundation for
Innovation. The simulations of ATP transport in VDAC channel with 2D
H-REMD were performed on MIRA Blue-Gene Cluster located in the Argonne
National Laboratory under Discretional Director's award. T.K.R. and
S.M.B. were supported by the Intramural Research Program of the National
Institutes of Health (NIH), Eunice Kennedy Shriver National Institute of
Child Health and Human Development.
NR 141
TC 4
Z9 4
U1 5
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0005-2736
EI 0006-3002
J9 BBA-BIOMEMBRANES
JI Biochim. Biophys. Acta-Biomembr.
PD JUL
PY 2016
VL 1858
IS 7
SI SI
BP 1778
EP 1790
DI 10.1016/j.bbamem.2016.02.026
PN B
PG 13
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA DN7CP
UT WOS:000377233200021
PM 26940625
ER
PT J
AU Chen, M
Himmel, ME
Wilson, DB
Brady, JW
AF Chen, Mo
Himmel, Michael E.
Wilson, David B.
Brady, John W.
TI Simulation studies of substrate recognition by the exocellulase CelF
from Clostridium cellulolyticum
SO BIOTECHNOLOGY AND BIOENGINEERING
LA English
DT Article
DE enzyme mechanisms; enzymatic hydrolysis; MD simulations; substrate
recognition; substrate binding; cellulases
ID MOLECULAR-DYNAMICS SIMULATIONS; CARBOHYDRATE-BINDING MODULES;
FORCE-FIELDS; TRICHODERMA-REESEI; PROCESSIVE ACTION; CRYSTAL-STRUCTURE;
CELLULASE CE148F; CELLOBIOHYDROLASE; COMPLEX; CHARMM
AB Molecular dynamics (MD) simulations were used to study substrate recognition by the family 48 exocellulase CelF from Clostridium cellulolyticum. It was hypothesized that residues around the entrance of the active site tunnel of this enzyme might serve to recognize and bind the substrate through an affinity for the cellulose monomer repeat unit, -d-glucopyranose. Simulations were conducted of the catalytic domain of this enzyme surrounded by a concentrated solution of -d-glucopyranose, and the full three-dimensional probability distribution for finding sugar molecules adjacent to the enzyme was calculated from the trajectory. A significant probability of finding the sugar stacked against the planar faces of Trp 310 and Trp 312 at the entrance of the active site tunnel was observed. Biotechnol. Bioeng. 2016;113: 1433-1440. (c) 2015 Wiley Periodicals, Inc.
C1 [Chen, Mo; Brady, John W.] Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA.
[Himmel, Michael E.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO USA.
[Wilson, David B.] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA.
[Chen, Mo] Oregon Hlth & Sci Univ, Dept Biomed Engn, Portland, OR 97201 USA.
[Chen, Mo] Oregon Hlth & Sci Univ, OCSSB, Portland, OR 97201 USA.
RP Brady, JW (reprint author), Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA.
EM jwb7@cornell.edu
FU U.S. Department of Energy (DOE); National Science Foundation
[ACI-1053575]
FX Contract grant sponsor: U.S. Department of Energy (DOE); Contract grant
sponsor: National Science Foundation; Contract grant number: ACI-1053575
NR 38
TC 1
Z9 1
U1 6
U2 12
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0006-3592
EI 1097-0290
J9 BIOTECHNOL BIOENG
JI Biotechnol. Bioeng.
PD JUL
PY 2016
VL 113
IS 7
BP 1433
EP 1440
DI 10.1002/bit.25909
PG 8
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA DO1HA
UT WOS:000377527900005
PM 26693961
ER
PT J
AU Blanco-Martin, L
Wolters, R
Rutqvist, J
Lux, KH
Birkholzer, JT
AF Blanco-Martin, Laura
Wolters, Ralf
Rutqvist, Jonny
Lux, Karl-Heinz
Birkholzer, Jens T.
TI Thermal-hydraulic-mechanical modeling of a large-scale heater test to
investigate rock salt and crushed salt behavior under repository
conditions for heat-generating nuclear waste
SO COMPUTERS AND GEOTECHNICS
LA English
DT Article
DE Heater test; Coupled processes modeling; Benchmark; Heat-generating
nuclear waste; Rock salt; Crushed salt
ID SALINE MEDIA; COUPLED FLOW; GEOMECHANICS; PERMEABILITY; SIMULATION;
DEFORMATION; CONVERGENCE
AB The Thermal Simulation for Drift Emplacement heater test is modeled using two simulators for coupled thermal-hydraulic-mechanical processes. Results from the two simulators are in very good agreement. The comparison between measurements and numerical results is also very satisfactory, regarding temperature, drift closure and rock deformation. Concerning backfill compaction, a parameter calibration through inverse modeling was performed due to insufficient data on crushed salt reconsolidation, particularly at high temperatures. We conclude that the two simulators investigated have the capabilities to reproduce the data available, which increases confidence in their use to reliably investigate disposal of heat-generating nuclear waste in saliferous geosystems. Published by Elsevier Ltd.
C1 [Blanco-Martin, Laura; Rutqvist, Jonny; Birkholzer, Jens T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 74R316C, Berkeley, CA 94720 USA.
[Wolters, Ralf; Lux, Karl-Heinz] Tech Univ Clausthal, Waste Disposal & Geomech, Erzstr 20, D-38678 Clausthal Zellerfeld, Germany.
RP Blanco-Martin, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 74R316C, Berkeley, CA 94720 USA.
EM Iblancomartin@lbl.gov; ralf.wolters@tu-clausthal.de; jrutqvist@lbl.gov;
karl-heinz.lux@tu-clausthal.de; jtbirkholzer@lbl.gov
RI Birkholzer, Jens/C-6783-2011; Rutqvist, Jonny/F-4957-2015; Blanco
Martin, Laura/G-1512-2015
OI Birkholzer, Jens/0000-0002-7989-1912; Rutqvist,
Jonny/0000-0002-7949-9785; Blanco Martin, Laura/0000-0003-1794-3227
FU Used Fuel Disposition Campaign, Office of Nuclear Energy of the U.S.
Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley National
Laboratory; German Federal Ministry of Education and Research (BMBF)
[02S9082A]
FX We thank Stefan Finsterle (LBNL) for his review of a draft manuscript.
Comments from two anonymous reviewers have improved the quality of this
paper. Funding for this work has been provided by the Used Fuel
Disposition Campaign, Office of Nuclear Energy of the U.S. Department of
Energy, under Contract Number DE-AC02-05CH11231 with Lawrence Berkeley
National Laboratory. Funding has also been provided by the German
Federal Ministry of Education and Research (BMBF) under Contract Number
02S9082A.
NR 70
TC 0
Z9 0
U1 3
U2 5
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0266-352X
EI 1873-7633
J9 COMPUT GEOTECH
JI Comput. Geotech.
PD JUL
PY 2016
VL 77
BP 120
EP 133
DI 10.1016/j.compgeo.2016.04.008
PG 14
WC Computer Science, Interdisciplinary Applications; Engineering,
Geological; Geosciences, Multidisciplinary
SC Computer Science; Engineering; Geology
GA DN8JS
UT WOS:000377325600011
ER
PT J
AU Azad, VJ
Li, C
Verba, C
Ideker, JH
Isgor, OB
AF Azad, Vahid Jafari
Li, Chang
Verba, Circe
Ideker, Jason H.
Isgor, O. Burkan
TI A COMSOL-GEMS interface for modeling coupled reactive-transport
geochemical processes
SO COMPUTERS & GEOSCIENCES
LA English
DT Article
DE Reactive-transport modeling; (Geo)chemical modeling; Porous media;
Finite element method; Multiphysics; GEMS
ID PORTLAND-CEMENT; THERMODYNAMIC PROPERTIES; POROSITY; SYSTEMS; MEDIA;
FLOW; EQUILIBRIA; SIMULATION; FRAMEWORK; HYDRATION
AB An interface was developed between COMSOL Multiphysics (TM) finite element analysis software and (geo) chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Azad, Vahid Jafari; Li, Chang; Ideker, Jason H.; Isgor, O. Burkan] Oregon State Univ, Sch Civil & Construct Engn, Corvallis, OR 97331 USA.
[Verba, Circe] US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA.
RP Isgor, OB (reprint author), Oregon State Univ, Sch Civil & Construct Engn, Corvallis, OR 97331 USA.
EM burkan.isgor@oregonstate.edu
RI Isgor, Burkan/J-5981-2012;
OI Isgor, Burkan/0000-0002-0554-3501; Jafari Azad,
Vahid/0000-0002-9970-087X
FU DOE Office of Fossil Energy under the Office of Oil and Natural Gas
[RES1100426/014]
FX This work was completed as part of National Energy Technology Laboratory
(NETL) research for the Department of Energy's Pacific Coast Carbon
Storage Initiative. The study was supported by the DOE Office of Fossil
Energy, (Grant no. RES1100426/014), under the Office of Oil and Natural
Gas (Energy Policy Act of 2005, Section 999 Complementary Program
Research).
NR 65
TC 0
Z9 0
U1 4
U2 13
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0098-3004
EI 1873-7803
J9 COMPUT GEOSCI-UK
JI Comput. Geosci.
PD JUL
PY 2016
VL 92
BP 79
EP 89
DI 10.1016/j.cageo.2016.04.002
PG 11
WC Computer Science, Interdisciplinary Applications; Geosciences,
Multidisciplinary
SC Computer Science; Geology
GA DN8JK
UT WOS:000377324800008
ER
PT J
AU Schramm, MP
Bevelhimer, MS
DeRolph, CR
AF Schramm, Michael P.
Bevelhimer, Mark S.
DeRolph, Chris R.
TI A synthesis of environmental and recreational mitigation requirements at
hydropower projects in the United States
SO ENVIRONMENTAL SCIENCE & POLICY
LA English
DT Article
DE Environmental mitigation; FERC; Hydropower; Hydropower policy;
Environmental flows
ID FISH PASSAGE; RIVER; GENERATION; PROTECTION; OPERATION; THREATS; FUTURE;
DAMS
AB Environmental mitigation plays an important role in the environmentally sustainable development of hydropower resources. However, comprehensive data on mitigation required by the Federal Energy Regulatory Commission (FERC) at United States (US) hydropower projects is lacking. Therefore, our objective was to create a comprehensive database of mitigation required at non-federal hydropower projects and provide a synthesis of available mitigation data. Mitigation data was collated for over 300 plants licensed or relicensed from 1998 through 2013. We observed that the majority of FERC mitigation requirements deal with either hydrologic flows or recreation and that hydropower plants in the Pacific Northwest had the highest number of requirements. Our data indicate opportunities exist to further explore hydropower mitigation in the areas of environmental flows, fish passage, and water quality. Connecting these data with ecological outcomes, actual flow data, and larger landscape level information will be necessary to evaluate the effectiveness of mitigation and ultimately inform regulators, managers, and planners. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Schramm, Michael P.; Bevelhimer, Mark S.; DeRolph, Chris R.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
RP Bevelhimer, MS (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
EM bevelhimerms@ornl.gov
OI Schramm, Michael/0000-0003-1876-6592
FU U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy
Office, Wind and Water Power Technologies Program through Oak Ridge
National Laboratory [AC05-00OR22725]
FX We thank B. Pracheil and four anonymous reviewers for comments that
greatly improved this manuscript. S.C. Kao provided assistance with the
NHAAP database and FERC licenses. This study was funded by the U.S.
Department of Energy (DOE) Energy Efficiency and Renewable Energy
Office, Wind and Water Power Technologies Program through Oak Ridge
National Laboratory, which is managed by UT-Battelle, LLC, for the DOE
under contract DE-AC05-00OR22725.
NR 40
TC 2
Z9 2
U1 4
U2 7
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1462-9011
EI 1873-6416
J9 ENVIRON SCI POLICY
JI Environ. Sci. Policy
PD JUL
PY 2016
VL 61
BP 87
EP 96
DI 10.1016/j.envsci.2016.03.019
PG 10
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA DN8FJ
UT WOS:000377314300010
ER
PT J
AU Byrd, AD
Ivic, IR
Palmer, RD
Isom, BM
Cheong, BL
Schenkman, AD
Xue, M
AF Byrd, Andrew D.
Ivic, Igor R.
Palmer, Robert D.
Isom, Bradley M.
Cheong, Boon Leng
Schenkman, Alexander D.
Xue, Ming
TI A Weather Radar Simulator for the Evaluation of Polarimetric Phased
Array Performance
SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
LA English
DT Article
DE Radar; meteorological radar; polarimetry; radar polarimetry; phased
arrays; simulation; computer simulation
ID PREDICTION SYSTEM ARPS; NONHYDROSTATIC ATMOSPHERIC SIMULATION;
DIFFERENTIAL REFLECTIVITY BIAS; SIZE DISTRIBUTION; PART I; MODEL;
ASSIMILATION; SIGNALS; FIELDS
AB A radar simulator capable of generating time series data for a polarimetric phased array weather radar has been designed and implemented. The received signals are composed from a high-resolution numerical prediction weather model. Thousands of scattering centers (SCs), each with an independent randomly generated Doppler spectrum, populate the field of view of the radar. The moments of the SC spectra are derived from the numerical weather model, and the SC positions are updated based on the 3-D wind field. In order to accurately emulate the effects of the system-induced cross-polar contamination, the array is modeled using a complete set of dual-polarization radiation patterns. The simulator offers reconfigurable element patterns and positions and access to independent time series data for each element, resulting in easy implementation of any beamforming method. It also allows for arbitrary waveform designs and is able to model the effects of quantization on waveform performance. Simultaneous, alternating, quasi-simultaneous, and pulse-to-pulse phase-coded modes of polarimetric signal transmission have been implemented. This framework allows for realistic emulation of the effects of cross-polar fields on weather observations, as well as the evaluation of possible techniques for the mitigation of those effects.
C1 [Byrd, Andrew D.; Palmer, Robert D.; Cheong, Boon Leng] Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA.
[Byrd, Andrew D.] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA.
[Ivic, Igor R.] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73072 USA.
[Ivic, Igor R.] NOAA, Natl Severe Storms Lab, Norman, OK 73072 USA.
[Palmer, Robert D.] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA.
[Isom, Bradley M.] Pacific NW Natl Lab, Atmospher Measurement & Data Sci, Richland, WA 99352 USA.
[Schenkman, Alexander D.; Xue, Ming] Univ Oklahoma, Ctr Anal & Predict Storms, Norman, OK 73072 USA.
[Xue, Ming] Univ Oklahoma, Sch Meteor, Adv Radar Res Ctr, Norman, OK 73019 USA.
RP Byrd, AD (reprint author), Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA.; Byrd, AD (reprint author), Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK 73019 USA.
EM adbyrd@ou.edu; igor.ivic@noaa.gov
RI Xue, Ming/F-8073-2011;
OI Xue, Ming/0000-0003-1976-3238; Byrd, Andrew/0000-0002-2735-404X
FU NOAA National Severe Storms Laboratory [NA11OAR4320072]
FX This work was supported by the NOAA National Severe Storms Laboratory
under Cooperative Agreement NA11OAR4320072.
NR 51
TC 0
Z9 0
U1 6
U2 14
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0196-2892
EI 1558-0644
J9 IEEE T GEOSCI REMOTE
JI IEEE Trans. Geosci. Remote Sensing
PD JUL
PY 2016
VL 54
IS 7
BP 4178
EP 4189
DI 10.1109/TGRS.2016.2538179
PG 12
WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote
Sensing; Imaging Science & Photographic Technology
SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science
& Photographic Technology
GA DO0OO
UT WOS:000377478400035
ER
PT J
AU Kelbe, D
van Aardt, J
Romanczyk, P
van Leeuwen, M
Cawse-Nicholson, K
AF Kelbe, David
van Aardt, Jan
Romanczyk, Paul
van Leeuwen, Martin
Cawse-Nicholson, Kerry
TI Marker-Free Registration of Forest Terrestrial Laser Scanner Data Pairs
With Embedded Confidence Metrics
SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
LA English
DT Article
DE Forestry; image registration; laser radar
ID STANDING TREES; POINT-CLOUDS; LIDAR; ENVIRONMENTS; EXTRACTION; VOLUME
AB Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud data and, thus, enable blindmarker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE = 16.3 cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. While the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.
C1 [Kelbe, David; van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin; Cawse-Nicholson, Kerry] Rochester Inst Technol, Chester F Carlson Ctr Imaging Sci, Rochester, NY 14623 USA.
[Kelbe, David] Oak Ridge Natl Lab, Geog Informat Sci & Technol Grp, Oak Ridge, TN 37831 USA.
[Romanczyk, Paul] Aerosp Corp, El Segundo, CA 90245 USA.
[van Leeuwen, Martin] UCL, Dept Geog, London WC1E 6BT, England.
[Cawse-Nicholson, Kerry] Terracor, ZA-2090 Johannesburg, South Africa.
RP Kelbe, D (reprint author), Rochester Inst Technol, Chester F Carlson Ctr Imaging Sci, Rochester, NY 14623 USA.; Kelbe, D (reprint author), Oak Ridge Natl Lab, Geog Informat Sci & Technol Grp, Oak Ridge, TN 37831 USA.
EM dave.kelbe@gmail.com
FU National Science Foundation [DGE-1102937]; National Aeronautics and
Space Administration [NNX12AQ24G]; Chester F. Carlson Center for Imaging
Science at Rochester Institute of Technology
FX This work was supported in part by the National Science Foundation
Graduate Research Fellowship under Grant DGE-1102937, by the National
Aeronautics and Space Administration under Grant NNX12AQ24G, and by the
Chester F. Carlson Center for Imaging Science at Rochester Institute of
Technology.
NR 45
TC 2
Z9 2
U1 8
U2 18
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0196-2892
EI 1558-0644
J9 IEEE T GEOSCI REMOTE
JI IEEE Trans. Geosci. Remote Sensing
PD JUL
PY 2016
VL 54
IS 7
BP 4314
EP 4330
DI 10.1109/TGRS.2016.2539219
PG 17
WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote
Sensing; Imaging Science & Photographic Technology
SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science
& Photographic Technology
GA DO0OO
UT WOS:000377478400046
ER
PT J
AU Tong, X
Edwards, J
Chen, CM
Shen, HW
Johnson, CR
Wong, PC
AF Tong, Xin
Edwards, John
Chen, Chun-Ming
Shen, Han-Wei
Johnson, Chris R.
Wong, Pak Chung
TI View-Dependent Streamline Deformation and Exploration
SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
LA English
DT Article
DE Flow visualization; streamline; white matter tracts; focus plus context;
deformation; occlusion
ID FLOW VISUALIZATION; FIBER TRACTOGRAPHY; FRAMEWORK
AB Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.
C1 [Tong, Xin; Chen, Chun-Ming; Shen, Han-Wei] Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA.
[Edwards, John; Johnson, Chris R.] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA.
[Wong, Pak Chung] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Tong, X (reprint author), Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA.
EM tong@cse.ohio-state.edu; jedwards@sci.utah.edu;
chenchu@cse.ohio-state.edu; hwshen@cse.ohio-state.edu; crj@sci.utah.edu;
pak.wong@pnnl.gov
FU National Science Foundation [IIS-1250752, IIS-1065025]; US Department of
Energy [DE-SC0007444, DE-DC0012495, DE-AC05-76RL01830]; National
Institutes of Health [P41GM103545]; [59172]
FX This work was supported in part by the National Science Foundation
grants IIS-1250752 and IIS-1065025; and by US Department of Energy
grants DE-SC0007444, DE-DC0012495, and award 59172; and by National
Institutes of Health grant P41GM103545. The Pacific Northwest National
Laboratory is managed for the US Department of Energy by Battelle under
Contract DE-AC05-76RL01830.
NR 38
TC 0
Z9 0
U1 1
U2 2
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1077-2626
EI 1941-0506
J9 IEEE T VIS COMPUT GR
JI IEEE Trans. Vis. Comput. Graph.
PD JUL
PY 2016
VL 22
IS 7
BP 1788
EP 1801
DI 10.1109/TVCG.2015.2502583
PG 14
WC Computer Science, Software Engineering
SC Computer Science
GA DO0NI
UT WOS:000377475200002
ER
PT J
AU Bygd, HC
Bratlie, KM
AF Bygd, Hannah C.
Bratlie, Kaitlin M.
TI The effect of chemically modified alginates on macrophage phenotype and
biomolecule transport
SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
LA English
DT Article
DE macrophage reprogramming; alginate modification; tissue engineering;
islet encapsulation; biomolecule transport
ID MECHANICAL-PROPERTIES; CELL ENCAPSULATION; GEL BEADS; IN-VITRO;
MICROENCAPSULATED ISLETS; SURFACE-CHEMISTRY; FOLLOW-UP; MICROCAPSULES;
RELEASE; HYDROGELS
AB Macrophage (M phi) reprogramming has received significant attention in applications such as cancer therapeutics and tissue engineering where the host immune response to biomaterials is crucial in determining the success or failure of an implanted device. Polymeric systems can potentially be used to redirect infiltrating M1 M phi s toward a proangiogenic phenotype. This work exploits the concept of M phi reprogramming in the engineering of materials for improving the longevity of tissue engineering scaffolds. We have investigated the effect of 13 different chemical modifications of alginate on M phi phenotype. Markers of the M1 responsetumor necrosis factor- (TNF-) and inducible nitric oxide synthaseand the M2 responsearginasewere measured and used to determine the ability of the materials to alter M phi phenotype. It was found that some modifications were able to reduce the pro-inflammatory response of M1 M phi s, others appeared to amplify the M2 phenotype, and the results for two materials suggested they were able to reprogram a M phi population from M1 to M2. These findings were supplemented by studies done to examine the permselectivity of the materials. Diffusion of TNF- was completely prevented through some of these materials, while up to 84% was found to diffuse through others. The diffusion of insulin through the materials was statistically consistent. These results suggest that the modification of these materials might alter mass transport in beneficial ways. The ability to control polarization of M phi phenotypes with immunoprotective materials has the potential to augment the success of tissue engineering scaffolds. (c) 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1707-1719, 2016.
C1 [Bygd, Hannah C.; Bratlie, Kaitlin M.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
[Bratlie, Kaitlin M.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA.
[Bratlie, Kaitlin M.] Ames Natl Lab, Div Engn & Mat Sci, Ames, IA 50011 USA.
RP Bratlie, KM (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.; Bratlie, KM (reprint author), Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA.; Bratlie, KM (reprint author), Ames Natl Lab, Div Engn & Mat Sci, Ames, IA 50011 USA.
EM kbratlie@iastate.edu
FU National Science Foundation [CBET 1227867]; Roy J. Carver Charitable
Trust [13-4265]; Mike and Denise Mack faculty fellowship
FX Contract grant sponsor: National Science Foundation; contract grant
number: CBET 1227867; Contract grant sponsor: Roy J. Carver Charitable
Trust; contract grant number: 13-4265; Contract grant sponsor: Mike and
Denise Mack faculty fellowship
NR 80
TC 2
Z9 2
U1 10
U2 19
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1549-3296
EI 1552-4965
J9 J BIOMED MATER RES A
JI J. Biomed. Mater. Res. Part A
PD JUL
PY 2016
VL 104
IS 7
BP 1707
EP 1719
DI 10.1002/jbm.a.35700
PG 13
WC Engineering, Biomedical; Materials Science, Biomaterials
SC Engineering; Materials Science
GA DO1FW
UT WOS:000377524900015
PM 26939998
ER
PT J
AU Whalen, S
Jana, S
Catalini, D
Overman, N
Sharp, J
AF Whalen, Scott
Jana, Saumyadeep
Catalini, David
Overman, Nicole
Sharp, Jeffrey
TI Friction Consolidation Processing of n-Type Bismuth-Telluride
Thermoelectric Material
SO JOURNAL OF ELECTRONIC MATERIALS
LA English
DT Article
DE Thermoelectric; bismuth-telluride; friction consolidation; ultrafine
gain; shear processing
ID HIGH-PRESSURE TORSION; DYNAMIC RECRYSTALLIZATION; EXTRUSION PROCESS;
ALLOYS; PERFORMANCE; DEFORMATION; ENHANCEMENT; TEXTURE
AB Refined grain sizes and texture alignment have been shown to improve transport properties in bismuth-telluride (Bi2Te3) based thermoelectric materials. In this work we demonstrate a new approach, called friction consolidation processing (FCP), for consolidating Bi2Te3 thermoelectric powders into bulk form with a high degree of grain refinement and texture alignment. FCP is a solid-state process wherein a rotating tool is used to generate severe plastic deformation within the Bi2Te3 powder, resulting in a recrystallizing flow of material. Upon cooling, the far-from-equilibrium microstructure within the flow can be retained in the material. FCP was demonstrated on n-type Bi2Te3 feedstock powder having a -325 mesh size to form pucks with a diameter of 25.4 mm and thickness of 4.2 mm. Microstructural analysis confirmed that FCP can achieve highly textured bulk materials, with sub-micrometer grain size, directly from coarse feedstock powders in a single process. An average grain size of 0.8 mu m was determined for regions of one sample and a multiple of uniform distribution (MUD) value of 15.49 was calculated for the (0001) pole figure of another sample. These results indicate that FCP can yield ultra-fine grains and textural alignment of the (0001) basal planes in Bi2Te3. ZT = 0.37 at 336 K was achieved for undoped stoichiometric Bi2Te3, which approximates literature values of ZT = 0.4-0.5. These results point toward the ability to fabricate bulk thermoelectric materials with refined microstructure and desirable texture using far-from-equilibrium FCP solid-state processing.
C1 [Whalen, Scott; Jana, Saumyadeep; Catalini, David; Overman, Nicole] Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA.
[Sharp, Jeffrey] Marlow Ind Inc, 10451 Vista Pk Rd, Dallas, TX 75238 USA.
RP Whalen, S (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA.
EM scott.whalen@pnnl.gov
FU Department of Energy, Energy Efficiency and Renewable Energy, Vehicle
Technologies Office [VT0401000-05450-1004640]
FX This work was supported by the Department of Energy, Energy Efficiency
and Renewable Energy, Vehicle Technologies Office Contract
VT0401000-05450-1004640 under the supervision of program managers John
Fairbanks and Gurpreet Singh. The authors thank Nancy Yang and Doug
Medlin at Sandia National Laboratories for their guidance during the
early phase of this investigation.
NR 42
TC 0
Z9 0
U1 13
U2 19
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0361-5235
EI 1543-186X
J9 J ELECTRON MATER
JI J. Electron. Mater.
PD JUL
PY 2016
VL 45
IS 7
BP 3390
EP 3399
DI 10.1007/s11664-016-4454-0
PG 10
WC Engineering, Electrical & Electronic; Materials Science,
Multidisciplinary; Physics, Applied
SC Engineering; Materials Science; Physics
GA DN9XN
UT WOS:000377434100020
ER
PT J
AU Li, YZ
Chernatynskiy, A
Kennedy, JR
Sinnott, SB
Phillpot, SR
AF Li, Yangzhong
Chernatynskiy, Aleksandr
Kennedy, J. Rory
Sinnott, Susan B.
Phillpot, Simon R.
TI Lattice expansion by intrinsic defects in uranium by molecular dynamics
simulation
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID 1ST PRINCIPLES CALCULATIONS; FISSION GAS BUBBLES; ALPHA-URANIUM;
ELASTIC-CONSTANTS; GAMMA-URANIUM; BETA-URANIUM; POTENTIALS; UO2;
DISPLACEMENT; TEMPERATURES
AB A re-formulated and re-parameterized interatomic potential for uranium metal in the Charge-Optimized Many-Body (COMB) formalism is presented. Most physical properties of the orthorhombic alpha and bcc gamma phases are accurately reproduced. In particular, this potential can reproduce the negative thermal expansion of the b axis in alpha-U while keeping this phase as the most stable phase at low temperatures, in accord with experiment. Most of the volume expansion in alpha-U by intrinsic defects is shown to come from the b axis, due to the formation of prismatic loops normal to this direction. Glide dislocation loops forming stacking faults are also observed. Structures of both loop types are analyzed. An expansion simulation is conducted and the results are verified by using the Norgett-Robinson-Torrens model. Rather than forming extended defect structures as in alpha-U, the gamma phase forms only isolated defects and thus results in a much smaller and isotropic expansion. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Li, Yangzhong; Chernatynskiy, Aleksandr; Sinnott, Susan B.; Phillpot, Simon R.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA.
