FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Hernandez-Garcia, C Poelker, M Hansknecht, J AF Hernandez-Garcia, C. Poelker, M. Hansknecht, J. TI High Voltage Studies of Inverted-geometry Ceramic Insulators for a 350 kV DC Polarized Electron Gun SO IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION LA English DT Article DE Electron guns; high-voltage techniques; insulators; vacuum insulation ID SURFACE FLASHOVER; ALUMINA INSULATORS; VACUUM; PERFORMANCE; CHARGES AB Jefferson Lab is constructing a 350 kV direct current high voltage photoemission gun employing a compact inverted-geometry insulator. This photogun will produce polarized electron beams at an injector test facility intended for low energy nuclear physics experiments, and to assist the development of new technology for the Continuous Electron Beam Accelerator Facility. A photogun operating at 350kV bias voltage reduces the complexity of the injector design, by eliminating the need for a graded-beta radio frequency "capture" section employed to boost lower voltage beams to relativistic speed. However, reliable photogun operation at 350 kV necessitates solving serious high voltage problems related to breakdown and field emission. This study focuses on developing effective methods to avoid breakdown at the interface between the insulator and the commercial high voltage cable that connects the photogun to the high voltage power supply. Three types of inverted insulators were tested, in combination with two electrode configurations. Our results indicate that tailoring the conductivity of the insulator material, and/or adding a cathode triple-junction screening electrode, effectively serves to increase the hold-off voltage from 300kV to more than 375kV. Electrostatic field maps suggest these configurations serve to produce a more uniform potential gradient across the insulator. C1 [Hernandez-Garcia, C.; Poelker, M.; Hansknecht, J.] Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. RP Hernandez-Garcia, C (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. FU U.S. DOE [DE-AC05-06OR23177]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC05-06OR23177] FX Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. The authors would like to thank F. Hannon, D. Bullard, J. Clark, Y. Wang, M. Stutzman, P. Adderley, and W. Moore for their contributions to this work; and to J. Benesch for useful comments. NR 30 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1070-9878 EI 1558-4135 J9 IEEE T DIELECT EL IN JI IEEE Trns. Dielectr. Electr. Insul. PD FEB PY 2016 VL 23 IS 1 BP 418 EP 427 DI 10.1109/TDEI.2015.005126 PG 10 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA DG9KE UT WOS:000372400600052 ER PT J AU Ahnen, ML Ansoldi, S Antonelli, LA Antoranz, P Babic, A Banerjee, B Bangale, P de Almeida, UB Barrio, JA Gonzalez, JB Bednarek, W Bernardinik, E Biasuzzi, B Biland, A Blanch, O Bonnefoy, S Bonnoli, G Borracci, F Bretz, T Carmona, E Carosi, A Chatterjee, A Clavero, R Colin, P Colombo, E Contreras, JL Cortina, J Covino, S Da Vela, P Dazzi, F De Angelis, A De Lotto, B Wilhelmi, ED Mendez, CD Di Pierro, F Prester, DD Dorner, D Doro, M Einecke, S Glawion, DE Elsaesser, D Fernandez-Barral, A Fidalgo, D Fonseca, MV Font, L Frantzen, K Fruck, C Galindo, D Lopez, RJG Garczarczyk, M Garrido, DG Gaug, M Giammaria, P Godinovic, N Munoz, AG Guberman, D Hahn, A Hanabata, Y Hayashida, M Herrera, J Hose, J Hrupec, D Hughes, G Idec, W Kodani, K Konno, Y Kubo, H Kushida, J La Barbera, A Lelas, D Lindfors, E Lombardi, S Longo, F Lopez, M Lopez-Coto, R Lopez-Dramas, A Lorenz, E Majumdar, P Makariev, M Mallot, K Maneva, G Manganaro, M Mannheim, K Maraschi, L Marcote, B Mariotti, M Martinez, M Mazing, D Menzel, U Miranda, JM Mirzoyan, R Moralejo, A Moretti, E Nakajima, D Neustroev, V Niedzwiecki, A Rosillo, MN Nilsson, K Nishijima, K Noda, K Orito, R Overkemping, A Paiano, S Palacio, J Palatiello, M Paneque, D Paoletti, R Paredes, JM Paredes-Fortuny, X Persic, M Poutanen, J Moroni, PGP Prandini, E Puljak, I Rhode, W Ribo, M Rico, J Garcia, JR Saito, T Satalecka, K Schultz, C Schweizer, T Shore, SN Sillanpaa, A Sitarek, J Snidaric, I Sobczynska, D Stamerra, A Steinbring, T Strzys, M Takalo, L Takami, H Tavecchio, F Temnikov, P Terzic, T Tescaro, D Teshimag, M Thaele, J Torres, DF Toyama, T Treves, A Verguilov, V Vovk, I Ward, JE Will, M Wu, MH Zanins, R Aleksic, J Wood, M Anderson, B Bloom, ED Cohen-Tanugi, J Drlica-Wagner, A Mazziotta, MN Sanchez-Condea, M Strigari, L AF Ahnen, M. L. Ansoldi, S. Antonelli, L. A. Antoranz, P. Babic, A. Banerjee, B. Bangale, P. Barres de Almeida, U. Barrio, J. A. Gonzalez, J. Becerra Bednarek, W. Bernardinik, E. Biasuzzi, B. Biland, A. Blanch, O. Bonnefoy, S. Bonnoli, G. Borracci, F. Bretz, T. Carmona, E. Carosi, A. Chatterjee, A. Clavero, R. Colin, P. Colombo, E. Contreras, J. L. Cortina, J. Covino, S. Da Vela, P. Dazzi, F. De Angelis, A. De Lotto, B. De Ona Wilhelmi, E. Delgado Mendez, C. Di Pierro, F. Dominis Prester, D. Dorner, D. Doro, M. Einecke, S. Eisenacher Glawion, D. Elsaesser, D. Fernandez-Barral, A. Fidalgo, D. Fonseca, M. V. Font, L. Frantzen, K. Fruck, C. Galindo, D. Garcia Lopez, R. J. Garczarczyk, M. Garrido Terrats, D. Gaug, M. Giammaria, P. Godinovic, N. Gonzalez Munoz, A. Guberman, D. Hahn, A. Hanabata, Y. Hayashida, M. Herrera, J. Hose, J. Hrupec, D. Hughes, G. Idec, W. Kodani, K. Konno, Y. Kubo, H. Kushida, J. La Barbera, A. Lelas, D. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lopez-Coto, R. Lopez-Dramas, A. Lorenz, E. Majumdar, P. Makariev, M. Mallot, K. Maneva, G. Manganaro, M. Mannheim, K. Maraschi, L. Marcote, B. Mariotti, M. Martinez, M. Mazing, D. Menzel, U. Miranda, J. M. Mirzoyan, R. Moralejo, A. Moretti, E. Nakajima, D. Neustroev, V. Niedzwiecki, A. Nievas Rosillo, M. Nilsson, K. Nishijima, K. Noda, K. Orito, R. Overkemping, A. Paiano, S. Palacio, J. Palatiello, M. Paneque, D. Paoletti, R. Paredes, J. M. Paredes-Fortuny, X. Persic, M. Poutanen, J. Prada Moroni, P. G. Prandini, E. Puljak, I. Rhode, W. Ribo, M. Rico, J. Rodriguez Garcia, J. Saito, T. Satalecka, K. Schultz, C. Schweizer, T. Shore, S. N. Sillanpaa, A. Sitarek, J. Snidaric, I. Sobczynska, D. Stamerra, A. Steinbring, T. Strzys, M. Takalo, L. Takami, H. Tavecchio, F. Temnikov, P. Terzic, T. Tescaro, D. Teshimag, M. Thaele, J. Torres, D. F. Toyama, T. Treves, A. Verguilov, V. Vovk, I. Ward, J. E. Will, M. Wu, M. H. Zanins, R. Aleksic, J. Wood, M. Anderson, B. Bloom, E. D. Cohen-Tanugi, J. Drlica-Wagner, A. Mazziotta, M. N. Sanchez-Condea, M. Strigari, L. CA MAGIC Collaboration TI Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter experiments; gamma ray experiments; dwarfs galaxies; neutrino experiments ID GAMMA-RAY EMISSION; LARGE-AREA TELESCOPE; SPHEROIDAL GALAXIES; MAJOR UPGRADE; SEARCH; CONSTRAINTS; DECAY; HESS AB We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors. C1 [Ahnen, M. L.; Biland, A.; Hughes, G.; Prandini, E.] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.; Treves, A.] Univ Udine, I-33100 Udine, Italy. [Ansoldi, S.; Biasuzzi, B.; De Lotto, B.; Longo, F.; Palatiello, M.; Persic, M.; Treves, A.] INFN Trieste, I-33100 Udine, Italy. [Antonelli, L. A.; Bonnoli, G.; Carosi, A.; Covino, S.; Di Pierro, F.; Giammaria, P.; La Barbera, A.; Lombardi, S.; Maraschi, L.; Stamerra, A.; Tavecchio, F.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] Univ Siena, I-53100 Siena, Italy. [Antoranz, P.; Da Vela, P.; Miranda, J. M.; Paoletti, R.] INFN Pisa, I-53100 Siena, Italy. [Babic, A.; Dominis Prester, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Split, Univ Rijeka, Rudjer Boskovic Inst, Croatian MAGIC Consortium, Split, Croatia. [Babic, A.; Dominis Prester, D.; Godinovic, N.; Hrupec, D.; Lelas, D.; Puljak, I.; Snidaric, I.; Terzic, T.] Univ Zagreb, Zagreb 41000, Croatia. [Banerjee, B.; Chatterjee, A.; Majumdar, P.] Saha Inst Nucl Phys, 1-AF Bidhannagar,Sect 1, Kolkata 700064, India. [Bangale, P.; Barres de Almeida, U.; Borracci, F.; Colin, P.; Dazzi, F.; Fruck, C.; Hahn, A.; Hose, J.; Lorenz, E.; Mazing, D.; Menzel, U.; Mirzoyan, R.; Moretti, E.; Noda, K.; Paneque, D.; Rodriguez Garcia, J.; Schweizer, T.; Strzys, M.; Teshimag, M.; Toyama, T.; Vovk, I.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barrio, J. A.; Bonnefoy, S.; Contreras, J. L.; Fidalgo, D.; Fonseca, M. V.; Lopez, M.; Nievas Rosillo, M.; Satalecka, K.] Univ Complutense, E-28040 Madrid, Spain. [Gonzalez, J. Becerra; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Will, M.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Gonzalez, J. Becerra; Clavero, R.; Colombo, E.; Garcia Lopez, R. J.; Herrera, J.; Manganaro, M.; Tescaro, D.; Will, M.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Bednarek, W.; Idec, W.; Niedzwiecki, A.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardinik, E.; Garczarczyk, M.; Mallot, K.] DESY, D-15738 Zeuthen, Germany. [Blanch, O.; Cortina, J.; Fernandez-Barral, A.; Gonzalez Munoz, A.; Guberman, D.; Lopez-Coto, R.; Lopez-Dramas, A.; Martinez, M.; Moralejo, A.; Palacio, J.; Rico, J.; Ward, J. E.; Aleksic, J.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain. [Bretz, T.; Dorner, D.; Eisenacher Glawion, D.; Elsaesser, D.; Mannheim, K.; Steinbring, T.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Carmona, E.; Delgado Mendez, C.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] Univ Padua, I-35131 Padua, Italy. [De Angelis, A.; Doro, M.; Mariotti, M.; Paiano, S.; Schultz, C.] INFN, I-35131 Padua, Italy. [De Ona Wilhelmi, E.; Wu, M. H.] Inst Space Sci CSIC IEEC, E-08193 Barcelona, Spain. [Einecke, S.; Frantzen, K.; Overkemping, A.; Rhode, W.; Thaele, J.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Font, L.; Gaug, M.] Univ Autonoma Barcelona, Dept Fis, Unitat Fis Radiac, E-08193 Bellaterra, Spain. [Font, L.; Gaug, M.] Univ Autonoma Barcelona, CERES IEEC, E-08193 Bellaterra, Spain. [Galindo, D.; Marcote, B.; Paredes, J. M.; Paredes-Fortuny, X.; Ribo, M.; Zanins, R.] Univ Barcelona, ICC, IEEC UB, E-08028 Barcelona, Spain. [Garrido Terrats, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Univ Tokyo, Dept Phys, ICRR, Japanese MAGIC Consortium, Tokyo 1138654, Japan. [Garrido Terrats, D.; Hanabata, Y.; Hayashida, M.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nishijima, K.; Orito, R.; Saito, T.; Takami, H.] Univ Tokushima, Tokai Univ, Kyoto Univ, Hakubi Ctr, Tokushima, Japan. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Turku, Finnish MAGIC Consortium, Tuorla Observ, SF-20500 Turku, Finland. [Lindfors, E.; Neustroev, V.; Nilsson, K.; Poutanen, J.; Sillanpaa, A.; Takalo, L.] Univ Oulu, Dept Phys, SF-90100 Oulu, Finland. [Makariev, M.; Maneva, G.; Temnikov, P.; Verguilov, V.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Prada Moroni, P. G.; Shore, S. N.] Univ Pisa, I-56126 Pisa, Italy. [Prada Moroni, P. G.; Shore, S. N.] INFN Pisa, I-56126 Pisa, Italy. [Torres, D. F.] ICREA, E-08193 Barcelona, Spain. [Torres, D. F.] Inst Space Sci CSIC IEEC, E-08193 Barcelona, Spain. [Barres de Almeida, U.] Ctr Brasileiro Pesquisas Fis, MCTI, R Dr Xavier Sigaud,150 Urca, BR-22290180 Rio De Janeiro, Brazil. [Gonzalez, J. Becerra] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gonzalez, J. Becerra] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gonzalez, J. Becerra] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bernardinik, E.] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany. [Bretz, T.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Lopez-Dramas, A.] CEA Saclay, DSM IRFU, Lab AIM, Serv Astrophys, FR-91191 Gif Sur Yvette, France. [Mazing, D.; Teshimag, M.] Japanese MAGIC Consortium, Kyoto, Japan. [Nilsson, K.] ESO FINCA, Finnish Ctr Astron, Turku, Finland. [Persic, M.] INAF Trieste, Trieste, Italy. [Prandini, E.] ISDC Sci Data Ctr Astrophys, CH-1290 Geneva, Switzerland. [Wood, M.; Bloom, E. D.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Wood, M.; Bloom, E. D.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Anderson, B.; Sanchez-Condea, M.] Stockholm Univ, Alballova, Dept Phys, SE-10691 Stockholm, Sweden. [Anderson, B.; Sanchez-Condea, M.] Alballova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cohen-Tanugi, J.] Univ Montpellier, CNRS IN2P3, Lab Univers & Particules Montpellier, F-34059 Montpellier, France. [Drlica-Wagner, A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Mazziotta, M. N.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Strigari, L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. RP Rico, J; Aleksic, J (reprint author), Barcelona Inst Sci & Technol, IFAE, Campus UAB, Bellaterra 08193, Barcelona, Spain.; Wood, M (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA.; Wood, M (reprint author), Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. EM jrico@ifae.es; jelena@ifae.es; mdwood@slac.stanford.edu RI Barrio, Juan/L-3227-2014; GAug, Markus/L-2340-2014; Cortina, Juan/C-2783-2017; Puljak, Ivica/D-8917-2017; Maneva, Galina/L-7120-2016; Makariev, Martin/M-2122-2016; Miranda, Jose Miguel/F-2913-2013; Torres, Diego/O-9422-2016; Font, Lluis/L-4197-2014; Poutanen, Juri/H-6651-2016; Nievas Rosillo, Mireia/K-9738-2014; Contreras Gonzalez, Jose Luis/K-7255-2014; Manganaro, Marina/B-7657-2011; Lopez Moya, Marcos/L-2304-2014; Temnikov, Petar/L-6999-2016 OI Prandini, Elisa/0000-0003-4502-9053; Becerra Gonzalez, Josefa/0000-0002-6729-9022; Barrio, Juan/0000-0002-0965-0259; GAug, Markus/0000-0001-8442-7877; Cortina, Juan/0000-0003-4576-0452; Strigari, Louis/0000-0001-5672-6079; de Ona Wilhelmi, Emma/0000-0002-5401-0744; Miranda, Jose Miguel/0000-0002-1472-9690; Torres, Diego/0000-0002-1522-9065; Font, Lluis/0000-0003-2109-5961; Poutanen, Juri/0000-0002-0983-0049; Nievas Rosillo, Mireia/0000-0002-8321-9168; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Manganaro, Marina/0000-0003-1530-3031; Lopez Moya, Marcos/0000-0002-8791-7908; Temnikov, Petar/0000-0002-9559-3384 FU Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; National Aeronautics and Space Administration in the United States; Department of Energy in the United States; Commissariat a l'Energie Atomique in France; Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana in Italy; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan; High Energy Accelerator Research Organization (KEK) in Japan; Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation in Sweden; Swedish Research Council in Sweden; Swedish National Space Board in Sweden; German BMBF; German MPG; Italian INFN; Italian INAF; Swiss National Fund SNF; ERDF under the Spanish MINECO [FPA2012-39502]; Japanese JSPS; Japanese MEXT; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; CPAN [CSD2007-00042]; Spanish Consolider-Ingenio programme [MultiDark CSD2009-00064]; Academy of Finland [268740]; Croatian Science Foundation (HrZZ) Project [09/176]; University of Rijeka Project [13.12.1.3.02]; DFG Collaborative Research Centers [SFB823/C4, SFB876/C3]; Polish MNiSzW [745/N-HESS-MAGIC/2010/0] FX The MAGIC Collaboration thanks the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2012-39502), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Centro de Excelencia Severo Ochoa SEV-2012-0234, CPAN CSD2007-00042, and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 268740 of the Academy of Finland, by the Croatian Science Foundation (HrZZ) Project 09/176 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0.; The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 61 TC 20 Z9 20 U1 3 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2016 IS 2 AR 039 DI 10.1088/1475-7516/2016/02/039 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DH0IM UT WOS:000372467600040 ER PT J AU Zhou, F Cui, YY Wu, LL Yang, J Liu, L Maitz, MF Brown, IG Huang, N AF Zhou, Feng Cui, Yuan Yuan Wu, Liang Liang Yang, Jie Liu, Li Maitz, Manfred F. Brown, Ian G. Huang, Nan TI Analysis of Flow Field in Mechanical Aortic Bileaflet Heart Valves Using Finite Volume Method SO JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING LA English DT Article DE Bileaflet mechanical valves; Computational fluid dynamics; Blood damage ID INDUCED PLATELET ACTIVATION; SHEAR-STRESS MEASUREMENTS; PROSTHESES; DYNAMICS; POSITION; VICINITY; LAMINAR; SAFETY; DAMAGE; MODEL AB Under physiological conditions, the opening and closing of the leaflets of an implanted artificial heart valve (AHV) affects the blood components and therefore may cause various complications to the patient such as hemolysis or platelet activation. In this paper, a computational fluid model is presented. The regional distribution of flow shear stress in an AHV is analyzed using computational fluid dynamics and AHV performance is evaluated in terms of the variation of flow velocity and pressure when blood passes the leaflets in the aortic valve. The results suggest that for the design of a mechanical AHV, the maximum opening angle and internal orifice diameter should be increased to improve the fluid structure interaction and decrease the possibility of damage to blood components. Finally, the fluid stress distribution of the AHV leaflet structure was calculated and analyzed under pulsating flow conditions. C1 [Zhou, Feng; Cui, Yuan Yuan; Wu, Liang Liang; Maitz, Manfred F.; Huang, Nan] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Chinese Educ Minist, Chengdu 610031, Peoples R China. [Yang, Jie] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Peoples R China. [Liu, Li] Natl Inst Control Pharmaceut & Biol Prod, Beijing 10050, Peoples R China. [Maitz, Manfred F.] Max Bergmann Ctr Biomat, Leibniz Inst Polymer Res, D-01069 Dresden, Germany. [Brown, Ian G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94704 USA. RP Huang, N (reprint author), Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Chinese Educ Minist, Chengdu 610031, Peoples R China. EM huangnan1956@163.com RI Umlauf, Ursula/D-3356-2014; Maitz, Manfred/E-6749-2010 OI Maitz, Manfred/0000-0002-0671-048X NR 41 TC 0 Z9 1 U1 7 U2 15 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1609-0985 EI 2199-4757 J9 J MED BIOL ENG JI J. Med. Biol. Eng. PD FEB PY 2016 VL 36 IS 1 BP 110 EP 120 DI 10.1007/s40846-016-0106-3 PG 11 WC Engineering, Biomedical SC Engineering GA DH1GT UT WOS:000372533100013 ER PT J AU Choi, S Griffin, BA AF Choi, Sukwon Griffin, Benjamin A. TI Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy SO JOURNAL OF MICROMECHANICS AND MICROENGINEERING LA English DT Article DE aluminum nitride; microelectromechanical systems; piezoelectric transducers; Raman scattering; stress measurement ID SPUTTERED ALN FILMS; THIN-FILMS; DEPENDENCE AB Localized stress variation in aluminum nitride (AlN) sputtered on patterned metallization has been monitored through the use of UV micro-Raman spectroscopy. This technique utilizing 325 nm laser excitation allows detection of the AlN E-2(high) phonon mode in the presence of metal electrodes beneath the AlN layer with a high spatial resolution of less than 400 nm. The AlN film stress shifted 400 MPa from regions where AlN was deposited over a bottom metal electrode versus silicon dioxide. Across wafer stress variations were also investigated showing that wafer level stress metrology, for example using wafer curvature measurements, introduces large uncertainties for predicting the impact of AlN residual stress on the device performance. C1 [Choi, Sukwon] Penn State Univ, University Pk, PA 16802 USA. [Griffin, Benjamin A.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Choi, S (reprint author), Penn State Univ, University Pk, PA 16802 USA.; Griffin, BA (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM sukwon.choi@psu.edu; bagriff@sandia.gov FU Laboratory Directed Research and Development Program; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 15 TC 0 Z9 0 U1 7 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0960-1317 EI 1361-6439 J9 J MICROMECH MICROENG JI J. Micromech. Microeng. PD FEB PY 2016 VL 26 IS 2 AR 025009 DI 10.1088/0960-1317/26/2/025009 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA DH2CH UT WOS:000372591300011 ER PT J AU Asad, AH Smith, SV Morandeau, LM Chan, S Jeffery, CM Price, RI AF Asad, Ali H. Smith, Suzanne V. Morandeau, Laurence M. Chan, Sun Jeffery, Charmaine M. Price, Roger I. TI Production of Cu-61 by the Zn-nat(p,alpha) reaction: improved separation and specific activity determination by titration with three chelators SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Cu-61; Zn-nat; Zn-64; Specific activity; ICPMS; Bifunctional chelators ID INDUCED NUCLEAR-REACTIONS; EXCITATION-FUNCTIONS; SMALL CYCLOTRON; ZN-NAT; PET; NANOPARTICLES; GENERATOR; ENERGIES; HYPOXIA; PROTONS AB The cyclotron-based production of positron-emitting Cu-61 using the (p,alpha) reaction at 11.7 MeV was investigated starting from natural-zinc (Zn-nat) and enriched Zn-64-foil targets, as well as its subsequent purification. For natZn, a combination of three resins were assessed to separate Cu-61 from contaminating Ga-66,Ga-67,Ga-68 and natZn. The specific activity of the purified Cu-61 determined using ICP-MS analysis ranged from 143.3 +/- 14.3(SD) to 506.2 +/- 50.6 MBq/mu g while the titration method using p-SCN-Bn-DOTA, p-SCN-Bn-NOTA and diamsar gave variable results (4.7 +/- 0.2-412.5 +/- 15.3 MBq/lg), with diamsar lying closest to the ICP-MS values. Results suggest that the p-SCN-Bn-DOTA and p-SCN-Bn-NOTA titration methods are significantly affected by the presence of trace-metal contaminants. C1 [Asad, Ali H.; Morandeau, Laurence M.; Chan, Sun; Jeffery, Charmaine M.; Price, Roger I.] Sir Charles Gairdner Hosp, Radiopharmaceut Prod & Dev RAPID Lab, Med Technol & Phys, Hosp Ave, Nedlands, WA 6009, Australia. [Asad, Ali H.] Curtin Univ, Dept Imaging & Appl Phys, Perth, WA 6845, Australia. [Smith, Suzanne V.] Brookhaven Natl Lab, Collider Accelerator Dept, Med Isotope Res & Prod Program, Upton, NY 11973 USA. [Price, Roger I.] Univ Western Australia, Sch Phys, Nedlands, WA 6009, Australia. RP Asad, AH (reprint author), Sir Charles Gairdner Hosp, Radiopharmaceut Prod & Dev RAPID Lab, Med Technol & Phys, Hosp Ave, Nedlands, WA 6009, Australia.; Asad, AH (reprint author), Curtin Univ, Dept Imaging & Appl Phys, Perth, WA 6845, Australia. EM ali.h.asad@gmail.com NR 29 TC 0 Z9 0 U1 3 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2016 VL 307 IS 2 BP 899 EP 906 PG 8 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DG7MO UT WOS:000372268600008 ER PT J AU Xu, N Gallimore, D Lujan, E Garduno, K Walker, L Taylor, F Thompson, P Tandon, L AF Xu, Ning Gallimore, David Lujan, Elmer Garduno, Katherine Walker, Laurie Taylor, Fiona Thompson, Pam Tandon, Lav TI Plutonium oxalate precipitation for trace elemental determination in plutonium materials SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Inductively coupled plasma-optical emission spectroscopy (ICP-OES); Trace impurity; Plutonium; Plutonium oxalate ID EXTRACTION CHROMATOGRAPHY; IMPURITY ANALYSIS; ANION-EXCHANGE; ICP-AES; MANAGEMENT; URANIUM; MS AB An analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix. C1 [Xu, Ning; Gallimore, David; Lujan, Elmer; Garduno, Katherine; Walker, Laurie; Tandon, Lav] Los Alamos Natl Lab, POB 1663,MS G740, Los Alamos, NM 87545 USA. [Taylor, Fiona; Thompson, Pam] Atom Weap Estab, Aldermaston RG7 4PR, England. RP Xu, N (reprint author), Los Alamos Natl Lab, POB 1663,MS G740, Los Alamos, NM 87545 USA. EM ningxu@lanl.gov FU Department of Energy and National Nuclear Security Administration FX The authors thank the Department of Energy and National Nuclear Security Administration for research funding. This publication is LA-UR-14-29721. NR 35 TC 2 Z9 2 U1 2 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2016 VL 307 IS 2 BP 1203 EP 1213 DI 10.1007/s10967-015-4218-y PG 11 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DG7MO UT WOS:000372268600040 ER PT J AU Alfonso, MC Bennett, ME Folden, CM AF Alfonso, M. C. Bennett, M. E. Folden, C. M., III TI Extraction chromatography of the Rf homologs, Zr and Hf, using TEVA and UTEVA resins in HCl, HNO3, and H2SO4 media SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Column chromatography; Extraction; Zirconium; Hafnium; Rutherfordium; Heavy elements ID LIQUID-LIQUID EXTRACTIONS; ANION-EXCHANGE BEHAVIOR; SOLUTION CHEMISTRY; ELEMENT-104; TRIBUTYLPHOSPHATE; PRECONCENTRATION; RUTHERFORDIUM; SEPARATION; SYSTEM AB The extraction behavior of the Rf homologs, Zr and Hf, has been studied in HCl, HNO3, and H2SO4 media using TEVA (R) (a trioctyl and tridecyl methyl ammonium-based resin) and UTEVA (R) (a diamyl amylphosphonate-based resin). All six systems were considered for the future chemical characterization of Rf. Batch uptake studies were first performed to determine which systems could separate Zr and Hf and these results were used to determine what acid concentration range to focus on for the column studies. The batch uptake studies showed that UTEVA separates Zr and Hf in all media, while the intergroup separation was only observed in HCl media with TEVA. Both HCl systems showed viability for potential extraction chromatographic studies of Rf. C1 [Alfonso, M. C.; Bennett, M. E.; Folden, C. M., III] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Alfonso, M. C.] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. [Bennett, M. E.] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Alfonso, MC (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA.; Alfonso, MC (reprint author), Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. EM folden@comp.tamu.edu RI Folden, Charles/F-1033-2015 OI Folden, Charles/0000-0002-2814-3762 FU Robert A. Welch Foundation [A-1710] FX The authors would like to thank J. D. Despotopulos, K. J. Moody and E. E. Tereshatov for their informative discussions on this work. The authors would also like to thank the heavy element group at LLNL for providing the 175Hf. This work was supported by the Robert A. Welch Foundation under grant number A-1710. NR 24 TC 1 Z9 1 U1 2 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2016 VL 307 IS 2 BP 1529 EP 1536 DI 10.1007/s10967-015-4256-5 PG 8 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DG7MO UT WOS:000372268600076 ER PT J AU Elvington, MC Taylor-Pashow, KML Tosten, MH Hobbs, DT AF Elvington, Mark C. Taylor-Pashow, Kathryn M. L. Tosten, Michael H. Hobbs, David T. TI Synthesis and Reaction Chemistry of Nanosize Monosodium Titanate SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Chemistry; Issue 108; Nanoparticles; sol-gel; titanate; surfactant; ion exchange; hydrogen peroxide ID PEROXOTITANATE; STRONTIUM; PHOTOCATALYSTS; REMOVAL AB This paper describes the synthesis and peroxide-modification of nanosize monosodium titanate (nMST), along with an ion-exchange reaction to load the material with Au(III) ions. The synthesis method was derived from a sol-gel process used to produce micron-sized monosodium titanate (MST), with several key modifications, including altering reagent concentrations, omitting a particle seed step, and introducing a non-ionic surfactant to facilitate control of particle formation and growth. The resultant nMST material exhibits spherical-shaped particle morphology with a monodisperse distribution of particle diameters in the range from 100 to 150 nm. The nMST material was found to have a Brunauer-Emmett-Teller (BET) surface area of 285 m(2)g(-1), which is more than an order of magnitude higher than the micron-sized MST. The isoelectric point of the nMST measured 3.34 pH units, which is a pH unit lower than that measured for the micron-size MST. The nMST material was found to serve as an effective ion exchanger under weakly acidic conditions for the preparation of an Au(III)-exchange nanotitanate. In addition, the formation of the corresponding peroxotitanate was demonstrated by reaction of the nMST with hydrogen peroxide. C1 [Elvington, Mark C.] Savannah River Consulting LLC, Aiken, SC USA. [Taylor-Pashow, Kathryn M. L.; Tosten, Michael H.; Hobbs, David T.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Taylor-Pashow, KML (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM Kathryn.Taylor-Pashow@srnl.doe.gov FU Laboratory Directed Research and Development program at the Savannah River National Laboratory (SRNL); National Institute of Health [1R01DE021373-01]; Department of Energy [DE-AC09-08SR22470]; University of Washington FX The authors thank the Laboratory Directed Research and Development program at the Savannah River National Laboratory (SRNL) for funding. We thank Dr. Fernando Fondeur for collection and interpretation of the FT-IR spectra and Dr. John Seaman of the Savannah River Ecology Laboratory for the use of the DLS instrument for particle size measurements. We also thank the Dr. Daniel Chan of the University of Washington and the National Institute of Health (Grant #1R01DE021373-01), for funding experiments investigating the ion exchange reactions with Au(III). The Savannah River National Laboratory is operated by Savannah River Nuclear Solutions, LLC for the Department of Energy under contract DE-AC09-08SR22470. NR 29 TC 0 Z9 0 U1 3 U2 4 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD FEB PY 2016 IS 108 AR e53248 DI 10.3791/53248 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DH0WF UT WOS:000372504100010 ER PT J AU Murph, SEH Larsen, GK Lascola, RJ AF Murph, Simona E. Hunyadi Larsen, George K. Lascola, Robert J. TI Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Engineering; Issue 108; Gold; Iron oxide; Multifunctional; Plasmonics; Magnetic material; Photothermal ID FLUORESCENT; METAL AB One of the most widely used methods for manufacturing colloidal gold nanospherical particles involves the reduction of chloroauric acid (HAuCl4) to neutral gold Au(0) by reducing agents, such as sodium citrate or sodium borohydride. The extension of this method to decorate iron oxide or similar nanoparticles with gold nanoparticles to create multifunctional hybrid Fe2O3-Au nanoparticles is straightforward. This approach yields fairly good control over Au nanoparticle dimensions and loading onto Fe2O3. Additionally, the Au metal size, shape, and loading can easily be tuned by changing experimental parameters (e.g., reactant concentrations, reducing agents, surfactants, etc.). An advantage of this procedure is that the reaction can be done in air or water, and, in principle, is amenable to scaling up. The use of such optically tunable Fe2O3-Au nanoparticles for hyperthermia studies is an attractive option as it capitalizes on plasmonic heating of gold nanoparticles tuned to absorb light strongly in the VIS-NIR region. In addition to its plasmonic effects, nanoscale Au provides a unique surface for interesting chemistries and catalysis. The Fe2O3 material provides additional functionality due to its magnetic property. For example, an external magnetic field could be used to collect and recycle the hybrid Fe2O3-Au nanoparticles after a catalytic experiment, or alternatively, the magnetic Fe2O3 can be used for hyperthermia studies through magnetic heat induction. The photothermal experiment described in this report measures bulk temperature change and nanoparticle solution mass loss as functions of time using infrared thermocouples and a balance, respectively. The ease of sample preparation and the use of readily available equipment are distinct advantages of this technique. A caveat is that these photothermal measurements assess the bulk solution temperature and not the surface of the nanoparticle where the heat is transduced and the temperature is likely to be higher. C1 [Murph, Simona E. Hunyadi; Larsen, George K.] Savannah River Ecol Lab, Natl Secur Directorate, Savannah, GA USA. [Lascola, Robert J.] Savannah River Ecol Lab, Analyt Dev Directorate, Savannah, GA USA. RP Murph, SEH (reprint author), Savannah River Ecol Lab, Natl Secur Directorate, Savannah, GA USA. EM Simona.Murph@srnl.doe.gov FU Department of Energy DOE-Laboratory Directed Research & Development (LDRD) Strategic Initiative Program FX The financial support of this work was provided by Department of Energy DOE-Laboratory Directed Research & Development (LDRD) Strategic Initiative Program. We thank Mr. Henry Sessions, and Mr. Charles Shick for providing their time and expertise to assist us with our experiments. NR 24 TC 1 Z9 1 U1 7 U2 27 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD FEB PY 2016 IS 108 AR e53598 DI 10.3791/53598 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DH0WF UT WOS:000372504100043 ER PT J AU Yu, JC Zhou, YF Hua, X Zhu, ZH Yu, XY AF Yu, Jiachao Zhou, Yufan Hua, Xin Zhu, Zihua Yu, Xiao-Ying TI In Situ Characterization of Hydrated Proteins in Water by SALVI and ToF-SIMS SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Chemistry; Issue 108; SALVI; ToF-SIMS; protein; water; in situ; molecular imaging; microfluidics ID ION MASS-SPECTROMETRY; AQUEOUS SURFACES; FIBRONECTIN; MOLECULES; FILMS AB This work demonstrates in situ characterization of protein biomolecules in the aqueous solution using the System for Analysis at the Liquid Vacuum Interface (SALVI) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The fibronectin protein film was immobilized on the silicon nitride (SiN) membrane that forms the SALVI detection area. During ToF-SIMS analysis, three modes of analysis were conducted including high spatial resolution mass spectrometry, two-dimensional (2D) imaging, and depth profiling. Mass spectra were acquired in both positive and negative modes. Deionized water was also analyzed as a reference sample. Our results show that the fibronectin film in water has more distinct and stronger water cluster peaks compared to water alone. Characteristic peaks of amino acid fragments are also observable in the hydrated protein ToF-SIMS spectra. These results illustrate that protein molecule adsorption on a surface can be studied dynamically using SALVI and ToF-SIMS in the liquid environment for the first time. C1 [Yu, Jiachao; Hua, Xin; Yu, Xiao-Ying] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Zhou, Yufan; Zhu, Zihua] Pacific NW Natl Lab, Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Yu, XY (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM xiaoying.yu@pnnl.gov RI Zhu, Zihua/K-7652-2012 FU Pacific Northwest National Laboratory (PNNL) Chemical Imaging Initiative-Laboratory Directed Research and Development (CII-LDRD); Materials Synthesis and Simulation across Scales (MS3) Initiative LDRD fund; Office of Biological and Environmental Research (BER) at PNNL; DOE [DE-AC05-76RL01830] FX We are grateful to the Pacific Northwest National Laboratory (PNNL) Chemical Imaging Initiative-Laboratory Directed Research and Development (CII-LDRD) and Materials Synthesis and Simulation across Scales (MS3) Initiative LDRD fund for support. Instrumental access was provided through a W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Science Themed Proposal. EMSL is a national scientific user facility sponsored by the Office of Biological and Environmental Research (BER) at PNNL. The authors thank Mr. Xiao Sui, Mr. Yuanzhao Ding, and Ms. Juan Yao for proof reading the manuscript and providing useful feedback. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 30 TC 3 Z9 3 U1 4 U2 17 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD FEB PY 2016 IS 108 AR e53708 DI 10.3791/53708 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DH0WF UT WOS:000372504100064 ER PT J AU Arjunan, P El-Awady, A Dannebaum, RO Kunde-Ramamoorthy, G Cutler, CW AF Arjunan, P. El-Awady, A. Dannebaum, R. O. Kunde-Ramamoorthy, G. Cutler, C. W. TI High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants SO MOLECULAR ORAL MICROBIOLOGY LA English DT Article DE dendritic cells; dysbiosis; immune homeostasis; microbiome; Porphyromonas gingivalis; RNA-seqencing ID RNA-SEQ; TRANSCRIPTOME ANALYSIS; DIFFERENTIAL GENE; EPITHELIAL-CELLS; VIBRIO-CHOLERAE; INNATE IMMUNITY; EXPRESSION; PATHOGEN; PERIODONTITIS; PREVALENCE AB The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-seqencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least twofold upregulated and downregulated in MoDCs significantly (P <= 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis. C1 [Arjunan, P.; El-Awady, A.; Cutler, C. W.] Georgia Regents Univ, Dept Periodont, 1120 15th St GC1352, Augusta, GA 30912 USA. [Dannebaum, R. O.; Kunde-Ramamoorthy, G.] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Kunde-Ramamoorthy, G.] Natl Univ Singapore, Dept Biochem, Singapore 117548, Singapore. RP Cutler, CW (reprint author), Georgia Regents Univ, Dept Periodont, 1120 15th St GC1352, Augusta, GA 30912 USA. EM chcutler@gru.edu FU National Institutes of Health/NIDCR [RO1 DE14328-09] FX This work was supported by the National Institutes of Health/NIDCR grant: RO1 DE14328-09. NR 56 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2041-1006 EI 2041-1014 J9 MOL ORAL MICROBIOL JI Mol. Oral Microbiol. PD FEB PY 2016 VL 31 IS 1 BP 78 EP 93 DI 10.1111/omi.12131 PG 16 WC Dentistry, Oral Surgery & Medicine; Microbiology SC Dentistry, Oral Surgery & Medicine; Microbiology GA DG8KM UT WOS:000372332700007 PM 26466817 ER PT J AU Holbe, H Pedersen, TS Geiger, J Bozhenkov, S Konig, R Feng, Y Lore, J Lumsdaine, A AF Hoelbe, H. Pedersen, T. Sunn Geiger, J. Bozhenkov, S. Koenig, R. Feng, Y. Lore, J. Lumsdaine, A. CA Wendelstein 7-X Team TI Access to edge scenarios for testing a scraper element in early operation phases of Wendelstein 7-X SO NUCLEAR FUSION LA English DT Article DE Wendelstein 7-X; scraper element; island divertor; bootstrap current; mimic scenarios; W7-X; SE ID W7-X STELLARATOR; DIVERTOR; EQUILIBRIA; DESIGN AB The edge topology of magnetic fusion devices is decisive for the control of the plasma exhaust. In Wendelstein 7-X, the island divertor concept will be used, for which the edge topology can change significantly as the internal currents in a plasma discharge evolve towards steady-state. Consequently, the device has been optimized to minimize such internal currents, in particular the bootstrap current [1]. Nonetheless, there are predicted pulse scenarios where effects of the remaining internal currents could potentially lead to overload of plasma-facing components. These internal currents are predicted to evolve on long time scales (tens of seconds) so their effects on the edge topology and the divertor heat loads may not be experimentally accessible in the first years of W7-X operation, where only relatively short pulses are possible. However, we show here that for at least one important long-pulse divertor operation issue, relevant physics experiments can be performed already in short-pulse operation, through judicious adjustment of the edge topology by the use of the existing coil sets. The specific issue studied here is a potential overload of the divertor element edges. This overload might be mitigated by the installation of an extra set of plasma-facing components, so-called scraper elements, as suggested in earlier publications. It is shown here that by a targeted control of edge topology, the effectiveness of such scraper elements can be tested already with uncooled test-scraper elements in short-pulse operation. This will allow an early and well-informed decision on whether long-pulse-capable (actively cooled) scraper elements should be built and installed. C1 [Hoelbe, H.; Pedersen, T. Sunn; Geiger, J.; Bozhenkov, S.; Koenig, R.; Feng, Y.] Max Planck Inst Plasma Phys, Wendelsteinstr 1, D-17491 Greifswald, Germany. [Lore, J.; Lumsdaine, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Holbe, H (reprint author), Max Planck Inst Plasma Phys, Wendelsteinstr 1, D-17491 Greifswald, Germany. EM hauke.hoelbe@ipp.mpg.de OI Lore, Jeremy/0000-0002-9192-465X FU Euratom research and training programme [633053] FX This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission NR 29 TC 4 Z9 4 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2016 VL 56 IS 2 AR 026015 DI 10.1088/0029-5515/56/2/026015 PG 11 WC Physics, Fluids & Plasmas SC Physics GA DG8KK UT WOS:000372332500007 ER PT J AU Sikes, EL Guilderson, TP AF Sikes, Elisabeth L. Guilderson, Thomas P. TI Southwest Pacific Ocean surface reservoir ages since the last glaciation: Circulation insights from multiple-core studies SO PALEOCEANOGRAPHY LA English DT Article DE radiocarbon; reservoir age; last glaciation; Pacific Ocean circulation; Southern Ocean; climate change ID ANTARCTIC COLD REVERSAL; CARBON-DIOXIDE RELEASE; NEW-ZEALAND; RADIOCARBON AGE; SOUTHERN-OCEAN; ATMOSPHERIC CO2; NORTH-ATLANTIC; YOUNGER DRYAS; SEA-ICE; PLANKTONIC-FORAMINIFERA AB Radiocarbon (C-14) in dissolved inorganic carbon in the ocean can trace the age of ocean water relative to the atmosphere and provide insight into climate-driven changes in ocean circulation since the last glaciation. Here we estimate surface radiocarbon ages from the last glaciation through the deglaciation into the Holocene in the southwestern Pacific by using tephras, both as stratigraphic tie points and for the availability of existing radiocarbon dates from terrestrial- based analyses of the organic carbon associated with them, as markers of past atmospheric C-14. The glacial surface reservoir age of subtropical waters was 700 (14)Cyears older than the coeval atmosphere at 25,000calyrB.P. This was significantly older (more C-14 depleted) by300 (14)Cyears, than modern reservoir ages. At the same time, subantarctic surface water reservoir age was 3200 (14)Cyears, almost 5 times the modern reservoir age, making the difference in age between subtropical and subantarctic surface water masses treble the modern difference. This pattern is attributed to the upwelling and exchange of very old deep waters from the glacial abyss in the Southern Ocean. In the early deglaciation, surface reservoir ages were 600 to 700 (14)Cyears. Recent atmospheric C-14 calibrations project that these surface reservoir ages were older than modern by 1.2-fold to 2-fold. This increased reservoir effect can be attributed to shallow circulation that differed from modern, delivering waters with lower C-14 content to the region. Early Holocene surface reservoir ages of 300 to 500 (14)Cyears, similar to recent, suggest modern circulation patterns were in place by that time. C1 [Sikes, Elisabeth L.] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08903 USA. [Guilderson, Thomas P.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [Guilderson, Thomas P.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Sikes, EL (reprint author), Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08903 USA. EM sikes@marine.rutgers.edu FU NSF [OCE-0136651, OCE-0425053, OCE 0823487]; U.S. Department of Energy [DE-AC52-07NA27344]; Hanse Wischenschaftkollege FX We thank the crew of the R/V Roger Revelle for the assistance in obtaining the RR0503 cores, and we thank NIWA for providing cores from their collection. We thank Mea Cook and Katherine Allen for their input on early versions of the manuscript. We thank Thomas Higham of the Oxford Radiocarbon Unit for a primer on OxCal and iterating scripts with TPG. NSF grants OCE-0136651, OCE-0425053, and OCE 0823487 to E.L.S. and T.P.G. funded this work. A portion of this work was performed under the auspices of the U.S. Department of Energy (DE-AC52-07NA27344). A fellowship from the Hanse Wischenschaftkollege supported E.L.S. in writing the manuscript. All data used in this paper is either provided in the supporting information accompanying this paper or previously published and is available as a table in Sikes et al. [2000] or in the supporting information accompanying Rose et al. [2010]. NR 81 TC 3 Z9 3 U1 7 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0883-8305 EI 1944-9186 J9 PALEOCEANOGRAPHY JI Paleoceanography PD FEB PY 2016 VL 31 IS 2 BP 298 EP 310 DI 10.1002/2015PA002855 PG 13 WC Geosciences, Multidisciplinary; Oceanography; Paleontology SC Geology; Oceanography; Paleontology GA DH4AE UT WOS:000372727100006 ER PT J AU Ding, X Kennedy, BM Evans, WC Stonestrom, DA AF Ding, Xin Kennedy, B. Mack Evans, William C. Stonestrom, David A. TI Experimental Studies and Model Analysis of Noble Gas Fractionation in Porous Media SO VADOSE ZONE JOURNAL LA English DT Article; Proceedings Paper CT 1st Complex Soil Systems Conference CY SEP 03-05, 2014 CL Lawrence Berkeley Natl Lab, Berkeley, CA SP SSSA Bouyoucos Funds, Berkeley Lab, USDOE, MoBio Lab Inc HO Lawrence Berkeley Natl Lab ID DIFFUSION; TRANSPORT; AIR; ADEQUACY; OXYGEN; ICE; LAW; CO2 AB The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective-diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection-diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 x 10(-11) m(2)), Knudsen diffusion terms were small, and both the dusty gas model and the advection-diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from similar to 700 to 10,000 g m(-2) d(-1). The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation. C1 [Ding, Xin; Kennedy, B. Mack] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Isotope Geochemi, Berkeley, CA 94720 USA. [Evans, William C.; Stonestrom, David A.] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. RP Stonestrom, DA (reprint author), US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. EM dastones@usgs.gov RI Ding, Xin/R-9406-2016 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Research Program of the USGS; Toxic Substances Hydrology Program of the USGS FX Special thanks to Stefan Finsterle and Sergi Molins for providing access to the MIN3P and TMVOC software packages and educating us in their use. The collective experience and insight of Stefan and Sergi was invaluable. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. USGS reviewer Chris Green offered helpful suggestions for improving the paper, as did Associate Editor Peter Nico and three anonymous reviewers. We acknowledge support from the National Research Program and Toxic Substances Hydrology Program of the USGS. Mention of trade names is for identification purposes only and does not constitute endorsement by any entity mentioned herein. NR 23 TC 1 Z9 1 U1 9 U2 15 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2016 VL 15 IS 2 DI 10.2136/vzj2015.06.0095 PG 12 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA DH5EN UT WOS:000372808400010 ER PT J AU Faybishenko, B Hubbard, S Brodie, E Nico, P Molz, F Hunt, A Pachepsky, Y AF Faybishenko, Boris Hubbard, Susan Brodie, Eoin Nico, Peter Molz, Fred Hunt, Allen Pachepsky, Yakov TI Preface to the Special Issue of Vadose Zone Journal on Soil as Complex Systems SO VADOSE ZONE JOURNAL LA English DT Editorial Material C1 [Faybishenko, Boris] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 84-171, Berkeley, CA 94720 USA. [Hubbard, Susan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-116, Berkeley, CA 94720 USA. [Brodie, Eoin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ecol, 1 Cyclotron Rd,MS70A-3317, Berkeley, CA 94720 USA. [Nico, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 90R1116,1 Cyclotron Rd, Berkeley, CA 94720 USA. [Molz, Fred] Clemson Univ, Environm Engn & Earth Sci, Rich Lab, 342 Comp Court, Anderson, SC 29625 USA. [Hunt, Allen] Wright State Univ, Phys & Earth & Environm Sci, 3640 Colonel Glenn Hwy, Dayton, OH 45435 USA. [Pachepsky, Yakov] USDA ARS, Beltsville Agr Res Ctr, 10300 Baltimore Ave Bldg 173, Beltsville, MD 20705 USA. RP Faybishenko, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 84-171, Berkeley, CA 94720 USA. EM bfayb@lbl.gov RI Hubbard, Susan/E-9508-2010; Brodie, Eoin/A-7853-2008; Nico, Peter/F-6997-2010; Faybishenko, Boris/G-3363-2015; OI Brodie, Eoin/0000-0002-8453-8435; Nico, Peter/0000-0002-4180-9397; Faybishenko, Boris/0000-0003-0085-8499; Pachepsky, Yakov/0000-0003-0232-6090 NR 12 TC 0 Z9 0 U1 3 U2 8 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2016 VL 15 IS 2 DI 10.2136/vzj2016.01.0005 PG 3 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA DH5EN UT WOS:000372808400013 ER PT J AU Liu, YN Bisht, G Subin, ZM Riley, WJ Pau, GSH AF Liu, Yaning Bisht, Gautam Subin, Zachary M. Riley, William J. Pau, George Shu Heng TI A Hybrid Reduced-Order Model of Fine-Resolution Hydrologic Simulations at a Polygonal Tundra Site SO VADOSE ZONE JOURNAL LA English DT Article; Proceedings Paper CT 1st Complex Soil Systems Conference CY SEP 03-05, 2014 CL Lawrence Berkeley Natl Lab, Berkeley, CA SP SSSA Bouyoucos Funds, Berkeley Lab, USDOE, MoBio Lab Inc HO Lawrence Berkeley Natl Lab ID PROPER ORTHOGONAL DECOMPOSITION; SOIL-MOISTURE VARIABILITY; ARCTIC COASTAL-PLAIN; CLIMATE SENSITIVITY; ENGINEERING DESIGN; TEMPORAL DYNAMICS; RICHARDS EQUATION; REDUCTION; ECOSYSTEMS; OUTPUT AB High-resolution predictions of land surface hydrological dynamics are desirable for improved investigations of regional- and watershed-scale processes. Direct deterministic simulations of fine-resolution land surface variables present many challenges, including high computational cost. We therefore propose the use of reduced-order modeling techniques to facilitate emulation of fine-resolution simulations. We use an emulator, Gaussian process regression, to approximate fine-resolution four-dimensional soil moisture fields predicted using a three-dimensional surface-subsurface hydrological simulator (PFLOTRAN). A dimension-reduction technique known as "proper orthogonal decomposition" is further used to improve the efficiency of the resulting reduced-order model (ROM). The ROM reduces simulation computational demand to negligible levels compared to the underlying fine-resolution model. In addition, the ROM that we constructed is equipped with an uncertainty estimate, allowing modelers to construct a ROM consistent with uncertainty in the measured data. The ROM is also capable of constructing statistically equivalent analogs that can be used in uncertainty and sensitivity analyses. We apply the technique to four polygonal tundra sites near Barrow, Alaska that are part of the Department of Energy's Next-Generation Ecosystem Experiments (NGEE)-Arctic project. The ROM is trained for each site using simulated soil moisture from 1998-2000 and validated using the simulated data for 2002 and 2006. The average relative RMSEs of the ROMs are under 1%. C1 [Liu, Yaning; Bisht, Gautam; Subin, Zachary M.; Riley, William J.; Pau, George Shu Heng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Pau, GSH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM gpau@lbl.gov RI Liu, Yaning/K-8547-2014; Pau, George Shu Heng/F-2363-2015; Riley, William/D-3345-2015 OI Pau, George Shu Heng/0000-0002-9198-6164; Riley, William/0000-0002-4615-2304 FU Office of Science, Office of Biological and Environmental Research of the US Department of Energy [DEAC02-05CH11231]; Office of Science of the US Department of Energy FX This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under Contract #DEAC02-05CH11231 as part of the Early Career Research Program (Liu and Pau) and the Terrestrial Ecosystem Science Program, including the Next-Generation Ecosystem Experiments (NGEE-Arctic) project (Bisht and Riley). This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under the aforementioned contract. NR 90 TC 4 Z9 4 U1 2 U2 4 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD FEB PY 2016 VL 15 IS 2 DI 10.2136/vzj2015.05.0068 PG 14 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA DH5EN UT WOS:000372808400006 ER PT J AU Menon, R Behnia, F Polettini, J Saade, GR Campisi, J Velarde, M AF Menon, Ramkumar Behnia, Faranak Polettini, Jossimara Saade, George R. Campisi, Judith Velarde, Michael TI Placental membrane aging and HMGB1 signaling associated with human parturition SO AGING-US LA English DT Article DE pregnancy; preterm birth; MAPK; SASP; DAMPs; inflammation; fetal membranes; amnion; chorion ID HUMAN FETAL MEMBRANES; INFLAMMATORY CYTOKINE SECRETION; PROGESTERONE-RECEPTOR-A; DNA-DAMAGE; OXIDATIVE STRESS; CELLULAR SENESCENCE; CIGARETTE-SMOKE; PRETERM LABOR; ALARMIN HMGB1; TERM LABOR AB Aging is associated with the onset of several diseases in various organ systems; however, different tissues may age differently, rendering some of them dysfunctional sooner than others. Placental membranes (fetal amniochorionic membranes) protect the fetus throughout pregnancy, but their longevity is limited to the duration of pregnancy. The age-associated dysfunction of these membranes is postulated to trigger parturition. Here, we investigated whether cellular senescence-the loss of cell division potential as a consequence of stress-is involved in placental membrane function at term. We show telomere reduction, p38 MAPK activation, increase in p21 expression, loss of lamin B1 loss, increase in SA-beta-galactosidase, and senescence-associated secretory phenotype (SASP) gene expression in placental membranes after labor and delivery (term labor [TL]) compared to membranes prior to labor at term (term, not-in-labor [TNIL]). Exposing TNIL placental membranes to cigarette smoke extract, an oxidative stress inducer, also induced markers of cellular senescence similar to those in TL placental membranes. Bioinformatics analysis of differentially expressed SASP genes revealed HMGB1 signaling among the top pathways involved in labor. Further, we show that recombinant HMGB1 upregulates the expression of genes associated with parturition in myometrial cells. These data suggest that the natural physiologic aging of placental tissues is associated with cellular senescence and human parturition. C1 [Menon, Ramkumar; Behnia, Faranak; Polettini, Jossimara; Saade, George R.] Univ Texas Med Branch, Dept Obstet & Gynecol, Galveston, TX 77555 USA. [Campisi, Judith; Velarde, Michael] Buck Inst Res Aging, Novato, CA 94945 USA. [Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Cell & Mol Biol, Berkeley, CA 94720 USA. [Velarde, Michael] Univ Philippines, Inst Biol, Quezon City 1101, Philippines. RP Menon, R (reprint author), Univ Texas Med Branch, Dept Obstet & Gynecol, Galveston, TX 77555 USA. EM ram.menon@utmb.edu FU Dept. of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX FX This study is supported by faculty development fund provided to Dr. R Menon by the Dept. of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX. NR 75 TC 8 Z9 8 U1 1 U2 2 PU IMPACT JOURNALS LLC PI ALBANY PA 6211 TIPTON HOUSE, STE 6, ALBANY, NY 12203 USA SN 1945-4589 J9 AGING-US JI Aging-US PD FEB PY 2016 VL 8 IS 2 BP 216 EP 230 PG 15 WC Cell Biology SC Cell Biology GA DG5BF UT WOS:000372086600005 PM 26851389 ER PT J AU Gomez-Lazaro, E Bueso, MC Kessler, M Martin-Martinez, S Zhang, J Hodge, BM Molina-Garcia, A AF Gomez-Lazaro, Emilio Bueso, Maria C. Kessler, Mathieu Martin-Martinez, Sergio Zhang, Jie Hodge, Bri-Mathias Molina-Garcia, Angel TI Probability Density Function Characterization for Aggregated Large-Scale Wind Power Based on Weibull Mixtures SO ENERGIES LA English DT Article DE wind power generation; Weibull distributions; Weibull mixtures; Akaike information criterion (AIC); Bayesian information criterion (BIC) ID SPEED DISTRIBUTIONS; ENERGY ANALYSIS; PARAMETERS; STATISTICS; GENERATION; ALGORITHM; IMPACTS; SYSTEMS; WECS AB The Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power data are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment. C1 [Gomez-Lazaro, Emilio; Martin-Martinez, Sergio] Univ Castilla La Mancha, Renewable Energy Res Inst, Albacete 02071, Spain. [Gomez-Lazaro, Emilio; Martin-Martinez, Sergio] Univ Castilla La Mancha, DIEEAC EDII AB, Albacete 02071, Spain. [Bueso, Maria C.; Kessler, Mathieu] Univ Politecn Cartagena, Dept Appl Math & Stat, Cartagena 30202, Spain. [Zhang, Jie] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA. [Hodge, Bri-Mathias] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Molina-Garcia, Angel] Univ Politecn Cartagena, Dept Elect Engn, Cartagena 30202, Spain. RP Gomez-Lazaro, E (reprint author), Univ Castilla La Mancha, Renewable Energy Res Inst, Albacete 02071, Spain.; Gomez-Lazaro, E (reprint author), Univ Castilla La Mancha, DIEEAC EDII AB, Albacete 02071, Spain. EM emilio.gomez@uclm.es; mcarmen.bueso@upct.es; mathieu.kessler@upct.es; sergio.martin@uclm.es; jiezhang@utdallas.edu; bri.mathias.hodge@nrel.gov; angel.molina@upct.es RI Bueso, Maria Carmen/G-1239-2016; OI Martin Martinez, Sergio/0000-0002-0986-6068; Molina-Garcia, Angel/0000-0001-6824-8684; Kessler, Mathieu/0000-0002-0196-5811 FU "Ministerio de Economia y Competitividad"; European Union [-ENE2012-34603-]; Fulbright/Spanish Ministry of Education [-PRX14/00694-]; U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by "Ministerio de Economia y Competitividad" and the European Union -ENE2012-34603-, Fulbright/Spanish Ministry of Education Visiting Scholar -PRX14/00694-, and by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 43 TC 1 Z9 1 U1 1 U2 5 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD FEB PY 2016 VL 9 IS 2 AR 91 DI 10.3390/en9020091 PG 15 WC Energy & Fuels SC Energy & Fuels GA DG1MJ UT WOS:000371831900025 ER PT J AU Hock, K Earle, K AF Hock, Kiel Earle, Keith TI Markov Chain Monte Carlo Used in Parameter Inference of Magnetic Resonance Spectra SO ENTROPY LA English DT Article DE parameter optimization; spin resonance spectroscopy; bayes; information geometry ID BAYESIAN-ANALYSIS; SIGNAL-DETECTION; MODEL SELECTION AB In this paper, we use Boltzmann statistics and the maximum likelihood distribution derived from Bayes' Theorem to infer parameter values for a Pake Doublet Spectrum, a lineshape of historical significance and contemporary relevance for determining distances between interacting magnetic dipoles. A Metropolis Hastings Markov Chain Monte Carlo algorithm is implemented and designed to find the optimum parameter set and to estimate parameter uncertainties. The posterior distribution allows us to define a metric on parameter space that induces a geometry with negative curvature that affects the parameter uncertainty estimates, particularly for spectra with low signal to noise. C1 [Hock, Kiel] Brookhaven Natl Lab, 2 Ctr St, Upton, NY 11973 USA. [Earle, Keith] SUNY Albany, Dept Phys, 1400 Washington Ave, Albany, NY 12222 USA. RP Earle, K (reprint author), SUNY Albany, Dept Phys, 1400 Washington Ave, Albany, NY 12222 USA. EM khock@bnl.gov; kearle@albany.edu FU University at Albany FX Kiel Hock thanks Kevin Knuth of the University at Albany Physics Department for several useful discussions. Keith Earle thanks David Schneider of Cornell University for numerous discussions. In addition, Keith Earle thanks the National Institutes of Health Advanced ESR Technology (NIH ACERT) resource at Cornell University for the use of their resources during the preparation of this manuscript. Keith Earle also thanks the University at Albany for partial support of this work via a Faculty Research Award Program grant and the Biomedical EPR Center at the Medical College of Wisconsin for partial support as a participant in the Advanced Visitor Training Program during a sabbatical visit while this manuscript was in preparation. NR 14 TC 0 Z9 0 U1 2 U2 2 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1099-4300 J9 ENTROPY-SWITZ JI Entropy PD FEB PY 2016 VL 18 IS 2 AR 57 DI 10.3390/e18020057 PG 13 WC Physics, Multidisciplinary SC Physics GA DG1KV UT WOS:000371827800025 ER PT J AU Stuckless, JS Levich, RA AF Stuckless, John S. Levich, Robert A. TI The Road to Yucca Mountain-Evolution of Nuclear Waste Disposal in the United States SO ENVIRONMENTAL & ENGINEERING GEOSCIENCE LA English DT Article DE Hazardous Waste; Waste; Nuclear; Geopolitical ID SYSTEMATICS; NEVADA; ROCKS; SITE AB The generation of electricity by nuclear power and the manufacturing of atomic weapons have created a large amount of spent nuclear fuel and high-level radioactive waste. There is a world-wide consensus that the best way to protect mankind and the environment is to dispose of this waste in a deep geologic repository. Initial efforts focused on salt as the best medium for disposal, but the heat generated by the radioactive waste led many earth scientists to examine other rock types. In 1976, the director of the U.S. Geological Survey (USGS) wrote to the U.S. Energy Research and Development Administration (ERDA), predecessor agency of the U.S. Department of Energy (DOE), suggesting that there were several favorable environments at the Nevada Test Site (NTS), and that the USGS already had extensive background information on the NTS. Later, in a series of communications and one publication, the USGS espoused the favorability of the thick unsaturated zone. After the passage of the Nuclear Waste Policy Act (1982), the DOE compiled a list of nine favorable sites and settled on three to be characterized. In 1987, as the costs of characterizing three sites ballooned, Congress amended the Nuclear Waste Policy Act directing the DOE to focus only on Yucca Mountain in Nevada, with the proviso that if anything unfavorable was discovered, work would stop immediately. The U.S. DOE, the U.S. DOE national laboratories, and the USGS developed more than 100 detailed plans to study various earth-science aspects of Yucca Mountain and the surrounding area, as well as materials studies and engineering projects needed for a mined geologic repository. The work, which cost more than 10 billion dollars and required hundreds of man-years of work, culminated in a license application submitted to the U.S. Nuclear Regulatory Commission (NRC) in 2008. C1 [Stuckless, John S.] US Geol Survey, Denver Fed Ctr, MS 908, Denver, CO 80225 USA. [Levich, Robert A.] US DOE, 405 Norwood Lane, Las Vegas, NV 89107 USA. RP Stuckless, JS (reprint author), US Geol Survey, Denver Fed Ctr, MS 908, Denver, CO 80225 USA. NR 69 TC 1 Z9 1 U1 16 U2 41 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 1078-7275 EI 1558-9161 J9 ENVIRON ENG GEOSCI JI Environ. Eng. Geosci. PD FEB PY 2016 VL 22 IS 1 BP 1 EP 25 PG 25 WC Engineering, Environmental; Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA DG4XS UT WOS:000372077100001 ER PT J AU Freeman, L Wu, T AF Freeman, Larry Wu, Thomas TI Method for Derivation and Synthesis of Conducted Susceptibility Limits for System-Level EMC SO IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY LA English DT Article DE Compliance assessment; conducted susceptibility; derivation; requirements; system EMC; tailoring AB This paper presents a novel method for the derivation of conducted susceptibility requirement limits for roll up and synthesis into an overall system-level design. If a system-level EMC design is an assemblage of compliant subsystems, then the subsystems should be an assemblage of compliant components or module designs. This approach requires tailoring the system-level requirements through to component-or module-level designs. The method discussed is applicable to a variety of components and implementable early in the design process. The method provides rationale for the derivation limits, while maintaining traceability to system-level requirements. A discussion is included on comparison and margin analysis of input filtering for verifying compliance to conducted susceptibility requirements at the system level. Detailed examples using both commercial and military requirements are included. C1 [Freeman, Larry] Sandia Natl Labs, Dept Electmagnet, Melbourne, FL 32902 USA. [Wu, Thomas] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA. RP Freeman, L (reprint author), Sandia Natl Labs, Dept Electmagnet, Melbourne, FL 32902 USA.; Wu, T (reprint author), Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA. EM sfreema@sandia.gov; thomaswu@ucf.edu NR 13 TC 0 Z9 0 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9375 EI 1558-187X J9 IEEE T ELECTROMAGN C JI IEEE Trans. Electromagn. Compat. PD FEB PY 2016 VL 58 IS 1 BP 4 EP 10 DI 10.1109/TEMC.2015.2500103 PG 7 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA DG3ZJ UT WOS:000372009400001 ER PT J AU Halligan, MS Tian, XX Li, X Connor, S Beetner, DG Drewniak, JL AF Halligan, Matthew S. Tian, Xinxin Li, Xiao Connor, Sam Beetner, Daryl G. Drewniak, James L. TI Quantifying High-Density Connector Radiation in a Lossy Multisignal Environment SO IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY LA English DT Article DE Connectors; electromagnetic radiation; printed circuit board (PCB) connectors; radiated power; scattering parameters (S-parameters) ID PRINTED-CIRCUIT BOARDS; ELECTROMAGNETIC-RADIATION; PERFORMANCE; CABLES AB A method is presented to quantify the radiated power from a high-density connector. This method is based on network parameters and the principle of conservation of power. Unlike previous work, which assumed only radiated losses were present, the proposed method is able to characterize the radiated power in environments that contain material losses and when there are multiple signals at the printed circuit board/connector interface. The power losses are quantified through the definition of power loss constant matrices that can be used to find the power losses for arbitrary input excitations when the matrices are entirely known. The power loss constant matrices can be calculated through multiple single-port and two-port excitations for an N-port connector. The formulation of these excitations is dictated by the nonlinear properties of the power loss calculation. Simulations and measurements are presented that validate the proposed power loss calculation methodology. C1 [Halligan, Matthew S.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Tian, Xinxin] Guangdong Univ Technol, Sch Phys & Optoelectron Engn, Guangzhou 510006, Guangdong, Peoples R China. [Li, Xiao; Beetner, Daryl G.; Drewniak, James L.] Missouri Univ Sci & Technol, Electromegnet Compatibil Lab, Rolla, MO 65401 USA. [Connor, Sam] IBM Corp, Res Triangle Pk, NC 27709 USA. RP Halligan, MS (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA.; Tian, XX (reprint author), Guangdong Univ Technol, Sch Phys & Optoelectron Engn, Guangzhou 510006, Guangdong, Peoples R China.; Li, X; Beetner, DG; Drewniak, JL (reprint author), Missouri Univ Sci & Technol, Electromegnet Compatibil Lab, Rolla, MO 65401 USA.; Connor, S (reprint author), IBM Corp, Res Triangle Pk, NC 27709 USA. EM mhallig@sandia.gov; tianxx1988@gmail.com; xl3df@mst.edu; sconnor@us.ibm.com; daryl@mst.edu; drewniak@mst.edu FU Sandia National Laboratories; National Science Foundation [0855878] FX This work was supported in part by the Sandia National Laboratories and by the National Science Foundation under Grant 0855878. NR 24 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9375 EI 1558-187X J9 IEEE T ELECTROMAGN C JI IEEE Trans. Electromagn. Compat. PD FEB PY 2016 VL 58 IS 1 BP 270 EP 277 DI 10.1109/TEMC.2015.2502267 PG 8 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA DG3ZJ UT WOS:000372009400030 ER PT J AU Raylman, RR Stolin, AV Martone, PF Smith, MF AF Raylman, Raymond R. Stolin, Alexander V. Martone, Peter F. Smith, Mark F. TI TandemPET-A High Resolution, Small Animal, Virtual Pinhole-Based PET Scanner: Initial Design Study SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Monte Carlo simulation; PET instrumentation; small animal imaging ID COMPUTED-TOMOGRAPHY; SPATIAL-RESOLUTION; MOUSE-BRAIN; IMAGE-RECONSTRUCTION; POSITRON RANGE; MISSING DATA; SYSTEM; PERFORMANCE; MRI; SPECT AB Mice are the perhaps the most common species of rodents used in biomedical research, but many of the current generation of small animal PET scanners are non-optimal for imaging these small rodents due to their relatively low resolution. Consequently, a number of researchers have investigated the development of high-resolution scanners to address this need. In this investigation, the design of a novel, high-resolution system based on the dual-detector, virtual-pinhole PET concept was explored via Monte Carlo simulations. Specifically, this system, called TandemPET, consists of a 5 cm X 5 cm high-resolution detector made-up of a 90 x 90 array of 0.5 mm x 0.5 x 10 mm (pitch = 0.55 mm) LYSO detector elements in coincidence with a lower resolution detector consisting of a 68 X 68 array of 1.5 mm x 1.5 mm x 10 mm LYSO detector elements (total size = 10.5 cm X 10.5 cm). Analyses indicated that TandemPET's optimal geometry is to position the high-resolution detector 3 cm from the center-of-rotation, with the lower resolution detector positioned 9 cm from center. Measurements using modified NEMA NU4-2008-based protocols revealed that the spatial resolution of the system is rsd similar to 0.5 mm FWHM, after correction of positron range effects. Peak sensitivity is 2.1%, which is comparable to current small animal PET scanners. Images from a digital mouse brain phantom demonstrated the potential of the system for identifying important neurological structures. C1 [Raylman, Raymond R.; Martone, Peter F.] W Virginia Univ, Dept Radiol, Ctr Adv Imaging, Morgantown, WV 26506 USA. [Stolin, Alexander V.] Jefferson Lab, Dept Nucl Phys, Newport News, VA 23606 USA. [Smith, Mark F.] Univ Maryland, Sch Med, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21201 USA. RP Raylman, RR; Martone, PF (reprint author), W Virginia Univ, Dept Radiol, Ctr Adv Imaging, Morgantown, WV 26506 USA.; Stolin, AV (reprint author), Jefferson Lab, Dept Nucl Phys, Newport News, VA 23606 USA.; Smith, MF (reprint author), Univ Maryland, Sch Med, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21201 USA. EM rraylman@wvu.edu; astolin@hsc.wvu.edu; pmar-tone@hsc.wvu.edu; msmith7@umm.edu FU National Institutes of Health [R01 CA094196, R01 EB007349] FX This work was supported in part by the National Institutes of Health R01 CA094196 and R01 EB007349. NR 41 TC 1 Z9 1 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2016 VL 63 IS 1 BP 75 EP 83 DI 10.1109/TNS.2015.2482459 PN 1 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DG4AF UT WOS:000372011600012 PM 27041767 ER PT J AU Egarievwe, SU Chan, W Kim, KH Roy, UN Sams, V Hossain, A Kassu, A James, RB AF Egarievwe, Stephen U. Chan, Wing Kim, Ki Hyun Roy, Utpal N. Sams, Valissa Hossain, Anwar Kassu, Aschalew James, Ralph B. TI Carbon Coating and Defects in CdZnTe and CdMnTe Nuclear Detectors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 21st Symposium on Room-Temperature Semiconductor Detectors (RTSD) CY NOV 08-15, 2014 CL Seattle, WA DE Bridgman crystal growth; CdMnTe; CdZnTe; dislocations; etch-pit densities; gamma-ray detectors; growth ampoules; sub-grain boundary network ID CRYSTAL-GROWTH; CDTE CRYSTALS; ETCH-PIT; DOPED CDMNTE; X-RAY; (CD,ZN)TE; PROGRESS AB CADMIUM zinc telluride (CdZnTe) and cadmium manganese telluride (CdMnTe) are prime materials for detecting X-rays and gamma-rays at room temperature due to their high average atomic numbers that are essential to having high stopping -power for incident high-energy electromagnetic radiations. A major obstacle in developing CdZnTe and CdMnTe detectors lies in growing crystals free from defects, such as Te inclusions, dislocations, sub-grain boundary networks, and precipitates. We present the results of our study of the relationship between carbon coating of the growth ampoule and dislocations in CdZnTe and sub-grain boundary networks in CdMnTe, grown by Bridgman method. For the CdZnTe crystals, a carbon-coating of 2 Am on the ampoule generated fewer dislocations than did a thinner 0.2 - mu m carbon-coated one. Furthermore, the ampoule's design (normal- or tapered-shape) did not affect the densities of etch pits as much as did the thickness of the carbon-coating. For a CdMnTe ingot with a carbon coating of about 2 mu m, created by cracking spectroscopic-grade acetone at rsd 900 degrees C, we observed very few grain boundaries and grain-boundary networks. C1 [Egarievwe, Stephen U.] Alabama A&M Univ, Dept Elect Engn & Comp Sci, Normal, AL 35762 USA. [Egarievwe, Stephen U.; Sams, Valissa] Alabama A&M Univ, Nucl Engn & Radiol Sci Ctr, Normal, AL 35762 USA. [Chan, Wing; Kassu, Aschalew] Alabama A&M Univ, Normal, AL 35762 USA. [Kim, Ki Hyun] Korea Univ, Dept Radiol Sci, Seoul, South Korea. [Roy, Utpal N.; Hossain, Anwar; James, Ralph B.] Brookhaven Natl Lab, Dept Nonproliferat & Natl Secur, Upton, NY 11973 USA. RP Egarievwe, SU (reprint author), Alabama A&M Univ, Dept Elect Engn & Comp Sci, Normal, AL 35762 USA.; Chan, W; Kassu, A (reprint author), Alabama A&M Univ, Normal, AL 35762 USA.; Kim, KH (reprint author), Korea Univ, Dept Radiol Sci, Seoul, South Korea.; Roy, UN; Hossain, A; James, RB (reprint author), Brookhaven Natl Lab, Dept Nonproliferat & Natl Secur, Upton, NY 11973 USA. EM stephen.egarievwe@aamu.edu; wing.chan@aamu.edu; khkim1@korea.ac.kr; nroy@bnl.gov; hos-sain@bnl.gov; aschalew.kassu@aamu.edu; rjames@bnl.gov NR 42 TC 0 Z9 0 U1 6 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2016 VL 63 IS 1 BP 236 EP 245 DI 10.1109/TNS.2016.2515108 PN 2 PG 10 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DG4AJ UT WOS:000372012000006 ER PT J AU Lee, W Bolotnikov, A Lee, T Camarda, G Cui, Y Gul, R Hossain, A Utpal, R Yang, G James, R AF Lee, Wonho Bolotnikov, Aleksey Lee, Taewoong Camarda, Giuseppe Cui, Yonggang Gul, Rubi Hossain, Anwar Utpal, Roy Yang, Ge James, Ralph TI Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE CdZnTe; Compton camera; electronic collimation; Frisch-grid ID SEMICONDUCTOR RADIATION DETECTOR; LIST-MODE LIKELIHOOD; SPECTROMETERS; PERFORMANCE; COLLECTION; READOUT AB We constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6 x 6 Frisch-grid CdZnTe detectors, each with a size of 6 x 6 x 15 mm(3). Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba, 137Cs, 60Co-radiation sources; we also located these sources using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. The performance of our camera was compared with that based on a pixelated detector. C1 [Lee, Wonho; Lee, Taewoong] Korea Univ, Dept Bioconvergence Engn, Seoul 136701, South Korea. [Bolotnikov, Aleksey; Camarda, Giuseppe; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Utpal, Roy; Yang, Ge; James, Ralph] Brookhaven Natl Lab, Dept Nonproliferat & Natl Secur, Upton, NY 11973 USA. RP Lee, W (reprint author), Korea Univ, Dept Bioconvergence Engn, Seoul 136701, South Korea. EM wonhol@korea.ac.kr FU U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research & Development, DNN RD; U.S. Defense Threat Reduction Agency (DTRA); BNL's Technology Maturation Award; U.S. Department of Energy [DE-AC02-98CH1-886]; National Research Foundation of Korea (NRF) - Korean government (MEST) [2015M2A2A4021766] FX This work was supported by the U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research & Development, DNN R&D, U.S. Defense Threat Reduction Agency (DTRA), and BNL's Technology Maturation Award. The manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH1-886 with the U.S. Department of Energy. This work was supported by National Research Foundation of Korea (NRF) grant (2015M2A2A4021766), funded by the Korean government (MEST). NR 29 TC 2 Z9 2 U1 3 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2016 VL 63 IS 1 BP 259 EP 265 DI 10.1109/TNS.2015.2514120 PN 2 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DG4AJ UT WOS:000372012000009 ER PT J AU Chen, Y Cui, Y O'Connor, P Seo, Y Camarda, GS Hossain, A Roy, U Yang, G James, RB AF Chen, Y. Cui, Y. O'Connor, P. Seo, Y. Camarda, G. S. Hossain, A. Roy, U. Yang, G. James, R. B. TI Stability of the Baseline Holder in Readout Circuits for Radiation Detectors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE ASIC; baseline holder; large-signal analyses; stability; transient-noise analyses AB Baseline holder (BLH) circuits are used widely to stabilize the analog output of application-specific integrated circuits (ASICs) for high-count-rate applications. The careful design of BLH circuits is vital to the overall stability of the analog-signal-processing chain in ASICs. Recently, we observed self-triggered fluctuations in an ASIC in which the shaping circuits have a BLH circuit in the feedback loop. In fact, further investigations showed that methods of enhancing small-signal stabilities cause an even worse situation. To resolve this problem, we used large-signal analyses to study the circuit's stability. We found that a relatively small gain for the error amplifier and a small current in the non-linear stage of the BLH are required to enhance stability in large-signal analysis, which will compromise the properties of the BLH. These findings were verified by SPICE simulations. In this paper, we present our detailed analysis of the BLH circuits, and propose an improved version of them that have only minimal self-triggered fluctuations. We summarize the design considerations both for the stability and the properties of the BLH circuits. C1 [Chen, Y.; Cui, Y.; O'Connor, P.; Camarda, G. S.; Hossain, A.; Roy, U.; Yang, G.