[Li, Yangzhong] Sun Yat Sen Univ, Sinofrench Inst Nucl Engn & Technol, Zhuhai, Guangdong, Peoples R China.
[Kennedy, J. Rory] Idaho Natl Lab, Nucl Sci User Facil, Idaho Falls, ID 83415 USA.
[Chernatynskiy, Aleksandr] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO USA.
[Sinnott, Susan B.] Penn State Univ, Dept Mat Sci & Engn, State Coll, PA USA.
RP Phillpot, SR (reprint author), Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA.
EM sphil@mse.ufl.edu
OI Phillpot, Simon/0000-0002-7774-6535
FU U.S. Government under DOE, Energy Frontier Research Center (Office of
Science, Office of Basic Energy Science) [DE-AC07-05ID14517, FWP 1356];
DOE Idaho Operations Office Contract [DE-AC07-051D14517]; U.S.
Government; Nuclear Science User Facilities (Office of Nuclear Energy)
FX This work was authored by subcontractors (YL, AC, SRP) of the U.S.
Government under DOE Contract No. DE-AC07-05ID14517, under the Energy
Frontier Research Center (Office of Science, Office of Basic Energy
Science, FWP 1356) and by JRK under DOE Idaho Operations Office Contract
DE-AC07-051D14517 as part of the Nuclear Science User Facilities (Office
of Nuclear Energy). Accordingly, the U.S. Government retains and the
publisher (by accepting the article for publication) acknowledges that
the U.S. Government retains a nonexclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for U.S. Government purposes.
NR 54
TC 0
Z9 0
U1 8
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2016
VL 475
BP 6
EP 18
DI 10.1016/j.jnucmat.2016.03.018
PG 13
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DN8CR
UT WOS:000377307300002
ER
PT J
AU Tomchik, C
Almer, J
Anderoglu, O
Balogh, L
Brown, DW
Clausen, B
Maloy, SA
Sisneros, TA
Stubbins, JF
AF Tomchik, C.
Almer, J.
Anderoglu, O.
Balogh, L.
Brown, D. W.
Clausen, B.
Maloy, S. A.
Sisneros, T. A.
Stubbins, J. F.
TI High energy X-ray diffraction study of the relationship between the
macroscopic mechanical properties and microstructure of irradiated HT-9
steel
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE Ferritic martensitic steel; HT-9; In-situ tensile test; High-energy
X-ray diffraction; Lattice strain; Irradiation embrittlement
ID LINE-PROFILE ANALYSIS; NEUTRON-DIFFRACTION; MARTENSITIC STEELS;
DISLOCATION MODEL; STRAIN ANISOTROPY; CRYSTALS; ALLOYS; DEFORMATION;
TEMPERATURE; POLYCRYSTALS
AB Samples harvested from an HT-9 fuel test assembly (ACO-3) irradiated for six years in the Fast Flux Test Facility (FFTF) reaching 2-147 dpa at 382-504 degrees C were deformed in-situ while collecting high-energy Xray diffraction data to monitor microstructure evolution. With the initiation of plastic deformation, all samples exhibited a clear load transfer from the ferrite matrix to carbide particulate. This behavior was confirmed by modeling of the control material. The evolution of dislocation density in the material as a result of deformation was characterized through full pattern line profile analysis. The dislocation densities increased substantially after deformation, the level of dislocation evolution observed was highly dependent upon the irradiation temperature of the sample. Differences in both the yield and hardening behavior between samples irradiated at higher and lower temperatures suggest the existence of a transition in tensile behavior at an irradiation temperature near 420 degrees C dividing regions of distinct damage effects. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Tomchik, C.; Stubbins, J. F.] Univ Illinois, Urbana, IL 61801 USA.
[Almer, J.] Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA.
[Anderoglu, O.; Balogh, L.; Brown, D. W.; Clausen, B.; Maloy, S. A.; Sisneros, T. A.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
[Balogh, L.] Queens Univ, Kingston, ON K7L 3N6, Canada.
RP Tomchik, C (reprint author), Univ Illinois, Urbana, IL 61801 USA.
EM tomchik@illinois.edu
RI Clausen, Bjorn/B-3618-2015; Maloy, Stuart/A-8672-2009; Balogh,
Levente/S-1238-2016
OI Clausen, Bjorn/0000-0003-3906-846X; Maloy, Stuart/0000-0001-8037-1319;
FU DOE [DE-AC52-06NA25396]; DOE Office of Science [DE-AC02-06CH11357]; DOE
NEUP [485363-973000-191100,]
FX Los Alamos National Laboratory is operated by Los Alamos National
Security LLC under DOE Contract DE-AC52-06NA25396. This research used
resources of the Advanced Photon Source, a U.S. Department of Energy
(DOE) Office of Science User Facility operated for the DOE Office of
Science by Argonne National Laboratory under Contract No.
DE-AC02-06CH11357. Support for this study was also provided by DOE NEUP
under grant number 485363-973000-191100, entitled "Irradiation
Performance of Fe-Cr Base Alloys."
NR 40
TC 2
Z9 2
U1 11
U2 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2016
VL 475
BP 46
EP 56
DI 10.1016/j.jnucmat.2016.03.023
PG 11
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DN8CR
UT WOS:000377307300006
ER
PT J
AU Leng, B
van Rooyen, IJ
Wu, YQ
Szlufarska, I
Sridharan, K
AF Leng, B.
van Rooyen, I. J.
Wu, Y. Q.
Szlufarska, I.
Sridharan, K.
TI STEM-EDS analysis of fission products in neutron-irradiated TRISO fuel
particles from AGR-1 experiment
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID SILICON-CARBIDE; AG DIFFUSION; COATED PARTICLES; SILVER DIFFUSION;
IDENTIFICATION; TRANSPORT; PALLADIUM; RELEASE; PD
AB Historic and recent post-irradiation-examination from the German AVR and Advanced Gas Reactor Fuel Development and Qualification Project have shown that 110 m Ag is released from intact tristructural isotropic (TRISO) fuel. Although TRISO fuel particle research has been performed over the last few decades, little is known about how metallic fission products are transported through the SiC layer, and it was not until March 2013 that Ag was first identified in the SiC layer of a neutron-irradiated TRISO fuel particle. The existence of Pd-and Ag-rich grain boundary precipitates, triple junction precipitates, and Pd nano-sized intragranular precipitates in neutron-irradiated TRISO particle coatings was investigated using Scanning Transmission Electron Microscopy and Energy Dispersive Spectroscopy analysis to obtain more information on the chemical composition of the fission product precipitates. A U-rich fission product honeycomb shape precipitate network was found near a micron-sized precipitate in a SiC grain about similar to 5 mu m from the SiC-inner pyrolytic carbon interlayer, indicating a possible intragranular transport path for uranium. A single Ag-Pd nano-sized precipitate was found inside a SiC grain, and this is the first research showing such finding in irradiated SiC. This finding may possibly suggest a possible Pd-assisted intragranular transport mechanism for Ag and may be related to void or dislocation networks inside SiC grains. Preliminary semi-quantitative analysis indicated the micron-sized precipitates to be Pd2Si2U with carbon existing inside these precipitates. However, the results of such analysis for nano-sized precipitates may be influenced by the SiC matrix. The results reported in this paper confirm the co-existence of Cd with Ag in triple points reported previously. (C) 2016 Published by Elsevier B.V.
C1 [Leng, B.; Szlufarska, I.; Sridharan, K.] Univ Wisconsin, Madison, WI 53706 USA.
[Leng, B.] Shanghai Inst Appl Phys, Thorium Molten Salts Reactor Ctr, Shanghai 201800, Peoples R China.
[van Rooyen, I. J.] Idaho Natl Lab, Fuel Design & Dev Dept, Idaho Falls, ID 83415 USA.
[Wu, Y. Q.] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA.
[Wu, Y. Q.] Ctr Adv Energy Studies, Idaho Falls, ID 83401 USA.
RP van Rooyen, IJ (reprint author), Idaho Natl Lab, Fuel Design & Dev Dept, Idaho Falls, ID 83415 USA.
EM Isabella.vanrooyen@inl.gov
FU U.S. Department of Energy, Office of Nuclear Energy, under the
Department of Energy Idaho Operations Office, Very High Temperature
Reactor Development Program [DE-AC07-05ID14517]; U.S. Department of
Energy, Office of Nuclear Energy, under the Department of Energy Idaho
Operations Office, Advanced Test Reactor National Scientific User
Facility Experiment [DE-AC07-05ID14517]
FX This work was sponsored by the U.S. Department of Energy, Office of
Nuclear Energy, under the Department of Energy Idaho Operations Office
Contract DE-AC07-05ID14517, as part of the Very High Temperature Reactor
Development Program and as part of an Advanced Test Reactor National
Scientific User Facility Experiment. James Madden is acknowledged for
the focused ion beam sample preparation. Paul Demkowicz and David Petti
are thanked for the review of this paper.
NR 22
TC 0
Z9 0
U1 3
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2016
VL 475
BP 62
EP 70
DI 10.1016/j.jnucmat.2016.03.008
PG 9
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DN8CR
UT WOS:000377307300008
ER
PT J
AU Collette, R
King, J
Buesch, C
Keiser, DD
Williams, W
Miller, BD
Schulthess, J
AF Collette, R.
King, J.
Buesch, C.
Keiser, D. D., Jr.
Williams, W.
Miller, B. D.
Schulthess, J.
TI Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using
automated image processing
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE Nuclear fuel; MATLAB; Automated image analysis; Fission bubbles; Fission
density; Porosity
ID NUCLEAR-FUEL; MO; PERFORMANCE; ELEMENTS; REACTOR; MATRIX
AB The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends when comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. The results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Collette, R.; King, J.] Colorado Sch Mines, Nucl Sci & Engn Program, 1500 Illinois St, Golden, CO 80401 USA.
[Buesch, C.] Oregon State Univ, 1500 SW Jefferson St, Corvallis, OR 97331 USA.
[Keiser, D. D., Jr.; Williams, W.; Miller, B. D.; Schulthess, J.] Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA.
RP King, J (reprint author), Colorado Sch Mines, Nucl Sci & Engn Program, 1500 Illinois St, Golden, CO 80401 USA.
EM kingjc@mines.edu
RI Schulthess, Jason/S-1949-2016
OI Schulthess, Jason/0000-0002-4289-7528
FU U.S. Department of Energy, Office of Material Management and
Minimization, National Nuclear Security Administration, under DOE-NE
Idaho Operations Office [DE-AC07-05ID14517]
FX This work was supported by the U.S. Department of Energy, Office of
Material Management and Minimization, National Nuclear Security
Administration, under DOE-NE Idaho Operations Office Contract
DE-AC07-05ID14517. This manuscript was authored by a contractor for the
U.S. Government. The publisher, by accepting the article for
publication, acknowledges that the U.S. Government retains a
nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for U.S. Government purposes.
NR 25
TC 0
Z9 0
U1 5
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2016
VL 475
BP 94
EP 104
DI 10.1016/j.jnucmat.2016.03.028
PG 11
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DN8CR
UT WOS:000377307300012
ER
PT J
AU Ma, HY
Wang, HT
Burns, PC
McNamara, BK
Buck, EC
Na, CZ
AF Ma, Hanyu
Wang, Haitao
Burns, Peter C.
McNamara, Bruce K.
Buck, Edgar C.
Na, Chongzheng
TI Synthesis and preservation of graphene-supported uranium dioxide
nanocrystals
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID COMPOSITE FUEL PELLETS; ETHYLENE-GLYCOL; POLY(VINYL PYRROLIDONE);
EPITAXIAL GRAPHENE; OXIDE NANOCRYSTALS; NI NANOPARTICLES;
NANO-CATALYSTS; GRAPHITE OXIDE; POLYOL PROCESS; REDUCTION
AB Graphene-supported uranium dioxide (UO2) nanocrystals are potentially important fuel materials. Here, we investigate the possibility of synthesizing graphene-supported UO2 nanocrystals in polar ethylene glycol compounds by the polyol reduction of uranyl acetylacetone under boiling reflux, thereby enabling the use of an inexpensive graphene precursor graphene oxide into a one-pot process. We show that triethylene glycol is the most suitable solvent with an appropriate reduction potential for producing nanometer-sized UO2 crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-supported UO2 nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO2 nanocrystals synthesized by polyol reduction can be readily stored in alcohols, impeding oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO2 nanocrystals for further investigation and development under ambient conditions. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Ma, Hanyu; Wang, Haitao; Burns, Peter C.; Na, Chongzheng] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, 156 Fitzpatrick Hall, Notre Dame, IN 46556 USA.
[Wang, Haitao; Na, Chongzheng] Texas Tech Univ, Dept Civil Environm & Construct Engn, 911 Boston Ave, Lubbock, TX 79409 USA.
[Burns, Peter C.] Univ Notre Dame, Dept Chem & Biochem, 251 Nieuwland Sci Hall, Notre Dame, IN 46556 USA.
[McNamara, Bruce K.; Buck, Edgar C.] Pacific NW Natl Lab, Nucl Chem & Engn Grp, 902 Battelle Blvd, Richland, WA 99352 USA.
RP Na, CZ (reprint author), Texas Tech Univ, Box 41023, Lubbock, TX 79409 USA.
EM chongzheng.na@gmail.com
OI Burns, Peter/0000-0002-2319-9628
FU USDOE Office of Nuclear Energy's Nuclear Energy University Programs
[12-3923]; University of Notre Dame Sustainable Energy Initiative
FX This work was mainly supported by the USDOE Office of Nuclear Energy's
Nuclear Energy University Programs (Project 12-3923) and the University
of Notre Dame Sustainable Energy Initiative. We thank Yong Wang for
performing some of the synthetic and analytical experiments.
NR 77
TC 0
Z9 0
U1 25
U2 37
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2016
VL 475
BP 113
EP 122
DI 10.1016/j.jnucmat.2016.03.027
PG 10
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DN8CR
UT WOS:000377307300014
ER
PT J
AU Olive, DT
Ganegoda, H
Allen, T
Yang, Y
Dickerson, C
Terry, J
AF Olive, Daniel T.
Ganegoda, Hasitha
Allen, Todd
Yang, Yong
Dickerson, Clayton
Terry, Jeff
TI Using a spherical crystallite model with vacancies to relate local
atomic structure to irradiation defects in ZrC and ZrN
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID ABSORPTION FINE-STRUCTURE; MOLECULAR-DYNAMICS; ZIRCONIUM CARBIDE; EXAFS
ANALYSIS; HTGR FUEL; SCATTERING; NANOPARTICLES; MATRIX; MICROSTRUCTURE;
SPECTROSCOPY
AB Zirconium carbide and zirconium nitride are candidate materials for new fuel applications due to several favorable physicochemical properties. ZrC and ZrN samples were irradiated at the Advanced Test Reactor National Scientific User Facility with neutrons at 800 degrees C to a dose of 1 dpa. Structural examinations have been made of the ZrC samples using high resolution transmission electron microscopy, and the findings compared with a previous study of ZrC irradiated with protons at 800 degrees C. The use of X-ray absorption fine structure spectroscopy (XAFS) to characterize the radiation damage was also explored including a model based on spherical crystallites that can be used to relate EXAFS measurements to microscopy observations. A loss of coordination at more distant coordination shells was observed for both ZrC and ZrN, and a model using small spherical crystallites suggested this technique can be used to study dislocation densities in future studies of irradiated materials. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Olive, Daniel T.; Ganegoda, Hasitha; Terry, Jeff] IIT, Dept Phys, Chicago, IL 60616 USA.
[Allen, Todd] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA.
[Yang, Yong] Univ Florida, Nucl Engn Program, Gainesville, FL 32611 USA.
[Dickerson, Clayton] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA.
[Olive, Daniel T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Dickerson, Clayton] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RP Terry, J (reprint author), IIT, Dept Phys, Chicago, IL 60616 USA.; Terry, J (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM terryj@iit.edu
RI ID, MRCAT/G-7586-2011;
OI Olive, Daniel/0000-0002-6465-4981
FU U.S. Department of Energy; MRCAT member institutions; U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; U.S. Department of Energy, Office of Nuclear Energy
under DOE Idaho Operations Office as part of Nuclear Science User
Facilities [DE-AC07-051D14517]
FX The authors wish to thank UW Reactor director, Robert Agasie, for
assistance with sample. This research constituted a part of the Ph.D.
thesis of one of the authors, D. T. O. MRCAT operations are supported by
the U.S. Department of Energy and the MRCAT member institutions. Use of
the Advanced Photon Source was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357. Work supported by the U.S. Department of
Energy, Office of Nuclear Energy under DOE Idaho Operations Office
Contract DE-AC07-051D14517, as part of Nuclear Science User Facilities.
NR 50
TC 1
Z9 1
U1 11
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2016
VL 475
BP 123
EP 131
DI 10.1016/j.jnucmat.2016.04.004
PG 9
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DN8CR
UT WOS:000377307300015
ER
PT J
AU Desormeaux, M
Rouxel, B
Motta, AT
Kirk, M
Bisor, C
de Carlan, Y
Legris, A
AF Desormeaux, M.
Rouxel, B.
Motta, A. T.
Kirk, M.
Bisor, C.
de Carlan, Y.
Legris, A.
TI Development of radiation damage during in-situ Kr++ irradiation of
Fe-Ni-Cr model austenitic steels
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE In-situ; Ion-irradiation; Austenitic alloys; Dislocation loops
ID ENERGY-LOSS SPECTROSCOPY; MICROSTRUCTURAL EVOLUTION; STAINLESS-STEELS;
STABILITY; THICKNESS; ALLOYS; METALS; DEPENDENCE; TITANIUM; CLUSTERS
AB In situ irradiations of 15Cr/15Ni-Ti and 15Cr/25Ni-Ti model austenitic steels were performed at the Intermediate Voltage Electron Microscope (IVEM)-Tandem user Facility (Argonne National Laboratory) at 600 degrees C using 1 MeV Kr++. The experiment was designed in the framework of cladding development for the GEN IV Sodium Fast Reactors (SFR). It is an extension of previous high dose irradiations on those model alloys at JANNuS-Saclay facility in France, aimed at investigating swelling mechanisms and microstructure evolution of these alloys under irradiation [1]. These studies showed a strong influence of Ni in decreasing swelling. In situ irradiations were used to continuously follow the microstructure evolution during irradiation using both diffraction contrast imaging and recording of diffraction patterns. Defect analysis, including defect size, density and nature, was performed to characterize the evolving microstructure and the swelling. Comparison of 15Cr/15Ni-Ti and 15Cr/25Ni-Ti irradiated microstructure has lent insight into the effect of nickel content in the development of radiation damage caused by heavy ion irradiation. The results are quantified and discussed in this paper. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Desormeaux, M.; Bisor, C.] Univ Paris Saclay, CEA, DEN Serv Etud Mat Irradies, F-91191 Gif Sur Yvette, France.
[Rouxel, B.; de Carlan, Y.] Univ Paris Saclay, CEA, DEN Serv Rech Met Appl, F-91191 Gif Sur Yvette, France.
[Desormeaux, M.; Motta, A. T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA.
[Kirk, M.] Argonne Natl Lab, Div Mat Sci, Electron Microscopy Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Legris, A.] Univ Lille 1, UMR CNRS 8207, UMET, F-59655 Villeneuve Dascq, France.
RP Desormeaux, M (reprint author), Univ Paris Saclay, CEA, DEN Serv Etud Mat Irradies, F-91191 Gif Sur Yvette, France.
EM marc.desormeaux@gmail.com
FU DOE Office of Nuclear Energy [DE-AC02-06CH11357]
FX The electron microscopy with in situ ion irradiation was accomplished at
Argonne National Laboratory at the IVEM-Tandem Facility, a U.S.
Department of Energy Facility funded by the DOE Office of Nuclear
Energy, operated under Contract No. DE-AC02-06CH11357 by UChicago
Argonne, LLC.
NR 31
TC 0
Z9 0
U1 7
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2016
VL 475
BP 156
EP 167
DI 10.1016/j.jnucmat.2016.04.012
PG 12
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DN8CR
UT WOS:000377307300019
ER
PT J
AU Chakraborty, P
Sabharwall, P
Carroll, MC
AF Chakraborty, Pritam
Sabharwall, Piyush
Carroll, Mark C.
TI A phase-field approach to model multi-axial and microstructure dependent
fracture in nuclear grade graphite
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID CONTINUUM DAMAGE MECHANICS; BRITTLE-FRACTURE
AB The fracture behavior of nuclear grade graphites is strongly influenced by underlying microstructural features such as the character of filler particles, and the distribution of pores and voids. These microstructural features influence the crack nucleation and propagation behavior, resulting in quasi-brittle fracture with a tortuous crack path and significant scatter in measured bulk strength. This study uses a phase-field method to model the microstructural and multi-axial fracture in H-451, a historic variant of nuclear graphite that provides the basis for an idealized study on a legacy grade. The representative volume elements are constructed from randomly located pores with random size obtained from experimentally determined log-normal distribution. The representative volume elements are then subjected to simulated multi-axial loading, and a reasonable agreement of the resulting fracture stress with experiments is obtained. Quasi-brittle stress-strain evolution with a tortuous crack path is also observed from the simulations and is consistent with experimental results. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Chakraborty, Pritam; Sabharwall, Piyush; Carroll, Mark C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Chakraborty, P (reprint author), 2525 Fremont Ave, Idaho Falls, ID 83401 USA.
EM pritam.chakraborty@inl.gov
FU U.S. Department of Energy-Nuclear Energy; U.S. Department of Energy
[DE-AC07-05ID14517]
FX This work was carried out under the Very High Temperature Reactor (VHTR)
Graphite Materials program supported through the U.S. Department of
Energy-Nuclear Energy. This manuscript has been authored by Battelle
Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S.
Department of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that
the United States Government retains a nonexclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States
Government purposes.
NR 29
TC 0
Z9 0
U1 8
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2016
VL 475
BP 200
EP 208
DI 10.1016/j.jnucmat.2016.04.006
PG 9
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DN8CR
UT WOS:000377307300022
ER
PT J
AU Chen, Y
Li, N
Bufford, DC
Li, J
Hattar, K
Wang, H
Zhang, X
AF Chen, Y.
Li, N.
Bufford, D. C.
Li, J.
Hattar, K.
Wang, H.
Zhang, X.
TI In situ study of heavy ion irradiation response of immiscible Cu/Fe
multilayers
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
DE In situ ion irradiation; Heavy ion irradiation; Immiscible interfaces;
Cu/Fe multilayers; Size effect
ID STACKING-FAULT TETRAHEDRA; RADIATION-DAMAGE; HE ION; NANOTWINNED METALS;
GRAIN-BOUNDARIES; STRENGTHENING MECHANISMS; ELECTRON-IRRADIATION; DEFECT
ACCUMULATION; HIGH-TEMPERATURE; TWIN BOUNDARIES
AB Recent studies show that immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals by providing active defect sinks that capture and annihilate radiation induced defect clusters. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In this study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electron microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Furthermore in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Chen, Y.; Li, J.; Wang, H.; Zhang, X.] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA.
[Chen, Y.; Li, N.] Los Alamos Natl Lab, MPA CINT, POB 1663, Los Alamos, NM 87545 USA.
[Bufford, D. C.; Hattar, K.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA.
[Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.
[Zhang, X.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA.
RP Zhang, X (reprint author), Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA.
EM zhangx@tamu.edu
RI Chen, Youxing/P-5006-2016; Li, Nan /F-8459-2010
OI Chen, Youxing/0000-0003-1111-4495; Li, Nan /0000-0002-8248-9027
FU NSF [DMR-1304101]; Division of Materials Science and Engineering, Office
of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of
Energy's National Nuclear Security Administration [DE-AC04-94AL85000]
FX We acknowledge financial support by NSF DMR-1304101. Michael Marshall
and Daniel Buller (Sandia National Laboratories) are acknowledged for
their assistance with the TEM and ion beam. Work performed by KH and DCB
was fully supported by the Division of Materials Science and
Engineering, Office of Basic Energy Sciences, U.S. Department of Energy.
Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000. Access to
microscopy and imaging center (MIC) at Texas A&M University is also
acknowledged.
NR 82
TC 2
Z9 2
U1 10
U2 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD JUL
PY 2016
VL 475
BP 274
EP 279
DI 10.1016/j.jnucmat.2016.04.009
PG 6
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA DN8CR
UT WOS:000377307300029
ER
PT J
AU Tang, M
Tumurugoti, P
Clark, B
Sundaram, SK
Amoroso, J
Marra, J
Sun, C
Lu, P
Wang, YQ
Jiang, YB
AF Tang, Ming
Tumurugoti, Priyatham
Clark, Braeden
Sundaram, S. K.
Amoroso, Jake
Marra, James
Sun, Cheng
Lu, Ping
Wang, Yongqiang
Jiang, Ying. -Bing.
TI Heavy ion irradiations on synthetic hollandite-type materials:
Ba(1.0)Cs(0.3)A(2.3)Ti(5.7)O(16) (A = Cr, Fe, Al)
SO JOURNAL OF SOLID STATE CHEMISTRY
LA English
DT Article
DE Hollandite; Amorphization; Radiation damage
ID NUCLEAR-WASTE IMMOBILIZATION; ELECTRON-IRRADIATION; RADIATION; SYNROC;
CERAMICS; CESIUM; DAMAGE; FORMS; MINERALS
AB The hollandite supergroup of minerals has received considerable attention as a nuclear waste form for immobilization of Cs. The radiation stability of synthetic hollandite-type compounds described generally as Ba(1.0)Cs(0.3)A(2.3)Ti(5.7)O(16) (A= Cr, Fe, Al) were evaluated by heavy ion (Kr) irradiations on polycrystalline single phase materials and multiphase materials incorporating the hollandite phases. Ion irradiation damage effects on these samples were examined using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Single phase compounds possess tetragonal structure with space group I4/m. GIXRD and TEM observations revealed that 600 key Kr irradiation-induced amorphization on single phase hollandites compounds occurred at a fluence between 2.5 x 10(14) Kr/cm(2) and 5 x 10(14) Kr/cm(2). The critical amorphization fluence of single phase hollandite compounds obtained by in situ 1 MeV Kr ion irradiation was around 3.25 x 10(14) Kr/cm(2). The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Tang, Ming; Sun, Cheng; Wang, Yongqiang] Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA.
[Tumurugoti, Priyatham; Clark, Braeden; Sundaram, S. K.] Alfred Univ, New York State Coll Ceram, Kazuo Inamori Sch Engn, Alfred, NY 14802 USA.
[Amoroso, Jake; Marra, James] Savannah River Natl Lab, Mat Sci & Technol Directorate, Aiken, SC 29808 USA.
[Lu, Ping] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Jiang, Ying. -Bing.] Univ New Mexico, TEM Lab, Albuquerque, NM 87131 USA.
RP Tang, M (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA.