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Chen, Y.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Chen, Y.] Minist Educ, Key Lab Particle & Radiat Imaging, Beijing 100084, Peoples R China. [Seo, Y.] Univ Calif San Francisco, San Francisco, CA 94143 USA. RP Chen, Y; Cui, Y (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.; Chen, Y (reprint author), Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China.; Seo, Y (reprint author), Univ Calif San Francisco, San Francisco, CA 94143 USA. EM yu.chenthu08@gmail.com; ycui@bnl.gov; youngho.seo@radiology.ucsf.edu FU U.S. Department of Health & Human Service, National Institutes of Health [R01 EB012965]; China Scholarship Council [201406210171] FX This work was supported by the U.S. Department of Health & Human Service, National Institutes of Health Grant R01 EB012965 and by the China Scholarship Council (File No. 201406210171). NR 16 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2016 VL 63 IS 1 BP 316 EP 324 DI 10.1109/TNS.2016.2516007 PN 2 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DG4AJ UT WOS:000372012000016 PM 27182081 ER PT J AU Azevedo, SG Martz, HE Aufderheide, MB Brown, WD Champley, KM Kallman, JS Roberson, GP Schneberk, D Seetho, IM Smith, JA AF Azevedo, Stephen G. Martz, Harry E., Jr. Aufderheide, Maurice B. Brown, William D. Champley, Kyle M. Kallman, Jeffrey S. Roberson, G. Patrick Schneberk, Daniel Seetho, Isaac M. Smith, Jerel A. TI System-Independent Characterization of Materials Using Dual-Energy Computed Tomography SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Beam-hardening correction; dual-energy computed tomography; effective atomic number; electron density; photoelectric-compton decomposition; quantitative x-ray characterization; system-independent CT ID EFFECTIVE ATOMIC NUMBERS; X-RAY TUBE; ATTENUATION; RADIATION; DENSITY; SAMPLES; CT AB We present a new decomposition approach for dual-energy computed tomography (DECT) called SIRZ that provides precise and accurate material description, independent of the scanner, over diagnostic energy ranges (30 to 200 keV). System independence is achieved by explicitly including a scanner-specific spectral description in the decomposition method, and a new X-ray-relevant feature space. The feature space consists of electron density, rho(e), and a new effective atomic number, Z(e), which is based on published X-ray cross sections. Reference materials are used in conjunction with the system spectral response so that additional beam-hardening correction is not necessary. The technique is tested against other methods on DECT data of known specimens scanned by diverse spectra and systems. Uncertainties in accuracy and precision are less than 3% and 2% respectively for the (rho(e), Z(e)) results compared to prior methods that are inaccurate and imprecise (over 9%). C1 [Azevedo, Stephen G.; Martz, Harry E., Jr.; Aufderheide, Maurice B.; Brown, William D.; Champley, Kyle M.; Kallman, Jeffrey S.; Roberson, G. Patrick; Schneberk, Daniel; Seetho, Isaac M.; Smith, Jerel A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Azevedo, SG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM steve.azevedo@gmail.com FU Science & Technology Directorate of the Department of Homeland Security (DHS); U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This research was funded by the Science & Technology Directorate of the Department of Homeland Security (DHS). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL Document number LLNL-JRNL-678559. NR 41 TC 1 Z9 1 U1 5 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2016 VL 63 IS 1 BP 341 EP 350 DI 10.1109/TNS.2016.2514364 PN 2 PG 10 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DG4AJ UT WOS:000372012000019 ER PT J AU Feng, PL Mengesha, W Anstey, MR Cordaro, JG AF Feng, Patrick L. Mengesha, Wondwosen Anstey, Mitchell R. Cordaro, Joseph G. TI Distance Dependent Quenching and Gamma-Ray Spectroscopy in Tin-Loaded Polystyrene Scintillators SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Fluorescence spectroscopy; gamma-ray spectroscopy; organic scintillators; scintillators ID PLASTIC SCINTILLATORS; FLUORESCENCE; ORGANOMETALLICS; STATES AB In this work, we report the synthesis and inclusion of rationally designed organotin compounds in polystyrene matrices as a route towards plastic scintillators capable of gamma-ray spectroscopy. Tin loading ratios of up to 15% w/w have been incorporated, resulting in photopeak energy resolution values as low as 10.9% for 662 keV gamma-rays. Scintillator constituents were selected based upon a previously reported distance-dependent quenching mechanism. Data obtained using UV-Vis and photoluminescence measurements are consistent with this phenomenon and are correlated with the steric and electronic properties of the respective organotin complexes. We also report fast scintillation decay behavior that is comparable to the quenched scintillators 0.5% trans-stilbene doped bibenzyl and the commercial plastic scintillator BC-422Q-1%. These observations are discussed in the context of practical considerations such as optical transparency, ease-of-preparation/scale-up, and total scintillator cost. C1 [Feng, Patrick L.; Mengesha, Wondwosen; Anstey, Mitchell R.; Cordaro, Joseph G.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Feng, PL (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM plfeng@sandia.gov FU Department of Homeland Security-Domestic Nuclear Detection Office (DHS-DNDO) [HSHQDC-13-XB0006-0]; National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Department of Homeland Security-Domestic Nuclear Detection Office (DHS-DNDO) under Contract HSHQDC-13-XB0006-0. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 33 TC 2 Z9 2 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2016 VL 63 IS 1 BP 407 EP 415 DI 10.1109/TNS.2015.2510960 PN 2 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DG4AJ UT WOS:000372012000028 ER PT J AU Giacomini, G Bosisio, L Rashevskaya, I AF Giacomini, Gabriele Bosisio, Luciano Rashevskaya, Irina TI Insulation Issues in Punch-Through Biased Silicon Microstrip Sensors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Microstrip silicon detectors; parasitic MOSFET; silicon radiation detectors; surface inversion ID INNER TRACKING SYSTEM; ALICE EXPERIMENT; DETECTORS AB During the qualification tests of the punch-through biased, AC-coupled microstrip sensors for the Inner Tracking System of the ALICE experiment at CERN, sensors fabricated by one of the suppliers showed erratic loss of strip insulation on -side. This has been attributed to local surface inversion, facilitated by the very low oxide charge density-order of 10(10) q/cm(2)-that can be obtained with (100) substrates. Numerical simulations providing quantitative insight into the phenomena, and electrical measurements that confirm the origin of the insulation problems are reported. A non-standard measurement technique suitable for investigating strip insulation issues is described. C1 [Giacomini, Gabriele] FBK, Trento, Italy. [Giacomini, Gabriele] Brookhaven Natl Lab, Upton, NY 11973 USA. [Bosisio, Luciano] Univ Trieste, Dept Phys, I-34127 Trieste, Italy. [Bosisio, Luciano] INFN, I-34127 Trieste, Italy. [Rashevskaya, Irina] INFN TIFPA, Trento, Italy. RP Giacomini, G (reprint author), FBK, Trento, Italy.; Giacomini, G (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.; Bosisio, L (reprint author), Univ Trieste, Dept Phys, I-34127 Trieste, Italy.; Bosisio, L (reprint author), INFN, I-34127 Trieste, Italy.; Rashevskaya, I (reprint author), INFN TIFPA, Trento, Italy. EM gia-comini@bnl.gov; bo-sisio@ts.infn.it; irina.ra-shevskaya@tifpa.infn.it NR 9 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2016 VL 63 IS 1 BP 422 EP 426 DI 10.1109/TNS.2015.2514195 PN 2 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DG4AJ UT WOS:000372012000030 ER PT J AU Butterworth, J Carrazza, S Cooper-Sarkar, A De Roeck, A Feltesse, J Forte, S Gao, J Glazov, S Huston, J Kassabov, Z McNulty, R Morsch, A Nadolsky, P Radescu, V Rojo, J Thorne, R AF Butterworth, Jon Carrazza, Stefano Cooper-Sarkar, Amanda De Roeck, Albert Feltesse, Joel Forte, Stefano Gao, Jun Glazov, Sasha Huston, Joey Kassabov, Zahari McNulty, Ronan Morsch, Andreas Nadolsky, Pavel Radescu, Voica Rojo, Juan Thorne, Robert TI PDF4LHC recommendations for LHC Run II SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review DE parton distribution functions; LHC phenomenology; Higgs physics ID DEEP-INELASTIC SCATTERING; PARTON DISTRIBUTION-FUNCTIONS; STRONG-COUPLING CONSTANT; DIFFERENTIAL CROSS-SECTION; CHARM-QUARK MASS; PP COLLISIONS; ROOT-S=7 TEV; QCD ANALYSIS; ATLAS DETECTOR; DISTRIBUTIONS AB We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+alpha(s) uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. We finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology. This paper is dedicated to the memory of Guido Altarelli (1941-2015), whose seminal work made possible the quantitative study of PDFs. C1 [Butterworth, Jon; Thorne, Robert] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari] Univ Milan, TIF Lab, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy. [Cooper-Sarkar, Amanda] Univ Oxford, Dept Phys, Particle Phys, 1 Keble Rd, Oxford OX1 3NP, England. [De Roeck, Albert; Morsch, Andreas] CERN, PH Dept, CH-1211 Geneva 23, Switzerland. [De Roeck, Albert] Univ Antwerp, B-2610 Antwerp, Belgium. [Feltesse, Joel] CEA, DSM IRFU, CE Saclay, Gif Sur Yvette, France. [Gao, Jun] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Glazov, Sasha] DESY, Notkestr 85, D-22607 Hamburg, Germany. [Huston, Joey] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Kassabov, Zahari] Univ Turin, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy. [Kassabov, Zahari] Ist Nazl Fis Nucl, Sez Torino, Via Pietro Giuria 1, I-10125 Turin, Italy. [McNulty, Ronan] Natl Univ Ireland Univ Coll Dublin, Sci Ctr North, Sch Phys, UCD Belfeld, Dublin 4, Ireland. [Nadolsky, Pavel] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Radescu, Voica] Heidelberg Univ, Inst Phys, Philosophenweg 12, Heidelberg, Germany. [Rojo, Juan] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England. RP Rojo, J (reprint author), Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England. EM juan.rojo@physics.ox.ac.uk RI Forte, Stefano/F-3362-2015; Gao, Jun/C-9777-2017; Carrazza, Stefano/D-8412-2017; OI Forte, Stefano/0000-0002-5848-5907; Carrazza, Stefano/0000-0002-0079-6753; Rojo, Juan/0000-0003-4279-2192 FU Italian PRIN grant; European Investment Bank EIBURS grant; Executive Research Agency (REA) of the European Commission [PITN-GA-2012-316704]; Lagrange award; HICCUP ERC Consolidator grant [614577]; US Department of Energy, High Energy Physics, Office of Science [DE-AC02-06CH11357]; US Department of Energy [DE-SC0013681]; STFC Rutherford Fellowship [ST/K005227/1, ST/M003787/1]; European Research Council Starting Grant 'PDF4BSM'; London Centre for Terauniverse Studies (LCTS), from the European Research Council via the Advanced Investigator Grant [267352]; Science and Technology Facilities Council (STFC) [ST/J000515/1, ST/L000377/1] FX We are grateful to Sergey Alekhin, Johannes Blumlein, Claire Gwenlan, Max Klein, Katerina Lipka, Kristin Lohwasser, Sven Moch, Klaus Rabbertz and Reisaburo Tanaka for their feedback on this report. We are also grateful to Richard Ball, Andre David, Lucian Harland-Lang, Maxime Gouzevitch, Jan Kretzschmar, Jose Ignacio Latorre, Alan Martin, Patrick Motylinski, Ringaile Placakyte, Jon Pumplin, Alessandro Tricoli, Dan Stump, Graeme Watt, CP Yuan, as well as to many other colleagues from the PDF4LHC Working Group community for illuminating discussions about the topics presented in this report. SC and SF are supported in part by an Italian PRIN2010 grant and by a European Investment Bank EIBURS grant. SF and ZK are supported by the Executive Research Agency (REA) of the European Commission under the Grant Agreement PITN-GA-2012-316704 (HiggsTools). SF thanks Matteo Cacciari for hospitatly at LPTHE, Universite Paris VI, where part of this work was done, supported by a Lagrange award. SC is also supported by the HICCUP ERC Consolidator grant (614577). The research of JG in the High Energy Physics Division at Argonne National Laboratory is supported by the US Department of Energy, High Energy Physics, Office of Science, under Contract No. DE-AC02-06CH11357. The work of PN is supported by the US Department of Energy under grant DE-SC0013681. JR is supported by an STFC Rutherford Fellowship and Grant ST/K005227/1 and ST/M003787/1, and by an European Research Council Starting Grant 'PDF4BSM'. The work of RST is supported partly by the London Centre for Terauniverse Studies (LCTS), using funding from the European Research Council via the Advanced Investigator Grant 267352. RST thanks the Science and Technology Facilities Council (STFC) for support via grant awards ST/J000515/1 and ST/L000377/1. NR 139 TC 59 Z9 59 U1 7 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD FEB PY 2016 VL 43 IS 2 AR 023001 DI 10.1088/0954-3899/43/2/023001 PG 57 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DG4SX UT WOS:000372064000003 ER PT J AU Marcucci, LE Gross, F Pea, MT Piarulli, M Schiavilla, R Sick, I Stadler, A Van Orden, JW Viviani, M AF Marcucci, L. E. Gross, F. Pea, M. T. Piarulli, M. Schiavilla, R. Sick, I. Stadler, A. Van Orden, J. W. Viviani, M. TI Electromagnetic structure of few-nucleon ground states SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review DE form factors; charge and magnetic radii; electric quadrupole and magnetic dipole moments; light nuclei; chiral effective field theory; covariant spectator theory ID ELECTRON-DEUTERON SCATTERING; EFFECTIVE-FIELD THEORY; MAGNETIC FORM-FACTOR; HIGH MOMENTUM-TRANSFER; MONTE-CARLO CALCULATIONS; CHARGE-INDEPENDENCE BREAKING; STRUCTURE-FUNCTION A(Q(2)); BOSON-EXCHANGE MODEL; CHIRAL LAGRANGIANS; TENSOR POLARIZATION AB Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled chi EFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). For momentum transfers below Q less than or similar to 5 fm(-1) there is satisfactory agreement between experimental data and theoretical results in all three approaches. However, at Q greater than or similar to 5 fm(-1), particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary. The experimental data on the deuteron A structure function extend to Q similar or equal to 12 fm(-1), and the close agreement between these data and the CST results suggests that, even in this extreme kinematical regime, the study of few-body form factors provides no evidence for new effects coming from quark and gluon degrees of freedom at short distances. C1 [Marcucci, L. E.; Viviani, M.] Univ Pisa, Dept Phys E Fermi, I-56127 Pisa, Italy. [Marcucci, L. E.; Viviani, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Gross, F.; Piarulli, M.; Schiavilla, R.; Van Orden, J. W.] Jefferson Lab, Newport News, VA 23606 USA. [Gross, F.] Coll William & Mary, Williamsburg, VA 23185 USA. [Pea, M. T.] Univ Lisbon, Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal. [Pea, M. T.; Stadler, A.] Univ Lisbon, Inst Super Tecn, CFTP, P-1049001 Lisbon, Portugal. [Piarulli, M.; Schiavilla, R.; Van Orden, J. W.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Sick, I.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Stadler, A.] Univ Evora, Dept Fis, Escola Ciencias & Tecnol, P-7000671 Evora, Portugal. RP Marcucci, LE (reprint author), Univ Pisa, Dept Phys E Fermi, I-56127 Pisa, Italy.; Marcucci, LE (reprint author), Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. EM laura.elisa.marcucci@unipi.it RI Stadler, Alfred/C-5550-2009; Pena, Teresa/M-4683-2013 OI Stadler, Alfred/0000-0002-9596-0770; Pena, Teresa/0000-0002-3529-2408 FU Jefferson Science Associates, LLC, under US DOE [DE-AC05-06OR23177]; Fundacao para a Ciencia e a Tecnologia (FCT) [PTDC/FIS/113940/2009, CFTP-FCT (PEst-OE/FIS/U/0777/2013)]; European Union under the HadronPhysics3 Grant [283286]; National Energy Research Supercomputer Center FX The work of FG, RS, and JWVO is partially supported by the by Jefferson Science Associates, LLC, under US DOE Contract No. DE-AC05-06OR23177. AS and MTP received partial financial support by Fundacao para a Ciencia e a Tecnologia (FCT) under Grant Nos. PTDC/FIS/113940/2009, CFTP-FCT (PEst-OE/FIS/U/0777/2013), and by the European Union under the HadronPhysics3 Grant No. 283286. The calculations were made possible by grants of computing time from the National Energy Research Supercomputer Center. NR 178 TC 8 Z9 8 U1 2 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD FEB PY 2016 VL 43 IS 2 AR 023002 DI 10.1088/0954-3899/43/2/023002 PG 64 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DG4SX UT WOS:000372064000004 ER PT J AU Frankel, KL Owen, LA Dolan, JF Knott, JR Lifton, ZM Finkel, RC Wasklewicz, T AF Frankel, Kurt L. Owen, Lewis A. Dolan, James F. Knott, Jeffrey R. Lifton, Zachery M. Finkel, Robert C. Wasklewicz, Thad TI Timing and rates of Holocene normal faulting along the Black Mountains fault zone, Death Valley, USA SO LITHOSPHERE LA English DT Article ID CALIFORNIA SHEAR ZONE; SITU COSMOGENIC NUCLIDES; NORTH AMERICA MOTION; EASTERN CALIFORNIA; SIERRA-NEVADA; ALLUVIAL FANS; COSMIC-RAY; SLIP-RATE; KINEMATIC MODELS; PANAMINT VALLEY AB Alluvial fans displaced by normal faults of the Black Mountains fault zone at Badwater and Mormon Point in Death Valley were mapped, surveyed, and dated using optically stimulated luminescence (OSL) and Be-10 terrestrial cosmogenic nuclide (TCN) methods. Applying TCN methods to Holocene geomorphic surfaces in Death Valley is challenging because sediment flux is slow and complex. However, OSL dating produces consistent surface ages, yielding ages for a regionally recognized surface (Qg3a) of 4.5 +/- 1.2 ka at Badwater and 7.0 +/- 1.0 ka at Mormon Point. Holocene faults offsetting Qg3a yield horizontal slip rates directed toward 323 degrees of 0.8 +0.3/-0.2 mm/yr and 1.0 +/- 0.2 mm/yr for Badwater and Mormon Point, respectively. These slip rates are slower than the similar to 2 mm/yr dextral slip rate of the southern end of the northern Death Valley fault zone and are half as fast as NNW-oriented horizontal rates documented for the Panamint Valley fault zone. This indicates that additional strain is transferred southwestward from northern Death Valley and Black Mountains fault zones onto the oblique-normal dextral faults of the Panamint Valley fault zone, which is consistent with published geodetic modeling showing that current opening rates of central Death Valley along the Black Mountains fault zone are about three times slower than for Panamint Valley. This suggests that less than half of the geodetically determined similar to 9-12 mm/yr of right-lateral shear across the region at the latitude of central Death Valley is accommodated by slip on well-defined faults and that distributed deformational processes take up the remainder of this slip transferred between the major faults north of the Garlock fault. C1 [Frankel, Kurt L.; Lifton, Zachery M.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Owen, Lewis A.] Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. [Dolan, James F.] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. [Knott, Jeffrey R.] Calif State Univ Fullerton, Dept Geol Sci, Fullerton, CA 92831 USA. [Finkel, Robert C.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Wasklewicz, Thad] E Carolina Univ, Dept Geog, Greenville, NC 27858 USA. RP Owen, LA (reprint author), Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. EM lewis.owen@uc.edu FU National Science Foundation [EAR-0537901, EAR-0537580]; NASA Earth System Science Fellowship; Georgia Institute of Technology; University of Southern California Department of Earth Sciences Student Research Fund; California State University-Fullerton Department of Geological Sciences; University of California White Mountain Research Station FX This study was supported by National Science Foundation grants EAR-0537901 and EAR-0537580, with additional support from a NASA Earth System Science Fellowship, the Georgia Institute of Technology, the University of Southern California Department of Earth Sciences Student Research Fund, California State University-Fullerton Department of Geological Sciences, and the University of California White Mountain Research Station. Stephanie Briggs, Jeremy Zechar, and Jeremy Hatfield are thanked for their assistance with field work, and Alicia Nobles is thanked for her help with sample preparation. Sincere thanks go to editor Kurt Stuwe, reviewer Terry Pavlis, and an anonymous reviewer for their very constructive and useful comments in helping us improve our manuscript. This manuscript is Open Access in honor of the memory of Kurt Frankel. Kurt is greatly missed by all his family, friends, and academic community. NR 93 TC 3 Z9 3 U1 4 U2 9 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 1941-8264 EI 1947-4253 J9 LITHOSPHERE-US JI Lithosphere PD FEB PY 2016 VL 8 IS 1 BP 3 EP 22 DI 10.1130/L464.1 PG 20 WC Geochemistry & Geophysics; Geology SC Geochemistry & Geophysics; Geology GA DG6KB UT WOS:000372192100001 ER PT J AU Zhang, XY Papai, M Moller, KB Zhang, JX Canton, SE AF Zhang, Xiaoyi Papai, Matyas Moller, Klaus B. Zhang, Jianxin Canton, Sophie E. TI Characterizing the Solvated Structure of Photoexcited [Os(terpy)(2)](2+) with X-ray Transient Absorption Spectroscopy and DFT Calculations SO MOLECULES LA English DT Article DE X-ray transient absorption spectroscopy; excited-state; osmium polypyridyl complex ID SENSITIZED SOLAR-CELLS; POLYPYRIDINE COMPLEXES; ELECTRONIC-STRUCTURE; OSMIUM; BEHAVIOR; SYSTEMS; ENERGY; TIO2; APPROXIMATION; ABSORBERS AB Characterizing the geometric and electronic structures of individual photoexcited dye molecules in solution is an important step towards understanding the interfacial properties of photo-active electrodes. The broad family of red sensitizers based on osmium(II) polypyridyl compounds often undergoes small photo-induced structural changes which are challenging to characterize. In this work, X-ray transient absorption spectroscopy with picosecond temporal resolution is employed to determine the geometric and electronic structures of the photoexcited triplet state of [Os(terpy)(2)](2+) (terpy: 2,2:6,2-terpyridine) solvated in methanol. From the EXAFS analysis, the structural changes can be characterized by a slight overall expansion of the first coordination shell [OsN6]. DFT calculations supports the XTA results. They also provide additional information about the nature of the molecular orbitals that contribute to the optical spectrum (with TD-DFT) and the near-edge region of the X-ray spectra. C1 [Zhang, Xiaoyi] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Papai, Matyas; Moller, Klaus B.] Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark. [Papai, Matyas] Hungarian Acad Sci, Lendulet Momentum Femtosecond Spect Res Grp, Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary. [Zhang, Jianxin] Tianjin Polytech Univ, Sch Environm & Chem Engn, Tianjin 300387, Peoples R China. [Canton, Sophie E.] Deutsch Elecktronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany. [Canton, Sophie E.] Max Planck Inst Biophys Chem, IFG Struct Dynam Bio Chem Syst, Fassberg 11, D-37077 Gottingen, Germany. RP Zhang, XY (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xyzhang@aps.anl.gov; papai@kemi.dtu.dk; klaus.moller@kemi.dtu.dk; zjx1980@126.com; secanton2012@gmail.com RI Moller, Klaus Braagaard/B-7647-2014; Canton, Sophie/A-8432-2016; OI Moller, Klaus Braagaard/0000-0002-9797-7437; Papai, Matyas Imre/0000-0002-4819-0611 FU DOE Office of Science [DE-AC02-06CH11357]; European Union [609405]; NSFC [21302138]; Tianjin City High School Science and Technology Fund Planning Project [20130504]; [SFB 1073] FX The authors thank M. Naumova for her kind help in acquiring the experimental UV-visible spectrum. Xiaoyi Zhang and the use of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The research leading to the presented results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no 609405 (COFUNDPostdocDTU). Jianxin Zhang greatly acknowledges support from NSFC (21302138) and Tianjin City High School Science and Technology Fund Planning Project (20130504). Sophie E. Canton acknowledges funding from SFB 1073. NR 32 TC 3 Z9 3 U1 6 U2 16 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1420-3049 J9 MOLECULES JI Molecules PD FEB PY 2016 VL 21 IS 2 AR 235 DI 10.3390/molecules21020235 PG 9 WC Chemistry, Organic SC Chemistry GA DG2KN UT WOS:000371895900064 PM 26907233 ER PT J AU Gul, R Cui, Y Bolotnikov, AE Camarda, GS Egarievwe, SU Hossain, A Roy, UN Yang, G Edgar, JH Nwagwu, U James, RB AF Gul, R. Cui, Y. Bolotnikov, A. E. Camarda, G. S. Egarievwe, S. U. Hossain, A. Roy, U. N. Yang, G. Edgar, J. H. Nwagwu, U. James, R. B. TI Photocurrent response of B12As2 crystals to blue light, and its temperature-dependent electrical characterizations SO AIP ADVANCES LA English DT Article AB With the global shortage of He-3 gas, researchers worldwide are looking for alternative materials for detecting neutrons. Among the candidate materials, semiconductors are attractive because of their light weight and ease in handling. Currently, we are looking into the suitability of boron arsenide (B12As2) for this specific application. As the first step in evaluating the material qualitatively, the photo-response of B12As2 bulk crystals to light with different wavelengths was examined. The crystals showed photocurrent response to a band of 407- and 470- nm blue light. The maximum measured photoresponsivity and the photocurrent density at 0.7 V for 470 nm blue light at room temperature were 0.25 A.W-1 and 2.47 mA.cm(-2), respectively. In addition to photo current measurements, the electrical properties as a function of temperature (range: 50-320 K) were measured. Reliable data were obtained for the low-temperature I-V characteristics, the temperature dependence of dark current and its density, and the resistivity variations with temperature in B12As2 bulk crystals. The experiments showed an exponential dependence on temperature for the dark current, current density, and resistivity; these three electrical parameters, respectively, had a variation of a few nA to mu A, 1-100 mu A.cm(-2) and 7.6x10(5)-7.7x10(3) Omega.cm, for temperature increasing from 50 K to 320 K. The results from this study reported the first photoresponse and demonstrated that B12As2 is a potential candidate for thermal-neutron detectors. (C) 2016 Author(s). C1 [Gul, R.; Cui, Y.; Bolotnikov, A. E.; Camarda, G. S.; Hossain, A.; Roy, U. N.; Yang, G.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gul, R.; Egarievwe, S. U.] Alabama A&M Univ, Normal, AL 35762 USA. [Edgar, J. H.; Nwagwu, U.] Kansas State Univ, Manhattan, KS 66506 USA. RP Gul, R (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.; Gul, R (reprint author), Alabama A&M Univ, Normal, AL 35762 USA. EM rubi786@yahoo.com OI Edgar, James/0000-0003-0918-5964 FU Laboratory Directed Research and Development (LDRD) program at Brookhaven National Laboratory FX This research is supported by Laboratory Directed Research and Development (LDRD) program at Brookhaven National Laboratory. Authors are thankful to Dr. Thomas Tsang from Instrumentation Department, for his technical support and discussions. NR 8 TC 0 Z9 0 U1 3 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD FEB PY 2016 VL 6 IS 2 AR 025206 DI 10.1063/1.4941937 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DG0FD UT WOS:000371739000057 ER PT J AU Plohr, JN Plohr, BJ AF Plohr, JeeYeon N. Plohr, Bradley J. TI Numerical simulation of systems of shear bands in ductile metal with inclusions SO AIP ADVANCES LA English DT Article ID MODEL; FLOW; LOCALIZATION; NANOFLUID AB We develop a method for numerical simulations of high strain-rate loading of meso-scale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands). This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127-139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31-41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211-220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU. (C) 2016 Author(s). C1 [Plohr, JeeYeon N.; Plohr, Bradley J.] Los Alamos Natl Lab, Div Theoret, MS B221, Los Alamos, NM 87545 USA. RP Plohr, JN (reprint author), Los Alamos Natl Lab, Div Theoret, MS B221, Los Alamos, NM 87545 USA. EM jplohr@lanl.gov FU Department of Energy (DOE); Department of Defense (DoD) Munitions Technology Development Program; DOE Advanced Simulation and Computing (ASC) Materials and Physics Program FX This research was supported by the joint Department of Energy (DOE) and Department of Defense (DoD) Munitions Technology Development Program and the DOE Advanced Simulation and Computing (ASC) Materials and Physics Program. NR 22 TC 1 Z9 1 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD FEB PY 2016 VL 6 IS 2 AR 025008 DI 10.1063/1.4941928 PG 27 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DG0FD UT WOS:000371739000008 ER PT J AU Steinmann, V Brandt, RE Chakraborty, R Jaramillo, R Young, M Ofori-Okai, BK Yang, CX Polizzotti, A Nelson, KA Gordon, RG Buonassisi, T AF Steinmann, Vera Brandt, Riley E. Chakraborty, Rupak Jaramillo, R. Young, Matthew Ofori-Okai, Benjamin K. Yang, Chuanxi Polizzotti, Alex Nelson, Keith A. Gordon, Roy G. Buonassisi, Tonio TI The impact of sodium contamination in tin sulfide thin-film solar cells SO APL MATERIALS LA English DT Article ID CDCL2 TREATMENT; SNS; DEFECTS; NA AB Through empirical observations, sodium (Na) has been identified as a benign contaminant in some thin-film solar cells. Here, we intentionally contaminate thermally evaporated tin sulfide (SnS) thin-films with sodium and measure the SnS absorber properties and solar cell characteristics. The carrier concentration increases from 2 x 1016 cm(-3) to 4.3 x 1017 cm(-3) in Na-doped SnS thin-films, when using a 13 nm NaCl seed layer, which is detrimental for SnS photovoltaic applications but could make Na-doped SnS an attractive candidate in thermoelectrics. The observed trend in carrier concentration is in good agreement with density functional theory calculations, which predict an acceptor-type Na-Sn defect with low formation energy. (C) 2016 Author(s). C1 [Steinmann, Vera; Brandt, Riley E.; Chakraborty, Rupak; Jaramillo, R.; Ofori-Okai, Benjamin K.; Polizzotti, Alex; Nelson, Keith A.; Buonassisi, Tonio] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Young, Matthew] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Yang, Chuanxi; Gordon, Roy G.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. RP Steinmann, V (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM vsteinma@mit.edu OI Ofori-Okai, Benjamin/0000-0002-0737-6786 FU U.S. Department of Energy through SunShot Initiative [DE-EE0005329]; Alexander von Humboldt foundation; NSF Fellowships; MITei TOTAL fellowship; DOE EERE Postdoctoral Research Award; National Science Foundation (NSF) [DMR-08-19762, ECS-0335765, CHE-11115577] FX The authors thank M. L. Castillo for her help with substrate preparation and J. R. Poindexter for fruitful discussions. This work is supported by the U.S. Department of Energy through the SunShot Initiative under Contract No. DE-EE0005329 and the National Science Foundation Grant No. CHE-11115577. V. Steinmann, R. E. Brandt, B. K. Ofori-Okai, A. Polizzotti, R. Chakraborty, and R. Jaramillo acknowledge the support of the Alexander von Humboldt foundation, NSF Fellowships, a MITei TOTAL fellowship, and a DOE EERE Postdoctoral Research Award, respectively. This work made use of the Center for Materials Science and Engineering at MIT which is supported by the National Science Foundation (NSF) under Award No. DMR-08-19762 and the Center for Nanoscale Systems at Harvard University which is supported by NSF under Award No. ECS-0335765. NR 38 TC 2 Z9 2 U1 4 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD FEB PY 2016 VL 4 IS 2 AR 026103 DI 10.1063/1.4941713 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DG1GQ UT WOS:000371814500005 ER PT J AU Keiluweit, M Nico, PS Kleber, M Fendorf, S AF Keiluweit, Marco Nico, Peter S. Kleber, Markus Fendorf, Scott TI Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? SO BIOGEOCHEMISTRY LA English DT Article DE Soil carbon; Organic matter; Anaerobic metabolism; Soils; Oxygen limitations ID TROPICAL FOREST SOILS; HAWAIIAN MONTANE FOREST; PREFERENTIAL FLOW PATHS; FILLED PORE-SPACE; METHANE PRODUCTION; COMMUNITY STRUCTURE; DIFFUSIONAL CONSTRAINTS; ANAEROBIC DEGRADATION; NMR-SPECTROSCOPY; AGGREGATED SOILS AB Understanding the processes controlling organic matter (OM) stocks in upland soils, and the ability to management them, is crucial for maintaining soil fertility and carbon (C) storage as well as projecting change with time. OM inputs are balanced by the mineralization (oxidation) rate, with the difference determining whether the system is aggrading, degrading or at equilibrium with reference to its C storage. In upland soils, it is well recognized that the rate and extent of OM mineralization is affected by climatic factors (particularly temperature and rainfall) in combination with OM chemistry, mineral-organic associations, and physical protection. Here we examine evidence for the existence of persistent anaerobic microsites in upland soils and their effect on microbially mediated OM mineralization rates. We corroborate long-standing assumptions that residence times of OM tend to be greater in soil domains with limited oxygen supply (aggregates or peds). Moreover, the particularly long residence times of reduced organic compounds (e.g., aliphatics) are consistent with thermodynamic constraints on their oxidation under anaerobic conditions. Incorporating (i) pore length and connectivity governing oxygen diffusion rates (and thus oxygen supply) with (ii) 'hot spots' of microbial OM decomposition (and thus oxygen consumption), and (iii) kinetic and thermodynamic constraints on OM metabolism under anaerobic conditions will thus improve conceptual and numerical models of C cycling in upland soils. We conclude that constraints on microbial metabolism induced by oxygen limitations act as a largely unrecognized and greatly underestimated control on overall rates of C oxidation in upland soils. C1 [Keiluweit, Marco; Fendorf, Scott] Stanford Univ, Dept Earth Syst Sci, 473 Via Ortega, Stanford, CA 94305 USA. [Keiluweit, Marco] Univ Massachusetts, Stockbridge Sch Agr, Amherst, MA 01003 USA. [Nico, Peter S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Kleber, Markus] Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA. RP Fendorf, S (reprint author), Stanford Univ, Dept Earth Syst Sci, 473 Via Ortega, Stanford, CA 94305 USA. EM fendorf@stanford.edu RI Nico, Peter/F-6997-2010; OI Nico, Peter/0000-0002-4180-9397; Fendorf, Scott/0000-0002-9177-1809 FU US Department of Energy, Office of Biological and Environmental Research, Terrestrial Ecosystem Program [DE-FG02-13ER65542] FX This work was supported by the US Department of Energy, Office of Biological and Environmental Research, Terrestrial Ecosystem Program (Award Number DE-FG02-13ER65542). We would also like to thank Patrick Megonigal and an anonymous reviewer for their help in improving this manuscript. NR 119 TC 3 Z9 3 U1 37 U2 80 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 EI 1573-515X J9 BIOGEOCHEMISTRY JI Biogeochemistry PD FEB PY 2016 VL 127 IS 2-3 BP 157 EP 171 DI 10.1007/s10533-015-0180-6 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DF8KH UT WOS:000371606000001 ER PT J AU Arora, B Spycher, NF Steefel, CI Molins, S Bill, M Conrad, ME Dong, WM Faybishenko, B Tokunaga, TK Wan, JM Williams, KH Yabusaki, SB AF Arora, Bhavna Spycher, Nicolas F. Steefel, Carl I. Molins, Sergi Bill, Markus Conrad, Mark E. Dong, Wenming Faybishenko, Boris Tokunaga, Tetsu K. Wan, Jiamin Williams, Kenneth H. Yabusaki, Steven B. TI Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment SO BIOGEOCHEMISTRY LA English DT Article DE Flood plain; Reduced zones; Subsurface carbon dynamics; Temporal variability; Biogeochemical processes ID SOIL ORGANIC-MATTER; MOLAL THERMODYNAMIC PROPERTIES; MICROBIAL COMMUNITY STRUCTURE; URANIUM-CONTAMINATED AQUIFER; STABLE-ISOTOPE VARIATIONS; COLUMN ANALOG EXPERIMENT; BANK FILTRATION; HOT MOMENTS; TERRESTRIAL CARBON; ALLUVIAL AQUIFER AB Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Model simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe+2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m(-2) d(-1), while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations. C1 [Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; Molins, Sergi; Bill, Markus; Conrad, Mark E.; Dong, Wenming; Faybishenko, Boris; Tokunaga, Tetsu K.; Wan, Jiamin; Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Geosci Div, 1 Cyclotron Rd,MS 74-327R, Berkeley, CA 94720 USA. [Yabusaki, Steven B.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Arora, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Geosci Div, 1 Cyclotron Rd,MS 74-327R, Berkeley, CA 94720 USA. EM barora@lbl.gov RI Steefel, Carl/B-7758-2010; Molins, Sergi/A-9097-2012; Bill, Markus/D-8478-2013; Conrad, Mark/G-2767-2010; Williams, Kenneth/O-5181-2014; Dong, Wenming/G-3221-2015; Spycher, Nicolas/E-6899-2010; Wan, Jiamin/H-6656-2014; Faybishenko, Boris/G-3363-2015; Tokunaga, Tetsu/H-2790-2014; Arora, Bhavna/D-2293-2015 OI Molins, Sergi/0000-0001-7675-3218; Bill, Markus/0000-0001-7002-2174; Williams, Kenneth/0000-0002-3568-1155; Dong, Wenming/0000-0003-2074-8887; Faybishenko, Boris/0000-0003-0085-8499; Tokunaga, Tetsu/0000-0003-0861-6128; Arora, Bhavna/0000-0001-7841-886X FU Genomes to Watershed Scientific Focus Area at Lawrence Berkeley National Laboratory - U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This material is based upon work supported as part of the Genomes to Watershed Scientific Focus Area at Lawrence Berkeley National Laboratory funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-AC02-05CH11231. We are grateful to P. E. Long for providing temperature data for this study. NR 133 TC 9 Z9 9 U1 26 U2 41 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 EI 1573-515X J9 BIOGEOCHEMISTRY JI Biogeochemistry PD FEB PY 2016 VL 127 IS 2-3 BP 367 EP 396 DI 10.1007/s10533-016-0186-8 PG 30 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DF8KH UT WOS:000371606000014 ER PT J AU Elman, JA Madison, CM Baker, SL Vogel, JW Marks, SM Crowley, S O'Neil, JP Jagust, WJ AF Elman, Jeremy A. Madison, Cindee M. Baker, Suzanne L. Vogel, Jacob W. Marks, Shawn M. Crowley, Sam O'Neil, James P. Jagust, William J. TI Effects of Beta-Amyloid on Resting State Functional Connectivity Within and Between Networks Reflect Known Patterns of Regional Vulnerability SO CEREBRAL CORTEX LA English DT Article DE aging; beta-amyloid; functional connectivity; PIB-PET; resting-state fMRI ID DEFAULT-MODE NETWORK; MILD COGNITIVE IMPAIRMENT; PRECLINICAL ALZHEIMER-DISEASE; PITTSBURGH COMPOUND-B; HUMAN CEREBRAL-CORTEX; HUMAN BRAIN; FRONTOTEMPORAL DEMENTIA; AEROBIC GLYCOLYSIS; OLDER PERSONS; DEPOSITION AB Beta-amyloid (A beta) deposition is one of the hallmarks of Alzheimer's disease (AD). However, it is also present in some cognitively normal elderly adults and may represent a preclinical disease state. While AD patients exhibit disrupted functional connectivity (FC) both within and between resting-state networks, studies of preclinical cases have focused primarily on the default mode network (DMN). The extent to which A beta-related effects occur outside of the DMN and between networks remains unclear. In the present study, we examine how within- and between-network FC are related to both global and regional A beta deposition as measured by [C-11]PIB-PET in 92 cognitively normal older people. We found that within-network FC changes occurred in multiple networks, including the DMN. Changes of between-network FC were also apparent, suggesting that regions maintaining connections to multiple networks may be particularly susceptible to A beta-induced alterations. Cortical regions showing altered FC clustered in parietal and temporal cortex, areas known to be susceptible to AD pathology. These results likely represent a mix of local network disruption, compensatory reorganization, and impaired control network function. They indicate the presence of A beta-related dysfunction of neural systems in cognitively normal people well before these areas become hypometabolic with the onset of cognitive decline. C1 [Elman, Jeremy A.; Baker, Suzanne L.; Crowley, Sam; O'Neil, James P.; Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Madison, Cindee M.; Vogel, Jacob W.; Marks, Shawn M.; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. RP Elman, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd Mail Stop 55R0121G, Berkeley, CA 94720 USA. EM jelman@berkeley.edu OI Marks, Shawn/0000-0001-9884-8461 FU NIH [AG034570] FX This work was supported by NIH grant AG034570. NR 94 TC 4 Z9 5 U1 5 U2 8 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1047-3211 EI 1460-2199 J9 CEREB CORTEX JI Cereb. Cortex PD FEB PY 2016 VL 26 IS 2 BP 695 EP 707 DI 10.1093/cercor/bhu259 PG 13 WC Neurosciences SC Neurosciences & Neurology GA DF7FE UT WOS:000371522500022 PM 25405944 ER PT J AU Mendoza, H Roberts, SA Brunini, VE Grillet, AM AF Mendoza, Hector Roberts, Scott A. Brunini, Victor E. Grillet, Anne M. TI Mechanical and Electrochemical Response of a LiCoO2 Cathode using Reconstructed Microstructures SO ELECTROCHIMICA ACTA LA English DT Article DE Battery; Lithium-ion; Degradation; Simulation; Microstructure ID LITHIUM-ION BATTERIES; EMPLOYING GRAPHITE NEGATIVES; INTERCALATION-INDUCED STRESS; NUMERICAL-SIMULATION; LITHIATED SILICON; POROUS-ELECTRODES; POLYMER BATTERY; PARTICLES; MODEL; DEFORMATION AB As LiCoO2 cathodes are charged, delithiation of the LiCoO2 active material leads to an increase in the lattice spacing, causing swelling of the particles. When these particles are packed into a bicontinuous, percolated network, as is the case in a battery electrode, this swelling leads to the generation of significant mechanical stress. In this study we performed coupled electrochemical-mechanical simulations of the charging of a LiCoO2 cathode in order to elucidate the mechanisms of stress generation and the effect of charge rate and microstructure on these stresses. Energy dispersive spectroscopy combined with scanning electron microscopy imaging was used to create 3D reconstructions of a LiCoO2 cathode, and the Conformal Decomposition Finite Element Method is used to automatically generate computational meshes on this reconstructed microstructure. Replacement of the ideal solution Fickian diffusion model, typically used in battery simulations, with a more general non -ideal solution model shows substantially smaller gradients of lithium within particles than is typically observed in the literature. Using this more general model, lithium gradients only appear at states of charge where the open-circuit voltage is relatively constant. While lithium gradients do affect the mechanical stress state in the particles, the maximum stresses are always found in the fully-charged state and are strongly affected by the local details of the microstructure and particle-to-particle contacts. These coupled electrochemical-mechanical simulations begin to yield insight into the partitioning of volume change between reducing pore space and macroscopically swelling the electrode. Finally, preliminary studies that include the presence of the polymeric binder suggest that it can greatly impact stress generation and that it is an important area for future research. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Mendoza, Hector; Roberts, Scott A.; Brunini, Victor E.; Grillet, Anne M.] Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. RP Roberts, SA (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM hmendo@sandia.gov; sarober@sandia.gov; vebruni@sandia.gov; amgrill@sandia.gov RI Roberts, Scott/C-1158-2009 OI Roberts, Scott/0000-0002-4196-6771 FU Sandia's Laboratory Directed Research and Development Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge the entire Lithium Ion Battery Degradation LDRD team at Sandia National Laboratories for insightful discussions and support: Christopher A. Apblett, Kyle R. Fenton, Thomas Humplik, Kevin N. Long, Farid El Gabaly Marquez, and Chelsea M. Snyder. In particular, we thank Kyle Fenton for manufacturing the cathodes that were used in this study along with Michael Rye and Paul Kotula for performing the imaging and multivariate analysis. This work was funded as part of Sandia's Laboratory Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 64 TC 7 Z9 8 U1 19 U2 49 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD FEB 1 PY 2016 VL 190 BP 1 EP 15 DI 10.1016/j.electacta.2015.12.224 PG 15 WC Electrochemistry SC Electrochemistry GA DF2AM UT WOS:000371141500001 ER PT J AU McLarty, D Brouwer, J Ainscough, C AF McLarty, Dustin Brouwer, Jack Ainscough, Chris TI Economic analysis of fuel cell installations at commercial buildings including regional pricing and complementary technologies SO ENERGY AND BUILDINGS LA English DT Article DE Energy economics; Fuel cells; Commercial buildings; Market analysis; Complementary technologies; Energy storage ID DISTRIBUTED GENERATION SYSTEMS; COMBINED HEAT; DISPATCH; DESIGN; POWER; INTEGRATION; CALIFORNIA AB This paper presents results from sensitivity studies conducted using the Distributed Generation Build out Economic Assessment Tool (DG-BEAT). The viability of meeting commercial building loads with a stationary fuel cells is studied under different conditions of electricity pricing, dispatch strategies, and complementary technologies. Key findings support the notion that fuel cells are becoming economically viable alternatives in California, New York and Connecticut at installed costs of $7000-10,000/kW. Michigan is identified as another state well suited to fuel cell development with heat recovery. Fuel cell installations reduce net carbon emissions for commercial buildings by 20-30% when compared to local, time-resolved, grid emissions. Grid sell-back, at 50% retail price, significantly improves the economics of a base load fuel cell, but has little impact for a dispatchable system. At installed costs below $5000/kW, load following capability results in significant additional cost reductions as the generating capacity is increased beyond the building's base load requirements. Complementary technologies such as chillers and thermal storage have a pronounced impact particularly in warmer climates. Installing fuel cells paired with electric chillers and thermal storage in Florida at buildings with exceptionally high air conditioning demands can achieve the same economic benefit as a typical New York building. (C) 2015 Elsevier B.V. All rights reserved. C1 [McLarty, Dustin] Washington State Univ, Clean Energy Syst Integrat Lab, Pullman, WA 99164 USA. [Brouwer, Jack] Univ Calif Irvine, Natl Fuel Cell Res Ctr, Irvine, CA 92697 USA. [Brouwer, Jack] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP McLarty, D (reprint author), Washington State Univ, Clean Energy Syst Integrat Lab, Pullman, WA 99164 USA. EM dustin.mclarty@wsu.edu FU U.S. Department of Energy FX The authors gratefully acknowledge and recognize the technical contributions of Sam Sprik, Genevieve Saur, Mike Penev and Darlene Steward at the National Renewable Energy Laboratory. We also gratefully acknowledge the funding and technical support from the U.S. Department of Energy and our contract manager Jason Marcinkoski. NR 34 TC 2 Z9 2 U1 3 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD FEB 1 PY 2016 VL 113 BP 112 EP 122 DI 10.1016/j.enbuild.2015.12.029 PG 11 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA DG1QW UT WOS:000371843600012 ER PT J AU Mayali, X Stewart, B Mabery, S Weber, PK AF Mayali, Xavier Stewart, Benjamin Mabery, Shalini Weber, Peter K. TI Temporal succession in carbon incorporation from macromolecules by particle-attached bacteria in marine microcosms SO ENVIRONMENTAL MICROBIOLOGY REPORTS LA English DT Article ID DISSOLVED ORGANIC-MATTER; 16S RIBOSOMAL-RNA; MEDITERRANEAN SEA; MICROBIAL COMMUNITIES; NATURAL ASSEMBLAGES; ENZYME-ACTIVITIES; IN-SITU; DEGRADATION; DIVERSITY; VARIABILITY AB We investigated bacterial carbon assimilation from stable isotope-labelled macromolecular substrates (proteins; lipids; and two types of polysaccharides, starch and cellobiose) while attached to killed diatom detrital particles during laboratory microcosms incubated for 17 days. Using Chip-SIP (secondary ion mass spectrometry analysis of RNA microarrays), we identified generalist operational taxonomic units (OTUs) from the Gammaproteobacteria, belonging to the genera Colwellia, Glaciecola, Pseudoalteromonas and Rheinheimera, and from the Bacteroidetes, genera Owenweeksia and Maribacter, that incorporated the four tested substrates throughout the incubation period. Many of these OTUs exhibited the highest isotope incorporation relative to the others, indicating that they were likely the most active. Additional OTUs from the Gammaproteobacteria, Bacteroidetes and Alphaproteobacteria exhibited generally (but not always) lower activity and did not incorporate all tested substrates at all times, showing species succession in organic carbon incorporation. We also found evidence to suggest that both generalist and specialist OTUs changed their relative substrate incorporation over time, presumably in response to changing substrate availability as the particles aged. This pattern was demonstrated by temporal succession from relatively higher starch incorporation early in the incubations, eventually switching to higher cellobiose incorporation after 2 weeks. C1 [Mayali, Xavier; Stewart, Benjamin; Mabery, Shalini; Weber, Peter K.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. RP Mayali, X (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. EM mayali1@llnl.gov FU LLNL Laboratory Directed Research and Development (LDRD) [11-ERD-066]; LLNL Biofuels Scientific Focus Area; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank V. Lao for assistance in the laboratory, L. Nittler for software development, and three anonymous reviewers for significantly improving the manuscript. This research was supported by LLNL Laboratory Directed Research and Development (LDRD) Grant No. 11-ERD-066 and the LLNL Biofuels Scientific Focus Area. Work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors state no conflicts of interest. NR 36 TC 2 Z9 2 U1 8 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1758-2229 J9 ENV MICROBIOL REP JI Environ. Microbiol. Rep. PD FEB PY 2016 VL 8 IS 1 BP 68 EP 75 DI 10.1111/1758-2229.12352 PG 8 WC Environmental Sciences; Microbiology SC Environmental Sciences & Ecology; Microbiology GA DF6QQ UT WOS:000371481100010 PM 26525158 ER PT J AU Sah, S Myneni, G Atulasimha, J AF Sah, Sanjay Myneni, Ganapati Atulasimha, Jayasimha TI Experimental Characterization of Magnetic Materials for the Magnetic Shielding of Cryomodules in Particle Accelerators SO IEEE TRANSACTIONS ON MAGNETICS LA English DT Article DE Annealing; cavity resonators; magnetic fields; magnetic properties; magnetic shielding; magnetization; permeability AB The magnetic properties of two important passive magnetic shielding materials (A4K and Amumetal) for accelerator applications, subjected to various processing and heat treatment conditions are studied comprehensively over a wide range of temperatures: from cryogenic to room temperature. We analyze the effect of processing on the extent of degradation of the magnetic properties of both materials and investigate the possibility of restoring these properties by reannealing. C1 [Sah, Sanjay; Atulasimha, Jayasimha] Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Med Coll Virginia Campus, Richmond, VA 23284 USA. [Myneni, Ganapati] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Atulasimha, J (reprint author), Virginia Commonwealth Univ, Dept Mech & Nucl Engn, Med Coll Virginia Campus, Richmond, VA 23284 USA. EM jatulasimha@vcu.edu FU Virginia Commonwealth University (VCU); Jefferson Laboratory within U.S. Department of Energy through Thomas Jefferson National Accelerator Facility [DE-AC05-06OR23177] FX The work of S. Sah was supported in part by Virginia Commonwealth University (VCU) and in part by the Jefferson Laboratory within the U.S. Department of Energy through the Thomas Jefferson National Accelerator Facility under Contract DE-AC05-06OR23177. The authors would like to thank Dr. S. B. Y. Leon at VCU Mechanical and Nuclear Engineering for travel support to attend magnetic shielding workshop at the facility for rare isotope beams, Dr. B. Hinderliter at the University of Minnesota, Duluth, for earlier discussions on S. Sah's Ph.D. research topic, M. Adolf at Amuneal Corporation for Amumetal and A4K samples, Nanomaterial Core Characterization at VCU for the use of the vibrating sample magnetometer, and Prof. R. Greene and Dr. S. Saha at the University of Maryland for the use of SQUID Magnetometer. NR 16 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9464 EI 1941-0069 J9 IEEE T MAGN JI IEEE Trans. Magn. PD FEB PY 2016 VL 52 IS 2 AR 2000406 DI 10.1109/TMAG.2015.2494862 PN 2 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA DG4WY UT WOS:000372075000006 ER PT J AU Soderlind, P Landa, A Tobin, JG Allen, P Medling, S Booth, CH Bauer, ED Cooley, JC Sokaras, D Weng, TC Nordlund, D AF Soederlind, P. Landa, A. Tobin, J. G. Allen, P. Medling, S. Booth, C. H. Bauer, E. D. Cooley, J. C. Sokaras, D. Weng, T. -C. Nordlund, D. TI On the valence fluctuation in the early actinide metals SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Valence fluctuations; Actinides; X-ray emission spectroscopy; Density functional theory ID X-RAY-DIFFRACTION; PLUTONIUM; PRESSURE; TEMPERATURE AB Recent X-ray measurements suggest a degree of valence fluctuation in plutonium and uranium intermetallics. We are applying a novel scheme, in conjunction with density functional theory, to predict 5f configuration fractions of states with valence fluctuations for the early actinide metals. For this purpose we perform constrained integer f-occupation calculations for the a phases of uranium, neptunium, and plutonium metals. For plutonium we also investigate the 8 phase. The model predicts uranium and neptunium to be dominated by the f(3) and f(4) configurations, respectively, with only minor contributions from other configurations. For plutonium (both a and 8 phase) the scenario is dramatically different. Here, the calculations predict a relatively even distribution between three valence configurations. The 8 phase has a greater configuration fraction of f(6) compared to that of the a phase. The theory is consistent with the interpretations of modern X-ray experiments and we present resonant X-ray emission spectroscopy results for alpha-uranium. (C) 2015 Elsevier B.V. All rights reserved. C1 [Soederlind, P.; Landa, A.; Tobin, J. G.; Allen, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Medling, S.; Booth, C. H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bauer, E. D.; Cooley, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sokaras, D.; Weng, T. -C.; Nordlund, D.] SLAC Natl Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Soderlind, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM soderlind@llnl.gov RI Nordlund, Dennis/A-8902-2008; OI Nordlund, Dennis/0000-0001-9524-6908; Bauer, Eric/0000-0003-0017-1937 FU U.S. DOE [DE-AC52-07NA27344]; Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; U.S. DOE, OBES, Division of Materials Sciences and Engineering FX We thank B. Sadigh for helpful discussion. This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. Work at Lawrence Berkeley National Laboratory supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Sample preparation at Los Alamos National Laboratory (LANL) was performed under the auspices of the U.S. DOE, OBES, Division of Materials Sciences and Engineering. X-ray absorption and RXES data were collected at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the DOE, Office of Basic Energy Sciences. NR 21 TC 2 Z9 2 U1 9 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD FEB PY 2016 VL 207 BP 14 EP 18 DI 10.1016/j.elspec.2015.11.014 PG 5 WC Spectroscopy SC Spectroscopy GA DG2ZX UT WOS:000371940400003 ER PT J AU Berg, G Rybakova, D Grube, M Koberl, M AF Berg, Gabriele Rybakova, Daria Grube, Martin Koeberl, Martina TI The plant microbiome explored: implications for experimental botany SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article; Proceedings Paper CT Society-for-Experimental-Biology Annual Meeting CY JUN 30-JUL 03, 2015 CL Prague, CZECH REPUBLIC DE Endosphere; holobiont; microbiome; phyllosphere; plant-microbe interaction; rhizosphere ID RHIZOSPHERE MICROBIOME; SOIL MICROBIOMES; ROOT MICROBIOME; DIVERSITY; ARABIDOPSIS; ENDOPHYTES; BACTERIA; LIFE; SELECTION; ECOLOGY AB The importance of microbial root inhabitants for plant growth and health was recognized as early as 100 years ago. Recent insights reveal a close symbiotic relationship between plants and their associated microorganisms, and high structural and functional diversity within plant microbiomes. Plants provide microbial communities with specific habitats, which can be broadly categorized as the rhizosphere, phyllosphere, and endosphere. Plant-associated microbes interact with their host in essential functional contexts. They can stimulate germination and growth, help plants fend off disease, promote stress resistance, and influence plant fitness. Therefore, plants have to be considered as metaorganisms within which the associated microbes usually outnumber the cells belonging to the plant host. The structure of the plant microbiome is determined by biotic and abiotic factors but follows ecological rules. Metaorganisms are co-evolved species assemblages. The metabolism and morphology of plants and their microbiota are intensively connected with each other, and the interplay of both maintains the functioning and fitness of the holobiont. Our study of the current literature shows that analysis of plant microbiome data has brought about a paradigm shift in our understanding of the diverse structure and functioning of the plant microbiome with respect to the following: (i) the high interplay of bacteria, archaea, fungi, and protists; (ii) the high specificity even at cultivar level; (iii) the vertical transmission of core microbiomes; (iv) the extraordinary function of endophytes; and (v) several unexpected functions and metabolic interactions. The plant microbiome should be recognized as an additional factor in experimental botany and breeding strategies. C1 [Berg, Gabriele; Rybakova, Daria; Koeberl, Martina] Graz Univ Technol, Inst Environm Biotechnol, A-8010 Graz, Austria. [Berg, Gabriele] Austrian Ctr Ind Biotechnol ACIB GmbH, A-8010 Graz, Austria. [Grube, Martin] Graz Univ, Inst Plant Sci, A-8010 Graz, Austria. [Koeberl, Martina] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Berg, G (reprint author), Graz Univ Technol, Inst Environm Biotechnol, A-8010 Graz, Austria.; Berg, G (reprint author), Austrian Ctr Ind Biotechnol ACIB GmbH, A-8010 Graz, Austria. FU EU-Egypt Innovation Fund [RDI ENPI/2014/342-707]; Austrian Science Fund FWF [J 3638]; European Commission [I 882]; European Union (BIOCOMES) [612713]; project in the Austrian Centre of Industrial Biotechnology; Austrian BMWFW; BMVIT; SFG; Standortagentur Tirol; ZIT through the Austrian FFG-COMET-Funding Program FX We would like to thank Timothy Mark (Graz) for English revision. This study was partly supported by the EU-Egypt Innovation Fund (RDI ENPI/2014/342-707) and the Austrian Science Fund FWF (J 3638 to MK, co-funded by the European Commission, and I 882 to GB and MG) and by the European Union in frame of FP7-KBBE-2013-7-single-stage (BIOCOMES; No. 612713). The cooperation of GB was funded by a project in the Austrian Centre of Industrial Biotechnology, which has been supported by the Austrian BMWFW, BMVIT, SFG, Standortagentur Tirol, and ZIT through the Austrian FFG-COMET-Funding Program. NR 69 TC 13 Z9 13 U1 33 U2 112 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD FEB PY 2016 VL 67 IS 4 SI SI BP 995 EP 1002 DI 10.1093/jxb/erv466 PG 8 WC Plant Sciences SC Plant Sciences GA DF0HS UT WOS:000371020400002 PM 26547794 ER PT J AU Romero-Gomez, P Richmond, MC AF Romero-Gomez, Pedro Richmond, Marshall C. TI Numerical simulation of circular cylinders in free-fall SO JOURNAL OF FLUIDS AND STRUCTURES LA English DT Article DE Overset grids; Cylinder; Drag; Secondary motion; 6-DOF; CFD ID CYLINDRICAL PARTICLES; REYNOLDS-NUMBER; FLOW; TURBULENT; MOTION; DRAG; SENSOR AB In this work, we combined the use of (i) overset meshes, (ii) a 6 degree-of-freedom (6-DOF) motion solver, and (iii) an eddy-resolving flow simulation approach to resolve the drag and secondary movement of large-sized cylinders settling in a quiescent fluid at moderate terminal Reynolds numbers (1500 < Re < 28,000). These three strategies were implemented in a series of computational fluid dynamics (CFD) solutions to describe the fluid-structure interactions and the resulting effects on the cylinder motion. Using the drag coefficient, oscillation period, and maximum angular displacement as baselines, the findings show good agreement between the present CFD results and corresponding data of published laboratory experiments. We discussed the computational expense incurred in using the present modeling approach. We also conducted a preceding simulation of flow past a fixed cylinder at Re=3900, which tested the influence of the turbulence approach (time-averaging vs. eddy-resolving) and the meshing strategy (continuous vs. overset) on the numerical results. The outputs indicated a strong effect of the former and an insignificant influence of the latter. The long-term motivation for the present study is the need to understand the motion of an autonomous sensor of cylindrical shape used to measure responses to the hydraulic conditions occurring in operating hydropower turbines. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Romero-Gomez, Pedro; Richmond, Marshall C.] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. RP Richmond, MC (reprint author), Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. EM marshall.richmond@pnnl.gov RI Richmond, Marshall/D-3915-2013 OI Richmond, Marshall/0000-0003-0111-1485 FU U.S. Department of Energy, Energy Efficiency and Renewable Energy, Wind and Water Power Program; U.S. Department of Energy by Battelle [DE-AC06-76RLO 1830] FX This research was supported by the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Wind and Water Power Program.; Computations described here were performed using the facilities of the Pacific Northwest National Laboratory (PNNL) institutional computing center (PIC).; Pacific Northwest National Laboratory (PNNL) is operated for the U.S. Department of Energy by Battelle under Contract No. DE-AC06-76RLO 1830. NR 31 TC 1 Z9 1 U1 3 U2 13 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0889-9746 J9 J FLUID STRUCT JI J. Fluids Struct. PD FEB PY 2016 VL 61 BP 154 EP 167 DI 10.1016/j.jfluidstructs.2015.11.010 PG 14 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA DF7QD UT WOS:000371551800009 ER PT J AU Stenz, R Dong, XQ Xi, BK Feng, Z Kuligowski, RJ AF Stenz, Ronald Dong, Xiquan Xi, Baike Feng, Zhe Kuligowski, Robert J. TI Improving Satellite Quantitative Precipitation Estimation Using GOES-Retrieved Cloud Optical Depth SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article DE Physical Meteorology and Climatology; Observational techniques and algorithms; Satellite observations; Radars/Radar observations; Hydrology; Algorithms; Convective storms; Remote sensing ID UNITED-STATES; RAINFALL ESTIMATION; RADAR; QPE; SYSTEM; Q2 AB To address gaps in ground-based radar coverage and rain gauge networks in the United States, geostationary satellite quantitative precipitation estimation (QPE) such as the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) can be used to fill in both spatial and temporal gaps of ground-based measurements. Additionally, with the launch of Geostationary Operational Environmental Satellite R series (GOES-R), the temporal resolution of satellite QPEs may be comparable to Weather Surveillance Radar-1988 Doppler (WSR-88D) volume scans as GOES images will be available every 5 min. However, while satellite QPEs have strengths in spatial coverage and temporal resolution, they face limitations, particularly during convective events. Deep convective systems (DCSs) have large cloud shields with similar brightness temperatures (BTs) over nearly the entire system, but widely varying precipitation rates beneath these clouds. Geostationary satellite QPEs relying on the indirect relationship between BTs and precipitation rates often suffer from large errors because anvil regions (little or no precipitation) cannot be distinguished from rain cores (heavy precipitation) using only BTs. However, a combination of BTs and optical depth tau has been found to reduce overestimates of precipitation in anvil regions. A new rain mask algorithm incorporating both tau and BTs has been developed, and its application to the existing SCaMPR algorithm was evaluated. The performance of the modified SCaMPR was evaluated using traditional skill scores and a more detailed analysis of performance in individual DCS components by utilizing the Feng et al. classification algorithm. SCaMPR estimates with the new rain mask benefited from significantly reduced overestimates of precipitation in anvil regions and overall improvements in skill scores. C1 [Stenz, Ronald; Dong, Xiquan; Xi, Baike] Univ N Dakota, Dept Atmospher Sci, 4149 Univ Ave,Stop 9006, Grand Forks, ND 58203 USA. [Feng, Zhe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kuligowski, Robert J.] NOAA, NESDIS, Ctr Satellite Applicat & Res, College Pk, MD USA. RP Dong, XQ (reprint author), Univ N Dakota, Dept Atmospher Sci, 4149 Univ Ave,Stop 9006, Grand Forks, ND 58203 USA. EM dong@aero.und.edu RI Kuligowski, Robert/C-6981-2009; Feng, Zhe/E-1877-2015 OI Kuligowski, Robert/0000-0002-6909-2252; Dong, Xiquan/0000-0002-3359-6117; Feng, Zhe/0000-0002-7540-9017 FU NOAA GOES-R project at the University of North Dakota [NA11NES440004]; U.S. Department of Energy Atmospheric Systems Research project [DE-SC0008468]; U.S. Department of Energy, Office of Science, Biological and Environmental Research FX The Q2 product was obtained from the NOAA/National Severe Storms Laboratory. This research was primarily supported by NOAA GOES-R project with Award Number NA11NES440004 at the University of North Dakota. The University of North Dakota authors were also supported by the U.S. Department of Energy Atmospheric Systems Research project with Award Number DE-SC0008468. Dr. Zhe Feng developed the hybrid classification scheme used in this study. He was supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research as part of the Regional and Global Climate Modeling Program and Atmospheric System Research program. The contents of this paper are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the U.S. Government. NR 22 TC 2 Z9 2 U1 2 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2016 VL 17 IS 2 BP 557 EP 570 DI 10.1175/JHM-D-15-0057.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF8MQ UT WOS:000371612300003 ER PT J AU Ashouri, H Sorooshian, S Hsu, KL Bosilovich, MG Lee, J Wehner, MF Collow, A AF Ashouri, Hamed Sorooshian, Soroosh Hsu, Kuo-Lin Bosilovich, Michael G. Lee, Jaechoul Wehner, Michael F. Collow, Allison TI Evaluation of NASA's MERRA Precipitation Product in Reproducing the Observed Trend and Distribution of Extreme Precipitation Events in the United States SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID CLIMATE EXTREMES; INTENSE PRECIPITATION; GLOBAL ENERGY; MODEL; TEMPERATURE; REANALYSES; VARIABILITY; KNOWLEDGE; ENSEMBLE; WATER AB This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC) U.S. Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRA tends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1) MERRA shows a spurious negative trend in Nebraska and Kansas, which is most likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over the Gulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the southeastern United States. In addition, the increasing annual trend simulated by MERRA in the Gulf Coast region is due to an incorrect trend in winter precipitation extremes. C1 [Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin] Univ Calif Irvine, Ctr Hydrometeorol & Remote Sensing, Dept Civil & Environm Engn, Irvine, CA 92697 USA. [Bosilovich, Michael G.; Collow, Allison] NASA, Goddard Space Flight Ctr, Modeling & Assimilat Off, Greenbelt, MD USA. [Lee, Jaechoul] Boise State Univ, Dept Math, Boise, ID 83725 USA. [Wehner, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Collow, Allison] Univ Space Res Assoc, Columbia, MD USA. RP Ashouri, H (reprint author), Univ Calif Irvine, Ctr Hydrometeorol & Remote Sensing, Dept Civil & Environm Engn, Irvine, CA 92697 USA. EM h.ashouri@uci.edu RI Ashouri, Hamed/I-3040-2016; sorooshian, soroosh/B-3753-2008; Bosilovich, Michael/F-8175-2012 OI sorooshian, soroosh/0000-0001-7774-5113; FU NASA Earth and Space Science Fellowship (NESSF) [NNX12AO11H]; NOAA Climate Change Data and Detection (CCDD) [NA10DAR4310122]; NASA Decision Support System [NNX09A067G]; Army Research Office [W911NF-11-1-0422]; NSF [DMS 1107225]; Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science [DE-AC02-05CH11231] FX The CPC U.S. Unified precipitation data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, from their website (http://www.esrl.noaa.gov/psd/). The MERRA product is accessible through the Goddard Earth Sciences Data Information Services Center (GES DISC; http://disc.sci.gsfc.nasa.gov/mdisc/overview). The authors would like to thank the anonymous reviewers for the constructive comments. In addition, the authors would like to thank Dr. Jin-Yi Yu, professor at the Department of Earth System Science at the University of California, Irvine, for his insightful comments on the tropical cyclones. We would also like to thank Dr. Tsou Chun Jaw at the Center for Hydrometeorology and Remote Sensing for his assistance in data processing. Ashouri was supported by the NASA Earth and Space Science Fellowship (NESSF; Award NNX12AO11H). Hsu and Sorooshian were supported by the NOAA Climate Change Data and Detection (CCDD; Grant NA10DAR4310122), the NASA Decision Support System (Grant NNX09A067G), and the Army Research Office (Grant W911NF-11-1-0422). Lee was partially supported by the NSF (Grant DMS 1107225), and Wehner was supported by the Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science under Contract DE-AC02-05CH11231 (LBNL). NR 70 TC 1 Z9 1 U1 1 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD FEB PY 2016 VL 17 IS 2 BP 693 EP 711 DI 10.1175/JHM-D-15-0097.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF8MY UT WOS:000371613100001 ER PT J AU Colett, JS Kelly, JC Keoleian, GA AF Colett, Joseph S. Kelly, Jarod C. Keoleian, Gregory A. TI Using Nested Average Electricity Allocation Protocols to Characterize Electrical Grids in Life Cycle Assessment SO JOURNAL OF INDUSTRIAL ECOLOGY LA English DT Article DE electricity allocation protocol; energy; greenhouse gas emissions; industrial ecology; life cycle assessment (LCA); primary aluminum ID PRIMARY ALUMINUM PRODUCTION; GREENHOUSE-GAS EMISSIONS; CONSUMPTION AB This study explored the impacts of electricity allocation protocols on the life cycle greenhouse gas (GHG) emissions of electricity consumption. The selection of appropriate electricity allocation protocols, methodologies that assign pools of electricity generators to electricity consumers, has not been well standardized. This can lead to very different environmental profiles of similar, electricity-intensive processes. In an effort to better represent the interconnected nature of the U.S. electrical grid, we propose two new protocols that utilize inter-regional trade information and localized emission factors to combine generating pools that are sub- or supersets of one another. This new nested approach increases the likelihood of capturing important inter-regional electricity trading and the appropriate assignment of generator emissions to consumers of local and regional electricity. We applied the new and existing protocols to the U.S. primary aluminum industry, an industry whose environmental impact is heavily tied to its electricity consumption. Our analysis found GHG emission factors that were dramatically different than those reported in previous literature. We calculated production-weighted average emission factors of 19.0 and 19.9kilograms carbon dioxide equivalentperkilogram of primary aluminum ingot produced when using our two nested electricity allocation protocols. Previous studies reported values of 10.5 and 11.0, at least 42% lower than those found by our study. C1 [Colett, Joseph S.; Kelly, Jarod C.; Keoleian, Gregory A.] Univ Michigan, Sch Nat Resources & Environm, 3012 Dana Bldg,440 Church St, Ann Arbor, MI 48109 USA. [Kelly, Jarod C.] Ctr Transportat Res, Argonne Natl Labs, Argonne, IL USA. [Keoleian, Gregory A.] Ctr Sustainable Syst, Denver, CO USA. [Keoleian, Gregory A.] Univ Michigan, Civil & Environm Engn Dept, Ann Arbor, MI 48109 USA. RP Keoleian, GA (reprint author), Univ Michigan, Sch Nat Resources & Environm, 3012 Dana Bldg,440 Church St, Ann Arbor, MI 48109 USA. EM gregak@umich.edu FU U.S. Department of Energy [DEPI0000012]; CERC Clean Vehicle Center; National Science Foundation Emerging Frontiers in Research and Innovation Resilient and Sustainable Infrastructures grant [0835995] FX This research is part of the U.S.