EM mtang@lanl.gov
FU Department of Energy, Office of Nuclear Energy (DOE-NE); Department of
Energy's Nuclear Energy University Program (NEUP); Inamori Professorship
by Kyocera Corporation; US Department of Energy's National Nuclear
Security Administration [DE-AC04-94AL85000]; DOE Office of Nuclear
Energy by UChicago Argonne, LLC [DE-AC02-06CH11357]
FX The authors would like to thank the Department of Energy, Office of
Nuclear Energy (DOE-NE) for funding this work under the Fuel Cycle
Research and Development Program. The authors would also like to thank
John Vienna (Pacific Northwest National Laboratory), Terry Todd (Idaho
National Laboratory), Kimberly Gray and James Bresee (DOE-NE) for
project oversight and guidance.; The authors would also like to thank
the Department of Energy's Nuclear Energy University Program (NEUP) for
supporting this project. One of the authors (SKS) is grateful to the
generous support of Inamori Professorship by Kyocera Corporation. Sandia
National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the US Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000.; The electron
microscopy with in situ ion irradiation was accomplished at Argonne
National Laboratory at the IVEM-Tandem Facility, a U.S. Department of
Energy Facility funded by the DOE Office of Nuclear Energy, operated
under Contract no. DE-AC02-06CH11357 by UChicago Argonne, LLC.
NR 32
TC 1
Z9 1
U1 6
U2 14
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-4596
EI 1095-726X
J9 J SOLID STATE CHEM
JI J. Solid State Chem.
PD JUL
PY 2016
VL 239
BP 58
EP 63
DI 10.1016/j.jssc.2016.04.014
PG 6
WC Chemistry, Inorganic & Nuclear; Chemistry, Physical
SC Chemistry
GA DN9SW
UT WOS:000377422000009
ER
PT J
AU Webb, IK
Garimella, SVB
Norheim, RV
Baker, ES
Ibrahim, YM
Smith, RD
AF Webb, Ian K.
Garimella, Sandilya V. B.
Norheim, Randolph V.
Baker, Erin S.
Ibrahim, Yehia M.
Smith, Richard D.
TI A Structures for Lossless Ion Manipulations (SLIM) Module for Collision
Induced Dissociation
SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
LA English
DT Article
DE Collision induced dissociation; Ion mobility spectrometry; rf
Confinement; Ion optics; Peptide fragmentation; Manipulation; Conveyor
ID FLIGHT MASS-SPECTROMETRY; SURFACE-INDUCED DISSOCIATION;
MOBILITY-SEPARATED IONS; FUNNEL TRAP; DRIFT-TUBE; PROTEOMICS;
FRAGMENTATION; OPTIMIZATION; INTERFACE; PEPTIDES
AB A collision induced dissociation (CID) structure for lossless ion manipulations (SLIM) module is introduced and coupled to a quadrupole time-of-flight (QTOF) mass spectrometer. The SLIM CID module was mounted after an ion mobility (IM) drift tube to enable IM/CID/MS studies. The efficiency of CID was studied by using the model peptide leucine enkephalin. CID efficiencies (62%) compared favorably with other beam-type CID methods. Additionally, the SLIM CID module was used to fragment a mixture of nine peptides after IM separation. This work also represents the first application of SLIM in the 0.3 to 0.5 Torr pressure regime, an order of magnitude lower in pressure than previously studied.
C1 [Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, 3335 Innovat Ave K8-98,POB 999, Richland, WA 99352 USA.
Pacific NW Natl Lab, Environm Mol Sci Lab, 3335 Innovat Ave K8-98,POB 999, Richland, WA 99352 USA.
RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, 3335 Innovat Ave K8-98,POB 999, Richland, WA 99352 USA.
EM rds@pnnl.gov
RI Smith, Richard/J-3664-2012;
OI Smith, Richard/0000-0002-2381-2349; Garimella, Sandilya Venkata
Bhaskara/0000-0001-6649-9842
FU National Institutes of Health (NIH) NIGMS [5P41GM103493-13]; Department
of Energy, Office of Biological and Environmental Research Genome
Sciences Program under the Pan-omics project; Laboratory Directed
Research and Development (LDRD) program at the Pacific Northwest
National Laboratory; DOE [DE-AC05-76RL0 1830]
FX Portions of this research were supported by the National Institutes of
Health (NIH) NIGMS grant 5P41GM103493-13 (R.D.S.), by the Department of
Energy, Office of Biological and Environmental Research Genome Sciences
Program under the Pan-omics project, and the Laboratory Directed
Research and Development (LDRD, I.K.W. and E.S.B.) program at the
Pacific Northwest National Laboratory. Work was performed in the
Environmental Molecular Science Laboratory, a U.S. Department of Energy
(DOE) national scientific user facility at Pacific Northwest National
Laboratory (PNNL) in Richland, WA. PNNL is operated by Battelle for the
DOE under contract DE-AC05-76RL0 1830.
NR 37
TC 2
Z9 2
U1 5
U2 10
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1044-0305
EI 1879-1123
J9 J AM SOC MASS SPECTR
JI J. Am. Soc. Mass Spectrom.
PD JUL
PY 2016
VL 27
IS 7
BP 1285
EP 1288
DI 10.1007/s13361-016-1397-x
PG 4
WC Biochemical Research Methods; Chemistry, Analytical; Chemistry,
Physical; Spectroscopy
SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy
GA DN9QX
UT WOS:000377416200017
PM 27098413
ER
PT J
AU Wu, H
Li, YL
Miao, ZJ
Wang, YQ
Zhu, RS
Bie, RF
Wang, Y
AF Wu, Hao
Li, Yueli
Miao, Zhenjiang
Wang, Yuqi
Zhu, Runsheng
Bie, Rongfang
Wang, Yi
TI Creative and high-quality image composition based on a new criterion
SO JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION
LA English
DT Article
DE Image composition; Wavelet pyramid; Multi-scale composition; Semantic
matching; Image entropy; Joint probability; SIFT; GIST
ID ANNOTATION
AB Image compositing techniques are primarily utilized to achieve realistic composite results. Some existing image compositing methods, such as gradient domain and alpha matting, are widely used in the field of computer vision, and can typically achieve realistic results, especially for seamless boundaries. However, when the candidate composite images and the target images have obvious differences, such as color, texture and brightness, the composite results are unrealistic and inconsistent. At the same time, traditional compositing methods focus on basic feature matching, ignoring semantic rationality in composition processing. Quite a few compositing methods thus generate composite results without semantic rationality.
In this paper, a new multi-scale image composition method has been presented. In the composition process, wavelet pyramid and basic feature handling were used to achieve multi-scale compositions. More importantly, a new criterion was established, based on the semantic rationality. of images, which could ensure that the composite images are semantically valid. A large database was created to facilitate experimentation. The experiments showed that the methodology introduced in this paper produced superior results compared to traditional composition methods; the composite results were not only consistent and seamless, but were also semantically valid. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Wu, Hao; Bie, Rongfang] Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China.
[Wu, Hao] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Li, Yueli] Agr Univ Hebei, Coll Informat Sci & Technol, Baoding, Peoples R China.
[Wu, Hao; Miao, Zhenjiang; Wang, Yuqi; Zhu, Runsheng; Bie, Rongfang; Wang, Yi] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing, Peoples R China.
[Wang, Yi] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA.
RP Bie, RF (reprint author), Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China.; Bie, RF (reprint author), Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing, Peoples R China.
EM rongfangbie@163.com
FU National Natural Science Foundation of China [61371185, 61401029,
61571049]; Fundamental Research Funds for the Central Universities
[2014KJJCB32, 2013NT57, 2012LYB46]; SRF for ROCS, SEM; NSFC [61273274,
61370127, 61201158]; FRFCU [2014JBZ004, Z131110001913143]; [15ZR003];
[NSFB4123104]
FX This research is sponsored by National Natural Science Foundation of
China (Nos. 61371185, 61401029, 61571049), the Fundamental Research
Funds for the Central Universities (Nos. 2014KJJCB32, 2013NT57,
2012LYB46), Research Funds (15ZR003) and by SRF for ROCS, SEM, NSFC
61273274, 61370127 and 61201158, NSFB4123104, FRFCU 2014JBZ004,
Z131110001913143. Especially thanks to Research "Small Instance Model
For Massive Image Retrieval" and "Completion Material Optimized
Retrieval Based Image Completion".
NR 41
TC 1
Z9 1
U1 4
U2 5
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1047-3203
EI 1095-9076
J9 J VIS COMMUN IMAGE R
JI J. Vis. Commun. Image Represent.
PD JUL
PY 2016
VL 38
BP 100
EP 114
DI 10.1016/j.jvcir.2016.02.011
PG 15
WC Computer Science, Information Systems; Computer Science, Software
Engineering
SC Computer Science
GA DN5ZB
UT WOS:000377149100010
ER
PT J
AU Wu, H
Li, YL
Miao, ZJ
Wang, YQ
Zhu, RS
Bie, RF
Lie, R
AF Wu, Hao
Li, Yueli
Miao, Zhenjiang
Wang, Yuqi
Zhu, Runsheng
Bie, Rongfang
Lie, Rui
TI A new sampling algorithm for high-quality image matting
SO JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION
LA English
DT Article
DE Random sampling; Cost function; WLS filter; Multi-decompositions; SAD;
MSE
ID ANISOTROPIC DIFFUSION; SEGMENTATION
AB Image matting is the extraction of the foreground from an image through the use of provided information. It has been an important technique in the image and video editing field. Current image matting methods estimate the foreground and background, based on information provided regarding the nearby pixels. Color sampling has been an effective means for matting directly, and quite a few methods have achieved high quality matting results based on color sampling. However, there are some drawbacks; for example it is easy to overlook important candidate pixels for matting, and even if the candidate pixels are effectively selected, similar foregrounds and backgrounds will reduce the accuracy of the matting.
In this paper's work, a Weighted-Least Squares (WLS) filter was utilized to sharpen the boundaries between the foregrounds and backgrounds, which facilitated the matting process; and an innovative sampling criterion based on random searching for the matting was then presented. This innovative method could effectively prevent valid samples being overlooked, and could manage the relationships of the nearby and distant pixels. In this process, a new cost function was utilized to evaluate the candidate samples. Experiments utilizing an image database demonstrated that this method significantly improved the matting results. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Wu, Hao; Bie, Rongfang] Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China.
[Wu, Hao] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Li, Yueli] Agr Univ Hebei, Coll Informat Sci & Technol, Wuhan, Peoples R China.
[Wu, Hao; Miao, Zhenjiang; Wang, Yuqi; Zhu, Runsheng; Bie, Rongfang] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing, Peoples R China.
[Lie, Rui] Beijing Jiaotong Univ, Sch Civil Engn, Beijing, Peoples R China.
RP Bie, RF (reprint author), Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China.
EM rongfangbie@163.com
FU National Natural Science Foundation of China [61371185, 61401029,
61571049]; Fundamental Research Funds for the Central Universities
[2014KJJCB32, 2013NT57, 2012LYB46]; SRF for ROCS, SEM [NSFC 61273274,
61370127, 61201158, NSFB4123104, FRFCU 2014JBZ004, Z131110001913143];
[15ZR003]
FX This research is sponsored by National Natural Science Foundation of
China (Nos. 61371185, 61401029, 61571049), the Fundamental Research
Funds for the Central Universities (Nos. 2014KJJCB32, 2013NT57,
2012LYB46), Research Funds (15ZR003) and by SRF for ROCS, SEM, NSFC
61273274, 61370127 and 61201158, NSFB4123104, FRFCU 2014JBZ004,
Z131110001913143.
NR 32
TC 1
Z9 1
U1 6
U2 10
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 1047-3203
EI 1095-9076
J9 J VIS COMMUN IMAGE R
JI J. Vis. Commun. Image Represent.
PD JUL
PY 2016
VL 38
BP 573
EP 581
DI 10.1016/j.jvcir.2016.04.008
PG 9
WC Computer Science, Information Systems; Computer Science, Software
Engineering
SC Computer Science
GA DN5ZB
UT WOS:000377149100049
ER
PT J
AU Liu, Y
Ma, SG
Gao, MC
Zhang, C
Zhang, T
Yang, HJ
Wang, ZH
Qiao, JW
AF Liu, Yong
Ma, Shengguo
Gao, Michael C.
Zhang, Chuan
Zhang, Teng
Yang, Huijun
Wang, Zhihua
Qiao, Junwei
TI Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different
Conditions
SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND
MATERIALS SCIENCE
LA English
DT Article; Proceedings Paper
CT Symposium on High-Entropy Alloys held at the TMS Annual Meeting and
Exhibition
CY 2015
CL San Diego, CA
SP The Minerals, Met & Mat Soc
ID BULK METALLIC-GLASS; WEAR BEHAVIOR; CORROSION-RESISTANCE;
MICROSTRUCTURE; EVOLUTION; FRICTION; SEAWATER; CONTACT; PHASE
AB In order to understand the environmental effect on the mechanical behavior of high-entropy alloys, the tribological properties of AlCrCuFeNi2 are studied systematically in dry, simulated rainwater, and deionized water conditions against the Si3N4 ceramic ball at a series of different normal loads. The present study shows that both the friction and wear rate in simulated rainwater are the lowest. The simulated rainwater plays a significant role in the tribological behavior with the effect of forming passive film, lubricating, cooling, cleaning, and corrosion. The wear mechanism in simulated rainwater is mainly adhesive wear accompanied by abrasive wear as well as corrosive wear. In contrast, those in dry condition and deionized water are abrasive wear, adhesive wear, and surface plastic deformation. Oxidation contributes to the wear behavior in dry condition but is prevented in liquid condition. In addition, the phase diagram of Al (x) CrCuFeNi2 is predicted using CALPHAD modeling, which is in good agreement with the literature report and the present study.
C1 [Liu, Yong; Zhang, Teng; Yang, Huijun] Taiyuan Univ Technol, Res Inst Surface Engn, Taiyuan 030024, Peoples R China.
[Liu, Yong; Zhang, Teng; Yang, Huijun; Qiao, Junwei] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China.
[Ma, Shengguo; Wang, Zhihua] Taiyuan Univ Technol, Inst Appl Mech & Biomed Engn, Taiyuan 030024, Peoples R China.
[Gao, Michael C.] Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA.
[Gao, Michael C.] AECOM, POB 1959, Albany, OR USA.
[Zhang, Chuan] CompuTherm LLC, 437 S Yellowstone Dr,Suite 217, Madison, WI 53719 USA.
RP Yang, HJ (reprint author), Taiyuan Univ Technol, Res Inst Surface Engn, Taiyuan 030024, Peoples R China.
EM pineyang@126.com; qiaojunwei@gmail.com
NR 37
TC 2
Z9 2
U1 5
U2 18
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1073-5623
EI 1543-1940
J9 METALL MATER TRANS A
JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
PD JUL
PY 2016
VL 47A
IS 7
BP 3312
EP 3321
DI 10.1007/s11661-016-3396-8
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA DN9XT
UT WOS:000377434700012
ER
PT J
AU Gao, MC
Zhang, B
Guo, SM
Qiao, JW
Hawk, JA
AF Gao, M. C.
Zhang, B.
Guo, S. M.
Qiao, J. W.
Hawk, J. A.
TI High-Entropy Alloys in Hexagonal Close-Packed Structure
SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND
MATERIALS SCIENCE
LA English
DT Article; Proceedings Paper
CT Symposium on High-Entropy Alloys held at the TMS Annual Meeting and
Exhibition
CY 2015
CL San Diego, CA
SP The Minerals, Met & Mat Soc
ID PHASE-STABILITY; SYSTEM; MICROSTRUCTURES; ELEMENTS
AB The microstructures and properties of high-entropy alloys (HEAs) based on the face-centered cubic and body-centered cubic structures have been studied extensively in the literature, but reports on HEAs in the hexagonal close-packed (HCP) structure are very limited. Using an efficient strategy in combining phase diagram inspection, CALPHAD modeling, and ab initio molecular dynamics simulations, a variety of new compositions are suggested that may hold great potentials in forming single-phase HCP HEAs that comprise rare earth elements and transition metals, respectively. Experimental verification was carried out on CoFeReRu and CoReRuV using X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy.
C1 [Gao, M. C.] AECOM, Natl Energy Technol Lab, POB 1959, Albany, OR 97321 USA.
[Zhang, B.; Guo, S. M.] Louisiana State Univ, Dept Mech & Ind Engn, Baton Rouge, LA 70803 USA.
[Qiao, J. W.] Taiyuan Univ Technol, Dept Mat Sci & Engn, Taiyuan 030024, Peoples R China.
[Hawk, J. A.] Natl Energy Technol Lab, Struct Mat Dev Div, Albany, OR 97321 USA.
RP Gao, MC (reprint author), AECOM, Natl Energy Technol Lab, POB 1959, Albany, OR 97321 USA.
EM michael.gao@netl.doe.gov
NR 37
TC 12
Z9 12
U1 33
U2 53
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1073-5623
EI 1543-1940
J9 METALL MATER TRANS A
JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
PD JUL
PY 2016
VL 47A
IS 7
BP 3322
EP 3332
DI 10.1007/s11661-015-3091-1
PG 11
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA DN9XT
UT WOS:000377434700013
ER
PT J
AU Gao, MC
Zhang, B
Yang, S
Guo, SM
AF Gao, M. C.
Zhang, B.
Yang, S.
Guo, S. M.
TI Senary Refractory High-Entropy Alloy HfNbTaTiVZr
SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND
MATERIALS SCIENCE
LA English
DT Article; Proceedings Paper
CT Symposium on High-Entropy Alloys held at the TMS Annual Meeting and
Exhibition
CY 2015
CL San Diego, CA
SP The Minerals, Met & Mat Soc
ID SOLID-SOLUTION PHASE; MULTICOMPONENT ALLOYS; MOLECULAR-DYNAMICS; DESIGN;
BEHAVIOR
AB Discovery of new single-phase high-entropy alloys (HEAs) is important to understand HEA formation mechanisms. The present study reports computational design and experimental validation of a senary HEA, HfNbTaTiVZr, in a body-centered cubic structure. The phase diagrams and thermodynamic properties of this senary system were modeled using the CALPHAD method. Its atomic structure and diffusion constants were studied using ab initio molecular dynamics simulations. The microstructure of the as-cast HfNbTaTiVZr alloy was studied using X-ray diffraction and scanning electron microscopy, and the microsegregation in the as-cast state was found to qualitatively agree with the solidification predictions from CALPHAD. Supported by both simulation and experimental results, the HEA formation rules are discussed.
C1 [Gao, M. C.] AECOM, Natl Energy Technol Lab, POB 1959, Albany, OR 97321 USA.
[Zhang, B.; Guo, S. M.] Louisiana State Univ, Dept Mech & Ind Engn, Baton Rouge, LA 70803 USA.
[Yang, S.] Southern Univ, Baton Rouge, LA 70813 USA.
[Yang, S.] A&M Coll, Baton Rouge, LA 70813 USA.
RP Gao, MC (reprint author), AECOM, Natl Energy Technol Lab, POB 1959, Albany, OR 97321 USA.
EM michael.gao@netl.doe.gov; sguo2@lsu.edu
NR 42
TC 5
Z9 5
U1 14
U2 22
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1073-5623
EI 1543-1940
J9 METALL MATER TRANS A
JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
PD JUL
PY 2016
VL 47A
IS 7
BP 3333
EP 3345
DI 10.1007/s11661-015-3105-z
PG 13
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA DN9XT
UT WOS:000377434700014
ER
PT J
AU Liu, Y
Ma, SG
Gao, MC
Zhang, C
Zhang, T
Yang, HJ
Wang, ZH
Qiao, JW
AF Liu, Yong
Ma, Shengguo
Gao, Michael C.
Zhang, Chuan
Zhang, Teng
Yang, Huijun
Wang, Zhihua
Qiao, Junwei
TI Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different
Conditions (vol 47, pg 3312, 2016)
SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND
MATERIALS SCIENCE
LA English
DT Correction
C1 [Liu, Yong; Zhang, Teng; Yang, Huijun] Taiyuan Univ Technol, Res Inst Surface Engn, Taiyuan 030024, Peoples R China.
[Liu, Yong; Zhang, Teng; Yang, Huijun; Qiao, Junwei] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China.
[Ma, Shengguo; Wang, Zhihua] Taiyuan Univ Technol, Inst Appl Mech & Biomed Engn, Taiyuan 030024, Peoples R China.
[Gao, Michael C.] Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA.
[Gao, Michael C.] AECOM, POB 1959, Albany, OR USA.
[Zhang, Chuan] CompuTherm LLC, 437 S Yellowstone Dr,Suite 217, Madison, WI 53719 USA.
RP Yang, HJ (reprint author), Taiyuan Univ Technol, Res Inst Surface Engn, Taiyuan 030024, Peoples R China.
EM pineyang@126.com; qiaojunwei@gmail.com
NR 1
TC 0
Z9 0
U1 8
U2 9
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1073-5623
EI 1543-1940
J9 METALL MATER TRANS A
JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
PD JUL
PY 2016
VL 47A
IS 7
BP 3781
EP 3781
DI 10.1007/s11661-016-3434-6
PG 1
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA DN9XT
UT WOS:000377434700052
ER
PT J
AU Lahiani, MH
Dervishi, E
Ivanov, I
Chen, JH
Khodakovskaya, M
AF Lahiani, Mohamed H.
Dervishi, Enkeleda
Ivanov, Ilia
Chen, Jihua
Khodakovskaya, Mariya
TI Comparative study of plant responses to carbon-based nanomaterials with
different morphologies
SO NANOTECHNOLOGY
LA English
DT Article
DE carbon-based nanomaterials; properties of carbon nanomaterials;
germination; uptake of carbon nanotubes; aquaporin gene expression;
tomato seeds
ID SOIL MICROBIAL COMMUNITY; SURFACE-CHEMISTRY; SEED-GERMINATION;
MAMMALIAN-CELLS; RED SPINACH; IN-VITRO; NANOPARTICLES; NANOTUBES;
GROWTH; FULLERENE
AB The relationship between the morphology of carbon-based nanomaterials (CBNs) and the specific response of plants exposed to CBNs has not been studied systematically. Here, we prove that CBNs with different morphologies can activate cell growth, germination, and plant growth. A tobacco cell culture growth was found to increase by 22%-46% when CBNs such as helical multi-wall carbon nanotubes (MWCNTs), few-layered graphene, long MWCNTs, and short MWCNTs were added to the growth medium at a concentration of 50 mu g ml(-1). The germination of exposed tomato seeds, as well as the growth of exposed tomato seedlings, were significantly enhanced by the addition of all tested CBNs. The presence of CBNs inside exposed seeds was confirmed by transmission electron microscopy and Raman spectroscopy. The effects of helical MWCNTs on gene expression in tomato seeds and seedlings were investigated by microarray technology and real time-PCR. Helical MWCNTs affected a number of genes involved in cellular and metabolic processes and response to stress factors. It was shown that the expression of the tomato water channel gene in tomato seeds exposed to helical MWCNTs was upregulated. These established findings demonstrate that CBNs with different morphologies can cause the same biological effects and share similar mechanisms in planta.
C1 [Lahiani, Mohamed H.; Khodakovskaya, Mariya] Univ Arkansas, Dept Biol, Little Rock, AR 72204 USA.
[Dervishi, Enkeleda] Univ Arkansas, Ctr Integrat Nanotechnol Sci, Little Rock, AR 72204 USA.
[Dervishi, Enkeleda] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys, POB 1663, Los Alamos, NM 87545 USA.
[Dervishi, Enkeleda] Los Alamos Natl Lab, Applicat Div, POB 1663, Los Alamos, NM 87545 USA.
[Ivanov, Ilia; Chen, Jihua] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Khodakovskaya, Mariya] Russian Acad Sci, Far Eastern Branch, Inst Biol & Soil Sci, Vladivostok 690022, Russia.
RP Khodakovskaya, M (reprint author), Univ Arkansas, Dept Biol, Little Rock, AR 72204 USA.; Khodakovskaya, M (reprint author), Russian Acad Sci, Far Eastern Branch, Inst Biol & Soil Sci, Vladivostok 690022, Russia.
EM mvkhodakovsk@ualr.edu
RI Chen, Jihua/F-1417-2011; ivanov, ilia/D-3402-2015
OI Chen, Jihua/0000-0001-6879-5936; ivanov, ilia/0000-0002-6726-2502
NR 51
TC 0
Z9 0
U1 7
U2 25
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
EI 1361-6528
J9 NANOTECHNOLOGY
JI Nanotechnology
PD JUL 1
PY 2016
VL 27
IS 26
AR 265102
DI 10.1088/0957-4484/27/26/265102
PG 13
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA DO0TH
UT WOS:000377490700004
PM 27195934
ER
PT J
AU Bellerive, A
Klein, JR
McDonald, AB
Noble, AJ
Poon, AWP
AF Bellerive, A.
Klein, J. R.
McDonald, A. B.
Noble, A. J.
Poon, A. W. P.
CA SNO Collaboration
TI The Sudbury Neutrino Observatory
SO NUCLEAR PHYSICS B
LA English
DT Article
ID SOLAR MODELS; CALIBRATION SOURCE; OSCILLATIONS; SEARCH; MATTER
AB This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from B-8 decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. This review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).
C1 [Bellerive, A.] Carleton Univ, Dept Phys, Ottawa Carleton Inst Phys, Ottawa, ON K1S 5B6, Canada.
[Klein, J. R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[McDonald, A. B.; Noble, A. J.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada.
[Poon, A. W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Inst Nucl & Particle Astrophys, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
RP McDonald, AB (reprint author), Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada.
EM alainb@physics.carleton.ca; jrk@hep.upenn.edu; art@snolab.ca;
potato@snolab.ca; awpoon@lbl.gov
FU Canada: Natural Sciences and Engineering Research Council of Canada;
Canada: Industry Canada; Canada: National Research Council Canada;
Canada: Northern Ontario Heritage Fund; Canada: Atomic Energy of Canada,
Ltd.; Canada: Ontario Power Generation; Canada: High Performance
Computing Virtual Laboratory; Canada: Canada Foundation for Innovation;
Canada: Canada Research Chairs; US: Department of Energy; US: National
Energy Research Scientific Computing Center; US: Alfred P. Sloan
Foundation; UK: Science and Technology Facilities Council; Portugal:
Fundacao para a Ciencia e a Tecnologia
FX This research was supported by: Canada: Natural Sciences and Engineering
Research Council of Canada, Industry Canada, National Research Council
Canada, Northern Ontario Heritage Fund, Atomic Energy of Canada, Ltd.,
Ontario Power Generation, High Performance Computing Virtual Laboratory,
Canada Foundation for Innovation, Canada Research Chairs; US: Department
of Energy, National Energy Research Scientific Computing Center, Alfred
P. Sloan Foundation; UK: Science and Technology Facilities Council;
Portugal: Fundacao para a Ciencia e a Tecnologia. We thank the SNO
technical staff for their strong contributions. We thank Vale (formerly
Inco, Ltd.) for hosting this project.
NR 50
TC 3
Z9 3
U1 12
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0550-3213
EI 1873-1562
J9 NUCL PHYS B
JI Nucl. Phys. B
PD JUL
PY 2016
VL 908
BP 30
EP 51
DI 10.1016/j.nuclphysb.2016.04.035
PG 22
WC Physics, Particles & Fields
SC Physics
GA DN8MU
UT WOS:000377334000004
ER
PT J
AU Cao, J
Luk, KB
AF Cao, Jun
Luk, Kam-Biu
TI An overview of the Daya Bay reactor neutrino experiment
SO NUCLEAR PHYSICS B
LA English
DT Article
ID LOADED LIQUID SCINTILLATOR; ANTINEUTRINO SPECTRA; BASE-LINE;
OSCILLATIONS; SYSTEM
AB The Daya Bay Reactor Neutrino Experiment discovered an unexpectedly large neutrino oscillation related to the mixing angle theta(13) in 2012. This finding paved the way to the next generation of neutrino oscillation experiments. In this article, we review the history, featured design, and scientific results of Daya Bay. Prospects of the experiment are also described. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).
C1 [Cao, Jun] Inst High Energy Phys, Beijing 100039, Peoples R China.
[Luk, Kam-Biu] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Luk, Kam-Biu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Cao, J (reprint author), Inst High Energy Phys, Beijing 100039, Peoples R China.