-China Clean Energy Research Center (CERC) on Clean Vehicles, which is partially supported by the U.S. Department of Energy (award no. DEPI0000012) and its industry partners. This research is Project 5 within Thrust 6: Energy Systems Analysis, Technology Roadmaps and Policy, of the CERC Clean Vehicle Center. This research was also funded through a National Science Foundation Emerging Frontiers in Research and Innovation Resilient and Sustainable Infrastructures grant (award no. 0835995). The authors acknowledge the valuable feedback and support received from Tim Wallington, Hyung Chul Kim, Nathan MacPherson, Anne Marie Lewis, and Robb De Kleine. NR 36 TC 6 Z9 6 U1 3 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1088-1980 EI 1530-9290 J9 J IND ECOL JI J. Ind. Ecol. PD FEB PY 2016 VL 20 IS 1 BP 29 EP 41 DI 10.1111/jiec.12268 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA DF6RV UT WOS:000371484400004 ER PT J AU Pincetl, S Graham, R Murphy, S Sivaraman, D AF Pincetl, Stephanie Graham, Robert Murphy, Sinnott Sivaraman, Deepak TI Analysis of High-Resolution Utility Data for Understanding Energy Use in Urban Systems: The Case of Los Angeles, California SO JOURNAL OF INDUSTRIAL ECOLOGY LA English DT Article DE building energy; electricity; energy conservation; resource efficiency; sustainable city; urban metabolism ID MODELING TECHNIQUES; END-USE; METABOLISM; CONSUMPTION; CITIES; SUSTAINABILITY; EMISSIONS; CLIMATE; SECTOR; CITY AB Urban metabolism provides a framework to understand resource flows into cities and waste flows out. Its potential has been hampered by the lack of good disaggregated data. This article presents energy-use findings for the residential sector for the city of Los Angeles based on census-block-level aggregation of address-level electricity use obtained from the Los Angeles Department of Water and Power. City or county billing data by customer class over time can enable empirical tracking of energy conservation and efficiency programs by different customer classes, and matched to census information and county tax assessor data about building vintage, size, and type can provide information important for rate setting, for example, or energy conservation and efficiency program investments. We report on median electricity demand and corresponding greenhouse gas emissions and expenditures at three geographical aggregations: city council district (15 in total); neighborhood (114 in total); and census block group (2,538 in total). We find that the ratio of median annual demand between highest- and lowest-tier users is 26 at the census-block group level, but only 2.2 at the city council district level, demonstrating that spatial aggregation significantly masks the degree of variation that may be observed. We also show how such data can enable the description of energy to develop energy disclosure thresholds that reflect a city's morphology. In contrast to New York City's 50,000-square-foot reporting threshold, to capture half of Los Angeles' electricity consumption, the threshold for reporting would have to be 5,000 square feet. C1 [Pincetl, Stephanie] Univ Calif Los Angeles, Inst Environm & Sustainabil, Calif Ctr Sustainable Communities, Los Angeles, CA 90095 USA. [Graham, Robert; Murphy, Sinnott; Sivaraman, Deepak] Calif Ctr Sustainable Communities, Compton, CA USA. [Murphy, Sinnott] Carnegie Mellon Univ, Sch Engn, Pittsburgh, PA 15213 USA. [Sivaraman, Deepak] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Pincetl, S (reprint author), UCLA, Inst Environm & Sustainabil, 619 Charles East Young Dr, Los Angeles, CA 90095 USA. EM spincetl@ioes.ucla.edu OI Sivaraman, Deepak/0000-0002-2640-0681 FU California Energy Commission's Public Interest Energy Research (PIER) program; County of Los Angeles Office of Sustainability FX The authors gratefully acknowledge funding from the California Energy Commission's Public Interest Energy Research (PIER) program and the County of Los Angeles Office of Sustainability. NR 38 TC 1 Z9 1 U1 2 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1088-1980 EI 1530-9290 J9 J IND ECOL JI J. Ind. Ecol. PD FEB PY 2016 VL 20 IS 1 BP 166 EP 178 DI 10.1111/jiec.12299 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA DF6RV UT WOS:000371484400015 ER PT J AU Aab, A Abreu, P Aglietta, M Ahn, EJ Al Samarai, I Albuquerque, IFM Allekotte, I Allison, P Almela, A Castillo, JA Alvarez-Muniz, J Batista, RA Ambrosio, M Aminaei, A Anastasi, GA Anchordoqui, L Andrada, B Andringa, S Aramo, C Arqueros, F Arsene, N Asorey, H Assis, P Aublin, J Avila, G Awal, N Badescu, AM Baus, C Beatty, JJ Becker, KH Bellido, JA Berat, C Bertaina, ME Bertou, X Biermann, PL Billoir, P Blaess, SG Blanco, A Blanco, M Blazek, J Bleve, C Blumer, H Bohacova, M Boncioli, D Bonifazi, C Borodai, N Botti, AM Brack, J Brancus, I Bretz, T Bridgeman, A Brogueira, P Buchholz, P Bueno, A Buitink, S Buscemi, M Caballero-Mora, KS Caccianiga, B Caccianiga, L Candusso, M Caramete, L Caruso, R Castellina, A Cataldi, G Cazon, L Cester, R Chavez, AG Chiavassa, A Chinellato, JA Chudoba, J Cilmo, M Clay, RW Cocciolo, G Colalillo, R Coleman, A Collica, L Coluccia, MR Conceiccao, R Contreras, F Cooper, MJ Cordier, A Coutu, S Covault, CE Cronin, J Dallier, R Daniel, B Dasso, S Daumiller, K Dawson, BR de Almeida, RM de Jong, SJ De Mauro, G Neto, JRTD De Mitri, I de Oliveira, J de Souza, V del Peral, L Deligny, O Dhital, N Di Giulio, C Di Matteo, A Diaz, JC Castro, MLD Diogo, F Dobrigkeit, C Docters, W D'Olivo, JC Dorofeev, A Hasankiadeh, QD dos Anjos, RC Dova, MT Ebr, J Engel, R Erdmann, M Erfani, M Escobar, CO Espadanal, J Etchegoyen, A Falcke, H Fang, K Farrar, G Fauth, AC Fazzini, N Ferguson, AP Fick, B Figueira, JM Filevich, A Filipcic, A Fratu, O Freire, MM Fujii, T Fuster, A Gallo, F Garcia, B Garcia-Gamez, D Garcia-Pinto, D Gate, F Gemmeke, H Gherghel-Lascu, A Ghia, PL Giaccari, U Giammarchi, M Giller, M Glas, D Glaser, C Glass, H Golup, G Berisso, MG Gomez Vitale, PF Gonzalez, N Gookin, B Gordon, J Gorgi, A Gorham, P Gouffon, P Griffith, N Grillo, AF Grubb, TD Guarino, F Guedes, GP Hampel, MR Hansen, P Harari, D Harrison, TA Hartmann, S Harton, JL Haungs, A Hebbeker, T Heck, D Heimann, P Herve, AE Hill, GC Hojvat, C Hollon, N Holt, E Homola, P Horandel, JR Horvath, P Hrabovsky, M Huber, D Huege, T Insolia, A Isar, PG Jandt, I Jansen, S Jarne, C Johnsen, JA Josebachuili, M Kaapa, A Kambeitz, . Kampert, KH Kasper, P Katkov, I Keilhauer, B Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Krause, R Krohm, N Kuempel, D Mezek, GK Kunka, N Awad, AWK LaHurd, D Latronico, L Lauer, R Lauscher, M Lautridou, P Le Coz, S Lebrun, D Lebrun, P de Oliveira, MAL Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopes, L Lopez, R Casado, AL Louedec, K Lucero, A Malacari, M Mallamaci, M Maller, J Mandat, D Mantsch, P Mariazzi, AG Marin, V Maris, IC Marsella, G Martello, D Martinez, H Bravo, OM Martraire, D Meza, JJM Mathes, HJ Mathys, S Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mayotte, E Mazur, PO Medina, C Medina-Tanco, G Meissner, R Mello, VBB Melo, D Menshikov, A Messina, S Micheletti, MI Middendorf, L Minaya, IA Miramonti, L Mitrica, B Molina-Bueno, L Mollerach, S Montanet, F Morello, C Mostafa, M Moura, CA Muller, G Muller, MA Muller, S Navas, S Necesal, P Nellen, L Nelles, A Neuser, J Nguyen, PH Niculescu-Oglinzanu, M Niechciol, M Niemietz, L Niggemann, T Nitz, D Nosek, D Novotny, V Nozka, L Nunez, LA Ochilo, L Oikonomou, F Olinto, A Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Papenbreer, P Parente, G Parra, A Paul, T Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Petermann, E Peters, C Petrera, S Petrov, Y Phuntsok, J Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirronello, V Platino, M Plum, M Porcelli, A Porowski, C Prado, RR Privitera, P Prouza, M Quel, EJ Querchfed, S Quinn, S Rautenberg, J Ravel, O Ravignani, D Reinert, D Revenu, B Ridky, J Risse, M Ristori, P Rizi, V de Carvalho, WR Rojo, JR Rodriguez-Frias, MD Rogozin, D Rosado, J Roth, M Roulet, E Rovero, AC Saffi, SJ Saftoiu, A Salazar, H Saleh, A Greus, FS Salina, G Gomez, JDS Sanchez, F Sanchez-Lucas, P Santos, EM Santos, E Sarazin, F Sarkar, B Sarmento, R Sarmiento-Cano, C Sato, R Scarso, C Schauer, M Scherini, V Schieler, H Schmidt, D Scholten, O Schoorlemmer, H Schovanek, P Schroder, FG Schulz, A Schulz, J Schumacher, J Sciutto, SJ Segreto, A Settimo, M Shadkam, A Shellard, RC Sigl, G Sima, O Smialkowski, A Smida, R Snow, GR Sommers, P Sonntag, S Sorokin, J Squartini, R Srivastava, YN Stanca, D Stanic, S Stapleton, J Stasielak, J Stephan, M Stutz, A Suarez, F Duran, MS Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Taborda, OA Tapia, A Tepe, A Theodoro, VM Timmermans, C Peixoto, CJT Toma, G Tomankova, L Tome, B Tonachini, A Elipe, GT Machado, DT Travnicek, P Trini, M Ulrich, R Unger, M Urban, M Valdes, JF Valino, I Valore, L van Aar, G van Bodegom, P van den Berg, AM van Velzen, S van Vliet, A Varela, E Cardenas, BV Varner, G Vasquez, R Vazquez, JR Vazquez, RA Veberic, D Verzi, V Vicha, J Videla, M Villasenor, L Vlcek, B Vorobiov, S Wahlberg, H Wainbereg, . Walz, D Watson, AA Weber, M Weidenhaupt, K Weindl, A Werner, F Widom, A Wiencke, L Wilczynski, H Winchen, T Wittkowski, D Wundheiler, B Wykes, S Yang, L Yapici, T Yushkov, A Zas, E Zavrtanik, D Zavrtanik, M Zepeda, A Zimmermann, B Ziolkowski, M Zuccarello, F AF Aab, A. Abreu, P. Aglietta, M. Ahn, E. J. Al Samarai, I. Albuquerque, I. F. M. Allekotte, I. Allison, P. Almela, A. Alvarez Castillo, J. Alvarez-Muniz, J. Batista, R. Alves Ambrosio, M. Aminaei, A. Anastasi, G. A. Anchordoqui, L. Andrada, B. Andringa, S. Aramo, C. Arqueros, F. Arsene, N. Asorey, H. Assis, P. Aublin, J. Avila, G. Awal, N. Badescu, A. M. Baus, C. Beatty, J. J. Becker, K. H. Bellido, J. A. Berat, C. Bertaina, M. E. Bertou, X. Biermann, P. L. Billoir, P. Blaess, S. G. Blanco, A. Blanco, M. Blazek, J. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Borodai, N. Botti, A. M. Brack, J. Brancus, I. Bretz, T. Bridgeman, A. Brogueira, P. Buchholz, P. Bueno, A. Buitink, S. Buscemi, M. Caballero-Mora, K. S. Caccianiga, B. Caccianiga, L. Candusso, M. Caramete, L. Caruso, R. Castellina, A. Cataldi, G. Cazon, L. Cester, R. Chavez, A. G. Chiavassa, A. Chinellato, J. A. Chudoba, J. Cilmo, M. Clay, R. W. Cocciolo, G. Colalillo, R. Coleman, A. Collica, L. Coluccia, M. R. Conceicao, R. Contreras, F. Cooper, M. J. Cordier, A. Coutu, S. Covault, C. E. Cronin, J. Dallier, R. Daniel, B. Dasso, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. de Jong, S. J. De Mauro, G. de Mello Neto, J. R. T. De Mitri, I. de Oliveira, J. de Souza, V. del Peral, L. Deligny, O. Dhital, N. Di Giulio, C. Di Matteo, A. Diaz, J. C. Diaz Castro, M. L. Diogo, F. Dobrigkeit, C. Docters, W. D'Olivo, J. C. Dorofeev, A. Hasankiadeh, Q. Dorosti dos Anjos, R. C. Dova, M. T. Ebr, J. Engel, R. Erdmann, M. Erfani, M. Escobar, C. O. Espadanal, J. Etchegoyen, A. Falcke, H. Fang, K. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Fick, B. Figueira, J. M. Filevich, A. Filipcic, A. Fratu, O. Freire, M. M. Fujii, T. Fuster, A. Gallo, F. Garcia, B. Garcia-Gamez, D. Garcia-Pinto, D. Gate, F. Gemmeke, H. Gherghel-Lascu, A. Ghia, P. L. Giaccari, U. Giammarchi, M. Giller, M. Glas, D. Glaser, C. Glass, H. Golup, G. Berisso, M. Gomez Gomez Vitale, P. F. Gonzalez, N. Gookin, B. Gordon, J. Gorgi, A. Gorham, P. Gouffon, P. Griffith, N. Grillo, A. F. Grubb, T. D. Guarino, F. Guedes, G. P. Hampel, M. R. Hansen, P. Harari, D. Harrison, T. A. Hartmann, S. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Heimann, P. Herve, A. E. Hill, G. C. Hojvat, C. Hollon, N. Holt, E. Homola, P. Horandel, J. R. Horvath, P. Hrabovsky, M. Huber, D. Huege, T. Insolia, A. Isar, P. G. Jandt, I. Jansen, S. Jarne, C. Johnsen, J. A. Josebachuili, M. Kaeaepae, A. Kambeitz, . Kampert, K. H. Kasper, P. Katkov, I. Keilhauer, B. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Krause, R. Krohm, N. Kuempel, D. Mezek, G. Kukec Kunka, N. Awad, A. W. Kuotb LaHurd, D. Latronico, L. Lauer, R. Lauscher, M. Lautridou, P. Le Coz, S. Lebrun, D. Lebrun, P. Leigui de Oliveira, M. A. Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopes, L. Lopez, R. Lopez Casado, A. Louedec, K. Lucero, A. Malacari, M. Mallamaci, M. Maller, J. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, V. Maris, I. C. Marsella, G. Martello, D. Martinez, H. Martinez Bravo, O. Martraire, D. Masias Meza, J. J. Mathes, H. J. Mathys, S. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mayotte, E. Mazur, P. O. Medina, C. Medina-Tanco, G. Meissner, R. Mello, V. B. B. Melo, D. Menshikov, A. Messina, S. Micheletti, M. I. Middendorf, L. Minaya, I. A. Miramonti, L. Mitrica, B. Molina-Bueno, L. Mollerach, S. Montanet, F. Morello, C. Mostafa, M. Moura, C. A. Mueller, G. Muller, M. A. Mueller, S. Navas, S. Necesal, P. Nellen, L. Nelles, A. Neuser, J. Nguyen, P. H. Niculescu-Oglinzanu, M. Niechciol, M. Niemietz, L. Niggemann, T. Nitz, D. Nosek, D. Novotny, V. Nozka, L. Nunez, L. A. Ochilo, L. Oikonomou, F. Olinto, A. Pacheco, N. Pakk Selmi-Dei, D. Palatka, M. Pallotta, J. Papenbreer, P. Parente, G. Parra, A. Paul, T. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Petermann, E. Peters, C. Petrera, S. Petrov, Y. Phuntsok, J. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirronello, V. Platino, M. Plum, M. Porcelli, A. Porowski, C. Prado, R. R. Privitera, P. Prouza, M. Quel, E. J. Querchfed, S. Quinn, S. Rautenberg, J. Ravel, O. Ravignani, D. Reinert, D. Revenu, B. Ridky, J. Risse, M. Ristori, P. Rizi, V. Rodrigues de Carvalho, W. Rodriguez Rojo, J. Rodriguez-Frias, M. D. Rogozin, D. Rosado, J. Roth, M. Roulet, E. Rovero, A. C. Saffi, S. J. Saftoiu, A. Salazar, H. Saleh, A. Salesa Greus, F. Salina, G. Sanabria Gomez, J. D. Sanchez, F. Sanchez-Lucas, P. Santos, E. M. Santos, E. Sarazin, F. Sarkar, B. Sarmento, R. Sarmiento-Cano, C. Sato, R. Scarso, C. Schauer, M. Scherini, V. Schieler, H. Schmidt, D. Scholten, O. Schoorlemmer, H. Schovanek, P. Schroeder, F. G. Schulz, A. Schulz, J. Schumacher, J. Sciutto, S. J. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sigl, G. Sima, O. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sonntag, S. Sorokin, J. Squartini, R. Srivastava, Y. N. Stanca, D. Stanic, S. Stapleton, J. Stasielak, J. Stephan, M. Stutz, A. Suarez, F. Suarez Duran, M. Suomijaervi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Taborda, O. A. Tapia, A. Tepe, A. Theodoro, V. M. Timmermans, C. Todero Peixoto, C. J. Toma, G. Tomankova, L. Tome, B. Tonachini, A. Torralba Elipe, G. Torres Machado, D. Travnicek, P. Trini, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van Aar, G. van Bodegom, P. van den Berg, A. M. van Velzen, S. van Vliet, A. Varela, E. Vargas Cardenas, B. Varner, G. Vasquez, R. Vazquez, J. R. Vazquez, R. A. Veberic, D. Verzi, V. Vicha, J. Videla, M. Villasenor, L. Vlcek, B. Vorobiov, S. Wahlberg, H. Wainbereg, . Walz, D. Watson, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Werner, F. Widom, A. Wiencke, L. Wilczynski, H. Winchen, T. Wittkowski, D. Wundheiler, B. Wykes, S. Yang, L. Yapici, T. Yushkov, A. Zas, E. Zavrtanik, D. Zavrtanik, M. Zepeda, A. Zimmermann, B. Ziolkowski, M. Zuccarello, F. CA Pierre Auger Collaboration TI Prototype muon detectors for the AMIGA component of the Pierre Auger Observatory SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Detector design and construction technologies and materials; Particle detectors; Overall mechanics design (support structures and materials vibration analysis etc); Performance of High Energy Physics Detectors AB AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to extend its range of detection and to directly measure the muon content of the particle showers. It consists of an infill of surface water-Cherenkov detectors accompanied by buried scintillator detectors used for muon counting. The main objectives of the AMIGA engineering array, referred to as the Unitary Cell, are to identify and resolve all engineering issues as well as to understand the muon-number counting uncertainties related to the design of the detector. The mechanical design, fabrication and deployment processes of the muon counters of the Unitary Cell are described in this document. These muon counters modules comprise sealed PVC casings containing plastic scintillation bars, wavelength-shifter optical fibers, 64 pixel photomultiplier tubes, and acquisition electronics. The modules are buried approximately 2.25 m below ground level in order to minimize contamination from electromagnetic shower particles. The mechanical setup, which allows access to the electronics for maintenance, is also described in addition to tests of the modules' response and integrity. The completed Unitary Cell has measured a number of air showers of which a first analysis of a sample event is included here. C1 [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Berisso, M. Gomez; Harari, D.; Mollerach, S.; Roulet, E.; Taborda, O. A.] Ctr Atom Bariloche, San Carlos de Bariloche, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Berisso, M. Gomez; Harari, D.; Mollerach, S.; Roulet, E.; Taborda, O. A.] Inst Balseiro CNEA UNCuyo CONICET, San Carlos de Bariloche, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] CITEDEF, Ctr Invest Lciseres & Aplicac, Villa Martelli, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] Consejo Nacl Invest Cient & Tecn, Villa Martelli, Argentina. [Dasso, S.; Masias Meza, J. J.; Piegaia, R.; Pieroni, P.] Univ Buenos Aires, Dept Fis, FCEyN, Buenos Aires, DF, Argentina. [Dasso, S.; Masias Meza, J. J.; Piegaia, R.; Pieroni, P.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Dova, M. T.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Sciutto, S. J.; Wahlberg, H.] Univ Nacl La Plata, IFLP, RA-1900 La Plata, Buenos Aires, Argentina. [Dova, M. T.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Sciutto, S. J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Dasso, S.; Rovero, A. C.; Supanitsky, A. D.] IAFE CONICET UBA, Buenos Aires, DF, Argentina. [Freire, M. M.; Micheletti, M. I.] CONICET UNR, Inst Fis Rosario IFIR, Rosario, Argentina. [Freire, M. M.; Micheletti, M. I.] UNR, Fac Ciencias Bioquim & Farmaceut, Rosario, Argentina. [Garcia, B.] Consejo Nacl Invest Cient & Tecn, CNEA, UNSAM, Inst Tecnol Detecc & Astroparticulas, Mendoza, Argentina. [Garcia, B.] Univ Tecnol Nacl Mendoza, Fac Reg Mendoza, CONICET CNEA, Mendoza, Argentina. [Almela, A.; Andrada, B.; Botti, A. M.; Etchegoyen, A.; Figueira, J. M.; Filevich, A.; Fuster, A.; Gallo, F.; Gonzalez, N.; Hampel, M. R.; Josebachuili, M.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchez, F.; Suarez, F.; Tapia, A.; Videla, M.; Wainbereg, .; Wundheiler, B.] Consejo Nacl Invest Cient & Tecn, Inst Tecnol Detecc & Astroparticulas, CNEA, UNSAM, RA-1033 Buenos Aires, DF, Argentina. [Avila, G.; Contreras, F.; Gomez Vitale, P. F.; Kleinfeller, J.; Rodriguez Rojo, J.; Sato, R.; Scarso, C.; Squartini, R.] Observ Pierre Auger, Malargue, Argentina. [Avila, G.; Gomez Vitale, P. F.] Comis Nacl Energia Atom, Malargue, Argentina. [Almela, A.; Etchegoyen, A.; Suarez, F.; Wainbereg, .] Univ Tecnolog Nacl Buenos Aires, Fac Reg Buenos Aires, Buenos Aires, DF, Argentina. [Bellido, J. A.; Blaess, S. G.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Grubb, T. D.; Harrison, T. A.; Hill, G. C.; Malacari, M.; Nguyen, P. H.; Saffi, S. J.; Sorokin, J.; van Bodegom, P.] Univ Adelaide, Adelaide, SA, Australia. [Maurizio, D.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, RJ, Brazil. [Todero Peixoto, C. J.] Univ Sao Paulo, Escola Engn Lorena, Lorena, SP, Brazil. [de Souza, V.; dos Anjos, R. C.; Prado, R. R.] Univ Sao Paulo, Inst Fis Sao Carlos, Sao Carlos, SP, Brazil. [Albuquerque, I. F. M.; Gouffon, P.; Santos, E. M.] Univ Sao Paulo, Inst Fis, CP 20516, BR-01498 Sao Paulo, SP, Brazil. [Chinellato, J. A.; Daniel, B.; Diaz Castro, M. L.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Pakk Selmi-Dei, D.; Santos, E.; Theodoro, V. M.] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira de Santana, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Muller, M. A.] Univ Fed Pelotas, Pelotas, RS, Brazil. [Leigui de Oliveira, M. A.; Moura, C. A.] Univ Fed ABC, Santo Andre, SP, Brazil. [Bonifazi, C.; de Mello Neto, J. R. T.; Giaccari, U.; Mello, V. B. B.; Torres Machado, D.; Vasquez, R.] Univ Fed Rio de Janeiro, Inst Fis, BR-21941 Rio De Janeiro, RJ, Brazil. [de Almeida, R. M.; de Oliveira, J.] Univ Fed Fluminense, EEIMVR, Volta Redonda, RJ, Brazil. [Asorey, H.; Nunez, L. A.; Sanabria Gomez, J. D.; Sarmiento-Cano, C.; Suarez Duran, M.] Univ Ind Santander, Bucaramanga, Colombia. [Nosek, D.; Novotny, V.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Blazek, J.; Bohacova, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Mandat, D.; Necesal, P.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovanek, P.; Travnicek, P.; Vicha, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Horvath, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Al Samarai, I.; Deligny, O.; Lhenry-Yvon, I.; Martraire, D.; Suomijaervi, T.] Univ Paris 11, Inst Phys Nucl Orsay, CNRS IN2P3, Orsay, France. [Cordier, A.; Garcia-Gamez, D.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS IN2P3, Orsay, France. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Ghia, P. L.; Letessier-Selvon, A.; Settimo, M.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, Paris, France. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Ghia, P. L.; Letessier-Selvon, A.; Settimo, M.] Univ Paris 07, CNRS IN2P3, Paris, France. [Berat, C.; Le Coz, S.; Lebrun, D.; Louedec, K.; Montanet, F.; Stutz, A.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, Grenoble, France. [Dallier, R.] Observ Paris, CNRS INSU, Stn Radioastron Nancay, Nancay, France. [Dallier, R.; Gate, F.; Lautridou, P.; Maller, J.; Marin, V.; Ravel, O.; Revenu, B.] Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS IN2P3, Nantes, France. [Becker, K. H.; Homola, P.; Jandt, I.; Kaeaepae, A.; Kampert, K. H.; Krohm, N.; Mathys, S.; Neuser, J.; Niemietz, L.; Papenbreer, P.; Querchfed, S.; Rautenberg, J.; Sarkar, B.; Schauer, M.; Winchen, T.; Wittkowski, D.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Baus, C.; Bluemer, H.; Huber, D.; Kambeitz, .; Katkov, I.; Link, K.; Werner, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, Campus South, D-76021 Karlsruhe, Germany. [Bluemer, H.; Bridgeman, A.; Daumiller, K.; Hasankiadeh, Q. Dorosti; Engel, R.; Haungs, A.; Heck, D.; Herve, A. E.; Holt, E.; Huege, T.; Keilhauer, B.; Klages, H. O.; Awad, A. W. Kuotb; Mathes, H. J.; Mueller, S.; Pierog, T.; Porcelli, A.; Rogozin, D.; Roth, M.; Schieler, H.; Schroeder, F. G.; Schulz, A.; Smida, R.; Tomankova, L.; Ulrich, R.; Unger, M.; Veberic, D.; Weindl, A.] Karlsruhe Inst Technol, Inst Kernphys, Campus North, D-76021 Karlsruhe, Germany. [Gemmeke, H.; Kleifges, M.; Kunka, N.; Menshikov, A.; Weber, M.; Zimmermann, B.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elektr IEKP, D-76021 Karlsruhe, Germany. [Biermann, P. L.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Bretz, T.; Erdmann, M.; Glaser, C.; Hartmann, S.; Hebbeker, T.; Krause, R.; Kuempel, D.; Lauscher, M.; Meissner, R.; Middendorf, L.; Mueller, G.; Niggemann, T.; Peters, C.; Plum, M.; Reinert, D.; Schumacher, J.; Stephan, M.; Urban, M.; Walz, D.; Weidenhaupt, K.] Rhein Westfal TH Aachen, Inst Phys 3, Aachen, Germany. [Batista, R. Alves; Sigl, G.] Univ Hamburg, Inst Theoret Phys 2, Luruper Chaussee 149, Hamburg, Germany. [Aab, A.; Buchholz, P.; Erfani, M.; Heimann, P.; Niechciol, M.; Ochilo, L.; Risse, M.; Sonntag, S.; Tepe, A.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys Expt Teilchenphys 7, Siegen, Germany. [Caccianiga, B.; Giammarchi, M.; Mallamaci, M.; Miramonti, L.] Univ Milan, Milan, Italy. [Caccianiga, B.; Giammarchi, M.; Mallamaci, M.; Miramonti, L.] Ist Nazl Fis Nucl, Via Celoria 16, I-20133 Milan, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Anastasi, G. A.; Caruso, R.; Insolia, A.; Pirronello, V.; Zuccarello, F.] Univ Catania, Catania, Italy. [Anastasi, G. A.; Caruso, R.; Insolia, A.; Pirronello, V.; Zuccarello, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Cester, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Cester, R.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Bleve, C.; Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] E De Giorgi Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Bleve, C.; Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Di Matteo, A.; Petrera, S.; Rizi, V.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy. [Di Matteo, A.; Petrera, S.; Rizi, V.] Sezione Ist Nazl Fis Nucl, Laquila, Italy. [Petrera, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Laquila, Italy. [Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Boncioli, D.; Grillo, A. F.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Laquila, Italy. [Aglietta, M.; Castellina, A.; Gorgi, A.; Morello, C.] Osserv Astron Torino, INAF, Turin, Italy. [Aglietta, M.; Bertaina, M. E.; Castellina, A.; Chiavassa, A.; Collica, L.; Gorgi, A.; Latronico, L.; Morello, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Bertaina, M. E.; Chiavassa, A.] Univ Turin, Turin, Italy. [Lopez, R.; Martinez Bravo, O.; Parra, A.; Salazar, H.; Varela, E.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Martinez, H.; Zepeda, A.] CINVESTAV, Ctr Invest & Estudios Avanzados, IPN, Mexico City 14000, DF, Mexico. [Pelayo, R.] Inst Politecn Nacl, Unidad Profes Interdisciplinaria Ingn & Tecnol Av, Mexico City, DF, Mexico. [Caballero-Mora, K. S.] Univ Autonoma Chiapas, Tuxtla Gutierrez, Chiapas, Mexico. [Chavez, A. G.; Villasenor, L.] Univ Michoacana San Nicolcis Hidalgo, Morelia, Michoacan, Mexico. [Alvarez Castillo, J.; D'Olivo, J. C.; Medina-Tanco, G.; Nellen, L.; Vargas Cardenas, B.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Aminaei, A.; Buitink, S.; de Jong, S. J.; De Mauro, G.; Falcke, H.; Horandel, J. R.; Jansen, S.; Nelles, A.; Schulz, J.; Timmermans, C.; van Aar, G.; van Velzen, S.; van Vliet, A.; Wykes, S.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Docters, W.; Messina, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, KVI Ctr Adv Radiat Technol, Groningen, Netherlands. [de Jong, S. J.; Falcke, H.; Horandel, J. R.; Jansen, S.; Nelles, A.; Timmermans, C.] Nikhef, Sci Pk, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Pekala, J.; Porowski, C.; Stasielak, J.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Glas, D.; Smialkowski, A.; Szadkowski, Z.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Blanco, M.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Lopes, L.; Pimenta, M.; Sarmento, R.; Tome, B.] Univ Lisbon, Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Blanco, A.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Lopes, L.; Pimenta, M.; Sarmento, R.; Tome, B.] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal. [Brancus, I.; Gherghel-Lascu, A.; Mitrica, B.; Niculescu-Oglinzanu, M.; Saftoiu, A.; Stanca, D.; Toma, G.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania. [Caramete, L.; Isar, P. G.] Inst Space Sci, Bucharest, Romania. [Arsene, N.; Sima, O.] Univ Bucharest, Dept Phys, Bucharest, Romania. [Badescu, A. M.; Fratu, O.] Univ Politeh Bucharest, Bucharest, Romania. [Filipcic, A.; Zavrtanik, D.; Zavrtanik, M.] J Stefan Inst, Expt Particle Phys Dept, Ljubljana, Slovenia. [Filipcic, A.; Mezek, G. Kukec; Saleh, A.; Stanic, S.; Trini, M.; Vorobiov, S.; Yang, L.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gor, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Arqueros, F.; Garcia-Pinto, D.; Minaya, I. A.; Rosado, J.; Vazquez, J. R.] Univ Complutense, E-28040 Madrid, Spain. [del Peral, L.; Pacheco, N.; Rodriguez-Frias, M. D.; Vlcek, B.] Univ Alcala De Henares, Madrid, Spain. [Bueno, A.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.] Univ Granada, Granada, Spain. [Bueno, A.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Lopez Casado, A.; Parente, G.; Rodrigues de Carvalho, W.; Torralba Elipe, G.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Covault, C. E.; Ferguson, A. P.; LaHurd, D.; Quinn, S.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Johnsen, J. A.; Mayotte, E.; Medina, C.; Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Brack, J.; Dorofeev, A.; Gookin, B.; Harton, J. L.; Petrov, Y.] Colorado State Univ, Ft Collins, CO 80523 USA. [Anchordoqui, L.; Paul, T.] CUNY, Lehman Coll, Dept Phys & Astron, Bronx, NY USA. [Ahn, E. J.; Escobar, C. O.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Matthews, J.; Shadkam, A.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Dhital, N.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.; Yapici, T.] Michigan Technol Univ, Houghton, MI 49931 USA. [Awal, N.; Farrar, G.; Unger, M.] NYU, New York, NY USA. [Paul, T.; Srivastava, Y. N.; Swain, J.; Widom, A.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Beatty, J. J.; Gordon, J.; Griffith, N.; Stapleton, J.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Coleman, A.; Coutu, S.; Mostafa, M.; Oikonomou, F.; Phuntsok, J.; Salesa Greus, F.; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA. [Cronin, J.; Fang, K.; Fujii, T.; Hollon, N.; Olinto, A.; Privitera, P.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Gorham, P.; Schoorlemmer, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Lauer, R.; Matthews, J. A. J.] Univ New Mexico, Albuquerque, NM 87131 USA. [Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Scholten, O.] Vrije Univ Brussels, Brussels, Belgium. RP Aab, A (reprint author), Univ Siegen, Fachbereich Phys Expt Teilchenphys 7, Siegen, Germany. RI de Almeida, Rogerio/L-4584-2016; Fauth, Anderson/F-9570-2012; Abreu, Pedro/L-2220-2014; Assis, Pedro/D-9062-2013; Navas, Sergio/N-4649-2014; Arqueros, Fernando/K-9460-2014; Cazon, Lorenzo/G-6921-2014; Conceicao, Ruben/L-2971-2014; Bueno, Antonio/F-3875-2015; Beatty, James/D-9310-2011; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Badescu, Alina/B-6087-2012; Rosado, Jaime/K-9109-2014; Gouffon, Philippe/I-4549-2012; zas, enrique/I-5556-2015; Chinellato, Jose Augusto/I-7972-2012; Caramete, Laurentiu/C-2328-2011; Chinellato, Carola Dobrigkeit /F-2540-2011; Brogueira, Pedro/K-3868-2012; Moura Santos, Edivaldo/K-5313-2016; Tome, Bernardo/J-4410-2013; Alvarez-Muniz, Jaime/H-1857-2015; Ridky, Jan/H-6184-2014; Pimenta, Mario/M-1741-2013; de Mello Neto, Joao/C-5822-2013; de souza, Vitor/D-1381-2012; Guarino, Fausto/I-3166-2012; Zuccarello, Francesca/R-1834-2016; Colalillo, Roberta/R-5088-2016; Buscemi, Mario/R-5071-2016; Valino, Ines/J-8324-2012; Horvath, Pavel/G-6334-2014; De Mitri, Ivan/C-1728-2017; Mitrica, Bogdan/D-5201-2009; Alves Batista, Rafael/K-6642-2012; Nosek, Dalibor/F-1129-2017 OI de Almeida, Rogerio/0000-0003-3104-2724; Fauth, Anderson/0000-0001-7239-0288; Abreu, Pedro/0000-0002-9973-7314; Assis, Pedro/0000-0001-7765-3606; Navas, Sergio/0000-0003-1688-5758; Arqueros, Fernando/0000-0002-4930-9282; Cazon, Lorenzo/0000-0001-6748-8395; Conceicao, Ruben/0000-0003-4945-5340; Bueno, Antonio/0000-0002-7439-4247; Beatty, James/0000-0003-0481-4952; Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Novotny, Vladimir/0000-0002-4319-4541; Garcia, Beatriz/0000-0003-0919-2734; Nunez, Luis/0000-0003-4575-5899; Rosado, Jaime/0000-0001-8208-9480; Gouffon, Philippe/0000-0001-7511-4115; zas, enrique/0000-0002-4430-8117; Chinellato, Jose Augusto/0000-0002-3240-6270; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Brogueira, Pedro/0000-0001-6069-4073; Moura Santos, Edivaldo/0000-0002-2818-8813; Tome, Bernardo/0000-0002-7564-8392; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Ridky, Jan/0000-0001-6697-1393; Pimenta, Mario/0000-0002-2590-0908; Rizi, Vincenzo/0000-0002-5277-6527; Garcia Pinto, Diego/0000-0003-1348-6735; de Mello Neto, Joao/0000-0002-3234-6634; Guarino, Fausto/0000-0003-1427-9885; Zuccarello, Francesca/0000-0003-1853-2550; Colalillo, Roberta/0000-0002-4179-9352; Buscemi, Mario/0000-0003-2123-5434; Valino, Ines/0000-0001-7823-0154; Horvath, Pavel/0000-0002-6710-5339; De Mitri, Ivan/0000-0002-8665-1730; Alves Batista, Rafael/0000-0003-2656-064X; Nosek, Dalibor/0000-0001-6219-200X FU Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT) Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) Argentina; Gobierno de la Provincia de Mendoza, Municipalidad de Malargue Argentina; NDM Holdings and Valle Las Lenas Argentina; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil; Financiadora de Estudos e Projetos (FINEP), Brazil; Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Brazil; Sao Paulo Research Foundation (FAPESP), Brazil [2010/07359-6, 1999/05404-3]; Australian Research Council; Ministerio de Ciencia e Tecnologia (MCT), Brazil; Czech Science Foundation, Czech Republic; Centre de Calcul IN2P3/CNRS, France; Centre National de la Recherche Scientifique (CNRS), France; Conseil Regional Ile-de-France, France; Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), France; Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Institut Lagrange de Paris (ILP), France [LABEX ANR-10-LABX-63]; Investissements d'Avenir Programme Grant, France; Bundesministerium fur Bildung und Forschu (BMBF), Germany; Deutsche Forschungsgemeinschaft (DFG), Germany; Finanzministerium Baden-Wurttemberg, Germany; Helmholtz Alliance for Astroparticle Physics (HAP), Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Germany; Ministerium fur Wissenschaft und Forschung, Germany; Nordrhein Westfalen, Germany; Ministerium fur Wissenschaft, Germany; Forschung und Kunst, Germany; Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Gran Sasso Center for Astroparticle Physics (CFA), Italy; CETEMPS Center of Excellence, Italy; Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Netherlands; Cultuur en Wetenschap, Netherlands; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Poland [ERA-NET-ASPERA/01/11, ERA-NET-ASPERA/02/11]; National Science Centre, Poland [2013/08/M/ST9/00322, 2013/08/M/ST9/00728, HARMONIA 5 - 2013/10/M/ST9/00062]; Portuguese national funds, Portugal; FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, Romania; CNDI-UEFISCDI partnership projects, Romania [20/2012, 194/2012, 1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, PN-II-RU-PD-2011-3-0062]; Minister of National Education, Programme Space Technology and Advanced Research (STAR), Romania [83/2013]; Slovenian Research Agency, Slovenia; Comunidad de Madrid, Spain; FEDER funds, Spain; Ministerio de Educacion y Ciencia, Spain; Xunta de Galicia, Spain; European Community 7th Framework Program, Spain [FP7-PEOPLE-2012-IEF-328826]; Science and Technology Facilities Council, United Kingdom; Department of Energy, U.S.A. [DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107, DE-SC0011689]; National Science Foundation, U.S.A. [0450696]; Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET; European Particle Physics Latin American Network; European Union 7th Framework Program [PIRSES-2009-GA-246806]; UNESCO; [MSMT-CR LG13007]; [7AMB14AR005] FX The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support:; Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6 and No. 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; Grant No. MSMT-CR LG13007, No. 7AMB14AR005, and the Czech Science Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63, within the Investissements d'Avenir Programme Grant No. ANR-11-IDEX-0004-02, France; Bundesministerium fur Bildung und Forschu (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5 - 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects Grants No. 20/2012 and No. 194/2012, Grants No. 1/ASPERA2/2012 ERA-NET, No. PN-II-RU-PD-2011-3-0145-17 and No. PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme Space Technology and Advanced Research (STAR), Grant No. 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689, National Science Foundation, Grant No. 0450696, The Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO. NR 19 TC 4 Z9 4 U1 15 U2 41 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR P02012 DI 10.1088/1748-0221/11/02/P02012 PG 27 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800102 ER PT J AU Abbott, B Blair, R Crone, G Green, B Love, J Proudfoot, J Rifki, O Vazquez, WP Vandelli, W Zhang, J AF Abbott, B. Blair, R. Crone, G. Green, B. Love, J. Proudfoot, J. Rifki, O. Vazquez, W. P. Vandelli, W. Zhang, J. TI The evolution of the region of interest builder for the ATLAS experiment at CERN SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Data acquisition concepts; Trigger concepts and systems (hardware and software); Online farms and online filtering AB The ATLAS detector uses a real time selective triggering system to reduce the high interaction rate from 40 MHz to its data storage capacity of 1 kHz. A hardware first level (L1) trigger limits the rate to 100 kHz and a software high level trigger (HLT) selects events for offline analysis. The HLT uses the Regions of Interest (RoIs) identified by L1 and provided by the Region of Interest Builder (RoIB). The current RoIB is a custom VMEbus based system that operated reliably since the first run of the LHC. Since the LHC will reach higher luminosity and ATLAS will increase the complexity and number of L1 triggers, it is desirable to have a more flexible and more operationally maintainable RoIB in the future. In this regard, the functionality of the multi-card VMEbus based RoIB is being migrated to a PC based RoIB with a PCI-Express card. Testing has produced a system that achieved the targeted rate of 100 kHz. C1 [Abbott, B.; Rifki, O.] Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA. [Blair, R.; Love, J.; Proudfoot, J.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Crone, G.] UCL, Dept Phys & Astron, London, England. [Green, B.; Vazquez, W. P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Vandelli, W.] CERN, Geneva, Switzerland. RP Rifki, O (reprint author), Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA. EM othmane.rifki@cern.ch NR 11 TC 0 Z9 0 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02080 DI 10.1088/1748-0221/11/02/C02080 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800080 ER PT J AU Agnes, P Agostino, L Albuquerque, IFM Alexander, T Alton, AK Arisaka, K Back, HO Baldin, B Biery, K Bonfini, G Bossa, M Bottino, B Brigatti, A Brodsky, J Budano, F Bussino, S Cadeddu, M Cadonati, L Cadoni, M Calaprice, F Canci, N Candela, A Cao, H Cariello, M Carlini, M Catalanotti, S Cavalcante, P Chepurnov, A Cocco, AG Covone, G Crippa, L D'Angelo, D D'Incecco, M Davini, S De Cecco, S De Deo, M De Vincenzi, M Derbin, A Devoto, A Di Eusanio, F Di Pietro, G Edkins, E Emp, A Fan, A Fiorillo, G Fomenko, K Forster, G Franco, D Gabriele, F Galbiatic, C Giganti, C Goretti, AM Granato, F Grandi, L Gromov, M Guan, M Guardincerri, Y Hackett, BR Herner, K Hungerford, EV Ianni, A Ianni, A James, I Jollet, C Keeter, K Kendziora, CL Kobychev, V Koh, G Korablev, D Korga, G Kubankin, A Li, X Lissia, M Lombardi, P Luitz, S Ma, Y Machulin, IN Mandarano, A Mari, SM Maricic, J Marini, L Martoff, CJ Meregaglia, A Meyers, PD Miletic, T Milincic, R Montanari, D Monte, A Montuschi, M Monzani, M Mosteiro, P Mount, BJ Muratova, VN Musico, P Napolitano, J Nelson, A Odrowski, S Orsini, M Ortica, F Pagani, L Pallavicini, M Pantic, E Parmeggiano, S Pelczar, K Pelliccia, N Perasso, S Pocar, A Pordes, S Pugachevak, DA Qian, H Randle, K Ranucci, G Razetoc, A Reinhold, B Renshaw, AL Romani, A Rossi, B Rossi, N Rountree, D Sablone, D Saggese, P Saldanha, R Sands, W Sangiorgio, S Savaresek, C Segreto, E Semenov, DA Shields, E Singh, PN Skorokhvatovak, MD Smirnov, O Sotnikov, A Stanford, C Suvorov, Y Tartaglia, R Tatarowicz, J Testera, G Tonazzo, A Trinchese, P Unzhakov, EV Vishneva, A Vogelaar, B Wada, M Walker, S Wang, H Wang, Y Watson, AW Westerdale, S Wilhelmi, J Wojcik, MM Xiang, X Xu, J Yang, C Yoo, J Zavatarelli, S Zec, A Zhong, W Zhu, C Zuzel, G AF Agnes, P. Agostino, L. Albuquerque, I. F. M. Alexander, T. Alton, A. K. Arisaka, K. Back, H. O. Baldin, B. Biery, K. Bonfini, G. Bossa, M. Bottino, B. Brigatti, A. Brodsky, J. Budano, F. Bussino, S. Cadeddu, M. Cadonati, L. Cadoni, M. Calaprice, F. Canci, N. Candela, A. Cao, H. Cariello, M. Carlini, M. Catalanotti, S. Cavalcante, P. Chepurnov, A. Cocco, A. G. Covone, G. Crippa, L. D'Angelo, D. D'Incecco, M. Davini, S. De Cecco, S. De Deo, M. De Vincenzi, M. Derbin, A. Devoto, A. Di Eusanio, F. Di Pietro, G. Edkins, E. Emp, A. Fan, A. Fiorillo, G. Fomenko, K. Forster, G. Franco, D. Gabriele, F. Galbiatic, C. Giganti, C. Goretti, A. M. Granato, F. Grandi, L. Gromov, M. Guan, M. Guardincerri, Y. Hackett, B. R. Herner, K. Hungerford, E. V. Ianni, Al. Ianni, An. James, I. Jollet, C. Keeter, K. Kendziora, C. L. Kobychev, V. Koh, G. Korablev, D. Korga, G. Kubankin, A. Li, X. Lissia, M. Lombardi, P. Luitz, S. Ma, Y. Machulin, I. N. Mandarano, A. Mari, S. M. Maricic, J. Marini, L. Martoff, C. J. Meregaglia, A. Meyers, P. D. Miletic, T. Milincic, R. Montanari, D. Monte, A. Montuschi, M. Monzani, M. Mosteiro, P. Mount, B. J. Muratova, V. N. Musico, P. Napolitano, J. Nelson, A. Odrowski, S. Orsini, M. Ortica, F. Pagani, L. Pallavicini, M. Pantic, E. Parmeggiano, S. Pelczar, K. Pelliccia, N. Perasso, S. Pocar, A. Pordes, S. Pugachevak, D. A. Qian, H. Randle, K. Ranucci, G. Razetoc, A. Reinhold, B. Renshaw, A. L. Romani, A. Rossi, B. Rossi, N. Rountree, D. Sablone, D. Saggese, P. Saldanha, R. Sands, W. Sangiorgio, S. Savaresek, C. Segreto, E. Semenov, D. A. Shields, E. Singh, P. N. Skorokhvatovak, M. D. Smirnov, O. Sotnikov, A. Stanford, C. Suvorov, Y. Tartaglia, R. Tatarowicz, J. Testera, G. Tonazzo, A. Trinchese, P. Unzhakov, E. V. Vishneva, A. Vogelaar, B. Wada, M. Walker, S. Wang, H. Wang, Y. Watson, A. W. Westerdale, S. Wilhelmi, J. Wojcik, M. M. Xiang, X. Xu, J. Yang, C. Yoo, J. Zavatarelli, S. Zec, A. Zhong, W. Zhu, C. Zuzel, G. TI The DarkSide project SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Conference on Light Detection in Noble Elements (LIDINE) CY AUG 28-30, 2015 CL Albany, NY DE Time projection Chambers (TPC); Noble liquid detectors (scintillation, ionization, double-phase); Large detector systems for particle and astroparticle physics; Dark Matter detectors (WIMPs, axions, etc.) ID LIQUID ARGON; GRAN SASSO; LUMINESCENCE; XENON; SCINTILLATION; DETECTOR; KRYPTON; AR-39 AB DarkSide is a graded experimental project based on radiopure argon, and is now, and will be, used in direct dark matter searches. The present DarkSide-50 detector, operating at the Gran Sasso National Laboratory, is a dual-phase, 50 kg, liquid argon time-projection-chamber surrounded by an active liquid scintillator veto. It is designed to be background free in 3 years of operation. DS-50 performances, when filled with atmospheric argon, are reported. However DS-50 filled with underground argon, shows impressive reduction of the Ar-39 isotope. The application of this powerful technology in a future generation of the DarkSide program is discussed. C1 [Agnes, P.; Franco, D.; Perasso, S.; Tonazzo, A.] Univ Paris Diderot, CNRS, CEA Irfu, Obs Paris,Sorbonne Paris Citee,IN2P3,APC, F-75205 Paris, France. [Agostino, L.; De Cecco, S.; Giganti, C.] Univ Paris 06, CNRS, LPNHE Paris, IN2P3, F-75252 Paris, France. [Albuquerque, I. F. M.; Back, H. O.; Brodsky, J.; Calaprice, F.; Cao, H.; Di Eusanio, F.; Galbiatic, C.; Ianni, An.; Koh, G.; Li, X.; Meyers, P. D.; Mosteiro, P.; Nelson, A.; Pocar, A.; Qian, H.; Razetoc, A.; Rossi, B.; Sands, W.; Shields, E.; Stanford, C.; Wada, M.; Westerdale, S.; Xiang, X.; Xu, J.; Zhu, C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Albuquerque, I. F. M.; Pantic, E.] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil. [Alexander, T.; Cadonati, L.; Forster, G.; Monte, A.; Pocar, A.; Randle, K.; Zec, A.] Univ Massachusetts, Amherst Ctr Fundamental Interact, Amherst, MA 01003 USA. [Alexander, T.; Cadonati, L.; Forster, G.; Monte, A.; Pocar, A.; Randle, K.; Zec, A.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Alexander, T.; Baldin, B.; Biery, K.; Forster, G.; Guardincerri, Y.; Herner, K.; Kendziora, C. L.; Montanari, D.; Pordes, S.; Yoo, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Alton, A. K.] Augustana Univ, Dept Phys, Sioux Falls, SD 57197 USA. [Arisaka, K.; Fan, A.; Renshaw, A. L.; Suvorov, Y.; Wang, H.; Wang, Y.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Back, H. O.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Bonfini, G.; Bossa, M.; Canci, N.; Candela, A.; Carlini, M.; Cavalcante, P.; D'Incecco, M.; Davini, S.; De Deo, M.; Di Pietro, G.; Gabriele, F.; Galbiatic, C.; Goretti, A. M.; Ianni, Al.; Ianni, An.; Mandarano, A.; Montuschi, M.; Odrowski, S.; Orsini, M.; Razetoc, A.; Rossi, N.; Sablone, D.; Savaresek, C.; Suvorov, Y.; Tartaglia, R.] Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy. [Bossa, M.; Davini, S.; Mandarano, A.; Savaresek, C.] Gran Sasso Sci Inst, I-67100 Laquila, AQ, Italy. [Bottino, B.; Marini, L.; Pagani, L.; Pallavicini, M.] Univ Genoa, Dept Phys, I-16146 Genoa, Italy. [Bottino, B.; Cariello, M.; Marini, L.; Musico, P.; Pagani, L.; Pallavicini, M.; Testera, G.; Zavatarelli, S.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Brigatti, A.; Crippa, L.; D'Angelo, D.; Di Pietro, G.; Lombardi, P.; Parmeggiano, S.; Ranucci, G.; Saggese, P.] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy. [Budano, F.; Bussino, S.; De Vincenzi, M.; James, I.; Mari, S. M.] Ist Nazl Fis Nucl, Sez Roma Tre, I-00146 Rome, Italy. [Budano, F.; Bussino, S.; De Vincenzi, M.; James, I.; Mari, S. M.] Univ Rome Tre, Dept Math & Phys, I-00146 Rome, Italy. [Cadeddu, M.; Cadoni, M.; Devoto, A.] Univ Cagliari, Dept Phys, I-09042 Cagliari, Italy. [Cadeddu, M.; Cadoni, M.; Devoto, A.; Lissia, M.] Ist Nazl Fis Nucl, Sez Cagliari, I-09042 Cagliari, Italy. [Canci, N.; Emp, A.; Hungerford, E. V.; Korga, G.; Renshaw, A. L.; Singh, P. N.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Catalanotti, S.; Covone, G.; Fiorillo, G.; Granato, F.; Korga, G.; Trinchese, P.; Walker, S.] Univ Naples Federico II, Dept Phys, I-80126 Naples, Italy. [Catalanotti, S.; Cocco, A. G.; Covone, G.; Fiorillo, G.; Rossi, B.; Walker, S.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Cavalcante, P.; Rountree, D.; Vogelaar, B.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Chepurnov, A.; Gromov, M.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia. [Crippa, L.; D'Angelo, D.] Univ Milan, Dept Phys, I-20133 Milan, Italy. [Derbin, A.; Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.] St Petersburg Nucl Phys Inst, NRC Kurchatov Inst, Gatchina 188350, Russia. [Edkins, E.; Hackett, B. R.; Maricic, J.; Milincic, R.; Reinhold, B.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Fomenko, K.; Korablev, D.; Smirnov, O.; Sotnikov, A.] Joint Inst Nucl Res, Dubna 141980, Russia. [Granato, F.; Martoff, C. J.; Miletic, T.; Napolitano, J.; Tatarowicz, J.; Vishneva, A.; Watson, A. W.; Wilhelmi, J.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Grandi, L.; Saldanha, R.] Univ Chicago, Enrico Fermi Inst, Kavli Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Grandi, L.; Saldanha, R.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Guan, M.; Ma, Y.; Wang, Y.; Yang, C.; Zhong, W.] Inst High Energy Phys, Beijing 100049, Peoples R China. [Ianni, Al.] Lab Subterraneo Canfranc, Canfranc Estn 22880, Spain. [Jollet, C.; Meregaglia, A.] Univ Strasbourg, IPHC, CNRS, IN2P3, F-67037 Strasbourg, France. [Keeter, K.; Mount, B. J.] Black Hills State Univ, Sch Nat Sci, Spearfish, SD 57799 USA. [Kobychev, V.] Natl Acad Sci Ukraine, Inst Nucl Res, UA-03680 Kiev, Ukraine. [Kubankin, A.] Belgorod Natl Res Univ, Radiat Phys Lab, Belgorod 308007, Russia. [Luitz, S.; Monzani, M.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Machulin, I. N.; Pugachevak, D. A.; Skorokhvatovak, M. D.; Suvorov, Y.] Nat Res Ctr Kurchatov Inst, Moscow 123182, Russia. [Machulin, I. N.; Pugachevak, D. A.; Skorokhvatovak, M. D.] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia. [Ortica, F.; Pelliccia, N.; Romani, A.] Univ Perugia, Dept Chem Biol & Biotechnol, I-06123 Perugia, Italy. [Ortica, F.; Pelliccia, N.; Romani, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Pelczar, K.; Wojcik, M. M.; Zuzel, G.] Jagiellonian Univ, Smoluchowski Inst Phys, PL-30348 Krakow, Poland. [Sangiorgio, S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Segreto, E.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, BR-13083859 Sao Paulo, Brazil. [Wang, Y.] Univ Chinese Acad Sci, Sch Phys, Beijing 100049, Peoples R China. RP Canci, N (reprint author), Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy.; Canci, N (reprint author), Univ Houston, Dept Phys, Houston, TX 77204 USA. EM nicola.canci@angs.infn.it RI Kubankin, Alexander/A-8745-2014; Romani, Aldo/G-8103-2012; Ortica, Fausto/C-1001-2013; Fiorillo, Giuliana/A-2248-2012; Machulin, Igor/R-9711-2016; Canci, Nicola/E-7498-2017; Covone, Giovanni/J-6040-2012; OI Wang, Yi/0000-0002-7351-6978; Romani, Aldo/0000-0002-7338-0097; Ortica, Fausto/0000-0001-8276-452X; Fiorillo, Giuliana/0000-0002-6916-6776; Canci, Nicola/0000-0002-4797-4297; Catalanotti, Sergio/0000-0002-2337-4246; Covone, Giovanni/0000-0002-2553-096X; Franco, Davide/0000-0001-5604-2531; Rossi, Nicola/0000-0002-7046-528X NR 20 TC 1 Z9 1 U1 9 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02051 DI 10.1088/1748-0221/11/02/C02051 PG 12 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800051 ER PT J AU Allahgholi, A Becker, J Bianco, L Bradford, R Delfs, A Dinapoli, R Goettlicher, P Gronewald, M Graafsma, H Greiffenberg, D Henrich, BH Hirsemann, H Jack, S Klanner, R Klyuev, A Krueger, H Lange, S Marras, A Mezza, D Mozzanica, A Perova, I Xia, Q Schmitt, B Schwandt, J Sheviakov, I Shi, X Trunk, U Zhang, J AF Allahgholi, A. Becker, J. Bianco, L. Bradford, R. Delfs, A. Dinapoli, R. Goettlicher, P. Gronewald, M. Graafsma, H. Greiffenberg, D. Henrich, B. H. Hirsemann, H. Jack, S. Klanner, R. Klyuev, A. Krueger, H. Lange, S. Marras, A. Mezza, D. Mozzanica, A. Perova, I. Xia, Q. Schmitt, B. Schwandt, J. Sheviakov, I. Shi, X. Trunk, U. Zhang, J. TI The adaptive gain integrating pixel detector SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT 17th International Workshop on Radiation Imaging Detectors CY JUN 28-JUL 02, 2015 CL DESY, Hamburg, GERMANY HO DESY DE X-ray detectors; X-ray detectors and telescopes; X-ray diffraction detectors ID ELECTRONICS AB The adaptive gain integrating pixel detector (AGIPD) is a development of a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg and the University of Bonn. The detector is designed to cope with the demanding challenges of the European XFEL. Therefore it comes along with an adaptive gain stage allowing a high dynamic range, spanning from single photon sensitivity to 10(4) x 12.4 keV photons and 352 analogue memory cells per pixel. The aim of this report is to briefly explain the concepts of the AGIPD electronics and mechanics and then present recent experiments demonstrating the functionality of its key features. C1 [Allahgholi, A.; Becker, J.; Bianco, L.; Delfs, A.; Goettlicher, P.; Graafsma, H.; Hirsemann, H.; Jack, S.; Klyuev, A.; Lange, S.; Marras, A.; Perova, I.; Xia, Q.; Sheviakov, I.; Trunk, U.; Zhang, J.] DESY, D-22607 Hamburg, Germany. [Dinapoli, R.; Greiffenberg, D.; Henrich, B. H.; Mezza, D.; Mozzanica, A.; Schmitt, B.; Shi, X.] Paul Scherrer Inst, OFLB-006, CH-5232 Villigen, Switzerland. [Klanner, R.; Schwandt, J.] Univ Hamburg, D-22761 Hamburg, Germany. [Gronewald, M.; Krueger, H.] Univ Bonn, D-53115 Bonn, Germany. [Graafsma, H.] Mid Sweden Univ, Sundsvall, Sweden. [Bradford, R.] Adv Photon Source, Chicago, IL USA. RP Allahgholi, A (reprint author), DESY, D-22607 Hamburg, Germany. EM aschkan.allahgholi@desy.de RI Greiffenberg, Dominic/H-9363-2013; Schmitt, Bernd/H-9365-2013 OI Greiffenberg, Dominic/0000-0002-5723-1825; Schmitt, Bernd/0000-0002-5778-0680 NR 9 TC 0 Z9 0 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02066 DI 10.1088/1748-0221/11/02/C02066 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800066 ER PT J AU Cavaliere, V Adelman, J Albicocco, P Alison, J Ancu, LS Anderson, J Andari, N Andreani, A Andreazza, A Annovi, A Antonelli, M Asbah, N Atkinson, M Baines, J Barberio, E Beccherle, R Beretta, M Bertolucci, F Biesuz, NV Blair, R Bogdan, M Boveia, A Britzger, D Bryant, P Burghgrave, B Calderini, G Camplani, A Cavasinni, V Chakraborty, D Chang, P Cheng, Y Citraro, S Citterio, M Crescioli, F Dawe, N Dell'Orso, M Donati, S Dondero, P Drake, G Gadomski, S Gatta, M Gentsos, C Giannetti, P Gkaitatzis, S Gramling, J Howarth, JW Lizawa, T Ilic, N Jiang, Z Kaji, T Kasten, M Kawaguchi, Y Kim, YK Kimura, N Klimkovich, T Kolb, M Kordas, K Krizka, K Kubota, T Lanza, A Li, HL Liberali, V Lisovyi, M Liu, L Love, J Luciano, P Luongo, C Magalotti, D Maznas, I Meroni, C Mitani, T Nasimi, H Negri, A Neroutsos, P Neubauer, M Nikolaidis, S Okumura, Y Pandini, C Petridou, C Piendibene, M Proudfoot, J Rados, P Roda, C Rossi, E Sakurai, Y Sampsonidis, D Saxon, J Schmitt, S Schoening, A Shochet, M Shojaii, S Soltveit, H Sotiropoulou, CL Stabile, A Swiatlowski, M Tang, F Taylor, PT Testa, M Tompkins, L Vercesi, V Volpi, G Wang, R Watari, R Webster, J Wu, X Yorita, K Yurkewicz, A Zeng, JC Zhang, J Zou, R AF Cavaliere, V. Adelman, J. Albicocco, P. Alison, J. Ancu, L. S. Anderson, J. Andari, N. Andreani, A. Andreazza, A. Annovi, A. Antonelli, M. Asbah, N. Atkinson, M. Baines, J. Barberio, E. Beccherle, R. Beretta, M. Bertolucci, F. Biesuz, N. V. Blair, R. Bogdan, M. Boveia, A. Britzger, D. Bryant, P. Burghgrave, B. Calderini, G. Camplani, A. Cavasinni, V. Chakraborty, D. Chang, P. Cheng, Y. Citraro, S. Citterio, M. Crescioli, F. Dawe, N. Dell'Orso, M. Donati, S. Dondero, P. Drake, G. Gadomski, S. Gatta, M. Gentsos, C. Giannetti, P. Gkaitatzis, S. Gramling, J. Howarth, J. W. Lizawa, T. Ilic, N. Jiang, Z. Kaji, T. Kasten, M. Kawaguchi, Y. Kim, Y. K. Kimura, N. Klimkovich, T. Kolb, M. Kordas, K. Krizka, K. Kubota, T. Lanza, A. Li, H. L. Liberali, V. Lisovyi, M. Liu, L. Love, J. Luciano, P. Luongo, C. Magalotti, D. Maznas, I. Meroni, C. Mitani, T. Nasimi, H. Negri, A. Neroutsos, P. Neubauer, M. Nikolaidis, S. Okumura, Y. Pandini, C. Petridou, C. Piendibene, M. Proudfoot, J. Rados, P. Roda, C. Rossi, E. Sakurai, Y. Sampsonidis, D. Saxon, J. Schmitt, S. Schoening, A. Shochet, M. Shojaii, S. Soltveit, H. Sotiropoulou, C. L. Stabile, A. Swiatlowski, M. Tang, F. Taylor, P. T. Testa, M. Tompkins, L. Vercesi, V. Volpi, G. Wang, R. Watari, R. Webster, J. Wu, X. Yorita, K. Yurkewicz, A. Zeng, J. C. Zhang, J. Zou, R. TI Design of a hardware track finder (Fast Tracker) for the ATLAS trigger SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Trigger concepts and systems (hardware and software); Pattern recognition, cluster, finding, calibration and fitting methods; Trigger algorithms; Data reduction methods AB The use of tracking information at the trigger level in the LHC Run II period is crucial for the trigger and data acquisition system and will be even more so as contemporary collisions that occur at every bunch crossing will increase in Run III. The Fast TracKer is part of the ATLAS trigger upgrade project; it is a hardware processor that will provide every Level-1 accepted event (100 kHz) and within 100 mu s, full tracking information for tracks with momentum as low as 1 GeV. Providing fast, extensive access to tracking information, with resolution comparable to the offline reconstruction, FTK will help in precise detection of the primary and secondary vertices to ensure robust selections and improve the trigger performance. C1 [Cavaliere, V.; Andari, N.; Atkinson, M.; Chang, P.; Kasten, M.; Neubauer, M.; Zeng, J. C.] Univ Illinois, Urbana, IL USA. [Adelman, J.; Burghgrave, B.; Li, H. L.; Yurkewicz, A.] No Illinois Univ, De Kalb, IL 60115 USA. [Albicocco, P.; Antonelli, M.; Beretta, M.; Gatta, M.; Testa, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, POB 13, I-00044 Frascati, Italy. [Alison, J.; Bogdan, M.; Boveia, A.; Bryant, P.; Cheng, Y.; Kim, Y. K.; Krizka, K.; Liu, L.; Okumura, Y.; Saxon, J.; Shochet, M.; Swiatlowski, M.; Tang, F.; Zou, R.] Univ Chicago, Chicago, IL 60637 USA. [Ancu, L. S.; Gadomski, S.; Gramling, J.; Wu, X.] Univ Geneva, Geneva, Switzerland. [Anderson, J.; Blair, R.; Drake, G.; Lisovyi, M.; Love, J.; Proudfoot, J.; Wang, R.; Webster, J.; Zhang, J.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Andreani, A.; Andreazza, A.; Camplani, A.; Liberali, V.; Shojaii, S.] Univ Milan, Milan, Italy. [Andreani, A.; Andreazza, A.; Camplani, A.; Liberali, V.; Shojaii, S.] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Citraro, S.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Luciano, P.; Luongo, C.; Nasimi, H.; Piendibene, M.; Roda, C.; Rossi, E.; Sotiropoulou, C. L.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Asbah, N.; Britzger, D.; Howarth, J. W.; Schmitt, S.] DESY, Notkestr 85, Hamburg, Germany. [Asbah, N.; Britzger, D.; Howarth, J. W.; Schmitt, S.] DESY, Zeuthen, Germany. [Cavaliere, V.] CERN, UIUC, CH-1211 Geneva 23, Switzerland. [Baines, J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Barberio, E.; Dawe, N.; Kubota, T.; Rados, P.; Taylor, P. T.] Univ Melbourne, Melbourne, Vic 3010, Australia. [Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Citraro, S.; Dell'Orso, M.; Donati, S.; Luciano, P.; Luongo, C.; Piendibene, M.; Roda, C.; Rossi, E.; Volpi, G.] Univ Pisa, Pisa, Italy. [Calderini, G.; Crescioli, F.; Pandini, C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Calderini, G.; Crescioli, F.; Pandini, C.] Univ Paris Diderot, Paris, France. [Calderini, G.; Crescioli, F.; Pandini, C.] CNRS, IN2P3, Paris, France. [Citterio, M.; Meroni, C.; Stabile, A.] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy. [Dondero, P.] Univ Pavia, Via Palestro 3, I-27100 Pavia, Italy. [Gkaitatzis, S.; Kimura, N.; Maznas, I.; Neroutsos, P.; Nikolaidis, S.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, GR-54006 Thessaloniki, Greece. [Lizawa, T.; Kawaguchi, Y.; Kordas, K.; Mitani, T.; Sakurai, Y.; Watari, R.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Ilic, N.; Jiang, Z.; Tompkins, L.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Klimkovich, T.; Kolb, M.; Schoening, A.; Soltveit, H.] Heidelberg Univ, Heidelberg, Germany. [Lanza, A.; Negri, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Magalotti, D.] Univ Modena & Reggio Emilia, Modena, Italy. [Magalotti, D.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Cavaliere, V.] CERN, CH-1211 Geneva 23, Switzerland. RP Cavaliere, V (reprint author), Univ Illinois, Urbana, IL USA.; Cavaliere, V (reprint author), CERN, UIUC, CH-1211 Geneva 23, Switzerland.; Cavaliere, V (reprint author), CERN, CH-1211 Geneva 23, Switzerland. EM viviana.cavaliere@cern.ch RI Stabile, Alberto/L-3419-2016; OI Stabile, Alberto/0000-0002-6868-8329; Liberali, Valentino/0000-0003-1333-6876 NR 6 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02056 DI 10.1088/1748-0221/11/02/C02056 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800056 ER PT J AU Dharmapalan, R Mane, A Byrum, K Demarteau, M Elam, J May, E Wagner, R Walters, D Xia, L Xie, J Zhao, H Wang, J AF Dharmapalan, R. Mane, A. Byrum, K. Demarteau, M. Elam, J. May, E. Wagner, R. Walters, D. Xia, L. Xie, J. Zhao, H. Wang, J. TI MCP-based photodetectors for cryogenic applications SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Conference on Light Detection in Noble Elements (LIDINE) CY AUG 28-30, 2015 CL Albany, NY DE Detector design and construction technologies and materials; Noble liquid detectors (scintillation, ionization, double-phase); Neutrino detectors; Cryogenics ID ATOMIC LAYER DEPOSITION AB The Argonne MCP-based photo detector is an offshoot of the Large Area Pico-second Photo Detector (LAPPD) project, wherein 6 cm x 6 cm sized detectors are made at Argonne National Laboratory. We have successfully built and tested our first detectors for pico-second timing and few mm spatial resolution. We discuss our efforts to customize these detectors to operate in a cryogenic environment. Initial plans aim to operate in liquid argon. We are also exploring ways to mitigate wave length shifting requirements and also developing bare-MCP photodetectors to operate in a gaseous cryogenic environment. C1 [Dharmapalan, R.; Byrum, K.; Demarteau, M.; May, E.; Wagner, R.; Walters, D.; Xia, L.; Xie, J.; Zhao, H.; Wang, J.] Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mane, A.; Elam, J.] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Dharmapalan, R (reprint author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rdharmapalan@anl.gov NR 11 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02019 DI 10.1088/1748-0221/11/02/C02019 PG 6 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800019 ER PT J AU Hare, D Baumbaugh, A Dal Monte, L Freeman, J Hirschauer, J Hughes, E Roy, T Whitbeck, A Yumiceva, F Zimmerman, T AF Hare, D. Baumbaugh, A. Dal Monte, L. Freeman, J. Hirschauer, J. Hughes, E. Roy, T. Whitbeck, A. Yumiceva, F. Zimmerman, T. TI First large volume characterization of the QIE10/11 custom front-end integrated circuits SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Front-end electronics for detector readout; Digital electronic circuits AB The CMS experiment at the CERN Large Hadron Collider (LHC) will upgrade the photon detection and readout systems of its barrel and endcap hadron calorimeters (HCAL) through the second long shutdown of the LHC in 2018. A central feature of this upgrade is the development of two new versions of the QIE (Charge Integrator and Encoder), a Fermilab-designed custom ASIC for measurement of charge from detectors in high-rate environments. These most recent additions to the QIE family feature 17-bits of dynamic range with 1% digitization precision for high charge and a time-to-digital converter (TDC) with half nanosecond resolution all with 16 bits of readout per bunch crossing. For the first time, the CMS experiment has produced and characterized in great detail a large volume of chips. The characteristics and performance of the new QIE and their related chip-to-chip variations as measured in a sample of 10,000 chips is described. C1 [Hare, D.; Baumbaugh, A.; Dal Monte, L.; Freeman, J.; Hirschauer, J.; Whitbeck, A.; Zimmerman, T.] Fermilab Natl Accelerator Lab, Box 500, Batavia, IL 60510 USA. [Hughes, E.] Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. [Roy, T.; Yumiceva, F.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. RP Hare, D (reprint author), Fermilab Natl Accelerator Lab, Box 500, Batavia, IL 60510 USA. EM dhare82@gmail.com NR 3 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02052 DI 10.1088/1748-0221/11/02/C02052 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800052 ER PT J AU Huffman, BT Affolder, A Arndt, K Bates, R Benoit, M Di Bello, F Blue, A Bortoletto, D Buckland, M Buttar, C Caragiulo, P Das, D Dopke, J Dragone, A Ehrler, F Fadeyev, V Galloway, Z Grabas, H Gregor, IM Grenier, P Grillo, A Hoeferkamp, M Hommeis, LBA John, J Kanisauskas, K Kenney, C Kramberger, J Liang, Z Mandic, I Maneuski, D Martinez-Mckinney, F McMahon, S Meng, L Mikuz, M Muenstermann, D Nickerson, R Peric, I Phillips, P Plackett, R Rubbo, F Segal, J Seidel, S Seiden, A Shipsey, I Song, W Stanitzki, M Su, D Tamma, C Turchetta, R Vigani, L Volk, J Wang, R Warren, M Wilson, F Worm, S Xiu, Q Zhang, J Zhu, H AF Huffman, B. T. Affolder, A. Arndt, K. Bates, R. Benoit, M. Di Bello, F. Blue, A. Bortoletto, D. Buckland, M. Buttar, C. Caragiulo, P. Das, D. Dopke, J. Dragone, A. Ehrler, F. Fadeyev, V. Galloway, Z. Grabas, H. Gregor, I. M. Grenier, P. Grillo, A. Hoeferkamp, M. Hommeis, L. B. A. John, J. Kanisauskas, K. Kenney, C. Kramberger, J. Liang, Z. Mandic, I. Maneuski, D. Martinez-Mckinney, F. McMahon, S. Meng, L. Mikuz, M. Muenstermann, D. Nickerson, R. Peric, I. Phillips, P. Plackett, R. Rubbo, F. Segal, J. Seidel, S. Seiden, A. Shipsey, I. Song, W. Stanitzki, M. Su, D. Tamma, C. Turchetta, R. Vigani, L. Volk, J. Wang, R. Warren, M. Wilson, F. Worm, S. Xiu, Q. Zhang, J. Zhu, H. TI Radiation hardness of two CMOS prototypes for the ATLAS HL-LHC upgrade project SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Radiation damage to electronic components; Solid state detectors; Radiation-hard detectors; Particle tracking detectors (Solid-state detectors) ID PIXEL DETECTORS; TECHNOLOGY AB The LHC luminosity upgrade, known as the High Luminosity LHC (HL-LHC), will require the replacement of the existing silicon strip tracker and the transistion radiation tracker. Although a baseline design for this tracker exists the ATLAS collaboration and other non-ATLAS groups are exploring the feasibility of using CMOS Monolithic Active Pixel Sensors (MAPS) which would be arranged in a strip-like fashion and would take advantage of the service and support structure already being developed for the upgrade. Two test devices made with theAMSH35 process (a High voltage or HV CMOS process) have been subjected to various radiation environments and have performed well. The results of these tests are presented in this paper. C1 [Affolder, A.; Buckland, M.; Meng, L.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Huffman, B. T.; Arndt, K.; Bortoletto, D.; John, J.; Kanisauskas, K.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.] Univ Oxford, Keble Rd, Oxford OX1 3RH, England. [Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Tamma, C.] SLAC Natl Accelerator Lab, Menlo Pk, CA USA. [Das, D.; Dopke, J.; McMahon, S.; Phillips, P.; Turchetta, R.; Wilson, F.; Worm, S.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ehrler, F.; Peric, I.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Gregor, I. M.; Stanitzki, M.] DESY, Notkestr 85, Hamburg, Germany. [Hommeis, L. B. A.] Univ Cambridge, Cambridge CB2 1TN, England. [Kramberger, J.; Mandic, I.; Mikuz, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Mikuz, M.] Univ Ljubljana, Ljubljana 61000, Slovenia. [Benoit, M.; Di Bello, F.; Meng, L.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Wang, R.; Zhang, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Warren, M.] UCL, London, England. [Song, W.; Xiu, Q.; Zhu, H.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Buckland, M.] CERN, European Ctr Nucl Res, CH-1211 Geneva 23, Switzerland. [Hoeferkamp, M.; Seidel, S.] Univ New Mexico, Albuquerque, NM 87131 USA. [Muenstermann, D.] Univ Lancaster, Lancaster LA1 4YW, England. RP Huffman, BT (reprint author), Univ Oxford, Keble Rd, Oxford OX1 3RH, England. EM todd.huffman@physics.ox.ac.uk RI Blue, Andrew/C-9882-2016; OI Blue, Andrew/0000-0002-7716-5626; John, Jaya/0000-0001-6831-6501; Muenstermann, Daniel/0000-0001-6223-2497 NR 13 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02005 DI 10.1088/1748-0221/11/02/C02005 PG 12 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800005 ER PT J AU Kryczynski, P AF Kryczynski, P. CA LArIAT Collaboration TI Scintillation light detection system in LArIAT SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Conference on Light Detection in Noble Elements (LIDINE) CY AUG 28-30, 2015 CL Albany, NY DE Time projection Chambers (TPC); Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Cryogenic detectors ID LIQUID ARGON AB The LArIAT experiment is currently taking data at Fermilab using a Liquid Argon TPC, with the aim of studying particle interactions and characterizing detector response for neutrino detectors using argon. In parallel, it serves as a test-bench to develop and evaluate the performance of the simulation, reconstruction, and analysis software used in LAr neutrino experiments. LArIAT also takes advantage of the scintillating capabilities of liquid argon and will evaluate the feasibility of using the light signal to determine calorimetric information and particle identification. To test this possibility, a scintillation light detection system consisting of high Quantum Efficiency (QE) PMT and Silicon Photomultiplier (SiPM) devices is installed in the cryostat, viewing the interior of the TPC. Light collection efficiency is maximized by means of lining the walls with reflector foils covered by a wavelength shifter layer. Collecting the light reflected at the boundaries of the active volume greatly improves also the uniformity of the light yield. Presented here are initial results of the LArIAT light detection system calibration together with the preliminary results of the dedicated simulation and its application in future LAr TPC experiments C1 [Kryczynski, P.] Polish Acad Sci, Inst Nucl Phys, Ul Radzikowskiego 152, PL-31342 Krakow, Poland. Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Kryczynski, P (reprint author), Polish Acad Sci, Inst Nucl Phys, Ul Radzikowskiego 152, PL-31342 Krakow, Poland. EM pkryczyn@fnal.gov NR 15 TC 0 Z9 0 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02086 DI 10.1088/1748-0221/11/02/C02086 PG 8 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800086 ER PT J AU Naimuddin, M Coutrakon, G Blazey, G Boi, S Dyshkant, A Erdelyi, B Hedin, D Johnson, E Krider, J Rukalin, V Uzunyan, SA Zutshi, V Fordt, R Sellberg, G Rauch, JE Roman, M Rubinov, P Wilson, P AF Naimuddin, Md. Coutrakon, G. Blazey, G. Boi, S. Dyshkant, A. Erdelyi, B. Hedin, D. Johnson, E. Krider, J. Rukalin, V. Uzunyan, S. A. Zutshi, V. Fordt, R. Sellberg, G. Rauch, J. E. Roman, M. Rubinov, P. Wilson, P. TI Development of a proton Computed Tomography detector system SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT 17th International Workshop on Radiation Imaging Detectors CY JUN 28-JUL 02, 2015 CL DESY, Hamburg, GERMANY HO DESY DE Instrumentation for hadron therapy; Computerized Tomography (CT) and Computed Radiography (CR); Medical-image reconstruction methods and algorithms, computer-aided software ID RADIOGRAPHY; THERAPY AB Computer tomography is one of the most promising new methods to image abnormal tissues inside the human body. Tomography is also used to position the patient accurately before radiation therapy. Hadron therapy for treating cancer has become one of the most advantegeous and safe options. In order to fully utilize the advantages of hadron therapy, there is a necessity of performing radiography with hadrons as well. In this paper we present the development of a proton computed tomography system. Our second-generation proton tomography system consists of two upstream and two downstream trackers made up of fibers as active material and a range detector consisting of plastic scintillators. We present details of the detector system, readout electronics, and data acquisition system as well as the commissioning of the entire system. We also present preliminary results from the test beam of the range detector. C1 [Naimuddin, Md.] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India. [Coutrakon, G.; Blazey, G.; Boi, S.; Dyshkant, A.; Erdelyi, B.; Hedin, D.; Johnson, E.; Krider, J.; Rukalin, V.; Uzunyan, S. A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Fordt, R.; Sellberg, G.; Rauch, J. E.; Roman, M.; Rubinov, P.; Wilson, P.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Naimuddin, M (reprint author), Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India. EM nayeem@cern.ch NR 6 TC 3 Z9 3 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2016 VL 11 AR C02012 DI 10.1088/1748-0221/11/02/C02012 PG 7 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6QD UT WOS:000371479800012 ER PT J AU Hasegawa, K Li, YS Bezensek, B Hoang, PH Rathbun, HJ AF Hasegawa, Kunio Li, Yinsheng Bezensek, Bostjan Hoang, Phuong H. Rathbun, Howard J. TI Technical Basis for Application of Collapse Moments for Locally Thinned Pipes Subjected to Torsion and Bending Proposed for ASME Section XI SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article AB Piping components in power plants may experience combined bending and torsion moments during operation. There is a lack of guidance for pipe evaluation for pipes with local wall-thinning flaws under the combined bending and torsion moments. ASME boiler and pressure vessel (B&PV) Code Section XI Working Group is currently developing fully plastic bending pipe evaluation procedures for pressurized piping components containing local wall thinning subjected to combined torsion and bending moments. Using elastic fully plastic finite element (FE) analyses, plastic collapse bending moments under torsions were obtained for 4 (114.3)-24 (609.6) in. (mm) diameter pipes with various local wall-thinning flaw sizes. The objective of this paper is to introduce an equivalent moment, which combines torsion and bending moments by a vector summation, and to establish the applicable range of wall-thinning lengths, angles, and depths, where the equivalent moments are equal to pure bending collapse moments. C1 [Hasegawa, Kunio; Li, Yinsheng] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Bezensek, Bostjan] Shell UK Ltd, 1 Altens Farm Rd, Aberdeen AB12 3YF, Scotland. [Hoang, Phuong H.] Sargent & Lundy LLC, 55 E Monroe, Chicago, IL 60603 USA. [Rathbun, Howard J.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RP Hasegawa, K; Li, YS (reprint author), Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan.; Bezensek, B (reprint author), Shell UK Ltd, 1 Altens Farm Rd, Aberdeen AB12 3YF, Scotland.; Hoang, PH (reprint author), Sargent & Lundy LLC, 55 E Monroe, Chicago, IL 60603 USA.; Rathbun, HJ (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM kunioh@kzh.biglobe.ne.jp; li-yinsheng@jaea.go.jp; bostjan.bezensek@shell.com; phuong.h.hoang@sargentlundy.com; Rathbun4@llnl.gov NR 15 TC 0 Z9 0 U1 3 U2 3 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 EI 1528-8978 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD FEB PY 2016 VL 138 IS 1 AR 011101 DI 10.1115/1.4031505 PG 8 WC Engineering, Mechanical SC Engineering GA DG0DM UT WOS:000371732900001 ER PT J AU Aoun, B Russo, D AF Aoun, Bachir Russo, Daniela TI Nano-confinement of biomolecules: Hydrophilic confinement promotes structural order and enhances mobility of water molecules SO NANO RESEARCH LA English DT Article DE nano-confinement; protein folding; hydration water; carbon nanotube; drug delivery ID X-RAY-SCATTERING; CARBON NANOTUBES; DYNAMICS; MEMBRANES; PEPTIDES AB Molecular dynamics simulations have been used to investigate the confinement packing characteristics of small hydrophilic (N-acetyl-glycine-methylamide, Nagma) and hydrophobic (N-acetyl-leucine-methylamide, Nalma) biomolecules in large diameter single-wall carbon nanotubes (SWCNTs). We find that hydrophilic biomolecules easily fill the nanotube and self organize into a geometrical configuration which reminds the water structural organization under SWCNT confinement. The packing of hydrophilic biomolecules inside the cylinder confines all water molecules in its core, which enhances their mobility. Conversely, hydrophobic biomolecules accommodate into the nanotubes with a trend for homogeneous filling, which generate unstable small pockets of water and drive toward a state of dehydration. These results shed light on key parameters important for the encapsulation of biomolecules with direct relevance for long-term storage and prevention of degradation. C1 [Aoun, Bachir] Argonne Natl Lab, Chicago, IL 60439 USA. [Russo, Daniela] CNR IOM, Inst Laue Langevin, F-38400 Grenoble, France. [Russo, Daniela] Univ Lyon, Inst Lumiere Matiere, F-69622 Lyon, France. RP Russo, D (reprint author), CNR IOM, Inst Laue Langevin, F-38400 Grenoble, France.; Russo, D (reprint author), Univ Lyon, Inst Lumiere Matiere, F-69622 Lyon, France. EM russo@ill.fr FU ARC-Sante; region Rhone-Alpes (France) FX D. R. thanks ARC-Sante and region Rhone-Alpes (France), for financial support with the Nanofold project. D. R. is grateful to Dr. Jose Teixeira (LLB, CNRS France) and Dr. Alessandro Cunsolo for discussions and suggestions. D. R. is grateful to Dr. Scott Brown (Sunovion Pharmaceuticals, USA) for scientific discussion and to have reviewed the manuscript to improve the scientific language. B. A. gratefully acknowledges the computing resources provided on Blues and Fusion high-performance computing clusters operated by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 26 TC 0 Z9 0 U1 9 U2 12 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA SN 1998-0124 EI 1998-0000 J9 NANO RES JI Nano Res. PD FEB PY 2016 VL 9 IS 2 BP 273 EP 281 DI 10.1007/s12274-015-0907-7 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DG1BA UT WOS:000371798800001 ER PT J AU Noguere, G Bernard, D Blaise, P Bouland, O Leal, L Leconte, P Litaize, O Peneliau, Y Roque, B Santamarina, A Vidal, JF AF Noguere, G. Bernard, D. Blaise, P. Bouland, O. Leal, L. Leconte, P. Litaize, O. Peneliau, Y. Roque, B. Santamarina, A. Vidal, J. -F. TI Improved Mixed Oxide Fuel Calculations with the Evaluated Nuclear Data Library JEFF-3.2 SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article DE EOLE; MINERVE; TRIPOLI-4 ID CROSS-SECTIONS; ENERGY-RANGE; REEVALUATION; VALIDATION; CODE AB An overestimation of the k(eff) values for mixed oxide (MOX) fuels was identified with Monte Carlo (TRIPOLI-4) and deterministic (APOLLO2) calculations based on the Joint Evaluated Fission and Fusion (JEFF) evaluated nuclear data library. The overestimation becomes sizeable with Pit aging, reaching a reactivity change of Delta(p)similar or equal to+700 pcm for integral measurements carried out with MOX fuel containing a large amount of americium. This bias was observed for various critical configurations performed in the zero power reactor EOLE of the Commissariat a l'energie atomique et aux energies alternatives (CEA), Cadarache, France. The present work focuses on the improvements achieved with the new (PU)-P-239 and Am-241 evaluated nuclear data files available in the latest version of the JEFF library (JEFF-3.2). The resolved resonance range of the plutonium evaluation was reevaluated at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, with the Ski/NH code in collaboration with CEA Cadarache. The resonance parameters of the americium evaluation were obtained with the REFIT code in collaboration with the research institutes Institute for Reference Materials and Measurements aRmm, Geel, Belgium, and Institut de recherche sur les lois fondamentales de l'Univers ofio, Saclay, France. C1 [Noguere, G.; Bernard, D.; Blaise, P.; Bouland, O.; Leconte, P.; Litaize, O.; Peneliau, Y.; Roque, B.; Santamarina, A.; Vidal, J. -F.] CEA, DEN, DER Cadarache, F-13108 St Paul Les Durance, France. [Leal, L.