EM caoj@ihep.ac.cn; k_luk@berkeley.edu
RI Cao, Jun/G-8701-2012
OI Cao, Jun/0000-0002-3586-2319
FU National Natural Science Foundation of China [11225525]; U.S. Department
of Energy [OHEP DE-AC02-05CH11231]
FX We would like to thank Jie Zhao for preparing Fig. 5. J.C. is partially
supported by the National Natural Science Foundation of China (11225525)
and K.B.L. is partially supported by the U.S. Department of Energy, OHEP
DE-AC02-05CH11231.
NR 37
TC 2
Z9 2
U1 3
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0550-3213
EI 1873-1562
J9 NUCL PHYS B
JI Nucl. Phys. B
PD JUL
PY 2016
VL 908
BP 62
EP 73
DI 10.1016/j.nuclphysb.2016.04.034
PG 12
WC Physics, Particles & Fields
SC Physics
GA DN8MU
UT WOS:000377334000006
ER
PT J
AU Aartsen, MG
Abraham, K
Ackermann, M
Adams, J
Aguilar, JA
Ahlers, M
Ahrens, M
Altmann, D
Anderson, T
Ansseau, I
Archinger, M
Arguelles, C
Arlen, TC
Auffenberg, J
Bai, X
Barwick, SW
Baum, V
Bay, R
Beatty, JJ
Tjus, JB
Becker, KH
Beiser, E
Berghaus, P
Berley, D
Bernardini, E
Bernhard, A
Besson, DZ
Binder, G
Bindig, D
Bissok, M
Blaufuss, E
Blumenthal, J
Boersma, DJ
Bohm, C
Borner, M
Bos, F
Bose, D
Boser, S
Botner, O
Braun, J
Brayeur, L
Bretz, HP
Buzinsky, N
Casey, J
Casier, M
Cheung, E
Chirkin, D
Christov, A
Clark, K
Classen, L
Coenders, S
Collin, GH
Conrad, JM
Cowen, DF
Silva, AHC
Daughhetee, J
Davis, JC
Day, M
de Andre, JPAM
De Clercq, C
Rosendo, ED
Dembinski, H
De Ridder, S
Desiati, P
de Vries, KD
de Wasseige, G
de With, M
De Young, T
Diaz-Velez, JC
di Lorenzo, V
Dumm, JP
Dunkman, M
Eberhardt, B
Ehrhardt, T
Eichmann, B
Euler, S
Evenson, PA
Fahey, S
Fazely, AR
Feintzeig, J
Felde, J
Filimonov, K
Finley, C
Flis, S
Fosig, CC
Fuchs, T
Gaisser, TK
Gaior, R
Gallagher, J
Gerhardt, L
Ghorbani, K
Gier, D
Gladstone, L
Glagla, M
Glusenkamp, T
Goldschmidt, A
Golup, G
Gonzalez, JG
Gora, D
Grant, D
Griffith, Z
Gross, A
Ha, C
Haack, C
Ismail, AH
Hallgren, A
Halzen, F
Hansen, E
Hansmann, B
Hanson, K
Hebecker, D
Heereman, D
Helbing, K
Hellauer, R
Hickford, S
Hignight, J
Hill, GC
Hoffman, KD
Hoffmann, R
Holzapfel, K
Homeier, A
Hoshina, K
Huang, F
Huber, M
Huelsnitz, W
Hulth, PO
Hultqvist, K
In, S
Ishihara, A
Jacobi, E
Japaridze, GS
Jeong, M
Jero, K
Jones, BJP
Jurkovic, M
Kappes, A
Karg, T
Karle, A
Kauer, M
Keivani, A
Kelley, JL
Kemp, J
Kheirandish, A
Kiryluk, J
Klein, SR
Kohnen, G
Koirala, R
Kolanoski, H
Konietz, R
Kopke, L
Kopper, C
Kopper, S
Koskinen, DJ
Kowalski, M
Krings, K
Kroll, G
Kroll, M
Kruckl, G
Kunnen, J
Kurahashi, N
Kuwabara, T
Labare, M
Lanfranchi, JL
Larson, MJ
Lesiak-Bzdak, M
Leuermann, M
Leuner, J
Lu, L
Lunemann, J
Madsen, J
Maggi, G
Mahn, KBM
Mandelartz, M
Maruyama, R
Mase, K
Matis, HS
Maunu, R
McNally, F
Meagher, K
Medici, M
Meli, A
Menne, T
Merino, G
Meures, T
Miarecki, S
Middell, E
Mohrmann, L
Montaruli, T
Morse, R
Nahnhauer, R
Naumann, U
Neer, G
Niederhausen, H
Nowicki, SC
Nygren, DR
Pollmann, AO
Olivas, A
Omairat, A
O'Murchadha, A
Palczewski, T
Pandya, H
Pankova, DV
Paua, L
Pepper, JA
de los Heros, CP
Pfendner, C
Pieloth, D
Pinat, E
Posselt, J
Price, PB
Przybylski, GT
Quinnan, M
Raab, C
Radel, L
Rameez, M
Rawlins, K
Reimann, R
Relich, M
Resconi, E
Rhode, W
Richman, M
Richter, S
Riedel, B
Robertson, S
Rongen, M
Rott, C
Ruhe, T
Ryckbosch, D
Sabbatini, L
Sander, HG
Sandrock, A
Sandroos, J
Sarkart, S
Schatto, K
Schimp, M
Schmidt, T
Schoenen, S
Schoneberg, S
Schonwald, A
Schulte, L
Schumacher, L
Seckel, D
Seunarine, S
Soldin, D
Song, M
Spiczak, GM
Spiering, C
Stahlberg, M
Stamatikos, M
Stanev, T
Stasik, A
Steuer, A
Stezelberger, T
Stokstad, RG
Stossl, A
Strom, R
Strotjohann, NL
Sullivan, GW
Sutherland, M
Taavola, H
Taboada, I
Tatar, J
Ter-Antonyan, S
Terliuk, A
Tesic, G
Tilav, S
Toale, PA
Tobin, MN
Toscano, S
Tosi, D
Tselengidou, M
Turcati, A
Unger, E
Usner, M
Vallecorsa, S
Vandenbroucke, J
van Eijndhoven, N
Vanheule, S
van Santen, J
Veenkamp, J
Vehring, M
Voge, M
Vraeghe, M
Walck, C
Wallace, A
Wallraff, M
Wandkowsky, N
Weaver, C
Wendt, C
Westerhoff, S
Whelan, BJ
Wiebe, K
Wiebusch, CH
Wille, L
Williams, DR
Wills, L
Wissing, H
Wolf, M
Wood, TR
Woschnagg, K
Xu, DL
Xu, XW
Xu, Y
Yanez, JP
Yodh, G
Yoshida, S
Zoll, M
AF Aartsen, M. G.
Abraham, K.
Ackermann, M.
Adams, J.
Aguilar, J. A.
Ahlers, M.
Ahrens, M.
Altmann, D.
Anderson, T.
Ansseau, I.
Archinger, M.
Arguelles, C.
Arlen, T. C.
Auffenberg, J.
Bai, X.
Barwick, S. W.
Baum, V.
Bay, R.
Beatty, J. J.
Tjus, J. Becker
Becker, K. -H.
Beiser, E.
Berghaus, P.
Berley, D.
Bernardini, E.
Bernhard, A.
Besson, D. Z.
Binder, G.
Bindig, D.
Bissok, M.
Blaufuss, E.
Blumenthal, J.
Boersma, D. J.
Bohm, C.
Boerner, M.
Bos, F.
Bose, D.
Boeser, S.
Botner, O.
Braun, J.
Brayeur, L.
Bretz, H. -P.
Buzinsky, N.
Casey, J.
Casier, M.
Cheung, E.
Chirkin, D.
Christov, A.
Clark, K.
Classen, L.
Coenders, S.
Collin, G. H.
Conrad, J. M.
Cowen, D. F.
Silva, A. H. Cruz
Daughhetee, J.
Davis, J. C.
Day, M.
de Andre, J. P. A. M.
De Clercq, C.
Rosendo, E. del Pino
Dembinski, H.
De Ridder, S.
Desiati, P.
de Vries, K. D.
de wasseige, G.
de With, M.
De Young, T.
Diaz-Velez, J. C.
di Lorenzo, V.
Dumm, J. P.
Dunkman, M.
Eberhardt, B.
Ehrhardt, T.
Eichmann, B.
Euler, S.
Evenson, P. A.
Fahey, S.
Fazely, A. R.
Feintzeig, J.
Felde, J.
Filimonov, K.
Finley, C.
Flis, S.
Foesig, C. -C.
Fuchs, T.
Gaisser, T. K.
Gaior, R.
Gallagher, J.
Gerhardt, L.
Ghorbani, K.
Gier, D.
Gladstone, L.
Glagla, M.
Gluesenkamp, T.
Goldschmidt, A.
Golup, G.
Gonzalez, J. G.
Gora, D.
Grant, D.
Griffith, Z.
Gross, A.
Ha, C.
Haack, C.
Ismail, A. Haj
Hallgren, A.
Halzen, F.
Hansen, E.
Hansmann, B.
Hanson, K.
Hebecker, D.
Heereman, D.
Helbing, K.
Hellauer, R.
Hickford, S.
Hignight, J.
Hill, G. C.
Hoffman, K. D.
Hoffmann, R.
Holzapfel, K.
Homeier, A.
Hoshina, K.
Huang, F.
Huber, M.
Huelsnitz, W.
Hulth, P. O.
Hultqvist, K.
In, S.
Ishihara, A.
Jacobi, E.
Japaridze, G. S.
Jeong, M.
Jero, K.
Jones, B. J. P.
Jurkovic, M.
Kappes, A.
Karg, T.
Karle, A.
Kauer, M.
Keivani, A.
Kelley, J. L.
Kemp, J.
Kheirandish, A.
Kiryluk, J.
Klein, S. R.
Kohnen, G.
Koirala, R.
Kolanoski, H.
Konietz, R.
Koepke, L.
Kopper, C.
Kopper, S.
Koskinen, D. J.
Kowalski, M.
Krings, K.
Kroll, G.
Kroll, M.
Krueckl, G.
Kunnen, J.
Kurahashi, N.
Kuwabara, T.
Labare, M.
Lanfranchi, J. L.
Larson, M. J.
Lesiak-Bzdak, M.
Leuermann, M.
Leuner, J.
Lu, L.
Luenemann, J.
Madsen, J.
Maggi, G.
Mahn, K. B. M.
Mandelartz, M.
Maruyama, R.
Mase, K.
Matis, H. S.
Maunu, R.
McNally, F.
Meagher, K.
Medici, M.
Meli, A.
Menne, T.
Merino, G.
Meures, T.
Miarecki, S.
Middell, E.
Mohrmann, L.
Montaruli, T.
Morse, R.
Nahnhauer, R.
Naumann, U.
Neer, G.
Niederhausen, H.
Nowicki, S. C.
Nygren, D. R.
Pollmann, A. Obertacke
Olivas, A.
Omairat, A.
O'Murchadha, A.
Palczewski, T.
Pandya, H.
Pankova, D. V.
Paua, L.
Pepper, J. A.
de los Heros, C. Perez
Pfendner, C.
Pieloth, D.
Pinat, E.
Posselt, J.
Price, P. B.
Przybylski, G. T.
Quinnan, M.
Raab, C.
Raedel, L.
Rameez, M.
Rawlins, K.
Reimann, R.
Relich, M.
Resconi, E.
Rhode, W.
Richman, M.
Richter, S.
Riedel, B.
Robertson, S.
Rongen, M.
Rott, C.
Ruhe, T.
Ryckbosch, D.
Sabbatini, L.
Sander, H. -G.
Sandrock, A.
Sandroos, J.
Sarkart, S.
Schatto, K.
Schimp, M.
Schmidt, T.
Schoenen, S.
Schoeneberg, S.
Schoenwald, A.
Schulte, L.
Schumacher, L.
Seckel, D.
Seunarine, S.
Soldin, D.
Song, M.
Spiczak, G. M.
Spiering, C.
Stahlberg, M.
Stamatikos, M.
Stanev, T.
Stasik, A.
Steuer, A.
Stezelberger, T.
Stokstad, R. G.
Stoessl, A.
Stroem, R.
Strotjohann, N. L.
Sullivan, G. W.
Sutherland, M.
Taavola, H.
Taboada, I.
Tatar, J.
Ter-Antonyan, S.
Terliuk, A.
Tesic, G.
Tilav, S.
Toale, P. A.
Tobin, M. N.
Toscano, S.
Tosi, D.
Tselengidou, M.
Turcati, A.
Unger, E.
Usner, M.
Vallecorsa, S.
Vandenbroucke, J.
van Eijndhoven, N.
Vanheule, S.
van Santen, J.
Veenkamp, J.
Vehring, M.
Voge, M.
Vraeghe, M.
Walck, C.
Wallace, A.
Wallraff, M.
Wandkowsky, N.
Weaver, Ch.
Wendt, C.
Westerhoff, S.
Whelan, B. J.
Wiebe, K.
Wiebusch, C. H.
Wille, L.
Williams, D. R.
Wills, L.
Wissing, H.
Wolf, M.
Wood, T. R.
Woschnagg, K.
Xu, D. L.
Xu, X. W.
Xu, Y.
Yanez, J. P.
Yodh, G.
Yoshida, S.
Zoll, M.
TI Neutrino oscillation studies with IceCube-DeepCore
SO NUCLEAR PHYSICS B
LA English
DT Article
ID SOUTH-POLE; SYSTEM; MATTER; ICE
AB IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed. (C) 2016 Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).
C1 [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paua, L.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany.
[Aartsen, M. G.; Hill, G. C.; Robertson, S.; Wallace, A.; Whelan, B. J.] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia.
[Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, 3211 Providence Dr, Anchorage, AK 99508 USA.
[Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA.
[Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA.
[Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Tatar, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Tatar, J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Tjus, J. Becker; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany.
[Homeier, A.; Schulte, L.; Voge, M.] Univ Bonn, Inst Phys, Nussallee 12, D-53115 Bonn, Germany.
[Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium.
[Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de wasseige, G.; Golup, G.; Kunnen, J.; Luenemann, J.; Maggi, G.; Toscano, S.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium.
[Collin, G. H.; Conrad, J. M.; Jones, B. J. P.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Gaior, R.; Ishihara, A.; Kuwabara, T.; Lu, L.; Mase, K.; Relich, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan.
[Adams, J.] Univ Canterbury, Dept Phys & Astron, Private Bag 4800, Christchurch 1, New Zealand.
[Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Hansen, E.; Koskinen, D. J.; Larson, M. J.; Medici, M.; Sarkart, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Boerner, M.; Fuchs, T.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.] Tech Univ Dortmund, Dept Phys, D-44221 Dortmund, Germany.
[de Andre, J. P. A. M.; De Young, T.; Hignight, J.; Mahn, K. B. M.; Neer, G.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Buzinsky, N.; Grant, D.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Weaver, Ch.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada.
[Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany.
[Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpulsculaire, CH-1211 Geneva, Switzerland.
[De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium.
[Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paua, L.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
[Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA.
[Archinger, M.; Baum, V.; Boeser, S.; Rosendo, E. del Pino; di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C. -C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H. -G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany.
[Kohnen, G.] Univ Mons, B-7000 Mons, Belgium.
[Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.] Tech Univ Munich, D-85748 Garching, Germany.
[Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
[Sarkart, S.] Univ Oxford, Dept Phys, 1 Keble Rd, Oxford OX1 3NP, England.
[Kurahashi, N.; Richman, M.; Wills, L.] Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA.
[Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA.
[Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA.
[Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.
[Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys & Astron, SE-10691 Stockholm, Sweden.
[Bose, D.; In, S.; Jeong, M.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea.
[Clark, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
[Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
[Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Anderson, T.; Arlen, T. C.; Cowen, D. F.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Pankova, D. V.; Quinnan, M.; Tesic, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; de los Heros, C. Perez; Stroem, R.; Taavola, H.; Unger, E.] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden.
[Becker, K. -H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Naumann, U.; Pollmann, A. Obertacke; Omairat, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany.
[Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kowalski, M.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; van Santen, J.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany.
[Aguilar, J. A.; Ansseau, I.; Hoshina, K.] Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, Tokyo 1130032, Japan.
[Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Koskinen, DJ (reprint author), Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.; Grant, D (reprint author), Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada.; Boser, S (reprint author), Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany.; Clark, K (reprint author), Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
EM sboeser@uni-mainz.de; kclark@physics.utoronto.ca; drg@ualberta.ca;
koskinen@nbi.ku.dk
RI Tjus, Julia/G-8145-2012; Maruyama, Reina/A-1064-2013; Beatty,
James/D-9310-2011; Wiebusch, Christopher/G-6490-2012; Koskinen,
David/G-3236-2014;
OI Maruyama, Reina/0000-0003-2794-512X; Beatty, James/0000-0003-0481-4952;
Wiebusch, Christopher/0000-0002-6418-3008; Koskinen,
David/0000-0002-0514-5917; Sarkar, Subir/0000-0002-3542-858X; Arguelles
Delgado, Carlos/0000-0003-4186-4182
FU U.S. National Science Foundation-Office of Polar Programs; U.S. National
Science Foundation-Physics Division; University of Wisconsin Alumni
Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid
infrastructure at the University of Wisconsin-Madison; Open Science Grid
(OSG) grid infrastructure; U.S. Department of Energy; National Energy
Research Scientific Computing Center; Louisiana Optical Network
Initiative (LONI) grid computing resources; Natural Sciences and
Engineering Research Council of Canada; WestGrid and Compute/Calcul
Canada; Swedish Research Council; Swedish Polar Research Secretariat;
Swedish National Infrastructure for Computing (SNIC); Knut and Alice
Wallenberg Foundation, Sweden; German Ministry for Education and
Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz
Alliance for Astroparticle Physics (HAP); Research Department of Plasmas
with Complex Interactions (Bochum), Germany; Fund for Scientific
Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to
encourage scientific and technological research in industry (IWT);
Belgian Federal Science Policy Office (Belspo); University Of Oxford,
United Kingdom; Marsden Fund, New Zealand; Australian Research Council;
Japan Society for Promotion of Science (JSPS); Swiss National Science
Foundation (SNSF), Switzerland; National Research Foundation of Korea
(NRF); Villum Fonden; Danish National Research Foundation (DNRF),
Denmark
FX We acknowledge the support from the following agencies: U.S. National
Science Foundation-Office of Polar Programs, U.S. National Science
Foundation-Physics Division, University of Wisconsin Alumni Research
Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure
at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid
infrastructure; U.S. Department of Energy, and National Energy Research
Scientific Computing Center, the Louisiana Optical Network Initiative
(LONI) grid computing resources; Natural Sciences and Engineering
Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish
Research Council, Swedish Polar Research Secretariat, Swedish National
Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg
Foundation, Sweden; German Ministry for Education and Research (BMBF),
Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for
Astroparticle Physics (HAP), Research Department of Plasmas with Complex
Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO),
FWO Odysseus programme, Flanders Institute to encourage scientific and
technological research in industry (IWT), Belgian Federal Science Policy
Office (Belspo); University Of Oxford, United Kingdom; Marsden Fund, New
Zealand; Australian Research Council; Japan Society for Promotion of
Science (JSPS); the Swiss National Science Foundation (SNSF),
Switzerland; National Research Foundation of Korea (NRF); Villum Fonden,
Danish National Research Foundation (DNRF), Denmark.
NR 33
TC 0
Z9 0
U1 3
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0550-3213
EI 1873-1562
J9 NUCL PHYS B
JI Nucl. Phys. B
PD JUL
PY 2016
VL 908
BP 161
EP 177
DI 10.1016/j.nuclphysb.2016.03.028
PG 17
WC Physics, Particles & Fields
SC Physics
GA DN8MU
UT WOS:000377334000012
ER
PT J
AU Karaseov, PA
Karabeshkin, KV
Mongo, EE
Titov, AI
Ullah, MW
Kuronen, A
Djurabekova, F
Nordlund, K
AF Karaseov, P. A.
Karabeshkin, K. V.
Mongo, E. E.
Titov, A. I.
Ullah, M. W.
Kuronen, A.
Djurabekova, F.
Nordlund, K.
TI Experimental study and MD simulation of damage formation in GaN under
atomic and molecular ion irradiation
SO VACUUM
LA English
DT Article; Proceedings Paper
CT 22nd International Conference on the Interaction of Ions with Surfaces
CY AUG 20-24, 2015
CL Moscow, RUSSIA
SP Russian Federat, Minist Educ & Sci, Russian Acad Sci, Natl Nucl Res Univ, Moscow State Univ, St Petersburg State Polytechn Univ, Moscow Aviat Inst, Yaroslavl State Univ, Russian Acad Sci, Inst Microelectron Technol
DE Ion beam irradiation; Radiation-induced defects; GaN; MD simulations;
Molecular ions; Cluster ions
ID COLLISION CASCADES; DYNAMICS; SEMICONDUCTORS; IMPLANTATION
AB Structure damage formation in GaN under light P and heavy Ag monatomic and small molecular PF4 ions is studied by RBS/C and classical molecular dynamics (MD) simulations. Molecules are found to be most efficient in surface amorphization, whereas in the sample bulk Ag ions produce more damage than others. Cumulative MD simulations reveal nonlinear increase of big defect cluster generation in dense collision cascades formed by molecules at the surface vicinity and along most part of Ag ion path. Creation of these big defect clusters intensifies all processes responsible for stable damage formation, in particular, it is one of the reasons of experimentally observed peculiarities of damage production. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Karaseov, P. A.; Karabeshkin, K. V.; Mongo, E. E.; Titov, A. I.] St Petersburg Polytech Univ, Dept Phys Elect, Peter Great St,29 Polytech Skaya St, St Petersburg 195251, Russia.
[Ullah, M. W.; Kuronen, A.; Djurabekova, F.; Nordlund, K.] Univ Helsinki, Dept Phys, POB 43, FIN-00014 Helsinki, Finland.
[Ullah, M. W.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Karaseov, PA (reprint author), St Petersburg Polytech Univ, Dept Phys Elect, Peter Great St,29 Polytech Skaya St, St Petersburg 195251, Russia.
EM platon.karaseov@spbstu.ru
RI Titov, Andrey/A-4608-2017; Ullah, Mohammad/E-1526-2017;
OI Titov, Andrey/0000-0003-4933-9534; Ullah, Mohammad/0000-0001-6190-591X;
Djurabekova, Flyura/0000-0002-5828-200X; Nordlund,
Kai/0000-0001-6244-1942
NR 19
TC 0
Z9 0
U1 5
U2 23
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0042-207X
J9 VACUUM
JI Vacuum
PD JUL
PY 2016
VL 129
BP 166
EP 169
DI 10.1016/j.vacuum.2016.01.011
PG 4
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA DN8FB
UT WOS:000377313500029
ER
PT J
AU Rubin, MB
Vorobiev, O
Vitali, E
AF Rubin, M. B.
Vorobiev, O.
Vitali, E.
TI A thermomechanical anisotropic model for shock loading of
elastic-plastic and elastic-viscoplastic materials with application to
jointed rock
SO COMPUTATIONAL MECHANICS
LA English
DT Article
DE Anisotropic elasticity; Anisotropic plasticity; Large deformations;
Plasticity; Thermomechanical; Viscoplasticity
ID 2ND LAW; MICROSTRUCTURAL VARIABLES; CONSTITUTIVE-EQUATIONS;
THERMODYNAMICS; TERMS
AB A large deformation thermomechanical model is developed for shock loading of a material that can exhibit elastic and inelastic anisotropy. Use is made of evolution equations for a triad of microstructural vectors which model elastic deformations and directions of anisotropy. Specific constitutive equations are presented for a material with orthotropic elastic response. The rate of inelasticity depends on an orthotropic yield function that can be used to model weak fault planes with failure in shear and which exhibits a smooth transition to isotropic response at high compression. Moreover, a robust, strongly objective numerical algorithm is proposed for both rate-independent and rate-dependent response. The predictions of the continuum model are examined by comparison with exact steady-state solutions. Also, the constitutive equations are used to obtain a simplified continuum model of jointed rock which is compared with high fidelity numerical solutions that model a persistent system of joints explicitly in the rock medium.
C1 [Rubin, M. B.] Technion Israel Inst Technol, Fac Mech Engn, IL-32000 Haifa, Israel.
[Vorobiev, O.; Vitali, E.] Lawrence Livermore Natl Lab, L-286,POB 808, Livermore, CA 94550 USA.
RP Vorobiev, O (reprint author), Lawrence Livermore Natl Lab, L-286,POB 808, Livermore, CA 94550 USA.
EM mbrubin@tx.technion.ac.il; vorobiev1@llnl.gov; vitali1@llnl.gov
FU Lawrence National Laboratory [DE-AC52-07NA27344]; MB Rubin's Gerard
Swope Chair in Mechanics
FX The Source Physics Experiments (SPE) would not have been possible
without the support of many people from several organizations. The
authors wish to express their gratitude to the National Nuclear Security
Administration, Defense Nuclear Nonproliferation Research and
Development (DNN R&D), and the SPE working group, a multi-institutional
and interdisciplinary group of scientists and engineers. This work was
done by Lawrence National Laboratory under Contract DE-AC52-07NA27344.
This research was also partially supported by MB Rubin's Gerard Swope
Chair in Mechanics.
NR 28
TC 0
Z9 0
U1 3
U2 7
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0178-7675
EI 1432-0924
J9 COMPUT MECH
JI Comput. Mech.
PD JUL
PY 2016
VL 58
IS 1
BP 107
EP 128
DI 10.1007/s00466-016-1284-0
PG 22
WC Mathematics, Interdisciplinary Applications; Mechanics
SC Mathematics; Mechanics
GA DN6LU
UT WOS:000377187000007
ER
PT J
AU Larson, J
Billups, SC
AF Larson, Jeffrey
Billups, Stephen C.
TI Stochastic derivative-free optimization using a trust region framework
SO COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
LA English
DT Article
DE Derivative-free optimization; Stochastic optimization; Model-based trust
region methods
ID APPROXIMATION
AB This paper presents a trust region algorithm to minimize a function f when one has access only to noise-corrupted function values . The model-based algorithm dynamically adjusts its step length, taking larger steps when the model and function agree and smaller steps when the model is less accurate. The method does not require the user to specify a fixed pattern of points used to build local models and does not repeatedly sample points. If f is sufficiently smooth and the noise is independent and identically distributed with mean zero and finite variance, we prove that our algorithm produces iterates such that the corresponding function gradients converge in probability to zero. We present a prototype of our algorithm that, while simplistic in its management of previously evaluated points, solves benchmark problems in fewer function evaluations than do existing stochastic approximation methods.
C1 [Larson, Jeffrey] Argonne Natl Lab, 9700 S Cass Ave,Bldg 240, Lemont, IL 60439 USA.
[Billups, Stephen C.] Univ Colorado, POB 173364,CB 170, Denver, CO 80217 USA.
RP Larson, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave,Bldg 240, Lemont, IL 60439 USA.
EM jmlarson@anl.gov; Stephen.Billups@ucdenver.edu
OI Billups, Stephen/0000-0003-3627-0793
FU U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]
FX We thank Alexandre Proutiere for providing critical insights that
allowed this work to be completed. We also thank Katya Scheinberg and an
anonymous referee for alerting us to errors in earlier drafts of our
analysis. We thank Layne Watson for sending us the Fortran code for
QNSTOP. This material is based upon work supported by the U.S.
Department of Energy, Office of Science, under Contract
DE-AC02-06CH11357. We thank Gail Pieper for her useful language editing.
NR 26
TC 0
Z9 0
U1 2
U2 2
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0926-6003
EI 1573-2894
J9 COMPUT OPTIM APPL
JI Comput. Optim. Appl.
PD JUL
PY 2016
VL 64
IS 3
BP 619
EP 645
DI 10.1007/s10589-016-9827-z
PG 27
WC Operations Research & Management Science; Mathematics, Applied
SC Operations Research & Management Science; Mathematics
GA DN2CP
UT WOS:000376872000001
ER
PT J
AU Patton, HJ
AF Patton, Howard J.
TI A physical basis for M-s-yield scaling in hard rock and implications for
late-time damage of the source medium
SO GEOPHYSICAL JOURNAL INTERNATIONAL
LA English
DT Article
DE Seismic monitoring and test-ban treaty verification; Surface waves and
free oscillations; Computational seismology
ID UNDERGROUND NUCLEAR-EXPLOSIONS; JOINT VERIFICATION EXPERIMENT; ADVANCED
SEISMIC ANALYSES; RIVER TEST-SITE; SURFACE-WAVES; SOURCE MODELS;
TECTONIC RELEASE; EARTHQUAKES; DETONATIONS; RADIATION
AB Surface wave magnitude M-s for a compilation of 72 nuclear tests detonated in hard rock media for which yields and burial depths have been reported in the literature is shown to scale with yield W as a+b x log[W], where a=2.50+/-0.08 and b=0.80+/-0.05. While the exponent b is consistent with an M-s scaling model for fully coupled, normal containment-depth explosions, the intercept a is offset 0.45 magnitude units lower than the model. The cause of offset is important to understand in terms of the explosion source. Hard rock explosions conducted in extensional and compressional stress regimes show similar offsets, an indication that the tectonic setting in which an explosion occurs plays no role causing the offset. The scaling model accounts for the effects of source medium material properties on the generation of 20-s period Rayleigh wave amplitudes. Aided by thorough characterizations of the explosion and tectonic release sources, an extensive analysis of the 1963 October 26 Shoal nuclear test detonated in granite 27 miles southeast of Fallon NV shows that the offset is consistent with the predictions of a material damage source model related to non-linear stress wave interactions with the free surface. This source emits Rayleigh waves with polarity opposite to waves emitted by the explosion. The Shoal results were extended to analyse surface waves from the 1962 February 15 Hardhat nuclear test, the 1988 September 14 Soviet Joint Verification Experiment, and the anomalous 1979 August 18 northeast Balapan explosion which exhibits opposite polarity, azimuth-independent source component U-1 compared to an explosion. Modelling these tests shows that Rayleigh wave amplitudes generated by the damage source are nearly as large as or larger than amplitudes from the explosion. As such, destructive interference can be drastic, introducing metastable conditions due to the sensitivity of reduced amplitudes to Rayleigh wave initial phase angles of the explosion and damage sources. This meta-stability is a likely source of scatter in M-s-yield scaling observations. The agreement of observed scaling exponent b with the model suggests that the damage source strength does not vary much with yield, in contrast to explosions conducted in weak media where M-s scaling rates are greater than the model predicts, and the yield dependence of the damage source strength is significant. This difference in scaling behaviour is a consequence of source medium material properties.
C1 [Patton, Howard J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Patton, HJ (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM patton@lanl.gov
FU LANL [DE-AC52-06NA25946]
FX I am very grateful to Profs Paul G. Richards of Lamont-Doherty Earth
Observatory, Columbia University, New York, USA, and Christopher M.
Wright of the School of Physical, Environmental and Mathematical
Science, The University of New South Wales, Canberra, Australia for
sharing their respective compilations of nuclear explosions with
reported yields, depths of burial, etc. Their willingness to share this
information was an important enabler for the body of work reported
herein. I thank Dr Neil Selby of Blacknest AWE for providing amplitude
data used in the study of Shoal and station Ms determinations
from Blacknest's explosion catalogue. Drs Zhen Huang and Rod Whitaker of
Los Alamos National Laboratory (LANL) assisted with digitization of
records plotted in Figs 5 and 6, and Dr Michael Cleveland (LANL)
provided a helpful review of the manuscript before it was submitted to
journal. Dr Jeffry Stevens of Leidos, Inc. reviewed the submitted
manuscript. I benefitted from technical interactions with Dr Stevens
over the years on topics related to surface-wave generation by
underground explosions. This work was performed at LANL under Award
Number DE-AC52-06NA25946, and the manuscript has a LANL Unlimited
Release Number LA-UR-15-28695.
NR 48
TC 1
Z9 1
U1 0
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0956-540X
EI 1365-246X
J9 GEOPHYS J INT
JI Geophys. J. Int.
PD JUL
PY 2016
VL 206
IS 1
BP 191
EP 204
DI 10.1093/gji/ggw140
PG 14
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DN6RV
UT WOS:000377204400012
ER
PT J
AU Manin, J
Bardi, M
Pickett, LM
Payri, R
AF Manin, J.
Bardi, M.
Pickett, L. M.
Payri, R.
TI Boundary condition and fuel composition effects on injection processes
of high-pressure sprays at the microscopic level
SO INTERNATIONAL JOURNAL OF MULTIPHASE FLOW
LA English
DT Article
DE Injection; Sprays; Fuels; Microscopy
ID DIFFERENT COMBUSTION VESSELS; DIESEL SPRAYS; PENETRATION
AB Detailed imaging of n-dodecane and ethanol sprays injected in a constant-flow, high-pressure, high temperature optically accessible chamber was performed. High-speed, diffused back-illuminated long-distance microscopy was used to resolve the spray structure in the near-nozzle field. The effect of injection and ambient pressures, as well as fuel temperature and composition have been studied through measurements of the spray penetration rates, hydraulic delays and spreading angles. Additional information such as transient flow velocities have been extracted from the measurements and compared to a control-volume spray model. The analysis demonstrated the influence of outlet flow on spray development with lower penetration velocities and wider spreading angles during the transients (start and end of injection) than during the quasi-steady period of the injection. The effect of fuel composition on penetration was limited, while spreading angle measurements showed wider sprays for ethanol. In contrast, varying fuel temperature led to varying penetration velocities, while spreading angle remained constant during the quasi-steady period of the injection. Fuel temperature affected injector performance, with shorter delays as fuel temperature was increased. The comparisons between predicted and measured penetration rates showed differences suggesting that the transient behavior of the spreading angle of the sprays modified spray development significantly in the near-field. The reasonable agreement between predicted and measured flow velocity at and after the end of injection suggested that the complete mixing assumptions made by the model were valid in the near nozzle region during this period, when injected flow velocities are reduced. Published by Elsevier Ltd.
C1 [Manin, J.; Pickett, L. M.] Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA.
[Bardi, M.] IFP Energies Nouvelles, 1 & 4 Ave Bois Preau, F-92852 Rueil Malmaison, France.
[Payri, R.] Univ Politecn Valencia, CMT Motores Term, Camino Vera S-N, E-46022 Valencia, Spain.
RP Manin, J (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA.
EM jmanin@sandia.gov
RI Moteur, Direction TAE/C-1458-2013; IFPEN, Publications/A-8028-2008;
OI Payri, Raul/0000-0001-7428-5510
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]; U.S. Department of Energy, Office of
Vehicle Technologies
FX The authors wish to thank Chris Carlen from Sandia National Laboratories
for designing and manufacturing specific ultra-fast LEDs, as well as
Jose Enrique del Rey and Juan Pablo Viera from CMT-Motores Termicos for
their support during the experiments. Support for the research carried
out by Julien Manin at CMT-Motores Termicos was provided by the U.S.
Department of Energy, Office of Vehicle Technologies. Sandia is a
multi-program laboratory operated by Sandia Corporation, a Lockheed
Martin Company for the United States Department of Energy's National
Nuclear Security Administration under contract DE-AC04-94AL85000.
NR 29
TC 3
Z9 3
U1 6
U2 10
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0301-9322
EI 1879-3533
J9 INT J MULTIPHAS FLOW
JI Int. J. Multiph. Flow
PD JUL
PY 2016
VL 83
BP 267
EP 278
DI 10.1016/j.ijmultiphaseflow.2015.12.001
PG 12
WC Mechanics
SC Mechanics
GA DM9UE
UT WOS:000376710400022
ER
PT J
AU Hamada, Y
O'Connor, BL
Orr, AB
Wuthrich, KK
AF Hamada, Yuki
O'Connor, Ben L.
Orr, Andrew B.
Wuthrich, Kelsey K.
TI Mapping ephemeral stream networks in desert environments using
very-high-spatial-resolution multispectral remote sensing
SO JOURNAL OF ARID ENVIRONMENTS
LA English
DT Article
DE Ephemeral streams; Desert regions; Very high resolution
ID INFORMATION; IMAGERY; VALUES
AB Mapping of ephemeral streams in desert environments is crucial to understanding the impacts to hydrologic and ecosystem functions caused by land-use changes. Available mapping methods at the watershed-scale typically underestimate total channel length and the size of channel networks. Although remote sensing is effective for obtaining information on large areas, conventional techniques are often ineffective or cost-prohibitive for complex stream networks in expansive desert regions. Using very high-spatial-resolution imagery, we developed a new algorithm to map desert ephemeral streams in the southwestern U.S., where utility-scale solar energy development is altering the landscape. Knowledge about landscape features such as shrubs and desert pavement and their spatial arrangement was integrated into the algorithm using spectral transformation and spatial statistical operations. The algorithm extracted ephemeral stream lengths approximately 900% greater than those identified in the National Hydrography Dataset. The accuracy in mapping channel areas and centerlines was as high as 92% and 91%, respectively. Although the algorithm captured detailed stream channels, it often underestimated channels obscured by bright soils and sparse vegetation. Although-further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, which could make a significant contribution toward improving the hydrological modeling of desert environments. (c) 2016 Published by Elsevier Ltd.
C1 [Hamada, Yuki; Orr, Andrew B.; Wuthrich, Kelsey K.] Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
[O'Connor, Ben L.] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA.
RP Hamada, Y (reprint author), 9700 South Cass Ave,EVS 240, Argonne, IL 60439 USA.
EM yhamada@anl.gov
FU Argonne, a DOE Office of Science laboratory [DE-AC02-06CH11357]; DOE's
SunShot Initiative [27239]
FX The authors thank Katherine E. Rollins and Scott O. Schlueter for their
qualitative accuracy assessment. They also thank Karen P. Smith, Mark A.
Grippo, and Esther E. Bowen at Argonne National Laboratory, anonymous
reviewers involved in the U.S. Department of Energy's (DOE's) SunShot
Initiative, and subject matter experts for insightful comments on the
manuscript. The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory ("Argonne").
Argonne, a DOE Office of Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government. The project was funded by
DOE's SunShot Initiative (#27239).
NR 35
TC 0
Z9 0
U1 5
U2 11
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0140-1963
EI 1095-922X
J9 J ARID ENVIRON
JI J. Arid. Environ.
PD JUL
PY 2016
VL 130
BP 40
EP 48
DI 10.1016/j.jaridenv.2016.03.005
PG 9
WC Ecology; Environmental Sciences
SC Environmental Sciences & Ecology
GA DN1OB
UT WOS:000376834200004
ER
PT J
AU Saka, O
Hayashi, K
Thomsen, MF
AF Saka, O.
Hayashi, K.
Thomsen, M. F.
TI Equatorward evolution of auroras from the poleward auroral boundary
SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS
LA English
DT Article
DE N-S aurora; Magnetospheric convection; MI coupling
ID GEOSYNCHRONOUS ORBIT; MAGNETIC-FIELD; PLASMA SHEET; CURRENTS;
INTENSIFICATIONS; MAGNETOSPHERE; ASSOCIATION; INJECTIONS; SUBSTORMS;
ONSET
AB An all-sky imager installed at the midnight sector in Dawson City (66.0 degrees in geomagnetic latitude) recorded the equatorward evolution of auroras from the auroral poleward boundary. The auroras evolved as shear layers expanding southeastward with velocities of 1-4 km/s, referred to as N-S auroras, and occurred during the transient intensification of the convection electric fields in the nighttime magnetosphere, as inferred from an electron spectrogram at geosynchronous altitudes. A continuous increase in the inclination angle of the field lines and magnetic field perturbations associated with propagating ionospheric loop currents were observed in the auroral zone during the N-S auroras. Simultaneously, Pc4 pulsations were observed at low latitudes from night to day sectors. We conclude the following: (1) the N-S auroras are an auroral manifestation of the earthward drift of plasma sheet electrons in the equatorial plane associated with transient and localized convection electric fields; (2) the Pc4 pulsations are produced in the magnetosphere by plasma sheet ions in the plasmasphere. The localized convection fields produce a vortical motion of plasmas in the equatorial plane, which may initiate the N-S auroras and ionospheric loop currents in the auroral zone. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Saka, O.] Off Geophys, Ogoori, Japan.
[Hayashi, K.] Univ Tokyo, Tokyo, Japan.
[Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Saka, O (reprint author), Off Geophys, Ogoori, Japan.
FU Canadian Space Agency
FX The all-sky images used in the present study are from the Global Aurora
Dynamics Campaign, STEP Polar Network. The proton and electron
spectrograms are from the Los Alamos magnetospheric plasma analyzer
(MPA). We acknowledge I.R. Mann, D.K. Milling and the rest of the
CARISMA team for the DWS and FSI data. CARISMA is operated by the
University of Alberta, funded by the Canadian Space Agency. We also
thank the Equatorial Magnetometer Network at Kyushu University for the
low latitude magnetometer data and the WDC for Geomagnetism at Kyoto
University.
NR 26
TC 0
Z9 0
U1 2
U2 2
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1364-6826
EI 1879-1824
J9 J ATMOS SOL-TERR PHY
JI J. Atmos. Sol.-Terr. Phys.
PD JUL
PY 2016
VL 145
BP 114
EP 124
DI 10.1016/j.jastp.2016.04.012
PG 11
WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
GA DN7BQ
UT WOS:000377230700011
ER
PT J
AU Diaz, LA
Lister, TE
Parkman, JA
Clark, GG
AF Diaz, Luis A.
Lister, Tedd E.
Parkman, Jacob A.
Clark, Gemma G.
TI Comprehensive process for the recovery of value and critical materials
from electronic waste
SO JOURNAL OF CLEANER PRODUCTION
LA English
DT Article
DE Electronic waste; Recycling; Precious metals; Critical materials;
Electrowinning
ID PRINTED-CIRCUIT BOARDS; SELECTIVE RECOVERY; COPPER RECOVERY; METAL
RECOVERY; MOBILE PHONE; GOLD; THIOUREA; CYANIDE; IONS
AB The development of technologies that contribute to the proper disposal and treatment of electronic waste is not just an environmental need, but an opportunity for the recovery and recycle of valuable metals and critical materials. Value elements in electronic waste include gold, palladium, silver, copper, nickel, and rare earth elements. This paper presents a technical assessment of the steps involved in a scheme that enables efficient recovery of value and critical materials from scrap mobile electronics. An electrochemical recovery process, based on the regeneration of ferric ion as a weak oxidizer, is studied for the selective recovery of base metals while leaving precious metals for separate extraction at reduced chemical demand. A separate process recovers rare earth oxides from magnets in electronics. Recovery and extraction efficiencies ca. 90% were obtained for the extraction of base metals from the non-ferromagnetic fraction in the two different solution matrices tested (sulfuric and hydrochloric acid). The effect of the pre-extraction of base metals in the increase of precious metals extraction efficiency was verified. On the other hand, the extraction of rare earths from the ferromagnetic fraction, performed by means of anaerobic extraction in acid media, was assessed for the selective recovery of rare earths. A comprehensive flow sheet was developed to process electronic waste to value products. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Diaz, Luis A.; Lister, Tedd E.; Parkman, Jacob A.; Clark, Gemma G.] Idaho Natl Lab, Biol & Chem Proc Dept, POB 1625, Idaho Falls, ID 83415 USA.
RP Lister, TE (reprint author), Idaho Natl Lab, Biol & Chem Proc Dept, POB 1625, Idaho Falls, ID 83415 USA.
EM tedd.lister@inl.gov
OI Diaz Aldana, Luis/0000-0003-4895-464X
FU Critical Materials Institute; Energy Innovation Hub - U.S. Department of
Energy, Office of Energy Efficiency and Renewable Energy, Advanced
Manufacturing Office; Battelle Energy Alliance, LLC [DE-AC07-05ID14517]
FX This work is supported by the Critical Materials Institute, an Energy
Innovation Hub funded by the U.S. Department of Energy, Office of Energy
Efficiency and Renewable Energy, Advanced Manufacturing Office. This
manuscript has been authored by Battelle Energy Alliance, LLC under
Contract No. DE-AC07-05ID14517. We thank Mark Rea from Advanced
Recovery, Inc. for providing the mechanically processed material used
for this study. We also thank Byron White and Arnold Erickson for
providing analytical services that supported this work.
NR 35
TC 1
Z9 1
U1 23
U2 51
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0959-6526
EI 1879-1786
J9 J CLEAN PROD
JI J. Clean Prod.
PD JUL 1
PY 2016
VL 125
BP 236
EP 244
DI 10.1016/j.jclepro.2016.03.061
PG 9
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental;
Environmental Sciences
SC Science & Technology - Other Topics; Engineering; Environmental Sciences
& Ecology
GA DM9PF
UT WOS:000376697500020
ER
PT J
AU Petrone, F
Higgins, PS
Bissonnette, NP
Kanvinde, AM
AF Petrone, F.
Higgins, P. S.
Bissonnette, N. P.
Kanvinde, A. M.
TI The cross-aisle seismic performance of storage rack base connections
SO JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH
LA English
DT Article
DE Seismic response; Storage racks; Base connections; Finite element
simulation
ID BEHAVIOR
AB Steel storage racks used in retail stores and warehouses are seismically designed as moment resisting frames in the down-aisle direction, and braced frames in the cross-aisle direction. While their down-aisle response is relatively well understood, there is little understanding of their cross-aisle response, especially as it pertains to the desired mode of inelastic deformation and associated design methods. Results are presented from six full scale tests on braced frames representing storage racks in the cross-aisle direction. These tests investigate the base plate thickness and dimensions, and the upright (column) cross section. The experiments indicate that inelastic deformation in the base plate provides stable hysteretic response with significant ductility and energy dissipation. Ductile tearing is also observed in welds connecting the base plate to the upright. However, it does not appear to negatively influence the hysteretic response. The tests are complemented by Finite Element (FE) simulations of the base connections. These simulations provide insights into internal force distributions within the connections. Based on these insights, analytical equations are proposed for characterizing the backbone curve of the hysteretic response, for use in displacement based design methods. It is determined that the current approach for characterizing design forces in the anchors is unconservative, since it does not incorporate the effects of strain hardening or the membrane action as the base plate undergoes large deformations. A new approach which incorporates these phenomena is presented, and determined to be significantly more accurate. Limitations of the study are outlined and directions for future work are identified. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Petrone, F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Higgins, P. S.] Peter S Higgins & Associates, Malibu, CA USA.
[Bissonnette, N. P.] Frazier Ind Co, Long Valley, NJ USA.
[Kanvinde, A. M.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA.
RP Kanvinde, AM (reprint author), Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA.
EM kanvinde@ucdavis.edu
NR 29
TC 1
Z9 1
U1 2
U2 2
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0143-974X
EI 1873-5983
J9 J CONSTR STEEL RES
JI J. Constr. Steel. Res.
PD JUL
PY 2016
VL 122
BP 520
EP 531
DI 10.1016/j.jcsr.2016.04.014
PG 12
WC Construction & Building Technology; Engineering, Civil
SC Construction & Building Technology; Engineering
GA DN1HQ
UT WOS:000376817300041
ER
PT J
AU Wereszczak, AA
Waters, SB
Parten, RJ
Pye, LD
AF Wereszczak, Andrew A.
Waters, Shirley B.
Parten, Randy J.
Pye, L. David
TI Sub-micron fracture mechanism in silica-based glasses activated by
permanent densification from high-strain loading
SO JOURNAL OF NON-CRYSTALLINE SOLIDS
LA English
DT Article
DE Silica-based glasses; High-strain-energy fracture; Densification;
Fragmentation; Microkernels
ID DYNAMIC FRAGMENTATION; STRENGTH
AB Several silica-based glasses were fractured at high strain energy via drop-weight testing on small specimens. A cylindrical specimen geometry was chosen to promote initially simple, axisymmetric, and uniform compressive loading. The imposed uniaxial compressive strain at impact was sufficiently high to qualitatively cause permanent densification. Produced fragments were collected for postmortem and a fraction of them, for all the silica-based glasses, consistently had distinct sub-micron-sized fractures (-300-1000 nm), designated here as "microkernels", on their surfaces. They would most often appear as a sub -micron pore on the fragment apparently if the microkernel had popped out as a consequence of the local crack plane running through it, tensile-strain release, and the associated formation of the fragment it was on. No fractographic evidence was found to show the microkernels were associated with local failure initiation. However, their positioning and habit sometimes suggested they were associated with localized crack branching and that they could have influenced secondary fracturing that occurred during overall crushing and comminution and associated fragment size and shape creation. The size range of these microkernels is much too small to affect structural flexure strength of these glasses for most applications but are of a size and concentration that may affect their ballistic, shock, crush, and comminution responses when permanent densification is concomitantly occurring. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Wereszczak, Andrew A.; Waters, Shirley B.; Parten, Randy J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Wereszczak, Andrew A.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Pye, L. David] Alfred Univ, New York State Coll Ceram, Little Falls, NY 13365 USA.
RP Wereszczak, AA (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM wereszczakaa@ornl.gov
FU Purdue University under the Material Science and Technology Division,
Work-for-Others (WFO) Program [IAN: 148658801]; DOE [NFE-10-03121]; U.S.
Department of Energy; US Army Research Laboratory at the University of
Tennessee [W911NF-14-2-0015]
FX This research was performed at the Oak Ridge National Laboratory (ORNL)
and sponsored by Purdue University under the Material Science and
Technology Division, Work-for-Others (WFO) Program, IAN: 148658801, and
DOE agreement: NFE-10-03121, with the U.S. Department of Energy.
Additional support provided by the US Army Research Laboratory through
Contract W911NF-14-2-0015 at the University of Tennessee.
NR 25
TC 0
Z9 0
U1 2
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3093
EI 1873-4812
J9 J NON-CRYST SOLIDS
JI J. Non-Cryst. Solids
PD JUL 1
PY 2016
VL 443
BP 172
EP 183
DI 10.1016/j.jnoncrysol.2016.04.029
PG 12
WC Materials Science, Ceramics; Materials Science, Multidisciplinary
SC Materials Science
GA DN1PO
UT WOS:000376838100026
ER
PT J
AU Zhang, XY
Liu, CX
Hu, BX
Hu, QH
AF Zhang, Xiaoying
Liu, Chongxuan
Hu, Bill X.
Hu, Qinhong
TI Grain-Size Based Additivity Models for Scaling Multi-rate Uranyl Surface
Complexation in Subsurface Sediments
SO MATHEMATICAL GEOSCIENCES
LA English
DT Article
DE Scaling; Additivity model; Uranium surface complexation; Multi-rate mass
transfer; Statistical analysis
ID MONTE-CARLO-SIMULATION; REACTIVE TRANSPORT; CONTAMINATED SEDIMENTS;
DIFFERENTIAL EVOLUTION; URANIUM(VI) DESORPTION; DISSOLUTION RATES; U(VI)
DESORPTION; KINETICS; ADSORPTION; UNCERTAINTY
AB The additivity model assumed that field-scale reaction properties in a sediment including surface area, reactive site concentration, and reaction rate can be predicted from field-scale grain-size distribution by linearly adding reaction properties estimated in laboratory for individual grain-size fractions. This study evaluated the additivity model in scaling mass transfer-limited, multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment. Experimental data of rate-limited U(VI) desorption in a stirred flow-cell reactor were used to estimate the statistical properties of the rate constants for individual grain-size fractions, which were then used to predict rate-limited U(VI) desorption in the composite sediment. The result indicated that the additivity model with respect to the rate of U(VI) desorption provided a good prediction of U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel-size fraction (2 to 8 mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.
C1 [Zhang, Xiaoying; Hu, Bill X.] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA.
[Zhang, Xiaoying] Jinan Univ, Coll Life Sci & Technol, Guangzhou 510632, Guangdong, Peoples R China.
[Liu, Chongxuan] Pacific NW Natl Lab, 3335 Innovat St, Richland, WA 99352 USA.
[Hu, Qinhong] Univ Texas Arlington, Arlington, TX 76019 USA.
RP Liu, CX (reprint author), Pacific NW Natl Lab, 3335 Innovat St, Richland, WA 99352 USA.
EM chongxuan.liu@pnnl.gov
RI Liu, Chongxuan/C-5580-2009
FU US DOE, Office of Science, Biological and Environmental Research (BER),
as part of the Subsurface Biogeochemical Research (SBR) Program through
Pacific Northwest National Laboratory (PNNL) SBR Science Focus Area
(SFA) Research Project; Office of Biological and Environmental Research,
US Department of Energy [DE-SC0005394, ER65073]
FX This research is supported by the US DOE, Office of Science, Biological
and Environmental Research (BER), as part of the Subsurface
Biogeochemical Research (SBR) Program through Pacific Northwest National
Laboratory (PNNL) SBR Science Focus Area (SFA) Research Project. QH
thanks the financial support of the Subsurface Biogeochemical Research
Program #DE-SC0005394, Office of Biological and Environmental Research,
US Department of Energy, for Project ER65073. The authors thank the
anonymous reviewers for their helpful and constructive comments.
NR 42
TC 0
Z9 0
U1 5
U2 10
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1874-8961
EI 1874-8953
J9 MATH GEOSCI
JI Math Geosci.
PD JUL
PY 2016
VL 48
IS 5
BP 511
EP 535
DI 10.1007/s11004-015-9620-z
PG 25
WC Geosciences, Multidisciplinary; Mathematics, Interdisciplinary
Applications
SC Geology; Mathematics
GA DN2GZ
UT WOS:000376883400002
ER
PT J
AU Cervini-Silva, J
Nieto-Camacho, A
Kaufhold, S
Ufer, K
Palacios, E
Montoya, A
Dathe, W
AF Cervini-Silva, Javiera
Nieto-Camacho, Antonio
Kaufhold, Stephan
Ufer, Kristian
Palacios, Eduardo
Montoya, Ascencion
Dathe, Wilfried
TI Antiphlogistic effect by zeolite as determined by a murine inflammation
model
SO MICROPOROUS AND MESOPOROUS MATERIALS
LA English
DT Article
DE Clinoptilolite; Histamine; Adsorption
ID WATER-UPTAKE CAPACITY; ANTIINFLAMMATORY ACTIVITY; NATURAL ZEOLITES;
MOUSE EAR; CLINOPTILOLITE; ANTIBACTERIAL; BENTONITES; HALLOYSITE;
AGENTS; EDEMA
AB Natural zeolites are microporous crystalline aluminosilicates with channels and cavities of molecular dimensions of interest for biomedical applications. The antiphlogistic effect was investigated on the basis of a murine inflammation model using 12-O-tetradecanoylphorbol-13-acetate (TPA) as inflammatory agent and the quantification of the activity of myeloperoxidase (MPO), an enzyme that serves as an indicator for neutrophil migration.
The zeolite used in this study was collected from San Andres, Cuba, and it provided evidence to show the quantitative adsorption of histamine, a biogenic compound strongly involved in inflammation processes. Furthermore, a related work showed that this zeolite sample is free of hazardous materials and apt for health use. The zeolite of this study contained 65% clinoptilolite, 30% mordenite, and 5% smectite. The application of this zeolite reduced the edema formation induced by TPA within 24 h by 57.2 +/- 18%, while the migration of neutrophils was not altered. The anti-inflammatory activity of zeolite was explained in part due to the quantitative adsorption of histamine, whilst natural cell repair mechanisms appeared not to be influenced. The outcome of this work expanded on reports concluding that antiphlogistic properties of zeolite proven in vivo with mice for inflammatory diseases are important for both oral application (gastrointestinal tract) and topical treatment (skin), too. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Cervini-Silva, Javiera] Univ Autonoma Metropolitana, Unidad Cuajimalpa, Dept Proc & Tecnol, Av Vasco de Quiroga 4871, Mexico City 05348, DF, Mexico.