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RP Noguere, G (reprint author), CEA, DEN, DER Cadarache, F-13108 St Paul Les Durance, France. EM gilles.noguere@cea.fr FU French industrial partner (EDF) through the SINET project of the Nuclear Energy Division of CEA; French industrial partner (AREVA) through the SINET project of the Nuclear Energy Division of CEA FX This work was supported by the French industrial partners (EDF and AREVA) through the SINET project of the Nuclear Energy Division of CEA. NR 56 TC 0 Z9 0 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2016 VL 182 IS 2 BP 135 EP 150 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF7SZ UT WOS:000371559200001 ER PT J AU Ramuhalli, P Roy, S Chai, J AF Ramuhalli, Pradeep Roy, Surajit Chai, Jangbom TI Online Monitoring and Prognostics for Passive Components in Nuclear Power Plants SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article DE Fatigue crack precursors; Bayesian prognostics; online monitoring ID FATIGUE-CRACK GROWTH; DAMAGE PROGNOSIS; NDE; DEGRADATION; WAVES AB This paper describes research toward developing prognostics technologies for light water nuclear power reactor components. The focus of this paper is on passive components (those that do not need to change state or move to perform their function), although the technologies are applicable to other classes of components as well. A prototypic failure mechanism (high-cycle fatigue) is used to focus the efforts and provide context for the development effort. A Bayesian framework is proposed for the prognostics of remaining useful life and applied to simulated data sets representing nondestructive measurements of high-cycle fatigue damage. The initial results of the prognostics based on simulated data sets are presented. C1 [Ramuhalli, Pradeep; Roy, Surajit] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. [Chai, Jangbom] Ajou Univ, 5 Woncheon Dong, Suwon 441749, South Korea. RP Ramuhalli, P (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM pradeep.ramuhalli@pnnl.gov FU research project on online monitoring and prognostics for nuclear power plants by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) from the Ministry of Trade, Industry & Energy, Republic of Korea [20128540010020] FX This work was supported under the research project on online monitoring and prognostics for nuclear power plants by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20128540010020). NR 48 TC 0 Z9 0 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2016 VL 182 IS 2 BP 228 EP 242 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF7SZ UT WOS:000371559200007 ER PT J AU Drosg, M Drake, DM AF Drosg, M. Drake, D. M. TI Neutron Emission Spectra of Triton Beams of 20.22-MeV Fully Stopped in Targets of H2O, D2O, LiF, Si, Ni, Mo, Ta, W, Pt, and Au SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article DE Fully stopped triton beams; neutron emission cross sections; target materials ID COUNTING EFFICIENCY; 20-MEV TRITONS; DETECTOR; YIELD; WATER AB The Ion Beam Facility of Los Alamos National Laboratory could routinely provide accelerated bunched triton beams to be used in neutron time-of-flight experiments. Exploratory measurements at 0 deg were done to determine the neutron yield with target materials throughout the periodic system yielding absolute specific double-differential neutron yields. Only a few of these measurements were made public previously. The results of these measurements having a mainly demonstrative purpose are presented here because of their uniqueness. For lithium and beryllium, double-differential neutron emission cross sections are given at 17.2 and 15.2 MeV, respectively. C1 [Drosg, M.; Drake, D. M.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. [Drosg, M.] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria. RP Drosg, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA.; Drosg, M (reprint author), Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria. EM manfred.drosg@univie.ac.at NR 14 TC 1 Z9 1 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2016 VL 182 IS 2 BP 256 EP 260 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF7SZ UT WOS:000371559200009 ER PT J AU Ganda, F Dixon, B Hoffman, E Kim, TK Taiwo, T Wigeland, R AF Ganda, Francesco Dixon, Brent Hoffman, Edward Kim, Taek K. Taiwo, Temitope Wigeland, Roald TI Economic Analysis of Complex Nuclear Fuel Cycles with NE-COST SO NUCLEAR TECHNOLOGY LA English DT Article DE Nuclear economics; fuel cycles AB The purpose of this work is to present a new methodology and the associated computational tools developed within the U.S. Department of Energy Fuel Cycle Options Campaign to quantify the economic performance of complex nuclear fuel cycles. The levelized electricity cost at the busbar is generally chosen to quantibr and compare the economic performance of different base load generating technologies, including nuclear; the levelized electricity cost is the cost that renders the risk-adjusted discounted net present value of the investment cash flow equal to zero. The work presented here is focused on the calculation of the levelized cost of electricity of fuel cycles at mass balance equilibrium, which is termed levelized cost of electricity at equilibrium (LCAE). To alleviate the computational issues associated with the calculation of the LCAE for complex fuel cycles, a novel approach has been developed. This approach has been termed the island approach because of its logical structure, in which a generic complex fuel cycle is subdivided into subsets of fuel cycle facilities called islands, each containing one and only one type of reactor or blanket and an arbitrary number of fuel cycle facilities. A nuclear economic software tool, NE-COST, written in the commercial programming software MATLAB, has been developed to calculate the LCAE of complex fuel cycles with the island computational approach. NE-COST has also been developed with the capability to handle uncertainty: the input parameters (both unit costs and fitel cycle characteristics) can have uncertainty distributions associated with them, and the output can be computed in terms of probability density functions of the LCAE. In this paper, NE-COST will be used to quantify, as examples, the economic performance of (a) once-through systems of current light water reactors PYRs), (b) continuous plutonium recycling in fast reactors (FRs) with drivers and blankets, and (c) recycling of plutonium bred in FRs into LWRs. For each fuel cycle, the contributions to the total LCAE of the main cost components will be identified. C1 [Ganda, Francesco; Hoffman, Edward; Kim, Taek K.; Taiwo, Temitope] Argonne Natl Lab, 9700 S Cass Ave,Bldg 208,Room C114, Argonne, IL 60439 USA. [Dixon, Brent; Wigeland, Roald] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83402 USA. RP Ganda, F (reprint author), Argonne Natl Lab, 9700 S Cass Ave,Bldg 208,Room C114, Argonne, IL 60439 USA. EM fganda@anl.gov FU DOE [DE-AC02-06CH11357] FX This work was supported by the DOE under contract DE-AC02-06CH11357. The authors would like to acknowledge K. Williams for his help in the benchmarking effort of G4-ECONS with NE-COST and G. Rothwell (NEA/OECD) for his expert advice and suggestions. NR 9 TC 0 Z9 0 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2016 VL 193 IS 2 BP 219 EP 233 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF7SY UT WOS:000371559100001 ER PT J AU Lee, SM Knight, TW Voit, SL Barabash, RI AF Lee, Seung Min Knight, Travis W. Voit, Stewart L. Barabash, Rozaliya I. TI Lattice Parameter Behavior with Different Nd and O Concentrations in (U1-yNdy)O-2 +/- x, Solid Solution SO NUCLEAR TECHNOLOGY LA English DT Article DE Lattice parameter; solid solution; solubility ID OXIDES; FUELS AB The solid solution of (U1-yFPy)O-2 +/- x, has the same fluorite structure as UO2 +/-lambda, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. The relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U1-yNdy)O-2 +/- x, was investigated using X-ray diffraction. The lattice parameter behavior in the (U1-yNdy)O-2 +/- x, solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can be expressed by a particular rule (modified Vegard's law). The numerical analyses of the lattice parameters for the stoichiometric and nonstoichionietric solid solutions were conducted, and the lattice parameter model for the (U1-yNdy)O-2 +/- x, solid solution was assessed. A very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U1-yNdy)O-2 +/- x solid solution was verified. C1 [Lee, Seung Min; Knight, Travis W.] Univ S Carolina, 300 Main St, Columbia, SC 29208 USA. [Voit, Stewart L.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Barabash, Rozaliya I.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Knight, TW (reprint author), Univ S Carolina, 300 Main St, Columbia, SC 29208 USA. EM knighttw@cec.sc.edu FU ORNL FX The authors gratefully acknowledge support under subcontract from ORNL for the U.S. Department of Energy Fuel Cycle Research and Development Program Advanced Fuels Campaign, and funding for this research was provided by ORNL. NR 14 TC 1 Z9 1 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2016 VL 193 IS 2 BP 287 EP 296 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF7SY UT WOS:000371559100006 ER PT J AU Sitaraman, H Grout, R AF Sitaraman, Hariswaran Grout, Ray TI Balancing conflicting requirements for grid and particle decomposition in continuum-Lagrangian solvers SO PARALLEL COMPUTING LA English DT Article DE Load balancing; Lagrangian particle tracking; Particle in cell; Exascale simulations ID DIRECT NUMERICAL-SIMULATION; IN-CELL SIMULATIONS; TURBULENT FLOWS; PARALLEL; CODE; COMBUSTION; ALGORITHM; FLAME AB Load balancing strategies for hybrid solvers that involve grid based partial differential equation solution coupled with particle tracking are presented in this paper. A typical Message Passing Interface (MPI) based parallelization of grid based solves are done using a spatial domain decomposition while particle tracking is primarily done using either of the two techniques. One of the techniques is to distribute the particles to MPI ranks to whose grid they belong to while the other is to share the particles equally among all ranks, irrespective of their spatial location. The former technique provides spatial locality for field interpolation but cannot assure load balance in terms of number of particles, which is achieved by the latter. The two techniques are compared for a case of particle tracking in a homogeneous isotropic turbulence box as well as a turbulent jet case. A strong scaling study is performed to more than 32,000 cores, which results in particle densities representative of anticipated exascale machines. The use of alternative implementations of MPI collectives and efficient load equalization strategies are studied to reduce data communication overheads. (C) 2015 Elsevier B.V. All rights reserved. C1 [Sitaraman, Hariswaran; Grout, Ray] Natl Renewable Energy Lab, Computat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Sitaraman, H (reprint author), Natl Renewable Energy Lab, Computat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Hariswaran.Sitaraman@nrel.gov FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy Office of Advanced Scientific Computing Research FX This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research was supported by the Department of Energy Office of Advanced Scientific Computing Research. NR 47 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD FEB PY 2016 VL 52 BP 1 EP 21 DI 10.1016/j.parco.2015.10.010 PG 21 WC Computer Science, Theory & Methods SC Computer Science GA DG1RE UT WOS:000371844400001 ER PT J AU Medley, SS Liu, D Gorelenkova, MV Heidbrink, WW Stagner, L AF Medley, S. S. Liu, D. Gorelenkova, M. V. Heidbrink, W. W. Stagner, L. TI Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE halo neutrals; TRANSP code; NSTX-U ID SPHERICAL TORUS EXPERIMENT; EMISSION AB A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a 'beam-in-a-box' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases. C1 [Medley, S. S.; Liu, D.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Liu, D.; Heidbrink, W. W.; Stagner, L.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Medley, SS (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM medley@pppl.gov OI Stagner, Luke/0000-0001-5516-3729 FU US Department of Energy (DOE) [DE-AC02-09CH11466]; US DOE [DE-FG02-06ER54867] FX This work was supported by US Department of Energy (DOE) under Contract No DE-AC02-09CH11466 and partly by US DOE Grant No. DE-FG02-06ER54867 (UC Irvine). NR 23 TC 0 Z9 0 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB PY 2016 VL 58 IS 2 AR 025007 DI 10.1088/0741-3335/58/2/025007 PG 15 WC Physics, Fluids & Plasmas SC Physics GA DF7XK UT WOS:000371570900008 ER PT J AU Veinot, KG Eckerman, KF Hertel, NE AF Veinot, K. G. Eckerman, K. F. Hertel, N. E. TI Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons SO RADIATION PROTECTION DOSIMETRY LA English DT Article AB With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above similar to 30 MeV the cranial and caudal values are greater. C1 [Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.] Oak Ridge Natl Lab, Ctr Radiat Protect Knowledge, Oak Ridge, TN 37831 USA. [Hertel, N. E.] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Veinot, KG (reprint author), Oak Ridge Natl Lab, Ctr Radiat Protect Knowledge, Oak Ridge, TN 37831 USA. EM veinotkg@y12.doe.gov NR 11 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 EI 1742-3406 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD FEB PY 2016 VL 168 IS 2 BP 167 EP 174 DI 10.1093/rpd/ncv183 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DF8KV UT WOS:000371607500003 PM 25935016 ER PT J AU Alessi, J AF Alessi, James TI Preface: Proceedings of the 16th International Conference on Ion Sources, New York City, USA 2015 SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Editorial Material C1 [Alessi, James] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Alessi, J (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A101 DI 10.1063/1.4940407 PG 2 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900001 PM 26931907 ER PT J AU Benedetti, LR Holder, JP Perkins, M Brown, CG Anderson, CS Allen, FV Petre, RB Hargrove, D Glenn, SM Simanovskaia, N Bradley, DK Bell, P AF Benedetti, L. R. Holder, J. P. Perkins, M. Brown, C. G. Anderson, C. S. Allen, F. V. Petre, R. B. Hargrove, D. Glenn, S. M. Simanovskaia, N. Bradley, D. K. Bell, P. TI Advances in x-ray framing cameras at the National Ignition Facility to improve quantitative precision in x-ray imaging SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB We describe an experimental method to measure the gate profile of an x-ray framing camera and to determine several important functional parameters: relative gain (between strips), relative gain droop (within each strip), gate propagation velocity, gate width, and actual inter-strip timing. Several of these parameters cannot be measured accurately by any other technique. This method is then used to document cross talk-induced gain variations and artifacts created by radiation that arrives before the framing camera is actively amplifying x-rays. Electromagnetic cross talk can cause relative gains to vary significantly as inter-strip timing is varied. This imposes a stringent requirement for gain calibration. If radiation arrives before a framing camera is triggered, it can cause an artifact that manifests as a high-intensity, spatially varying background signal. We have developed a device that can be added to the framing camera head to prevent these artifacts. (C) 2016 AIP Publishing LLC. C1 [Benedetti, L. R.; Holder, J. P.; Perkins, M.; Brown, C. G.; Anderson, C. S.; Allen, F. V.; Petre, R. B.; Hargrove, D.; Glenn, S. M.; Simanovskaia, N.; Bradley, D. K.; Bell, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Perkins, M.] Varian, Las Vegas, NV 89119 USA. [Simanovskaia, N.] Pacific Biosci, Menlo Pk, CA 94025 USA. RP Benedetti, LR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 28 TC 10 Z9 10 U1 4 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 023511 DI 10.1063/1.4941754 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900241 PM 26931853 ER PT J AU Bollinger, DS Lackey, J Larson, J Triplett, K AF Bollinger, D. S. Lackey, J. Larson, J. Triplett, K. TI A new solid state extractor pulser for the FNAL magnetron ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB A new solid state extractor pulser has been installed on the Fermi National Accelerator Laboratory (FNAL) magnetron ion source, replacing a vacuum tube style pulser that was used for over 40 years. The required ion source extraction voltage is 35 kV for injection into the radio frequency quadrupole. At this voltage, the old pulser had a rise time of over 150 mu s due to the current limit of the vacuum tube. The new solid state pulsers are capable of 50 kV, 100 A peak current pulses and have a rise time of 9 mu s when installed in the operational system. This paper will discuss the pulser design and operational experience to date. (C) 2015 AIP Publishing LLC. C1 [Bollinger, D. S.; Lackey, J.; Larson, J.; Triplett, K.] Fermilab Natl Accelerator Lab, Proton Source Dept, POB 500, Batavia, IL 60510 USA. RP Bollinger, DS (reprint author), Fermilab Natl Accelerator Lab, Proton Source Dept, POB 500, Batavia, IL 60510 USA. EM bollinger@fnal.gov NR 3 TC 0 Z9 0 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B902 DI 10.1063/1.4932121 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900167 PM 26932074 ER PT J AU Crespillo, ML Graham, JT Zhang, Y Weber, WJ AF Crespillo, M. L. Graham, J. T. Zhang, Y. Weber, W. J. TI Temperature measurements during high flux ion beam irradiations SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID THERMAL-CONDUCTIVITY; LUMINESCENCE AB A systematic study of the ion beam heating effect was performed in a temperature range of -170 to 900 degrees C using a 10 MeV Au3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 x 10(12) cm(-2) s(-1). Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. A simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beam analysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect. (C) 2016 AIP Publishing LLC. C1 [Crespillo, M. L.; Graham, J. T.; Zhang, Y.; Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Graham, J. T.] Missouri Univ Sci & Technol, Dept Min & Nucl Engn, Rolla, MO 65409 USA. [Zhang, Y.; Weber, W. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Crespillo, ML; Graham, JT (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.; Graham, JT (reprint author), Missouri Univ Sci & Technol, Dept Min & Nucl Engn, Rolla, MO 65409 USA. EM mcrespil@utk.edu; grahamjose@mst.edu RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 NR 17 TC 1 Z9 1 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 024902 DI 10.1063/1.4941720 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900267 PM 26931879 ER PT J AU Delahaye, P Galata, A Angot, J Cam, JF Traykov, E Ban, G Celona, L Choinski, J Gmaj, P Jardin, P Koivisto, H Kolhinen, V Lamy, T Maunoury, L Patti, G Thuillier, T Tarvainen, O Vondrasek, R Wenander, F AF Delahaye, P. Galata, A. Angot, J. Cam, J. F. Traykov, E. Ban, G. Celona, L. Choinski, J. Gmaj, P. Jardin, P. Koivisto, H. Kolhinen, V. Lamy, T. Maunoury, L. Patti, G. Thuillier, T. Tarvainen, O. Vondrasek, R. Wenander, F. TI Optimizing charge breeding techniques for ISOL facilities in Europe: Conclusions from the EMILIE project SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID BEAMS AB The present paper summarizes the results obtained from the past few years in the framework of the Enhanced Multi-Ionization of short-Lived Isotopes for Eurisol (EMILIE) project. The EMILIE project aims at improving the charge breeding techniques with both Electron Cyclotron Resonance Ion Sources (ECRIS) and Electron Beam Ion Sources (EBISs) for European Radioactive Ion Beam (RIB) facilities. Within EMILIE, an original technique for debunching the beam from EBIS charge breeders is being developed, for making an optimal use of the capabilities of CW post-accelerators of the future facilities. Such a debunching technique should eventually resolve duty cycle and time structure issues which presently complicate the data-acquisition of experiments. The results of the first tests of this technique are reported here. In comparison with charge breeding with an EBIS, the ECRIS technique had lower performance in efficiency and attainable charge state for metallic ion beams and also suffered from issues related to beam contamination. In recent years, improvements have been made which significantly reduce the differences between the two techniques, making ECRIS charge breeding more attractive especially for CW machines producing intense beams. Upgraded versions of the Phoenix charge breeder, originally developed by LPSC, will be used at SPES and GANIL/ SPIRAL. These two charge breeders have benefited from studies undertaken within EMILIE, which are also briefly summarized here. (C) 2015 AIP Publishing LLC. C1 [Delahaye, P.; Maunoury, L.] GANIL, CEA DSM, CNRS IN2P3, Blvd Becquerel,BP 55027, F-14076 Caen 05, France. [Galata, A.; Patti, G.] Ist Nazl Fis Nucl, Lab Nazionali Legnaro, Viale Univ 2, I-35020 Padua, Italy. [Angot, J.; Lamy, T.; Thuillier, T.] Univ Grenoble Alpes, LPSC, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Cam, J. F.; Traykov, E.; Ban, G.] LPC Caen, 6 Blvd, F-14050 Caen, France. [Celona, L.] Ist Nazl Fis Nucl, Lab Nazionali Sud, Via S Sofia 62, I-95125 Catania, Italy. [Choinski, J.; Gmaj, P.] Univ Warsaw, Heavy Ion Lab, Ul Pasteura 5a, PL-02093 Warsaw, Poland. [Koivisto, H.; Kolhinen, V.; Tarvainen, O.] Univ Jyvaskyla, Dept Phys, PB 35 YEL, SF-40351 Jyvaskyla, Finland. [Vondrasek, R.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Wenander, F.] CERN, ISOLDE, CH-1211 Geneva, Switzerland. RP Delahaye, P (reprint author), GANIL, CEA DSM, CNRS IN2P3, Blvd Becquerel,BP 55027, F-14076 Caen 05, France. EM delahaye@ganil.fr OI Galata, Alessio/0000-0002-8466-3009 NR 24 TC 0 Z9 0 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B510 DI 10.1063/1.4935229 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900156 PM 26932063 ER PT J AU Draganic, IN AF Draganic, I. N. TI Electron stripping processes of H- ion beam in the 80 kV high voltage extraction column and low energy beam transport line at LANSCE SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB Basic vacuum calculations were performed for various operating conditions of the Los Alamos National Neutron Science H- Cockcroft-Walton (CW) injector and the Ion Source Test Stand (ISTS). The vacuum pressure was estimated for both the CW and ISTS at five different points: (1) inside the H- ion source, (2) in front of the Pierce electrode, (3) at the extraction electrode, (4) at the column electrode, and (5) at the ground electrode. A static vacuum analysis of residual gases and the working hydrogen gas was completed for the normal ion source working regime. Gas density and partial pressure were estimated for the injected hydrogen gas. The attenuation of H- beam current and generation of electron current in the high voltage acceleration columns and low energy beam transport lines were calculated. The interaction of H- ions on molecular hydrogen (H-2) is discussed as a dominant collision process in describing electron stripping rates. These results are used to estimate the observed increase in the ratio of electrons to H- ion beam in the ISTS beam transport line. (C) 2015 AIP Publishing LLC. C1 [Draganic, I. N.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Draganic, IN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM draganic@lanl.gov NR 5 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B111 DI 10.1063/1.4932398 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900086 PM 26931993 ER PT J AU Draganic, IN O'Hara, JF Rybarcyk, LJ AF Draganic, I. N. O'Hara, J. F. Rybarcyk, L. J. TI Different approaches to modeling the LANSCE H- ion source filament performance SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB An overview of different approaches to modeling of hot tungsten filament performance in the Los Alamos Neutron Science Center (LANSCE) H- surface converter ion source is presented. The most critical components in this negative ion source are two specially shaped wire filaments heated up to the working temperature range of 2600 K-2700 K during normal beam production. In order to prevent catastrophic filament failures (creation of hot spots, wire breaking, excessive filament deflection towards source body, etc.) and to improve understanding of the material erosion processes, we have simulated the filament performance using three different models: a semi-empirical model, a thermal finite-element analysis model, and an analytical model. Results of all three models were compared with data taken during LANSCE beam production. The models were used to support the recent successful transition from the beam pulse repetition rate of 60 Hz-120 Hz. (C) 2015 AIP Publishing LLC. C1 [Draganic, I. N.; O'Hara, J. F.; Rybarcyk, L. J.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Draganic, IN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM draganic@lanl.gov NR 11 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B112 DI 10.1063/1.4932559 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900087 PM 26931994 ER PT J AU Dudnikov, V Johnson, R Murray, S Pennisi, T Santana, M Piller, C Stockli, M Welton, R Breitschopf, J Dudnikoya, G AF Dudnikov, V. Johnson, R. Murray, S. Pennisi, T. Santana, M. Piller, C. Stockli, M. Welton, R. Breitschopf, J. Dudnikoya, G. TI Saddle antenna radio frequency ion sources SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID SURFACE-PLASMA SOURCE AB Existing RF ion sources for accelerators have specific efficiencies for H+ and H-ion generation similar to 3-5 mA/cm(2) kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) surface plasma source (SPS) described here was developed to improve H- ion production efficiency, reliability, and availability. In SA RF ion source, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm(2) kW. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power similar to 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with similar to 4 kW RF. Continuous wave (CW) operation of the SA SPS has been tested on the test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. CW operation with negative ion extraction was tested with RF power up to similar to 1.2 kW in the plasma with production up to Ic = 7 mA. A stable long time generation of H- beam without degradation was demonstrated in RF discharge with AlN discharge chamber. (C) 2015 AIP Publishing LLC. C1 [Dudnikov, V.; Johnson, R.] Muons Inc, Batavia, IL 60510 USA. [Murray, S.; Pennisi, T.; Santana, M.; Piller, C.; Stockli, M.; Welton, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Breitschopf, J.] TLU, Seguin, TX 78155 USA. [Dudnikoya, G.] UMD, College Pk, MD 32611 USA. [Dudnikoya, G.] Inst Computat Technol SBRAS, Novosibirsk, Russia. RP Dudnikov, V (reprint author), Muons Inc, Batavia, IL 60510 USA. EM vadim@muonsinc.com OI Piller, Chip/0000-0003-4729-9364 NR 12 TC 0 Z9 0 U1 3 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B106 DI 10.1063/1.4932120 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900081 PM 26931988 ER PT J AU Fortgang, CM Batygin, YK Draganic, IN Garnett, RW McCrady, RC Rybarcyk, LJ AF Fortgang, C. M. Batygin, Y. K. Draganic, I. N. Garnett, R. W. McCrady, R. C. Rybarcyk, L. J. TI Design and fabrication of a duoplasmatron extraction geometry and LEBT for the LANSCE H+ RFQ project SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB The 750-keV H+ Cockcroft-Walton at LANSCE will be replaced with a recently fabricated 4-rod Radio Frequency Quadrupole (RFQ) with injection energy of 35 keV. The existing duoplasmatron source extraction optics need to be modified to produce up to 35 mA of H+ current with an emittance <0.02 pi-cm-mrad (rms, norm) for injection into the RFQ. Parts for the new source have been fabricated and assembly is in process. We will use the existing duoplasmatron source with a newly designed extraction system and low energy beam transport (LEBT) for beam injection into the RFQ. In addition to source modifications, we need a new LEBT for transport and matching into the RFQ. The LEBT uses two magnetic solenoids with enough drift space between them to accommodate diagnostics and a beam deflector. The LEBT is designed to work over a range of space-charge neutralized currents and emittances. The LEBT is optimized in the sense that it minimizes the beam size in both solenoids for a point design of a given neutralized current and emittance. Special attention has been given to estimating emittance growth due to source extraction optics and solenoid aberrations. Examples of source-to-RFQ matching and emittance growth (due to both non-linear space charge and solenoid aberrations) are presented over a range of currents and emittances about the design point. A mechanical layout drawing will be presented along with the status of the source and LEBT, design, and fabrication. (C) 2015 AIP Publishing LLC. C1 [Fortgang, C. M.; Batygin, Y. K.; Draganic, I. N.; Garnett, R. W.; McCrady, R. C.; Rybarcyk, L. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Fortgang, CM (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM cfortgang@lanl.gov NR 6 TC 0 Z9 0 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B907 DI 10.1063/1.4932315 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900172 PM 26932079 ER PT J AU Fuwa, Y Iwashita, Y Tongu, H Inoue, S Hashida, M Sakabe, S Okamura, M Yamazaki, A AF Fuwa, Yasuhiro Iwashita, Yoshihisa Tongu, Hiromu Inoue, Shunsuke Hashida, Masaki Sakabe, Shuji Okamura, Masahiro Yamazaki, Atsushi TI RF synchronized short pulse laser ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H-2 gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at the exit of RF resonator by a probe. (C) 2015 AIP Publishing LLC. C1 [Fuwa, Yasuhiro; Iwashita, Yoshihisa; Tongu, Hiromu; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan. [Okamura, Masahiro] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Yamazaki, Atsushi] Nagoya Univ, Grad Sch Engn, Nagoya, Aichi 4648603, Japan. RP Fuwa, Y (reprint author), Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan. EM fuwa@kyticr.kuicr.kyoto-u.ac.jp RI Hashida, Masaki/O-2968-2016 OI Hashida, Masaki/0000-0003-4834-0138 NR 4 TC 0 Z9 0 U1 3 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A911 DI 10.1063/1.4935841 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900065 PM 26931972 ER PT J AU Han, BX Stockli, MP Kang, Y Piller, C Murray, SN Pennisi, TR Santana, M Welton, RF AF Han, B. X. Stockli, M. P. Kang, Y. Piller, C. Murray, S. N., Jr. Pennisi, T. R. Santana, M. Welton, R. F. TI Characterization of the CW starter plasma RF matching network for operating the SNS H- ion source with lower H-2 flows SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB The Spallation Neutron Source H- ion source is operated with a pulsed 2-MHz RF (50-60 kW) to produce the 1-ms long, similar to 50 mA H- beams at 60 Hz. A continuous low power (similar to 300 W) 13.56-MHz RF plasma, which is initially ignited with a H-2 pressure bump, serves as starter plasma for the pulsed high power 2-MHz RF discharges. To reduce the risk of plasma outages at lower H-2 flow rates which is desired for improved performance of the following radio frequency quadrupole, the 13.56-MHz RF matching network was characterized over a broad range of its two tuning capacitors. The H-alpha line intensity of the 13.56-MHz RF plasma and the reflected power of the 13.56-MHz RF were mapped against the capacitor settings. Optimal tunes for the maximum H-alpha intensity are consistent with the optimal tunes for minimum reflected power. Low limits of the H-2 flow rate not causing plasma outages were explored within the range of the map. A tune region that allows lower H-2 flow rate has been identified, which differs from the optimal tune for global minimum reflected power that was mostly used in the past. (C) 2015 AIP Publishing LLC. C1 [Han, B. X.; Stockli, M. P.; Kang, Y.; Piller, C.; Murray, S. N., Jr.; Pennisi, T. R.; Santana, M.; Welton, R. F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Han, BX (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM hanb@ornl.gov OI Piller, Chip/0000-0003-4729-9364 NR 7 TC 0 Z9 0 U1 4 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B143 DI 10.1063/1.4937772 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900118 PM 26932025 ER PT J AU Hanada, M Kojima, A Tobari, H Nishikiori, R Hiratsuka, J Kashiwagi, M Umeda, N Yoshida, M Ichikawa, M Watanabe, K Yamano, Y Grisham, LR AF Hanada, M. Kojima, A. Tobari, H. Nishikiori, R. Hiratsuka, J. Kashiwagi, M. Umeda, N. Yoshida, M. Ichikawa, M. Watanabe, K. Yamano, Y. Grisham, L. R. TI Development of the negative ion beams relevant to ITER and JT-60SA at Japan Atomic Energy Agency SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB In order to realize negative ion sources and accelerators to be applicable to International Thermonuclear Experimental Reactor and JT-60 Super Advanced, a large cesium (Cs)-seeded negative ion source and a multi-aperture and multi-stage electric acceleration have been developed at Japan Atomic Energy Agency (JAEA). Long pulse production and acceleration of the negative ion beams have been independently carried out. The long pulse production of the high current beams has achieved 100 s at the beam current of 15 A by modifying the JT-60 negative ion source. The pulse duration time is increased three times longer than that before the modification. As for the acceleration, a pulse duration time has been also extended two orders of magnitudes from 0.4 s to 60 s. The developments of the negative ion source and acceleration at JAEA are well in progress towards the realization of the negative ion sources and accelerators for fusion applications. (C) 2015 AIP Publishing LLC. C1 [Hanada, M.; Kojima, A.; Tobari, H.; Nishikiori, R.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.] Japan Atom Energy Agcy, 801-1 Mukouyama, Naka, Ibaraki 3190913, Japan. [Yamano, Y.] Saitama Univ, Saitama, Saitama 3388570, Japan. [Grisham, L. R.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Hanada, M (reprint author), Japan Atom Energy Agcy, 801-1 Mukouyama, Naka, Ibaraki 3190913, Japan. EM hanada.masaya@jaea.go.jp NR 10 TC 0 Z9 0 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B322 DI 10.1063/1.4934584 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900143 PM 26932050 ER PT J AU Hershcovitch, A Gushenets, VI Seleznev, DN Bugaev, AS Dugin, S Oks, EM Kulevoy, TV Alexeyenko, O Kozlov, A Kropachev, GN Kuibeda, RP Minaev, S Vizir, A Yushkov, GY AF Hershcovitch, A. Gushenets, V. I. Seleznev, D. N. Bugaev, A. S. Dugin, S. Oks, E. M. Kulevoy, T. V. Alexeyenko, O. Kozlov, A. Kropachev, G. N. Kuibeda, R. P. Minaev, S. Vizir, A. Yushkov, G. Yu. TI Molecular ion sources for low energy semiconductor ion implantation (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID BEAM EPITAXY; PH3; ASH3 AB Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH(3) = P-4 + 6H(2); generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P-4(+) ion beams were extracted. Results from devices and some additional concepts are described. (C) 2015 AIP Publishing LLC. C1 [Hershcovitch, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu.] Russian Acad Sci, High Current Elect Inst, Siberian Branch, Tomsk 634055, Russia. [Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Dugin, S.; Alexeyenko, O.] Russian Federat State Res Inst Chem & Technol Org, State Sci Ctr, Moscow, Russia. RP Hershcovitch, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM hershcovitch@bnl.gov RI Yushkov, Georgy/O-8024-2015; Vizir, Alexey/R-2139-2016; OI Yushkov, Georgy/0000-0002-7615-6058; Vizir, Alexey/0000-0002-9563-8650; Oks, Efim/0000-0002-9323-0686 NR 12 TC 0 Z9 0 U1 6 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B702 DI 10.1063/1.4931719 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900158 PM 26932065 ER PT J AU Hershcovitch, AI AF Hershcovitch, Ady I. TI Eliminating unwanted electrons in EBIS devices SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB In electron beam ion sources, step-wise ionization to high charge states is accomplished by magnetically confined electron beam. Electron space charge and high voltage electrodes confine the ions. The relativistic heavy ion collider (RHIC) ion source Debye length meets requirements for instabilities with free source of energy to grow. Electrons stripped from ions provide energy for a variety of microinstabilities to grow. Possible solution is to remove these electrons from the trap to a drift tube biased to higher voltage than the other tubes between the gate and the collector. If needed, a split drift tube for bleeding these electrons to ground is added. (C) 2015 AIP Publishing LLC. C1 [Hershcovitch, Ady I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Hershcovitch, AI (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. EM hershcovitch@bnl.gov NR 11 TC 1 Z9 1 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A918 DI 10.1063/1.4937013 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900072 PM 26931979 ER PT J AU Ikeda, S Kumaki, M Kanesue, T Okamura, M AF Ikeda, S. Kumaki, M. Kanesue, T. Okamura, M. TI Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL. (C) 2015 AIP Publishing LLC. C1 [Ikeda, S.] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2168502, Japan. [Ikeda, S.; Kumaki, M.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510108, Japan. [Kanesue, T.; Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Ikeda, S (reprint author), Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2168502, Japan.; Ikeda, S (reprint author), RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510108, Japan. EM ikeda.s.ae@m.titech.ac.jp NR 3 TC 0 Z9 0 U1 3 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A915 DI 10.1063/1.4935785 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900069 PM 26931976 ER PT J AU Ikeda, S Takahashi, K Okamura, M Horioka, K AF Ikeda, S. Takahashi, K. Okamura, M. Horioka, K. TI Behavior of moving plasma in solenoidal magnetic field in a laser ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons. (C) 2015 AIP Publishing LLC. C1 [Ikeda, S.; Horioka, K.] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2268502, Japan. [Ikeda, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510108, Japan. [Takahashi, K.] Nagaoka Univ Technol, Dept Elect Engn, Nagaoka, Niigata 9402137, Japan. [Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Ikeda, S (reprint author), Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2268502, Japan.; Ikeda, S (reprint author), RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510108, Japan. EM ikeda.s.ae@m.titech.ac.jp NR 9 TC 2 Z9 2 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A912 DI 10.1063/1.4935646 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900066 PM 26931973 ER PT J AU Ji, Q Seidl, PA Waldron, WL Takakuwa, JH Friedman, A Grote, DP Persaud, A Barnard, JJ Schenkel, T AF Ji, Q. Seidl, P. A. Waldron, W. L. Takakuwa, J. H. Friedman, A. Grote, D. P. Persaud, A. Barnard, J. J. Schenkel, T. TI Development and testing of a pulsed helium ion source for probing materials and warm dense matter studies SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID NDCX-II AB The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of similar to 1 eV using intense, short pulses (similar to 1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He+ ions leads to more uniform energy deposition of the target material than Li+ ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li+ ions from a hot plate type ion source. He+ beam pulses as high as 200 mA at the peak and 4 mu s long were measured from a multi-aperture 7-cm-diameter emission area. Within +/- 5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies. (C) 2015 AIP Publishing LLC. C1 [Ji, Q.; Seidl, P. A.; Waldron, W. L.; Takakuwa, J. H.; Friedman, A.; Grote, D. P.; Persaud, A.; Barnard, J. J.; Schenkel, T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Friedman, A.; Grote, D. P.; Barnard, J. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ji, Q (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM qji@lbl.gov NR 7 TC 2 Z9 2 U1 3 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B707 DI 10.1063/1.4932569 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900163 PM 26932070 ER PT J AU Kanesue, T Kumaki, M Ikeda, S Okamura, M AF Kanesue, T. Kumaki, M. Ikeda, S. Okamura, M. TI Laser ion source for isobaric heavy ion collider experiment SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is Ru-96 + Zr-96. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions. (C) 2016 AIP Publishing LLC. C1 [Kanesue, T.; Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Kumaki, M.] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan. [Kumaki, M.; Ikeda, S.] RIKEN, Nishina Ctr Accelerator Based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Ikeda, S.] Tokyo Inst Technol, lnterdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2268503, Japan. RP Kanesue, T (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. EM tkanesue@bnl.gov NR 8 TC 0 Z9 0 U1 3 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A920 DI 10.1063/1.4940405 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900074 PM 26931981 ER PT J AU Kanesue, T Kumaki, M Ikeda, S Okamura, M AF Kanesue, T. Kumaki, M. Ikeda, S. Okamura, M. TI Low charge state heavy ion production with sub-nanosecond laser SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID PLASMA AB We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target. (C) 2015 AIP Publishing LLC. C1 [Kanesue, T.; Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Kumaki, M.] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan. [Kumaki, M.; Ikeda, S.] RIKEN, Nishina Ctr Accelerator Based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Ikeda, S.] Tokyo Inst Technol, lnterdisciplinary Grad Sch Sci & Engn, Tokyo, Kanagawa 2268503, Japan. RP Kanesue, T (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. EM tkanesue@bnl.gov NR 7 TC 0 Z9 0 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A916 DI 10.1063/1.4935625 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900070 PM 26931977 ER PT J AU Koivisto, H Kalvas, T Tarvainen, O Komppula, J Laulainen, J Kronholm, R Ranttila, K Tuunanen, J Thuillier, T Xie, D Machicoane, G AF Koivisto, H. Kalvas, T. Tarvainen, O. Komppula, J. Laulainen, J. Kronholm, R. Ranttila, K. Tuunanen, J. Thuillier, T. Xie, D. Machicoane, G. TI Ion source research and development at University of Jyvaskyla: Studies of different plasma processes and towards the higher beam intensities SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID JYFL AB Several ion source related research and development projects are in progress at the Department of Physics, University of Jyvaskyla (JYFL). The work can be divided into investigation of the ion source plasma and development of ion sources, ion beams, and diagnostics. The investigation covers the Electron Cyclotron Resonance Ion Source (ECRIS) plasma instabilities, vacuum ultraviolet (VUV) and visible light emission, photon induced electron emission, and the development of plasma diagnostics. The ion source development covers the work performed for radio-frequency-driven negative ion source, RADIS, beam line upgrade of the JYFL 14 GHz ECRIS, and the development of a new room-temperature-magnet 18 GHz ECRIS, HIISI. (C) 2015 AIP Publishing LLC. C1 [Koivisto, H.; Kalvas, T.; Tarvainen, O.; Komppula, J.; Laulainen, J.; Kronholm, R.; Ranttila, K.; Tuunanen, J.] Univ Jyvaskyla, Dept Phys, POB 35 YFL, FI-40014 Jyvaskyla, Finland. [Thuillier, T.] Univ Grenoble Alpes 1, CNRS IN2P3, LPSC, 53 Rue Martyrs, F-38026 Grenoble, France. [Xie, D.] Lawrence Berkeley Natl Lab, One Cyclotron Rd, Berkeley, CA 94720 USA. [Machicoane, G.] Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. RP Koivisto, H (reprint author), Univ Jyvaskyla, Dept Phys, POB 35 YFL, FI-40014 Jyvaskyla, Finland. EM hannu.koivisto@phys.jyu.fi OI Komppula, Jani/0000-0001-5330-556X NR 23 TC 0 Z9 0 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A725 DI 10.1063/1.4934687 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900036 PM 26931943 ER PT J AU Kojima, A Hanada, M Tobari, H Nishikiori, R Hiratsuka, J Kashiwagi, M Umeda, N Yoshida, M Ichikawa, M Watanabe, K Yamano, Y Grisham, LR AF Kojima, A. Hanada, M. Tobari, H. Nishikiori, R. Hiratsuka, J. Kashiwagi, M. Umeda, N. Yoshida, M. Ichikawa, M. Watanabe, K. Yamano, Y. Grisham, L. R. TI Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multistage high voltage bushings. (C) 2015 AIP Publishing LLC. C1 [Kojima, A.; Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Yamano, Y.] Saitama Univ, Saitama, Saitama 3388570, Japan. [Grisham, L. R.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Kojima, A (reprint author), Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. EM kojima.atsushi@jaea.go.jp NR 14 TC 1 Z9 1 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B304 DI 10.1063/1.4931803 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900125 PM 26932032 ER PT J AU Kumaki, M Steski, D Ikeda, S Kanesue, T Okamura, M Washio, M AF Kumaki, Masafumi Steski, Dannie Ikeda, Shunsuke Kanesue, Takeshi Okamura, Masahiro Washio, Masakazu TI Contribution of material's surface layer on charge state distribution in laser ablation plasma SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C6+ ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation. (C) 2016 AIP Publishing LLC. C1 [Kumaki, Masafumi; Washio, Masakazu] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan. [Kumaki, Masafumi; Ikeda, Shunsuke; Okamura, Masahiro] RIKEN, Nishina Ctr Accelerator Based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Steski, Dannie; Kanesue, Takeshi; Okamura, Masahiro] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Ikeda, Shunsuke] Tokyo Inst Technol, lnterdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2268503, Japan. RP Kumaki, M (reprint author), Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan.; Kumaki, M (reprint author), RIKEN, Nishina Ctr Accelerator Based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM rogus@asagi.waseda.jp NR 7 TC 0 Z9 0 U1 3 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A921 DI 10.1063/1.4939781 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900075 PM 26931982 ER PT J AU Lettry, J Aguglia, D Alessi, J Andersson, P Bertolo, S Briefi, S Butterworth, A Coutron, Y Dallocchio, A David, N Chaudet, E Faircloth, D Fantz, U Fink, DA Garlasche, M Grudiev, A Guida, R Hansen, J Haase, M Hatayama, A Jones, A Koszar, I Lallement, JB Lombardi, AM Machado, C Mastrostefano, C Mathot, S Mattei, S Moyret, P Nisbet, D Nishida, K O'Neil, M Paoluzzi, M Scrivens, R Shibata, T Steyaert, D Thaus, N Voulgarakis, G AF Lettry, J. Aguglia, D. Alessi, J. Andersson, P. Bertolo, S. Briefi, S. Butterworth, A. Coutron, Y. Dallocchio, A. David, N. Chaudet, E. Faircloth, D. Fantz, U. Fink, D. A. Garlasche, M. Grudiev, A. Guida, R. Hansen, J. Haase, M. Hatayama, A. Jones, A. Koszar, I. Lallement, J. -B. Lombardi, A. M. Machado, C. Mastrostefano, C. Mathot, S. Mattei, S. Moyret, P. Nisbet, D. Nishida, K. O'Neil, M. Paoluzzi, M. Scrivens, R. Shibata, T. Steyaert, D. Thaus, N. Voulgarakis, G. TI Linac4 H- ion sources SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB CERN's 160 MeV H- linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 pi.mm.mrad. The optimum ratio of the co-extracted electron-to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H- source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H- source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described. (C) 2015 AIP Publishing LLC. C1 [Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Jones, A.; Koszar, I.; Lallement, J. -B.; Lombardi, A. M.; Machado, C.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Scrivens, R.; Steyaert, D.; Thaus, N.; Voulgarakis, G.] CERN ABP, CH-1211 Geneva 23, Switzerland. [Alessi, J.] Brookhaven Natl Lab, BNL CA, Upton, NY 11973 USA. [Briefi, S.; Fantz, U.] Univ Augsburg, AG Expt Plasmaphys, D-86135 Augsburg, Germany. [Faircloth, D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Hatayama, A.; Shibata, T.] Keio Univ, Grad Sch Sci & Technol, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan. RP Lettry, J (reprint author), CERN ABP, CH-1211 Geneva 23, Switzerland. EM Jacques.lettry@cern.ch NR 14 TC 3 Z9 3 U1 5 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B139 DI 10.1063/1.4936120 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900114 PM 26932021 ER PT J AU Lu, W Qian, C Sun, LT Zhang, XZ Fang, X Gu, JW Yang, Y Feng, YC Ma, BH Xiong, B Ruan, L Zhao, HW Zhan, WL Xie, D AF Lu, W. Qian, C. Sun, L. T. Zhang, X. Z. Fang, X. Gu, J. W. Yang, Y. Feng, Y. C. Ma, B. H. Xiong, B. Ruan, L. Zhao, H. W. Zhan, W. L. Xie, D. TI High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 e mu A of O7+, 620 e mu A of Ar11+, 430 e mu A of Ar12+, 430 e mu A of Xe20+, and so on. The comparison will be discussed in the paper. (C) 2015 AIP Publishing LLC. C1 [Lu, W.; Qian, C.; Sun, L. T.; Zhang, X. Z.; Fang, X.; Gu, J. W.; Yang, Y.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.; Zhan, W. L.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 73000, Peoples R China. [Fang, X.; Gu, J. W.; Yang, Y.] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Xiong, B.; Ruan, L.] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China. [Xie, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Lu, W (reprint author), Chinese Acad Sci, Inst Modern Phys, Lanzhou 73000, Peoples R China. EM luwang@impcas.ac.cn OI Lu, wang/0000-0001-9798-8964 NR 6 TC 1 Z9 1 U1 4 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A738 DI 10.1063/1.4936183 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900049 PM 26931956 ER PT J AU Machicoane, G Felice, H Fogleman, J Hafalia, R Morgan, G Pan, H Prestemon, S Pozdeyev, E Rao, X Ren, HT Tobos, L AF Machicoane, Guillaume Felice, Helene Fogleman, Jesse Hafalia, Ray Morgan, Glenn Pan, Heng Prestemon, Soren Pozdeyev, Eduard Rao, Xing Ren, Haitao Tobos, Larry TI Status of ECR ion sources for the Facility for Rare Isotope Beams (FRIB) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB Ahead of the commissioning schedule, installation of the first Electron Cyclotron Resonance (ECR) ion source in the front end area of the Facility for Rare Isotope Beam (FRIB) is planned for the end of 2015. Operating at 14 GHz, this first ECR will be used for the commissioning and initial operation of the facility. In parallel, a superconducting magnet structure compatible with operation at 28 GHz for a new ECR ion source is in development at Lawrence Berkeley National Laboratory. The paper reviews the overall work in progress and development done with ECR ion sources for FRIB. (C) 2016 AIP Publishing LLC. C1 [Machicoane, Guillaume; Morgan, Glenn; Pozdeyev, Eduard; Rao, Xing; Ren, Haitao] Michigan State Univ, Facil Rare Isotope Beams, E Lansing, MI 48824 USA. [Felice, Helene; Hafalia, Ray; Pan, Heng; Prestemon, Soren] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Fogleman, Jesse; Tobos, Larry] Michigan State Univ, Natl Superconducting Cyclotron Lab, 640 South Shaw Lane, E Lansing, MI 48824 USA. RP Machicoane, G (reprint author), Michigan State Univ, Facil Rare Isotope Beams, E Lansing, MI 48824 USA. EM machicoane@frib.msu.edu NR 14 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A743 DI 10.1063/1.4939643 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900054 PM 26931961 ER PT J AU Okamura, M Stifler, C Palm, K Steski, D Ikeda, S Kumaki, M Kanesue, T AF Okamura, M. Stifler, C. Palm, K. Steski, D. Ikeda, S. Kumaki, M. Kanesue, T. TI Proton beam production by a laser ion source with hydride target SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam. (C) 2015 AIP Publishing LLC. C1 [Okamura, M.; Steski, D.; Kanesue, T.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Okamura, M.; Ikeda, S.; Kumaki, M.] RIKEN, Nishina Ctr Accelerator Based Sci, Saitama, Japan. [Stifler, C.] Providence Coll, Engn Phys Syst Dept, Providence, RI 02918 USA. [Palm, K.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Ikeda, S.] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Kanagawa, Japan. [Kumaki, M.] Waseda Univ, Res Inst Sci & Engn, Tokyo, Japan. RP Okamura, M (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA.; Okamura, M (reprint author), RIKEN, Nishina Ctr Accelerator Based Sci, Saitama, Japan. EM okamura@bnl.gov NR 7 TC 0 Z9 0 U1 4 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A906 DI 10.1063/1.4933341 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900060 PM 26931967 ER PT J AU Okamura, M Palm, K Stifler, C Steski, D Ikeda, S Kumaki, M Kanesue, T AF Okamura, M. Palm, K. Stifler, C. Steski, D. Ikeda, S. Kumaki, M. Kanesue, T. TI Calcium and lithium ion production for laser ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create low charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam. (C) 2015 AIP Publishing LLC. C1 [Okamura, M.; Steski, D.; Kanesue, T.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Okamura, M.; Ikeda, S.; Kumaki, M.] RIKEN, Nishina Ctr Accelerator Based Sci, Saitama, Japan. [Palm, K.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Steski, D.] Providence Coll, Engn Phys Syst Dept, Providence, RI 02918 USA. [Ikeda, S.] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Kanagawa, Japan. [Kumaki, M.] Waseda Univ, Res Inst Sci & Engn, Tokyo, Japan. RP Okamura, M (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA.; Okamura, M (reprint author), RIKEN, Nishina Ctr Accelerator Based Sci, Saitama, Japan. EM okamura@bnl.gov NR 5 TC 0 Z9 0 U1 3 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A901 DI 10.1063/1.4931619 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900055 PM 26931962 ER PT J AU Ostroumov, PN Barcikowski, A Dickerson, CA Mustapha, B Perry, A Sharamentov, SI Vondrasek, RC Zinkann, G AF Ostroumov, P. N. Barcikowski, A. Dickerson, C. A. Mustapha, B. Perry, A. Sharamentov, S. I. Vondrasek, R. C. Zinkann, G. TI Off-line commissioning of EBIS and plans for its integration into ATLAS and CARIBU SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne Tandem Linac Accelerator System (ATLAS). The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and significantly improve the purity of reaccelerated radioactive ion beams. The CARIBU EBIS-CB has been successfully commissioned offline with an external singly charged cesium ion source. The performance of the EBIS fully meets the specifications to breed rare isotope beams delivered from CARIBU. The EBIS is being relocated and integrated into ATLAS and CARIBU. A long electrostatic beam transport system including two 180. bends in the vertical plane has been designed. The commissioning of the EBIS and the beam transport system in their permanent location will start at the end of this year. (C) 2015 AIP Publishing LLC. C1 [Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Mustapha, B.; Perry, A.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ostroumov, PN (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM ostroumov@anl.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B506 DI 10.1063/1.4935016 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900152 PM 26932059 ER PT J AU Raparia, D Alessi, J Atoian, G Zelenski, A AF Raparia, D. Alessi, J. Atoian, G. Zelenski, A. TI Charge neutralized low energy beam transport at Brookhaven 200 MeV linac SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB The H- magnetron source provides about 100 mA H- beam to be match into the radio-frequency quadrupole accelerator. As H- beam traverses through low energy transport, it ionizes the residual gas and electrons are repelled and positive ions are trapped in the beam, due to negative potential of the beam, providing charge neutralization for the H- beam. The neutralization time for the critical density depends upon the background gas and its pressure. Critical density for xenon gas at 35 keV is about 43 times smaller than that of hydrogen and stripping cross section is only 5 times than that of hydrogen gas. We are using xenon gas to reduce neutralization time and to improve transmission through the 200 MeV linac. We are also using pulse nitrogen gas to improve transmission and stability of polarized H- beam from optically pumped polarized ion source. (C) 2015 AIP Publishing LLC. C1 [Raparia, D.; Alessi, J.; Atoian, G.; Zelenski, A.] Brookhaven Natl Lab, Upton, NY 11786 USA. RP Raparia, D (reprint author), Brookhaven Natl Lab, Upton, NY 11786 USA. EM raparia@bnl.gov NR 7 TC 0 Z9 0 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B935 DI 10.1063/1.4937766 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900200 PM 26932107 ER PT J AU Rodatos, A Greuner, H Jakubowski, MW Boscary, J Wurden, GA Pedersen, TS Konig, R AF Rodatos, A. Greuner, H. Jakubowski, M. W. Boscary, J. Wurden, G. A. Pedersen, T. S. Koenig, R. TI Detecting divertor damage during steady state operation of Wendelstein 7-X from thermographic measurements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID CARBON; PERFORMANCE; FACILITY; ELEMENTS; TARGETS; LAYERS AB Wendelstein 7-X (W7-X) aims to demonstrate the reactor capability of the stellarator concept, by creating plasmas with pulse lengths of up to 30 min at a heating power of up to 10 MW. The divertor plasma facing components will see convective steady state heat flux densities of up to 10 MW/m(2). These high heat flux target elements are actively cooled and are covered with carbon fibre reinforced carbon (CFC) as plasma facing material. The CFC is bonded to the CuCrZr cooling structure. Over the life time of the experiment this interface may weaken and cracks can occur, greatly reducing the heat conduction between the CFC tile and the cooling structure. Therefore, there is not only the need to monitor the divertor to prevent damage by overheating but also the need to detect these fatigue failures of the interface. A method is presented for an early detection of fatigue failures of the interface layer, solely by using the information delivered by the IR-cameras monitoring the divertor. This was developed and validated through experiments made with high heat flux target elements prior to installation in W7-X. C1 [Rodatos, A.; Jakubowski, M. W.; Pedersen, T. S.; Koenig, R.] Max Planck Inst Plasma Phys, Wendelsteinstr 1, Greifswald, Germany. [Greuner, H.; Boscary, J.] Max Planck Inst Plasma Phys, Boltzmannstr 2, Greifswald, Germany. [Wurden, G. A.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. RP Rodatos, A (reprint author), Max Planck Inst Plasma Phys, Wendelsteinstr 1, Greifswald, Germany. EM Alexander.Rodatos@ipp.mpg.de RI Wurden, Glen/A-1921-2017; OI Wurden, Glen/0000-0003-2991-1484; Jakubowski, Marcin/0000-0002-6557-3497 NR 24 TC 0 Z9 0 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 023506 DI 10.1063/1.4941717 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900236 PM 26931848 ER PT J AU Scott, R Bauder, W Palchan-Hazan, T Pardo, R Vondrasek, R AF Scott, R. Bauder, W. Palchan-Hazan, T. Pardo, R. Vondrasek, R. TI Ion beam production with sub-milligram samples of material from an ECR source for AMS SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB Current accelerator mass spectrometry experiments at the Argonne Tandem Linac Accelerator System facility at Argonne National Laboratory push us to improve the ion source performance with a large number of samples and a need to minimize cross contamination. These experiments can require the creation of ion beams from as little as a few micrograms of material. These low concentration samples push the limit of our current efficiency and stability capabilities of the electron cyclotron resonance ion source. A combination of laser ablation and sputtering techniques coupled with a newly modified multi-sample changer has been used to meet this demand. We will discuss performance, stability, and consumption rates as well as planned improvements. (C) 2015 AIP Publishing LLC. C1 [Scott, R.; Bauder, W.; Palchan-Hazan, T.; Pardo, R.; Vondrasek, R.] Argonne Natl Lab, Argonne Tandem Linac Accelerator Syst ATLAS, Lemont, IL 60439 USA. [Bauder, W.] Univ Notre Dame, Nucl Struct Lab, Notre Dame, IN 46556 USA. RP Scott, R (reprint author), Argonne Natl Lab, Argonne Tandem Linac Accelerator Syst ATLAS, Lemont, IL 60439 USA. EM scott@phy.anl.gov NR 6 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A732 DI 10.1063/1.4935001 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900043 PM 26931950 ER PT J AU Sierchio, JM Cziegler, I Terry, JL White, AE Zweben, SJ AF Sierchio, J. M. Cziegler, I. Terry, J. L. White, A. E. Zweben, S. J. TI Comparison of velocimetry techniques for turbulent structures in gas-puff imaging data SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID SCRAPE-OFF-LAYER; ALCATOR C-MOD; TIME-DELAY ESTIMATION; EDGE TURBULENCE; TOKAMAK; TRANSPORT; NSTX; FLOW AB Recent analysis of Gas Puff Imaging (GPI) data from Alcator C-Mod found blob velocities with a modified tracking time delay estimation (TDE). These results disagree with velocity analysis performed using direct Fourier methods. In this paper, the two analysis methods are compared. The implementations of these methods are explained, and direct comparisons using the same GPI data sets are presented to highlight the discrepancies in measured velocities. In order to understand the discrepancies, we present a code that generates synthetic sequences of images that mimic features of the experimental GPI images, with user-specified input values for structure (blob) size and velocity. This allows quantitative comparison of the TDE and Fourier analysis methods, which reveals their strengths and weaknesses. We found that the methods agree for structures of any size as long as all structures move at the same velocity and disagree when there is significant nonlinear dispersion or when structures appear to move in opposite directions. Direct Fourier methods used to extract poloidal velocities give incorrect results when there is a significant radial velocity component and are subject to the barber pole effect. Tracking TDE techniques give incorrect velocity measurements when there are features moving at significantly different speeds or in different directions within the same field of view. Finally, we discuss the limitations and appropriate use of each of methods and applications to the relationship between blob size and velocity. (C) 2016 AIP Publishing LLC. C1 [Sierchio, J. M.; Terry, J. L.; White, A. E.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Cziegler, I.] Univ Calif San Diego, Ctr Momentum Transport & Flow Org, San Diego, CA 92093 USA. [Zweben, S. J.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Sierchio, JM (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM sierchio@mit.edu OI Terry, James/0000-0003-4255-5509 NR 41 TC 2 Z9 2 U1 10 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 023502 DI 10.1063/1.4939672 PG 14 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900232 PM 26931844 ER PT J AU Sosa, A Bollinger, DS Duel, K Karns, PR Pellico, W Tan, CY AF Sosa, A. Bollinger, D. S. Duel, K. Karns, P. R. Pellico, W. Tan, C. Y. TI An overview of the new test stand for H- ion sources at FNAL SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB A new test stand at Fermi National Accelerator Laboratory (FNAL) is being constructed to carry out experiments to develop and upgrade the present magnetron-type sources of H- ions of up to 80 mA at 35 keV in the context of the Proton Improvement Plan. The aim of this plan is to provide high-power proton beams for the experiments at FNAL. The technical details of the construction and layout of this test stand are presented, along with a prospective set of diagnostics to monitor the sources. (C) 2015 AIP Publishing LLC. C1 [Sosa, A.; Bollinger, D. S.; Duel, K.; Karns, P. R.; Pellico, W.; Tan, C. Y.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Sosa, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM asosa@fnal.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B105 DI 10.1063/1.4932119 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900080 PM 26931987 ER PT J AU Stockli, MP Han, B Murray, SN Pennisi, TR Piller, C Santana, M Welton, R AF Stockli, M. P. Han, B. Murray, S. N. Pennisi, T. R. Piller, C. Santana, M. Welton, R. TI Recent performance of and plasma outage studies with the SNS H- source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID ION-SOURCE AB Spallation Neutron Source ramps to higher power levels that can be sustained with high availability. The goal is 1.4 MW despite a compromised radio frequency quadrupole (RFQ), which requires higher radio frequency power than design levels to approach the nominal beam transmission. Unfortunately at higher power the RFQ often loses its thermal stability, a problem apparently enhanced by beam losses and high influxes of hydrogen. Delivering as much H- beam as possible with the least amount of hydrogen led to plasma outages. The root cause is the dense 1-ms long similar to 55-kW 2-MHz plasma pulses reflecting similar to 90% of the continuous similar to 300 W, 13-MHz power, which was mitigated with a 4-ms filter for the reflected power signal and an outage resistant, slightly detuned 13-MHz match. Lowering the H-2 gas also increased the H- beam current to similar to 55 mA and increased the RFQ transmission by similar to 7% (relative). (C) 2015 AIP Publishing LLC. C1 [Stockli, M. P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Piller, C.; Santana, M.; Welton, R.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. RP Stockli, MP (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. EM stockli@ornl.gov OI Piller, Chip/0000-0003-4729-9364 NR 19 TC 2 Z9 2 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B140 DI 10.1063/1.4935640 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900115 PM 26932022 ER PT J AU Tamura, J Kumaki, M Kondo, K Kanesue, T Okamura, M AF Tamura, Jun Kumaki, Masafumi Kondo, Kotaro Kanesue, Takeshi Okamura, Masahiro TI Iron plasma generation using a Nd:YAG laser pulse of several hundred picoseconds SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB We investigated the high intensity plasma generated by using a Nd:YAG laser to apply a laser-produced plasma to the direct plasma injection scheme. The capability of the source to generate high charge state ions strongly depends on the power density of the laser irradiation. Therefore, we focused on using a higher power laser with several hundred picoseconds of pulse width. The iron target was irradiated with the pulsed laser, and the ion current of the laser-produced iron plasma was measured using a Faraday cup and the charge state distribution was investigated using an electrostatic ion analyzer. We found that higher charge state iron ions (up to Fe21+) were obtained using a laser pulse of several hundred picoseconds in comparison to those obtained using a laser pulse of several nanoseconds (up to Fe19+). We also found that when the laser irradiation area was relatively large, the laser power was absorbed mainly by the contamination on the target surface. (C) 2016 AIP Publishing LLC. C1 [Tamura, Jun] Japan Atom Energy Agcy, JPARC Ctr, Ibaraki 3191195, Japan. [Kumaki, Masafumi] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan. [Kondo, Kotaro] Tokyo Inst Technol, Nucl Reactors Res Lab, Tokyo 1528550, Japan. [Kanesue, Takeshi; Okamura, Masahiro] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Tamura, J (reprint author), Japan Atom Energy Agcy, JPARC Ctr, Ibaraki 3191195, Japan. EM jtamura@post.j-parc.jp NR 4 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A919 DI 10.1063/1.4938258 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900073 PM 26931980 ER PT J AU Thuillier, T Angot, J Benitez, JY Hodgkinson, A Lyneis, CM Todd, DS Xie, DZ AF Thuillier, T. Angot, J. Benitez, J. Y. Hodgkinson, A. Lyneis, C. M. Todd, D. S. Xie, D. Z. TI Investigation on the electron flux to the wall in the VENUS ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. A burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines are presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall. (C) 2015 AIP Publishing LLC. C1 [Thuillier, T.; Angot, J.] Univ Grenoble Alpes, CNRS, LPSC, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M.; Todd, D. S.; Xie, D. Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Thuillier, T (reprint author), Univ Grenoble Alpes, CNRS, LPSC, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. EM thuillier@lpsc.in2p3.fr NR 14 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A736 DI 10.1063/1.4935989 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900047 PM 26931954 ER PT J AU Varentsov, D Antonov, O Bakhmutova, A Barnes, CW Bogdanov, A Danly, CR Efimov, S Endres, M Fertman, A Golubev, AA Hoffmann, DHH Ionita, B Kantsyrev, A Krasik, YE Lang, PM Lomonosov, I Mariam, FG Markov, N Merrill, FE Mintsev, VB Nikolaev, D Panyushkin, V Rodionova, M Schanz, M Schoenberg, K Semennikov, A Shestov, L Skachkov, VS Turtikov, V Udrea, S Vasylyev, O Weyrich, K Wilde, C Zubareva, A AF Varentsov, D. Antonov, O. Bakhmutova, A. Barnes, C. W. Bogdanov, A. Danly, C. R. Efimov, S. Endres, M. Fertman, A. Golubev, A. A. Hoffmann, D. H. H. Ionita, B. Kantsyrev, A. Krasik, Ya. E. Lang, P. M. Lomonosov, I. Mariam, F. G. Markov, N. Merrill, F. E. Mintsev, V. B. Nikolaev, D. Panyushkin, V. Rodionova, M. Schanz, M. Schoenberg, K. Semennikov, A. Shestov, L. Skachkov, V. S. Turtikov, V. Udrea, S. Vasylyev, O. Weyrich, K. Wilde, C. Zubareva, A. TI Commissioning of the PRIOR proton microscope SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID HIGH-ENERGY-PHYSICS; FACILITY; ACCELERATOR; RADIOGRAPHY; INSTITUTE; FAIR AB Recently, a new high energy proton microscopy facility PRIOR (Proton Microscope for FAIR Facility for Anti-proton and Ion Research) has been designed, constructed, and successfully commissioned at GSI Helmholtzzentrum fr Schwerionenforschung (Darmstadt, Germany). As a result of the experiments with 3.5-4.5 GeV proton beams delivered by the heavy ion synchrotron SIS-18 of GSI, 30 mu m spatial and 10 ns temporal resolutions of the proton microscope have been demonstrated. A new pulsed power setup for studying properties of matter under extremes has been developed for the dynamic commissioning of the PRIOR facility. This paper describes the PRIOR setup as well as the results of the first static and dynamic proton radiography experiments performed at GSI. (C) 2016 AIP Publishing LLC. C1 [Varentsov, D.; Ionita, B.; Rodionova, M.; Shestov, L.; Vasylyev, O.; Weyrich, K.] GSI Helmholtzzentrum Schwerionenforsch GmbH, Darmstadt, Germany. [Antonov, O.; Efimov, S.; Krasik, Ya. E.] Technion, Dept Phys, Haifa, Israel. [Bakhmutova, A.; Bogdanov, A.; Fertman, A.; Golubev, A. A.; Kantsyrev, A.; Markov, N.; Panyushkin, V.; Semennikov, A.; Skachkov, V. S.; Turtikov, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Barnes, C. W.; Danly, C. R.; Mariam, F. G.; Merrill, F. E.; Schoenberg, K.; Wilde, C.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Endres, M.; Hoffmann, D. H. H.; Lang, P. M.; Rodionova, M.; Schanz, M.; Shestov, L.; Udrea, S.] Tech Univ Darmstadt, Darmstadt, Germany. [Lomonosov, I.; Mintsev, V. B.; Nikolaev, D.; Zubareva, A.] Inst Problems Chem Phys, Chernogolovka, Russia. [Bogdanov, A.; Turtikov, V.] Skolkovo Fdn, Skolkovo, Russia. [Lang, P. M.] European XFEL GmbH, Hamburg, Germany. [Udrea, S.] Goethe Univ Frankfurt, Frankfurt, Germany. RP Varentsov, D (reprint author), GSI Helmholtzzentrum Schwerionenforsch GmbH, Darmstadt, Germany. EM d.varentsov@gsi.de RI Lomonosov, Igor/F-1217-2011; OI Lomonosov, Igor/0000-0003-0083-7727; Barnes, Cris/0000-0002-3347-0741 NR 33 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 023303 DI 10.1063/1.4941685 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900229 PM 26931841 ER PT J AU Wells, RP Ghiorso, W Staples, J Huang, TM Sannibale, F Kramasz, TD AF Wells, R. P. Ghiorso, W. Staples, J. Huang, T. M. Sannibale, F. Kramasz, T. D. TI Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID RF GUN AB A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described. (C) 2016 AIP Publishing LLC. C1 [Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Huang, T. M.] Inst High Energy Phys, Beijing 100039, Peoples R China. RP Wells, RP (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rpwells@lbl.gov OI Wells, Russell/0000-0003-1764-7129 NR 23 TC 0 Z9 0 U1 4 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 023302 DI 10.1063/1.4941836 PG 14 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900228 PM 26931840 ER PT J AU Welton, RF Aleksandrov, AV Dudnikov, VG Han, BX Kang, Y Murray, SN Pennisi, TR Piller, C Santana, M Stockli, MP AF Welton, R. F. Aleksandrov, A. V. Dudnikov, V. G. Han, B. X. Kang, Y. Murray, S. N. Pennisi, T. R. Piller, C. Santana, M. Stockli, M. P. TI The status of the SNS external antenna ion source and spare RFQ test facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB The Oak Ridge National Laboratory operates the Spallation Neutron Source, consisting of a H- ion source, a 1 GeV linac and an accumulator ring. The accumulated < 1 mu s-long, similar to 35 A beam pulses are extracted from the ring at 60 Hz and directed onto a liquid Hg target. Spalled neutrons are directed to similar to 20 world class instruments. Currently, the facility operates routinely with similar to 1.2 MW of average beam power, which soon will be raised to 1.4 MW. A future upgrade with a second target station calls for raising the power to 2.8 MW. This paper describes the status of two accelerator components expected to play important roles in achieving these goals: a recently acquired RFQ accelerator and the external antenna ion source. Currently, the RFQ is being conditioned in a newly constructed 2.5 MeV Integrated Test Facility (ITF) and the external antenna source is also being tested on a separate test stand. This paper presents the results of experiments and the testing of these systems. (C) 2016 AIP Publishing LLC. C1 [Welton, R. F.; Aleksandrov, A. V.; Han, B. X.; Kang, Y.; Murray, S. N.; Pennisi, T. R.; Piller, C.; Santana, M.; Stockli, M. P.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37830 USA. [Dudnikov, V. G.] Muons Inc, 552 N Batavia Ave, Batavia, IL 60510 USA. RP Welton, RF (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37830 USA. EM welton@ornl.gov OI Piller, Chip/0000-0003-4729-9364 NR 12 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B146 DI 10.1063/1.4935236 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900121 PM 26932028 ER PT J AU Xie, DZ Benitez, JY Hodgkinson, A Loew, T Lyneis, CM Phair, L Pipersky, P Reynolds, B Todd, DS AF Xie, D. Z. Benitez, J. Y. Hodgkinson, A. Loew, T. Lyneis, C. M. Phair, L. Pipersky, P. Reynolds, B. Todd, D. S. TI Development status of a next generation ECRIS: MARS-D at LBNL SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID RESONANCE ION-SOURCE AB To demonstrate a Mixed Axial and Radial field System (MARS) as the best magnet scheme for future ECRISs, MARS-D, a demonstrative ECRIS using a NbTi MARS magnet is progressing at Lawrence Berkeley National Laboratory. An optimized MARS design can use either NbTi or Nb3Sn coils with reduced engineering complexities to construct the needed high-field magnets. The optimized magnet design could enhance MARS-D to a next generation ECRIS by producing minimum-B field maxima of 5.6 T axially and 3.2 T radially for operating frequencies up to 45 GHz. In-progress test winding has achieved a milestone demonstrating the fabrication feasibility of a MARS closed-loop coil. (C) 2015 AIP Publishing LLC. C1 [Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.; Loew, T.; Lyneis, C. M.; Phair, L.; Pipersky, P.; Reynolds, B.; Todd, D. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Xie, DZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. EM zgxie@lbl.gov NR 8 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02A702 DI 10.1063/1.4931713 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900013 PM 26931920 ER PT J AU Yoshida, M Hanada, M Kojima, A Kashiwagi, M Umeda, N Hiratsuka, J Ichikawa, M Watanabe, K Grisham, LR Tsumori, K Kisaki, M AF Yoshida, M. Hanada, M. Kojima, A. Kashiwagi, M. Umeda, N. Hiratsuka, J. Ichikawa, M. Watanabe, K. Grisham, L. R. Tsumori, K. Kisaki, M. TI Time evolution of negative ion profile in a large cesiated negative ion source applicable to fusion reactors SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept AB To understand the physics of the cesium (Cs) recycling in the large Cs-seeded negative ion sources relevant to ITER and JT-60SA with ion extraction area of 45-60 cm x 110-120 cm, the time evolution of the negative ion profile was precisely measured in JT-60SA where the ion extraction area is longitudinally segmented into 5. The Cs was seeded from the oven at 180 degrees C to the ion source. After 1 g of Cs input, surface production of the negative ions appeared only in the central segment where a Cs nozzle was located. Up to 2 g of Cs, the negative ion profile was longitudinally expanded over full ion extraction area. The measured time evolution of the negative ion profile has the similar tendency of distribution of the Cs atoms that is calculated. From the results, it is suggested that Cs atom distribution is correlated with the formation of the negative ion profile. (C) 2015 AIP Publishing LLC. C1 [Yoshida, M.; Hanada, M.; Kojima, A.; Kashiwagi, M.; Umeda, N.; Hiratsuka, J.; Ichikawa, M.; Watanabe, K.] Japan Atom Energy Agcy, 801-1 Mukoyama, Naka, Ibaraki 3110193, Japan. [Grisham, L. R.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Tsumori, K.; Kisaki, M.] Natl Inst Fus Sci, Toki, Gifu 5095792, Japan. RP Yoshida, M (reprint author), Japan Atom Energy Agcy, 801-1 Mukoyama, Naka, Ibaraki 3110193, Japan. EM yoshida.masafumi@jaea.go.jp NR 13 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B144 DI 10.1063/1.4938406 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900119 PM 26932026 ER PT J AU Zelenski, A Atoian, G Raparia, D Ritter, J Steski, D AF Zelenski, A. Atoian, G. Raparia, D. Ritter, J. Steski, D. TI The RHIC polarized H- ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Sources (ICIS) CY AUG 23-28, 2015 CL New York, NY SP Brookhaven Natl Lab, Collider Accelerator Dept ID PHYSICS AB A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H-ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H-ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC. (C) 2015 AIP Publishing LLC. C1 [Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Zelenski, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zelenski@bnl.gov NR 9 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2016 VL 87 IS 2 AR 02B705 DI 10.1063/1.4932392 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DG0FQ UT WOS:000371740900161 PM 26932068 ER PT J AU Vinogradova, SV Sutormin, RA Mironov, AA Soldatov, RA AF Vinogradova, Svetlana V. Sutormin, Roman A. Mironov, Andrey A. Soldatov, Ruslan A. TI Probing-directed identification of novel structured RNAs SO RNA BIOLOGY LA English DT Article DE PARS; RNA secondary structure; RNASurface; RNA structure probing; SHAPE ID BASE-PAIRING PROBABILITIES; SECONDARY STRUCTURE; MAPPING EXPERIMENTS; GENOME-WIDE; SHAPE; TRANSCRIPTOME; CONSTRAINTS; PREDICTION; LANDSCAPE; ALGORITHM AB Transcripts often harbor RNA elements, which regulate cell processes co- or post-transcriptionally. The functions of many regulatory RNA elements depend on their structure, thus it is important to determine the structure as well as to scan genomes for structured elements. State of the art ab initio approaches to predict structured RNAs rely on DNA sequence analysis. They use 2 major types of information inferred from a sequence: thermodynamic stability of an RNA structure and evolutionary footprints of base-pair interactions. In recent years, chemical probing of RNA has arisen as an alternative source of structural information. RNA probing experiments detect positions accessible to specific types of chemicals or enzymes indicating their propensity to be in a paired or unpaired state. There exist several strategies to integrate probing data into RNA secondary structure prediction algorithms that substantially improve the prediction quality. However, whether and how probing data could contribute to detection of structured RNAs remains an open question. We previously developed the energy-based approach RNASurface to detect locally optimal structured RNA elements. Here, we integrate probing data into the RNASurface energy model using a general framework. We show that the use of experimental data allows for better discrimination of ncRNAs from other transcripts. Application of RNASurface to genome-wide analysis of the human transcriptome with PARS data identifies previously undetectable segments, with evidence of functionality for some of them. C1 [Vinogradova, Svetlana V.; Sutormin, Roman A.; Mironov, Andrey A.; Soldatov, Ruslan A.] Moscow MV Lomonosov State Univ, Dept Bioengn & Bioinformat, 1-73 Vorobievy Gory, Moscow 119991, Russia. [Vinogradova, Svetlana V.; Mironov, Andrey A.; Soldatov, Ruslan A.] Russian Acad Sci, Inst Informat Transmiss Problems, 19 Bolshoi Karetnyi Per, Moscow 127994, Russia. [Sutormin, Roman A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94710 USA. RP Vinogradova, SV (reprint author), Moscow MV Lomonosov State Univ, Dept Bioengn & Bioinformat, 1-73 Vorobievy Gory, Moscow 119991, Russia.; Vinogradova, SV (reprint author), Russian Acad Sci, Inst Informat Transmiss Problems, 19 Bolshoi Karetnyi Per, Moscow 127994, Russia. EM kintany@gmail.com NR 43 TC 1 Z9 2 U1 2 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1547-6286 EI 1555-8584 J9 RNA BIOL JI RNA Biol. PD FEB 1 PY 2016 VL 13 IS 2 BP 232 EP 242 DI 10.1080/15476286.2015.1132140 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DG0HE UT WOS:000371745100013 PM 26732206 ER PT J AU Tang, CP Shokla, SK Modhawar, G Wang, Q AF Tang, Chengpei Shokla, Sanesy Kumcr Modhawar, George Wang, Qiang TI An Effective Collaborative Mobile Weighted Clustering Schemes for Energy Balancing in Wireless Sensor Networks SO SENSORS LA English DT Article DE collaborative weighted clustering algorithm; oil leakage monitoring; mobile environments; weighted clustering algorithm; mobile sensing schemes ID CROSS-LAYER OPTIMIZATION; DATA AGGREGATION; OIL PIPELINE; SIGNAL AB Collaborative strategies for mobile sensor nodes ensure the efficiency and the robustness of data processing, while limiting the required communication bandwidth. In order to solve the problem of pipeline inspection and oil leakage monitoring, a collaborative weighted mobile sensing scheme is proposed. By adopting a weighted mobile sensing scheme, the adaptive collaborative clustering protocol can realize an even distribution of energy load among the mobile sensor nodes in each round, and make the best use of battery energy. A detailed theoretical analysis and experimental results revealed that the proposed protocol is an energy efficient collaborative strategy such that the sensor nodes can communicate with a fusion center and produce high power gain. C1 [Tang, Chengpei] Sun Yat Sen Univ, Sch Engn, Guangzhou 510006, Guangdong, Peoples R China. [Shokla, Sanesy Kumcr] Univ Calif, Lawrence Berkeley Natl Lab, Oakland, CA 94612 USA. [Modhawar, George] Valdosta State Univ, Dept Math & Comp Sci, Dartmouth, MA 02747 USA. [Wang, Qiang] Penn State Univ, Dept Comp Sci, University Pk, PA 16802 USA. RP Shokla, SK (reprint author), Univ Calif, Lawrence Berkeley Natl Lab, Oakland, CA 94612 USA. EM tchengp@mail.sysu.edu.cn; sanesy.kumcr@gmail.com; George.modhawar@gmail.com; wangqianedu@163.com FU Science and technology project of Guangdong province [2013B010401012]; Special Funds for the Development of Strategic Emerging Industries in Guangdong Province [2012556036] FX This work was supported by Science and technology project of Guangdong province under Grant No. 2013B010401012, Special Funds for the Development of Strategic Emerging Industries in Guangdong Province under Grant No. 2012556036. The authors would like to thank the anonymous reviewers and the editor for the very instructive suggestions that led to the much improved quality of this paper. NR 55 TC 2 Z9 2 U1 3 U2 9 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD FEB PY 2016 VL 16 IS 2 DI 10.3390/s16020261 PG 19 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA DG0WX UT WOS:000371787800023 PM 26907285 ER PT J AU Lake, AD Wood, CE Bhat, VS Chorley, BN Carswell, GK Sey, YM Kenyon, EM Padnos, B Moore, TM Tennant, AH Schmid, JE George, BJ Ross, DG Hughes, MF Corton, JC Simmons, JE McQueen, CA Hester, SD AF Lake, April D. Wood, Charles E. Bhat, Virunya S. Chorley, Brian N. Carswell, Gleta K. Sey, Yusupha M. Kenyon, Elaina M. Padnos, Beth Moore, Tanya M. Tennant, Alan H. Schmid, Judith E. George, Barbara Jane Ross, David G. Hughes, Michael F. Corton, J. Christopher Simmons, Jane Ellen McQueen, Charlene A. Hester, Susan D. TI Dose and Effect Thresholds for Early Key Events in a PPAR alpha-Mediated Mode of Action SO TOXICOLOGICAL SCIENCES LA English DT Article DE mode of action; adverse outcome pathway; benchmark dose; peroxisome proliferator-activated receptor-alpha; liver carcinogenesis; phthalate ID CHEMICAL RISK-ASSESSMENT; ANDROSTANE RECEPTOR CAR; HUMAN RELEVANCE; FRAMEWORK; MICE; CONCORDANCE; PHTHALATE; TOXICITY; PATHWAY; DI(2-ETHYLHEXYL)PHTHALATE AB Current strategies for predicting adverse health outcomes of environmental chemicals are centered on early key events in toxicity pathways. However, quantitative relationships between early molecular changes in a given pathway and later health effects are often poorly defined. The goal of this study was to evaluate short-term key event indicators using qualitative and quantitative methods in an established pathway of mouse liver tumorigenesis mediated by peroxisome proliferator-activated receptor alpha (PPAR alpha). Male B6C3F1 mice were exposed for 7 days to di (2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP), and n-butyl benzyl phthalate (BBP), which vary in PPAR alpha activity and liver tumorigenicity. Each phthalate increased expression of select PPARa target genes at 7 days, while only DEHP significantly increased liver cell proliferation labeling index (LI). Transcriptional benchmark dose (BMDT) estimates for dose-related genomic markers stratified phthalates according to hypothetical tumorigenic potencies, unlike BMDs for non-genomic endpoints (relative liver weights or proliferation). The 7-day BMDT values for Acot1 as a surrogate measure for PPAR alpha activation were 29, 370, and 676 mg/kg/day for DEHP, DNOP, and BBP, respectively, distinguishing DEHP (liver tumor BMD of 35 mg/kg/day) from non-tumorigenic DNOP and BBP. Effect thresholds were generated using linear regression of DEHP effects at 7 days and 2-year tumor incidence values to anchor early response molecular indicators and a later phenotypic outcome. Thresholds varied widely by marker, from 2-fold (Pdk4 and proliferation LI) to 30-fold (Acot1) induction to reach hypothetical tumorigenic expression levels. These findings highlight key issues in defining thresholds for biological adversity based on molecular changes. C1 [Lake, April D.] Univ N Carolina, Curriculum Toxicol, Chapel Hill, NC 27599 USA. [Lake, April D.] US EPA, ORD, NHEERL, ORISE, Res Triangle Pk, NC 27711 USA. [Lake, April D.; Wood, Charles E.; Chorley, Brian N.; Carswell, Gleta K.; Sey, Yusupha M.; Kenyon, Elaina M.; Padnos, Beth; Moore, Tanya M.; Tennant, Alan H.; Ross, David G.; Hughes, Michael F.; Corton, J. Christopher; Simmons, Jane Ellen; McQueen, Charlene A.; Hester, Susan D.] US EPA, ORD, NHEERL, Integrated Syst Toxicol Div, Res Triangle Pk, NC 27711 USA. [Bhat, Virunya S.] NSF Int, Ann Arbor, MI 48105 USA. [Schmid, Judith E.] US EPA, ORD, NHEERL, Toxicol Assessment Div, Res Triangle Pk, NC 27711 USA. [George, Barbara Jane] US EPA, ORD, NHEERL, Off Associate Director Hlth, Res Triangle Pk, NC 27711 USA. RP Hester, SD (reprint author), US EPA, ORD, NHEERL, Integrated Syst Toxicol Div, Res Triangle Pk, NC 27711 USA. EM hester.susan@epa.gov FU U.S. Environmental Protection Agency Office of Research and Development FX U.S. Environmental Protection Agency Office of Research and Development. NR 42 TC 2 Z9 2 U1 3 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD FEB PY 2016 VL 149 IS 2 BP 312 EP 325 DI 10.1093/toxsci/kfv236 PG 14 WC Toxicology SC Toxicology GA DF8NF UT WOS:000371613900008 PM 26519955 ER PT J AU Wei, XD Meng, ZX Ruiz, L Xia, WJ Lee, C Kysar, JW Hone, JC Keten, S Espinosa, HD AF Wei, Xiaoding Meng, Zhaoxu Ruiz, Luis Xia, Wenjie Lee, Changgu Kysar, Jeffrey W. Hone, James C. Keten, Sinan Espinosa, Horacio D. TI Recoverable Slippage Mechanism in Multilayer Graphene Leads to Repeatable Energy Dissipation SO ACS NANO LA English DT Article DE graphene; slippage; stacking nonlinearity; energy dissipation; strength ID FEW-LAYER GRAPHENE; BILAYER GRAPHENE; SINGLE-LAYER; NANOCOMPOSITES; NANOWIRES; STACKING; GRAPHITE; MODEL AB Understanding the deformation mechanisms in multilayer graphene (MLG), an attractive material used in nanodevices as well as in the reinforcement of nanocomposites, is critical yet challenging due to difficulties in experimental characterization and the spatiotemp oral limitations of atomistic modeling. In this study, we combine nanomechanical experiments with coarse-grained molecular dynamics (CG-MD) simulations to elucidate the mechanisms of deformation and failure of MLG sheets. Elastic properties of graphene sheets with one to three layers are measured using film deflection tests. A nonlinear behavior in the force vs deflection curves for MLGs is observed in both experiments simulations: during loading/unloading cycles, MLGs dissipate energy through a "recoverable slippage" mechanism. The CG-MD simulations further reveal an atomic level interlayer slippage process and suggest that the dissipated energy scales with film perimeter. Moreover, our study demonstrates that the finite shear strength between individual layers could explain the experimentally measured size dependent strength with thickness scaling in MLG sheets. C1 [Wei, Xiaoding; Keten, Sinan; Espinosa, Horacio D.] Northwestern Univ, Dept Mech Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Wei, Xiaoding] Peking Univ, Coll Engn, Dept Mech & Engn Sci, Beijing 100871, Peoples R China. [Meng, Zhaoxu; Ruiz, Luis; Xia, Wenjie; Keten, Sinan] Northwestern Univ, Dept Civil & Environm Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Lee, Changgu] Sungkyunkwan Univ, Dept Mech Engn, Suwon 440746, South Korea. [Kysar, Jeffrey W.; Hone, James C.] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. [Espinosa, Horacio D.] Northwestern Univ, Theoret & Appl Mech, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Ruiz, Luis] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Keten, S; Espinosa, HD (reprint author), Northwestern Univ, Dept Mech Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Keten, S (reprint author), Northwestern Univ, Dept Civil & Environm Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Espinosa, HD (reprint author), Northwestern Univ, Theoret & Appl Mech, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM s-keten@northwestern.edu; espinosa@northwestern.edu RI Espinosa, Horatio/B-6693-2009; Keten, Sinan/F-4080-2010; Wei, Xiaoding/A-9952-2011; OI Wei, Xiaoding/0000-0002-5173-4923; Meng, Zhaoxu/0000-0002-3250-7696 FU NSF through DMREF Award [CMMI-1235480, CMMI-1437450]; ARO through MURI Award [W911NF-08-1-0541]; Department of Civil & Environmental Engineering and Mechanical Engineering at Northwestern University; Quest HPC System at Northwestern University; Basic Science Research Program - Korean Government Ministry of Science, ICT and Future Planning [2009-0083540] FX The authors acknowledge support from NSF through DMREF Award CMMI-1235480, and through Grant CMMI-1437450, and the ARO through MURI Award W911NF-08-1-0541. In addition, the authors thank support from the Department of Civil & Environmental Engineering and Mechanical Engineering at Northwestern University. A supercomputing grant from Quest HPC System at Northwestern University is also acknowledged. C.L. acknowledges the Basic Science Research Program (2009-0083540) funded by the Korean Government Ministry of Science, ICT and Future Planning. NR 39 TC 5 Z9 5 U1 16 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 1820 EP 1828 DI 10.1021/acsnano.5b04939 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400016 PM 26783825 ER PT J AU Widmer-Cooper, A Geissler, PL AF Widmer-Cooper, Asaph Geissler, Phillip L. TI Ligand-Mediated Interactions between Nanoscale Surfaces Depend Sensitively and Nonlinearly on Temperature, Facet Dimensions, and Ligand Coverage SO ACS NANO LA English DT Article DE nanoparticle; ligand; self-assembled monolayer; surface forces; self-assembly; solution ID SELF-ASSEMBLED MONOLAYERS; MOLECULAR-DYNAMICS SIMULATION; GOLD CLUSTER MOLECULES; CDSE QUANTUM DOTS; NANOCRYSTALS; NANOPARTICLES; MODEL; DISORDER; GROWTH; CHAIN AB Nanoparticles are often covered in ligand monolayers, which can undergo a temperature-dependent order disorder transition that switches the particle particle interaction from repulsive to attractive in solution. In this work, we examine how changes in the ligand surface coverage and facet dimensions affect the ordering of ligands, the arrangement of nearby solvent molecules, and the interaction between ligand monolayers on different particles. In particular, we consider the case of strongly bound octadecyl ligands on the (100) facet of CdS in the presence of an explicit n-hexane solvent. Depending on the facet dimensions and surface coverage, we observe three distinct ordered states that differ in how the ligands are packed together, and which affect the thickness of the ligand shell and the structure of the ligand solvent interface. The temperature dependence of the order disorder transition also broadens and shifts to lower temperature in a nonlinear manner as the nanoscale is approached from above. We find that ligands on nanoscale facets can behave very similarly to those on macroscopic surfaces in solution, and that some facet dimensions affect the ligand alignment more strongly than others. As the ligands order, the interaction between opposing monolayers becomes attractive, even well below full surface coverage. The strength of attraction per unit surface area is strongly affected by ligand coverage, but only weakly by facet width. Conversely, we find that bringing two monolayers together just above the order disorder transition temperature can induce ordering and attraction. C1 [Widmer-Cooper, Asaph] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Widmer-Cooper, A (reprint author), Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. EM asaph.widmer-cooper@sydney.edu.au FU Office of Science, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Australian Research Council [FT140101061] FX This work was supported by generous grants of computer time from the National Computational Infrastructure facility (which is supported by the Australian Government) and the National Energy Research Scientific Computing Center (which was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231). A.W.-C. acknowledges financial support from the Australian Research Council in the form of a Future Fellowship (FT140101061). NR 64 TC 2 Z9 2 U1 8 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 1877 EP 1887 DI 10.1021/acsnano.5b05569 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400023 PM 26756464 ER PT J AU Orfield, NJ McBride, JR Wang, F Buck, MR Keene, JD Reid, KR Htoon, H Hollingsworth, JA Rosenthal, SJ AF Orfield, Noah J. McBride, James R. Wang, Feng Buck, Matthew R. Keene, Joseph D. Reid, Kemar R. Htoon, Han Hollingsworth, Jennifer A. Rosenthal, Sandra J. TI Quantum Yield Heterogeneity among Single Nonblinking Quantum Dots Revealed by Atomic Structure-Quantum Optics Correlation SO ACS NANO LA English DT Article DE correlation; nanocrystal quantum dot; nanocrystal atomic structure; quantum yield; heterogeneity ID TRANSMISSION ELECTRON-MICROSCOPY; UP-CONVERSION SPECTROSCOPY; CORE-SHELL NANOCRYSTALS; CDSE NANOCRYSTALS; SEMICONDUCTOR NANOCRYSTALS; SUPPRESSED BLINKING; ROOM-TEMPERATURE; EMISSION; SURFACE; LIGHT AB Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. Herein, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking "giant" CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging, rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive "dark" fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be "dark". Therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs. C1 [Orfield, Noah J.; McBride, James R.; Keene, Joseph D.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem, Box 1583, Nashville, TN 37235 USA. [Orfield, Noah J.; McBride, James R.; Keene, Joseph D.; Reid, Kemar R.; Rosenthal, Sandra J.] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA. [Wang, Feng; Buck, Matthew R.; Htoon, Han; Hollingsworth, Jennifer A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Reid, Kemar R.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Interdisciplinary Mat Sci, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Pharmacol Chem & Biomol Engn, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Buck, Matthew R.] Colgate Univ, Dept Chem, Hamilton, NY 13346 USA. [Keene, Joseph D.] Mercer Univ, Dept Chem, Macon, GA 31207 USA. RP McBride, JR; Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Chem, Box 1583, Nashville, TN 37235 USA.; McBride, JR; Rosenthal, SJ (reprint author), Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA.; Htoon, H; Hollingsworth, JA (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.; Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Interdisciplinary Mat Sci, Nashville, TN 37235 USA.; Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.; Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Pharmacol Chem & Biomol Engn, Nashville, TN 37235 USA.; Rosenthal, SJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM james.r.mcbride@vanderbilt.edu; htoon@lanl.gov; jenn@lanl.gov; sandra.j.rosenthal@vanderbilt.edu RI Keene, Joseph/F-8874-2010; McBride, James/D-2934-2012; OI McBride, James/0000-0003-0161-7283; Orfield, Noah/0000-0003-4555-8668; Htoon, Han/0000-0003-3696-2896 FU National Science Foundation CHE [1213758]; National Science Foundation EPS [1004083]; Division of Materials Science and Engineering DOE, OBES grant [2009LANL1096]; Center for Integrated Nanotechnologies, a U.S. Department of Energy (DOE), Office of Basic Energy Sciences (OBES) Nanoscale Science Research Center AMP; User Facility as part of User Project [U2014B0001] FX This work was supported in part by the National Science Foundation CHE grant 1213758 and National Science Foundation EPS 1004083 (TN-SCORE). JAH, HH and RV acknowledge primary support by a Division of Materials Science and Engineering DOE, OBES grant (2009LANL1096) for g-QD development guided by defining structure-function relationships. Work performed in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy (DOE), Office of Basic Energy Sciences (OBES) Nanoscale Science Research Center & User Facility as part of User Project U2014B0001. NR 47 TC 8 Z9 8 U1 7 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 1960 EP 1968 DI 10.1021/acsnano.5b05876 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400032 PM 26849531 ER PT J AU Conroy, M Zubialevich, VZ Li, HN Petkov, N O'Donoghue, S Holmes, JD Parbrook, PJ AF Conroy, Michele Zubialevich, Vitaly Z. Li, Haoning Petkov, Nikolay O'Donoghue, Sally Holmes, Justin D. Parbrook, Peter J. TI Ultra-High-Density Arrays of Defect-Free AIN Nanorods: A "Space-Filling" Approach SO ACS NANO LA English DT Article DE III-nitrides; nanowires; nanorods; aluminum nitride; growth mechanism ID GAN NANOWIRES; GROWTH; HETEROEPITAXY; DISLOCATIONS; SAPPHIRE; EPITAXY; LAYERS AB Nanostructured semiconductors have a clear potential for improved optoelectronic devices, such as high-efficiency light-emitting diodes (LEDs). However, most arrays of semiconductor nanorods suffer from having relatively low densities (or "fill factors") and a high degree of nonuniformity, especially when produced by self organized growth. Ideally an array of nanorods for an optoelectronic emitter should have a fill factor close to 100%, with uniform rod diameter and height. In this article we present a "space-filling" approach for forming defect-free arrays of AIN nanorods, whereby the separation between each rod can be controlled to 5 nm due to a self-limiting process. These arrays of pyramidal-topped AlN nanorods formed over wafer scale areas by metal organic chemical vapor deposition provide a defect-free semipolar top surface, for potential optoelectronic device applications with the highest reported fill factor at 98%. C1 [Conroy, Michele; Zubialevich, Vitaly Z.; Li, Haoning; Petkov, Nikolay; O'Donoghue, Sally; Holmes, Justin D.; Parbrook, Peter J.] Tyndall Natl Inst, Cork T12 R5CP, Ireland. [Conroy, Michele; Li, Haoning; Parbrook, Peter J.] Natl Univ Ireland Univ Coll Cork, Sch Engn, Cork T12 YN60, Ireland. [Conroy, Michele; O'Donoghue, Sally; Holmes, Justin D.] Natl Univ Ireland Univ Coll Cork, Dept Chem, Cork T12 YN60, Ireland. [Conroy, Michele; Holmes, Justin D.] Univ Dublin Trinity Coll, AMBER CRANN, Dublin D02 PN40, Ireland. [Conroy, Michele] Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. RP Parbrook, PJ (reprint author), Tyndall Natl Inst, Cork T12 R5CP, Ireland.; Parbrook, PJ (reprint author), Natl Univ Ireland Univ Coll Cork, Sch Engn, Cork T12 YN60, Ireland. EM peter.parbrook@tyndall.ie RI Parbrook, Peter/R-7680-2016; OI Parbrook, Peter/0000-0003-3287-512X; Conroy, Michele/0000-0002-6658-1819 FU Science Foundation Ireland (SFI) [SFI/10/IN.1/I2993]; SFI Engineering Professorship scheme [07/EN/E001A]; INSPIRE FX This research was enabled by the Irish Higher Education Authority Programme for Research in Third Level Institutions Cycles 4 and 5 via the INSPIRE and TYFFANI projects and by Science Foundation Ireland (SFI) under grant no. SFI/10/IN.1/I2993. P.J.P. acknowledges funding from SFI Engineering Professorship scheme 07/EN/E001A, and M.C. acknowledges a Ph.D. research scholarship from INSPIRE. This work was conducted under the framework of the Irish Government's Programme for Research in Third Level Institutions Cycle 5, National Development Plan 2007-2013, with the assistance of the European Regional Development Fund. We also acknowledge the support of M. Ahkter for his support with fabrication and W. Jagoe for his illustrations in the article. NR 32 TC 2 Z9 2 U1 8 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 1988 EP 1994 DI 10.1021/acsnano.5b06062 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400035 PM 26597059 ER PT J AU Nguyen, SC Zhang, Q Manthiram, K Ye, XC Lomont, JP Harris, CB Weller, H Alivisatos, AP AF Nguyen, Son C. Zhang, Qiao Manthiram, Karthish Ye, Xingchen Lomont, Justin P. Harris, Charles B. Weller, Horst Alivisatos, A. Paul TI Study of Heat Transfer Dynamics from Gold Nanorods to the Environment via Time-Resolved Infrared Spectroscopy SO ACS NANO LA English DT Article DE plasmonic nanoparticle; silica coating; heat transfer; electron ejection; time-resolved infrared spectroscopy ID SHELL NANOPARTICLES; MESOPOROUS SILICA; AQUEOUS-SOLUTION; IR SPECTROSCOPY; SOLVENT; WATER; SIZE; NANOCRYSTALS; DISSIPATION; ABSORPTION AB Studying the local solvent surrounding nanoparticles is important to understanding the energy exchange dynamics between the particles and their environment, and there is a need for spectroscopic methods that can dynamically probe the solvent region that is in nearby contact with the nanoparticles. In this work, we demonstrate the use of time resolved infrared spectroscopy to track changes in a vibrational mode of local water on the time scale of hundreds of picoseconds, revealing the dynamics of heat transfer from gold nanorods to the local water environment. We applied this probe to a prototypical plasmonic photothermal system consisting of organic CTAB bilayer capped gold nanorods, as well as gold nanorods coated with varying thicknesses of inorganic mesoporous-silica. The heat transfer time constant of CTAB capped gold nanorods is about 350 ps and becomes faster with higher laser excitation power, eventually generating bubbles due to superheating in the local solvent. Silica coating of the nanorods slows down the heat transfer and suppresses the formation of superheated bubbles. C1 [Nguyen, Son C.; Zhang, Qiao; Ye, Xingchen; Lomont, Justin P.; Harris, Charles B.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Manthiram, Karthish] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Nguyen, Son C.; Weller, Horst] Univ Hamburg, Inst Phys Chem, Grindelallee 117, D-20146 Hamburg, Germany. [Alivisatos, A. Paul] Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany. [Weller, Horst] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 21589, Saudi Arabia. RP Harris, CB; Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Alivisatos, AP (reprint author), Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA.; Alivisatos, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Weller, H (reprint author), Univ Hamburg, Inst Phys Chem, Grindelallee 117, D-20146 Hamburg, Germany.; Alivisatos, AP (reprint author), Univ Hamburg, Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany.; Weller, H (reprint author), King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 21589, Saudi Arabia. EM cbharris@berkeley.edu; weller@chemie.uni-hamburg.de; alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015; Ye, Xingchen/D-3202-2017; Faculty of, Sciences, KAU/E-7305-2017 OI Alivisatos , Paul /0000-0001-6895-9048; Ye, Xingchen/0000-0001-6851-2721; FU Physical Chemistry of Inorganic Nanostructures Program [KC3103]; Office of Basic Energy Sciences of the United States Department of Energy [DE-AC02-05CH11232]; NSF [CHE-1213135]; German Federal Cluster of Excellence "The Hamburg Centre for Ultrafast Imaging" FX This work is supported by the Physical Chemistry of Inorganic Nanostructures Program, KC3103, Office of Basic Energy Sciences of the United States Department of Energy under Contract DE-AC02-05CH11232 (A.P.A.), NSF Grant CHE-1213135 (C.B.H.), German Federal Cluster of Excellence "The Hamburg Centre for Ultrafast Imaging" (H.W.). NR 39 TC 5 Z9 5 U1 21 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2144 EP 2151 DI 10.1021/acsnano.5b06623 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400052 PM 26840805 ER PT J AU Asadi, M Kumar, B Liu, C Phillips, P Yasaei, P Behranginia, A Zapol, P Klie, RF Curtiss, LA Salehi-Khojin, A AF Asadi, Mohammad Kumar, Bijandra Liu, Cong Phillips, Patrick Yasaei, Poya Behranginia, Amirhossein Zapol, Peter Klie, Robert F. Curtiss, Larry A. Salehi-Khojin, Amin TI Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium-Oxygen Batteries SO ACS NANO LA English DT Article DE lithium-O-2 batteries; ORR; OER; catalysts; molybdenum disulfide; ionic liquid ID RECHARGEABLE LI-O-2 BATTERIES; TEMPERATURE IONIC LIQUIDS; ACTIVE EDGE SITES; LI-AIR BATTERIES; ENERGY DENSITY; REDOX MEDIATOR; ATOMIC LAYERS; IN-SITU; ELECTRODE; MOS2 AB Lithium-oxygen (Li-O-2) batteries have been recognized as an emerging technology for energy storage systems owing to their high theoretical specific energy. One challenge is to find an electrolyte/cathode system that is efficient, stable, and cost-effective. We present such a system based on molybdenum disulfide (MoS2) nanoflakes combined with an ionic liquid (IL) that work together as an effective cocatalyst for discharge and charge in a Li-O-2 battery. Cyclic voltammetry results show superior catalytic performance for this cocatalyst for both oxygen reduction and evolution reactions compared to Au and Pt catalysts. It also performs remarkably well in the Li-O-2 battery system with 85% round-trip efficiency and reversibility up to 50 cycles. Density functional calculations provide a mechanistic understanding of the MoS2 nanoflakes/IL system. cocatalyst reported in this work could open the way for exploiting the unique properties of ionic liquids in Li-air batteries in combination with nanostructured MoS2 as a cathode material. C1 [Asadi, Mohammad; Kumar, Bijandra; Yasaei, Poya; Behranginia, Amirhossein; Salehi-Khojin, Amin] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. [Phillips, Patrick; Klie, Robert F.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Liu, Cong; Zapol, Peter; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Salehi-Khojin, A (reprint author), Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA.; Curtiss, LA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM curtiss@anl.gov; salehikh@uic.edu OI Liu, Cong/0000-0002-2145-5034 FU University of Illinois at Chicago; MRSEC Materials Preparation and Measurement Laboratory [NSF-DMR-1420709]; MRSEC program (NSF) at the Materials Research Center [DMR-1121262]; Nanoscale Science and Engineering Center (NSF) at the International Institute for Nanotechnology [EEC-0647560]; State of Illinois through International Institute for Nanotechnology; U.S. Department of Energy [DE-AC0206CH11357]; Argonne Director's Fellowship FX A.S.K's work was supported by University of Illinois at Chicago through the Start-up budget and Chancellor Proof of Concept award. The authors acknowledge the MRSEC Materials Preparation and Measurement Laboratory shared user facility at the University of Chicago (Grant No. NSF-DMR-1420709). The authors also acknowledge the EPIC facility (NUANCE Center-Northwestern University), which has received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the Nanoscale Science and Engineering Center (NSF EEC-0647560) at the International Institute for Nanotechnology; and the State of Illinois, through the International Institute for Nanotechnology. The authors acknowledge Conn Renewable Energy Research Center at the University of Louisville, KY, for providing access to the DEMS equipment. The work at Argonne National Laboratory was supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 from the Division of Materials Science and Engineering, Basic Energy Science (P.Z., C.L., and LAC.). We also acknowledge the computing resources operated by the Laboratory Computing Resource Center (ANL) and the ANL Center for Nanoscale Materials. We also thank the Argonne Director's Fellowship for support of C.L. NR 54 TC 13 Z9 13 U1 68 U2 267 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2167 EP 2175 DI 10.1021/acsnano.5b06672 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400055 PM 26789516 ER PT J AU Bergren, MR Palomaki, PKB Neale, NR Furtak, TE Beard, MC AF Bergren, Matthew R. Palomaki, Peter K. B. Neale, Nathan R. Furtak, Thomas E. Beard, Matthew C. TI Size-Dependent Exciton Formation Dynamics in Colloidal Silicon Quantum Dots SO ACS NANO LA English DT Article DE silicon quantum dots; time-resolved THz spectroscopy; carrier dynamics ID RESOLVED TERAHERTZ SPECTROSCOPY; SEMICONDUCTOR NANOCRYSTALS; CARRIER MULTIPLICATION; RELAXATION DYNAMICS; SOLAR-CELLS; GENERATION; POLARIZABILITY; PBSE; PHOTOCONDUCTIVITY; EFFICIENCY AB We report size-dependent exciton formation dynamics within colloidal silicon quantum dots (Si QDs) using time-resolved terahertz (THz) spectroscopy measurements. THz photoconductivity measurements are used to distinguish the initially created hot carriers from excitons that form at later times. At early pump/probe delays, the exciton formation dynamics are revealed by the temporal evolution of the THz transmission. We find an increase in the exciton formation time, from similar to 500 to similar to 900 fs, as the Si QD diameter is reduced from 7.3 to 3.4 nm and all sizes exhibit slower hot-carrier relaxation times compared to bulk Si. In addition, we determine the THz absorption cross section at early delay times is proportional to the carrier mobility while at later delays is proportional to the exciton polarizability, alpha(X). We extract a size-dependent alpha(X) and find an similar to r(4) dependence, consistent with previous reports for quantum-confined excitons in CdSe, InAs, and PbSe QDs. The observed slowing in exciton formation time for smaller Si QDs is attributed to decreased electron-phonon coupling due to increased quantum confinement. These results experimentally verify the modification of hot-carrier relaxation rates by quantum confinement in Si QDs, which likely plays a significant role in the high carrier multiplication efficiency observed in these nanomaterials. C1 [Bergren, Matthew R.; Palomaki, Peter K. B.; Neale, Nathan R.; Beard, Matthew C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Bergren, Matthew R.; Furtak, Thomas E.; Beard, Matthew C.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Beard, MC (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.; Beard, MC (reprint author), Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. EM matt.beard@nrel.gov OI BEARD, MATTHEW/0000-0002-2711-1355 FU National Science Foundation through Renewable Energy Materials Research Science and Engineering Center [DMR-0820518]; division of Chemical Sciences, Geosciences, and Biosciences, Office of Science, Office of Basic Energy Sciences within DOE; DOE [DE-AC36-08G028308] FX M.R.B. and T.E.F. were supported by the National Science Foundation through the Renewable Energy Materials Research Science and Engineering Center under Grant No. DMR-0820518. M.C.B., P.K.B.P., and N.R.N. acknowledge support from the division of Chemical Sciences, Geosciences, and Biosciences, Office of Science, Office of Basic Energy Sciences within DOE. DOE funding was provided to the National Renewable Energy Laboratory (NREL) through contract DE-AC36-08G028308. NR 46 TC 2 Z9 2 U1 24 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2316 EP 2323 DI 10.1021/acsnano.5b07073 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400071 PM 26811876 ER PT J AU Casu, A Genovese, A Manna, L Longo, P Buha, J Botton, GA Lazar, S Upadhyay, M Schwingenschloegl, U Prato, M Li, HB Ghosh, S Palazon, F De Donato, F Mozo, SL Zuddas, E Falqui, A AF Casu, Alberto Genovese, Alessandro Manna, Liberato Longo, Paolo Buha, Joka Botton, Gianluigi A. Lazar, Sorin Upadhyay, Mousumi Schwingenschloegl, Udo Prato, Mirko Li, Hongbo Ghosh, Sandeep Palazon, Francisco De Donato, Francesco Mozo, Sergio Lentijo Zuddas, Efisio Falqui, Andrea TI Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange SO ACS NANO LA English DT Article DE in situ transmission electron microscopy; cation exchange; scanning transmission electron microscopy; energy-dispersive X-ray spectroscopy; electron energy loss spectroscopy; energy-filtered transmission electron microscopy ID COLLOIDAL NANOCRYSTALS; CU2-XSE NANOCRYSTALS; SUPERIONIC COPPER; PLASMON RESONANCE; GROWTH; SE AB Among the different synthesis approaches to colloidal nanocrystals, a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, postsynthetic treatments, such as thermally activated solid-state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se or Cu nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu "acceptor" phases represented by rod- and wire-shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2-xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu "donor" and "acceptor" particles were not always in direct contact with each other; hence, the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state and helps to shed light on the intermediate steps involved in such reactions. C1 [Casu, Alberto; Genovese, Alessandro; Manna, Liberato; Buha, Joka; Prato, Mirko; Li, Hongbo; Ghosh, Sandeep; Palazon, Francisco; De Donato, Francesco] Ist Italiano Tecnol, Dept Nanochem, Via Morego 30, I-16163 Genoa, Italy. [Casu, Alberto; Genovese, Alessandro; Mozo, Sergio Lentijo; Zuddas, Efisio; Falqui, Andrea] KAUST, NABLA Lab, BESE Div, Thuwal 239556900, Saudi Arabia. [Upadhyay, Mousumi; Schwingenschloegl, Udo] KAUST, PSE Div, Thuwal 239556900, Saudi Arabia. [Longo, Paolo] Gatan Inc, 5794 W Las Positas Blvd, Pleasanton, CA 94588 USA. [Botton, Gianluigi A.; Lazar, Sorin] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L8, Canada. [Lazar, Sorin] FEI Electron Opt, Achtseweg Noord 5, NL-5600 KA Eindhoven, Netherlands. [Li, Hongbo] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. RP Manna, L (reprint author), Ist Italiano Tecnol, Dept Nanochem, Via Morego 30, I-16163 Genoa, Italy.; Falqui, A (reprint author), KAUST, NABLA Lab, BESE Div, Thuwal 239556900, Saudi Arabia. EM liberato.manna@iit.it; andrea.falqui@kaust.edu.sa RI Genovese, Alessandro/I-3803-2016; Manna, Liberato/G-2339-2010; Prato, Mirko/D-8531-2012; OI Genovese, Alessandro/0000-0001-8154-3098; Manna, Liberato/0000-0003-4386-7985; Prato, Mirko/0000-0002-2188-8059; Ghosh, Sandeep/0000-0002-1149-9199; Li, Hongbo/0000-0002-3378-0870; Falqui, Andrea/0000-0002-1476-7742 FU European Union [614897] FX All the authors acknowledge Prof. Albert Figuerola of Barcelona University for the fruitful discussions and advice. L.M. acknowledges financial support from the European Union's Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 614897 (ERC Grant TRANS-NANO). M.P. acknowledges Dr. S. Nappini, Dr. F. Bondino, and Dr. E. Magnano (Laboratorio TASC, IOM CNR) for fruitful discussions and support in XPS data acquisition at the BACH beamline of the Elettra Synchrotron in Trieste (Italy). NR 28 TC 2 Z9 2 U1 7 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2406 EP 2414 DI 10.1021/acsnano.5b07219 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400082 PM 26816347 ER PT J AU Zheng, YJ Huang, YL Chenp, YF Zhao, WJ Eda, G Spataru, CD Zhang, WJ Chang, YH Li, LJ Chi, DZ Quek, SY Wee, ATS AF Zheng, Yu Jie Huang, Yu Li Chenp, Yifeng Zhao, Weijie Eda, Goki Spataru, Catalin D. Zhang, Wenjing Chang, Yung-Huang Li, Lain-Jong Chi, Dongzhi Quek, Su Ying Wee, Andrew Thye Shen TI Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides SO ACS NANO LA English DT Article DE two-dimensional transition metal dichalcogenides; organic-inorganic interface; screening effects; energy level alignment; scanning tunneling microscopy/spectroscopy; first principle calculations ID QUASI-PARTICLE ENERGIES; WAVE BASIS-SET; PTCDA/AU(111) INTERFACE; MOS2; MOLECULE; PTCDA; HETEROSTRUCTURES; 1ST-PRINCIPLES; SEMICONDUCTORS; ABSORPTION AB The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials. C1 [Zheng, Yu Jie; Huang, Yu Li; Chenp, Yifeng; Zhao, Weijie; Eda, Goki; Quek, Su Ying; Wee, Andrew Thye Shen] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117551, Singapore. [Huang, Yu Li; Chi, Dongzhi] ASTAR, IMRE, 2 Fusionopolis Way, Singapore 138634, Singapore. [Chenp, Yifeng; Eda, Goki; Quek, Su Ying; Wee, Andrew Thye Shen] Natl Univ Singapore, Ctr Adv Mat 2D, Block S14,Level 6,6 Sci Dr 2, Singapore 117546, Singapore. [Eda, Goki] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore. [Spataru, Catalin D.] Sandia Natl Labs, Livermore, CA 94551 USA. [Zhang, Wenjing] Shenzhen Univ, SZU NUS Collaborat Innovat Ctr Optoelect Sci & Te, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China. [Chang, Yung-Huang] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 300, Taiwan. [Li, Lain-Jong] King Abdullah Univ Sci & Technol, Phys Sci & Engn, Thuwal 239556900, Saudi Arabia. [Quek, Su Ying] Agcy Sci Technol & Res, Inst High Performance Comp, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore. RP Quek, SY; Wee, ATS (reprint author), Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117551, Singapore.; Quek, SY; Wee, ATS (reprint author), Natl Univ Singapore, Ctr Adv Mat 2D, Block S14,Level 6,6 Sci Dr 2, Singapore 117546, Singapore.; Quek, SY (reprint author), Agcy Sci Technol & Res, Inst High Performance Comp, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore. EM phyqsy@nus.edu.sg; phyweets@nus.edu.sg RI Li, Lain-Jong/D-5244-2011; Wee, Andrew/B-6624-2009; Eda, Goki/G-1511-2012; Quek, Su Ying/I-2934-2014; Zhang, Wenjing/G-5932-2012 OI Li, Lain-Jong/0000-0002-4059-7783; Wee, Andrew/0000-0002-5828-4312; Zhang, Wenjing/0000-0001-6931-900X FU MOE [R-144-000-321-112]; National Research Foundation, Singapore [NRF-NRFF2013-07, NRF-NRFF2011-02]; Singapore National Research Foundation, Prime Minister's Office; U.S. DOE [DE-AC04-94AL85000] FX The authors thank Zhuo Wang and Qixing Wang for helping us with transferring the CVD-WSe2 samples and checking the sample quality, Prof. Satoshi Kera and Kyushu Synchrotron Light Research Center (Japan) for ARPES mapping of the clean Au(111) surface, as well as Xin Luo, Kapildeb Dolui, Suchun Li and Zijing Ding for discussions. A.T.S.W. acknowledges support from MOE Grant R-144-000-321-112. S.Y.Q, and Y.C. acknowledge support from Grant NRF-NRFF2013-07 from the National Research Foundation, Singapore. G.E. acknowledges support from Grant NRF-NRFF2011-02 from the National Research Foundation, Singapore. Computations were performed on the NUS Graphene Research Centre cluster. We acknowledge support from the Singapore National Research Foundation, Prime Minister's Office, under its medium-sized centre program. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U.S. DOE under contract DE-AC04-94AL85000. NR 56 TC 12 Z9 12 U1 43 U2 120 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2476 EP 2484 DI 10.1021/acsnano.5b07314 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400089 PM 26792247 ER PT J AU Burzuri, E Island, JO Diaz-Torres, R Fursina, A Gonzalez-Campo, A Roubeau, O Teat, SJ Aliaga-Alcalde, N Ruiz, E van der Zant, HSJ AF Burzuri, Enrique Island, Joshua O. Diaz-Torres, Raul Fursina, Alexandra Gonzalez-Campo, Arantzazu Roubeau, Olivier Teat, Simon J. Aliaga-Alcalde, Nuria Ruiz, Eliseo van der Zant, Herre S. J. TI Sequential Electron Transport and Vibrational Excitations in an Organic Molecule Coupled to Few-Layer Graphene Electrodes SO ACS NANO LA English DT Article DE curcuminoids; molecular electronics; vibrations; graphene electrodes ID CARBON NANOTUBES; SINGLE; CURCUMINOIDS; TRANSISTORS; JUNCTIONS AB Graphene electrodes are promising candidates to improve reproducibility and stability in molecular electronics through new electrode molecule anchoring strategies. Here we report sequential electron transport in few-layer graphene transistors containing individual curcuminoid-based molecules anchored to the electrodes via pi-pi orbital bonding. We show the coexistence of inelastic co-tunneling excitations with single-electron transport physics due to an intermediate molecule electrode coupling; we argue that an intermediate electron-phonon coupling is the origin of these vibrational-assisted excitations. These experimental observations are complemented with density functional theory calculations to model electron transport and the interaction between electrons and vibrational modes of the curcuminoid molecule. We find that the calculated vibrational modes of the molecule are in agreement with the experimentally observed excitations. C1 [Burzuri, Enrique; Island, Joshua O.; Fursina, Alexandra; van der Zant, Herre S. J.] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands. [Diaz-Torres, Raul; Ruiz, Eliseo] Univ Barcelona, Dept Quim Inorgan, Diagonal 645, E-08028 Barcelona, Spain. [Ruiz, Eliseo] Univ Barcelona, Inst Recerca Quim Teor & Computac, Diagonal 645, E-08028 Barcelona, Spain. [Gonzalez-Campo, Arantzazu; Aliaga-Alcalde, Nuria] CSIC ICMAB Inst Ciencia Mat Barcelona, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain. [Roubeau, Olivier] CSIC, ICMA, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. [Roubeau, Olivier] Univ Zaragoza, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Aliaga-Alcalde, Nuria] ICREA, Passeig Lluis Co 23, Barcelona 08010, Spain. RP Burzuri, E (reprint author), Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands.; Aliaga-Alcalde, N (reprint author), CSIC ICMAB Inst Ciencia Mat Barcelona, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain.; Aliaga-Alcalde, N (reprint author), ICREA, Passeig Lluis Co 23, Barcelona 08010, Spain. EM E.BurzuriLinares@tudelft.nl; naliaga@icmab.es RI Gonzalez-Campo, Arantzazu/J-4124-2012; Aliaga-Alcalde, Nuria/H-5886-2011; Island, Joshua/P-4686-2014; Roubeau, Olivier/A-6839-2010; Ruiz, Eliseo/A-6268-2011; van der Zant, Herre/J-9467-2016; OI Gonzalez-Campo, Arantzazu/0000-0002-1209-8119; Aliaga-Alcalde, Nuria/0000-0003-1080-3862; Island, Joshua/0000-0002-6074-9414; Roubeau, Olivier/0000-0003-2095-5843; Ruiz, Eliseo/0000-0001-9097-8499; van der Zant, Herre/0000-0002-5385-0282; Burzuri, Enrique/0000-0001-7906-7192 FU EU [618082 ACMOL]; ERC; OCW; Dutch funding organization NWO (VENI); FOM; Generalitat de Catalunya; MICINN of Spain [CTQ2012-32247, MAT2013-47869-C4-2-P]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the EU FP7 program through project 618082 ACMOL and ERC grant advanced Mols@Mols. It was also supported by OCW and the Dutch funding organization NWO (VENI) and FOM. E.R. thanks Generalitat de Catalunya for an ICREA Academia Award. N.A.-A., R.D.-T., and A.G.-C. thank the MICINN of Spain (projects CTQ2012-32247 and MAT2013-47869-C4-2-P). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 44 TC 3 Z9 3 U1 13 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2521 EP 2527 DI 10.1021/acsnano.5b07382 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400094 PM 26841282 ER PT J AU Tong, S Jung, IW Choi, YY Hong, S Roelofs, A AF Tong, Sheng Jung, Il Woong Choi, Yoon-Young Hong, Seungbum Roelofs, Andreas TI Imaging Ferroelectric Domains and Domain Walls Using Charge Gradient Microscopy: Role of Screening Charges SO ACS NANO LA English DT Article DE atomic force microscopy; focused ion beam; periodically poled lithium niobate; electrostatic force ID THIN-FILMS; SURFACES; POLARIZATION; STORAGE; ENERGY; WATER AB Advanced scanning probe microscopies (SPMs) open up the possibilities of the next-generation ferroic devices that utilize both domains and domain walls as active elements. However, current SPMs lack the capability of dynamically monitoring the motion of domains and domain walls in conjunction with the transport of the screening charges that lower the total electrostatic energy of both domains and domain walls. Charge gradient microscopy (CGM) is a strong candidate to overcome these shortcomings because it can map domains and domain walls at high speed and mechanically remove the screening charges. Yet the underlying mechanism of the CGM signals is not fully understood due to the complexity of the electrostatic interactions. Here, we designed a semiconductor metal CGM tip, which can separate and quantify the ferroelectric domain and domain wall signals by simply changing its scanning direction. Our investigation reveals that the domain wall signals are due to the spatial change of polarization charges, while the domain signals are due to continuous removal and supply of screening charges at the CGM tip. In addition, we observed asymmetric CGM domain currents from the up and down domains, which are originated from the different debonding energies and the amount of the screening charges on positive and negative bound charges. We believe that our findings can help design CGM with high spatial resolution and lead to breakthroughs in information storage and energy-harvesting devices. C1 [Tong, Sheng; Jung, Il Woong; Roelofs, Andreas] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. [Choi, Yoon-Young; Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. RP Roelofs, A (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA.; Hong, S (reprint author), Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. EM hong@anl.gov; aroelofs@anl.gov RI Tong, Sheng/A-2129-2011; Roelofs, Andreas/H-1742-2011; Hong, Seungbum/B-7708-2009 OI Tong, Sheng/0000-0003-0355-7368; Roelofs, Andreas/0000-0003-4141-3082; Hong, Seungbum/0000-0002-2667-1983 FU Center for Nanoscale Materials a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division FX This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. SH and YC were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The CGM, PFM, and EFM work was performed at the Materials Science Division, and the SEM and FIB work was performed at the Center for Nanoscale Materials. NR 38 TC 3 Z9 3 U1 8 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2568 EP 2574 DI 10.1021/acsnano.5b07551 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400099 PM 26751281 ER PT J AU Dou, LT Cui, F Yu, Y Khanarian, G Eaton, SW Yang, Q Resasco, J Schildknecht, C Schierle-Arndt, K Yang, PD AF Dou, Letian Cui, Fan Yu, Yi Khanarian, Garo Eaton, Samuel W. Yang, Qin Resasco, Joaquin Schildknecht, Christian Schierle-Arndt, Kerstin Yang, Peidong TI Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors SO ACS NANO LA English DT Article DE Cu nanowires; graphene oxide wrapping; transparent conductors; solution-process; high stability; low haze ID HIGH-PERFORMANCE; COPPER NANOWIRES; SILVER NANOWIRES; ELECTRODES; FILMS; NETWORKS; HAZE AB Copper nanowire (Cu NW) based transparent conductors are promising candidates to replace ITO (indium tin-oxide) owing to the high electrical conductivity and low-cost of copper. However, the relatively low performance and poor stability of Cu NWs under ambient conditions limit the practical application of these devices. Here, we report a solution-based approach to wrap graphene oxide (GO) nanosheets on the surface of ultrathin copper nanowires. By mild thermal annealing, GO can be reduced and high quality Cu r-GO core shell NWs can be obtained. High performance transparent conducting films were fabricated with these ultrathin core shell nanowires and excellent optical and electric performance was achieved. The core shell NW structure enables the production of highly stable conducting films (over 200 days stored in air), which have comparable performance to ITO and silver NW thin films (sheet resistance similar to 28 Omega/sq, haze similar to 2% at transmittance of similar to 90%). C1 [Dou, Letian; Cui, Fan; Yu, Yi; Eaton, Samuel W.; Yang, Qin; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Dou, Letian; Cui, Fan; Schildknecht, Christian; Schierle-Arndt, Kerstin; Yang, Peidong] Univ Calif Berkeley, Calif Res Alliance BASF, Berkeley, CA 94720 USA. [Dou, Letian; Cui, Fan; Yu, Yi; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Khanarian, Garo] BASF Corp, Union, NJ 07083 USA. [Resasco, Joaquin] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Calif Res Alliance BASF, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu FU BASF Corporation [53093]; Camille and Henry Dreyfus Foundation [EP-14-151] FX This work was financially supported by BASF Corporation (Award Number 53093). S.W.E. would like to acknowledge the Camille and Henry Dreyfus Foundation for financial support, Award Number EP-14-151. We thank Y. Zhao and J. Baba for the help on the FTIR measurement and simulation, respectively. NR 37 TC 13 Z9 13 U1 40 U2 157 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2600 EP 2606 DI 10.1021/acsnano.5b07651 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400103 PM 26820809 ER PT J AU Zhang, JW Winget, SA Wu, YR Su, D Sun, XJ Xie, ZX Qin, D AF Zhang, Jiawei Winget, Sarah A. Wu, Yiren Su, Dong Sun, Xiaojun Xie, Zhao-Xiong Qin, Dong TI Ag@Au Concave Cuboctahedra: A Unique Probe for Monitoring Au-Catalyzed Reduction and Oxidation Reactions by Surface-Enhanced Raman Spectroscopy SO ACS NANO LA English DT Article DE seed-mediated growth; surface capping concave nanocrystal; surface-enhanced Raman spectroscopy; Au-catalyzed reduction and oxidation ID HIGH-INDEX FACETS; SELF-ASSEMBLED MONOLAYERS; SEED-MEDIATED GROWTH; CORE-SHELL NANOCUBES; SILVER NANOPARTICLES; CHEMICAL-STABILITY; HOLLOW NANOSTRUCTURES; SCATTERING PROPERTIES; GALVANIC REPLACEMENT; OPTICAL-PROPERTIES AB We report a facile synthesis of Ag@Au concave cuboctahedra by titrating aqueous HAuCl4 into a suspension of Ag cuboctahedra in the presence of ascorbic add (AA), NaOH, and poly(vinylpyrrolidone) (PIT) at room temperature. Initially, the Au atoms derived from the reduction of Au3+ by AA are conformally deposited on the entire surface of a Ag cuboctahedron. Upon the formation of a complete Au shell, however, the subsequently formed Au atoms are preferentially deposited onto the Au{100} facets, resulting in the formation of a Ag@Au cuboctahedron with concave structures at the sites of {111} facets. The concave cuboctahedra embrace excellent SERS activity that is more than 70-fold stronger than that of the original Ag cuboctahedra at an excitation wavelength of 785 nm. The concave cuboctahedra also exhibit remarkable stability in the presence of an oxidant such as H2O2 because of the protection by a complete Au shell. These two unique attributes enable in situ SERS monitoring of the reduction of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP) by NaBH4 through a 4,4'-dimercaptoazobenzene (trans-DMAB) intermediate and the subsequent oxidation of 4 -ATP back to trans-DMAB upon the introduction of H2O2. C1 [Zhang, Jiawei; Winget, Sarah A.; Wu, Yiren; Sun, Xiaojun; Qin, Dong] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Zhang, Jiawei; Xie, Zhao-Xiong] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China. [Zhang, Jiawei; Xie, Zhao-Xiong] Xiamen Univ, Dept Chem, Xiamen 361005, Fujian, Peoples R China. [Winget, Sarah A.] Agnes Scott Coll, Dept Chem, 141 E Coll Ave, Decatur, GA 30030 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Qin, D (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM dong.qin@mse.gatech.edu RI Su, Dong/A-8233-2013; Qin, Dong/E-1434-2011; Xie, Zhaoxiong/G-3416-2010 OI Su, Dong/0000-0002-1921-6683; FU National Science Foundation [CHE-1412006]; Georgia Institute of Technology; 3M nontenured faculty award; China Scholarship Council; Center for Functional Nanomaterials a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX This work was supported in part by the National Science Foundation (CHE-1412006), start-up funds from the Georgia Institute of Technology, and 3M nontenured faculty award. Part of the research was performed at the Institute of Electronics and Nanotechnology (IEN). We thank Ming Luo for performing the ICP-MS analysis. J. Zhang was also partially supported by the China Scholarship Council. S. Winget was on sabbatical leave from the Department of Chemistry at Agnes Scott College. We acknowledge the use of electron microscopy resources at the Center for Functional Nanomaterials, a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 51 TC 9 Z9 9 U1 48 U2 156 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2607 EP 2616 DI 10.1021/acsnano.5b07665 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400104 PM 26812215 ER PT J AU Puretzky, AA Liang, LB Li, XF Xiao, K Sumpter, BG Meunier, V Geohegan, DB AF Puretzky, Alexander A. Liang, Liangbo Li, Xufan Xiao, Kai Sumpter, Bobby G. Meunier, Vincent Geohegan, David B. TI Twisted MoSe2 Bilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy SO ACS NANO LA English DT Article DE two-dimensional materials; transition metal dichalcogenides; low-frequency Raman spectroscopy; stacking configurations; first-principles calculations ID TRANSITION-METAL DICHALCOGENIDES; DER-WAALS HETEROSTRUCTURES; LAYER BLACK PHOSPHORUS; MULTILAYER GRAPHENE; SHEAR MODES; MOS2/WS2 HETEROSTRUCTURES; MOLYBDENUM-DISULFIDE; BREATHING MODES; MONOLAYER; ORIENTATION AB Unique twisted bilayers of MoSe2 with multiple stacking orientations and interlayer couplings in the narrow range of twist angles, 60 +/- 3 degrees, are revealed by low-frequency Raman spectroscopy and theoretical analysis. The slight deviation from 60 allows the concomitant presence of patches featuring all three high-symmetry stacking configurations (2H or AA', AB', and A'B) in one unique bilayer system. In this case, the periodic arrangement of the patches and their size strongly depend on the twist angle. Ab initio modeling predicts significant changes in frequencies and intensities of low-frequency modes versus stacking and twist angle. Experimentally, the variable stacking and coupling across the interface are revealed by the appearance of two breathing modes, corresponding to the mixture of the high-symmetry stacking configurations and unaligned regions of monolayers. Only one breathing mode is observed outside the narrow range of twist angles. This indicates a stacking transition to unaligned monolayers with mismatched atom registry without the in-plane restoring force required to generate a shear mode. The variable interlayer coupling and spacing in transition metal dichalcogenide bilayers revealed in this study may provide an interesting platform for optoelectronic applications of these materials. C1 [Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan; Xiao, Kai; Sumpter, Bobby G.; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. RP Puretzky, AA (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM puretzkya@ornl.gov RI Sumpter, Bobby/C-9459-2013; Liang, Liangbo/H-4486-2011; Li, Xufan/A-8292-2013; Geohegan, David/D-3599-2013 OI Sumpter, Bobby/0000-0001-6341-0355; Liang, Liangbo/0000-0003-1199-0049; Li, Xufan/0000-0001-9814-0383; Geohegan, David/0000-0003-0273-3139 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; NSF EFRI-2DARE [1542707]; Eugene P. Wigner Fellowship at the Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX The Raman spectroscopy part of this research, including aspects of theory, was conducted at the Center for Nanophase Materials Sciences, a U.S. Department of Energy Office of Science User Facility. The synthesis science including CVD was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The theoretical work at Rensselaer Polytechnic Institute (RPI) was supported by NSF EFRI-2DARE 1542707. L.L. was supported by a Eugene P. Wigner Fellowship at the Oak Ridge National Laboratory. The computations were performed using the resources of the Center for Computational Innovation at RPI. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 48 TC 12 Z9 12 U1 31 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2736 EP 2744 DI 10.1021/acsnano.5b07807 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400117 PM 26762243 ER PT J AU Lin, JH Zhang, YY Zhou, W Pantelides, ST AF Lin, Junhao Zhang, Yuyang Zhou, Wu Pantelides, Sokrates T. TI Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires SO ACS NANO LA English DT Article DE metallic nanowire; alloying; transition metal dichalcogenide; structural flexibility; junctions; chemical constituent manipulation ID MOLYBDENUM-DISULFIDE; ELECTRONIC-STRUCTURE; MOS2 TRANSISTORS; MO6S6 NANOWIRES; GOLD ATOMS; HETEROSTRUCTURES; MONOLAYERS; CHAINS AB Metallic transition-metal chalcogenide (TMC) nanowires are an important building block for 2D electronics that may be fabricated within semiconducting transition-metal dichalcogenide (TMDC) monolayers. Tuning the geometric structure and electronic properties of such nanowires is a promising way to pattern diverse functional channels for wiring multiple units inside a 2D electronic circuit. However, few experimental investigations have been reported exploring the structural and compositional tenability of these nanowires, due to difficulties in manipulating the structure and chemical composition of an individual nanowire. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we report that TMC nanowires have substantial intrinsic structural flexibility and their chemical composition can be manipulated. Rotational twisting, axial kinking, and branching of an individual nanowire is consistently observed and junctions with well-ordered atomic structures can be fabricated. We also show that the density of states of these nanowires can be finely tuned via alloying either the chalcogen or the transition-metal elements, where the chalcogen alloying can be further controlled by the acceleration voltage of the electron beam during the fabrication. The results open up the possibility of tailoring the properties of TMC nanowires, paving the way for robust ultrasmall interconnects in TMDC-based 2D flexible nanoelectronics. C1 [Lin, Junhao; Zhang, Yuyang; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Lin, Junhao; Zhang, Yuyang; Zhou, Wu; Pantelides, Sokrates T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lin, Junhao] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. RP Lin, JH (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.; Lin, JH; Zhou, W (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.; Lin, JH (reprint author), Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. EM lin.junhao@aist.go.jp; wu.zhou.stem@gmail.com RI Zhang, Yu-Yang/F-2078-2011; Zhou, Wu/D-8526-2011; Lin, Junhao/D-7980-2015 OI Zhang, Yu-Yang/0000-0002-9548-0021; Zhou, Wu/0000-0002-6803-1095; Lin, Junhao/0000-0002-2195-2823 FU U.S. DOE [DE-FG02-09ER46554]; U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division; ORNL's Center for Nanophase Materials Sciences (CNMS) DOE Office of Science User Facility; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. Dhiraj Prasai and Dr. Kirill I. Bolotin for helping with the TEM sample preparation, and Dr. Yongji Gong and Prof. Pulickel Ajayan for providing the monolayer alloys. This research was supported in part by U.S. DOE Grant DE-FG02-09ER46554 (J.L., Y.Z., S.T.P.), by the U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division (W.Z.), and through a user project at ORNL's Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No.DE-AC02-05CH11231. NR 30 TC 2 Z9 2 U1 10 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2782 EP 2790 DI 10.1021/acsnano.5b07888 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400123 PM 26775676 ER PT J AU Kim, TY Amani, M Ahn, GH Song, Y Javey, A Chung, S Lee, T AF Kim, Tae-Young Amani, Matin Ahn, Geun Ho Song, Younggul Javey, Ali Chung, Seungjun Lee, Takhee TI Electrical Properties of Synthesized Large-Area MoS2 Field-Effect Transistors Fabricated with Inkjet-Printed Contacts SO ACS NANO LA English DT Article DE molybdenum disulfide; field-effect transistors; inkjet printing; contact resistance; gate-bias stress effect; electronic transport properties ID MONOLAYER MOLYBDENUM-DISULFIDE; CHEMICAL-VAPOR-DEPOSITION; TRANSITION-METAL DICHALCOGENIDES; THIN-FILM TRANSISTORS; LAYER MOS2; TRANSPORT-PROPERTIES; GRAIN-BOUNDARIES; ATOMIC LAYERS; BIAS-STRESS; PHOTOLUMINESCENCE AB We report the electrical properties of synthesized large-area monolayer molybdenum disulfide (MoS2) field-effect transistors (FETs) with low-cost inkjet-printed Ag electrodes. The monolayer MoS2 film was grown by a chemical vapor deposition (CVD) method, and the top contact Ag source/drain electrodes (S/D) were deposited onto the films using a low-cost drop-on-demand inkjet-printing process without any masks and surface treatments. The electrical characteristics of FETs were comparable to those fabricated by conventional deposition methods such as photo- or electron beam lithography. The contact properties between the S/D and the semiconductor layer were also evaluated using the Y function method and an analysis of the output characteristic at the low drain voltage regimes. Furthermore, the electrical instability under positive gate-bias stress was studied to investigate the charge-trapping mechanism of the FETs. CVD-grown large-area monolayer MoS2 FETs with inkjet-printed contacts may represent an attractive approach for realizing large-area and low-cost thin-film electronics. C1 [Kim, Tae-Young; Song, Younggul; Lee, Takhee] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea. [Kim, Tae-Young; Song, Younggul; Lee, Takhee] Seoul Natl Univ, Inst Appl Phys, Seoul 08826, South Korea. [Amani, Matin; Ahn, Geun Ho; Javey, Ali; Chung, Seungjun] Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Amani, Matin; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Lee, T (reprint author), Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea.; Lee, T (reprint author), Seoul Natl Univ, Inst Appl Phys, Seoul 08826, South Korea.; Chung, S (reprint author), Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM seungjunc@berkeley.edu; tlee@snu.ac.kr FU National Creative Research Laboratory program - Korean Ministry of Science, ICT & Future Planning [2012026372]; Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; LG Yonam Foundation FX The authors appreciate the support from the National Creative Research Laboratory program (Grant No. 2012026372) funded by the Korean Ministry of Science, ICT & Future Planning. MA, G.H.A., and A.J. acknowledge the Electronic Materials Program, funded by the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We are also thankful for the contact angle measurements from Korea Polymer Testing & Research Institute (Koptri). T.L. appreciates the financial support from LG Yonam Foundation. NR 55 TC 6 Z9 6 U1 19 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2819 EP 2826 DI 10.1021/acsnano.5b07942 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400126 PM 26820160 ER PT J AU Zhang, QF Han, LL Jing, H Blom, DA Lin, Y Xing, HLL Wang, H AF Zhang, Qingfeng Han, Lili Jing, Hao Blom, Douglas A. Lin, Ye Xing, Huolin L. Wang, Hui TI Facet Control of Gold Nanorods SO ACS NANO LA English DT Article DE gold nanorods; high-index facets; low-index facets; overgrowth; plasmon resonances; nanocatalysis; surface-enhanced Raman spectroscopy ID HIGH-INDEX FACETS; ENHANCED RAMAN-SCATTERING; PD ALLOY NANOCRYSTALS; HIGH-YIELD SYNTHESIS; OPTICAL-PROPERTIES; AU NANOPARTICLES; SHAPE CONTROL; ASPECT-RATIO; UNDERPOTENTIAL-DEPOSITION; CATALYTIC-ACTIVITIES AB While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair of surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well:preserving all the characteristic facets and geometric features of the faceted Au nanorods. Taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities. C1 [Zhang, Qingfeng; Jing, Hao; Wang, Hui] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Han, Lili; Xing, Huolin L.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Blom, Douglas A.] Univ S Carolina, NanoCtr, Columbia, SC 29208 USA. [Lin, Ye] Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA. RP Wang, H (reprint author), Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. EM wang344@mailbox.sc.edu RI Xin, Huolin/E-2747-2010; OI Xin, Huolin/0000-0002-6521-868X; Wang, Hui/0000-0002-1874-5137 FU National Science Foundation CAREER Award (NSF) [DMR-1253231]; ASPIRE-I Track-I Award from the University of South Carolina Office of Vice President for Research; University of South Carolina Startup Funds; United States Department of Energy (DOE) Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX This work was supported by a National Science Foundation CAREER Award (NSF DMR-1253231), an ASPIRE-I Track-I Award from the University of South Carolina Office of Vice President for Research, and the University of South Carolina Startup Funds. The authors thank the University of South Carolina Electron Microscopy Center and W.M. Keck Open Laboratory for instrument use and technical assistance. The electron tomography results were obtained using the electron microscopy facility of the Center for Functional Nanomaterials, which is a United States Department of Energy (DOE) Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. Q.Z. and H.W. conceived the idea. Q.Z. and H.J. synthesized the nanostructures. Q.Z. did the SEM, TEM, EDS, Raman, optical extinction, and c-potential measurements. L.H. and H.L.X. did the electron tomography measurements. D.A.B. did the high-resolution HAADF-STEM measurements. Y.L. did the XPS measurements. H.W. supervised the research. Q.Z. and H.W. wrote the paper. NR 100 TC 10 Z9 10 U1 42 U2 140 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2960 EP 2974 DI 10.1021/acsnano.6b00258 PG 15 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400142 PM 26795706 ER PT J AU Penzo, E Palma, M Chenet, DA Ao, GY Zheng, M Hone, JC Wind, SJ AF Penzo, Erika Palma, Matteo Chenet, Daniel A. Ao, Geyou Zheng, Ming Hone, James C. Wind, Shalom J. TI Directed Assembly of Single Wall Carbon Nanotube Field Effect Transistors. SO ACS NANO LA English DT Article DE carbon nanotubes; directed assembly; DNA-wrapped SWCNT; carbon nanotube FETs ID AC-DIELECTROPHORESIS; LARGE-SCALE; GROWTH; SEPARATION; ARRAYS; CHROMATOGRAPHY; PARTITION; MONOLAYER; DEVICES; SURFACE AB The outstanding electronic properties of single wall carbon nanotubes (SWCNTs) have made them prime candidates for future nanoelectronics technologies. One of the main obstacles to the implementation of advanced SWCNT electronics to date is the inability to arrange them in a manner suitable for complex circuits. Directed assembly of SWCNT segments onto lithographically patterned and chemically functionalized substrates is a promising way to organize SWCNTs in topologies that are amenable to integration for advanced applications, but the placement and orientational control required have not yet been demonstrated. We have developed a technique for assembling length sorted and chirality monodisperse DNA -wrapped SWCNT segments on hydrophilic lines patterned on a passivated oxidized silicon substrate. Placement of individual SWCNT segments at predetermined locations was achieved with nanometer accuracy. Three terminal electronic devices, consisting of a single SWCNT segment placed either beneath or on top of metallic source/drain electrodes were fabricated. Devices made with semiconducting nanotubes behaved as typical p -type field effect transistors (FETs), whereas devices made with metallic nanotubes had a finite resistance with little or no gate modulation. This scalable, high resolution approach represents an important step forward toward the potential implementation of complex SWCNT devices and circuits. C1 [Penzo, Erika; Palma, Matteo; Wind, Shalom J.