[Cervini-Silva, Javiera] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Cervini-Silva, Javiera] NASA, Astrobiol Inst, New York, NY USA.
[Nieto-Camacho, Antonio] Univ Nacl Autonoma Mexico, Inst Quim, Lab Pruebas Biol, Ciudad Univ, Mexico City 04510, DF, Mexico.
[Kaufhold, Stephan; Ufer, Kristian] BGR Bundesanstalt Geowissensch & Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany.
[Palacios, Eduardo] Inst Mexicano Petr, Dept Microscopia Elect, Mexico City 07730, DF, Mexico.
[Montoya, Ascencion] Inst Mexicano Petr, Direcc Invest & Posgrado, Mexico City 07730, DF, Mexico.
[Dathe, Wilfried] Heck Biopharma GmbH, Gerberstr 15, D-73650 Winterbach, Germany.
RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana, Unidad Cuajimalpa, Dept Proc & Tecnol, Av Vasco de Quiroga 4871, Mexico City 05348, DF, Mexico.; Dathe, W (reprint author), Heck Biopharma GmbH, Gerberstr 15, D-73650 Winterbach, Germany.
EM jcervini@correo.cua.uam.mx; daweidoc@gmx.de
FU Universidad Autonoma Metropolitana [UAM-C 33678]
FX The authors thank Jaime Ortega Lechuga (UAM-Cuajimalpa), Claudia Rivera
Cerecedo and Hector Malagon Rivero (Bioterio, Institute de Fisiologia
Celular, UNAM), and Natascha Schleuning (Bundesanstalt fur
Geowissenschaften and Rohstoffe, BGR) for the assistance; and the
Universidad Autonoma Metropolitana for the support (Grant No. UAM-C
33678).
NR 42
TC 0
Z9 0
U1 8
U2 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1387-1811
EI 1873-3093
J9 MICROPOR MESOPOR MAT
JI Microporous Mesoporous Mat.
PD JUL 1
PY 2016
VL 228
BP 207
EP 214
DI 10.1016/j.micromeso.2016.03.043
PG 8
WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology;
Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA DN1DE
UT WOS:000376805700024
ER
PT J
AU Zhang, XD
Moore, ME
Lee, KM
Lukosi, ED
Hayward, JP
AF Zhang, Xiaodong
Moore, Michael E.
Lee, Kyung-Min
Lukosi, Eric D.
Hayward, Jason P.
TI Study of cerium diffusion in undoped lithium-6 enriched glass with
Rutherford backscattering spectrometry
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article
DE Lithium-6 enriched glass; Diffusion coefficient; Activation energy;
Fick's second law; Rutherford backscattering spectrometry
AB Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 degrees C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation. Published by Elsevier S.V.
C1 [Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA.
[Hayward, Jason P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Zhang, XD (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA.
EM xzhang39@utk.edu
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-SC0010314]
FX This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under Early
Career Award no. DE-SC0010314.
NR 11
TC 0
Z9 0
U1 4
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
EI 1872-9584
J9 NUCL INSTRUM METH B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD JUL 1
PY 2016
VL 378
BP 8
EP 11
DI 10.1016/j.nimb.2016.04.036
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA DN1MX
UT WOS:000376831200002
ER
PT J
AU Hattori, K
Kojo, T
Su, N
AF Hattori, Koichi
Kojo, Tom
Su, Nan
TI Mesons in strong magnetic fields: (I) General analyses
SO NUCLEAR PHYSICS A
LA English
DT Article
DE Strong magnetic fields; Meson structure; Hadron resonance gas; Inverse
magnetic catalysis
ID HEAVY-ION COLLISIONS; QUARK MASS GAP; QUANTUM CHROMODYNAMICS;
ELECTROMAGNETIC-FIELD; PHASE-TRANSITIONS; CHIRAL SPIRALS; SYMMETRY;
EVENT; MODEL
AB We study properties of neutral and charged mesons in strong magnetic fields vertical bar eB vertical bar >> Lambda(2)(QCD) with Lambda(QCD) being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger-Dyson and Bethe Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number of meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B-2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Hattori, Koichi] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
[Hattori, Koichi] RIKEN, Theoret Res Div, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan.
[Kojo, Tom] Cent China Normal Univ, MOE, Key Lab Quark & Lepton Phys, Wuhan 430079, Peoples R China.
[Kojo, Tom] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China.
[Kojo, Tom] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
[Su, Nan] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany.
RP Su, N (reprint author), Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany.
EM koichi.hattori@riken.jp; torujj@mail.ccnu.edu.cn;
nansu@fias.uni-frankfurt.de
FU NSF [PHY09-69790, PHY13-05891]; JSPS [25287066]; Helmholtz International
Center for FAIR within LOEWE program
FX This work was supported by NSF Grants PHY09-69790 and PHY13-05891 (TX.),
JSPS Grants-in-Aid No. 25287066 (K.H.), and the Helmholtz International
Center for FAIR within the framework of the LOEWE program launched by
the State of Hesse (N.S.).
NR 84
TC 5
Z9 5
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
EI 1873-1554
J9 NUCL PHYS A
JI Nucl. Phys. A
PD JUL
PY 2016
VL 951
BP 1
EP 30
DI 10.1016/j.nuclphysa.2016.03.016
PG 30
WC Physics, Nuclear
SC Physics
GA DN0ZH
UT WOS:000376795100001
ER
PT J
AU Wang, YX
Li, FX
AF Wang, Yi-Xiang
Li, Fuxiang
TI Edge states and phase diagram for graphene under polarized light
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE Floquet topological insulator; Phase diagram; Disorder
ID TOPOLOGICAL INSULATORS; HALDANE MODEL; PHOTOEMISSION; FIELD; PROBE
AB In this work, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the pi-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, the number and even the chirality of the edge states may change in the pi-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Wang, Yi-Xiang] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China.
[Li, Fuxiang] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Li, Fuxiang] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Wang, YX (reprint author), Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China.
EM wangyixiang@jiangnan.edu.cn
RI Li, Fuxiang/O-9132-2015
FU Natural Science Foundation of Jiangsu Province, China [BK20140129]
FX This work is supported by Natural Science Foundation of Jiangsu
Province, China under Grant no. BK20140129.
NR 35
TC 1
Z9 1
U1 13
U2 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
EI 1873-2135
J9 PHYSICA B
JI Physica B
PD JUL 1
PY 2016
VL 492
BP 1
EP 6
DI 10.1016/j.physb.2016.03.029
PG 6
WC Physics, Condensed Matter
SC Physics
GA DN4HP
UT WOS:000377025400001
ER
PT J
AU Qu, J
Blau, PJ
Higdon, C
Cook, BA
AF Qu, Jun
Blau, Peter J.
Higdon, Clifton
Cook, Bruce A.
TI Friction behavior of a multi-interface system and improved performance
by AlMgB14-TiB2-C and diamond-like-carbon coatings
SO TRIBOLOGY INTERNATIONAL
LA English
DT Article
DE Multi-interface system; AlMgB14-TiB2; DLC; Rolling sliding
ID WEAR MECHANISMS; FILMS
AB This study investigated friction behavior of a bearing system with two interfaces involved: a roller component experiencing rolling-sliding interaction against twin cylinders under point contacts while simultaneously undergoing pure sliding interaction against a socket under a conformal contact. Lubrication modeling predicted a strong correlation between the roller's rolling condition and the system's friction behavior. Experimental observations first validated the analytical predictions using steel and iron components. Diamond-like-carbon (DLC) coating and AlMgB14-TiB2 coating with a carbon topcoat (BAMC) were then applied to the roller and twin cylinders, respectively. Testing and analysis results suggest that the coatings effectively decreased the slip ratio for the roller-cylinder contact and the sliding friction at both bearing interfaces and, as a result, significantly reduced the system frictional torque. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Qu, Jun; Blau, Peter J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37830 USA.
[Higdon, Clifton] Bluewater Thermal Solut, Qual, Greenville, SC USA.
[Cook, Bruce A.] Ames Lab, Div Mat Sci & Engn, Ames, IA USA.
[Blau, Peter J.] Blau Tribol Consulting, North Palm Beach, FL USA.
[Cook, Bruce A.] Mat Dynam & Devices, New York, NY USA.
RP Qu, J (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37830 USA.
EM qujn@ornl.gov
OI Qu, Jun/0000-0001-9466-3179
FU US Department of Energy, Office of Energy Efficiency and Renewable
Energy, Industrial Technologies Program
FX Authors thank Dr. S. Bair at the Center for High-Pressure Rheology at
Georgia Institute of Technology for measuring the viscosity pressure
coefficient of the lubricant. Research was supported by the US
Department of Energy, Office of Energy Efficiency and Renewable Energy,
Industrial Technologies Program.
NR 15
TC 0
Z9 0
U1 8
U2 15
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0301-679X
EI 1879-2464
J9 TRIBOL INT
JI Tribol. Int.
PD JUL
PY 2016
VL 99
BP 182
EP 186
DI 10.1016/j.triboint.2016.03.022
PG 5
WC Engineering, Mechanical
SC Engineering
GA DM9TW
UT WOS:000376709600019
ER
PT J
AU Rattner, AS
Guillen, DP
Joshi, A
Garimella, S
AF Rattner, Alexander S.
Guillen, Donna Post
Joshi, Alark
Garimella, Srinivas
TI Framework and algorithms for illustrative visualizations of time-varying
flows on unstructured meshes
SO ADVANCES IN ENGINEERING SOFTWARE
LA English
DT Article
DE Flow visualization; Illustrative visualization; Feature detection and
tracking; Unstructured meshes; Surface rendering; Two-phase flow
AB Photo- and physically realistic techniques are often insufficient for visualization of fluid flow simulations, especially for 3D and time-varying studies. Substantial research effort has been dedicated to the development of non-photorealistic and illustration-inspired visualization techniques for compact and intuitive presentation of such complex datasets. However, a great deal of work has been reproduced in this field, as many research groups have developed specialized visualization software. Additionally, interoperability between illustrative visualization software is limited due to diverse processing and rendering architectures employed in different studies. In this investigation, a framework for illustrative visualization is proposed, and implemented in MarmotViz, a ParaView plug-in, enabling its use on a variety of computing platforms with various data file formats and mesh geometries. Region-of-interest identification and feature-tracking algorithms incorporated into this tool are described. Implementations of multiple illustrative effect algorithms are also presented to demonstrate the use and flexibility of this framework. By providing an integrated framework for illustrative visualization of CFD data, MarmotViz can serve as a valuable asset for the interpretation of simulations of ever-growing scale. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Rattner, Alexander S.; Garimella, Srinivas] Georgia Inst Technol, Sustainable Thermal Syst Lab, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA.
[Guillen, Donna Post] Idaho Natl Lab, Adv Proc & Decis Syst Dept, Idaho Falls, ID 83401 USA.
[Joshi, Alark] Univ San Francisco, Dept Comp Sci, Coll Arts & Sci, San Francisco, CA 94117 USA.
RP Garimella, S (reprint author), Georgia Inst Technol, Sustainable Thermal Syst Lab, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA.
EM sgarimella@gatech.edu
RI Guillen, Donna/B-9681-2017;
OI Guillen, Donna/0000-0002-7718-4608; Garimella,
Srinivas/0000-0002-5697-4096; Rattner, Alexander/0000-0002-3985-7285
FU Krell Institute; U.S. Department of Energy Idaho Operations Office
FX The funding sources: Krell Institute and U.S. Department of Energy Idaho
Operations Office did not participate in the design and execution of
this study or in the preparation of this manuscript.
NR 33
TC 0
Z9 0
U1 0
U2 1
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0965-9978
EI 1873-5339
J9 ADV ENG SOFTW
JI Adv. Eng. Softw.
PD JUL
PY 2016
VL 97
BP 72
EP 84
DI 10.1016/j.advengsoft.2016.02.004
PG 13
WC Computer Science, Interdisciplinary Applications; Computer Science,
Software Engineering; Engineering, Multidisciplinary
SC Computer Science; Engineering
GA DN1DF
UT WOS:000376805800006
ER
PT J
AU Ukwatta, TN
Stump, DR
Linnemann, JT
MacGibbon, JH
Marinelli, SS
Yapici, T
Tollefson, K
AF Ukwatta, T. N.
Stump, D. R.
Linnemann, J. T.
MacGibbon, J. H.
Marinelli, S. S.
Yapici, T.
Tollefson, K.
TI Primordial Black Holes: Observational characteristics of the final
evaporation
SO ASTROPARTICLE PHYSICS
LA English
DT Article
DE Primordial Black Holes; HAWC; Very high energy bursts; Gamma-ray bursts
ID PARTICLE EMISSION RATES; GAMMA-RAY BURSTS; MASSLESS PARTICLES;
NONROTATING HOLE; RATE-DENSITY; COSMIC-RAYS; POLARIZATION; EXPLOSIONS;
VACUUM
AB Many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to 10(5) solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. The final moments of this evaporation phase should be explosive and its description is dependent on the particle physics model. In this work we investigate the final few seconds of BH evaporation, using the Standard Model and incorporating the most recent Large Hadron Collider (LHC) results, and provide a new parameterization for the instantaneous emission spectrum. We calculate for the first time energy-dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures. We have found a unique signature in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray observatories such as the High Altitude Water Cerenkov (HAWC) observatory. The implications of beyond the Standard Model theories on the PBH burst observational characteristics are also discussed, including potential sensitivity of the instantaneous photon detection rate to a squark threshold in the 5-10 TeV range. Published by Elsevier B.V.
C1 [Ukwatta, T. N.] Los Alamos Natl Lab, Space & Remote Sensing ISR 2, POB 1663, Los Alamos, NM 87545 USA.
[Stump, D. R.; Linnemann, J. T.; Marinelli, S. S.; Yapici, T.; Tollefson, K.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[MacGibbon, J. H.] Univ N Florida, Dept Phys, Jacksonville, FL 32224 USA.
RP Ukwatta, TN (reprint author), Los Alamos Natl Lab, Space & Remote Sensing ISR 2, POB 1663, Los Alamos, NM 87545 USA.
EM tilan.ukwatta@gmail.com
FU National Science Foundation (MSU) [PHY-1410972]; Department of Energy
(LANL); Laboratory Directed Research and Development (LDRD) program at
LANL
FX This work was supported by grants from the National Science Foundation
(MSU), grant no. PHY-1410972 and Department of Energy (LANL). T.N.U.
acknowledges the partial support of this work by the Laboratory Directed
Research and Development (LDRD) program at LANL. We would also like to
thank Wade Fisher of MSU for useful conversations on the likelihood
fits, Jing-Ya Zhu of MSU for discussions on current models of
supersymmetry and Sekhar Chivukula of MSU for useful conversations on
Higgs field degrees of freedom and Extra Dimension models. We also thank
the anonymous referee for comments that significantly improved the
paper.
NR 58
TC 3
Z9 3
U1 3
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-6505
EI 1873-2852
J9 ASTROPART PHYS
JI Astropart Phys.
PD JUL
PY 2016
VL 80
BP 90
EP 114
DI 10.1016/j.astropartphys.2016.03.007
PG 25
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA DN1FN
UT WOS:000376811800006
ER
PT J
AU Dunn, A
Dingreville, R
Martinez, E
Capolungo, L
AF Dunn, Aaron
Dingreville, Remi
Martinez, Enrique
Capolungo, Laurent
TI Synchronous parallel spatially resolved stochastic cluster dynamics
SO COMPUTATIONAL MATERIALS SCIENCE
LA English
DT Article
DE Cluster dynamics; kinetic Monte Carlo; Parallel
ID KINETIC MONTE-CARLO; RADIATION-DAMAGE; STRUCTURAL-MATERIALS;
CHEMICAL-REACTIONS; FUSION-REACTORS; ALPHA-FE; BCC-FE; EVOLUTION;
IRRADIATION; ALLOYS
AB In this study, a spatially resolved stochastic cluster dynamics (SRSCD) model for radiation damage accumulation in metals is implemented using a synchronous parallel kinetic Monte Carlo algorithm. The parallel algorithm is shown to significantly increase the size of representative volumes achievable in SRSCD simulations of radiation damage accumulation. Weak scaling performance of the method is tested in two cases: (1) an idealized case of Frenkel pair diffusion and annihilation, and (2) a characteristic example problem including defect cluster formation and growth in alpha-Fe. For the latter case, weak scaling is tested using both Frenkel pair and displacement cascade damage. To improve scaling of simulations with cascade damage, an explicit cascade implantation scheme is developed for cases in which fast-moving defects are created in displacement cascades. For the first time, simulation of radiation damage accumulation in nanopolycrystals can be achieved with a three dimensional rendition of the microstructure, allowing demonstration of the effect of grain size on defect accumulation in Frenkel pair-irradiated alpha-Fe. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Dunn, Aaron; Dingreville, Remi] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Dunn, Aaron; Capolungo, Laurent] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA.
[Martinez, Enrique] Los Alamos Natl Lab, Mat Sci & Technol Div, MST 8, Los Alamos, NM 87545 USA.
RP Dunn, A (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM adunn32@gatech.edu
OI Martinez Saez, Enrique/0000-0002-2690-2622; Dingreville,
Remi/0000-0003-1613-695X
FU Laboratory Directed Research and Development program at Sandia National
Laboratories; U.S. Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]; Sandia National Laboratories/Georgia
Tech Excellence in Engineering Research Program
FX Supported by the Laboratory Directed Research and Development program at
Sandia National Laboratories, a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.; This work was
also funded by the Sandia National Laboratories/Georgia Tech Excellence
in Engineering Research Program.
NR 49
TC 0
Z9 0
U1 5
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0256
EI 1879-0801
J9 COMP MATER SCI
JI Comput. Mater. Sci.
PD JUL
PY 2016
VL 120
BP 43
EP 52
DI 10.1016/j.commatsci.2016.04.013
PG 10
WC Materials Science, Multidisciplinary
SC Materials Science
GA DM6MO
UT WOS:000376467100006
ER
PT J
AU Zhou, SH
Liu, C
Yao, YX
Du, Y
Zhang, LJ
Wang, CZ
Ho, KM
Kramer, MJ
AF Zhou, S. H.
Liu, C.
Yao, Y. X.
Du, Y.
Zhang, L. J.
Wang, C. -Z.
Ho, K. -M.
Kramer, M. J.
TI Magnetic BiMn-alpha phase synthesis prediction: First-principles
calculation, thermodynamic modeling and nonequilibrium chemical
partitioning
SO COMPUTATIONAL MATERIALS SCIENCE
LA English
DT Article
DE First-principles calculation; Hubbard U correction; Chemical
partitioning; Hard magnetic MnBi; Composition far from equilibrium
ID GENERALIZED GRADIENT APPROXIMATION; MNBI INTERMETALLIC COMPOUND;
FULL-POTENTIAL CALCULATIONS; QUASI-RANDOM STRUCTURES; LOW-TEMPERATURE
PHASE; ELECTRONIC-STRUCTURE; FIELD; SYSTEM; MANGANESE; DIAGRAM
AB BiMn-alpha is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single BiMn-alpha phase. The objective of this study is to assess driving force for crystalline phase pathways under far-from-equilibrium conditions. First-principles calculations with Hubbard U correction are performed to provide a robust description of the thermodynamic behavior. The energetics associated with various degrees of the chemical partitioning are quantified to predict temperature, magnetic field, and time dependence of the phase selection. By assessing the phase transformation under the influence of the chemical partitioning, temperatures, and cooling rate from our calculations, we suggest that it is possible to synthesize the magnetic BiMn-alpha compound in a congruent manner by rapid solidification. The external magnetic field enhances the stability of the BiMn-alpha phase. The compositions of the initial compounds from these highly driven liquids can be far from equilibrium. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Zhou, S. H.; Yao, Y. X.; Wang, C. -Z.; Ho, K. -M.; Kramer, M. J.] US DOE, Div Mat Sci & Engn, Ames Lab, Washington, DC 20585 USA.
[Liu, C.; Kramer, M. J.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
[Liu, C.; Yao, Y. X.; Wang, C. -Z.; Ho, K. -M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Du, Y.; Zhang, L. J.] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China.
RP Zhou, SH (reprint author), US DOE, Div Mat Sci & Engn, Ames Lab, Washington, DC 20585 USA.
FU US Department of Energy (DOE) Advanced Research Projects Agency-Energy
(ARPA-E) [11/CJ000/09/03]; US DOE [DE-AC02-07CH11358]
FX The magnetic alloy development was supported by the US Department of
Energy (DOE) Advanced Research Projects Agency-Energy (ARPA-E) under
Contract No. 11/CJ000/09/03. Computational methods development was
supported by the US Department of Energy, Basic Energy Sciences,
Division of Materials Science and Engineering. Ames Laboratory is
operated for the US DOE by Iowa State University under contract
#DE-AC02-07CH11358.
NR 68
TC 0
Z9 0
U1 10
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0256
EI 1879-0801
J9 COMP MATER SCI
JI Comput. Mater. Sci.
PD JUL
PY 2016
VL 120
BP 117
EP 126
DI 10.1016/j.commatsci.2016.04.016
PG 10
WC Materials Science, Multidisciplinary
SC Materials Science
GA DM6MO
UT WOS:000376467100015
ER
PT J
AU Kshirsagar, S
Mandadapu, KK
Papadopoulos, P
AF Kshirsagar, Shrikant
Mandadapu, Kranthi K.
Papadopoulos, Panayiotis
TI Classical molecular dynamics simulations of crystal lattices with
truncated Taylor series-based interatomic potentials
SO COMPUTATIONAL MATERIALS SCIENCE
LA English
DT Article
DE Molecular dynamics; Taylor series; Anharmonicity; Lennard-Jones;
Specific heat; Thermal conductivity
AB This article discusses a general method for constructing interatomic potentials based on truncated Taylor series expansion. Specifically, it addresses the scope of application of the method, and demonstrates its practical importance in capturing anharmonicity for a Lennard-Jones solid. In particular, the third-order terms in the truncated potential are shown to accurately approximate the thermal conductivity of the standard interaction Lennard-Jones potential. The paper also describes an efficient algorithm for locating the equilibrium lattice site of an atom in a three-dimensional crystal lattice displaced from its equilibrium position. Published by Elsevier B.V.
C1 [Kshirsagar, Shrikant; Papadopoulos, Panayiotis] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Mandadapu, Kranthi K.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Mandadapu, Kranthi K.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA USA.
RP Mandadapu, KK (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
FU National Science Foundation [ACI-1053575]
FX The authors would like to thank Professor Christos Papadimitrou of the
Department of Electrical Engineering and Computer Sciences at the
University of California, Berkeley for his help with the algorithm for
computing equilibrium positions in a crystal lattice. This work used the
Extreme Science and Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation Grant No. ACI-1053575 [22].
NR 23
TC 0
Z9 0
U1 7
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0256
EI 1879-0801
J9 COMP MATER SCI
JI Comput. Mater. Sci.
PD JUL
PY 2016
VL 120
BP 127
EP 134
DI 10.1016/j.commatsci.2016.03.032
PG 8
WC Materials Science, Multidisciplinary
SC Materials Science
GA DM6MO
UT WOS:000376467100016
ER
PT J
AU Lindsay, P
Parks, ML
Prakash, A
AF Lindsay, P.
Parks, M. L.
Prakash, A.
TI Enabling fast, stable and accurate peridynamic computations using
multi-time-step integration
SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
LA English
DT Article
DE Peridynamics; Multi-Time-Step; Nonlocal; Fracture
ID EXPLICIT FINITE-ELEMENTS; NONLINEAR STRUCTURAL DYNAMICS; COUPLED
MECHANICAL SYSTEMS; TRANSIENT ANALYSIS; CRACK-PROPAGATION;
MOLECULAR-DYNAMICS; SOLID MECHANICS; STABILITY; ALGORITHMS; MODELS
AB Peridynamics is a nonlocal extension of classical continuum mechanics that is well-suited for solving problems with discontinuities such as cracks. This paper extends the peridynamic formulation to decompose a problem domain into a number of smaller overlapping subdomains and to enable the use of different time steps in different subdomains. This approach allows regions of interest to be isolated and solved at a small time step for increased accuracy while the rest of the problem domain can be solved at a larger time step for greater computational efficiency. Performance of the proposed method in terms of stability, accuracy, and computational cost is examined and several numerical examples are presented to corroborate the findings. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Lindsay, P.; Prakash, A.] Lyles Sch Civil Engn, Delon & Elizabeth Hampton Hall Civil Engn, W Lafayette, IN 47907 USA.
[Parks, M. L.] Sandia Natl Labs, POB 5800,MS 1320, Albuquerque, NM 87185 USA.
RP Prakash, A (reprint author), Lyles Sch Civil Engn, Delon & Elizabeth Hampton Hall Civil Engn, W Lafayette, IN 47907 USA.
EM plindsay@purdue.edu; mlparks@sandia.gov; aprakas@purdue.edu
RI Prakash, Arun/G-5327-2012
OI Prakash, Arun/0000-0001-7579-0973
FU US Department of Energy Office of Science, Office of Advanced Scientific
Computing Research, Computer Science program [DE-FC02-12ER26104]
FX This material is based upon work supported by the US Department of
Energy Office of Science, Office of Advanced Scientific Computing
Research, Computer Science program under contract DE-FC02-12ER26104. The
authors also thank the anonymous reviewers for their insightful comments
that have helped improve the manuscript.
NR 61
TC 1
Z9 1
U1 2
U2 10
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0045-7825
EI 1879-2138
J9 COMPUT METHOD APPL M
JI Comput. Meth. Appl. Mech. Eng.
PD JUL 1
PY 2016
VL 306
BP 382
EP 405
DI 10.1016/j.cma.2016.03.049
PG 24
WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary
Applications; Mechanics
SC Engineering; Mathematics; Mechanics
GA DM6TK
UT WOS:000376485100017
ER
PT J
AU Poineau, F
Silva, CM
Yeamans, CB
Cerefice, GS
Sattelberger, AP
Czerwinski, KR
AF Poineau, Frederic
Silva, Chinthaka M.
Yeamans, Charles B.
Cerefice, Gary S.
Sattelberger, Alfred P.
Czerwinski, Kenneth R.
TI Structural study of the ammonium octafluoroneptunate, [NH4](4)NpF8
SO INORGANICA CHIMICA ACTA
LA English
DT Article
DE Neptunium; Fluoride; EXAFS
ID ABSORPTION FINE-STRUCTURE; CRYSTAL-STRUCTURE; FLUORIDE; TETRAFLUORIDE;
(NH4)4UF8; SYSTEM; ROUTE
AB The [NH4](4)NpF8 salt was prepared from the solid-state reaction of NpO2 with NH4HF2 and characterized by powder X-ray diffraction and X-ray absorption fine structure spectroscopy. The diffraction results confirm the compound to be isostructural to [NH4](4)UF8 with the following lattice parameter (a = 13.054(4)angstrom, b = 6.681(2) angstrom, c = 13.676(5) angstrom, beta = 121.14 angstrom). For the first time, a neptunium fluoride complex has been characterized by XAFS spectroscopy. The energy position of the white line and inflection of the XANES spectra of [NH4](4)NpF8 are consistent with the presence of Np(IV). Adjustment of the EXAFS spectra indicates that the coordination number (7.4 +/- 1.5) and the average Np-F distance (2.26(1) angstrom) are consistent with the presence of the NpF8 dodecahedron. The average Np-F distance is similar to 0.02 angstrom shorter than the U-F distance in [NH4](4)UF8 and is a result of the actinide contraction. (c) 2016 Elsevier B.V. All rights reserved.
C1 [Poineau, Frederic; Sattelberger, Alfred P.; Czerwinski, Kenneth R.] Univ Nevada, Dept Chem, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA.
[Silva, Chinthaka M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Yeamans, Charles B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Cerefice, Gary S.] Univ Nevada, Dept Hlth Phys, Las Vegas, NV 89154 USA.