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Chenet, Daniel A.; Hone, James C.] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. [Ao, Geyou; Zheng, Ming] NIST, Gaithersburg, MD 20899 USA. [Penzo, Erika] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Palma, Matteo] Queen Mary Univ London, Sch Biol & Chem Sci, Dept Chem & Biochem, London, England. RP Wind, SJ (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM sw2128@columbia.edu RI Palma , Matteo/E-6392-2011 OI Palma , Matteo/0000-0001-8715-4034 FU Office of Naval Research [N00014-09-1-1117] FX The authors thank Profs. C. Nuckolls and M. Sheetz for resource support, as well as the staff and facilities of the Columbia Nano Initiative cleanroom, where much of the fabrication work was performed. The authors also gratefully acknowledge financial support from the Office of Naval Research under Award No. N00014-09-1-1117. NR 45 TC 5 Z9 5 U1 16 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2016 VL 10 IS 2 BP 2975 EP 2981 DI 10.1021/acsnano.6b00353 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DE9VL UT WOS:000370987400143 PM 26807948 ER PT J AU Nandanwar, SU Coldsnow, K Utgikar, V Sabharwall, P Aston, DE Zhang, YN AF Nandanwar, Sachin U. Coldsnow, Kai Utgikar, Vivek Sabharwall, Piyush Aston, D. Eric Zhang, Yanning TI Synthesis and characterization of ETS-10: supported hollow carbon nano-polyhedrons nanosorbent for adsorption of krypton at near ambient temperatures SO ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY LA English DT Article DE Adsorption; Nanosorbent; Hollow carbon; ETS-10; Krypton ID MICROPOROUS TITANOSILICATE ETS-10; NUCLEAR-WASTE MANAGEMENT; NOBLE-GAS ADSORPTION; NANOTUBES; ADSORBENTS; SEPARATION; MORDENITE; CAPTURE; IODINE; XENON AB Hollow carbon nano-polyhedrons (HCNPHs) supported on Engelhard Titanosilicate-10 (ETS-10) were synthesized by wet impregnation technique using tetrahydrofuran as a solvent. Synthesized HCNPHs/ETS-10 nanosorbent was characterized by X-ray diffraction, Raman spectra, N2-adsorption-desorption isotherm, BET surface area, and scanning electron microscopy to confirm the morphology and uniformity of carbon particles ranging from 50 to 70 nm in diameter. Sorption characteristics of this nanosorbent for krypton at various carbon loadings were determined using a bench-scale column apparatus. The dynamic sorption capacity of HCNPHs/ETS-10 nanosorbent calculated from the breakthrough curve, 0.75 mmol/kg, which was similar to 15 % higher than for that of activated carbon. The effect of temperature on the adsorption capacity was studied between 263-293 K. Operational capacity of the nanosorbent was found to be 0.45 mmol/kg at 263 K. The experimental results indicate that 10 wt% HCNPHs/ETS-10 nanosorbent showed promising results for krypton adsorption, indicating its potential as an economical and active sorbent for krypton removal from the off-gas streams resulting from operations for recycle of used nuclear fuel. C1 [Nandanwar, Sachin U.; Coldsnow, Kai; Utgikar, Vivek; Aston, D. Eric] Univ Idaho, Dept Chem & Mat Engn, 875 Perimeter Dr, Moscow, ID 83844 USA. [Sabharwall, Piyush] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Zhang, Yanning] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. RP Utgikar, V (reprint author), Univ Idaho, Dept Chem & Mat Engn, 875 Perimeter Dr, Moscow, ID 83844 USA. EM vutgikar@uidaho.edu FU U.S. Department of Energy-Nuclear Energy University Program FX This work was financially supported by U.S. Department of Energy-Nuclear Energy University Program. We thank to Dr. Susmita Bose, Washington State University, Pullman for her assistance with the BET surface area analysis. NR 43 TC 2 Z9 2 U1 6 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0929-5607 EI 1572-8757 J9 ADSORPTION JI Adsorpt.-J. Int. Adsorpt. Soc. PD FEB PY 2016 VL 22 IS 2 BP 129 EP 137 DI 10.1007/s10450-015-9702-8 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA DF3HH UT WOS:000371234200003 ER PT J AU Pau, GSH Finsterle, S Zhang, YQ AF Pau, George Shu Heng Finsterle, Stefan Zhang, Yingqi TI Fast high-resolution prediction of multi-phase flow in fractured formations SO ADVANCES IN WATER RESOURCES LA English DT Article DE Multiphase flow; Fracture network; Reduced order model; Downscaling ID PROPER ORTHOGONAL DECOMPOSITION; EMPIRICAL INTERPOLATION; MODEL-REDUCTION; DYNAMICS; OUTPUT; FLUID AB The success of a thermal water flood for enhanced oil recovery (EOR) depends on a detailed representation of the geometrical and hydraulic properties of the fracture network, which induces discrete, channelized flow behavior. The resulting high-resolution model is typically computationally very demanding. Here, we use the Proper Orthogonal Decomposition Mapping Method to reconstruct high-resolution solutions based on efficient low-resolution solutions. The method requires training a reduced order model (ROM) using high and low-resolution solutions determined for a relatively short simulation time. For a cyclic EOR operation, the oil production rate and the heterogeneous structure of the oil saturation are accurately reproduced even after 105 cycles, reducing the computational cost by at least 85%. The method described is general and can be potentially utilized with any multiphase flow model. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Pau, George Shu Heng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Finsterle, Stefan; Zhang, Yingqi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Geosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Pau, GSH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM gpau@lbl.gov; safinsterle@ibl.gov; yqzhang@lbl.gov RI Finsterle, Stefan/A-8360-2009; Zhang, Yingqi/D-1203-2015; Pau, George Shu Heng/F-2363-2015 OI Finsterle, Stefan/0000-0002-4446-9906; Pau, George Shu Heng/0000-0002-9198-6164 FU U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank A. Guadagnini and the two anonymous reviewers for their constructive comments. This research was supported, in part, by the U.S. Department of Energy under Contract #DE-AC02-05CH11231. We thank Rishi Parashar of the Desert Research Institute for making ThrecDFracMap available to this project. NR 24 TC 0 Z9 0 U1 4 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD FEB PY 2016 VL 88 BP 80 EP 85 DI 10.1016/j.advwatres.2015.12.008 PG 6 WC Water Resources SC Water Resources GA DF4IS UT WOS:000371311800009 ER PT J AU Tanaka, T Mizoguchi, K Terasawa, T Okano, Y Saito, K Guo, QX Nishio, M Yu, KM Walukiewicz, W AF Tanaka, Tooru Mizoguchi, Kosuke Terasawa, Toshiki Okano, Yuuki Saito, Katsuhiko Guo, Qixin Nishio, Mitsuhiro Yu, Kin Man Walukiewicz, Wladek TI Compositional dependence of optical transition energies in highly mismatched Zn1-xCdxTe1-yOy alloys SO APPLIED PHYSICS EXPRESS LA English DT Article ID SPECTROSCOPY; ZNTE AB Highly mismatched Zn1-xCdxTe1-yOy layers with a wide range of Cd and O compositions of 0-0.7 and 0.005-0.02, respectively, were grown by molecular beam epitaxy for the application of intermediate band solar cells. The electron transition energies from the valence band (VB) to E- and E+ bands decreased with increasing Cd content. The variation of the transition energies was consistent with the theoretical calculation based on the band anticrossing model. The magnitude of the optical absorption due to electron transitions from the VB to E- band was strongly dependent on the Cd content because of the changing character of the E- band. (C) 2016 The Japan Society of Applied Physics C1 [Tanaka, Tooru; Mizoguchi, Kosuke; Terasawa, Toshiki; Okano, Yuuki; Saito, Katsuhiko; Guo, Qixin; Nishio, Mitsuhiro] Saga Univ, Dept Elect & Elect Engn, Saga 8408502, Japan. [Tanaka, Tooru] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan. [Yu, Kin Man; Walukiewicz, Wladek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yu, Kin Man] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. RP Tanaka, T (reprint author), Saga Univ, Dept Elect & Elect Engn, Saga 8408502, Japan.; Tanaka, T (reprint author), Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan. EM ttanaka@cc.saga-u.ac.jp OI Tanaka, Tooru/0000-0001-5747-1717 FU JST PRESTO program; JSPS KAKENHI [15H04253]; Murata Science Foundation; Research Foundation for the Electrotechnology of Chubu; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the JST PRESTO program, JSPS KAKENHI Grant Number 15H04253, Murata Science Foundation, and Research Foundation for the Electrotechnology of Chubu. Work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 19 TC 0 Z9 0 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1882-0778 EI 1882-0786 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD FEB PY 2016 VL 9 IS 2 AR 021202 DI 10.7567/APEX.9.021202 PG 4 WC Physics, Applied SC Physics GA DF4DO UT WOS:000371297800006 ER PT J AU Dawson, KS Kneib, JP Percival, WJ Alam, S Albareti, FD Anderson, SF Armengaud, E Aubourg, E Bailey, S Bautista, JE Berlind, AA Bershady, MA Beutler, F Bizyaev, D Blanton, MR Blomqvist, M Bolton, AS Boyy, J Brandt, WN Brinkmann, J Brownstein, JR Burtin, E Busca, NG Cai, Z Chuang, CH Clerc, N Comparat, J Cope, F Croft, RAC Cruz-Gonzalez, I da Costa, LN Cousinou, MC Darling, J de la Macorra, A de la Torre, S Delubac, T des Bourboux, HD Dwelly, T Ealet, A Eisenstein, DJ Eracleous, M Escoffier, S Fan, XH Finoguenov, A Font-Ribera, A Frinchaboy, P Gaulme, P Georgakakis, A Green, P Guo, H Guy, J Ho, S Holder, D Huehnerhoff, J Hutchinson, T Jing, YP Jullo, E Kamble, V Kinemuchi, K Kirkby, D Kitaura, FS Klaene, MA Laher, RR Lang, D Laurent, P Le Goff, JM Li, C Liang, Y Lima, M Lin, Q Lin, W Lin, YT Long, DC Lundgren, B MacDonald, N Maia, MAG Malanushenko, E Malanushenko, V Mariappan, V McBride, CK McGreer, ID Menard, B Merloni, A Meza, A Montero-Dorta, AD Muna, D Myers, AD Nandra, K Naugle, T Newman, JA Noterdaeme, P Nugent, P Ogando, N Olmstead, MD Oravetz, A Oravetz, DJ Padmanabhan, N Palanque-Delabrouille, N Pan, K Parejko, JK Paris, I Peacock, JA Petitjean, P Pieri, MM Pisani, A Prada, F Prakash, A Raichoor, A Reid, B Rich, J Ridl, J Rodriguez-Torres, S Rosell, AC Ross, AJ Rossi, G Ruan, J Salvato, M Sayres, C Schneider, DP Schlegel, DJ Seljak, U Seo, HJ Sesar, B Shandera, S Shu, YP Slosar, A Sobreira, F Streblyanska, A Suzuki, N Taylor, D Tao, C Tinker, JL Tojeiro, R Vargas-Magana, M Wang, YT Weaver, BA Weinberg, DH White, M Wood-Vasey, WM Yeche, C Zhai, ZX Zhao, C Zhao, GB Zheng, Z Zhu,GB Zou, H AF Dawson, Kyle S. Kneib, Jean -Paul Percival, Will J. Alam, Shadab Albareti, Franco D. Anderson, Scott F. Armengaud, Eric Aubourg, Eric Bailey, Stephen Bautista, Julian E. Berlind, Andreas A. Bershady, Matthew A. Beutler, Florian Bizyaev, Dmitry Blanton, Michael R. Blomqvist, Michael Bolton, Adam S. Boyy, Jo Brandt, W. N. Brinkmann, Jon Brownstein, Joel R. Burtin, Etienne Busca, N. G. Cai, Zheng Chuang, Chia-Hsun Clerc, Nicolas Comparat, Johan Cope, Frances Croft, Rupert A. C. Cruz-Gonzalez, Irene da Costa, Lutz N. Cousinou, Marie-Claude Darling, Jeremy de la Macorra, Axel de la Torre, Sylvain Delubac, Timothee des Bourboux, Helion du Mas Dwelly, Tom Ealet, Anne Eisenstein, Daniel J. Eracleous, Michael Escoffier, S. Fan, Xiaohui Finoguenov, Alexis Font-Ribera, Andreu Frinchaboy, Peter Gaulme, Patrick Georgakakis, Antonis Green, Paul Guo, Hong Guy, Julien Ho, Shirley Holder, Diana Huehnerhoff, Joe Hutchinson, Timothy Jing, Yipeng Jullo, Eric Kamble, Vikrant Kinemuchi, Karen Kirkby, David Kitaura, Francisco-Shu Klaene, Mark A. Laher, Russ R. Lang, Dustin Laurent, Pierre Le Goff, Jean-Marc Li, Cheng Liang, Yu Lima, Marcos Lin, Qiufan Lin, Weipeng Lin, Yen-Ting Long, Daniel C. Lundgren, Britt MacDonald, Nicholas Maia, Marcio Antonio Geimba Malanushenko, Elena Malanushenko, Viktor Mariappan, Vivek McBride, Cameron K. McGreer, Ian D. Menard, Brice Merloni, Andrea Meza, Andres Montero-Dorta, Antonio D. Muna, Demitri Myers, Adam D. Nandra, Kirpal Naugle, Tracy Newman, Jeffrey A. Noterdaeme, Pasquier Nugent, Peter Ogando, Nugentricardo Olmstead, Matthew D. Oravetz, Audrey Oravetz, Daniel J. Padmanabhan, Nikhil Palanque-Delabrouille, Nathalie Pan, Kaike Parejko, John K. Paris, Isabelle Peacock, John A. Petitjean, Patrick Pieri, Matthew M. Pisani, Alice Prada, Francisco Prakash, Abhishek Raichoor, Anand Reid, Beth Rich, James Ridl, Jethro Rodriguez-Torres, Sergio Rosell, Aurelio Carnero Ross, Ashley J. Rossi, Graziano Ruan, John Salvato, Mara Sayres, Conor Schneider, Donald P. Schlegel, David J. Seljak, Uros Seo, Hee-Jong Sesar, Branimir Shandera, Sarah Shu, Yiping Slosar, Anze Sobreira, Flavia Streblyanska, Alina Suzuki, Nao Taylor, Donna Tao, Charling Tinker, Jeremy L. Tojeiro, Rita Vargas-Magana, Mariana Wang, Yuting Weaver, Benjamin A. Weinberg, David H. White, Martin Wood-Vasey, W. M. Yeche, Christophe Zhai, Zhongxu Zhao, Cheng Zhao, Gong-bo Zheng, Zheng Zhu, Guangtun Ben Zou, Hu TI THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA SO ASTRONOMICAL JOURNAL LA English DT Article DE cosmology: observations; surveys ID DIGITAL SKY SURVEY; DATA RELEASE 9; REDSHIFT-SPACE DISTORTIONS; LY-ALPHA FOREST; PHOTOMETRICALLY CLASSIFIED QUASARS; PRIMORDIAL NON-GAUSSIANITY; SUPERNOVA LEGACY SURVEY; LUMINOUS RED GALAXIES; LARGE-SCALE STRUCTURE; DR11 BOSS GALAXIES AB In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d(A)(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With similar to 195,000 new emission line galaxy redshifts, we expect BAO measurements of d(A)(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d(A)(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lya forest measurements at redshifts z > 2.1; these new data will enhance the precision of d(A)(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Here, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS. C1 [Dawson, Kyle S.; Bautista, Julian E.; Bolton, Adam S.; Brownstein, Joel R.; Guo, Hong; Hutchinson, Timothy; Kamble, Vikrant; Mariappan, Vivek; Montero-Dorta, Antonio D.; Shu, Yiping; Taylor, Donna; Zheng, Zheng] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Kneib, Jean -Paul; Delubac, Timothee] Ecole Polytech Fed Lausanne, Observ Sauverny, Astrophys Lab, CH-1290 Versoix, Switzerland. [Kneib, Jean -Paul; de la Torre, Sylvain; Jullo, Eric; Pieri, Matthew M.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Percival, Will J.; Ross, Ashley J.; Tojeiro, Rita; Wang, Yuting; Zhao, Gong-bo] Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg, Portsmouth PO1 3FX, Hants, England. [Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Lang, Dustin] Carnegie Mellon Univ, Dept Phys, Bruce & Astrid McWilliams Ctr Cosmol, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. [Albareti, Franco D.; Chuang, Chia-Hsun; Comparat, Johan; Prada, Francisco; Rodriguez-Torres, Sergio] Univ Autonoma Madrid, CSIC, Inst Fis Teor, E-28049 Madrid, Spain. [Anderson, Scott F.; MacDonald, Nicholas; Ruan, John; Sayres, Conor] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. [Armengaud, Eric; Burtin, Etienne; des Bourboux, Helion du Mas; Laurent, Pierre; Le Goff, Jean-Marc; Palanque-Delabrouille, Nathalie; Raichoor, Anand; Rich, James; Yeche, Christophe] CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France. [Aubourg, Eric; Busca, N. G.] Univ Paris Diderot, APC, CNRS IN2P3, CEA IRFU,Observ Paris,Sorbonne Paris Cite, Paris, France. [Bailey, Stephen; Beutler, Florian; Font-Ribera, Andreu; Nugent, Peter; Reid, Beth; Schlegel, David J.; Seljak, Uros; White, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, One Cyclotron Rd, Berkeley, CA 94720 USA. [Berlind, Andreas A.] Vanderbilt Univ, Dept Phys & Astron, PMB 401807,2401 Vanderbilt Pl, Nashville, TN 37240 USA. [Bershady, Matthew A.; Lundgren, Britt] Univ Wisconsin, Dept Astron, 475 N Charter St, Madison, WI 53703 USA. [Bizyaev, Dmitry; Bolton, Adam S.; Brinkmann, Jon; Cope, Frances; Gaulme, Patrick; Holder, Diana; Huehnerhoff, Joe; Kinemuchi, Karen; Klaene, Mark A.; Long, Daniel C.; Malanushenko, Elena; Malanushenko, Viktor; Naugle, Tracy; Oravetz, Audrey; Oravetz, Daniel J.; Pan, Kaike] Apache Point Observ, POB 59, Sunspot, NM 88349 USA. [Bizyaev, Dmitry; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Audrey; Oravetz, Daniel J.; Pan, Kaike] New Mexico State Univ, Dept Astron, MSC 4500,POB 30001, Las Cruces, NM 88003 USA. [Bizyaev, Dmitry] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow, Russia. [Blanton, Michael R.; Tinker, Jeremy L.; Weaver, Benjamin A.; Zhai, Zhongxu] NYU, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. [Blomqvist, Michael; Kirkby, David] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Boyy, Jo] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Brandt, W. N.; Eracleous, Michael; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Brandt, W. N.; Eracleous, Michael; Schneider, Donald P.; Shandera, Sarah] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, W. N.; Eracleous, Michael] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Cai, Zheng; Fan, Xiaohui; McGreer, Ian D.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Clerc, Nicolas; Dwelly, Tom; Georgakakis, Antonis; Merloni, Andrea; Nandra, Kirpal; Ridl, Jethro; Salvato, Mara] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Cruz-Gonzalez, Irene; de la Macorra, Axel] Univ Autonoma Madrid, Inst Astron, AP 70-264, E-28049 Madrid, Spain. [da Costa, Lutz N.; Maia, Marcio Antonio Geimba; Ogando, Nugentricardo; Rosell, Aurelio Carnero] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [da Costa, Lutz N.; Lima, Marcos; Maia, Marcio Antonio Geimba; Ogando, Nugentricardo; Rosell, Aurelio Carnero; Sobreira, Flavia] LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Cousinou, Marie-Claude; Ealet, Anne; Escoffier, S.; Pisani, Alice; Tao, Charling] Aix Marseille Univ, CNRS, IN2P3, CPPM UMR 7346, F-13288 Marseille, France. [Darling, Jeremy] Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, 389 UCB, Boulder, CO 80309 USA. [Eisenstein, Daniel J.; Green, Paul; McBride, Cameron K.] Harvard Univ, Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Finoguenov, Alexis] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, FI-00014 Helsinki, Finland. [Frinchaboy, Peter] Texas Christian Univ, Dept Phys & Astron, 2800 South Univ Dr, Ft Worth, TX 76129 USA. [Guo, Hong; Li, Cheng; Lin, Weipeng] Chinese Acad Sci, Shanghai Astron Observ, 80 Nandan Rd, Shanghai 200030, Peoples R China. [Guy, Julien] Univ Paris 07, Univ Paris 06, LPNHE, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris, France. [Jing, Yipeng] Shanghai Jiao Tong Univ, Dept Phys & Astron, IFSA Collaborat Innovat Ctr, Shanghai 200240, Peoples R China. [Kitaura, Francisco-Shu] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. [Laher, Russ R.] CALTECH, Spitzer Sci Ctr, M-S 314-6, Pasadena, CA 91125 USA. [Liang, Yu; Lin, Qiufan; Tao, Charling; Zhao, Cheng] Tsinghua Univ, Tsinghua Ctr Astrophys, Beijing 100084, Peoples R China. [Lima, Marcos] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Lin, Weipeng] Sun Yat Sen Univ, Sch Astron & Space Sci, Guangzhou 510275, Guangdong, Peoples R China. [Lin, Yen-Ting] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Menard, Brice; Zhu, Guangtun Ben] Johns Hopkins Univ, Dept Phys & Astron, Ctr Astrophys Sci, 3400 North Charles St, Baltimore, MD 21218 USA. [Menard, Brice; Suzuki, Nao] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. [Meza, Andres] Univ Andres Bello, Dept Ciencias Fis, Ave Republ 220, Santiago, Chile. [Muna, Demitri] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Muna, Demitri] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Myers, Adam D.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Newman, Jeffrey A.; Prakash, Abhishek; Wood-Vasey, W. M.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Newman, Jeffrey A.; Prakash, Abhishek; Wood-Vasey, W. M.] Univ Pittsburgh, PITT PACC, Pittsburgh, PA 15260 USA. [Noterdaeme, Pasquier; Petitjean, Patrick; Pisani, Alice] UPMC, CNRS, UMR7095, Inst Astrophys Paris, 98Bis Blvd Arago, F-75014 Paris, France. [Nugent, Peter; Seljak, Uros; White, Martin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Olmstead, Matthew D.] Kings Coll, Dept Chem & Phys, Wilkes Barre, PA 18711 USA. [Padmanabhan, Nikhil; Parejko, John K.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Paris, Isabelle] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Peacock, John A.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Pisani, Alice] Univ Paris 06, Sorbonne univ, UMR7095, Inst Astrophys Paris, 98Bis Bd Arago, F-75014 Paris, France. [Prada, Francisco] Campus Int Excellence UAM CSIC, E-28049 Madrid, Spain. [Prada, Francisco] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Ross, Ashley J.; Weinberg, David H.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Rossi, Graziano] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea. [Seljak, Uros; White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Seljak, Uros] LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Seo, Hee-Jong] Ohio Univ, Dept Phys & Astron, Clippinger Labs 251B, Athens, OH 45701 USA. [Sesar, Branimir] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Slosar, Anze] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Sobreira, Flavia] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Streblyanska, Alina] Inst Astrofis Canarias, C Via Lactea S-N, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Streblyanska, Alina] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Vargas-Magana, Mariana] Univ Nacl Autonoma Mexico, Inst Fis, Apdo Postal 20-364, Mexico City 01000, DF, Mexico. [Wang, Yuting; Zhao, Gong-bo; Zou, Hu] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. RP Dawson, KS (reprint author), Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. EM kdawson@astro.utah.edu RI Guo, Hong/J-5797-2015; Lima, Marcos/E-8378-2010; White, Martin/I-3880-2015; Sobreira, Flavia/F-4168-2015; Croft, Rupert/N-8707-2014; Georgakakis, Antonis/K-4457-2013; OI Guo, Hong/0000-0003-4936-8247; White, Martin/0000-0001-9912-5070; Sobreira, Flavia/0000-0002-7822-0658; Croft, Rupert/0000-0003-0697-2583; Kirkby, David/0000-0002-8828-5463; Meza, Andres/0000-0002-9460-7828; Jullo, Eric/0000-0002-9253-053X; Beutler, Florian/0000-0003-0467-5438; Georgakakis, Antonis/0000-0002-3514-2442 FU U.S. Department of Energy [DE-SC000995]; ERC advanced grant LIDA; UK STFC [ST/K0090X/1]; European Research Council through grant Darksurvey; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science FX K.D. acknowledges support from the U.S. Department of Energy under Grant DE-SC000995. J.P.K. and T.D. acknowledge support from the ERC advanced grant LIDA. W.J.P. acknowledges support from the UK STFC through the consolidated grant ST/K0090X/1, and from the European Research Council through grant Darksurvey. This paper includes targets derived from the images of the Wide-Field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.r This paper represents an effort by both the SDSS-III and SDSS-IV collaborations. Funding for SDSS-III was provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is www.sdss.org. NR 155 TC 38 Z9 38 U1 12 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2016 VL 151 IS 2 AR 44 DI 10.3847/0004-6256/151/2/44 PG 34 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MO UT WOS:000371248600024 ER PT J AU Gerdes, DW Jennings, RJ Bernstein, GM Sako, M Adams, E Goldstein, D Kessler, R Hamilton, S Abbott, T Abdalla, EB Allam, S Benoit-Levy, A Bertin, E Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Rosell, AC Kind, MC Carretero, J Cunha, CE D'Andrea, CB da Costa, LN Depoy, DL Desai, S Dietrich, JP Doel, P Eifler, TF Neto, AF Flaugher, B Frieman, J Gaztanaga, E Gruen, D Gruendl, RA Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS Maia, MAG March, M Martini, P Miller, CJ Miquel, R Nichol, RC Nord, B Ogando, R Plazas, AA Romer, AK Roodman, A Sanchez, E Santiago, B Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Walker, AR Wester, W Zhang, Y AF Gerdes, D. W. Jennings, R. J. Bernstein, G. M. Sako, M. Adams, E. Goldstein, D. Kessler, R. Hamilton, S. Abbott, T. Abdalla, E. B. Allam, S. Benoit-Levy, A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Depoy, D. L. Desai, S. Dietrich, J. P. Doel, P. Eifler, T. F. Fausti Neto, A. Flaugher, B. Frieman, J. Gaztanaga, E. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Maia, M. A. G. March, M. Martini, P. Miller, C. J. Miquel, R. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Romer, A. K. Roodman, A. Sanchez, E. Santiago, B. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Walker, A. R. Wester, W. Zhang, Y. CA DES Collaboration TI OBSERVATION OF TWO NEW L4 NEPTUNE TROJANS IN THE DARK ENERGY SURVEY SUPERNOVA FIELDS SO ASTRONOMICAL JOURNAL LA English DT Article DE minor planets, asteroids: general ID SIZE DISTRIBUTION; PLANET MIGRATION; KUIPER-BELT; 2004 KV18; ASTEROIDS; JUPITER; POPULATIONS; SOFTWARE; CAPTURE; SEARCH AB We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014. QO(441) and 2014. QP(441) were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-m Blanco telescope at Cerro Tololo Inter-American Observatory. Both are in high-inclination orbits (18 degrees.8 and 19 degrees.4, respectively). With an eccentricity of 0.104, 2014. QO(441) has the most eccentric orbit of the 11 known stable Neptune Trojans. Here we describe the search procedure and investigate the objects' long-term dynamical stability and physical properties. C1 [Gerdes, D. W.; Adams, E.; Hamilton, S.; Miller, C. J.; Schubnell, M.; Tarle, G.; Zhang, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Jennings, R. J.] Carleton Coll, Northfield, MN 55057 USA. [Bernstein, G. M.; Sako, M.; Eifler, T. F.; March, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Adams, E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Goldstein, D.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Kessler, R.; Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kessler, R.] Univ Chicago, Dept Astron & Astrophys, 5640 South Ellis Ave, Chicago, IL 60637 USA. [Abbott, T.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, Casilla 603, La Serena, Chile. [Abdalla, E. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, E. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Allam, S.; Buckley-Geer, E.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Soares-Santos, M.; Sobreira, F.; Wester, W.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Burke, D. L.; Cunha, C. E.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Burke, D. L.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Capozzi, D.; D'Andrea, C. B.; Nichol, R. C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Maia, M. A. G.; Ogando, R.; Santiago, B.; Sobreira, F.] LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.; Sevilla-Noarbe, I.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.; Gaztanaga, E.] IEEC CSIC, Inst Ciencies Espai, Caner Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.; Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Depoy, D. L.; Li, T. S.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Depoy, D. L.; Li, T. S.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.; Dietrich, J. P.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Dietrich, J. P.; Gruen, D.] Univ Munich, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Gruen, D.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Honscheid, K.; Martini, P.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.; Suchyta, E.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Romer, A. K.; Sevilla-Noarbe, I.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.] CIEMAT, Madrid, Spain. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RP Gerdes, DW (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RI Ogando, Ricardo/A-1747-2010; Sobreira, Flavia/F-4168-2015; Gaztanaga, Enrique/L-4894-2014; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658; Gaztanaga, Enrique/0000-0001-9632-0815; Dietrich, Jorg/0000-0002-8134-9591; Carrasco Kind, Matias/0000-0002-4802-3194; Abdalla, Filipe/0000-0003-2063-4345 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Edinburgh; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat; associated Excellence Cluster universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University FX We are grateful for the extraordinary contributions of our CTIO colleagues and the DES Camera, Commissioning and Science Verification teams for achieving excellent instrument and telescope conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the DES Data Management organization. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey.r The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat and the associated Excellence Cluster universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. NR 41 TC 4 Z9 4 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2016 VL 151 IS 2 AR 39 DI 10.3847/0004-6256/151/2/39 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MO UT WOS:000371248600019 ER PT J AU Lang, D Hogg, DW Schlegel, DJ AF Lang, Dustin Hogg, David W. Schlegel, David J. TI WISE PHOTOMETRY FOR 400 MILLION SDSS SOURCES SO ASTRONOMICAL JOURNAL LA English DT Article DE catalogs; methods: data analysis; surveys; techniques: image processing ID OSCILLATION SPECTROSCOPIC SURVEY; INFRARED-SURVEY-EXPLORER; QUASAR PROBABILITIES; SKY SURVEY; MISSION; PERFORMANCE; REDSHIFTS; NEOWISE AB We present photometry of images from the Wide-Field Infrared Survey Explorer (WISE) of over 400 million sources detected by the Sloan Digital Sky Survey (SDSS). We use a "forced photometry" technique, using measured SDSS source positions, star-galaxy classification, and galaxy profiles to define the sources whose fluxes are to be measured in the WISE images. We perform photometry with The Tractor image modeling code, working on our "unWISE" coaddds and taking account of the WISE point-spread function and a noise model. The result is a measurement of the flux of each SDSS source in each WISE band. Many sources have little flux in the WISE bands, so often the measurements we report are consistent with zero given our uncertainties. However, for many sources we get 3s or 4s measurements; these sources would not be reported by the "official" WISE pipeline and will not appear in the WISE catalog, yet they can be highly informative for some scientific questions. In addition, these small-signal measurements can be used in stacking analyses at the catalog level. The forced photometry approach has the advantage that we measure a consistent set of sources between SDSS and WISE, taking advantage of the resolution and depth of the SDSS images to interpret the WISE images; objects that are resolved in SDSS but blended together in WISE still have accurate measurements in our photometry. Our results, and the code used to produce them, are publicly available at http://unwise.me. C1 [Lang, Dustin] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Lang, Dustin] Univ Toronto, Dunlap Inst, 50 St George St, Toronto, ON M5S 3H4, Canada. [Lang, Dustin] Univ Waterloo, Dept Phys & Astron, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada. [Hogg, David W.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. [Hogg, David W.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Lang, D (reprint author), Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada.; Lang, D (reprint author), Univ Toronto, Dunlap Inst, 50 St George St, Toronto, ON M5S 3H4, Canada.; Lang, D (reprint author), Univ Waterloo, Dept Phys & Astron, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada. EM dstndstn@gmail.corn FU NSF [IIS-1124794]; NASA [NNX12AI50G]; Moore-Sloan Data Science Environment at NYU; National Aeronautics and Space Administration; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX D.W.H. was partially supported by the NSF (grant IIS-1124794), NASA (grant NNX12AI50G), and the Moore-Sloan Data Science Environment at NYU.; This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, and NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology. WISE and NEOWISE are funded by the National Aeronautics and Space Administration.; This publication makes use of data from the SDSS III. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.; This research used the resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. NR 21 TC 9 Z9 9 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2016 VL 151 IS 2 AR 36 DI 10.3847/0004-6256/151/2/36 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MO UT WOS:000371248600016 ER PT J AU Rodney, SA Riess, AG Scolnic, DM Jones, DO Hemmati, S Molino, A McCully, C Mobasher, B Strolger, LG Graur, O Hayden, B Casertano, S AF Rodney, Steven A. Riess, Adam G. Scolnic, Daniel M. Jones, David O. Hemmati, Shoubaneh Molino, Alberto McCully, Curtis Mobasher, Bahram Strolger, Louis-Gregory Graur, Or Hayden, Brian Casertano, Stefano TI TWO SNe Ia AT REDSHIFT similar to 2: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BAND INFRARED IMAGING (vol 150, 156, 2015) SO ASTRONOMICAL JOURNAL LA English DT Correction C1 [Rodney, Steven A.; Riess, Adam G.; Jones, David O.] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. [Rodney, Steven A.] Univ S Carolina, Dept Phys & Astron, 712 Main St, Columbia, SC 29208 USA. [Riess, Adam G.; Strolger, Louis-Gregory; Casertano, Stefano] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Scolnic, Daniel M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Hemmati, Shoubaneh; Mobasher, Bahram] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Molino, Alberto] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Molino, Alberto] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Cidade Univ, BR-05508090 Sao Paulo, Brazil. [McCully, Curtis] Global Telescope Network, Las Cumbres Observ, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA. [McCully, Curtis] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Strolger, Louis-Gregory] Western Kentucky Univ, Dept Phys, Bowling Green, KY 42101 USA. [Graur, Or] NYU, Ctr Cosmol & Particle Phys, 550 1St Ave, New York, NY 10003 USA. [Graur, Or] Amer Museum Nat Hist, Dept Astrophys, Cent Pk West & 79th St, New York, NY 10024 USA. [Hayden, Brian] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Hayden, Brian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Rodney, SA (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA.; Rodney, SA (reprint author), Univ S Carolina, Dept Phys & Astron, 712 Main St, Columbia, SC 29208 USA. EM srodney@sc.edu NR 1 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD FEB PY 2016 VL 151 IS 2 AR 47 DI 10.3847/0004-6256/151/2/47 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DF3MO UT WOS:000371248600027 ER PT J AU Vesper, DJ Moore, JE Adams, JP AF Vesper, Dorothy J. Moore, Johnathan E. Adams, James P. TI Inorganic carbon dynamics and CO2 flux associated with coal- mine drainage sites in Blythedale PA and Lambert WV, USA SO ENVIRONMENTAL EARTH SCIENCES LA English DT Article DE Dissolved inorganic carbon (DIC); Carbon dioxide (CO2); CO2 evasion, carbonate geochemistry, coal mine drainage ID MACKENZIE RIVER-BASIN; DISSOLVED METALS; CHEMISTRY; EVOLUTION; STREAMS; PERSPECTIVES; PENNSYLVANIA; MECHANISMS; OXIDATION; INSIGHTS AB Drainage from coal mines, where carbonate dissolution is driven by sulfuric acid, can result in a net transfer of geologically-bound carbon to the atmosphere. The flux and downstream evolution of dissolved inorganic carbon (DIC) is presented for two coal mine sites that discharge high concentrations of DIC (3.7-4.5 mM C) producing a total flux of DIC from the mine from 13 to 249 kg-C/year (18-364 metric tons of CO2/year). More than 65 % of the total DIC is lost via CO2 evasion with the remaining DIC is exported downstream as dissolved species. The fate of the DIC depends upon the pH of the water which is controlled by evasion of CO2, the concentration of pre-existing alkalinity, carbonate precipitation and dissolution, and metal hydrolysis reactions. The CO2 concentrations and fluxes from the study sites are comparable to those estimated from literature data for other coal mine sites in the Appalachian region. The total flux estimated from a dataset of 140 coal mines was comparable in magnitude to the CO2 emissions from a small coal-fired power plant. The extent of CO2 degassing from mine waters is poorly constrained because (1) flux estimates can be biased low when acid waters are excluded in alkalinitybased estimates; (2) flux estimates can be biased high if non-carbonate alkalinity is present in the mine waters; and (3) mine waters react rapidly following discharge hampering the measurement process. The study sites presented illustrate the impact of coal mining as an anthropogenic influence on carbon cycling; however, more data are necessary to fully estimate the importance of this impact on regional scales. C1 [Vesper, Dorothy J.; Adams, James P.] W Virginia Univ, Dept Geol & Geog, 330 Brooks Hall, Morgantown, WV 26506 USA. [Moore, Johnathan E.] Contractor US Dept Energy, AECOM, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. RP Vesper, DJ (reprint author), W Virginia Univ, Dept Geol & Geog, 330 Brooks Hall, Morgantown, WV 26506 USA. EM djvesper@mail.wvu.edu FU National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, under the RES contract [DE-FE0004000] FX Thanks to Harry Edenborn for help throughout the project; Jill Riddell for help in collecting field data; to the J.F. Allen Memorial Muzzleloader Range for allowing access to the LRM site; and to John Eleyette of the Guardians of the West Fork for providing background information and facilitating access at the LRM site; and to useful suggestions made by Dr. Charles Cravotta and an anonymous reviewer. This work was performed as part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, under the RES contract DE-FE0004000. NR 40 TC 0 Z9 0 U1 3 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6280 EI 1866-6299 J9 ENVIRON EARTH SCI JI Environ. Earth Sci. PD FEB PY 2016 VL 75 IS 4 AR 340 DI 10.1007/s12665-015-5191-z PG 14 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA DF5LO UT WOS:000371393400062 ER PT J AU Wang, WX Sui, WH Faybishenko, B Stringfellow, WT AF Wang, W. X. Sui, W. H. Faybishenko, B. Stringfellow, W. T. TI Permeability variations within mining-induced fractured rock mass and its influence on groundwater inrush SO ENVIRONMENTAL EARTH SCIENCES LA English DT Article DE Underground coal mining; Gob; Bulking factor; Permeability of fractured rock mass; Cover stress re-establishment; Groundwater inrush rate ID LONGWALL; STRESS; DEFORMATION; OVERBURDEN; STIFFNESS; PANELS; CHINA; ROOF; FLOW AB This paper is concerned with the evaluation of permeability of fractured rock mass due to the cover stress re-establishment, which is a major factor in controlling water and gas flow rate induced by mining operations in fractured rock. The case study considered in this paper is based on the results of observations of groundwater inrush and a decrease in water inflow from the fractured roof strata due to mining advancing in the Taiping Coalmine, Shandong Province, China. A conceptual model of an effective porous media was used to assess the permeability distribution in the fractured zone induced by coal mining. The cover stress re-establishment in gob fractured rock mass was evaluated using an empirical formula based on the surface subsidence. A simplified conceptual model of the fractured zone was used to evaluate the deformation of fractured zone along with the evaluation of changes in the rock permeability above the gob due to the cover stress reestablishment. These data were then used to calculate the water inflow rate into the panel. Predicted water inflow rates have been found to be in good agreement with those from monitoring data. This study improved the understanding of the mechanisms of the post-mining cover stress re-establishment on permeability change of the overburden fracture rock strata. These results can then be applied for numerical simulations of the process of overburden failure and consequent groundwater inrush due to coal mining. C1 [Wang, W. X.; Sui, W. H.] China Univ Min & Technol, Sch Resources & Geosci, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221008, Peoples R China. [Wang, W. X.] North China Univ Water Resources & Elect Power, Henan Prov Key Lab Rock & Soil Mech & Struct Engn, Zhengzhou 450045, Peoples R China. [Faybishenko, B.; Stringfellow, W. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wang, W. X.; Stringfellow, W. T.] Univ Pacific, Sch Engn & Comp Sci, Ecol Engn Res Program, Stockton, CA 95211 USA. RP Sui, WH (reprint author), China Univ Min & Technol, Sch Resources & Geosci, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221008, Peoples R China. EM wang603698305@163.com; suiwanghua@cumt.edu.cn; bafaybishenko@lbl.gov; wstringfellow@pacific.edu RI Stringfellow, William/O-4389-2015; Faybishenko, Boris/G-3363-2015 OI Stringfellow, William/0000-0003-3189-5604; Faybishenko, Boris/0000-0003-0085-8499 FU National Natural Science Foundation of China [41172291]; 973 Program [2013CB227903]; Priority Academic Program Development of Jiangsu Higher Education Institutions; Henan institution of higher education key scientific research [16A 410004]; North China University of Water Resources and Electric Power [40470] FX Financial support of the National Natural Science Foundation of China under Grant No. 41172291, 973 Program under Grant No. 2013CB227903, a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Henan institution of higher education key scientific research project (16A 410004), and a high-level personnel scientific research startup project of North China University of Water Resources and Electric Power (40470) is acknowledged. The authors also sincerely thank Gregory Weissmann at University of the Pacific for his editorial help. NR 46 TC 2 Z9 2 U1 15 U2 35 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6280 EI 1866-6299 J9 ENVIRON EARTH SCI JI Environ. Earth Sci. PD FEB PY 2016 VL 75 IS 4 AR 326 DI 10.1007/s12665-015-5064-5 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA DF5LO UT WOS:000371393400048 ER PT J AU Goordial, J Raymond-Bouchard, I Zolotarov, Y de Bethencourt, L Ronholm, J Shapiro, N Woyke, T Stromvik, M Greer, CW Bakermans, C Whyte, L AF Goordial, Jacqueline Raymond-Bouchard, Isabelle Zolotarov, Yevgen de Bethencourt, Luis Ronholm, Jennifer Shapiro, Nicole Woyke, Tanja Stromvik, Martina Greer, Charles W. Bakermans, Corien Whyte, Lyle TI Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE Rhodococcus; permafrost; eurypsychrophile; cryophile; Antarctica; genome sequence; subzero ID PSYCHROBACTER-ARCTICUS 273-4; SIBERIAN PERMAFROST; ERYTHROPOLIS N9T-4; TEMPERATURE GROWTH; JOSTII RHA1; BACTERIUM; ADAPTATION; SURVIVAL; MICROORGANISMS; SEQUENCE AB The permafrost soils of the high elevation McMurdo Dry Valleys are the most cold, desiccating and oligotrophic on Earth. Rhodococcus sp. JG3 is one of very few bacterial isolates from Antarctic Dry Valley permafrost, and displays subzero growth down to -5 degrees C. To understand how Rhodococcus sp. JG3 is able to survive extreme permafrost conditions and be metabolically active at subzero temperatures, we sequenced its genome and compared it to the genomes of 14 mesophilic rhodococci. Rhodococcus sp. JG3 possessed a higher copy number of genes for general stress response, UV protection and protection from cold shock, osmotic stress and oxidative stress. We characterized genome wide molecular adaptations to cold, and identified genes that had amino acid compositions favourable for increased flexibility and functionality at low temperatures. Rhodococcus sp. JG3 possesses multiple complimentary strategies which may enable its survival in some of the harshest permafrost on Earth. C1 [Goordial, Jacqueline; Raymond-Bouchard, Isabelle; Zolotarov, Yevgen; Ronholm, Jennifer; Stromvik, Martina; Whyte, Lyle] McGill Univ, 21 111 Lakeshore Rd, Ste Anne De Bellevue, PQ H9X 3V9, Canada. [Shapiro, Nicole; Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Greer, Charles W.] Natl Res Council Canada, Montreal, PQ H4P 2R2, Canada. [Bakermans, Corien] Penn State Univ, Altoona Coll, Altoona, PA 16801 USA. RP Goordial, J (reprint author), McGill Univ, 21 111 Lakeshore Rd, Ste Anne De Bellevue, PQ H9X 3V9, Canada. EM jacqueline.goordial@mail.mcgill.ca FU National Aeronautics and Space Administration (NASA) Astrobiology Science and Technology for Exploring Planets (ASTEP) program; NSF/OPP [B-302-M]; Natural Sciences and Engineering Research Council (NSERC); NSERC Northern Supplements Program; NSERC CREATE Canadian Astrobiology Training Program (CATP); US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility [DE-AC02-05CH11231] FX This work was supported by the National Aeronautics and Space Administration (NASA) Astrobiology Science and Technology for Exploring Planets (ASTEP) program and with field support via NSF/OPP (project B-302-M). Support was provided by the Natural Sciences and Engineering Research Council (NSERC) Discovery Grant Program, NSERC Northern Supplements Program and NSERC CREATE Canadian Astrobiology Training Program (CATP). The work conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231. NR 47 TC 0 Z9 0 U1 4 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD FEB PY 2016 VL 92 IS 2 AR fiv154 DI 10.1093/femsec/fiv154 PG 11 WC Microbiology SC Microbiology GA DF3MX UT WOS:000371249600003 ER PT J AU Koberl, M Erlacher, A Ramadan, EM El-Arabi, TF Muller, H Bragina, A Berg, G AF Koeberl, Martina Erlacher, Armin Ramadan, Elshahat M. El-Arabi, Tarek F. Mueller, Henry Bragina, Anastasia Berg, Gabriele TI Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE desert farming; diazotrophs; medicinal plants; nitrogen-fixing communities; organic agriculture; Rhizobiales ID TARGETED OLIGONUCLEOTIDE PROBES; IN-SITU HYBRIDIZATION; BACTERIAL COMMUNITIES; NITROGEN-FIXATION; GENE; SOIL; RHIZOSPHERE; EXPRESSION; ABUNDANCE; FEATURES AB Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization-confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity. C1 [Koeberl, Martina; Erlacher, Armin; Mueller, Henry; Bragina, Anastasia; Berg, Gabriele] Graz Univ Technol, Inst Environm Biotechnol, A-8010 Graz, Austria. [Ramadan, Elshahat M.; El-Arabi, Tarek F.] Ain Shams Univ, Fac Agr, Cairo 11566, Egypt. [Ramadan, Elshahat M.; El-Arabi, Tarek F.] Heliopolis Univ, Biotechnol Lab, Cairo 11777, Egypt. [Koeberl, Martina] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. RP Koberl, M (reprint author), Graz Univ Technol, Inst Environm Biotechnol, A-8010 Graz, Austria.; Koberl, M (reprint author), Petersgasse 12-I, A-8010 Graz, Austria. EM martina.koeberl@tugraz.at FU EU-Egypt Innovation Fund [RDI MED/2009/214-418, ENPI/2014/342-707]; Austrian Science Fund FWF [J 3638]; European Commission FX This work was supported by the EU-Egypt Innovation Fund [RDI MED/2009/214-418 and ENPI/2014/342-707] and the Austrian Science Fund FWF [J 3638 to MK], co-funded by the European Commission. NR 56 TC 1 Z9 1 U1 9 U2 29 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD FEB PY 2016 VL 92 IS 2 AR fiv166 DI 10.1093/femsec/fiv166 PG 11 WC Microbiology SC Microbiology GA DF3MX UT WOS:000371249600011 ER PT J AU Mueller, RC Gallegos-Graves, L Kuske, CR AF Mueller, Rebecca C. Gallegos-Graves, La Verne Kuske, Cheryl R. TI A new fungal large subunit ribosomal RNA primer for high-throughput sequencing surveys SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE Illumina sequencing; large subunit ribosomal RNA gene; fungal community composition; phylogenetic community measures; contrived community analysis ID INTERNAL TRANSCRIBED SPACER; MAXIMUM-LIKELIHOOD; COMMUNITY; RESPONSES; ACCURATE; TREE; DNA; CLASSIFICATION; IDENTIFICATION; DIVERSITY AB The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300-400 bp region of the D2 hypervariable region of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R-LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Together, these findings show that the LR22R-LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods. C1 [Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, M888 HRL, Los Alamos, NM 87545 USA. RP Mueller, RC (reprint author), Los Alamos Natl Lab, Biosci Div, M888 HRL, Los Alamos, NM 87545 USA. EM beckymueller@gmail.com FU U.S. Department of Energy Biological and Environmental Research Science Focus Area grant; Los Alamos National Laboratory LDRD Director's Postdoctoral Fellowship FX This work was supported by a U.S. Department of Energy Biological and Environmental Research Science Focus Area grant to CRK and a Los Alamos National Laboratory LDRD Director's Postdoctoral Fellowship to RCM. NR 49 TC 1 Z9 1 U1 5 U2 13 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD FEB PY 2016 VL 92 IS 2 AR fiv153 DI 10.1093/femsec/fiv153 PG 11 WC Microbiology SC Microbiology GA DF3MX UT WOS:000371249600002 ER PT J AU Jang, WS Koo, P Bryson, K Narayanan, S Sandy, AR Russell, TP Mochrie, SG AF Jang, Woo-Sik Koo, Peter Bryson, Kyle Narayanan, Suresh Sandy, Alec R. Russell, Thomas P. Mochrie, Simon G. TI The Static Structure and Dynamics of Cadmium Sulfide Nanoparticles within Poly(styrene-block-isoprene) Diblock Copolymer Melts SO MACROMOLECULAR CHEMISTRY AND PHYSICS LA English DT Article DE cadmium sulfide nanoparticles; poly(styrene-block-2 vinylpyridine); small-angle X-ray scattering; transmission electron microscopy; X-ray photon correlation spectroscopy ID PHOTON-CORRELATION SPECTROSCOPY; X-RAY-SCATTERING; MICROPHASE-SEPARATION; BLOCK-COPOLYMERS; TRIBLOCK COPOLYMERS; CDS NANOPARTICLES; NETWORK PHASES; MICELLES; NANOCOMPOSITES; PARTICLES AB The static structure and dynamic behavior of cadmium sulfide nanoparticles suspended in block copolymer matrix are investigated using transmission electron microscopy, small-angle X-ray scattering, and X-ray photon correlation spectroscopy. The transmission electron microscopy study shows that cadmium sulfide nanoparticles are preferentially segregated within the polyisoprene domain of a poly(styrene-block-isoprene) diblock copolymer. For the dynamics study, X-ray photon correlation spectroscopy captures the relaxation process of cadmium sulfide nanoparticles. The measured characteristic relaxation time reveals that the observed dynamics are hyperdiffusive. The characteristic velocity and corresponding activation energy, which are hallmarks of a hyperdiffusive system, are determined from the relationship between the characteristic relaxation time and the wavevector. C1 [Jang, Woo-Sik; Koo, Peter; Mochrie, Simon G.] Yale Univ, Dept Phys, 217 Prospect St, New Haven, CT 06511 USA. [Bryson, Kyle; Russell, Thomas P.] Univ Massachusetts, Silvio O Conte Natl Ctr Polymer Res, Dept Polymer Sci & Engn, 120 Governors Dr, Amherst, MA 01003 USA. [Narayanan, Suresh; Sandy, Alec R.] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Jang, WS; Mochrie, SG (reprint author), Yale Univ, Dept Phys, 217 Prospect St, New Haven, CT 06511 USA. EM jangw@seas.upenn.edu; simon.mochrie@yale.edu FU DOE Division of Basic Energy Sciences [DE-SC0004162]; U.S. DOE [DE-AC02- 06CH11357] FX This work was supported by the DOE Division of Basic Energy Sciences under Grant No. DE-SC0004162. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02- 06CH11357. The authors especially indebted to Dr. Thomas P. Russell and Kyle Bryson for valuable discussions and assistance. The authors especially indebted to Xuerui Fa for academic discussion. NR 62 TC 0 Z9 0 U1 2 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1022-1352 EI 1521-3935 J9 MACROMOL CHEM PHYS JI Macromol. Chem. Phys. PD FEB PY 2016 VL 217 IS 4 BP 591 EP 598 DI 10.1002/macp.201500357 PG 8 WC Polymer Science SC Polymer Science GA DF3RF UT WOS:000371262700008 ER PT J AU Chen, FR Van Dyck, D Kisielowski, C AF Chen, F. -R. Van Dyck, D. Kisielowski, C. TI In-line three-dimensional holography of nanocrystalline objects at atomic resolution SO NATURE COMMUNICATIONS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; SINGLE ATOMS; TOMOGRAPHY; RECONSTRUCTION; HREM; NANOPARTICLES; SCATTERING; PARTICLES; CRYSTAL; LEVEL AB Resolution and sensitivity of the latest generation aberration-corrected transmission electron microscopes allow the vast majority of single atoms to be imaged with sub-ngstrom resolution and their locations determined in an image plane with a precision that exceeds the 1.9-pm wavelength of 300 kV electrons. Such unprecedented performance allows expansion of electron microscopic investigations with atomic resolution into the third dimension. Here we report a general tomographic method to recover the three-dimensional shape of a crystalline particle from high-resolution images of a single projection without the need for sample rotation. The method is compatible with low dose rate electron microscopy, which improves on signal quality, while minimizing electron beam-induced structure modifications even for small particles or surfaces. We apply it to germanium, gold and magnesium oxide particles, and achieve a depth resolution of 1-2 A, which is smaller than inter-atomic distances. C1 [Chen, F. -R.] Natl Tsing Hua Univ, Dept Engn & Syst Sci, 101 Kuang Fu Rd, Hsinchu 300, Taiwan. [Van Dyck, D.] Univ Antwerp, Dept Phys, EMAT, B-2020 Antwerp, Belgium. [Kisielowski, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry & Joint Ctr Artificial Photosynth, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Chen, FR (reprint author), Natl Tsing Hua Univ, Dept Engn & Syst Sci, 101 Kuang Fu Rd, Hsinchu 300, Taiwan. EM fchen1@me.com FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Fund for Scientific Research - Flanders (FWO) [VF04812N, G.0188.08]; [NSC 96-2628-E-007-017-MY3]; [NSC 101-2120-M-007-012-CC1] FX Electron microscopy was performed with the TEAM 0.5 microscope at the Molecular Foundry, NCEM, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract number DE-AC02-05CH11231. The MgO substrate was kindly provided by Wangfeng Li from the University of Delaware. D.V.D. acknowledges the financial support from the Fund for Scientific Research - Flanders (FWO) under Project Numbers VF04812N and G.0188.08. F.-R.C. thanks the support from NSC 96-2628-E-007-017-MY3 and NSC 101-2120-M-007-012-CC1. NR 43 TC 3 Z9 3 U1 15 U2 31 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10603 DI 10.1038/ncomms10603 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0HL UT WOS:000371019700021 PM 26887849 ER PT J AU Gludovatz, B Hohenwarter, A Thurston, KVS Bei, HB Wu, ZG George, EP Ritchie, RO AF Gludovatz, Bernd Hohenwarter, Anton Thurston, Keli V. S. Bei, Hongbin Wu, Zhenggang George, Easo P. Ritchie, Robert O. TI Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures SO NATURE COMMUNICATIONS LA English DT Article ID AUSTENITIC STAINLESS-STEELS; SOLID-SOLUTION ALLOYS; PHASE-STABILITY; MECHANICAL-PROPERTIES; FRACTURE-TOUGHNESS; TENSILE PROPERTIES; TRIP/TWIP STEELS; STRENGTH; SYSTEM; MICROSTRUCTURE AB High-entropy alloys are an intriguing new class of metallic materials that derive their properties from being multi-element systems that can crystallize as a single phase, despite containing high concentrations of five or more elements with different crystal structures. Here we examine an equiatomic medium-entropy alloy containing only three elements, CrCoNi, as a single-phase face-centred cubic solid solution, which displays strength-toughness properties that exceed those of all high-entropy alloys and most multi-phase alloys. At room temperature, the alloy shows tensile strengths of almost 1 GPa, failure strains of similar to 70% and K-JIc fracture-toughness values above 200 MPa m(1/2); at cryogenic temperatures strength, ductility and toughness of the CrCoNi alloy improve to strength levels above 1.3 GPa, failure strains up to 90% and K-JIc values of 275 MPa m(1/2). Such properties appear to result from continuous steady strain hardening, which acts to suppress plastic instability, resulting from pronounced dislocation activity and deformation-induced nano-twinning. C1 [Gludovatz, Bernd; Thurston, Keli V. S.; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hohenwarter, Anton] Univ Leoben, Dept Mat Phys, A-8700 Leoben, Austria. [Hohenwarter, Anton] Austrian Acad Sci, Erich Schmid Inst Mat Sci, A-8700 Leoben, Austria. [Thurston, Keli V. S.; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Bei, Hongbin; George, Easo P.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Wu, Zhenggang; George, Easo P.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [George, Easo P.] Ruhr Univ Bochum, Inst Mat, D-44801 Bochum, Germany. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; George, EP (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.; George, EP (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.; George, EP (reprint author), Ruhr Univ Bochum, Inst Mat, D-44801 Bochum, Germany. EM easo.george@rub.de; roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008; OI Ritchie, Robert/0000-0002-0501-6998; Gludovatz, Bernd/0000-0002-2420-3879; Bei, Hongbin/0000-0003-0283-7990 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, through the Materials Science and Technology Division at the Oak Ridge National Laboratory; Mechanical Behavior of Materials Program (KC13) at the Lawrence Berkeley National Laboratory FX This research was sponsored by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, through the Materials Science and Technology Division at the Oak Ridge National Laboratory (for H.B, Z.W. and E.P.G.) and the Mechanical Behavior of Materials Program (KC13) at the Lawrence Berkeley National Laboratory (for B.G., K.V.S.T. and R.O.R.). NR 51 TC 7 Z9 7 U1 37 U2 89 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10602 DI 10.1038/ncomms10602 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0HL UT WOS:000371019700020 PM 26830651 ER PT J AU Rondev, F McCutchan, E Singh, B Tuli, J AF Rondev, Filip McCutchan, Elizabeth Singh, Balraj Tuli, Jagdish TI Nuclear Data Sheets for A=227 SO NUCLEAR DATA SHEETS LA English DT Article ID ALPHA-BRANCHING RATIO; SHORT-LIVED ISOTOPES; ODD-A NUCLEI; OCTUPOLE DEFORMATION; REFLECTION ASYMMETRY; LEVEL STRUCTURE; ACTINIDE NUCLEI; RADIUM ISOTOPES; CONVERSION COEFFICIENTS; PRECISION-MEASUREMENTS AB The evaluated spectroscopic data are presented for ten known nuclides of mass 227 (Po, At, Rn, Fr, Ra, Ac, Th, Pa, U, Np). For Po-227, At-227, Rn-227, Pa-227, U-227 and Np-227 nuclei, only the ground-state information is available. Their decay characteristics are mostly unknown. Levels in Fr-227 are known only from the decay of Rn-227 to Fr-227. This decay scheme at present cannot be normalized to deduce gamma intensities per 100 decays due to lack of knowledge about multipolarities of many low-energy transitions. The levels in Ra-227, Ac-227 and Th-227 are known from several decays and reactions, including particle-transfer data for Ra-227 and Ac-227. The decay scheme of Ra-227 to Ac-227 was last studied in 1971 using small Ge detectors. Improved gamma-ray intensity data need to be obtained with a better gamma-detection system. The datasets for Ac-227 have undergone extensive revisions, including detailed data for Pa-231 alpha decay from 1986BaYK report, and single-proton transfer data from 1986MaYU thesis. High-spin (J>13/2 or so) structures are known only for Th-227. Level lifetime data are quite scarce for all the nuclides in this mass chain, thus limiting the knowledge of reduced transition probabilities. Band structures for Fr-227, Ra-227, Ac-227 and Th-227 are known in detail, together with evidence of weak octupole deformation and consequent parity-doublet structures. C1 [Rondev, Filip] ANL, Argonne, IL USA. [McCutchan, Elizabeth; Tuli, Jagdish] BNL, NNDC, Upton, NY USA. [Singh, Balraj] McMaster Univ, Hamilton, ON, Canada. RP Singh, B (reprint author), McMaster Univ, Hamilton, ON, Canada. EM balraj@mcmaster.ca FU IAEA, Vienna; ICTP, Trieste; Office of Science of the U.S. Department of Energy FX This work was supported by the IAEA, Vienna; ICTP, Trieste; and the Office of Science of the U.S. Department of Energy. Sherif Nafee thanks King Abdulaziz City of Science and Technology (KACST) for providing funds for his participation in the workshop. NR 157 TC 0 Z9 0 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD FEB PY 2016 VL 132 BP 257 EP 354 DI 10.1016/j.nds.2016.01.002 PG 98 WC Physics, Nuclear SC Physics GA DF3WT UT WOS:000371279800002 ER PT J AU Van Zand, NR McCrae, JE Fiorino, ST AF Van Zand, Noah R. McCrae, Jack E. Fiorino, Steven T. TI Modeled and measured image-plane polychromatic speckle contrast SO OPTICAL ENGINEERING LA English DT Article DE coherent optical effects; partial coherence in imaging; roughness; speckle; speckle imaging ID SURFACE-ROUGHNESS; LASER PROPAGATION; DEPENDENCE; PATTERNS; ILLUMINATION AB The statistical properties of speckle relevant to short-to medium-range (tactical) active tracking involving polychromatic illumination are investigated. A numerical model is developed to allow rapid simulation of speckled images including the speckle contrast reduction effects of illuminator bandwidth, surface slope, and roughness, and the polarization properties of both the source and the reflection. Regarding surface slope (relative orientation of the surface normal and illumination/observation directions), Huntley's theory for speckle contrast, which employs geometrical approximations to decrease computation time, is modified to increase accuracy by incorporation of a geometrical correction factor and better treatment of roughness and polarization. The resulting model shows excellent agreement with more exact theory over a wide range. An experiment is conducted to validate both the numerical model developed here and existing theory. A diode laser source with coherence length of 259 +/- 7 mu m is reflected off of a silver-coated diffuse surface. Speckle data are gathered for 16 surface slope angles corresponding to speckle contrast between about 0.55 and 1. Taking the measured data as truth, both equations show error mean and standard deviation of less than 3%. Thus, the theory is validated over the range of this experiment. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. C1 [Van Zand, Noah R.; McCrae, Jack E.; Fiorino, Steven T.] Air Force Inst Technol, Ctr Directed Energy, Dept Engn Phys, 2950 Hobson Way, Dayton, OH 45433 USA. [McCrae, Jack E.] Oak Ridge Inst Sci & Educ, 1299 Bethel Valley Rd, Oak Ridge, TN 37380 USA. RP Fiorino, ST (reprint author), Air Force Inst Technol, Ctr Directed Energy, Dept Engn Phys, 2950 Hobson Way, Dayton, OH 45433 USA. EM steven.fiorino@afit.edu FU High Energy Laser Joint Technology Office in Albuquerque, New Mexico FX The authors recognize the critical support of the High Energy Laser Joint Technology Office in Albuquerque, New Mexico, which sponsored this work as the first author's master's thesis research. This research was also supported in part by an appointment to the Postgraduate Research Participation Program at the Air Force Institute of Technology (AFIT) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and AFIT. Gratitude is also extended to two unnamed reviewers whose comments and suggestions greatly improved the paper. The views expressed in this paper are those of the authors and do not necessarily reflect the official policy of the U.S. Air Force, the Department of Defense, or U.S. Government. NR 29 TC 2 Z9 2 U1 3 U2 4 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD FEB PY 2016 VL 55 IS 2 AR 024106 DI 10.1117/1.OE.55.2.024106 PG 7 WC Optics SC Optics GA DF3YD UT WOS:000371283600016 ER PT J AU Beresh, SJ Wagner, JL Henfling, JF Spillers, RW Pruett, BOM AF Beresh, Steven J. Wagner, Justin L. Henfling, John F. Spillers, Russell W. Pruett, Brian O. M. TI Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry SO PHYSICS OF FLUIDS LA English DT Article ID SHEAR-LAYER INSTABILITIES; TRANSVERSE SUPERSONIC JET; LARGE-EDDY SIMULATION; MODE LASER; REYNOLDS-NUMBER; ROUND JET; STABILITY; INJECTION; EVOLUTION; FIELD AB Pulse-burst Particle Image Velocimetry (PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulent eddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing, both leading and trailing the reference eddy. This indicates the paired nature of the turbulent eddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Super-sampled velocity spectra to 150 kHz reveal a power-law dependency of -5/3 in the inertial subrange as well as a -1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies. (C) 2016 AIP Publishing LLC. C1 [Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O. M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Beresh, SJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sjberes@sandia.gov FU Sandia National Laboratories; United States Department of Energy; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is supported by Sandia National Laboratories and the United States Department of Energy. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 50 TC 2 Z9 2 U1 4 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD FEB PY 2016 VL 28 IS 2 AR 025102 DI 10.1063/1.4940677 PG 22 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA DF3ZG UT WOS:000371286500044 ER PT J AU Coriton, B Frank, JH AF Coriton, Bruno Frank, Jonathan H. TI Experimental study of vorticity-strain rate interaction in turbulent partially premixed jet flames using tomographic particle image velocimetry SO PHYSICS OF FLUIDS LA English DT Article ID VELOCITY-GRADIENT TENSOR; NONPREMIXED FLAMES; HEAT RELEASE; HOMOGENEOUS TURBULENCE; DIFFUSION FLAMES; PIV MEASUREMENTS; SCALAR GRADIENT; FLOW STRUCTURE; ALIGNMENT; DYNAMICS AB In turbulent flows, the interaction between vorticity, omega, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The omega-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which omega and s are determined. The effects of combustion and mean shear on the omega-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet with Reynolds number of approximately 13 000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger omega-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between omega and the eigenvector of the intermediate principal strain rate, s(2), which is intrinsic to the omega-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of omega and s(2) tangential to the shear layer. The extensive and compressive principal strain rates, s(1) and s(3), respectively, are preferentially oriented at approximately 45 degrees with respect to the jet axis. The production rates of strain and vorticity tend to be dominated by instances in which omega is parallel to the (s(1)) over bar-(s(2)) over bar plane and orthogonal to (s(3)) over bar. (C) 2016 AIP Publishing LLC. C1 [Coriton, Bruno; Frank, Jonathan H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Frank, JH (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM jhfrank@sandia.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy [DE-AC04-94-AL85000] FX The authors thank Mr. Erxiong Huang for technical assistance in the laboratory. This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94-AL85000. NR 45 TC 0 Z9 0 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD FEB PY 2016 VL 28 IS 2 AR 025109 DI 10.1063/1.4941528 PG 21 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA DF3ZG UT WOS:000371286500051 ER PT J AU McFarland, JA Black, WJ Dahal, J Morgan, BE AF McFarland, Jacob A. Black, Wolfgang J. Dahal, Jeevan Morgan, Brandon E. TI Computational study of the shock driven instability of a multiphase particle-gas system SO PHYSICS OF FLUIDS LA English DT Article ID RICHTMYER-MESHKOV INSTABILITY; PARTICULATE FLOWS; DRAG COEFFICIENT; REFINEMENT; INTERFACE; DYNAMICS; SPHERE; TUBE AB This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability similar in some ways to the Richtmyer-Meshkov instability but with a larger parameter space. As this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a time leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1 mu m, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. Depending on the particle and particle-gas At wood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets. (C) 2016 AIP Publishing LLC. C1 [McFarland, Jacob A.; Black, Wolfgang J.; Dahal, Jeevan] Univ Missouri, Dept Mech & Aerosp Engn, E2412 Lafferre Hall, Columbia, MO 65211 USA. [Morgan, Brandon E.] Lawrence Livermore Natl Lab, 7000 East Ave,POB 808,L-170, Livermore, CA 94550 USA. RP McFarland, JA (reprint author), Univ Missouri, Dept Mech & Aerosp Engn, E2412 Lafferre Hall, Columbia, MO 65211 USA. EM mcfarlandja@missouri.edu FU University of Missouri Research Board; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank the University of Missouri Research Board for their support of this work. The simulation images in this paper were created using the program VisIt55 and the authors would like to thank the VisIt developers for their support of this program. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 55 TC 0 Z9 0 U1 8 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD FEB PY 2016 VL 28 IS 2 AR 024105 DI 10.1063/1.4941131 PG 32 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA DF3ZG UT WOS:000371286500036 ER PT J AU Guerra, FP Richards, JH Fiehn, O Famula, R Stanton, BJ Shuren, R Sykes, R Davis, MF Neale, DB AF Guerra, Fernando P. Richards, James H. Fiehn, Oliver Famula, Randi Stanton, Brian J. Shuren, Richard Sykes, Robert Davis, Mark F. Neale, David B. TI Analysis of the genetic variation in growth, ecophysiology, and chemical and metabolomic composition of wood of Populus trichocarpa provenances SO TREE GENETICS & GENOMES LA English DT Article DE Populus trichocarpa; Growth; Stable isotopes; Lignin; Cellulose; Wood metabolome ID WATER-USE EFFICIENCY; CARBON-ISOTOPE DISCRIMINATION; ROTATION COPPICE CULTURE; ASSOCIATION GENETICS; POPLAR FAMILIES; PRODUCTION PHYSIOLOGY; HYBRID POPLAR; BUD SET; TRAITS; CLONES AB Populus trichocarpa is a biological model and a candidate species for bioethanol production. Although intra-specific variation is recognized, knowledge about genetic variation underlying the properties of its lignocellulosic biomass is still incomplete. Genetic variation is fundamental for continuing genetic improvement. In this study, we carried out a comprehensive phenotypic characterization of this species, analyzing a suite of quantitative traits associated with growth performance and wood quality. Traits involved growth rate (height, diameter), phenology (bud flush), and ecophysiology (leaf carbon and nitrogen content and isotopic composition), along with the chemical composition (contents of sugars and lignin) and metabolome of wood. We utilized 460 clones, representing 101 provenances collected from Oregon and Washington. These genotypes were planted in California, in 2009, and sampled after three growing seasons. Trait characterization was carried out by direct measurements, determination of stable isotopes (leaf samples), and technologies based on mass spectrometry (wood samples). A significant clonal effect was observed for most of the traits, explaining up to 76.4 % of total variation. Estimates of "broad-sense heritability" were moderate to high, reaching 0.96 (for date of bud flush). Phenotypic and genetic correlations varied extensively depending on specific traits. In addition, metabolomic analyses quantified 632 metabolites. Twenty-eight of these varied significantly with experimental factors, showing low to moderate heritability and correlation estimates. The results support the presence of significant clonal variation and inheritance for the assessed traits, required for response to genetic selection. C1 [Guerra, Fernando P.; Famula, Randi; Neale, David B.] Univ Calif Davis, Dept Plant Sci, 262C Robbins Hall,Mail Stop 4, Davis, CA 95616 USA. [Neale, David B.] Univ Calif Davis, Bioenergy Res Ctr, Davis, CA 95616 USA. [Richards, James H.] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Fiehn, Oliver] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Fiehn, Oliver] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. [Stanton, Brian J.; Shuren, Richard] GreenWood Resources, Genet Resources Conservat Program, Portland, OR 97201 USA. [Sykes, Robert; Davis, Mark F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Guerra, Fernando P.] Univ Talca, Inst Ciencias Biol, POB 747, Talca, Chile. RP Neale, DB (reprint author), Univ Calif Davis, Dept Plant Sci, 262C Robbins Hall,Mail Stop 4, Davis, CA 95616 USA.; Neale, DB (reprint author), Univ Calif Davis, Bioenergy Res Ctr, Davis, CA 95616 USA. EM dbneale@ucdavis.edu OI davis, mark/0000-0003-4541-9852 FU Advanced Hardwood Biofuels Northwest Project - Agriculture and Food Research Initiative Competitive Grant from USDA National Institute of Food and Agriculture [2011-68005-30407]; California Agricultural Experiment Station FX This study was funded by the Advanced Hardwood Biofuels Northwest Project, supported by Agriculture and Food Research Initiative Competitive Grant no. 2011-68005-30407, from the USDA National Institute of Food and Agriculture. Additional support was provided through the California Agricultural Experiment Station. NR 54 TC 0 Z9 0 U1 15 U2 36 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1614-2942 EI 1614-2950 J9 TREE GENET GENOMES JI Tree Genet. Genomes PD FEB PY 2016 VL 12 IS 1 AR 6 DI 10.1007/s11295-015-0965-8 PG 16 WC Forestry; Genetics & Heredity; Horticulture SC Forestry; Genetics & Heredity; Agriculture GA DF4OU UT WOS:000371329700008 ER PT J AU Tonks, MR Liu, XY Andersson, D Perez, D Chernatynskiy, A Pastore, G Stanek, CR Williamson, R AF Tonks, Michael R. Liu, Xiang-Yang Andersson, David Perez, Danielle Chernatynskiy, Aleksandr Pastore, Giovanni Stanek, Christopher R. Williamson, Richard TI Development of a multiscale thermal conductivity model for fission gas in UO2 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Fuel performance modeling; Multiscale modeling; Uranium dioxide; Thermal conductivity ID FUEL-ROD ANALYSIS; MOLECULAR-DYNAMICS; URANIUM-DIOXIDE; TRANSPORT-PROPERTIES; BEHAVIOR; BUBBLES; SIMULATIONS; TRANSURANUS; RELEASE; HELIUM AB Accurately predicting changes in the thermal conductivity of light water reactor UO2 fuel throughout its lifetime in reactor is an essential part of fuel performance modeling. However, typical thermal conductivity models from the literature are empirical. In this work, we begin to develop a mechanistic thermal conductivity model by focusing on the impact of gaseous fission products, which is coupled to swelling and fission gas release. The impact of additional defects and fission products will be added in future work. The model is developed using a combination of atomistic and mesoscale simulation, as well as analytical models. The impact of dispersed fission gas atoms is quantified using molecular dynamics simulations corrected to account for phonon-spin scattering. The impact of intragranular bubbles is accounted for using an analytical model that considers phonon scattering. The impact of grain boundary bubbles is determined using a simple model with five thermal resistors that are parameterized by comparing to 3D mesoscale heat conduction results. When used in the BISON fuel performance code to model four reactor experiments, it produces reasonable predictions without having been fit to fuel thermocouple data. Published by Elsevier B.V. C1 [Tonks, Michael R.