[Sattelberger, Alfred P.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Poineau, F (reprint author), Univ Nevada, Dept Chem, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA.
EM poineauf@unlv.nevada.edu
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; Department of Chemistry and Biochemistry
at UNLV
FX Use of the Advanced Photon Source was supported by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357.; FP acknowledges the Department of
Chemistry and Biochemistry at UNLV for supporting his research through a
startup package.
NR 31
TC 0
Z9 0
U1 4
U2 7
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0020-1693
EI 1873-3255
J9 INORG CHIM ACTA
JI Inorg. Chim. Acta
PD JUL 1
PY 2016
VL 448
BP 93
EP 96
DI 10.1016/j.ica.2016.04.025
PG 4
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA DM7FB
UT WOS:000376521100013
ER
PT J
AU Brechignac, F
Oughton, D
Mays, C
Barnthouse, L
Beasley, JC
Bonisoli-Alquati, A
Bradshaw, C
Brown, J
Dray, S
Geras'kin, S
Glenn, T
Higley, K
Ishida, K
Kapustka, L
Kautsky, U
Kuhne, W
Lynch, M
Mappes, T
Mihok, S
Moller, AP
Mothersill, C
Mousseau, TA
Otaki, JM
Pryakhin, E
Rhodes, OE
Salbu, B
Strand, P
Tsukada, H
AF Brechignac, Francois
Oughton, Deborah
Mays, Claire
Barnthouse, Lawrence
Beasley, James C.
Bonisoli-Alquati, Andrea
Bradshaw, Clare
Brown, Justin
Dray, Stephane
Geras'kin, Stanislav
Glenn, Travis
Higley, Kathy
Ishida, Ken
Kapustka, Lawrence
Kautsky, Ulrik
Kuhne, Wendy
Lynch, Michael
Mappes, Tapio
Mihok, Steve
Moller, Anders P.
Mothersill, Carmel
Mousseau, Timothy A.
Otaki, Joji M.
Pryakhin, Evgeny
Rhodes, Olin E., Jr.
Salbu, Brit
Strand, Per
Tsukada, Hirofumi
TI Addressing ecological effects of radiation on populations and ecosystems
to improve protection of the environment against radiation: Agreed
statements from a Consensus Symposium
SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY
LA English
DT Review
DE Radiation effects; Ecological risk assessment; Populations; Ecosystems;
Environmental protection; Consensus development
ID IONIZING-RADIATION; BIOLOGICAL IMPACTS; CHERNOBYL; FUKUSHIMA;
COMMUNITIES; ABUNDANCE; EXPOSURE; DATABASE; FISH
AB This paper reports the output of a consensus symposium organized by the International Union of Radioecology in November 2015. The symposium gathered an academically diverse group of 30 scientists to consider the still debated ecological impact of radiation on populations and ecosystems. Stimulated by the Chernobyl and Fukushima disasters' accidental contamination of the environment, there is increasing interest in developing environmental radiation protection frameworks. Scientific research conducted in a variety of laboratory and field settings has improved our knowledge of the effects of ionizing radiation on the environment. However, the results from such studies sometimes appear contradictory and there is disagreement about the implications for risk assessment. The Symposium discussions therefore focused on issues that might lead to different interpretations of the results, such as laboratory versus field approaches, organism versus population and ecosystemic inference strategies, dose estimation approaches and their significance under chronic exposure conditions. The participating scientists, from across the spectrum of disciplines and research areas, extending also beyond the traditional radioecology community, successfully developed a constructive spirit directed at understanding discrepancies. From the discussions, the group has derived seven consensus statements related to environmental protection against radiation, which are supplemented with some recommendations. Each of these statements is contextualized and discussed in view of contributing to the orientation and integration of future research, the results of which should yield better consensus on the ecological impact of radiation and consolidate suitable approaches for efficient radiological protection of the environment. (C) 2016 The Authors. Published by Elsevier Ltd.
C1 [Brechignac, Francois] Ctr Cadarache, Inst Radioprotect & Nucl Safety IRSN, BP 3, F-13115 St Paul Les Durance, France.
[Brechignac, Francois] Ctr Cadarache, IUR, BP 3, F-13115 St Paul Les Durance, France.
[Oughton, Deborah; Salbu, Brit] Norwegian Univ Life Sci, Ctr Environm Radioact CERAD, POB 5003, N-1432 As, Norway.
[Mays, Claire] Inst Symlog de France, 262 Rue St Jacques, F-75005 Paris, France.
[Barnthouse, Lawrence] LWB Environm Serv Inc, 1620 New London Rd, Hamilton, OH 45013 USA.
[Beasley, James C.] Univ Georgia, Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA.
[Beasley, James C.] Univ Georgia, Warnell Sch Forestry & Nat Resources, PO Drawer E, Aiken, SC 29802 USA.
[Bonisoli-Alquati, Andrea] Louisiana State Univ, AgCtr, Sch Renewable Nat Resources, Baton Rouge, LA 70803 USA.
[Bradshaw, Clare] Stockholm Univ, Dept Ecol Environm & Plant Sci, S-10691 Stockholm, Sweden.
[Brown, Justin] NRPA, Osteras, Norway.
[Dray, Stephane] Univ Lyon, F-69000 Lyon, France.
[Dray, Stephane] Univ Lyon 1, F-69622 Villeurbanne, France.
[Dray, Stephane] CNRS, UMR5558, Lab Biomet & Biol Evolut, F-69622 Villeurbanne, France.
[Geras'kin, Stanislav] Russian Inst Radiol & Agroecol, Obninsk, Russia.
[Glenn, Travis] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA.
[Higley, Kathy] Oregon State Univ, Sch Nucl Sci & Engn, Corvallis, OR 97331 USA.
[Ishida, Ken] Univ Tokyo, Grad Sch Agr & Life Sci, Tokyo 1138657, Japan.
[Kapustka, Lawrence] LK Consultancy, POB 373, Turner Valley, AB T0L 2A0, Canada.
[Kautsky, Ulrik] Swedish Nucl Fuel & Waste Management Co SKB, POB 250, SE-10124 Stockholm, Sweden.
[Kuhne, Wendy] Savannah River Natl Lab, Aiken, SC USA.
[Lynch, Michael] Indiana Univ, Dept Biol, 1001 East Third St, Bloomington, IN 47405 USA.
[Mappes, Tapio] Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, Jyvaskyla 40014, Finland.
[Mihok, Steve] 388 Church St, Russell, ON K4R 1A8, Canada.
[Moller, Anders P.] Univ Paris Saclay, CNRS, Univ Paris Sud, Ecol Systemat Evolut,AgroParisTech, F-91405 Orsay, France.
[Mothersill, Carmel] McMaster Univ, Dept Med Phys & Appl Radiat Sci, Hamilton, ON, Canada.
[Mousseau, Timothy A.] Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA.
[Mousseau, Timothy A.] Univ S Carolina, Sch Earth Ocean & Environm, Columbia, SC 29208 USA.
[Otaki, Joji M.] Univ Ryukyus, BCPH Unit Mol Physiol, Dept Chem Biol & Marine Sci, Fac Sci, Okinawa 9030213, Japan.
[Pryakhin, Evgeny] Urals Res Ctr Radiat Med, Vorovsky Str 68a, Chelyabinsk 454076, Russia.
[Rhodes, Olin E., Jr.] SREL, Aiken, SC 29802 USA.
[Tsukada, Hirofumi] Fukushima Univ, Inst Environm Radioact, 1 Kanayagawa, Fukushima, Fukushima 9601296, Japan.
[Strand, Per] Norwegian Univ Life Sci NMBU, Univ St 3, N-1430 As, Norway.
RP Brechignac, F (reprint author), Ctr Cadarache, Inst Radioprotect & Nucl Safety IRSN, BP 3, F-13115 St Paul Les Durance, France.; Brechignac, F (reprint author), Ctr Cadarache, IUR, BP 3, F-13115 St Paul Les Durance, France.
EM francois.brechignac@irsn.fr; deborah.oughton@nmbu.no;
claire.mays@post.harvard.edu; barnthouse@lwb-env.com;
beasley@srel.uga.edu; andreabonisoli@gmail.com; clare.bradshaw@su.se;
Justin.brown@nrpa.no; stephane.dray@univ-lyon1.fr; stgeraskin@gmail.com;
travisg@uga.edu; kathryn.higley@oregonstate.edu;
ishiken@es.a.u-tokyo.ac.jp; kapustka@xplornet.com;
ulrikkau+iurj@gmail.com; wendy.kuhne@srnl.doe.gov; milynch@indiana.edu;
tapio.mappes@jyu.fi; smihok@bell.net; anders.Moller@u-psud.fr;
mothers@mcmaster.ca; mousseau@sc.edu; otaki@sci.u-ryukyu.ac.jp;
pryakhin@yandex.ru; rhodes@srel.uga.edu; brit.salbu@nmbu.no;
per.strand@nrpa.no; hirot@ipc.fukushima-u.ac.jp
RI Moller, Anders/O-6665-2016; Dray, Stephane/B-4107-2010; Mappes,
Tapio/B-9780-2013;
OI Moller, Anders/0000-0003-3739-4675; Dray, Stephane/0000-0003-0153-1105;
Mappes, Tapio/0000-0002-5936-7355; Mihok, Steve/0000-0003-2328-8986
FU Research Council of Norway through its Centre's of Excellence funding
scheme [223268/F50]
FX The authors wish to thank Dr Armelle Guilloux (Ellipse&Co) for the warm
ambiance and excellent logistics organization of the 2015 Miami
International Consensus Symposium. This work was (partly) supported by
the Research Council of Norway through its Centre's of Excellence
funding scheme, project number 223268/F50.
NR 43
TC 3
Z9 3
U1 12
U2 28
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0265-931X
EI 1879-1700
J9 J ENVIRON RADIOACTIV
JI J. Environ. Radioact.
PD JUL
PY 2016
VL 158
BP 21
EP 29
DI 10.1016/j.jenvrad.2016.03.021
PG 9
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA DM9PV
UT WOS:000376699100003
PM 27058410
ER
PT J
AU Li, J
Jacobs, IE
Friedrich, S
Stroeve, P
Moule, AJ
AF Li, Jun
Jacobs, Ian E.
Friedrich, Stephan
Stroeve, Pieter
Moule, Adam J.
TI Solution aging and degradation of a transparent conducting polymer
dispersion
SO ORGANIC ELECTRONICS
LA English
DT Article
DE Organic electronics; Solution processing; Stability; Degradation; Aging;
Conductivity
ID ORGANIC PHOTOVOLTAIC DEVICES; LIGHT-EMITTING-DIODES; NON-NEWTONIAN
FLUIDS; SOLAR-CELLS; PEDOTPSS FILMS; WORK-FUNCTION; STABILITY;
PERFORMANCE; MECHANISMS; MORPHOLOGY
AB As organic electronics improve, there is increased research interest on the longevity and stability of both the device and individual material components. Most of these studies focus on post deposition degradation and aging of the film. In this article, we examine the stability of polyelectrolyte dispersions before film coating. We observe substantial differences in the solution properties of the transparent conducting polymer, S-P3MEET, when comparing fresh versus aged dispersions and relate these solution differences to film properties. The aged dispersion contains large agglomerates and exhibits a typical shear-thinning rheological behavior, which results in non-uniformity of the spin-coated films. Near edge X-ray absorption fine structure measurements were used to differentiate the changes in bonding and oxidation states and show that aged S-P3MEET is more highly self-doped than fresh S-P3MEET. We also show that addition of acid, salt or heat to fresh S-P3MEET can accelerate the degradation/aging process but are subjected to different mechanisms. Conductivity measurements of S-P3MEET films illustrate that there is a tradeoff between increased work function and decreased conductivity upon perfluorinated ionomer (PFI) loading. The formation of nanostructure in solution is also correlated to film morphology variations obtained from atomic force microscopy. We expect that dispersion aging is a process that commonly exists in most solution-dispersed polyelectrolyte materials and that the methodologies presented in this paper might be beneficial to future degradation/stability studies. (C) 2016 Elsevier B.V. All rights reserved.
C1 [Li, Jun; Jacobs, Ian E.; Stroeve, Pieter; Moule, Adam J.] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA.
[Jacobs, Ian E.] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA.
[Friedrich, Stephan] Lawrence Livermore Natl Lab, Adv Detector Grp, Livermore, CA 94550 USA.
RP Moule, AJ (reprint author), Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA.
EM amoule@ucdavis.edu
OI Moule, Adam/0000-0003-1354-3517
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-SC0010419]; U.S. Department of
Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
FX This research project was supported by the U.S. Department of Energy,
Office of Basic Energy Sciences, Division of Materials Sciences and
Engineering, under Award DE-SC0010419. The NEXAFS work was performed in
collaboration under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
We would like to thank Elke Arrenholz and Alpha N ' Diaye (ALS, LBNL)
for user support and training, Prof. Nitin Nitin (UC Davis) for help of
the particle size and zeta potential measurements, and Dr. Charles F.
Shoemaker (UC Davis) for helping with the rheological measurements.
NR 59
TC 0
Z9 0
U1 7
U2 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1566-1199
EI 1878-5530
J9 ORG ELECTRON
JI Org. Electron.
PD JUL
PY 2016
VL 34
BP 172
EP 178
DI 10.1016/j.orgel.2016.04.019
PG 7
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA DM6JE
UT WOS:000376457000026
ER
PT J
AU McNamara, BK
O'Hara, MJ
Casella, AM
Carter, JC
Addleman, RS
MacFarlan, PJ
AF McNamara, Bruce K.
O'Hara, Matthew J.
Casella, Andrew M.
Carter, Jennifer C.
Addleman, R. Shane
MacFarlan, Paul J.
TI Uniform deposition of uranium hexafluoride (UF6): Standardized mass
deposits and controlled isotopic ratios using a thermal fluorination
method
SO TALANTA
LA English
DT Article
DE Fluorination; UF6; UO2F2; UO2; Nuclear safeguards; Nuclear forensics
ID UO2F2; NF3
AB We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other U compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within a fixed reactor geometry to a highly predictable degree. We demonstrate the preparation of U deposits that range between approximately 0.01 and 500 ng cm(-2). The data suggest the method can be extended to creating depositions at the sub-picogram cm(-2) level. The isotopic composition of the deposits can be customized by selection of the U source materials and we demonstrate a layering technique whereby two U solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit that bears an isotopic signature that is a composite of the two U sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics. Further, the method allows access to very low atomic or molecular coverages of surfaces. (c) 2016 Elsevier B.V. All rights reserved.
C1 [McNamara, Bruce K.; O'Hara, Matthew J.; Casella, Andrew M.; Carter, Jennifer C.; Addleman, R. Shane; MacFarlan, Paul J.] Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA.
RP McNamara, BK (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA.
EM Bruce.McNamara@pnnl.gov
FU Office of Nonproliferation and International Security (NIS); Office of
Defense Nuclear Nonproliferation Research and Development (DNN R&D),
National Nuclear Security Administration (NNSA)
FX The authors gratefully acknowledge the support of the Office of
Nonproliferation and International Security (NIS), and the Office of
Defense Nuclear Nonproliferation Research and Development (DNN R&D),
National Nuclear Security Administration (NNSA). We would also like to
thank the Pacific Northwest National Laboratory (PNNL)
Laboratory-Directed Research & Development (LDRD) program. PNNL is
operated for the U.S. Department of Energy by Battelle. The content is
solely the responsibility of the authors and does not necessarily
represent the official views of the DOE, PNNL or Battelle.
NR 19
TC 0
Z9 0
U1 6
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-9140
EI 1873-3573
J9 TALANTA
JI Talanta
PD JUL 1
PY 2016
VL 154
BP 219
EP 227
DI 10.1016/j.talanta.2016.03.054
PG 9
WC Chemistry, Analytical
SC Chemistry
GA DM9OU
UT WOS:000376696400028
PM 27154668
ER
PT J
AU Koop, L
Nakashima, D
Heck, PR
Kita, NT
Tenner, TJ
Krot, AN
Nagashima, K
Park, C
Davis, AM
AF Koop, Levke
Nakashima, Daisuke
Heck, Philipp R.
Kita, Noriko T.
Tenner, Travis J.
Krot, Alexander N.
Nagashima, Kazuhide
Park, Changkun
Davis, Andrew M.
TI New constraints on the relationship between Al-26 and oxygen, calcium,
and titanium isotopic variation in the early Solar System from a
multielement isotopic study of spinel-hibonite inclusions
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
DE Spinel-hibonite inclusions (SHIBs); CAI; Meteorites; Solar nebula;
Oxygen isotopes; Internal isochrons; Aluminum-26; Magnesium isotopes;
Titanium isotopes; Calcium isotopes
ID MURCHISON CARBONACEOUS CHONDRITE; ALUMINUM-RICH INCLUSIONS; REFRACTORY
INCLUSIONS; PROTOPLANETARY DISK; CONTEMPORANEOUS FORMATION; ELEMENT
ABUNDANCES; MASS-SPECTROMETRY; ALLENDE; METEORITES; CHONDRULES
AB We report oxygen, calcium, titanium and Al-26-Mg-26 isotope systematics for spinel-hibonite inclusions (SHIBs), a class of calcium-aluminum-rich inclusions (CAI) common in CM chondrites. In contrast to previous studies, our analyses of 33 SHIBs and four SHIB-related objects obtained with high spatial resolution demonstrate that these CAIs have a uniform Delta O-17 value of approximately -23 parts per thousand, similar to many other mineralogically pristine CAIs from unmetamorphosed chondrites (e.g., CR, CV, and Acfer 094). Five SHIBs studied for calcium and titanium isotopes have no resolvable anomalies beyond 3 sigma uncertainties. This suggests that nucleosynthetic anomalies in the refractory elements had been significantly diluted in the environment where SHIBs with uniform Delta O-17 formed. We established internal Al-26-Mg-26 isochrons for eight SHIBs and found that seven of these formed with uniformly high levels of Al-26 (a multi-CAI mineral isochron yields an initial Al-26/Al-27 ratio of similar to 4.8 x 10(-5)), but one SHIB has a smaller initial Al-26/Al-27 of similar to 2.5 x 10(-5), indicating variation in Al-26/Al-27 ratios when SHIBs formed. The uniform calcium, titanium and oxygen isotopic characteristics found in SHIBs with both high and low initial Al-26/Al-27 ratios allow for two interpretations. (1) If subcanonical initial Al-26/Al-27 ratios in SHIBs are due to early formation, as suggested by Liu et al. (2012), our data would indicate that the CAI formation region had achieved a high degree of isotopic homogeneity in oxygen and refractory elements before a homogeneous distribution of Al-26 was achieved. (2) Alternatively, if subcanonical ratios were the result of Al-26-Mg-26 system resetting, the clustering of SHIBs at a Delta O-17 value of similar to-23 parts per thousand would imply that a O-16-rich gaseous reservoir existed in the nebula until at least similar to 0.7 Ma after the formation of the majority of CAIs. (C) 2016 Elsevier Ltd. All rights reserved.
C1 [Koop, Levke; Heck, Philipp R.; Davis, Andrew M.] Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA.
[Koop, Levke; Heck, Philipp R.; Davis, Andrew M.] Univ Chicago, Chicago Ctr Cosmochemi, Chicago, IL 60637 USA.
[Koop, Levke; Heck, Philipp R.; Davis, Andrew M.] Field Museum Nat Hist, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA.
[Nakashima, Daisuke; Kita, Noriko T.; Tenner, Travis J.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA.
[Nakashima, Daisuke] Tohoku Univ, Fac Sci, Div Earth & Planetary Mat Sci, Aoba Ku, Sendai, Miyagi 9808578, Japan.
[Krot, Alexander N.; Nagashima, Kazuhide; Park, Changkun] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI USA.
[Park, Changkun] Korea Polar Res Inst, Inchon 406840, South Korea.
[Davis, Andrew M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.
[Tenner, Travis J.] Los Alamos Natl Lab, Div Chem, Nucl & Radiochem, MSJ514, Los Alamos, NM 87545 USA.
RP Koop, L (reprint author), Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA.
EM koeoep@uchicago.edu
FU NASA [NNX09AG39G, NNX15AF78G, NNX11AG62G, NNX14AG29G, NNX13AD15G,
NNX15AH38G]; NSF [EAR03-19230, EAR10-53466, EAR13-55590]; Tawani
Foundation; NASA Earth and Space Science Fellowship
FX We thank Frederic Moynier for editorial handling and Justin Simon and
two anonymous reviewers for careful reviews that greatly improved the
manuscript. We are also thankful for assistance from Ian Steele with
EPMA analyses. L. Koop and A.M. Davis acknowledge funding from the NASA
Cosmochemistry Program (Grant NNX09AG39G, to A.M. Davis) and NASA
Laboratory Analysis of Returned Samples Program (Grant NNX15AF78G, to
A.M. Davis). L. Koop was also supported through a NASA Earth and Space
Science Fellowship. N.T. Kita is supported by the NASA Cosmochemistry
Program (Grants NNX11AG62G, NNX14AG29G); D. Nakashima and T.J. Tenner
were supported by the NASA Laboratory Analysis of Returned Samples
Program (Grant NNX13AD15G, to PI N.T. Kita). A.N. Krot was supported by
NASA Emerging Worlds Program (Grant NNX15AH38G, to A. N. Krot). WiscSIMS
is partly supported by NSF (EAR03-19230, EAR10-53466, EAR13-55590). P.R.
Heck acknowledges funding from the Tawani Foundation.
NR 58
TC 7
Z9 7
U1 5
U2 9
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
EI 1872-9533
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD JUL 1
PY 2016
VL 184
BP 151
EP 172
DI 10.1016/j.gca.2016.04.018
PG 22
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA DM2HX
UT WOS:000376168800009
ER
PT J
AU Uckun, C
Botterud, A
Birge, JR
AF Uckun, Canan
Botterud, Audun
Birge, John R.
TI An Improved Stochastic Unit Commitment Formulation to Accommodate Wind
Uncertainty
SO IEEE TRANSACTIONS ON POWER SYSTEMS
LA English
DT Article
DE Electricity markets; stochastic programming; wind power
ID PROBABILISTIC FORECASTS; POWER-GENERATION; SYSTEM
AB The United States targets to supply 20% of its electricity generation using wind energy by 2030. The expansion of renewable resources, especially weather-based resources such as wind, creates more uncertainty and variability in the operation of the power grid. New methods and approaches in electricity market operations are needed to efficiently manage the continuing increase in variability and uncertainty caused by expanding intermittent wind. This paper proposes an improved stochastic programming approach for incorporating wind uncertainty into energy markets. The proposed formulation improves the two-stage stochastic unit commitment problem by introducing a dynamic decision making approach similar to a multi-stage formulation in the presence of wind power scenarios which are not well represented by a scenario tree. The numerical results present up to 1%-2% decrease in operational costs compared to the two-stage stochastic unit commitment formulation.
C1 [Uckun, Canan; Botterud, Audun] Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA.
[Birge, John R.] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA.
RP Uckun, C; Botterud, A (reprint author), Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA.; Birge, JR (reprint author), Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA.
EM cuckun@anl.gov; abotterud@anl.gov; jbirge@chicagobooth.edu
FU University of Chicago; Department of Energy [DE-AC02-06CH11357];
University of Chicago Booth School of Business
FX This work was supported by the University of Chicago and the Department
of Energy under Department of Energy Contract No. DE-AC02-06CH11357
awarded to UChicago Argonne, LLC, operator of Argonne National
Laboratory. The work of J. R. Birge was supported by the University of
Chicago Booth School of Business.
NR 22
TC 2
Z9 2
U1 4
U2 18
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8950
EI 1558-0679
J9 IEEE T POWER SYST
JI IEEE Trans. Power Syst.
PD JUL
PY 2016
VL 31
IS 4
BP 2507
EP 2517
DI 10.1109/TPWRS.2015.2461014
PG 11
WC Engineering, Electrical & Electronic
SC Engineering
GA DL6UE
UT WOS:000375774200001
ER
PT J
AU Castillo, A
Lipka, P
Watson, JP
Oren, SS
O'Neill, RP
AF Castillo, Anya
Lipka, Paula
Watson, Jean-Paul
Oren, Shmuel S.
O'Neill, Richard P.
TI A Successive Linear Programming Approach to Solving the IV-ACOPF
SO IEEE TRANSACTIONS ON POWER SYSTEMS
LA English
DT Article
DE Alternating current optimal power flow (ACOPF); optimal power flow
(OPF); rectangular coordinates; successive linear programming (SLP)
ID OPTIMAL POWER-FLOW; OPTIMIZATION
AB Improved formulations of and solution techniques for the alternating current optimal power flow (ACOPF) problem are critical to improving current market practices in economic dispatch. We introduce the IV-ACOPF formulation that unlike canonical ACOPF formulations-which represent network balancing through nonlinear coupling-is based on a current injections approach that linearly couple the quadratic constraints at each bus; yet, the IV-ACOPF is mathematically equivalent to the canonical ACOPF formulation. We propose a successive linear programming (SLP) approach to solve the IV-ACOPF, which we refer to as the SLP IV-ACOPF algorithm. The SLP IV-ACOPF leverages commercial LP solvers and can be readily extended and integrated into more complex decision processes, e.g., unit commitment and transmission switching. We demonstrate with the standard MATPOWER test suite an acceptable quality of convergence to a best-known solution and linear scaling of computational time in proportion to network
C1 [Castillo, Anya] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Castillo, Anya; O'Neill, Richard P.] FERC, Washington, DC 20426 USA.
[Lipka, Paula; Oren, Shmuel S.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Watson, Jean-Paul] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
RP Castillo, A (reprint author), Johns Hopkins Univ, Baltimore, MD 21218 USA.; O'Neill, RP (reprint author), FERC, Washington, DC 20426 USA.; Lipka, P; Oren, SS (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA.; Watson, JP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM anya.castillo@gmail.com; plipka@berkeley.edu; jwatson@sandia.gov;
oren@ieor.berkeley.edu; richard.oneill@ferc.gov
FU National Science Foundation Graduate Research Fellowship [DGE 1106400];
U.S. Department of Energy's Office of Advanced Scientific Computing
Research; Lockheed Martin Corporation [DE-AC04-94-AL85000]
FX This work was supported in part by the National Science Foundation
Graduate Research Fellowship DGE 1106400 and in part by the U.S.
Department of Energy's Office of Advanced Scientific Computing Research.
Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under Contract DE-AC04-94-AL85000.
NR 49
TC 4
Z9 4
U1 3
U2 5
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8950
EI 1558-0679
J9 IEEE T POWER SYST
JI IEEE Trans. Power Syst.
PD JUL
PY 2016
VL 31
IS 4
BP 2752
EP 2763
DI 10.1109/TPWRS.2015.2487042
PG 12
WC Engineering, Electrical & Electronic
SC Engineering
GA DL6UE
UT WOS:000375774200023
ER
PT J
AU Dall'Anese, E
Dhople, SV
Giannakis, GB
AF Dall'Anese, Emiliano
Dhople, Sairaj V.
Giannakis, Georgios B.
TI Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow
Solutions
SO IEEE TRANSACTIONS ON POWER SYSTEMS
LA English
DT Article
DE Distributed optimization and control; distribution systems; optimal
power flow; photovoltaic inverter control
ID RESIDENTIAL DISTRIBUTION-SYSTEMS; SUBGRADIENT METHODS; OPTIMAL DISPATCH;
CONVERGENCE; CONVEX; OPTIMIZATION
AB This paper considers future distribution networks featuring inverter-interfaced photovoltaic (PV) systems, and addresses the synthesis of feedback controllers that seek real-and reactive-power inverter setpoints corresponding to AC optimal power flow (OPF) solutions. The objective is to bridge the temporal gap between long-term system optimization and real-time inverter control, and enable seamless PV-owner participation without compromising system efficiency and stability. The design of the controllers is grounded on a dual epsilon-subgradient method, while semidefinite programming relaxations are advocated to bypass the non-convexity of AC OPF formulations. Global convergence of inverter output powers is analytically established for diminishing stepsize rules for cases where: i) computational limits dictate asynchronous updates of the controller signals, and ii) inverter reference inputs may be updated at a faster rate than the power-output settling time.
C1 [Dall'Anese, Emiliano] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Dhople, Sairaj V.; Giannakis, Georgios B.] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA.
[Dhople, Sairaj V.; Giannakis, Georgios B.] Univ Minnesota, Digital Technol Ctr, Minneapolis, MN 55455 USA.
RP Dall'Anese, E (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.; Dhople, SV; Giannakis, GB (reprint author), Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA.; Dhople, SV; Giannakis, GB (reprint author), Univ Minnesota, Digital Technol Ctr, Minneapolis, MN 55455 USA.
EM emiliano.dallanese@nrel.gov; sdhople@umn.edu; georgios@umn.edu
FU Laboratory Directed Research and Development Program at the National
Renewable Energy Laboratory; Department of Energy Office of Electricity
(OE) [28676]; National Science Foundation [CCF 1423316, CyberSEES
1442686, ECCS-1453921]; Institute of Renewable Energy and the
Environment, University of Minnesota [RL-0010-13, TPWRS-01758-2014]
FX The work of E. Dall'Anese was supported in part by the Laboratory
Directed Research and Development Program at the National Renewable
Energy Laboratory, and in part by the Department of Energy Office of
Electricity (OE) agreement 28676. The work of S. V. Dhople and G. B.
Giannakis was supported in part by the National Science Foundation
through grants CCF 1423316, CyberSEES 1442686, and CAREER award
ECCS-1453921 and in part by the Institute of Renewable Energy and the
Environment, University of Minnesota under grant RL-0010-13. Paper no.
TPWRS-01758-2014.
NR 46
TC 0
Z9 0
U1 3
U2 5
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8950
EI 1558-0679
J9 IEEE T POWER SYST
JI IEEE Trans. Power Syst.
PD JUL
PY 2016
VL 31
IS 4
BP 2809
EP 2823
DI 10.1109/TPWRS.2015.2454856
PG 15
WC Engineering, Electrical & Electronic
SC Engineering
GA DL6UE
UT WOS:000375774200028
ER
PT J
AU Garcia, M
Catanach, T
Wiel, SV
Bent, R
Lawrence, E
AF Garcia, Manuel
Catanach, Thomas
Wiel, Scott Vander
Bent, Russell
Lawrence, Earl
TI Line Outage Localization Using Phasor Measurement Data in Transient
State
SO IEEE TRANSACTIONS ON POWER SYSTEMS
LA English
DT Article
DE Estimation; power system faults; transient response; uncertainty
AB This paper introduces a statistical classifier that quickly locates line outages in a power system utilizing only time series phasor measurement data sampled during the system's transient response to the outage. The presented classifier is a linear multinomial regression model that is trained by solving a maximum likelihood optimization problem using synthetic data. The synthetic data is produced through dynamic simulations which are initialized by random samples of a forecast load/generation distribution. Real time computation of the proposed classifier is minimal and therefore the classifier is capable of locating a line outage before steady state is reached, allowing for quick corrective action in response to an outage. In addition, the output of the classifier fits into a statistical framework that is easily accessible. Specific line outages are identified as being difficult to localize and future improvements to the classifier are proposed.
C1 [Garcia, Manuel; Wiel, Scott Vander; Bent, Russell; Lawrence, Earl] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
[Catanach, Thomas] CALTECH, Pasadena, CA 91125 USA.
RP Garcia, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
OI Bent, Russell/0000-0002-7300-151X
NR 17
TC 0
Z9 0
U1 1
U2 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8950
EI 1558-0679
J9 IEEE T POWER SYST
JI IEEE Trans. Power Syst.
PD JUL
PY 2016
VL 31
IS 4
BP 3019
EP 3027
DI 10.1109/TPWRS.2015.2461461
PG 9
WC Engineering, Electrical & Electronic
SC Engineering
GA DL6UE
UT WOS:000375774200048
ER
PT J
AU Wei, W
Wang, JH
Mei, SW
AF Wei, Wei
Wang, Jianhui
Mei, Shengwei
TI Dispatchability Maximization for Co-Optimized Energy and Reserve
Dispatch With Explicit Reliability Guarantee
SO IEEE TRANSACTIONS ON POWER SYSTEMS
LA English
DT Article
DE Affine policy; convex optimization; dispatchability; energy and reserve
dispatch; uncertainty; wind generation
ID CONSTRAINED UNIT COMMITMENT; WIND POWER INTEGRATION; ROBUST
OPTIMIZATION; PROBABILITY-DISTRIBUTIONS; AFFINE POLICIES; GENERATION;
TRANSMISSION; SYSTEMS; STORAGE; CAPACITY
AB In this paper, we consider dispatchability as the set of all admissible nodal wind power injections that will not cause infeasibility in real-time dispatch (RTD). Our work reveals that the dispatchability of the affine policy based RTD (AF-RTD) is a polytope whose coefficients are linear functions of the generation schedule and the gain matrix of affine policy. Two mathematical formulations of the dispatchability maximized energy and reserve dispatch (DM-ERD) are proposed. The first one maximizes the distance from the forecast to the boundaries of the dispatchability polytope subject to the available production cost or reserve cost. Provided the forecast value and variance of wind power, the generalized Gauss inequality (GGI) is adopted to evaluate the probability of infeasible RTD without the exact probability distribution of wind power. Combining the first formulation and the GGI approach, the second one minimizes the total cost subject to a desired reliability level through dispatchability maximization. Efficient convex optimization based algorithms are developed to solve these two models. Different from the conventional robust optimization method, our model does not rely on the specific uncertainty set of wind generation and directly optimizes the uncertainty accommodation capability of the power system. The proposed method is also compared with the affine policy based robust energy and reserve dispatch (AR-ERD). Case studies on the PJM 5-bus system illustrate the proposed concept and method. Experiments on the IEEE 118-bus system demonstrate the applicability of our method on moderate sized systems and its scalability to large dimensional uncertainty.
C1 [Wei, Wei; Mei, Shengwei] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China.
[Wang, Jianhui] Argonne Natl Lab, Adv Power Grid Modeling, Energy Syst Div, Lemont, IL 60439 USA.
RP Wei, W; Mei, SW (reprint author), Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China.; Wang, JH (reprint author), Argonne Natl Lab, Adv Power Grid Modeling, Energy Syst Div, Lemont, IL 60439 USA.
EM wei-wei04@mails.tsinghua.edu.cn; jianhui.wang@anl.gov;
meishengwei@mail.tsinghua.edu.cn
FU National Natural Science Foundation of China [51577163]; Foundation for
Innovative Research Groups of the National Natural Science Foundation of
China [51321005]
FX This work was supported in part by the National Natural Science
Foundation of China (51577163), and in part by the Foundation for
Innovative Research Groups of the National Natural Science Foundation of
China (51321005). Paper no. TPWRS-00755-2015.
NR 51
TC 0
Z9 0
U1 10
U2 12
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8950
EI 1558-0679
J9 IEEE T POWER SYST
JI IEEE Trans. Power Syst.
PD JUL
PY 2016
VL 31
IS 4
BP 3276
EP 3288
DI 10.1109/TPWRS.2015.2477348
PG 13
WC Engineering, Electrical & Electronic
SC Engineering
GA DL6UE
UT WOS:000375774200074
ER
PT J
AU Dvorkin, Y
Lubin, M
Backhaus, S
Chertkov, M
AF Dvorkin, Yury
Lubin, Miles
Backhaus, Scott
Chertkov, Michael
TI Uncertainty Sets for Wind Power Generation
SO IEEE TRANSACTIONS ON POWER SYSTEMS
LA English
DT Article
DE Power system operations; wind power uncertainty; wind power variability
AB As penetration of wind power generation increases, system operators must account for its stochastic nature in a reliable and cost-efficient manner. These conflicting objectives can be traded-off by accounting for the variability and uncertainty of wind power generation. This letter presents a new methodology to estimate uncertainty sets for parameters of probability distributions that capture wind generation uncertainty and variability.
C1 [Dvorkin, Yury] Univ Washington, Seattle, WA 98105 USA.
[Lubin, Miles] MIT, Cambridge, MA 02139 USA.
[Backhaus, Scott; Chertkov, Michael] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Dvorkin, Y (reprint author), Univ Washington, Seattle, WA 98105 USA.
OI Backhaus, Scott/0000-0002-0344-6791; Chertkov,
Michael/0000-0002-6758-515X
FU Advanced Grid Modeling Program in the U.S. Department of Energy Office
of Electricity [DE-AC52-06NA25396]; DOE Computational Science Graduate
Fellowship
FX This work was supported by the Advanced Grid Modeling Program in the
U.S. Department of Energy Office of Electricity under Contract No.
DE-AC52-06NA25396. The work of M. Lubin was supported by the DOE
Computational Science Graduate Fellowship. Paper no. PESL-00068-2015.
NR 7
TC 1
Z9 1
U1 1
U2 8
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 0885-8950
EI 1558-0679
J9 IEEE T POWER SYST
JI IEEE Trans. Power Syst.
PD JUL
PY 2016
VL 31
IS 4
BP 3326
EP 3327
DI 10.1109/TPWRS.2015.2476664
PG 2
WC Engineering, Electrical & Electronic
SC Engineering
GA DL6UE
UT WOS:000375774200082
ER
PT J
AU Sandhu, R
Poirel, D
Pettit, C
Khalil, M
Sarkar, A
AF Sandhu, Rimple
Poirel, Dominique
Pettit, Chris
Khalil, Mohammad
Sarkar, Abhijit
TI Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic
limit cycle oscillations
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Bayesian inference; Bayesian model selection; Nonlinear aeroelasticity;
Limit cycle oscillation; Markov Chain Monte Carlo simulation; Kalman
filter; Unsteady aerodynamics
ID MODEL SELECTION; UNCERTAINTY QUANTIFICATION; MARGINAL LIKELIHOOD;
REYNOLDS-NUMBERS; ADAPTIVE MCMC; SYSTEM; STABILITY; ALGORITHM; AIRFOIL;
OUTPUT
AB A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid-structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib-Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers. (C) 2016 Published by Elsevier Inc.
C1 [Sandhu, Rimple; Khalil, Mohammad; Sarkar, Abhijit] Carleton Univ, Dept Civil & Environm Engn, Ottawa, ON K1S 5B6, Canada.
[Poirel, Dominique] Royal Mil Coll Canada, Dept Mech & Aerosp Engn, Kingston, ON, Canada.
[Pettit, Chris] US Naval Acad, Dept Aerosp Engn, Annapolis, MD 21402 USA.
[Khalil, Mohammad] Sandia Natl Labs, Livermore, CA USA.
RP Sarkar, A (reprint author), Carleton Univ, Dept Civil & Environm Engn, Ottawa, ON K1S 5B6, Canada.
EM abhijit.sarkar@carleton.ca
RI Sarkar, Abhijit/E-6918-2012
OI Sarkar, Abhijit/0000-0002-8427-8901
FU Canadian Department of National Defence, through the DSRI-TIF program;
Natural Sciences and Engineering Research Council of Canada; Natural
Sciences and Engineering Research Council of Canada through the award of
a Canada Graduate Scholarship; Canadian Department of National Defence;
Canada Research Chair Program; Canada Foundation for Innovation (CFI);
Ontario Innovation Trust (OIT); CLUMEQ; SciNet HPC Consortia at Canada
FX The second author acknowledges the support of the Canadian Department of
National Defence, through the DSRI-TIF program, and a Discovery Grant
from Natural Sciences and Engineering Research Council of Canada. The
fourth author acknowledges the support of the Natural Sciences and
Engineering Research Council of Canada through the award of a Canada
Graduate Scholarship and the Canadian Department of National Defence.
The fifth author acknowledges the support of a Discovery Grant from
Natural Sciences and Engineering Research Council of Canada and the
Canada Research Chair Program. The computing infrastructure is supported
by the Canada Foundation for Innovation (CFI), the Ontario Innovation
Trust (OIT), CLUMEQ and SciNet HPC Consortia at Canada.
NR 71
TC 0
Z9 0
U1 7
U2 13
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD JUL 1
PY 2016
VL 316
BP 534
EP 557
DI 10.1016/j.jcp.2016.03.006
PG 24
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA DL7DE
UT WOS:000375799200028
ER
PT J
AU Chacon, L
Chen, G
AF Chacon, L.
Chen, G.
TI A curvilinear, fully implicit, conservative electromagnetic PIC
algorithm in multiple dimensions
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Conservative discretization; Darwin model; Fully implicit algorithms;
Curvilinear meshes
ID PARTICLE-IN-CELL; ADAPTIVE MESH REFINEMENT; SLOW MODE SHOCKS; PLASMA
SIMULATION; NONLINEARLY IMPLICIT; PARALLEL COMPUTERS; MAXWELL EQUATIONS;
DARWIN MODEL; CHARGE; GRIDS
AB We extend a recently proposed fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions (Chen and Chacon (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (phi, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge del . A = 0 exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Chacon, L.; Chen, G.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RP Chacon, L (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM chacon@lanl.gov
OI Chacon, Luis/0000-0002-4566-8763; Chen, Guangye/0000-0002-8800-5791
FU Los Alamos National Laboratory Directed Research and Development program
(LDRD); Office of Applied Scientific Computing Research of the US
Department of Energy (DOE); National Nuclear Security Administration of
the U.S. Department of Energy at Los Alamos National Laboratory
[DE-AC52-06NA25396]
FX This work was partially sponsored by the Los Alamos National Laboratory
Directed Research and Development program (LDRD) and by the Office of
Applied Scientific Computing Research of the US Department of Energy
(DOE). This work was performed under the auspices of the National
Nuclear Security Administration of the U.S. Department of Energy at Los
Alamos National Laboratory, managed by LANS, LLC under contract
DE-AC52-06NA25396.
NR 50
TC 3
Z9 3
U1 5
U2 8
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD JUL 1
PY 2016
VL 316
BP 578
EP 597
DI 10.1016/j.jcp.2016.03.070
PG 20
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA DL7DE
UT WOS:000375799200031
ER
PT J
AU Greene, PT
Eldredge, JD
Zhong, XL
Kim, J
AF Greene, Patrick T.
Eldredge, Jeff D.
Zhong, Xiaolin
Kim, John
TI A high-order multi-zone cut-stencil method for numerical simulations of
high-speed flows over complex geometries
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Cut-stencil; Multi-zone refinement; High-order; Complex geometry;
Cartesian grid
ID ADAPTIVE MESH REFINEMENT; IMMERSED BOUNDARY METHOD; CARTESIAN GRID
METHOD; GHOST FLUID METHOD; SCHEMES; TRANSITION; DYNAMICS; VERSION;
LAYERS; HEART
AB In this paper, we present a method for performing uniformly high-order direct numerical simulations of high-speed flows over arbitrary geometries. The method was developed with the goal of simulating and studying the effects of complex isolated roughness elements on the stability of hypersonic boundary layers. The simulations are carried out on Cartesian grids with the geometries imposed by a third-order cut-stencil method. A fifth-order hybrid weighted essentially non-oscillatory scheme was implemented to capture any steep gradients in the flow created by the geometries and a third-order Runge-Kutta method is used for time advancement. A multi-zone refinement method was also utilized to provide extra resolution at locations with expected complex physics. The combination results in a globally fourth-order scheme in space and third order in time. Results confirming the method's high order of convergence are shown. Two-dimensional and three-dimensional test cases are presented and show good agreement with previous results. A simulation of Mach 3 flow over the logo of the Ubuntu Linux distribution is shown to demonstrate the method's capabilities for handling complex geometries. Results for Mach 6 wall-bounded flow over a three-dimensional cylindrical roughness element are also presented. The results demonstrate that the method is a promising tool for the study of hypersonic roughness-induced transition. (C) 2016 Elsevier Inc. All rights reserved.
C1 [Greene, Patrick T.; Eldredge, Jeff D.; Zhong, Xiaolin; Kim, John] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, 420 Westwood Plaza, Los Angeles, CA 90095 USA.
RP Greene, PT (reprint author), Lawrence Livermore Natl Lab, Los Angeles, CA USA.
EM greene@ucla.edu
RI Eldredge, Jeff/B-6837-2009;
OI Eldredge, Jeff/0000-0002-2672-706X; Greene, Patrick/0000-0001-7575-8906
FU NASA Fundamental Aeronautics Program [NNX07AC39A]; AFOSR/NASA National
Center for Hypersonic Research in Laminar-Turbulent Transition; National
Science Foundation
FX The authors gratefully acknowledge support by the NASA Fundamental
Aeronautics Program, under cooperative agreement NNX07AC39A, monitored
by Dr. Meelan Choudhari and the partial support of the AFOSR/NASA
National Center for Hypersonic Research in Laminar-Turbulent Transition
headed by Professor W. Saric at Texas A&M University. The computer time
for this work was provided by the NASA Ames Research Center Advanced
Supercomputing Division and the Extreme Science and Engineering
Discovery Environment (XSEDE) supported by the National Science
Foundation.
NR 42
TC 0
Z9 0
U1 1
U2 6
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD JUL 1
PY 2016
VL 316
BP 652
EP 681
DI 10.1016/j.jcp.2016.04.032
PG 30
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA DL7DE
UT WOS:000375799200035
ER
PT J
AU Wang, XY
Samulyak, R
Jiao, XM
Yu, KM
AF Wang, Xingyu
Samulyak, Roman
Jiao, Xiangmin
Yu, Kwangmin
TI AP-Cloud: Adaptive Particle-in-Cloud method for optimal solutions to
Vlasov-Poisson equation
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Particle method; Generalized finite difference; PIC; AMR-PIC
ID FINITE-DIFFERENCE METHOD; EMBEDDED BOUNDARY METHOD; MESH REFINEMENT;
SIMULATIONS; PLASMAS
AB We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov-Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes of computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2: 1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques. Published by Elsevier Inc.
C1 [Wang, Xingyu; Samulyak, Roman; Jiao, Xiangmin; Yu, Kwangmin] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA.
[Samulyak, Roman; Yu, Kwangmin] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA.
RP Samulyak, R (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA.
EM roman.samulyak@stonybrook.edu
FU U.S. Department of Energy [DE-AC02-98CH10886, DE-SC0012704]
FX This work was supported in part by the U.S. Department of Energy,
Contract No. DE-AC02-98CH10886. This manuscript has been authored in
part by Brookhaven Science Associates, LLC, under Contract No.
DE-SC0012704 with the US Department of Energy. The United States
Government retains, and the publisher, by accepting the article for
publication, acknowledges, a world-wide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for the
United States Government purpose.
NR 14
TC 1
Z9 1
U1 2
U2 7
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
EI 1090-2716
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD JUL 1
PY 2016
VL 316
BP 682
EP 699
DI 10.1016/j.jcp.2016.04.037
PG 18
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA DL7DE
UT WOS:000375799200036
ER
PT J
AU Mackey, J
Dynys, F
Hudak, BM
Guiton, BS
Sehirlioglu, A
AF Mackey, Jon
Dynys, Frederick
Hudak, Bethany M.
Guiton, Beth S.
Sehirlioglu, Alp
TI Co (x) Ni4-x Sb12-y Sn (y) skutterudites: processing and thermoelectric
properties
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID HIGH-PERFORMANCE THERMOELECTRICS
AB N-type and p-type skutterudite samples with the composition Co (x) Ni4-x Sb12-y Sn (y) were synthesized with composition range 0 < x < 2 and 3 < y < 5. Samples were pre-processed by solidification into ingots. Skutterudite phase formation was achieved by mechanical alloying the crushed ingots. The milled powders were consolidated to dense pellets by hot pressing. Thermoelectric measurements showed limited high-temperature performance below 400 A degrees C. Skutterudite decomposition above 250 A degrees C was detrimental to Seebeck coefficient. The thermoelectric transport properties can be tuned by varying the Co and Sn level. The lowest lattice thermal conductivity measured was 1.0 W m(-1) K-1 for the Co level of 1.5. The Seebeck coefficient was positive for Co levels > 0.8 and negative otherwise. Seebeck coefficients were low, ranging from -40 to 58 A mu V K-1. The combination of transmission electron microscopy with electron energy loss spectroscopy and powder X-ray diffraction established that Sn can substitute on 2a and 24g sites in the skutterudite structure. Due to the low Seebeck coefficients, the alloys exhibited low figure of merits (ZT) < 0.05.
C1 [Mackey, Jon; Sehirlioglu, Alp] Case Western Reserve Univ, Mat Sci & Engn, Cleveland, OH 44106 USA.
[Dynys, Frederick] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA.
[Hudak, Bethany M.; Guiton, Beth S.] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA.
[Guiton, Beth S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Mackey, J (reprint author), Case Western Reserve Univ, Mat Sci & Engn, Cleveland, OH 44106 USA.
EM jonathan.a.mackey@gmail.com; frederick.w.dynys@nasa.gov;
bethany.hudak@uky.edu; beth.guiton@uky.edu; axs461@case.edu
OI Mackey, Jonathan/0000-0003-1053-7007
FU Office of Basic Energy Sciences, Materials Sciences and Engineering
Division, U.S. Department of Energy; NASA/USRA [04555-004]; NASA
Radioisotope Power System Program; NASA Kentucky under NASA Award
[NNX10AL96H]
FX The authors would like to thank Ben Kowalski, Tom Sabo, Serene Farmer,
Ray Babuder, and Dereck Johnson from NASA Glenn Research Center and Case
Western Reserve University for help with the experimental portion of
this work. The authors would also like to thank Sabah Bux and
Jean-Pierre Fleurial from NASA JPL for helpful discussions and
assistance with hot pressing some samples. This research was supported
in part by the Office of Basic Energy Sciences, Materials Sciences and
Engineering Division, U.S. Department of Energy. Funding for this work
was provided by funding source NASA/USRA 04555-004, the NASA
Radioisotope Power System Program, and by NASA Kentucky under NASA Award
No: NNX10AL96H.
NR 35
TC 0
Z9 0
U1 11
U2 36
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2461
EI 1573-4803
J9 J MATER SCI
JI J. Mater. Sci.
PD JUL
PY 2016
VL 51
IS 13
BP 6117
EP 6132
DI 10.1007/s10853-016-9868-9
PG 16
WC Materials Science, Multidisciplinary
SC Materials Science
GA DK1NB
UT WOS:000374678400002
ER
PT J
AU Polat, BD
Keles, O
Chen, ZH
Amine, K
AF Polat, B. D.
Keles, O.
Chen, Z. H.
Amine, K.
TI Si-Cu alloy nanowires grown by oblique angle deposition as a stable
negative electrode for Li-ion batteries
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID PERCOLATION THRESHOLDS; PRECISE DETERMINATION; 3 DIMENSIONS;
3-DIMENSIONAL PERCOLATION; NANOCOMPOSITE MATERIALS; ANODE MATERIALS;
HIGH-CAPACITY; THIN-FILMS; SILICON; PERFORMANCE
AB Thin films having nanocolumnar arrays made of various Si-Cu atomic ratios (90-10, 80-20, 70-30 %) are fabricated by an ion-assisted oblique angle co-deposition technique to produce stable negative electrodes for lithium-ion batteries. Cu is added into the electrode because of its ductility and electron conductivity. Cu plays a crucial role in holding the electrode together, minimizing overall capacity loss and enabling faster electron transfer. Plus, Cu is inactive versus Li+; therefore, Si-Cu variation is expected to affect the electrochemical performances of the electrodes. In this work, the effect of Si-Cu atomic ratios on the morphologies and the structures of the electrodes are studied. Plus, the uses of these nanocolumns with different Cu contents are evaluated as anodes by electrochemical tests. The morphological analyses demonstrate that an increase in Si-Cu atomic ratio affects the width of the nanocolumns and the homogeneity of the thin film morphology. The increase in Cu content dramatically improves the capacity retention of Si-Cu anodes, whereas it decreases the initial discharge capacity.
C1 [Polat, B. D.; Keles, O.] Dept Met & Mat Sci Engn, Ayazaga Campus, TR-34469 Istanbul, Turkey.
[Chen, Z. H.; Amine, K.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Keles, O (reprint author), Dept Met & Mat Sci Engn, Ayazaga Campus, TR-34469 Istanbul, Turkey.; Amine, K (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM ozgulkeles@itu.edu.tr; amine@anl.gov
FU Scientific and Technological Research Council of Turkey (TUBITAK)
[213M511]; U.S. Department of Energy (DOE), Vehicle Technologies Office;
US Department of Energy by UChicago Argonne, LLC [DE-AC02-06CH11357]
FX This work is a part of the research Project 213M511 approved by The
Scientific and Technological Research Council of Turkey (TUBITAK).
Research at Argonne National Laboratory was funded by the U.S.
Department of Energy (DOE), Vehicle Technologies Office. Argonne
National Laboratory is operated for the US Department of Energy by
UChicago Argonne, LLC, under contract DE-AC02-06CH11357.
NR 49
TC 2
Z9 2
U1 18
U2 76
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2461
EI 1573-4803
J9 J MATER SCI
JI J. Mater. Sci.
PD JUL
PY 2016
VL 51
IS 13
BP 6207
EP 6219
DI 10.1007/s10853-016-9918-3
PG 13
WC Materials Science, Multidisciplinary
SC Materials Science
GA DK1NB
UT WOS:000374678400009
ER
PT J
AU Abgrall, N
Arnquist, IJ
AvignoneIIId, FT
Barabash, AS
Bertrand, FE
Bradley, AW
Brudanin, V
Busch, M
Buuck, M
Byram, D
Caldwell, AS
Chan, YD
Christofferson, CD
Chu, PH
Cuesta, C
Detwiler, JA
Doe, PJ
Dunagan, C
Efremenko, Y
Ejiri, H
Elliott, SR
Fu, Z
Galindo-Uribarri, A
Giovanetti, GK
Goett, J
Green, MP
Gruszko, J
Guinn, IS
Guiseppe, VE
Henning, R
Hoppe, EW
Howard, S
Howe, MA
Jasinski, BR
Keeter, KJ
Kidd, MF
Konovalov, SI
Kouzes, RT
LaFerriere, BD
Leon, J
Li, A
MacMullin, J
Martin, RD
Massarczyk, R
Meijer, SJ
Mertens, S
Orrell, JL
O'Shaughnessy, C
Poon, AWP
Radford, DC
Rager, J
Rielage, K
Robertson, RGH
Romero-Romero, E
Shanks, B
Shirchenko, M
Snyder, N
Suriano, AM
Tedeschi, D
Thompson, A
Ton, KT
Trimble, JE
Varner, RL
Vasilyev, S
Vetter, K
Vorren, K
White, BR
Wilkerson, JF
Wiseman, C
Xu, W
Yakushev, E
Yu, CH
Yumatov, V
AF Abgrall, N.
Arnquist, I. J.
Avignone, F. T., III
Barabash, A. S.
Bertrand, F. E.
Bradley, A. W.
Brudanin, V.
Busch, M.
Buuck, M.
Byram, D.
Caldwell, A. S.
Chan, Y-D.
Christofferson, C. D.
Chu, P. -H.
Cuesta, C.
Detwiler, J. A.
Doe, P. J.
Dunagan, C.
Efremenko, Yu.
Ejiri, H.
Elliott, S. R.
Fu, Z.
Galindo-Uribarri, A.
Giovanetti, G. K.
Goett, J.
Green, M. P.
Gruszko, J.
Guinn, I. S.
Guiseppe, V. E.
Henning, R.
Hoppe, E. W.
Howard, S.
Howe, M. A.
Jasinski, B. R.
Keeter, K. J.
Kidd, M. F.
Konovalov, S. I.
Kouzes, R. T.
LaFerriere, B. D.
Leon, J.
Li, A.
MacMullin, J.
Martin, R. D.
Massarczyk