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Tonks, Michael R.; Perez, Danielle; Pastore, Giovanni; Williamson, Richard] Idaho Natl Lab, Fuel Modeling & Simulat, POB 1625, Idaho Falls, ID 83415 USA. [Liu, Xiang-Yang; Andersson, David; Stanek, Christopher R.] Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. [Chernatynskiy, Aleksandr] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. RP Tonks, MR (reprint author), Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA.; Tonks, MR (reprint author), Idaho Natl Lab, Fuel Modeling & Simulat, POB 1625, Idaho Falls, ID 83415 USA. EM mrt5296@psu.edu OI Pastore, Giovanni/0000-0003-2812-506X FU Department of Energy Nuclear Energy Advanced Modeling and Simulation program; US Department of Energy [DE-AC07-05ID14517, DE-AC52-06NA25396] FX This work was funded by the Department of Energy Nuclear Energy Advanced Modeling and Simulation program. This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 46 TC 6 Z9 6 U1 11 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2016 VL 469 BP 89 EP 98 DI 10.1016/j.jnucmat.2015.11.042 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA DD7LE UT WOS:000370105200013 ER PT J AU Anderson, LN Koech, PK Plymale, AE Landorf, EV Konopka, A Collart, FR Lipton, MS Romine, MF Wright, AT AF Anderson, Lindsey N. Koech, Phillip K. Plymale, Andrew E. Landorf, Elizabeth V. Konopka, Allan Collart, Frank R. Lipton, Mary S. Romine, Margaret F. Wright, Aaron T. TI Live Cell Discovery of Microbial Vitamin Transport and Enzyme-Cofactor Interactions SO ACS CHEMICAL BIOLOGY LA English DT Article ID CHLOROFLEXUS-AURANTIACUS; CORYNEBACTERIUM-GLUTAMICUM; COMPARATIVE GENOMICS; SOLUTE TRANSPORTERS; BIOTIN UPTAKE; PROTEIN; PROKARYOTES; BINDING; BACTERIA; SYSTEM AB The rapid completion of microbial genomes is inducing a conundrum in functional gene discovery. Novel methods are needed to shorten the gap between characterizing a microbial genome and experimentally validating bioinformatically predicted functions. Of particular importance are transport mechanisms, which shuttle nutrients such as B vitamins and metabolites across cell membranes and are required for the survival of microbes ranging from members of environmental microbial communities to pathogens. Methods to accurately assign function and specificity for a wide range of experimentally unidentified and/or predicted membrane-embedded transport proteins, along with characterization of intracellular enzyme-cofactor associations, are needed to enable a significantly improved understanding of microbial biochemistry and physiology, microbial interactions, and microbial responses to perturbations. Chemical probes derived from B vitamins B-1, B-2, and B-7 have allowed us to experimentally address the aforementioned needs by identifying B vitamin transporters and intracellular enzyme-cofactor associations through live cell labeling of the filamentous anoxygenic photoheterotroph, Chloroflexus aurantiacus J-10-fl, known to employ mechanisms for both B vitamin biosynthesis and environmental salvage. Our probes provide a unique opportunity to directly link cellular activity and protein function back to ecosystem and/or host dynamics by identifying B vitamin transport and cofactor-dependent interactions required for survival. C1 [Anderson, Lindsey N.; Koech, Phillip K.; Plymale, Andrew E.; Konopka, Allan; Lipton, Mary S.; Romine, Margaret F.; Wright, Aaron T.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Landorf, Elizabeth V.; Collart, Frank R.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Wright, AT (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.; Wright, AT (reprint author), 902 Battelle Blvd,MSIN J4-02, Richland, WA 99352 USA. EM Aaron.Wright@pnnl.gov RI Anderson, Lindsey /S-6375-2016; OI Anderson, Lindsey /0000-0002-8741-7823; Romine, Margaret/0000-0002-0968-7641; Wright, Aaron/0000-0002-3172-5253; Koech, Phillip/0000-0003-2996-0593; Collart, Frank/0000-0001-6942-4483 FU Genomic Science Program of the U.S. DOE-OBER; OBER at PNNL FX This research was supported by the Genomic Science Program of the U.S. DOE-OBER and is a contribution of the PNNL Foundational Scientific Focus Area. MS-based proteomic measurements used capabilities developed partially under the GSP Panomics project; MS-based measurements and microscopy were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by OBER at PNNL. NR 55 TC 1 Z9 1 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 EI 1554-8937 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD FEB PY 2016 VL 11 IS 2 BP 345 EP 354 DI 10.1021/acschembio.5b00918 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DE6TZ UT WOS:000370767800007 PM 26669591 ER PT J AU Mowry, CD Pimentel, AS Sparks, ES Moorman, MW Achyuthan, KE Manginell, RP AF Mowry, Curtis D. Pimentel, Adam S. Sparks, Elizabeth S. Moorman, Matthew W. Achyuthan, Komandoor E. Manginell, Ronald P. TI Pulsed Discharge Helium Ionization Detector for Highly Sensitive Aquametry SO ANALYTICAL SCIENCES LA English DT Article DE Pulsed discharge helium ionization detector; PDHID-D2; water quantitation; aquametry; gas samples; humidity measurements ID HEADSPACE GAS-CHROMATOGRAPHY; TRACE MOISTURE; PHOTOIONIZATION DETECTOR; ORGANIC-SOLVENTS; DISSOLVED-GASES; WATER; SPECTROSCOPY; LIQUID; SENSOR; GC AB Trace moisture quantitation is crucial in medical, civilian and military applications. Current aquametry technologies are limited by the sample volume, reactivity, or interferences, and/or instrument size, weight, power, cost, and complexity. We report for the first time on the use of a pulsed discharge helium ionization detector (PDHID-D2) (similar to 196 cm(3)) for the sensitive (limit of detection, 0.047 ng; 26 ppm), linear (r(2) >0.99), and rapid (< 2 min) quantitation of water using a small (0.2 - 5.0 mu L) volume of liquid or gas. The relative humidity sensitivity was 0.22% (61.4 ppmv) with a limit of detection of less than 1 ng moisture with gaseous samples. The sensitivity was 10 to 100 to fold superior to competing technologies without the disadvantages inherent to these technologies. The PDHID-D2, due to its small footprint and low power requirement, has good size, weight, and power-portability (SWAPP) factors. The relatively low cost (similar to$5000) and commercial availability of the PDHID-D2 makes our technique applicable to highly sensitive aquametry. C1 [Mowry, Curtis D.; Pimentel, Adam S.; Sparks, Elizabeth S.] Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA. [Moorman, Matthew W.; Achyuthan, Komandoor E.; Manginell, Ronald P.] Sandia Natl Labs, Bio Chem Phys Microsensors Dept, Albuquerque, NM 87185 USA. RP Mowry, CD (reprint author), Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA. EM cdmowry@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000]; Sandia's Laboratory Directed Research and Development (LDRD) [151318] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. We thank the two anonymous Reviewers for their valuable comments which considerably strengthened the overall quality, clarity, and brevity of this paper. This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) project #151318 awarded to Dr. Ronald Manginell. NR 39 TC 2 Z9 2 U1 3 U2 12 PU JAPAN SOC ANALYTICAL CHEMISTRY PI TOKYO PA 26-2 NISHIGOTANDA 1 CHOME SHINAGAWA-KU, TOKYO, 141, JAPAN SN 0910-6340 EI 1348-2246 J9 ANAL SCI JI Anal. Sci. PD FEB PY 2016 VL 32 IS 2 BP 177 EP 182 PG 6 WC Chemistry, Analytical SC Chemistry GA DE8RM UT WOS:000370904400010 PM 26860562 ER PT J AU Rettberg, P Anesio, AM Baker, VR Baross, JA Cady, SL Detsis, E Foreman, CM Hauber, E Ori, GG Pearce, DA Renno, NO Ruvkun, G Sattler, B Saunders, MP Smith, DH Wagner, D Westall, F AF Rettberg, Petra Anesio, Alexandre M. Baker, Victor R. Baross, John A. Cady, Sherry L. Detsis, Emmanouil Foreman, Christine M. Hauber, Ernst Ori, Gian Gabriele Pearce, David A. Renno, Nilton O. Ruvkun, Gary Sattler, Birgit Saunders, Mark P. Smith, David H. Wagner, Dirk Westall, Frances TI Planetary Protection and Mars Special Regions-A Suggestion for Updating the Definition SO ASTROBIOLOGY LA English DT Article ID RECURRING SLOPE LINEAE; SCIENCE ANALYSIS GROUP; METHANE; ATMOSPHERE AB We highlight the role of COSPAR and the scientific community in defining and updating the framework of planetary protection. Specifically, we focus on Mars "Special Regions," areas where strict planetary protection measures have to be applied before a spacecraft can explore them, given the existence of environmental conditions that may be conducive to terrestrial microbial growth. We outline the history of the concept of Special Regions and inform on recent developments regarding the COSPAR policy, namely, the MEPAG SR-SAG2 review and the Academies and ESF joint committee report on Mars Special Regions. We present some new issues that necessitate the update of the current policy and provide suggestions for new definitions of Special Regions. We conclude with the current major scientific questions that remain unanswered regarding Mars Special Regions. Key Words: Planetary protection-Mars Special Regions-COSPAR policy. Astrobiology 16, 119-125. C1 [Rettberg, Petra] German Aerosp Ctr, D-51147 Cologne, Germany. [Anesio, Alexandre M.] Univ Bristol, Bristol Glaciol Ctr, Bristol, Avon, England. [Baker, Victor R.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Baross, John A.] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. [Cady, Sherry L.] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. [Detsis, Emmanouil] European Sci Fdn, Space Sci Grp, Strasbourg, France. [Foreman, Christine M.] Montana State Univ, Dept Chem & Biol Engn, Bozeman, MT USA. [Hauber, Ernst] German Aerosp Ctr, Dept Planetary Geol, Berlin, Germany. [Ori, Gian Gabriele] Univ G dAnnunzio, Int Res Sch Planetary Sci, Pescara, Italy. [Pearce, David A.] Northumbria Univ, Dept Appl Sci, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England. [Renno, Nilton O.] Univ Michigan, Coll Engn, Ann Arbor, MI 48109 USA. [Ruvkun, Gary] Harvard Univ, Sch Med, Richard B Simches Res Ctr, Boston, MA USA. [Sattler, Birgit] Univ Innsbruck, Austrian Polar Res Inst, A-6020 Innsbruck, Austria. [Saunders, Mark P.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Smith, David H.] Natl Acad Sci Engn & Med, Space Studies Board, Washington, DC USA. [Wagner, Dirk] Helmholtz Ctr Potsdam, German Res Ctr Geosci, Potsdam, Germany. [Westall, Frances] CNRS, Ctr Biophys Mol, Orleans, France. RP Rettberg, P (reprint author), German Aerosp Ctr, Inst Aerosp Med, D-51147 Cologne, Germany. EM Petra.Rettberg@dlr.de RI Wagner, Dirk/C-3932-2012; Rettberg, Petra/K-2378-2015; Anesio, Alexandre/A-7597-2008 OI Wagner, Dirk/0000-0001-5064-497X; Rettberg, Petra/0000-0003-4439-2395; Anesio, Alexandre/0000-0003-2990-4014 FU National Academies of Sciences, Engineering, and Medicine [NNH11CD57B]; National Aeronautics and Space Administration [NNH11CD57B]; European Science Foundation [RFP/IPL-PTM/PA/fg/306.2014]; European Space Agency [RFP/IPL-PTM/PA/fg/306.2014] FX This article is based on work supported by the Contract NNH11CD57B between the National Academies of Sciences, Engineering, and Medicine and the National Aeronautics and Space Administration and work supported by the Contract RFP/IPL-PTM/PA/fg/306.2014 between the European Science Foundation and the European Space Agency. NR 22 TC 1 Z9 1 U1 1 U2 12 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD FEB 1 PY 2016 VL 16 IS 2 BP 119 EP 125 DI 10.1089/ast.2016.1472 PG 7 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DF0FB UT WOS:000371013300001 PM 26848950 ER PT J AU Cheng, Y He, KB Du, ZY Engling, G Liu, JM Ma, YL Zheng, M Weber, RJ AF Cheng, Yuan He, Ke-bin Du, Zhen-yu Engling, Guenter Liu, Jiu-meng Ma, Yong-liang Zheng, Mei Weber, Rodney J. TI The characteristics of brown carbon aerosol during winter in Beijing SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Brown carbon; Light absorption; WSOC; Methanol extract; Biomass burning ID SOLUBLE ORGANIC-CARBON; MASS ABSORPTION EFFICIENCY; LIGHT-ABSORPTION; OPTICAL-PROPERTIES; ELEMENTAL CARBON; BLACK CARBON; SOURCE APPORTIONMENT; BIOMASS COMBUSTION; ANGSTROM EXPONENT; BURNING AEROSOLS AB Brown carbon (i.e., light-absorbing organic carbon, or BrC) exerts important effects on the environment and on climate in particular. Based on spectrophotometric absorption measurements on extracts of bulk aerosol samples, this study investigated the characteristics of BrC during winter in Beijing, China. Organic compounds extractable by methanol contributed approximately 85% to the organic carbon (OC) mass. Light absorption by the methanol extracts exhibited a strong wavelength dependence, with an average absorption Angstrom exponent of 7.10 (fitted between 310 and 450 nm). Normalizing the absorption coefficient (babs) measured at 365 nm to the extractable OC mass yielded an average mass absorption efficiency (MAE) of 1.45 m(2)/g for the methanol extracts. This study suggests that light absorption by BrC could be comparable with black carbon in the spectral range of near-ultraviolet light. Our results also indicate that BrC absorption and thus BrC radiative forcing could be largely underestimated when using water-soluble organic carbon (WSOC) as a surrogate for BrC. Compared to previous work relying only on WSOC, this study provides a more comprehensive understanding of BrC aerosol based on methanol extraction. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Cheng, Yuan; He, Ke-bin; Ma, Yong-liang] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [He, Ke-bin] State Environm Protect Key Lab Sources & Control, Beijing, Peoples R China. [He, Ke-bin] Collaborat Innovat Ctr Reg Environm Qual, Beijing, Peoples R China. [Du, Zhen-yu] Natl Res Ctr Environm Anal & Measurement, Beijing, Peoples R China. [Du, Zhen-yu; Liu, Jiu-meng; Weber, Rodney J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Engling, Guenter] Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci, Hsinchu, Taiwan. [Engling, Guenter] Univ Nevada, Desert Res Inst, Div Atmospher Sci, Reno, NV 89506 USA. [Liu, Jiu-meng] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Zheng, Mei] Peking Univ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China. RP He, KB (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China.; He, KB (reprint author), State Environm Protect Key Lab Sources & Control, Beijing, Peoples R China.; He, KB (reprint author), Collaborat Innovat Ctr Reg Environm Qual, Beijing, Peoples R China.; Du, ZY (reprint author), Natl Res Ctr Environm Anal & Measurement, Beijing, Peoples R China.; Du, ZY (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM ycheng@mail.tsinghua.edu.cn; hekb@tsinghua.edu.cn; duzy05@gmail.com RI Cheng, Yuan/E-2508-2011; Liu, Jiumeng/K-2024-2012 OI Cheng, Yuan/0000-0002-2077-5335; Liu, Jiumeng/0000-0001-7238-593X FU National Natural Science Foundation of China [21307067, 21190054]; Tsinghua University [20131089241]; International Postdoctoral Exchange Fellowship Program FX This work was supported by the National Natural Science Foundation of China (21307067 and 21190054) and by Tsinghua University under Grant No. 20131089241. Yuan Cheng also acknowledges support from the International Postdoctoral Exchange Fellowship Program. NR 70 TC 8 Z9 9 U1 16 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD FEB PY 2016 VL 127 BP 355 EP 364 DI 10.1016/j.atmosenv.2015.12.035 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DE6VC UT WOS:000370770700039 ER PT J AU Gil, EY Jo, UH Lee, HJ Kang, J Seo, JH Lee, ES Kim, YH Kim, I Phan-Lai, V Disis, ML Park, KH AF Gil, Eun-Young Jo, Uk-Hyun Lee, Hye Jin Kang, Jinho Seo, Jae Hong Lee, Eun Sook Kim, Yeul Hong Kim, InSun Phan-Lai, Vy Disis, Mary L. Park, Kyong Hwa TI Vaccination with ErbB-2 peptides prevents cancer stem cell expansion and suppresses the development of spontaneous tumors in MMTV-PyMT transgenic mice (vol 147, pg 69, 2014) SO BREAST CANCER RESEARCH AND TREATMENT LA English DT Correction C1 [Gil, Eun-Young; Jo, Uk-Hyun; Lee, Hye Jin; Kang, Jinho; Seo, Jae Hong; Kim, Yeul Hong; Park, Kyong Hwa] Korea Univ, Anam Hosp, Coll Med, Dept Internal Med,Div Oncol Hematol, 73 Inchon Ro, Seoul 136705, South Korea. [Lee, Eun Sook] Natl Canc Ctr, Res Inst & Hosp, Goyang, Gyeonggi, South Korea. [Kim, InSun] Korea Univ, Coll Med, Dept Pathol, 73 Inchon Ro, Seoul 136705, South Korea. [Phan-Lai, Vy] Univ Calif Los Angeles, Ctr Global Mentoring, UCLA DOE Inst, Los Angeles, CA USA. [Disis, Mary L.] Univ Washington, Tumor Vaccine Grp, Seattle, WA 98195 USA. RP Park, KH (reprint author), Korea Univ, Anam Hosp, Coll Med, Dept Internal Med,Div Oncol Hematol, 73 Inchon Ro, Seoul 136705, South Korea. EM khpark@korea.ac.kr NR 1 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0167-6806 EI 1573-7217 J9 BREAST CANCER RES TR JI Breast Cancer Res. Treat. PD FEB PY 2016 VL 155 IS 3 BP 617 EP 618 DI 10.1007/s10549-016-3715-1 PG 2 WC Oncology SC Oncology GA DF0UR UT WOS:000371055100026 PM 26888722 ER PT J AU Aitken, ML Loughlin, DH Dodder, RS Yelverton, WH AF Aitken, Matthew L. Loughlin, Daniel H. Dodder, Rebecca S. Yelverton, William H. TI Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage SO CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY LA English DT Article DE MARKet ALlocation (MARKAL) energy system model; Fischer-Tropsch liquid fuels; Gasification; Electricity generation; Coal; Biomass; Carbon capture and sequestration ID GASIFICATION; PERFORMANCE; FUELS; FACILITIES; CLIMATE; TRANSPORTATION; INTEGRATION; SCENARIOS; EMISSIONS; OPTIONS AB Among various clean energy technologies, one innovative option for reducing the emission of greenhouse gases (GHGs) and criteria pollutants involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from a combination of coal and sustainably sourced biomass. With a relatively pure CO2 stream as an inherent byproduct of the process, most of the resulting GHG emissions can be eliminated by simply compressing the CO2 for pipeline transport. Subsequent storage of the CO2 output in underground reservoirs can result in very low-perhaps even near-zero-net GHG emissions, depending on the fraction of biomass as input and its CO2 signature. To examine the potential market penetration and environmental impact of coal-and-biomass-to-liquids-and-electricity (CBtLE), a system-wide sensitivity analysis was performed using the MARKet ALlocation energy model. CBtLE was found to be most competitive in scenarios with a combination of high oil prices, low CCS costs, and, unexpectedly, non-stringent carbon policies. In the scheme considered here (30 % biomass input on an energy basis and 85 % carbon capture), CBtLE fails to achieve significant market share in deep decarbonization scenarios, regardless of oil prices and CCS costs. Such facilities would likely require higher fractions of biomass feedstock and captured CO2 to successfully compete in a carbon-constrained energy system. C1 [Aitken, Matthew L.] US EPA, ORISE, Res Triangle Pk, NC 27709 USA. [Loughlin, Daniel H.; Dodder, Rebecca S.; Yelverton, William H.] US EPA, Res Triangle Pk, NC 27709 USA. RP Loughlin, DH (reprint author), US EPA, Res Triangle Pk, NC 27709 USA. EM loughlin.dan@epa.gov NR 46 TC 2 Z9 2 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1618-954X EI 1618-9558 J9 CLEAN TECHNOL ENVIR JI Clean Technol. Environ. Policy PD FEB PY 2016 VL 18 IS 2 BP 573 EP 581 DI 10.1007/s10098-015-1020-z PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA DE7LY UT WOS:000370819500019 ER PT J AU Bansal, P Mohabir, A Miller, W AF Bansal, Pradeep Mohabir, Amar Miller, William TI A novel method to determine air leakage in heat pump clothes dryers SO ENERGY LA English DT Article DE Heat pump clothes dryer; HPCD; Efficiency; Air leakage; Vented dryer ID ENERGY EFFICIENCY; TUMBLER DRYER; PERFORMANCE AB Although heat pump clothes dryers offer the potential to save a significant amount of energy as compared to conventional vented electric dryers; they are prone to air leakage that can limit their efficiency gain. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The method follows an ASTM (American Society of Testing and Materials) standard, which is used to determine air leakage area in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. The procedure presents a framework that determines and quantifies major components contributing to leakage in HPCDs. The novel method can improve component design features, resulting in more efficient HPCD systems. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Bansal, Pradeep; Mohabir, Amar; Miller, William] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Bldg Equipment Grp, One Bethel Valley Rd,MS-6070, Oak Ridge, TN 37831 USA. RP Bansal, P (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Bldg Equipment Grp, One Bethel Valley Rd,MS-6070, Oak Ridge, TN 37831 USA. EM pban008@gmail.com OI Mohabir, Amar/0000-0001-5445-0734 FU Building Technologies Office of the US Department of Energy FX The authors are thankful to the Building Technologies Office of the US Department of Energy for their financial support and industry partner General Electric Appliances for their in-kind and technical support. Special thanks are due to a number of contributors for their invaluable contributions and support during this project, including Mr. Edward Vineyard, Dr. Bo Shen, Dr. Kyle Gluesenkamp, Dr. Keith Rice, Mr. Van Baxter, Mr. Phillip Boudreaux, Mr. Jerry Atchley, Mr. Randall Linkous, Mr. Neal Durfee, Mr. David Beers, Mr. Zhiquan Yu and Quentin Pollett. NR 23 TC 2 Z9 2 U1 4 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD FEB 1 PY 2016 VL 96 BP 1 EP 7 DI 10.1016/j.energy.2015.12.051 PG 7 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA DE8LE UT WOS:000370886700001 ER PT J AU Black, S Ferrell, JR AF Black, Stuart Ferrell, Jack R., III TI Determination of Carbonyl Groups in Pyrolysis Bio-oils Using Potentiometric Titration: Review and Comparison of Methods SO ENERGY & FUELS LA English DT Review AB Carbonyl compounds present in bio-oils are known to be responsible for bio-oil property changes upon storage and during upgrading. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation have long been used for the determination of carbonyl content in pyrolysis bio-oils. Here, we present a modification of the traditional carbonyl oximation procedures that results in less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. Some compounds such as carbohydrates are not measured by the traditional method (modified Nicolaides method), resulting in low estimations of the carbonyl content. Furthermore, we have shown that reaction completion for the traditional method can take up to 300 h. The new method presented here (the modified Faix method) reduces the reaction time to 2 h, uses triethanolamine (TEA) in the place of pyridine, and requires a smaller sample size for the analysis. Carbonyl contents determined using this new method are consistently higher than when using the traditional titration methods. C1 [Black, Stuart; Ferrell, Jack R., III] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO USA. RP Black, S (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO USA. EM stuart.black@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; U.S. DOE Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding provided by U.S. DOE Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 23 TC 8 Z9 8 U1 8 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2016 VL 30 IS 2 BP 1071 EP 1077 DI 10.1021/acs.energyfuels.5b02511 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DE5NZ UT WOS:000370679000036 ER PT J AU Zheng, F Heldebrant, DJ Mathias, PM Koech, P Bhakta, M Freeman, CJ Bearden, MD Zwoster, A AF Zheng, Feng Heldebrant, David J. Mathias, Paul M. Koech, Phillip Bhakta, Mukund Freeman, Charles J. Bearden, Mark D. Zwoster, Andy TI Bench-Scale Testing and Process Performance Projections of CO2 Capture by CO2-Binding Organic Liquids (CO(2)BOLs) with and without Polarity-Swing-Assisted Regeneration SO ENERGY & FUELS LA English DT Article ID IONIC LIQUIDS; ALKANOLAMINES; SOLVENT AB This manuscript provides a detailed analysis of a continuous-flow, bench-scale study of the CO2-binding organic liquid (CO2BOL) solvent platform with and without its polarity-swing-assisted regeneration (PSAR). This study encompassed four months of continuous-flow testing of a candidate CO2BOL with a thermal regeneration and PSAR regeneration using a decane antisolvent. In both regeneration schemes, steady-state capture of >90% CO2 was achieved using simulated flue gas at reasonable liquid/gas (L/G) ratios. Aspen Plus modeling was performed to assess process performance, compared to previous equilibrium performance projections. This paper also includes net power projections, and comparisons to DOE's Case 10 amine baseline, and comments on the viability of the CO2BOL solvent class, for post-combustion CO2 capture. C1 [Zheng, Feng; Heldebrant, David J.; Koech, Phillip; Freeman, Charles J.; Bearden, Mark D.; Zwoster, Andy] Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. [Mathias, Paul M.; Bhakta, Mukund] Fluor Corp, 3 Polaris Way, Aliso Viejo, CA 92698 USA. RP Heldebrant, DJ (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM david.heldebrant@pnnl.gov FU U.S. Department of Energy's Office of Fossil Energy [FWP-65872]; [DE-0007466] FX This work was funded by the U.S. Department of Energy's Office of Fossil Energy (Award No. FWP-65872), and Award No. DE-0007466 managed by the National Energy Technology Laboratory. NR 22 TC 4 Z9 4 U1 8 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2016 VL 30 IS 2 BP 1192 EP 1203 DI 10.1021/acs.energyfuels.5b02437 PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DE5NZ UT WOS:000370679000048 ER PT J AU Mueller, CJ Cannella, WJ Bays, JT Bruno, TJ DeFabio, K Dettman, HD Gieleciak, RM Huber, ML Kweon, CB McConnell, SS Pitz, WJ Ratcliff, MA AF Mueller, Charles J. Cannella, William J. Bays, J. Timothy Bruno, Thomas J. DeFabio, Kathy Dettman, Heather D. Gieleciak, Rafal M. Huber, Marcia L. Kweon, Chol-Bum McConnell, Steven S. Pitz, William J. Ratcliff, Matthew A. TI Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties SO ENERGY & FUELS LA English DT Article ID DISTILLATION CURVE APPROACH; THERMOPHYSICAL PROPERTIES; TRANSPORTATION FUELS; CETANE NUMBER; N-HEXADECANE; SHOCK-TUBE; COMBUSTION; MECHANISM; IGNITION; 1,3,5-TRIISOPROPYLCYCLOHEXANE AB The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical aid chemical properties were measured. This work documents the surrogate-fuel creation process= and the results of the property measurements. C1 [Mueller, Charles J.] Sandia Natl Labs, 7011 East Ave,MS 9053, Livermore, CA 94550 USA. [Cannella, William J.; DeFabio, Kathy] Chevron Energy Technol Co, 100 Chevron Way, Richmond, CA 94801 USA. [Bays, J. Timothy] Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. [Bruno, Thomas J.; Huber, Marcia L.] Natl Inst Stand & Technol, 325 Broadway, Boulder, CO 80305 USA. [Dettman, Heather D.; Gieleciak, Rafal M.] Nat Resources Canada CanmetENERGY, 1 Oil Patch Dr, Devon, AB T9G 1A8, Canada. [Kweon, Chol-Bum] US Army Res Lab, 4603 Flare Loop Rd, Aberdeen Proving Ground, MD 21005 USA. [McConnell, Steven S.] Marathon Petr Co, 539 South Main St, Findlay, OH 45840 USA. [Pitz, William J.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Ratcliff, Matthew A.] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Mueller, CJ (reprint author), Sandia Natl Labs, 7011 East Ave,MS 9053, Livermore, CA 94550 USA. EM cjmuell@sandia.gov RI Kweon, Chol-Bum/G-5425-2016 FU U.S. Department of Energy (U.S. DOE) Office of Vehicle Technologies; Coordinating Research Council (CRC); CRC; Natural Resources Canada; Canadian federal government interdepartmental Program of Energy Research and Development (PERD); ecoENERGY Innovation Initiative (ecoEII); U.S. Army Research Laboratory; U.S. Department of Energy [DE-AC04-94AL85000]; Chevron Energy Technology Co., a division of Chevron USA, Richmond, CA, USA; U.S. DOE [DE-AC05-76RL01830, DE-AC52-07NA27344]; U.S. DOE, Vehicle Technologies Office; Alliance for Sustainable Energy, LLC [DE347AC36-99GO10337] FX Funding for this research was provided by the U.S. Department of Energy (U.S. DOE) Office of Vehicle Technologies, the Coordinating Research Council (CRC) and the companies that employ the CRC members, Natural Resources Canada and the Canadian federal government interdepartmental Program of Energy Research and Development (PERD) and ecoENERGY Innovation Initiative (ecoEII), and the U.S. Army Research Laboratory. The study was conducted under the auspices of CRC. We thank U.S. DOE program managers Kevin Stork and Gurpreet Singh for supporting the participation of the U.S. national laboratories in this study. C.J.M's portion of the research was conducted at the Combustion Research Facility, Sandia National Laboratories, Livermore, CA, USA. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. W.J.C's portion of the research was funded by and conducted at Chevron Energy Technology Co., a division of Chevron USA, Richmond, CA, USA. J.T.B's portion of the research was conducted at Pacific Northwest National Laboratory, a multiprogram laboratory operated by the Battelle Memorial Institute under Contract No. DE-AC05-76RL01830 for the U.S. DOE. J.T.B. also thanks Drs. John Linehan, Molly O'Hagan, and Suh-Jane Lee, Mr. Gregory Coffey, Ms. Margaret Jones, Ms. Tricia Smurthwaite, and Ms. Diana Tran for their discussions and assistance in obtaining data critical to this work. W.J.P's portion of the research was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. M.A.R's portion of the research was conducted at the National Renewable Energy Laboratory, Golden, CO, USA, with support from the U.S. DOE, Vehicle Technologies Office. NREL is operated by the Alliance for Sustainable Energy, LLC under Contract No. DE347AC36-99GO10337. M.A.R. thanks NREL colleagues Jon Luecke, Earl Christensen, Gina Chupka, and Lisa Fouts for their excellent technical contributions to this work. Finally, helpful input and guidance from Kenneth D. Rose, formerly of ExxonMobil, are gratefully acknowledged. NR 82 TC 12 Z9 12 U1 8 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2016 VL 30 IS 2 BP 1445 EP 1461 DI 10.1021/acs.energyfuels.5b02879 PG 17 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DE5NZ UT WOS:000370679000075 PM 27330248 ER PT J AU Wang, Y Zhang, R Zheng, Q Deng, Y Van Nostrand, JD Zhou, JZ Jiao, NZ AF Wang, Yu Zhang, Rui Zheng, Qiang Deng, Ye Van Nostrand, Joy D. Zhou, Jizhong Jiao, Nianzhi TI Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article DE Arctic Ocean; community structure; mesocosm experiment; molecular ecological network ocean acidification ID DIFFERENT PCO(2) LEVELS; CARBON-DIOXIDE LEVELS; MARINE BACTERIAL; CO2 ENRICHMENT; ARCTIC FJORD; POLLINATION NETWORKS; ECOLOGICAL NETWORKS; ELEVATED CO2; DIVERSITY; DYNAMICS AB Ocean acidification (OA), caused by seawater CO2 uptake, has significant impacts on marine calcifying organisms and phototrophs. However, the response of bacterial communities, who play a crucial role in marine biogeochemical cycling, to OA is still not well understood. Previous studies have shown that the diversity and structure of microbial communities change undeterminably with elevated pCO(2). Here, novel phylogenetic molecular ecological networks (pMENs) were employed to investigate the interactions of native bacterial communities in response to OA in the Arctic Ocean through a mesocosm experiment. The pMENs results were in line with the null hypothesis that elevated pCO(2)/pH does not affect biogeochemistry processes. The number of nodes within the pMENs and the connectivity of the bacterial communities were similar, despite increased pCO(2) concentrations. Our results indicate that elevated pCO(2) did not significantly affect microbial community structure and succession in the Arctic Ocean, suggesting bacterioplankton community resilience to elevated pCO(2). The competitive interactions among the native bacterioplankton, as well as the modular community structure, may contribute to this resilience. This pMENs-based investigation of the interactions among microbial community members at different pCO(2) concentrations provides a new insight into our understanding of how OA affects the microbial community. C1 [Wang, Yu; Zhang, Rui; Zheng, Qiang; Jiao, Nianzhi] Xiamen Univ, Inst Marine Microbes & Ecospheres, State Key Lab Marine Environm Sci, Xiamen 361005, Fujian, Peoples R China. [Deng, Ye] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, CAS Key Lab Environm Biotechnol, Beijing 100085, Peoples R China. [Van Nostrand, Joy D.; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Van Nostrand, Joy D.; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Sci Div, Berkeley, CA 94720 USA. RP Jiao, NZ (reprint author), Xiamen Univ, Inst Marine Microbes & Ecospheres, State Key Lab Marine Environm Sci, Xiamen 361005, Fujian, Peoples R China.; Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China.; Zhou, JZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Earth Sci Div, Berkeley, CA 94720 USA. EM jiao@xmu.edu.cn; jzhou@ou.edu RI Van Nostrand, Joy/F-1740-2016 OI Van Nostrand, Joy/0000-0001-9548-6450 FU European Community [211384]; NSFC [41522603]; SOA Project [GASI-03-01-02-05]; 973 project [2013CB955700]; [GCMAC1408]; [IC201504] FX This work is a contribution to the European Project on Ocean Acidification (EPOCA), which is funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 211384. We gratefully acknowledge Greenpeace International for assistance with the transport of the mesocosm facility from Kid to Ny-Alesund and back. We also thank the captains and crews of M/V ESPERANZA (Greenpeace) and RV Viking Explorer [University Centre in Svalbard (UNIS)] for assistance during mesocosm transport, deployment, and recovery in Kongsfjord. We thank Liyou Wu, Chongqing Wen, Lanlan Cai, and Kanagarajan Umapathy for their assistance during this study. This work was supported by the NSFC (41522603), the SOA Project (GASI-03-01-02-05) and the 973 project (2013CB955700). RZ was partially supported by GCMAC1408 and IC201504. NR 79 TC 3 Z9 3 U1 8 U2 40 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD FEB-MAR PY 2016 VL 73 IS 3 BP 865 EP 875 DI 10.1093/icesjms/fsv187 PG 11 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA DF2AR UT WOS:000371142000034 ER PT J AU Liu, Q Wang, X Rao, NSV Brigham, K Kumar, BVKV AF Liu, Qiang Wang, Xin Rao, Nageswara S. V. Brigham, Katharine Kumar, B. V. K. Vijaya TI Effect of Retransmission and Retrodiction on Estimation and Fusion in Long-Haul Sensor Networks SO IEEE-ACM TRANSACTIONS ON NETWORKING LA English DT Article DE Data association; long-haul sensor networks; mean-square-error (MSE) and root-mean-square-error (RMSE) performance; message retransmission; prediction and retrodiction; state estimation and fusion ID OF-SEQUENCE MEASUREMENTS; TARGET TRACKING; OPTIMAL UPDATE; PERFORMANCE; CHANNELS; MODELS; ORDER AB In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as target tracking. In this paper, we study the scenario where sensors take measurements of one or more dynamic targets and send state estimates of the targets to a fusion center via satellite links. The severe loss and delay inherent over the satellite channels reduce the number of estimates successfully arriving at the fusion center, thereby limiting the potential fusion gain and resulting in suboptimal accuracy performance of the fused estimates. In addition, the errors in target-sensor data association can also degrade the estimation performance. To mitigate the effect of imperfect communications on state estimation and fusion, we consider retransmission and retrodiction. The system adopts certain retransmission-based transport protocols so that lost messages can be recovered over time. Moreover, retrodiction/smoothing techniques are applied so that the chances of incurring excess delay due to retransmission are greatly reduced. We analyze the extent to which retransmission and retrodiction can improve the performance of delay-sensitive target tracking tasks under variable communication loss and delay conditions. Simulation results of a ballistic target tracking application are shown in the end to demonstrate the validity of our analysis. C1 [Liu, Qiang; Wang, Xin] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA. [Rao, Nageswara S. V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Brigham, Katharine; Kumar, B. V. K. Vijaya] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA. RP Liu, Q; Wang, X (reprint author), SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA.; Rao, NSV (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.; Brigham, K; Kumar, BVKV (reprint author), Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA. EM qiangliu@ece.sunysb.edu; xwang@ece.sunysb.edu; raons@ornl.gov; kbrigham@ece.cmu.edu; kumar@ece.cmu.edu OI Rao, Nageswara/0000-0002-3408-5941 FU Mathematics of Complex, Distributed, Interconnected Systems Program, Office of Advanced Computing Research, US Department of Energy; Office of Naval Research under the SensorNet Project; Stony Brook University under NSF [CNS 1247924, ECCS 1231800, ECCS 1408247] FX This work was supported by the Mathematics of Complex, Distributed, Interconnected Systems Program, Office of Advanced Computing Research, US Department of Energy, and the Office of Naval Research under the SensorNet Project, and was performed at Stony Brook University under NSF Awards CNS 1247924, ECCS 1231800, and ECCS 1408247. NR 28 TC 1 Z9 1 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1063-6692 EI 1558-2566 J9 IEEE ACM T NETWORK JI IEEE-ACM Trans. Netw. PD FEB PY 2016 VL 24 IS 1 BP 449 EP 461 DI 10.1109/TNET.2014.2363841 PG 13 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic; Telecommunications SC Computer Science; Engineering; Telecommunications GA DE9PD UT WOS:000370969300034 ER PT J AU Agre, P Bertozzi, C Bissell, M Campbell, KP Cummings, RD Desai, UR Estes, M Flotte, T Fogleman, G Gage, F Ginsburg, D Gordon, JI Hart, G Hascall, V Kiessling, L Kornfeld, S Lowe, J Magnani, J Mahal, LK Medzhitov, R Roberts, RJ Sackstein, R Sarkar, R Schnaar, R Schwartz, N Varki, A Walt, D Weissman, I AF Agre, Peter Bertozzi, Carolyn Bissell, Mina Campbell, Kevin P. Cummings, Richard D. Desai, Umesh R. Estes, Mary Flotte, Terence Fogleman, Guy Gage, Fred Ginsburg, David Gordon, Jeffrey I. Hart, Gerald Hascall, Vincent Kiessling, Laura Kornfeld, Stuart Lowe, John Magnani, John Mahal, Lara K. Medzhitov, Ruslan Roberts, Richard J. Sackstein, Robert Sarkar, Rita Schnaar, Ronald Schwartz, Nancy Varki, Ajit Walt, David Weissman, Irving TI Training the next generation of biomedical investigators in glycosciences SO JOURNAL OF CLINICAL INVESTIGATION LA English DT Editorial Material AB This position statement originated from a working group meeting convened on April 15, 2015, by the NHLBI and incorporates follow-up contributions by the participants as well as other thought leaders subsequently consulted, who together represent research fields relevant to all branches of the NIH. The group was deliberately composed not only of individuals with a current research emphasis in the glycosciences, but also of many experts from other fields, who evinced a strong interest in being involved in the discussions. The original goal was to discuss the value of creating centers of excellence for training the next generation of biomedical investigators in the glycosciences. A broader theme that emerged was the urgent need to bring the glycosciences back into the mainstream of biology by integrating relevant education into the curricula of medical, graduate, and postgraduate training programs, thus generating a critical sustainable workforce that can advance the much-needed translation of glycosciences into a more complete understanding of biology and the enhanced practice of medicine. C1 [Agre, Peter] Johns Hopkins Univ, Dept Mol Microbiol & Immunol, Johns Hopkins Bloomberg Sch Publ Hlth, Baltimore, MD USA. [Bertozzi, Carolyn] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Bissell, Mina] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Biol Syst & Engn, Berkeley, CA 94720 USA. [Campbell, Kevin P.] Univ Iowa, Howard Hughes Med Inst, Dept Mol Physiol & Biophys Neurol & Internal Med, Carver Coll Med, Iowa City, IA 52242 USA. [Cummings, Richard D.] Beth Israel Deaconess Med Ctr, Dept Surg, Harvard Med Sch, Boston, MA 02215 USA. [Desai, Umesh R.] Virginia Commonwealth Univ, Dept Med Chem, Richmond, VA 23298 USA. [Desai, Umesh R.] Virginia Commonwealth Univ, Inst Struct Biol Drug Discovery & Dev, Richmond, VA USA. [Estes, Mary] Baylor Coll Med, Dept Mol Virol & Microbiol, Houston, TX 77030 USA. [Flotte, Terence] Univ Massachusetts, Sch Med, Dept Pediat, Worcester, MA USA. [Fogleman, Guy] FASEB, Bethesda, MD USA. [Gage, Fred] Salk Inst far Biol Studies, Lab Genet LOG G, La Jolla, CA USA. [Ginsburg, David] Univ Michigan, Dept Internal Med, Dept Human Genet, Ann Arbor, MI 48109 USA. [Ginsburg, David] Univ Michigan, Dept Pediat, Ann Arbor, MI 48109 USA. [Gordon, Jeffrey I.] Washington Univ, Ctr Genome Sci & Syst Biol, St Louis, MO USA. [Hart, Gerald] Johns Hopkins Univ, Dept Biol Chem, Baltimore, MD USA. [Hascall, Vincent] Cleveland Clin Fdn, Dept Bioengn, 9500 Euclid Ave, Cleveland, OH 44195 USA. [Kiessling, Laura] Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA. [Kornfeld, Stuart] Washington Univ, Dept Med, St Louis, MO USA. [Lowe, John] Genentech Inc, Dept Pathol Res, San Francisco, CA USA. [Magnani, John] GlycoMimet, Rockville, MD USA. [Mahal, Lara K.] NYU, Dept Chem, Inst Biomed Chem, New York, NY USA. [Medzhitov, Ruslan] Yale Univ, Dept Immunobiol, New Haven, CT USA. [Roberts, Richard J.] New England Biolabs Inc, Ipswich, MA USA. [Sackstein, Robert] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Dermatol & Med, Boston, MA 02115 USA. [Sarkar, Rita] NHLBI, Div Blood Dis & Resources, Bethesda, MD USA. [Schnaar, Ronald] Johns Hopkins Univ, Dept Pharmacol & Neurosci, Baltimore, MD USA. [Schwartz, Nancy] Univ Chicago, Dept Pediat & Biochem & Mol Biol, Chicago, IL 60637 USA. [Varki, Ajit] Univ Calif San Diego, Dept Med, San Diego, CA USA. [Varki, Ajit; Walt, David] Univ Calif San Diego, Dept Cellular & Mol Med, San Diego, CA USA. [Walt, David] Tufts Univ, Dept Chem, Tufts Inst Innovat, Medford, MA 02155 USA. [Weissman, Irving] Stanford Univ, Ludwig Ctr Canc Stem Cell Res, Inst Stem Cell Biol & Regenerat Med, Stanford, CA 94305 USA. RP Varki, A (reprint author), Univ Calif San Diego, Dept Med, BRF2,Room 4126,9500 Gilman Dr,MC 0687, La Jolla, CA 92093 USA.; Varki, A (reprint author), Dept Cellular & Mol Med, BRF2,Room 4126,9500 Gilman Dr,MC 0687, La Jolla, CA 92093 USA.; Schnaar, R (reprint author), Johns Hopkins Univ, Sch Med, Dept Pharmacol, 725 N Wolfe St,318 Wood Basic Sci Bldg, Baltimore, MD 21205 USA.; Schnaar, R (reprint author), Johns Hopkins Univ, Sch Med, Dept Neurosci, 725 N Wolfe St,318 Wood Basic Sci Bldg, Baltimore, MD 21205 USA. EM schnaar@jhu.edu; alvarki@ucsd.edu RI Schnaar, Ronald/S-8967-2016; OI Schnaar, Ronald/0000-0002-7701-5484; Desai, Umesh/0000-0002-1976-6597; Roberts, Richard/0000-0002-4348-0169 FU NHLBI NIH HHS [P01 HL107146, P01 HL107150, P01 HL107151]; NINDS NIH HHS [U54 NS053672] NR 1 TC 2 Z9 2 U1 5 U2 14 PU AMER SOC CLINICAL INVESTIGATION INC PI ANN ARBOR PA 2015 MANCHESTER RD, ANN ARBOR, MI 48104 USA SN 0021-9738 EI 1558-8238 J9 J CLIN INVEST JI J. Clin. Invest. PD FEB PY 2016 VL 126 IS 2 BP 405 EP 408 DI 10.1172/JCI85905 PG 4 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA DE5NI UT WOS:000370677300001 PM 26829621 ER PT J AU Ji, YZ Heo, T Zhang, F Chen, LQ AF Ji, Yanzhou Heo, Tae Wook Zhang, Fan Chen, Long-Qing TI Theoretical Assessment on the Phase Transformation Kinetic Pathways of Multi-component Ti Alloys: Application to Ti-6Al-4V SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION LA English DT Article; Proceedings Paper CT TMS William Hume-Rothery Award Symposium on Multicomponent Alloy Metallurgy, the Bridge from Materials Science to Materials Engineering CY MAR 15-19, 2015 CL Orlando, FL DE alloys; kinetics; multicomponent; phase transformation; stability ID ALPHA+BETA TITANIUM-ALLOYS; FIELD MODELS; BETA-PHASE; THERMODYNAMIC ASSESSMENT; SPINODAL DECOMPOSITION; QUATERNARY SYSTEM; VARIANT SELECTION; TERNARY-SYSTEM; BCC PHASE; V ALLOYS AB We present our theoretical assessment of the kinetic pathways during phase transformations of multi-component Ti alloys. Employing the graphical thermodynamic approach and an integrated free energy function based on the realistic thermodynamic database and assuming that a displacive structural transformation occurs much faster than long-range diffusional processes, we analyze the phase stabilities of Ti-6Al-4V (Ti-6wt.%Al-4wt.%V). Our systematic analyses predict a variety of possible kinetic pathways for beta to (alpha + beta) transformations leading to different types of microstructures under various heat treatment conditions. In addition, the possibility of unconventional kinetic pathways is discussed. We also briefly discuss the application of our approach to general multicomponent/multiphase alloy systems. C1 [Ji, Yanzhou; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Heo, Tae Wook] Lawrence Livermore Natl Lab, Div Mat Sci, Livermore, CA 94550 USA. [Zhang, Fan] CompuTherm LLC, 437 S Yellowstone Dr Suite 217, Madison, WI 53719 USA. RP Ji, YZ (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM yxj135@psu.edu OI Ji, Yanzhou/0000-0002-5492-743X NR 51 TC 1 Z9 1 U1 7 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1547-7037 EI 1863-7345 J9 J PHASE EQUILIB DIFF JI J. Phase Equilib. Diffus. PD FEB PY 2016 VL 37 IS 1 SI SI BP 53 EP 64 DI 10.1007/s11669-015-0436-9 PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DE7UR UT WOS:000370842700008 ER PT J AU Kammerer, CC Kulkarni, NS Warmack, B Sohn, YH AF Kammerer, C. C. Kulkarni, N. S. Warmack, B. Sohn, Y. H. TI Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION LA English DT Article; Proceedings Paper CT TMS William Hume-Rothery Award Symposium on Multicomponent Alloy Metallurgy, the Bridge from Materials Science to Materials Engineering CY MAR 15-19, 2015 CL Orlando, FL DE diffusion couples; electron probe microanalysis (EPMA); interdiffusion; ternary diffusion ID MG-ZN SYSTEM; MULTICOMPONENT METALLIC SYSTEMS; ANISOTROPIC DIFFUSION BEHAVIOR; AUTOMOTIVE APPLICATIONS; IRREVERSIBLE-PROCESSES; QUATERNARY DIFFUSION; RECIPROCAL RELATIONS; ALLOYS; AL; COEFFICIENTS AB Al and Zn are two of the most common alloying elements in commercial Mg alloys, which can improve the physical properties through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of these and other microstructural design relevant to Mg-alloy development. However, there is a lack of multicomponent diffusion data available for Mg alloys. Through solid-to-solid diffusion couples, diffusional interactions of Al and Zn in ternary Mg solid-solution at 400A degrees and 450 A degrees C were examined by an extension of the Boltzmann-Matano analysis based on Onsager's formalism. Concentration profiles of Mg-Al-Zn ternary alloys were determined by electron probe microanalysis, and analyzed to determine the ternary interdiffusion coefficients as a function of composition. The magnitude of ternary interdiffusion coefficients was greater than that of the magnitude of ternary interdiffusion coefficients was greater than that of , and the magnitude of was greater than that of . Appreciable diffusional interactions among Mg, Al, and Zn were observed by variations in sign and magnitude of cross interdiffusion coefficients. In particular, Zn was found to significantly influence the interdiffusion of Mg and Al significantly: the and ternary cross interdiffusion coefficients were both negative, and large in magnitude, in comparison to and , respectively. Al and Mg were observed influence the interdiffusion of Mg and Al, respectively, with positive and interdiffusion coefficients, but their influence on the Zn interdiffusion was negligible. C1 [Kammerer, C. C.; Sohn, Y. H.] Univ Cent Florida, Dept Mat Sci & Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Warmack, B.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA. RP Sohn, YH (reprint author), Univ Cent Florida, Dept Mat Sci & Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. EM Yongho.Sohn@ucf.edu RI Sohn, Yongho/A-8517-2010 OI Sohn, Yongho/0000-0003-3723-4743 NR 43 TC 0 Z9 0 U1 11 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1547-7037 EI 1863-7345 J9 J PHASE EQUILIB DIFF JI J. Phase Equilib. Diffus. PD FEB PY 2016 VL 37 IS 1 SI SI BP 65 EP 74 DI 10.1007/s11669-015-0438-7 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DE7UR UT WOS:000370842700009 ER PT J AU Sargin, I Genau, AL Napolitano, RE AF Sargin, I. Genau, A. L. Napolitano, R. E. TI Post-solidification Effects in Directionally Grown Al-AgAl-AlCu Eutectics SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION LA English DT Article; Proceedings Paper CT TMS William Hume-Rothery Award Symposium on Multicomponent Alloy Metallurgy, the Bridge from Materials Science to Materials Engineering CY MAR 15-19, 2015 CL Orlando, FL DE coupled growth; solid-state effects; ternary eutectics ID LAMELLAR; STABILITY; SYSTEM; SN; MICROSTRUCTURES; ALLOYS AB The post-solidification reactions that take place behind the growth front in directionally solidified ternary eutectic Al-Ag-Cu alloys have a marked influence on the observed room temperature microstructure, obscuring many aspects of the solidification morphology present at the growth front. Quantifying these solid-state processes is necessary for proper interpretation of ex-situ microstructure as an indicator of growth dynamics and operating point selection. In this study, the directional growth structure and phase compositions are quantified as a function of distance from the growth front to describe microstructural changes that occur during cooling in the solid state. The solubility of Ag in the Al(fcc) phase decreases rapidly below the eutectic point, and the excess Ag is accommodated by growth of the Ag2Al(hcp) phase, mainly by motion of the Al(fcc)-Ag2Al(hcp) interface. These structural changes are quantified, and compared to the coupled morphology at the solidification front. A cellular automaton method is proposed here to mimic either the forward or reverse solid-state changes, providing a means to estimate many features of the directional growth morphology based on sampling the structure at some known distance from the front. C1 [Sargin, I.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Genau, A. L.] Univ Alabama Birmingham, Dept Mat Sci & Engn, Birmingham, AL 35294 USA. [Napolitano, R. E.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Napolitano, R. E.] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. RP Napolitano, RE (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.; Napolitano, RE (reprint author), US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM irmak@iastate.edu; genau@uab.edu; ren1@iastate.edu NR 31 TC 0 Z9 0 U1 5 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1547-7037 EI 1863-7345 J9 J PHASE EQUILIB DIFF JI J. Phase Equilib. Diffus. PD FEB PY 2016 VL 37 IS 1 SI SI BP 75 EP 85 DI 10.1007/s11669-015-0439-6 PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DE7UR UT WOS:000370842700010 ER PT J AU Yu, HC Wang, F Amatucci, GG Thornton, K AF Yu, Hui-Chia Wang, Feng Amatucci, Glenn G. Thornton, Katsuyo TI A Phase-Field Model and Simulation of Kinetically Asymmetric Ternary Conversion-Reconversion Transformation in Battery Electrodes SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION LA English DT Article; Proceedings Paper CT TMS William Hume-Rothery Award Symposium on Multicomponent Alloy Metallurgy, the Bridge from Materials Science to Materials Engineering CY MAR 15-19, 2015 CL Orlando, FL DE computational studies; phase field modeling; phase transformation; ternary system ID LITHIUM-ION BATTERIES; FLUORIDE NANOCOMPOSITES; CATHODE MATERIALS; CAPACITY; MICROSTRUCTURE; HYSTERESIS; MECHANISMS; TRANSPORT AB Electrochemical processes in high-energy electrode materials often involve diffusion of multiple species and solid-state phase transformations. Some of these phase transformations involve breaking and rearranging ionic bonds and are referred to as conversion reactions (e.g., the lithium and iron difluoride conversion reaction: 2Li(+) + 2e(-) + FeF2 -> 2LiF + Fe). The phase transformations during conversion processes are governed by fundamental thermodynamics and kinetics in a similar manner to metallurgical systems. In this work, we developed a phase-field model that tracks atomic fractions of three constituent species to simulate the morphological evolution of different phases. The simulations demonstrate that conversion proceeds via a two-stage process consisting of lithiation and decomposition stages, whereas the reconversion process consists of a single-stage delithiation. This asymmetry in evolution paths of conversion and reconversion is likely responsible for the voltage hysteresis commonly observed during lithiation-delithiation cycling of conversion materials. C1 [Yu, Hui-Chia; Thornton, Katsuyo] Univ Michigan, Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Wang, Feng] Brookhaven Natl Lab, Upton, NY 11973 USA. [Amatucci, Glenn G.] Rutgers State Univ, Dept Mat Sci & Engn, North Brunswick, NJ 08902 USA. RP Thornton, K (reprint author), Univ Michigan, Mat Sci & Engn, Ann Arbor, MI 48109 USA. EM kthorn@umich.edu OI /0000-0002-1227-5293 NR 32 TC 2 Z9 2 U1 8 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1547-7037 EI 1863-7345 J9 J PHASE EQUILIB DIFF JI J. Phase Equilib. Diffus. PD FEB PY 2016 VL 37 IS 1 SI SI BP 86 EP 99 DI 10.1007/s11669-015-0440-0 PG 14 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DE7UR UT WOS:000370842700011 ER PT J AU Wu, WT Martin, AB Gandini, A Aubry, N Massoudi, M Antaki, JF AF Wu, Wei-Tao Martin, Andrea Blue Gandini, Alberto Aubry, Nadine Massoudi, Mehrdad Antaki, James F. TI Design of microfluidic channels for magnetic separation of malaria-infected red blood cells SO MICROFLUIDICS AND NANOFLUIDICS LA English DT Article DE Blood; Malaria; Microchannels; Magnetic field; Cell separation ID CONTINUOUS MAGNETOPHORETIC SEPARATION; FORCE MICROSCOPY; CONTINUOUS-FLOW; WHOLE-BLOOD; PARTICLES; GRADIENT; ERYTHROCYTES; SIMULATION; PURIFICATION; GAMETOCYTES AB This study is motivated by the development of a blood cell filtration device for removal of malaria-infected, parasitized red blood cells (pRBCs). The blood was modeled as a multi-component fluid using the computational fluid dynamics discrete element method (CFD-DEM), wherein plasma was treated as a Newtonian fluid and the red blood cells (RBCs) were modeled as soft-sphere solid particles which move under the influence of drag, collisions with other RBCs, and a magnetic force. The CFD-DEM model was first validated by a comparison with experimental data from Han and Frazier (Lab Chip 6: 265-273, 2006) involving a microfluidic magnetophoretic separator for paramagnetic deoxygenated blood cells. The computational model was then applied to a parametric study of a parallel-plate separator having hematocrit of 40 % with 10 % of the RBCs as pRBCs. Specifically, we investigated the hypothesis of introducing an upstream constriction to the channel to divert the magnetic cells within the near-wall layer where the magnetic force is greatest. Simulations compared the efficacy of various geometries upon the stratification efficiency of the pRBCs. For a channel with nominal height of 100 mu m, the addition of an upstream constriction of 80 % improved the proportion of pRBCs retained adjacent to the magnetic wall (separation efficiency) by almost twofold, from 26 to 49 %. Further addition of a downstream diffuser reduced remixing and hence improved separation efficiency to 72 %. The constriction introduced a greater pressure drop (from 17 to 495 Pa), which should be considered when scaling up this design for a clinical-sized system. Overall, the advantages of this design include its ability to accommodate physiological hematocrit and high throughput, which is critical for clinical implementation as a blood-filtration system. C1 [Wu, Wei-Tao; Martin, Andrea Blue; Gandini, Alberto; Antaki, James F.] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA. [Aubry, Nadine] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA. [Massoudi, Mehrdad] US DOE, NETL, Pittsburgh, PA 15236 USA. RP Antaki, JF (reprint author), Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA. EM massoudi@netl.doe.gov; antaki@cmu.edu RI Antaki, James/S-3051-2016 OI Antaki, James/0000-0002-5430-7353 FU NIH [1 R01 HL089456] FX This research was supported by NIH Grant 1 R01 HL089456. NR 61 TC 0 Z9 0 U1 4 U2 20 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1613-4982 EI 1613-4990 J9 MICROFLUID NANOFLUID JI Microfluid. Nanofluid. PD FEB PY 2016 VL 20 IS 2 AR 41 DI 10.1007/s10404-016-1707-4 PG 11 WC Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Fluids & Plasmas SC Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA DF1AG UT WOS:000371070200013 ER PT J AU Abdul-Jawad, S Ondondo, B van Hateren, A Gardner, A Elliott, T Korber, B Hanke, T AF Abdul-Jawad, Sultan Ondondo, Beatrice van Hateren, Andy Gardner, Andrew Elliott, Tim Korber, Bette Hanke, Tomas TI Increased Valency of Conserved-mosaic Vaccines Enhances the Breadth and Depth of Epitope Recognition SO MOLECULAR THERAPY LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; T-CELL RESPONSES; HIGHLY PATHOGENIC SIV; IMMUNE-RESPONSES; HIV-1 VACCINES; RHESUS-MONKEYS; ESCAPE MUTATIONS; ENVELOPE PROTEIN; GENOTYPE 1; INFECTION AB The biggest roadblock in development of effective vaccines against human immunodeficiency virus type 1 (HIV-1) is the virus genetic diversity. For T-cell vaccine, this can be tackled by focusing the vaccine-elicited T-cells on the highly functionally conserved regions of HIV-1 proteins, mutations in which typically cause a replicative fitness loss, and by computing multivalent mosaic proteins, which maximize the coverage of potential 9-mer T-cell epitopes of the input viral sequences. Our first conserved region vaccines HIVconsv employed clade alternating consensus sequences and showed promise in the initial clinical trials in terms of magnitude and breadth of elicited CD8(+) T-cells. Here, monitoring T-cells restricted by HLA-A*02:01 in transgenic mice, we assessed whether or not the tHIVconsv design (HIVconsv with a tissue plasminogen activator leader sequence) benefits from combining with a complementing conserved mosaic immunogen tHIVcmo, and compared the bivalent immunization to that with trivalent conserved mosaic vaccines. A hierarchy of tHIVconsv <= tHIVconsv + tHIVcmo < tCmo1+tCmo2+tCmo3 vaccinations for induction of CD8+ T-cell responses was observed in terms of recognition of tested peptide variants. Thus, our HLA-A*02: 01-restricted epitope data concur with previously published mouse and macaque observations and suggest that even conserved region vaccines benefit from oligovalent mosaic design. C1 [Abdul-Jawad, Sultan; Ondondo, Beatrice; Gardner, Andrew; Hanke, Tomas] Univ Oxford, Jenner Inst, Old Rd Campus Res Bldg,Roosevelt Dr, Oxford OX3 7DQ, England. [van Hateren, Andy; Elliott, Tim] Univ Southampton, Fac Med, Southampton SO9 5NH, Hants, England. [van Hateren, Andy; Elliott, Tim] Univ Southampton, Inst Life Sci, Southampton, Hants, England. [Korber, Bette] Los Alamos Natl Lab, Theoret Biol & Biophys, Los Alamos, NM USA. [Korber, Bette] New Mexico Consortium, Los Alamos, NM USA. [Hanke, Tomas] Kumamoto Univ, Int Res Ctr Med Sci, Kumamoto, Japan. RP Hanke, T (reprint author), Univ Oxford, Jenner Inst, Old Rd Campus Res Bldg,Roosevelt Dr, Oxford OX3 7DQ, England. EM tomas.hanke@ndm.ox.ac.uk OI Korber, Bette/0000-0002-2026-5757 FU UK Medical Research Council [MRC G1001757]; UK Department for International Development (DFID); King Abdullah scholarship by the Ministry of Higher Education, Kingdom of Saudi Arabia; International AIDS Vaccine Initiative; United States Agency for International Development; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID) of the National Institute of Allergy and Infectious Diseases USA [UM1-AI100645] FX The work is jointly funded by the UK Medical Research Council (MRC G1001757) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreements. S.A.-J. is supported by the King Abdullah scholarship by the Ministry of Higher Education, Kingdom of Saudi Arabia. B.O. was funded in part by the International AIDS Vaccine Initiative and made possible by the support of the United States Agency for International Development and other donors. The full list of IAVI donors is available at http://www.iavi.org. B.K. was funded through: the Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID; UM1-AI100645) of the National Institute of Allergy and Infectious Diseases USA. T.H. is the Jenner Institute Investigator. The authors have no competing interests other than T.H. and B.K. are the inventors on PCT Application No. PCT/US2014/058422. NR 54 TC 5 Z9 5 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1525-0016 EI 1525-0024 J9 MOL THER JI Mol. Ther. PD FEB PY 2016 VL 24 IS 2 BP 375 EP 384 DI 10.1038/mt.2015.210 PG 10 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Medicine, Research & Experimental SC Biotechnology & Applied Microbiology; Genetics & Heredity; Research & Experimental Medicine GA DE9MH UT WOS:000370961200020 PM 26581160 ER PT J AU Pries, CEH Schuur, EAG Natali, SM Crummer, KG AF Pries, Caitlin E. Hicks Schuur, Edward A. G. Natali, Susan M. Crummer, K. Grace TI Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra SO NATURE CLIMATE CHANGE LA English DT Article ID PERMAFROST CARBON; CLIMATE-CHANGE; STABLE-ISOTOPES; ORGANIC-MATTER; ALASKAN TUNDRA; CO2 FLUX; DECOMPOSITION; TEMPERATURE; NITROGEN; RELEASE AB Old soil carbon (C) respired to the atmosphere as a result of permafrost thaw has the potential to become a large positive feedback to climate change. As permafrost thaws, quantifying old soil contributions to ecosystem respiration (R-eco) and understanding how these contributions change with warming is necessary to estimate the size of this positive feedback. We used naturally occurring C isotopes (delta C-13 and Delta C-14) to partition R-eco into plant, young soil and old soil sources in a subarctic air and soil warming experiment over three years. We found that old soil contributions to R-eco increased with soil temperature and R-eco flux. However, the increase in the soil warming treatment was smaller than expected because experimentally warming the soils increased plant contributions to R-eco by 30%. On the basis of these data, an increase in mean annual temperature from -5 to 0 degrees C will increase old soil C losses from moist acidic tundra by 35-55 g C m(-2) during the growing season. The largest losses will probably occur where the plant response to warming is minimal. C1 [Crummer, K. Grace] Univ Florida, Dept Biol, POB 118525, Gainesville, FL 32611 USA. [Pries, Caitlin E. Hicks] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate Sci Dept, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Schuur, Edward A. G.] No Arizona Univ, Dept Biol Sci, Ctr Ecosyst Sci & Soc, Box 5640, Flagstaff, AZ 86011 USA. [Natali, Susan M.] Woods Hole Res Ctr, 149 Woods Hole Rd, Falmouth, MA 02540 USA. RP Pries, CEH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate Sci Dept, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cehpries@lbl.gov RI Hicks Pries, Caitlin/A-1368-2014 OI Hicks Pries, Caitlin/0000-0003-0813-2211 FU NSF DDIG; NSF CAREER; Bonanza Creek LTER; DOE NICCR; NSF OPP FX This work was made possible by assistance from J. Curtis, K. Venz Curtis, A. B. Lopez, D. DeRaps, D. Rogan, E. Pegoraro and D. Hicks. This work was funded by NSF DDIG (C.E.H.P), NSF CAREER (E.A.G.S.), Bonanza Creek LTER (E.A.G.S.), DOE NICCR and NSF OPP (S.M.N. and E.A.G.S.). NR 55 TC 6 Z9 6 U1 21 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD FEB PY 2016 VL 6 IS 2 BP 214 EP + DI 10.1038/NCLIMATE2830 PG 7 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DE9NB UT WOS:000370963400026 ER PT J AU Bakaul, SR Serrao, CR Lee, M Yeung, CW Sarker, A Hsu, SL Yadav, AK Dedon, L You, L Khan, AI Clarkson, JD Hu, CM Ramesh, R Salahuddin, S AF Bakaul, Saidur Rahman Serrao, Claudy Rayan Lee, Michelle Yeung, Chun Wing Sarker, Asis Hsu, Shang-Lin Yadav, Ajay Kumar Dedon, Liv You, Long Khan, Asif Islam Clarkson, James David Hu, Chenming Ramesh, Ramamoorthy Salahuddin, Sayeef TI Single crystal functional oxides on silicon SO NATURE COMMUNICATIONS LA English DT Article ID NEGATIVE CAPACITANCE; THIN-FILMS; FERROELECTRIC MEMORY; FIELD; SI; SRTIO3 AB Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. C1 [Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Yeung, Chun Wing; Sarker, Asis; You, Long; Khan, Asif Islam; Hu, Chenming; Salahuddin, Sayeef] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Serrao, Claudy Rayan; Yadav, Ajay Kumar; Dedon, Liv; Clarkson, James David; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Lee, Michelle; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Hsu, Shang-Lin; Ramesh, Ramamoorthy; Salahuddin, Sayeef] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Salahuddin, S (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.; Salahuddin, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM sayeef@berkeley.edu RI Yadav, Ajay/I-6337-2016 OI Yadav, Ajay/0000-0001-5088-6506 FU ONR; ARO YIP award; AFOSR YIP award; STARNET LEAST Center; NSF E3S Center; IRICE Program at Berkeley FX This work was supported in part by the ONR, ARO YIP award, the AFOSR YIP award, the STARNET LEAST Center, the NSF E3S Center and the IRICE Program at Berkeley. We acknowledge discussion with Dr Guneeta Singh Bhalla who first brought our attention to wet etching of manganite films. All additional data are available in the supplementary materials. NR 31 TC 2 Z9 2 U1 21 U2 70 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10547 DI 10.1038/ncomms10547 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF1YS UT WOS:000371136600001 PM 26853112 ER PT J AU Chang, TR Xu, SY Chang, G Lee, CC Huang, SM Wang, B Bian, G Zheng, H Sanchez, DS Belopolski, I Alidoust, N Neupane, M Bansil, A Jeng, HT Lin, H Hasan, MZ AF Chang, Tay-Rong Xu, Su-Yang Chang, Guoqing Lee, Chi-Cheng Huang, Shin-Ming Wang, BaoKai Bian, Guang Zheng, Hao Sanchez, Daniel S. Belopolski, Ilya Alidoust, Nasser Neupane, Madhab Bansil, Arun Jeng, Horng-Tay Lin, Hsin Hasan, M. Zahid TI Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1-xTe2 SO NATURE COMMUNICATIONS LA English DT Article ID AUGMENTED-WAVE METHOD; TOPOLOGICAL INSULATORS; WANNIER FUNCTIONS; PHASE-TRANSITION; ENERGY-BANDS; SEMIMETAL; TAAS; WTE2; DISCOVERY; MOTE2 AB A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent quasiparticles. The Weyl fermions correspond to isolated points of bulk band degeneracy, Weyl nodes, which are connected only through the crystal's boundary by exotic Fermi arcs. The length of the Fermi arc gives a measure of the topological strength, because the only way to destroy the Weyl nodes is to annihilate them in pairs in the reciprocal space. To date, Weyl semimetals are only realized in the TaAs class. Here, we propose a tunable Weyl state in MoxW1-xTe2 where Weyl nodes are formed by touching points between metallic pockets. We show that the Fermi arc length can be changed as a function of Mo concentration, thus tuning the topological strength. Our results provide an experimentally feasible route to realizing Weyl physics in the layered compound MoxW1-xTe2, where non-saturating magneto-resistance and pressure-driven superconductivity have been observed. C1 [Chang, Tay-Rong; Jeng, Horng-Tay] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Xu, Su-Yang; Bian, Guang; Zheng, Hao; Sanchez, Daniel S.; Belopolski, Ilya; Alidoust, Nasser; Neupane, Madhab; Hasan, M. Zahid] Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Spect B7, Princeton, NJ 08544 USA. [Chang, Guoqing; Lee, Chi-Cheng; Huang, Shin-Ming; Wang, BaoKai; Lin, Hsin] Natl Univ Singapore, Ctr Adv Mat 2D, 6 Sci Dr 2, Singapore 117546, Singapore. [Chang, Guoqing; Lee, Chi-Cheng; Huang, Shin-Ming; Wang, BaoKai; Lin, Hsin] Natl Univ Singapore, Graphene Res Ctr, 6 Sci Dr 2, Singapore 117546, Singapore. [Chang, Guoqing; Lee, Chi-Cheng; Huang, Shin-Ming; Wang, BaoKai; Lin, Hsin] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore. [Wang, BaoKai; Bansil, Arun] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Neupane, Madhab] Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, POB 1663, Los Alamos, NM 87545 USA. [Jeng, Horng-Tay] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Hasan, M. Zahid] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton Ctr Complex Mat, Princeton, NJ 08544 USA. RP Xu, SY; Hasan, MZ (reprint author), Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Spect B7, Princeton, NJ 08544 USA.; Lin, H (reprint author), Natl Univ Singapore, Ctr Adv Mat 2D, 6 Sci Dr 2, Singapore 117546, Singapore.; Lin, H (reprint author), Natl Univ Singapore, Graphene Res Ctr, 6 Sci Dr 2, Singapore 117546, Singapore.; Lin, H (reprint author), Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore.; Hasan, MZ (reprint author), Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton Ctr Complex Mat, Princeton, NJ 08544 USA. EM suyangxu@princeton.edu; nilnish@gmail.com; mzhasan@princeton.edu RI Lin, Hsin/F-9568-2012; Chang, Tay-Rong/K-3943-2015; zheng, hao/H-8636-2015; OI Lin, Hsin/0000-0002-4688-2315; Chang, Tay-Rong/0000-0003-1222-2527; zheng, hao/0000-0002-6495-874X; Huang, Shin-Ming/0000-0003-4273-9682; wang, Baokai/0000-0002-7221-5671; chang, guoqing/0000-0003-1180-3127; Bian, Guang/0000-0001-7055-2319 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-FG-02-05ER46200]; National Research Foundation (NRF), Prime Ministers Office, Singapore, under its NRF fellowship [NRF-NRFF2013-03]; National Science Council, Taiwan; National Center for High-Performance Computing, Computer and Information Network Center National Taiwan University; National Center for Theoretical Sciences, Taiwan; U.S. DOE/BES [DE-FG02-07ER46352]; Northeastern University's Advanced Scientific Computation Center (ASCC); NERSC Supercomputing Center through DOE [DE-AC02-05CH11231]; Gordon and Betty Moore Foundations EPiQS Initiative [GBMF4547] FX Work at Princeton University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under the grant number DE-FG-02-05ER46200. Work at the National University of Singapore were supported by the National Research Foundation (NRF), Prime Ministers Office, Singapore, under its NRF fellowship (NRF award no. NRF-NRFF2013-03). T.-R.C. and H.-T.J. were supported by the National Science Council, Taiwan. H.-T.J. also thanks the National Center for High-Performance Computing, Computer and Information Network Center National Taiwan University, and National Center for Theoretical Sciences, Taiwan, for technical support. The work at Northeastern University was supported by the U.S. DOE/BES grant number DE-FG02-07ER46352, and benefited from the Northeastern University's Advanced Scientific Computation Center (ASCC) and the NERSC Supercomputing Center through DOE grant number DE-AC02-05CH11231. Visits to Princeton University by S.M.H., G.C., T.-R.C. and H.L. were funded by the Gordon and Betty Moore Foundations EPiQS Initiative through Grant GBMF4547 (to M.Z.H.). We thank B. Andrei Bernevig, Chen Fang, Shuang Jia and Fengqi Song for discussions or helpful comments on our manuscript. NR 56 TC 43 Z9 43 U1 35 U2 94 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10639 DI 10.1038/ncomms10639 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0HU UT WOS:000371020600005 PM 26875819 ER PT J AU Cho, ES Ruminski, AM Aloni, S Liu, YS Guo, JH Urban, JJ AF Cho, Eun Seon Ruminski, Anne M. Aloni, Shaul Liu, Yi-Sheng Guo, Jinghua Urban, Jeffrey J. TI Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage SO NATURE COMMUNICATIONS LA English DT Article ID OXIDE MEMBRANES; HIGH-CAPACITY; CARBON; MAGNESIUM; NANOCOMPOSITES; FUEL AB Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H-2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments. C1 [Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Liu, Yi-Sheng; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Urban, JJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jjurban@lbl.gov RI Cho, Eun Seon/D-2658-2017 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy (DOE) through the Bay Area Photovoltaic Consortium (BAPVC) [DE-EE0004946]; U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program) [DE-AC36-08GO28308]; Government of India, through the Department of Science and Technology [IUSSTF/JCERDC-SERIIUS/2012] FX Work at the Molecular Foundry and the Advanced Light Source was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract Number DE-AC02-05CH11231. We thank Yi-De Chuang for XANES experimental support. This material is based on work supported by the Department of Energy (DOE) through the Bay Area Photovoltaic Consortium (BAPVC) under Award Number DE-EE0004946 and also in part under the US-India Partnership to Advance Clean Energy-Research (PACE-R) for the Solar Energy Research Institute for India and the United States (SERIIUS), funded jointly by the U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, under Subcontract DE-AC36-08GO28308 to the National Renewable Energy Laboratory, Golden, Colorado) and the Government of India, through the Department of Science and Technology under Subcontract IUSSTF/JCERDC-SERIIUS/2012 dated 22 November 2012. We sincerely appreciate Jeong Yun Kim and Jayoung Kim for assisting graphic work. NR 30 TC 14 Z9 14 U1 32 U2 96 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10804 DI 10.1038/ncomms10804 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0PP UT WOS:000371041600004 PM 26902901 ER PT J AU Das, PK Di Sante, D Vobornik, I Fujii, J Okuda, T Bruyer, E Gyenis, A Feldman, BE Tao, J Ciancio, R Rossi, G Ali, MN Picozzi, S Yadzani, A Panaccione, G Cava, RJ AF Das, Pranab Kumar Di Sante, D. Vobornik, I. Fujii, J. Okuda, T. Bruyer, E. Gyenis, A. Feldman, B. E. Tao, J. Ciancio, R. Rossi, G. Ali, M. N. Picozzi, S. Yadzani, A. Panaccione, G. Cava, R. J. TI Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2 SO NATURE COMMUNICATIONS LA English DT Article ID NONSATURATING MAGNETORESISTANCE; BULK; SURFACES; CRYSTAL; LIMIT; METAL AB The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle-and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te-W-Te layers, showing that the behaviour of WTe2 is not strictly two dimensional. C1 [Das, Pranab Kumar; Vobornik, I.; Fujii, J.; Ciancio, R.; Rossi, G.; Panaccione, G.] CNR, IOM, Lab TASC, Area Sci Pk,SS 14,Km 163-5, I-34149 Trieste, Italy. [Das, Pranab Kumar] Abdus Salaam Int Ctr Theoret Phys, Str Costiera 11, I-34100 Trieste, Italy. [Di Sante, D.; Bruyer, E.; Picozzi, S.] CNR, SPIN, I-67100 Laquila, Italy. [Di Sante, D.] Univ Aquila, Dept Phys & Chem Sci, Via Vetoio, I-67100 Laquila, Italy. [Okuda, T.] Hiroshima Univ, HSRC, 2-313 Kagamiyama, Higashihiroshima 7390046, Japan. [Gyenis, A.; Feldman, B. E.; Yadzani, A.] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Gyenis, A.; Feldman, B. E.; Yadzani, A.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Tao, J.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Rossi, G.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Ali, M. N.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Cava, RJ (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. EM rcava@Princeton.EDU RI Picozzi, Silvia/E-2374-2011; BRUYER, Emilie/J-2671-2016; Di Sante, Domenico/L-8931-2013; Ciancio, Regina/R-8845-2016; Vobornik, Ivana/A-7461-2011 OI Picozzi, Silvia/0000-0002-3232-788X; Vobornik, Ivana/0000-0001-9957-3535 FU DOE BES; Materials Sciences and Engineering Division [DE-AC02-98CH10886]; National Science Foundation MRSEC program [DMR-1420541]; ARO-MURI program [W911NF-12-1-0461]; DARPA-SPWAR Meso program [N6601-11-1-4110]; CARIPLO Foundation through the MAGISTER project [Rif.2013-0726]; Italian Ministry of Research; [NSF-DMR-1104612]; [ARO-W911NF-1-0262] FX This work has been partly performed in the framework of the nanoscience foundry and fine analysis (NFFA-MIUR Italy) project. The electron diffraction study at Brookhaven National Laboratory was supported by the DOE BES, by the Materials Sciences and Engineering Division under contract DE-AC02-98CH10886, and through the use of the Center for Functional Nanomaterials. The work at Princeton was supported by the National Science Foundation MRSEC program grant DMR-1420541, with STM support from NSF-DMR-1104612, ARO-W911NF-1-0262, ARO-MURI program W911NF-12-1-0461 and DARPA-SPWAR Meso program N6601-11-1-4110. D.D.S. and S.P. acknowledge the CARIPLO Foundation through the MAGISTER project Rif.2013-0726. This work was partly supported by the Italian Ministry of Research through the project PRIN Interfacce di ossidi: nuove proprieta emergenti, multifunzionalita e dispositivi per elettronica e energia (OXIDE). NR 32 TC 8 Z9 8 U1 34 U2 107 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10847 DI 10.1038/ncomms10847 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0QC UT WOS:000371043000001 PM 26924386 ER PT J AU Gallagher, P Lee, M Amet, F Maksymovych, P Wang, J Wang, SP Lu, XB Zhang, GY Watanabe, K Taniguchi, T Goldhaber-Gordon, D AF Gallagher, Patrick Lee, Menyoung Amet, Francois Maksymovych, Petro Wang, Jun Wang, Shuopei Lu, Xiaobo Zhang, Guangyu Watanabe, Kenji Taniguchi, Takashi Goldhaber-Gordon, David TI Switchable friction enabled by nanoscale self-assembly on graphene SO NATURE COMMUNICATIONS LA English DT Article ID ATOMIC-FORCE MICROSCOPY; HEXAGONAL BORON-NITRIDE; MONOLAYER GRAPHENE; WATER INTERFACE; ANISOTROPY; DOMAINS; ORGANIZATION; SULFATE; SURFACE; AIR AB Graphene monolayers are known to display domains of anisotropic friction with twofold symmetry and anisotropy exceeding 200%. This anisotropy has been thought to originate from periodic nanoscale ripples in the graphene sheet, which enhance puckering around a sliding asperity to a degree determined by the sliding direction. Here we demonstrate that these frictional domains derive not from structural features in the graphene but from self-assembly of environmental adsorbates into a highly regular superlattice of stripes with period 4-6 nm. The stripes and resulting frictional domains appear on monolayer and multilayer graphene on a variety of substrates, as well as on exfoliated flakes of hexagonal boron nitride. We show that the stripe-superlattices can be reproducibly and reversibly manipulated with submicrometre precision using a scanning probe microscope, allowing us to create arbitrary arrangements of frictional domains within a single flake. Our results suggest a revised understanding of the anisotropic friction observed on graphene and bulk graphite in terms of adsorbates. C1 [Gallagher, Patrick; Lee, Menyoung; Goldhaber-Gordon, David] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Amet, Francois] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Amet, Francois] Appalachian State Univ, Dept Phys & Astron, Boone, NC 28608 USA. [Maksymovych, Petro; Wang, Jun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Wang, Shuopei; Lu, Xiaobo; Zhang, Guangyu] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Watanabe, Kenji; Taniguchi, Takashi] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan. RP Goldhaber-Gordon, D (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM goldhaber-gordon@stanford.edu RI Zhang, Guangyu/G-7892-2011; TANIGUCHI, Takashi/H-2718-2011; Wang, Jun/N-6882-2014 OI Wang, Jun/0000-0003-4974-1240 FU Air Force Office of Science Research [FA9550-12-1-02520]; Center for Probing the Nanoscale, an NSF NSEC [PHY-0830228]; National Basic Research Program of China (Program 973) [2013CB934500]; National Natural Science Foundation of China [61325021, 91223204]; Strategic Priority Research Program (B) of the Chinese Academy of Sciences [XDB07010100]; Elemental Strategy Initiative; JSPS [262480621, 25106006] FX We gratefully acknowledge Byong-man Kim and Ryan Yoo of Park Systems for verifying the presence of stripes in our samples using their Park NX-10 AFM. We thank Daniel Wastl for carefully reading our manuscript and for encouraging us to re-examine whether the stripes we observed were caused by periodic structural ripples or self-assembled adsorbates. We thank Trevor Petach and Arthur Barnard for other helpful discussions. Sample fabrication and ambient AFM/STM were performed at the Stanford Nano Shared Facilities with support from the Air Force Office of Science Research, Award Number FA9550-12-1-02520. Variable-temperature AFM studies were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility; our use of the facility was supported by the Center for Probing the Nanoscale, an NSF NSEC, under grant PHY-0830228. S.W., X.L. and G.Z. acknowledge support from the National Basic Research Program of China (Program 973) under grant 2013CB934500, the National Natural Science Foundation of China under grants 61325021 and 91223204, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under grant XDB07010100. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT (Japan). T.T. acknowledges support from JSPS Grant-in-Aid for Scientific Research under grants 262480621 and 25106006. NR 37 TC 4 Z9 4 U1 19 U2 66 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10745 DI 10.1038/ncomms10745 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0NZ UT WOS:000371037200007 PM 26902595 ER PT J AU Johnston, S Monney, C Bisogni, V Zhou, KJ Kraus, R Behr, G Strocov, VN Malek, J Drechsler, SL Geck, J Schmitt, T van den Brink, J AF Johnston, Steve Monney, Claude Bisogni, Valentina Zhou, Ke-Jin Kraus, Roberto Behr, Guenter Strocov, Vladimir N. Malek, Jiri Drechsler, Stefan-Ludwig Geck, Jochen Schmitt, Thorsten van den Brink, Jeroen TI Electron-lattice interactions strongly renormalize the charge-transfer energy in the spin-chain cuprate Li2CuO2 SO NATURE COMMUNICATIONS LA English DT Article ID X-RAY-SCATTERING; EXCITATIONS; TRANSITION; SUPERCONDUCTORS; TEMPERATURE; SEPARATION; CRYSTAL AB Strongly correlated insulators are broadly divided into two classes: Mott-Hubbard insulators, where the insulating gap is driven by the Coulomb repulsion U on the transition-metal cation, and charge-transfer insulators, where the gap is driven by the charge-transfer energy Delta between the cation and the ligand anions. The relative magnitudes of U and Delta determine which class a material belongs to, and subsequently the nature of its low-energy excitations. These energy scales are typically understood through the local chemistry of the active ions. Here we show that the situation is more complex in the low-dimensional charge-transfer insulator Li2CuO2, where Delta has a large non-electronic component. Combining resonant inelastic X-ray scattering with detailed modelling, we determine how the elementary lattice, charge, spin and orbital excitations are entangled in this material. This results in a large lattice-driven renormalization of Delta, which significantly reshapes the fundamental electronic properties of Li2CuO2. C1 [Johnston, Steve] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Monney, Claude; Zhou, Ke-Jin; Strocov, Vladimir N.; Schmitt, Thorsten] Paul Scherrer Inst, Res Dept Synchrotron Radiat & Nanotechnol, CH-5232 Villigen, Switzerland. [Monney, Claude] Univ Zurich, Dept Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland. [Bisogni, Valentina; Kraus, Roberto; Behr, Guenter; Drechsler, Stefan-Ludwig; Geck, Jochen; van den Brink, Jeroen] IFW Dresden, Leibniz Inst Solid State & Mat Res, Helmholtzstr 20, D-01171 Dresden, Germany. [Bisogni, Valentina] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Zhou, Ke-Jin] Harwell Sci & Innovat Campus, Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Malek, Jiri] ASCR, Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. [van den Brink, Jeroen] Tech Univ Dresden, Dept Phys, D-01062 Dresden, Germany. RP Johnston, S (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.; van den Brink, J (reprint author), IFW Dresden, Leibniz Inst Solid State & Mat Res, Helmholtzstr 20, D-01171 Dresden, Germany.; van den Brink, J (reprint author), Tech Univ Dresden, Dept Phys, D-01062 Dresden, Germany. EM sjohn145@utk.edu; j.van.den.brink@ifw-dresden.de RI Malek, Jiri/G-7223-2014; Johnston, Steven/J-7777-2016; van den Brink, Jeroen/E-5670-2011; Schmitt, Thorsten/A-7025-2010; Monney, Claude/C-5553-2011 OI van den Brink, Jeroen/0000-0001-6594-9610; FU German Science Foundation [200021L 141325, GE 1647/3-1]; Deutsche Forschungsgemeinschaft [SFB 1143]; Swiss National Science Foundation [PZ00P2 154867]; Swiss National Science Foundation through the Sinergia network Mott Physics Beyond the Heisenberg Model (MPBH); Emmy-Noether programme of the German Research Foundation [GE1647/2-1] FX We thank M. Berciu, T.P. Devereaux, W.S. Lee, B. Moritz and G. Sawatzky for useful discussions. This research has been funded by the Swiss National Science Foundation and the German Science Foundation within the D-A-CH programme (SNSF Research Grant 200021L 141325 and Grant GE 1647/3-1). This work is supported by SFB 1143 of the Deutsche Forschungsgemeinschaft. C.M. also acknowledges support by the Swiss National Science Foundation under grant no. PZ00P2 154867. Further support has been provided by the Swiss National Science Foundation through the Sinergia network Mott Physics Beyond the Heisenberg Model (MPBH). J.G. gratefully acknowledge the financial support through the Emmy-Noether programme of the German Research Foundation (grant no. GE1647/2-1). The experiments were performed at the ADRESS beamline of the Swiss Light Source at the Paul Scherrer Institut. NR 38 TC 3 Z9 3 U1 9 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10653 DI 10.1038/ncomms10563 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0FM UT WOS:000371014500005 PM 26884151 ER PT J AU Li, GS Lu, XC Kim, JY Meinhardt, KD Chang, HJ Canfield, NL Sprenkle, VL AF Li, Guosheng Lu, Xiaochuan Kim, Jin Y. Meinhardt, Kerry D. Chang, Hee Jung Canfield, Nathan L. Sprenkle, Vincent L. TI Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density SO NATURE COMMUNICATIONS LA English DT Article ID PERFORMANCE; CHALLENGES; CATHODES; STORAGE AB Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 degrees C with ultra-high energy density. A specific energy density of 350 Wh kg(-1), higher than that of conventional tubular sodium-nickel chloride batteries (280 degrees C), is obtained for planar sodium-nickel chloride batteries operated at 190 degrees C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs. C1 [Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.] Pacific NW Natl Lab, Energy Proc & Mat Div, Electrochem Mat & Syst Grp, Richland, WA 99352 USA. RP Li, GS; Sprenkle, VL (reprint author), Pacific NW Natl Lab, Energy Proc & Mat Div, Electrochem Mat & Syst Grp, Richland, WA 99352 USA. EM guosheng.li@pnnl.gov; vincent.sprenkle@pnnl.gov FU U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability [57558]; DOE [DE-AC05-76RL01830]; International Collaborative Energy Technology, R&D Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), from POSCO; Republic of Korea [20158510050010]; Ministry of Trade, Industry and Energy FX This work was supported by the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability under the Contract No. 57558. PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RL01830. G.L. and V.L.S. are grateful for the financial support from the International Collaborative Energy Technology, R&D Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), grated financial resource from POSCO and the Ministry of Trade, Industry and Energy, and Republic of Korea (No. 20158510050010). NR 23 TC 4 Z9 4 U1 14 U2 32 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10683 DI 10.1038/ncomms10683 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0KU UT WOS:000371028700001 PM 26864635 ER PT J AU Liu, W Hu, EY Jiang, H Xiang, YJ Weng, Z Li, M Fan, Q Yu, XQ Altman, EI Wang, HL AF Liu, Wen Hu, Enyuan Jiang, Hong Xiang, Yingjie Weng, Zhe Li, Min Fan, Qi Yu, Xiqian Altman, Eric I. Wang, Hailiang TI A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide SO NATURE COMMUNICATIONS LA English DT Article ID HIGH-PERFORMANCE; MOLYBDENUM SULFIDES; FLEXIBLE ELECTRODES; GRAPHENE OXIDE; MOS2; ELECTROCATALYST; EFFICIENT; NANOPARTICLES; FILMS; DICHALCOGENIDES AB Rational design and controlled synthesis of hybrid structures comprising multiple components with distinctive functionalities are an intriguing and challenging approach to materials development for important energy applications like electrocatalytic hydrogen production, where there is a great need for cost effective, active and durable catalyst materials to replace the precious platinum. Here we report a structure design and sequential synthesis of a highly active and stable hydrogen evolution electrocatalyst material based on pyrite-structured cobalt phosphosulfide nanoparticles grown on carbon nanotubes. The three synthetic steps in turn render electrical conductivity, catalytic activity and stability to the material. The hybrid material exhibits superior activity for hydrogen evolution, achieving current densities of 10 mA cm(-2) and 100 mA cm(-2) at overpotentials of 48 mV and 109 mV, respectively. Phosphorus substitution is crucial for the chemical stability and catalytic durability of the material, the molecular origins of which are uncovered by X-ray absorption spectroscopy and computational simulation. C1 [Liu, Wen; Weng, Zhe; Fan, Qi; Wang, Hailiang] Yale Univ, Dept Chem, 520 West Campus Dr, West Haven, CT 06511 USA. [Liu, Wen; Weng, Zhe; Fan, Qi; Wang, Hailiang] Yale Univ, Energy Sci Inst, 520 West Campus Dr, West Haven, CT 06511 USA. [Hu, Enyuan; Yu, Xiqian] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Jiang, Hong] Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China. [Xiang, Yingjie] Yale Univ, Dept Mech Engn & Mat Sci, 520 West Campus Dr, West Haven, CT 06511 USA. [Li, Min; Altman, Eric I.] Yale Univ, Dept Chem & Environm Engn, 520 West Campus Dr, West Haven, CT 06511 USA. RP Wang, HL (reprint author), Yale Univ, Dept Chem, 520 West Campus Dr, West Haven, CT 06511 USA.; Wang, HL (reprint author), Yale Univ, Energy Sci Inst, 520 West Campus Dr, West Haven, CT 06511 USA. EM hailiang.wang@yale.edu RI Jiang, Hong/G-6787-2011; Yu, Xiqian/B-5574-2014; Weng, Zhe/I-4824-2012; Hu, Enyuan/D-7492-2016 OI Yu, Xiqian/0000-0001-8513-518X; Weng, Zhe/0000-0002-6005-9552; Hu, Enyuan/0000-0002-1881-4534 FU Yale University; Global Innovation Initiative from Institute of International Education; US Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies [DE-SC0012704]; U.S. DOE [DE-AC02-06CH11357]; US Department of Energy through Basic Energy Sciences [DE-FG02-98ER14882]; National Science Foundation through the Yale Materials Research Science and Engineering Center [MRSEC DMR-1119826]; National Natural Science Foundation of China [1373017, 21321001] FX The work is partially supported by the Yale University and the Global Innovation Initiative from Institute of International Education. The work at BNL was supported by the US Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under Contract Number DE-SC0012704. We acknowledge technical support from the scientists at beamlines 9-BM-B and 12-BM-B of APS (ANL), supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. M.L. and E.I.A. acknowledge the support of the US Department of Energy through Basic Energy Sciences grant DE-FG02-98ER14882 and the use of facilities supported by the National Science Foundation through the Yale Materials Research Science and Engineering Center (Grant No. MRSEC DMR-1119826). H. J. acknowledges the financial support of National Natural Science Foundation of China (Projects No. 1373017 and 21321001). We thank Prof. Fei Wei (Tsinghua University) for providing the CNTs. We appreciate acquisition of XPS spectra by Baowen Li (CMCM IBS Center, the Ulsan National University of Science and Technology). NR 50 TC 18 Z9 18 U1 66 U2 188 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10771 DI 10.1038/ncomms10771 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0OY UT WOS:000371039900005 PM 26892437 ER PT J AU Mangel, WF McGrath, WJ Xiong, K Graziano, V Blainey, PC AF Mangel, Walter F. McGrath, William J. Xiong, Kan Graziano, Vito Blainey, Paul C. TI Molecular sled is an eleven-amino acid vehicle facilitating biochemical interactions via sliding components along DNA SO NATURE COMMUNICATIONS LA English DT Article ID HUMAN ADENOVIRUS PROTEINASE; REPRESSOR-OPERATOR INTERACTION; VIRAL-PROTEINASE; LINEAR DIFFUSION; PEPTIDE COFACTOR; STRUCTURAL BASIS; AMINO-ACID; DYNAMICS; ACTIN; BINDING AB Recently, we showed the adenovirus proteinase interacts productively with its protein substrates in vitro and in vivo in nascent virus particles via one-dimensional diffusion along the viral DNA. The mechanism by which this occurs has heretofore been unknown. We show sliding of these proteins along DNA occurs on a new vehicle in molecular biology, a 'molecular sled' named pVIc. This 11-amino acid viral peptide binds to DNA independent of sequence. pVIc slides on DNA, exhibiting the fastest one-dimensional diffusion constant, 26 +/- 1.8 x 10(6) (bp)(2) s(-1). pVIc is a 'molecular sled,' because it can slide heterologous cargos along DNA, for example, a streptavidin tetramer. Similar peptides, for example, from the C terminus of beta-actin or NLSIII of the p53 protein, slide along DNA. Characteristics of the 'molecular sled' in its milieu (virion, nucleus) have implications for how proteins in the nucleus of cells interact and imply a new form of biochemistry, one-dimensional biochemistry. C1 [Mangel, Walter F.; McGrath, William J.; Graziano, Vito] Brookhaven Natl Lab, Dept Biol, 50 Bell Ave, Upton, NY 11973 USA. [Xiong, Kan; Blainey, Paul C.] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Xiong, Kan; Blainey, Paul C.] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA. RP Mangel, WF; Blainey, PC (reprint author), Brookhaven Natl Lab, Dept Biol, 50 Bell Ave, Upton, NY 11973 USA.; Blainey, PC (reprint author), MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Blainey, PC (reprint author), Broad Inst MIT & Harvard, Cambridge, MA 02142 USA. EM mangel@bnl.gov; pblainey@broadinstitute.org OI Blainey, Paul/0000-0002-4889-8783 FU National Institute of Allergy and Infectious Diseases of the National Institutes of Health [R01AI41599, R21AI113565]; Broad Institute; Burroughs Welcome Fund via a Career Award at the Scientific Interface; MIT through startup funds FX We thank Sofia Johansson, Guobin Luo and Gregory L. Verdine for helpful discussions. We thank Xiaoliang Sunney Xie for access to microscopy equipment at Harvard University, and Anthony Kulesa for assistance with microscopy instrumentation and data analysis at the Broad Institute and MIT. Some of the research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Awards numbered R01AI41599 and R21AI113565, to W.F.M. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. P.C.B. and K.X. are supported at the Broad Institute and MIT through startup funds and the Burroughs Welcome Fund via a Career Award at the Scientific Interface to P.C.B. NR 62 TC 0 Z9 0 U1 2 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10202 DI 10.1038/ncomms10202 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF1ZE UT WOS:000371137900001 PM 26831565 ER PT J AU Merlevede, J Droin, N Qin, TT Meldi, K Yoshida, K Morabito, M Chautard, E Auboeuf, D Fenaux, P Braun, T Itzykson, R de Botton, S Quesnel, B Commes, T Jourdan, E Vainchenker, W Bernard, O Pata-Merci, N Solier, S Gayevskiy, V Dinger, ME Cowley, MJ Selimoglu-Buet, D Meyer, V Artiguenave, F Deleuze, JF Preudhomme, C Stratton, MR Alexandrov, LB Padron, E Ogawa, S Koscielny, S Figueroa, M Solary, E AF Merlevede, Jane Droin, Nathalie Qin, Tingting Meldi, Kristen Yoshida, Kenichi Morabito, Margot Chautard, Emilie Auboeuf, Didier Fenaux, Pierre Braun, Thorsten Itzykson, Raphael de Botton, Stephane Quesnel, Bruno Commes, Therese Jourdan, Eric Vainchenker, William Bernard, Olivier Pata-Merci, Noemie Solier, Stephanie Gayevskiy, Velimir Dinger, Marcel E. Cowley, Mark J. Selimoglu-Buet, Dorothee Meyer, Vincent Artiguenave, Francois Deleuze, Jean-Francois Preudhomme, Claude Stratton, Michael R. Alexandrov, Ludmil B. Padron, Eric Ogawa, Seishi Koscielny, Serge Figueroa, Maria Solary, Eric TI Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents SO NATURE COMMUNICATIONS LA English DT Article ID ACUTE MYELOID-LEUKEMIA; RECURRENT MUTATIONS; DEMETHYLATING AGENTS; HUMAN CANCER; MYELODYSPLASTIC SYNDROMES; CLONAL HEMATOPOIESIS; SOMATIC MUTATIONS; TUMOR-SUPPRESSOR; GENE; MALIGNANCIES AB The cytidine analogues azacytidine and 5-aza-2'-deoxycytidine (decitabine) are commonly used to treat myelodysplastic syndromes, with or without a myeloproliferative component. It remains unclear whether the response to these hypomethylating agents results from a cytotoxic or an epigenetic effect. In this study, we address this question in chronic myelomonocytic leukaemia. We describe a comprehensive analysis of the mutational landscape of these tumours, combining whole-exome and whole-genome sequencing. We identify an average of 14 +/- 5 somatic mutations in coding sequences of sorted monocyte DNA and the signatures of three mutational processes. Serial sequencing demonstrates that the response to hypomethylating agents is associated with changes in DNA methylation and gene expression, without any decrease in the mutation allele burden, nor prevention of new genetic alteration occurence. Our findings indicate that cytosine analogues restore a balanced haematopoiesis without decreasing the size of the mutated clone, arguing for a predominantly epigenetic effect. C1 [Merlevede, Jane; Droin, Nathalie; Morabito, Margot; de Botton, Stephane; Vainchenker, William; Bernard, Olivier; Solier, Stephanie; Selimoglu-Buet, Dorothee; Solary, Eric] INSERM, U1170, Gustave Roussy, 14 Rue Edouard Vaillant, F-94805 Villejuif, France. [Merlevede, Jane; Droin, Nathalie; Morabito, Margot; de Botton, Stephane; Vainchenker, William; Bernard, Olivier; Solier, Stephanie; Selimoglu-Buet, Dorothee; Solary, Eric] Gustave Roussy Canc Ctr, Dept Hematol, 114 Rue Edouard Vaillant, F-94805 Villejuif, France. [Droin, Nathalie; Pata-Merci, Noemie] CNRS, INSERM US23, UMS3655, Gustave Roussy, 114 Rue Edouard Vaillant, F-94805 Villejuif, France. [Qin, Tingting; Meldi, Kristen; Figueroa, Maria] Univ Michigan, Dept Pathol, Sch Med, 1500 E Med Ctr Dr, Ann Arbor, MI 48109 USA. [Yoshida, Kenichi; Ogawa, Seishi] Kyoto Univ, Dept Pathol & Tumour Biol, Sakyo Ku, Yoshida Konoe Cho, Kyoto 6068501, Japan. [Chautard, Emilie] Univ Lyon 1, UMR CNRS 5558, 16 Rue Raphael Dubois, F-69100 Lyon, France. [Auboeuf, Didier] Ctr Leon Berard, INSERM U1052, CNRS UMR5286, 8 Prom Lea & Napoleon Bullukian, F-69008 Lyon, France. [Fenaux, Pierre; Itzykson, Raphael] Hop St Louis, AP HP, Dept Hematol, 1 Ave Claude Vellefaux, F-75010 Paris, France. [Braun, Thorsten] Hop Avicenne, AP HP, Dept Hematol, 125 Rue Stalingrad, F-93000 Bobigny, France. [Quesnel, Bruno; Preudhomme, Claude] Canc Res Inst Lille, INSERM U837, 1 Pl Verdun, F-59000 Lille, France. [Commes, Therese] Univ Montpellier, INSERM U1040, Inst Med Regeneratrice, Biotherapie & Inst Biol Computat, 80 Ave Augustin Fliche, F-34295 Montpellier, France. [Jourdan, Eric] Univ Montpellier, Dept Hematol, Ctr Hosp Univ Nimes, 4 Rue Prof Robert Debre, F-30029 Nimes, France. [Gayevskiy, Velimir; Dinger, Marcel E.; Cowley, Mark J.] Garvan Inst Med Res, Kinghor Ctr Clin Genom, Lab Genome Informat, 384 Victoria St, Darlinghurst, NSW 2010, Australia. [Meyer, Vincent; Artiguenave, Francois; Deleuze, Jean-Francois] Ctr Natl Genotypage, 2 Rue Gaston Cremieux CP 5721, F-91057 Evry, France. [Stratton, Michael R.; Alexandrov, Ludmil B.] Wellcome Trust Sanger Inst, Canc Genome Project, Wellcome Trust Genome Campus, Hinxton CB10 1SA, Cambs, England. [Alexandrov, Ludmil B.] Los Alamos Natl Lab, Theoret Biol & Biophys, POB 1663, Los Alamos, NM 87545 USA. [Alexandrov, Ludmil B.] Los Alamos Natl Lab, Ctr Nonlinear Studies, POB 1663, Los Alamos, NM 87545 USA. [Padron, Eric] H Lee Moffitt Canc Ctr & Res Inst, Dept Hematol, Malignant Hematol, 12902 USF Magnolia Dr, Tampa, FL 33612 USA. [Koscielny, Serge] Gustave Roussy Canc Ctr, Dept Biostat, 114 Rue Edouard Vaillant, F-94805 Villejuif, France. [Solary, Eric] Univ Paris 11, Dept Hematol, Fac Med, 63 Rue Gabriel Peri, F-94270 Le Kremlin Bicetre, France. RP Solary, E (reprint author), INSERM, U1170, Gustave Roussy, 14 Rue Edouard Vaillant, F-94805 Villejuif, France.; Solary, E (reprint author), Gustave Roussy Canc Ctr, Dept Hematol, 114 Rue Edouard Vaillant, F-94805 Villejuif, France.; Solary, E (reprint author), Univ Paris 11, Dept Hematol, Fac Med, 63 Rue Gabriel Peri, F-94270 Le Kremlin Bicetre, France. EM eric.solary@gustaveroussy.fr RI Auboeuf, Didier/M-4610-2014; OI Alexandrov, Ludmil/0000-0003-3596-4515; Dinger, Marcel/0000-0003-4423-934X; Cowley, Mark/0000-0002-9519-5714 FU Ligue Nationale Contre le Cancer (equipe labellisee); Institut National du Cancer (INCa PLBIO, SIRIC SOCRATE); Institut National du Cancer; Agence Nationale de la Recherche (Molecular Medicine in Oncology) - Investissements d'avenir; Fondation pour la Recherche Medicale [FDT20140931007]; Direction Generale de l'Offre de Soins [PHRC-K 2011-182]; Agence Nationale de la Recherche (Paris Alliance Cancer Research Institute: France Genomique National program) - Investissements d'avenir FX This programme was supported by grants from Ligue Nationale Contre le Cancer (equipe labellisee), Institut National du Cancer (INCa PLBIO, SIRIC SOCRATE), Institut National du Cancer and Direction Generale de l'Offre de Soins (PHRC-K 2011-182), Agence Nationale de la Recherche (Molecular Medicine in Oncology; Paris Alliance Cancer Research Institute: France Genomique National programs funded by 'Investissements d'avenir'). J.M. was supported by the Fondation pour la Recherche Medicale (FDT20140931007). NR 67 TC 14 Z9 14 U1 3 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10767 DI 10.1038/ncomms10767 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0OY UT WOS:000371039900001 PM 26908133 ER PT J AU Ophus, C Ciston, J Pierce, J Harvey, TR Chess, J McMorran, BJ Czarnik, C Rose, HH Ercius, P AF Ophus, Colin Ciston, Jim Pierce, Jordan Harvey, Tyler R. Chess, Jordan McMorran, Benjamin J. Czarnik, Cory Rose, Harald H. Ercius, Peter TI Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry SO NATURE COMMUNICATIONS LA English DT Article ID ATOMIC-RESOLUTION; RADIATION-DAMAGE; BIOLOGICAL MOLECULES; VORTEX BEAMS; STEM; INFORMATION; LIMITATIONS; TEM AB The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. C1 [Ophus, Colin; Ciston, Jim; Ercius, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electron Microscopy, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.] Univ Oregon, Dept Phys, 1585 E 13th Ave, Eugene, OR 97403 USA. [Czarnik, Cory] Gatan Inc, 5794 W Positas Blvd, Pleasanton, CA 94588 USA. [Rose, Harald H.] Univ Ulm, Dept Phys, Ctr Electron Microscopy, Albert Einstein Allee 11, D-89069 Ulm, Germany. RP Ophus, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electron Microscopy, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cophus@gmail.com; percius@lbl.gov RI McMorran, Benjamin/G-9954-2016; OI McMorran, Benjamin/0000-0001-7207-1076; Chess, Jordan/0000-0002-2218-4731; Harvey, Tyler/0000-0002-5368-136X FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0010466] FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work at University of Oregon was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0010466. NR 38 TC 9 Z9 9 U1 10 U2 27 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10719 DI 10.1038/ncomms10719 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0NJ UT WOS:000371035500003 PM 26923483 ER PT J AU Portnichenko, PY Romhanyi, J Onykiienko, YA Henschel, A Schmidt, M Cameron, AS Surmach, MA Lim, JA Park, JT Schneidewind, A Abernathy, DL Rosner, H van den Brink, J Inosov, DS AF Portnichenko, P. Y. Romhanyi, J. Onykiienko, Y. A. Henschel, A. Schmidt, M. Cameron, A. S. Surmach, M. A. Lim, J. A. Park, J. T. Schneidewind, A. Abernathy, D. L. Rosner, H. van den Brink, Jeroen Inosov, D. S. TI Magnon spectrum of the helimagnetic insulator Cu2OSeO3 SO NATURE COMMUNICATIONS LA English DT Article ID MAGNETIC EXCITATIONS; SKYRMIONS; DYNAMICS; STATE; PHASE AB Complex low-temperature-ordered states in chiral magnets are typically governed by a competition between multiple magnetic interactions. The chiral-lattice multiferroic Cu2OSeO3 became the first insulating helimagnetic material in which a long-range order of topologically stable spin vortices known as skyrmions was established. Here we employ state-of-the-art inelastic neutron scattering to comprehend the full three-dimensional spin-excitation spectrum of Cu2OSeO3 over a broad range of energies. Distinct types of high-and low-energy dispersive magnon modes separated by an extensive energy gap are observed in excellent agreement with the previously suggested microscopic theory based on a model of entangled Cu-4 tetrahedra. The comparison of our neutron spectroscopy data with model spin-dynamical calculations based on these theoretical proposals enables an accurate quantitative verification of the fundamental magnetic interactions in Cu2OSeO3 that are essential for understanding its abundant low-temperature magnetically ordered phases. C1 [Portnichenko, P. Y.; Onykiienko, Y. A.; Cameron, A. S.; Surmach, M. A.; Lim, J. A.; Inosov, D. S.] Tech Univ Dresden, Inst Festkorperphys, Helmholtzstr 10, D-01069 Dresden, Germany. [Romhanyi, J.] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany. [Henschel, A.; Schmidt, M.; Rosner, H.] Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany. [Park, J. T.] Tech Univ Munich, Heinz Maier Leibnitz Zentrum MLZ, Lichtenbergstr 1, D-85747 Garching, Germany. [Schneidewind, A.] Forschungszentrum Julich GmbH, JCNS, Outstn Heinz Maier Leibnitz Zentrum MLZ, Lichtenbergstr 1, D-85747 Garching, Germany. [Abernathy, D. L.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [van den Brink, Jeroen] IFW Dresden, Leibniz Inst Solid State & Mat Res, Helmholtzstr 20, D-01069 Dresden, Germany. RP Inosov, DS (reprint author), Tech Univ Dresden, Inst Festkorperphys, Helmholtzstr 10, D-01069 Dresden, Germany. EM dmytro.inosov@tu-dresden.de RI Romhanyi, Judit/H-3661-2016; Inosov, Dmytro/B-6781-2008; van den Brink, Jeroen/E-5670-2011; Abernathy, Douglas/A-3038-2012; Park, Jitae/G-1358-2016; BL18, ARCS/A-3000-2012 OI Romhanyi, Judit/0000-0002-4642-7734; van den Brink, Jeroen/0000-0001-6594-9610; Abernathy, Douglas/0000-0002-3533-003X; Park, Jitae/0000-0001-6565-0192; FU German Research Foundation within the collaborative research centre SFB 1143; Hungarian OTKA Grant [K106047]; Scientific User Facilities Division, Office of Basic Energy Sciences, the US Department of Energy; German Research Foundation within the research training group GRK 1621; German Research Foundation [IN 209/4-1] FX We thank S. Zherlitsyn and Y. Gritsenko for sound velocity measurements that assisted our data interpretation and M. Rotter for helpful discussions at the start of this project. The work at the TU Dresden was financially supported by the German Research Foundation within the collaborative research centre SFB 1143, research training group GRK 1621, and the individual research grant no. IN 209/4-1. J.R. acknowledges partial funding from the Hungarian OTKA Grant K106047. Research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, the US Department of Energy. NR 28 TC 4 Z9 4 U1 10 U2 34 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10725 DI 10.1038/ncomms10725 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0NP UT WOS:000371036100003 PM 26911567 ER PT J AU Rison, W Krehbiel, PR Stock, MG Edens, HE Shao, XM Thomas, RJ Stanley, MA Zhang, Y AF Rison, William Krehbiel, Paul R. Stock, Michael G. Edens, Harald E. Shao, Xuan-Min Thomas, Ronald J. Stanley, Mark A. Zhang, Yang TI Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms SO NATURE COMMUNICATIONS LA English DT Article ID FREQUENCY RADIATION; SPRITE DEVELOPMENT; ELECTRIC-FIELDS; DISCHARGES; INTRACLOUD; RADIO; MECHANISM; STROKES; PHYSICS; SYSTEM AB A long-standing but fundamental question in lightning studies concerns how lightning is initiated inside storms, given the absence of physical conductors. The issue has revolved around the question of whether the discharges are initiated solely by conventional dielectric breakdown or involve relativistic runaway electron processes. Here we report observations of a relatively unknown type of discharge, called fast positive breakdown, that is the cause of high-power discharges known as narrow bipolar events. The breakdown is found to have a wide range of strengths and is the initiating event of numerous lightning discharges. It appears to be purely dielectric in nature and to consist of a system of positive streamers in a locally intense electric field region. It initiates negative breakdown at the starting location of the streamers, which leads to the ensuing flash. The observations show that many or possibly all lightning flashes are initiated by fast positive breakdown. C1 [Rison, William; Krehbiel, Paul R.; Stock, Michael G.; Edens, Harald E.; Thomas, Ronald J.; Stanley, Mark A.] New Mexico Inst Min & Technol, Geophys Res Ctr, Langmuir Lab Atmospher Res, Socorro, NM 87801 USA. [Shao, Xuan-Min] Los Alamos Natl Lab, Space & Remote Sensing Grp, POB 1663, Los Alamos, NM 87544 USA. [Zhang, Yang] Chinese Acad Meteorol Sci, Lab Lightning Phys & Protect Engn, Beijing 100081, Peoples R China. [Stock, Michael G.] Osaka Univ, Div Elect Elect & Informat Engn, Suita, Osaka 5650871, Japan. RP Rison, W; Krehbiel, PR (reprint author), New Mexico Inst Min & Technol, Geophys Res Ctr, Langmuir Lab Atmospher Res, Socorro, NM 87801 USA. EM rison@ee.nmt.edu; krehbiel@ibis.nmt.edu FU Defense Advanced Research Projects Agency NIMBUS program [HR0011-10-1-0057, HR0011-10-1-0059]; National Science Foundation [AGS-1205727]; US Missile Defense Agency [HQ0147-08-C0025]; IGPPS/LDRD at Los Alamos National Laboratory FX Detailed comments by three reviewers were very helpful in improving the initial manuscript. The research was supported by the Defense Advanced Research Projects Agency NIMBUS program under grants HR0011-10-1-0057 and HR0011-10-1-0059 and by the National Science Foundation under grant AGS-1205727. Previous equipment support was provided by the US Missile Defense Agency under grant HQ0147-08-C0025. Work of X.-M.S. was supported by IGPPS/LDRD at Los Alamos National Laboratory. NLDN data were provided by Vaisala, Inc. NR 57 TC 18 Z9 19 U1 5 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10721 DI 10.1038/ncomms10721 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0NJ UT WOS:000371035500005 PM 26876654 ER PT J AU Stier, AV McCreary, KM Jonker, BT Kono, J Crooker, SA AF Stier, Andreas V. McCreary, Kathleen M. Jonker, Berend T. Kono, Junichiro Crooker, Scott A. TI Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla SO NATURE COMMUNICATIONS LA English DT Article ID TRANSITION-METAL DICHALCOGENIDES; HIGH MAGNETIC-FIELDS; BINDING-ENERGY; WSE2; SEMICONDUCTOR; CRYSTALS; SPECTRA; LAYER; PHOTOLUMINESCENCE; POLARIZATION AB In bulk and quantum-confined semiconductors, magneto-optical studies have historically played an essential role in determining the fundamental parameters of excitons (size, binding energy, spin, dimensionality and so on). Here we report low-temperature polarized reflection spectroscopy of atomically thin WS2 and MoS2 in high magnetic fields to 65 T. Both the A and B excitons exhibit similar Zeeman splittings of approximately -230 mu eV T-1 (g-factor similar or equal to -4), thereby quantifying the valley Zeeman effect in monolayer transition-metal disulphides. Crucially, these large fields also allow observation of the small quadratic diamagnetic shifts of both A and B excitons in monolayer WS2, from which radii of similar to 1.53 and similar to 1.16nm are calculated. Further, when analysed within a model of non-local dielectric screening, these diamagnetic shifts also constrain estimates of the A and B exciton binding energies (410 and 470 meV, respectively, using a reduced A exciton mass of 0.16 times the free electron mass). These results highlight the utility of high magnetic fields for understanding new two-dimensional materials. C1 [Stier, Andreas V.; Crooker, Scott A.] Los Alamos Natl Lab, Natl High Magnet Field Lab, POB 1663, Los Alamos, NM 87545 USA. [McCreary, Kathleen M.; Jonker, Berend T.] Naval Res Lab, Div Mat Sci & Technol, Washington, DC 20375 USA. [Kono, Junichiro] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Kono, Junichiro] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Kono, Junichiro] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. RP Crooker, SA (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, POB 1663, Los Alamos, NM 87545 USA. EM crooker@lanl.gov OI Stier, Andreas/0000-0002-5476-1919 FU National High Magnetic Field Laboratory [NSF DMR-1157490]; State of Florida; NRL Nanoscience Institute; AFOSR [AOARD 14IOA018-134141]; Air Force Office of Scientific Research [FA9550-14-1-0268] FX We thank K. Velizhanin and P. Hawrylak for helpful discussions. These optical studies were performed at the National High Magnetic Field Laboratory, which is supported by NSF DMR-1157490 and the State of Florida. Work at NRL was supported by core programs and the NRL Nanoscience Institute, and by AFOSR under contract number AOARD 14IOA018-134141. J.K. was supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0268. NR 55 TC 18 Z9 18 U1 22 U2 79 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10643 DI 10.1038/ncomms10643 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0HU UT WOS:000371020600009 PM 26856412 ER PT J AU Wang, XS Pandey, AK Mulligan, MK Williams, EG Mozhui, K Li, ZS Jovaisaite, V Quarles, LD Xiao, ZS Huang, JS Capra, JA Chen, ZG Taylor, WL Bastarache, L Niu, XN Pollard, KS Ciobanu, DC Reznik, AO Tishkov, AV Zhulin, IB Peng, JM Nelson, SF Denny, JC Auwerx, J Lu, L Williams, RW AF Wang, Xusheng Pandey, Ashutosh K. Mulligan, Megan K. Williams, Evan G. Mozhui, Khyobeni Li, Zhengsheng Jovaisaite, Virginija Quarles, L. Darryl Xiao, Zhousheng Huang, Jinsong Capra, John A. Chen, Zugen Taylor, William L. Bastarache, Lisa Niu, Xinnan Pollard, Katherine S. Ciobanu, Daniel C. Reznik, Alexander O. Tishkov, Artem V. Zhulin, Igor B. Peng, Junmin Nelson, Stanley F. Denny, Joshua C. Auwerx, Johan Lu, Lu Williams, Robert W. TI Joint mouse-human phenome-wide association to test gene function and disease risk SO NATURE COMMUNICATIONS LA English DT Article ID COMPLEX TRAIT ANALYSIS; AMINO-ACID CHANGES; REFERENCE PANEL; GENOME-WIDE; PHENOTYPES; MICE; EXPRESSION; POPULATION; LONGEVITY; ACTIVATION AB Phenome-wide association is a novel reverse genetic strategy to analyze genome-to-phenome relations in human clinical cohorts. Here we test this approach using a large murine population segregating for similar to 5 million sequence variants, and we compare our results to those extracted from a matched analysis of gene variants in a large human cohort. For the mouse cohort, we amassed a deep and broad open-access phenome consisting of similar to 4,500 metabolic, physiological, pharmacological and behavioural traits, and more than 90 independent expression quantitative trait locus (QTL), transcriptome, proteome, metagenome and metabolome data sets-by far the largest coherent phenome for any experimental cohort (www.genenetwork.org). We tested downstream effects of subsets of variants and discovered several novel associations, including a missense mutation in fumarate hydratase that controls variation in the mitochondrial unfolded protein response in both mouse and Caenorhabditis elegans, and missense mutations in Col6a5 that underlies variation in bone mineral density in both mouse and human. C1 [Wang, Xusheng; Pandey, Ashutosh K.; Mulligan, Megan K.; Mozhui, Khyobeni; Li, Zhengsheng; Huang, Jinsong; Ciobanu, Daniel C.; Lu, Lu; Williams, Robert W.] Univ Tennessee, Ctr Hlth Sci, Dept Genet Genom & Informat, Memphis, TN 38163 USA. [Wang, Xusheng; Peng, Junmin] St Jude Childrens Res Hosp, St Jude Prote Facil, 332 N Lauderdale St, Memphis, TN 38105 USA. [Williams, Evan G.; Jovaisaite, Virginija; Auwerx, Johan] Ecole Polytech Fed Lausanne, Sch Life Sci, Lab Integrat & Syst Physiol, CH-1015 Lausanne, Switzerland. [Quarles, L. Darryl; Xiao, Zhousheng; Huang, Jinsong] Univ Tennessee, Ctr Hlth Sci, Dept Med, Memphis, TN 38163 USA. [Capra, John A.; Bastarache, Lisa; Niu, Xinnan; Denny, Joshua C.] Vanderbilt Univ, Sch Med, Dept Biomed Informat, Nashville, TN 37232 USA. [Chen, Zugen; Nelson, Stanley F.] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA. [Taylor, William L.] Univ Tennessee, Hlth Sci Ctr, Mol Resource Ctr, Memphis, TN 38163 USA. [Pollard, Katherine S.] Gladstone Inst, San Francisco, CA 94158 USA. [Pollard, Katherine S.] Univ Calif San Francisco, Div Biostat, San Francisco, CA 94158 USA. [Pollard, Katherine S.] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94158 USA. [Ciobanu, Daniel C.] Univ Nebraska, Dept Anim Sci, Lincoln, NE 68583 USA. [Reznik, Alexander O.; Tishkov, Artem V.; Zhulin, Igor B.] Univ Tennessee, Oak Ridge Natl Lab, Joint Inst Computat Sci, Oak Ridge, TN 37831 USA. [Denny, Joshua C.] Vanderbilt Univ, Sch Med, Dept Med, Nashville, TN 37232 USA. RP Williams, RW (reprint author), Univ Tennessee, Ctr Hlth Sci, Dept Genet Genom & Informat, Memphis, TN 38163 USA. EM rwilliams@uthsc.edu OI xiao, zhousheng/0000-0002-3363-5673; Williams, Evan/0000-0002-9746-376X; Williams, Robert/0000-0001-8924-4447 FU NIH [R01AG043930, U01 AA016662, U01 AA013499, R01-LM010685, UL1 RR024975, UL1 TR000445, R01 GM072285]; UTHSC Center for Integrative and Translational Genomics; UT-Oak Ridge National Laboratory Governor Chair; Gladstone Institutes; EPFL; Swiss Initiative for Systems Biology [51RTP0-151019, 2013/153]; SNSF [31003A-140780, CSRII3-136201]; Nestle Chair in Energy Metabolism; American Lebanese Syrian Associated Charities FX This work was supported by NIH grants R01AG043930, U01 AA016662, U01 AA013499 (R.W.W.), R01-LM010685, UL1 RR024975 and UL1 TR000445 (J.C.D.), the UTHSC Center for Integrative and Translational Genomics and the UT-Oak Ridge National Laboratory Governor Chair (R.W.W. and L.L.), the Gladstone Institutes (K.S.P. and J.A.C.), the EPFL, the Swiss Initiative for Systems Biology (51RTP0-151019 and 2013/153), SNSF (31003A-140780 and CSRII3-136201), the NIH grant R01 GM072285 (I.B.Z.), the Nestle Chair in Energy Metabolism (J.A.) and the American Lebanese Syrian Associated Charities (J.P.). NR 56 TC 9 Z9 9 U1 3 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10464 DI 10.1038/ncomms10464 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0EM UT WOS:000371011800001 PM 26833085 ER PT J AU Wu, YF Chew, AR Rojas, GA Sini, G Haugstad, G Belianinov, A Kalinin, SV Li, H Risko, C Bredas, JL Salleo, A Frisbie, CD AF Wu, Yanfei Chew, Annabel R. Rojas, Geoffrey A. Sini, Gjergji Haugstad, Greg Belianinov, Alex Kalinin, Sergei V. Li, Hong Risko, Chad Bredas, Jean-Luc Salleo, Alberto Frisbie, C. Daniel TI Strain effects on the work function of an organic semiconductor SO NATURE COMMUNICATIONS LA English DT Article ID FIELD-EFFECT TRANSISTORS; RUBRENE SINGLE-CRYSTALS; AUGMENTED-WAVE METHOD; THIN-FILMS; BAND-GAP; SI; TEMPERATURE; TRANSPORT; MOBILITY; GE AB Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at similar to B0.05% tensile strain along the rubrene pi-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials. C1 [Wu, Yanfei; Rojas, Geoffrey A.; Frisbie, C. Daniel] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. [Chew, Annabel R.; Salleo, Alberto] Stanford Univ, Dept Mat Sci & Engn, 476 Lomita Mall, Stanford, CA 94305 USA. [Sini, Gjergji] Univ Cergy Pontoise, Lab Physicochim Polymeres & Interfaces, 5 Mail Gay Lussac, F-95031 Cergy Pontoise, France. [Sini, Gjergji; Bredas, Jean-Luc] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Solar & Photovolta Engn Res Ctr, Thuwal 239556900, Saudi Arabia. [Haugstad, Greg] Univ Minnesota, Characterizat Facil, 100 Union St SE, Minneapolis, MN 55455 USA. [Belianinov, Alex; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Li, Hong] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Li, Hong] Georgia Inst Technol, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA. [Risko, Chad] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. [Risko, Chad] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40506 USA. RP Frisbie, CD (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. EM frisbie@umn.edu OI Bredas, Jean-Luc /0000-0001-7278-4471 FU National Science Foundation [DMR-0706011]; NSF through the MRSEC program [DMR-1420013] FX This work was primarily supported by the National Science Foundation under Grant No. DMR-0706011. Part of this work was carried out in the Characterization Facility, University of Minnesota, which received partial support from NSF through the MRSEC program under Grant No. DMR-1420013. SKPM measurements in this work were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF). We acknowledge assistance for crystal growth by Dr Wei Xie and Xinglong Ren, and thank them as well as Dr Christopher Sutton for helpful discussions. NR 45 TC 3 Z9 3 U1 17 U2 65 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10270 DI 10.1038/ncomms10270 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF1XB UT WOS:000371131700001 PM 26831362 ER PT J AU Zhang, CL Xu, SY Belopolski, I Yuan, ZJ Lin, ZQ Tong, BB Bian, G Alidoust, N Lee, CC Huang, SM Chang, TR Chang, GQ Hsu, CH Jeng, HT Neupane, M Sanchez, DS Zheng, H Wang, JF Lin, H Zhang, C Lu, HZ Shen, SQ Neupert, T Hasan, MZ Jia, S AF Zhang, Cheng-Long Xu, Su-Yang Belopolski, Ilya Yuan, Zhujun Lin, Ziquan Tong, Bingbing Bian, Guang Alidoust, Nasser Lee, Chi-Cheng Huang, Shin-Ming Chang, Tay-Rong Chang, Guoqing Hsu, Chuang-Han Jeng, Horng-Tay Neupane, Madhab Sanchez, Daniel S. Zheng, Hao Wang, Junfeng Lin, Hsin Zhang, Chi Lu, Hai-Zhou Shen, Shun-Qing Neupert, Titus Hasan, M. Zahid Jia, Shuang TI Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl fermion semimetal SO NATURE COMMUNICATIONS LA English DT Article ID LONGITUDINAL MAGNETORESISTANCE; QUANTUM LIMIT; PHASE; TRANSITION; ELECTRON; ARCS AB Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the field strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs. C1 [Zhang, Cheng-Long; Yuan, Zhujun; Tong, Bingbing; Jia, Shuang] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China. [Xu, Su-Yang; Belopolski, Ilya; Bian, Guang; Alidoust, Nasser; Chang, Tay-Rong; Neupane, Madhab; Sanchez, Daniel S.; Zheng, Hao; Hasan, M. Zahid] Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Spect B7, Princeton, NJ 08544 USA. [Lin, Ziquan; Wang, Junfeng] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China. [Lee, Chi-Cheng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Lin, Hsin] Natl Univ Singapore, Ctr Adv Mat 2D, Singapore 117546, Singapore. [Lee, Chi-Cheng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Lin, Hsin] Natl Univ Singapore, Graphene Res Ctr, Singapore 117546, Singapore. [Lee, Chi-Cheng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Lin, Hsin] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Chang, Tay-Rong; Jeng, Horng-Tay] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Jeng, Horng-Tay] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Neupane, Madhab] Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, POB 1663, Los Alamos, NM 87545 USA. [Neupane, Madhab] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Zhang, Chi; Jia, Shuang] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. [Lu, Hai-Zhou] South Univ Sci & Technol China, Dept Phys, Shenzhen, Peoples R China. [Shen, Shun-Qing] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China. [Neupert, Titus] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA. RP Jia, S (reprint author), Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China.; Hasan, MZ (reprint author), Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Spect B7, Princeton, NJ 08544 USA.; Jia, S (reprint author), Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. EM mzhasan@princeton.edu; gwljiashuang@pku.edu.cn RI Shen, Shun-Qing/A-7392-2009; Lin, Hsin/F-9568-2012; Lu, Hai-Zhou/F-2671-2011; Chang, Tay-Rong/K-3943-2015; Neupert, Titus/K-8733-2012; zheng, hao/H-8636-2015 OI Huang, Shin-Ming/0000-0003-4273-9682; chang, guoqing/0000-0003-1180-3127; Lin, Hsin/0000-0002-4688-2315; Lu, Hai-Zhou/0000-0002-6708-0223; Chang, Tay-Rong/0000-0003-1222-2527; Neupert, Titus/0000-0003-0604-041X; zheng, hao/0000-0002-6495-874X FU Gordon and Betty Moore Foundation [GBMF4547]; National Basic Research Program of China [2013CB921901, 2014CB239302]; Opening Project of Wuhan National High Magnetic Field Center [PHMFF2015001]; Huazhong University of Science and Technology; National Science Foundation of China [11374020]; Singapore National Research Foundation [NRF-NRFF201303]; Research Grant Council, University Grants Committee, Hong Kong [17303714]; University of Central Florida; Los Alamos National Laboratory Laboratory Directed Research & Development (LDRD) program; Natural Science Foundation of China [11574127]; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-FG-02-05ER46200] FX M.Z.H., S.-Y.X. and I.B. thank I. Klebanov, A. Polyakov and H. Verlinde for theoretical discussions. T.N. thanks A. G. Grushin for discussions. S.J. thanks J. Xiong and F. Wang for valuable discussions, and C.-L.Z. and Z.Y. thank Y. Li and J. Feng for using instruments in their groups. The work at Princeton and Princeton-led synchrotron-based measurements were supported by Gordon and Betty Moore Foundation through Grant GBMF4547 (Hasan). S.J. was supported by the National Basic Research Program of China (Grant Nos. 2013CB921901 and 2014CB239302) and by the Opening Project of Wuhan National High Magnetic Field Center (Grant No. PHMFF2015001), Huazhong University of Science and Technology. C.Z. was supported by the National Science Foundation of China (Grant No. 11374020). H.-Z.L. acknowledges the Singapore National Research Foundation for the support under NRF Award No. NRF-NRFF201303. S.-Q.S. was supported by the Research Grant Council, University Grants Committee, Hong Kong under Grant No. 17303714. M.N. was supported by the start-up funds from University of Central Florida and Los Alamos National Laboratory Laboratory Directed Research & Development (LDRD) program. H.L. was supported by the Natural Science Foundation of China under Grant No. 11574127. We gratefully acknowledge J.D. Denlinger, S.K. Mo, A.V. Fedorov, M. Hashimoto, M. Hoesch, T. Kim and V.N. Strocov for their beamline assistance at the Advanced Light Source, the Stanford Synchrotron Radiation Lightsource, the Diamond Light Source and the Swiss Light Source. Visits to Princeton University by S.-M.H., G.C., T.-R.C and H.L. were partially funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under the funding number DE-FG-02-05ER46200. NR 50 TC 62 Z9 62 U1 25 U2 73 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2016 VL 7 AR 10735 DI 10.1038/ncomms10735 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DF0NV UT WOS:000371036800008 PM 26911701 ER PT J AU Hugo, JV Gertman, DI AF Hugo, Jacques V. Gertman, David I. TI A Method to Select Human-System Interfaces for Nuclear Power Plants SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE Advanced nuclear power plants; Design guidance; Human factors engineering; Human-system interface; Technology readiness levels; Technology selection criteria AB The new generation of nuclear power plants (NPPs) will likely make use of state-of-the-art technologies in many areas of the plant. The analysis, design, and selection of advanced humanesystem interfaces (HSIs) constitute an important part of power plant engineering. Designers need to consider the new capabilities afforded by these technologies in the context of current regulations and new operational concepts, which is why they need a more rigorous method by which to plan the introduction of advanced HSIs in NPP work areas. Much of current human factors research stops at the user interface and fails to provide a definitive process for integration of end user devices with instrumentation and control and operational concepts. The current lack of a clear definition of HSI technology, including the process for integration, makes characterization and implementation of new and advanced HSIs difficult. This paper describes how new design concepts in the nuclear industry can be analyzed and how HSI technologies associated with new industrial processes might be considered. It also describes a basis for an understanding of human as well as technology characteristics that could be incorporated into a prioritization scheme for technology selection and deployment plans. Copyright (C) 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. C1 [Hugo, Jacques V.; Gertman, David I.] Idaho Natl Lab, Controls & Stat Dept, Human Factors, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA. RP Hugo, JV (reprint author), Idaho Natl Lab, Controls & Stat Dept, Human Factors, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA. EM jacques.hugo@inl.gov FU agency of the U.S. Government [DE-AC07-051D14517] FX Part of this paper was prepared as an account of work sponsored by an agency of the U.S. Government under Contract DE-AC07-051D14517. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. government or any agency thereof. NR 20 TC 3 Z9 3 U1 1 U2 4 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD FEB PY 2016 VL 48 IS 1 BP 87 EP 97 DI 10.1016/j.net.2015.10.004 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF0QE UT WOS:000371043200009 ER PT J AU Nelson, PF Martin-Del-Campo, C Hallbert, B Mosleh, A AF Nelson, Pamela F. Martin-Del-Campo, Cecilia Hallbert, Bruce Mosleh, Ali TI Development of a Leading Performance Indicator from Operational Experience and Resilience in a Nuclear Power Plant SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE Condition adverse to quality; Corrective action program; Leading performance indicators; Organizational factors; Problem Identification and resolution program; Resilience AB The development of operational performance indicators is of utmost importance for nuclear power plants, since they measure, track, and trend plant operation. Leading indicators are ideal for reducing the likelihood of consequential events. This paper describes the operational data analysis of the information contained in the Corrective Action Program. The methodology considers human error and organizational factors because of their large contribution to consequential events. The results include a tool developed from the data to be used for the identification, prediction, and reduction of the likelihood of significant consequential events. This tool is based on the resilience curve that was built from the plant's operational data. The stress is described by the number of unresolved condition reports. The strain is represented by the number of preventive maintenance tasks and other periodic work activities (i.e., baseline activities), as well as, closing open corrective actions assigned to different departments to resolve the condition reports (i.e., corrective action workload). Beyond the identified resilience threshold, the stress exceeds the station's ability to operate successfully and there is an increased likelihood that a consequential event will occur. A performance indicator is proposed to reduce the likelihood of consequential events at nuclear power plants. Copyright (C) 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. C1 [Nelson, Pamela F.; Martin-Del-Campo, Cecilia] Univ Nacl Autonoma Mexico, Dept Energy Syst, Mexico City 04510, DF, Mexico. [Hallbert, Bruce] Idaho Natl Lab, Nucl Energy Enabling Technol, 2525 Fremont Ave, Idaho Falls, ID 83402 USA. [Mosleh, Ali] Univ Calif Los Angeles, B John Garrick Inst Risk Sci, Los Angeles, CA 90095 USA. RP Nelson, PF (reprint author), Univ Nacl Autonoma Mexico, Dept Energy Syst, Mexico City 04510, DF, Mexico. EM pnelson_007@yahoo.com RI Hallbert, Bruce/B-5435-2017 OI Hallbert, Bruce/0000-0002-4133-7625 NR 25 TC 0 Z9 0 U1 4 U2 5 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD FEB PY 2016 VL 48 IS 1 BP 114 EP 128 DI 10.1016/j.net.2015.10.010 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF0QE UT WOS:000371043200011 ER PT J AU Craft, AE Hilton, BA Papaioannou, GC AF Craft, Aaron E. Hilton, Bruce A. Papaioannou, Glen C. TI Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD) Core and Addition of New Fuel Elements SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE Beam Characterization; Neutron Radiography; Neutron Beam ID SELF-SHIELDING FACTORS; SIMPLE GEOMETRIES; RESOLUTION AB The neutron radiography reactor (NRAD) is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA) reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS) is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM) standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D) = 125 is 5.96 x 106 n/cm(2)/s with a 2 sigma standard error of 2.90 x 10(5) n/cm(2)/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation. Copyright (C) 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. C1 [Craft, Aaron E.; Papaioannou, Glen C.] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. [Hilton, Bruce A.] TerraPower LLC, 330 120th Ave NE,Suite 100, Bellevue, WA 98005 USA. RP Craft, AE (reprint author), Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. EM aaron.craft@inl.gov RI Papaioannou, Glen/C-5935-2017; Craft, Aaron/B-7579-2017 OI Papaioannou, Glen/0000-0003-3912-0328; Craft, Aaron/0000-0002-7092-3826 FU TerraPower, LLC FX The authors acknowledge the R & D staff of the Idaho National Laboratory Materials & Fuels Complex facilities of NRAD, Hot Fuels Examination Facility and Analytical Laboratory for having carried out the experimental tests for this work. This work was performed with support of TerraPower, LLC. NR 31 TC 0 Z9 0 U1 3 U2 6 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD FEB PY 2016 VL 48 IS 1 BP 200 EP 210 DI 10.1016/j.net.2015.10.006 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DF0QE UT WOS:000371043200020 ER PT J AU Franz, R Clavero, C Kolbeck, J Anders, A AF Franz, Robert Clavero, Cesar Kolbeck, Jonathan Anders, Andre TI Influence of ionisation zone motion in high power impulse magnetron sputtering on angular ion flux and NbOx film growth SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article DE niobium; niobium oxide; HiPIMS; ion energy; negative ions; angular distribution ID NIOBIUM OXIDE-FILMS; NEGATIVE-IONS; PLASMA; DEPOSITION; DISCHARGE; TARGET; ENERGY AB The ion energies and fluxes in the high power impulse magnetron sputtering plasma from a Nb target were analysed angularly resolved along the tangential direction of the racetrack. A reactive oxygen-containing atmosphere was used as such discharge conditions are typically employed for the synthesis of thin films. Asymmetries in the flux distribution of the recorded ions as well as their energies and charge states were noticed when varying the angle between mass-energy analyser and target surface. More positively charged ions with higher count rates in the medium energy range of their distributions were detected in +E x B than in -E x B direction, thus confirming the notion that ionisation zones (also known as spokes or plasma bunches) are associated with moving potential humps. The motion of the recorded negatively charged high-energy oxygen ions was unaffected. NbOx thin films at different angles and positions were synthesised and analysed as to their structure and properties in order to correlate the observed plasma properties to the film growth conditions. The chemical composition and the film thickness varied with changing deposition angle, where the latter, similar to the ion fluxes, was higher in +E x B than in -E x B direction. C1 [Franz, Robert; Clavero, Cesar; Kolbeck, Jonathan; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Franz, Robert] Univ Leoben, Franz Josef Str 18, A-8700 Leoben, Austria. RP Franz, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Franz, R (reprint author), Univ Leoben, Franz Josef Str 18, A-8700 Leoben, Austria. EM robert.franz@unileoben.ac.at RI Franz, Robert/G-5263-2010; Anders, Andre/B-8580-2009 OI Franz, Robert/0000-0003-4842-7276; Anders, Andre/0000-0002-5313-6505 FU Erwin Schrodinger Fellowship by the Austrian Science Fund (FWF) [J3168-N20]; U.S. Department of Energy [DE-AC02-05CH11231] FX R Franz gratefully acknowledges the support of an Erwin Schrodinger Fellowship by the Austrian Science Fund (FWF, Project J3168-N20) which enabled his research at LBNL. Work at LBNL is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 58 TC 3 Z9 3 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 EI 1361-6595 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD FEB PY 2016 VL 25 IS 1 AR 015022 DI 10.1088/0963-0252/25/1/015022 PG 11 WC Physics, Fluids & Plasmas SC Physics GA DE9RD UT WOS:000370974800029 ER PT J AU Sumi, H Kennouche, D Yakal-Kremski, K Suzuki, T Barnett, SA Miller, DJ Yamaguchi, T Hamamoto, K Fujishiro, Y AF Sumi, Hirofumi Kennouche, David Yakal-Kremski, Kyle Suzuki, Toshio Barnett, Scott A. Miller, Dean J. Yamaguchi, Toshiaki Hamamoto, Koichi Fujishiro, Yoshinobu TI Electrochemical and microstructural properties of Ni-(Y2O3)(0.08)(ZrO2)(0.92)-(Ce0.9Gd0.1)O-1.95 anode-supported microtubular solid oxide fuel cells SO SOLID STATE IONICS LA English DT Article; Proceedings Paper CT 40th Symposium on Solid State Ionics in Japan CY DEC 16-18, 2014 CL Tokyo, JAPAN SP Solid State Ion Soc Japan DE Zirconia-ceria solid solution; AC impedance; Distribution of relaxation time (DRT); Anode microstructure; Focused ion beam-scanning electron; microscopy (FIB-SEM) ID NI-YSZ ANODE; 3-DIMENSIONAL MICROSTRUCTURE; IMPEDANCE SPECTRA; DIRECT OXIDATION; TEMPERATURE; PERFORMANCE; CERIA; RECONSTRUCTION; HYDROCARBONS; ZIRCONIA AB The nickel-zirconia cermet is widely used as an anode of solid oxide fuel cells (SOFCs). On the other hand, the nickel-ceria based anode indicates high electrochemical activity for hydrogen oxidation and hydrocarbon reforming. In this study, electrochemical and microstructural properties of microtubular SOFCs with Ni-based composite anodes containing yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) are investigated electrochemically using impedance spectroscopy (EIS) and microstructurally using focused ion beam-scanning electron microscopy (FIB-SEM). The solid solution of YSZ and GDC was easily formed after mechanical mixing and sintering at 1400 degrees C. The electrical conductivity and mechanical strength for the Ni-YSZGDC composite anodes are low relative to Ni-YSZ due to poor sinterability. The GDC-containing anodes show improved electrochemical activity for hydrogen oxidation, despite having lower three-phase boundary densities. Distribution of relaxation times (DRT) analysis of the EIS data shows that the concentration polarization is lower for the Ni-GDC anode, due to a higher measured pore volume. The maximum power density for the cell with the Ni-YSZGDC composite anode was higher than those with the Ni-YSZ and Ni-GDC anodes. (C) 2015 Elsevier B.V. All rights reserved. C1 [Sumi, Hirofumi; Suzuki, Toshio; Yamaguchi, Toshiaki; Hamamoto, Koichi; Fujishiro, Yoshinobu] Natl Inst Adv Ind Sci & Technol, Inorgan Funct Mat Res Inst, Nagoya, Aichi 4638560, Japan. [Kennouche, David; Yakal-Kremski, Kyle; Barnett, Scott A.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Miller, Dean J.] Argonne Natl Lab, Ctr Electron Microscopy, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Sumi, H (reprint author), Natl Inst Adv Ind Sci & Technol, Inorgan Funct Mat Res Inst, Nagoya, Aichi 4638560, Japan. EM h-sumi@aist.go.jp RI Sumi, Hirofumi/B-5403-2012; Fujishiro, Yoshinobu/K-2224-2016; Barnett, Scott/B-7502-2009 OI Sumi, Hirofumi/0000-0002-8439-0127; Fujishiro, Yoshinobu/0000-0002-8570-6517; NR 41 TC 1 Z9 1 U1 6 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 EI 1872-7689 J9 SOLID STATE IONICS JI Solid State Ion. PD FEB PY 2016 VL 285 SI SI BP 227 EP 233 DI 10.1016/j.ssi.2015.07.005 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA DE8QM UT WOS:000370901500039 ER PT J AU Demirkan, MT Trahey, L Karabacak, T AF Demirkan, M. T. Trahey, L. Karabacak, T. TI Low-density silicon thin films for lithium-ion battery anodes SO THIN SOLID FILMS LA English DT Article DE Sputtering; Thin films; Silicon; Lithium Ion; Battery; Anode ID NANOSTRUCTURED COMPLIANT LAYERS; LONG CYCLE LIFE; SI-BASED ANODES; STRESS REDUCTION; HIGH-CAPACITY; NANO-SILICON; PERFORMANCE; COMPOSITES; ELECTRODES; DEPOSITION AB Density of sputter deposited silicon (Si) thin films was changed by a simple working gas pressure control process, and its effects on the cycling performance of Si films in Li-ion batteries as anodes was investigated. Higher gas pressure results in reduced film densities due to a shadowing effect originating from lower mean free path of sputter atoms, which leads to a wider angular distribution of the incoming flux and formation of a porous film microstructure. Si thin film anodes of different densities ranging from 2.27 g/cm(3) (film porosity similar to 3%) down to 1.64 g/cm(3) (similar to 30% porosity) were fabricated by magnetron sputtering at argon pressures varying from 0.2 Pa to 2.6 Pa, respectively. High density Si thin film anodes of 2.27 g/cm(3) suffered from an unstable cycling behavior during charging/discharging depicted by a continuous reduction in specific down to similar to 830 mAh/g at the 100th cycle. Electrochemical properties of lower density films with 1.99 g/cm(3) (similar to 15% porosity) and 1.77 g/cm(3) (similar to 24% porosity) got worse resulting in only similar to 100 mAh/g capacity at 100th cycle. On the other hand, as the density of anode was further reduced down to about 1.64 g/cm(3) (similar to 30% porosity), cycling stability and capacity retention significantly improved resulting in specific capacity values similar to 650 mAh/g at 100th cycle with coulombic efficiencies of >98%. Enhancement in our low density Si film anodes are believed to mainly originate from the availability of voids for volumetric expansion during lithiation and resulting compliant behavior that provides superior mechanical and electrochemical stability. (C) 2016 Elsevier B.V. All rights reserved. C1 [Demirkan, M. T.; Karabacak, T.] Univ Arkansas, Dept Phys & Astron, Little Rock, AR 72204 USA. [Trahey, L.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Demirkan, M. T.] Gebze Tech Univ, Dept Mat Sci & Engn, Kocaeli, Turkey. RP Demirkan, MT (reprint author), Univ Arkansas, Dept Phys & Astron, Little Rock, AR 72204 USA. EM tmdemirkan@ualr.edu NR 41 TC 2 Z9 2 U1 17 U2 40 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD FEB 1 PY 2016 VL 600 BP 126 EP 130 DI 10.1016/j.tsf.2016.01.029 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA DF0QG UT WOS:000371043400020 ER PT J AU Fox, DT Guo, LJ Fujita, Y Huang, H Redden, G AF Fox, Don T. Guo, Luanjing Fujita, Yoshiko Huang, Hai Redden, George TI Experimental and Numerical Analysis of Parallel Reactant Flow and Transverse Mixing with Mineral Precipitation in Homogeneous and Heterogeneous Porous Media SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Mixing; Coupled flow-transport-reaction processes; Mineral precipitation; Permeability ID CARBONATE PRECIPITATION; CALCITE PRECIPITATION; BARITE; DISSOLUTION; ALGORITHMS; TRANSPORT; SOFTWARE; NUCLEAR; SULFATE; ENERGY AB Formation of mineral precipitates in the mixing interface between two reactant solutions flowing in parallel in porous media is governed by reactant mixing by diffusion and dispersion and is coupled to changes in porosity/permeability due to precipitation. The spatial and temporal distribution of mixing-dependent precipitation of barium sulfate in porous media was investigated with side-by-side injection of barium chloride and sodium sulfate solutions in thin rectangular flow cells packed with quartz sand. The results for homogeneous sand beds were compared to beds with higher or lower permeability inclusions positioned in the path of the mixing zone. In the homogeneous and high permeability inclusion experiments, BaSO precipitate (barite) formed in a narrow deposit along the length and in the center of the solution-solution mixing zone even though dispersion was enhanced within, and downstream of, the high permeability inclusion. In the low permeability inclusion experiment, the deflected BaSO precipitation zone broadened around one side and downstream of the inclusion and was observed to migrate laterally toward the sulfate solution. A continuum-scale fully coupled reactive transport model that simultaneously solves the nonlinear governing equations for fluid flow, transport of reactants and geochemical reactions was used to simulate the experiments and provide insight into mechanisms underlying the experimental observations. Migration of the precipitation zone in the low permeability inclusion experiment could be explained by the coupling effects among fluid flow, reactant transport and localized mineral precipitation reaction. C1 [Fox, Don T.; Fujita, Yoshiko; Huang, Hai] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Guo, Luanjing] Univ Utah, Salt Lake City, UT USA. [Redden, George] Montana State Univ, Bozeman, MT 59717 USA. RP Fox, DT (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.; Redden, G (reprint author), Montana State Univ, Bozeman, MT 59717 USA. EM Don.fox@inl.gov; George.redden@coe.montana.edu FU US Department of Energy, Office of Science, Subsurface Biogeochemical Research Program [DE-AC07-05ID14517] FX This research was conducted under DOE Idaho Operations Office Contract DE-AC07-05ID14517 with funding provided by the US Department of Energy, Office of Science, Subsurface Biogeochemical Research Program. G.R. and Y.F. would also like to express their deep gratitude to the NanoGeoScience program at Copenhagen University for facilitating their contributions to the preparation of this manuscript, and especially to the National Bank of Denmark for helping to make their residence with Copenhagen University possible. NR 31 TC 0 Z9 0 U1 3 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 EI 1573-1634 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD FEB PY 2016 VL 111 IS 3 BP 605 EP 626 DI 10.1007/s11242-015-0614-6 PG 22 WC Engineering, Chemical SC Engineering GA DF0GL UT WOS:000371017100004 ER PT J AU Voylov, D Saito, T Lokitz, B Uhrig, D Wang, YY Agapov, A Holt, A Bocharova, V Kisliuk, A Sokolov, AP AF Voylov, Dmitry Saito, Tomonori Lokitz, Bradley Uhrig, David Wang, Yangyang Agapov, Alexander Holt, Adam Bocharova, Vera Kisliuk, Alexander Sokolov, Alexei P. TI Graphene Oxide as a Radical Initiator: Free Radical and Controlled Radical Polymerization of Sodium 4-Vinylbenzenesulfonate with Graphene Oxide SO ACS MACRO LETTERS LA English DT Article ID OXIDATIVE DEHYDROGENATION; COMPOSITES; REDUCTION; CATALYSTS; SHEETS; OXYGEN; RAFT AB The free radical and controlled radical polymerization of sodium 4-vinylbenzenesulfonate using graphene oxide as a radical initiator was studied. This work demonstrates that graphene oxide can initiate radical polymerization in an aqueous solution without any additional initiator. Poly(sodium 4-vinylbenzenesulfonate) obtained via reversible addition fragmentation chain transfer polymerization had a controlled molecular weight with a very narrow polydispersity ranging between 1.01 and 1.03. The reduction process of graphene oxide as well as the resulting composite material properties were analyzed in detail. C1 [Voylov, Dmitry; Agapov, Alexander; Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37916 USA. [Holt, Adam] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37916 USA. [Saito, Tomonori; Bocharova, Vera; Kisliuk, Alexander; Sokolov, Alexei P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. [Lokitz, Bradley; Uhrig, David; Wang, Yangyang] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Voylov, D (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37916 USA.; Saito, T (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. EM dvoylov@utk.edu; saitot@ornl.gov RI Saito, Tomonori/M-1735-2016; Wang, Yangyang/A-5925-2010; OI Saito, Tomonori/0000-0002-4536-7530; Wang, Yangyang/0000-0001-7042-9804; Voylov, Dmitry/0000-0001-5552-6024 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. A portion of this research was conducted at the Center for Nanophase Materials Sciences ORNL, which is a DOE Office of Science User Facility. D.V. thanks Dr. S. Kurochkin for fruitful discussions. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 14 TC 2 Z9 2 U1 11 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD FEB PY 2016 VL 5 IS 2 BP 199 EP 202 DI 10.1021/acsmacrolett.6b00003 PG 4 WC Polymer Science SC Polymer Science GA DE4CE UT WOS:000370576000010 ER PT J AU Xu, L Yao, Y Bronstein, ND Li, LF Alivisatos, AP Nuzzo, RG AF Xu, Lu Yao, Yuan Bronstein, Noah D. Li, Lanfang Alivisatos, A. Paul Nuzzo, Ralph G. TI Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors SO ACS PHOTONICS LA English DT Article DE luminescent solar concentrator; distributed Bragg reflector; photovoltaics; escape cone loss ID RUGATE FILTERS; WAVE-GUIDES; CELLS; FILMS; NANOCRYSTALS; REABSORPTION; EFFICIENCY; CRYSTALS; OUTPUT; ENERGY AB Escape cone loss is one of the primary limiting factors for efficient photon collection in large-area luminescent solar concentrators (LSCs). The Stokes shift of the luminophore, however, opens up an opportunity to recycle the escaped luminescence at the LSC front surface by utilizing a photonic band-stop filter that reflects photons in the luminophore's emission range while transmitting those in its absorption range. In this study, we examine the functional attributes of such photonic filter designs, ones realized here in the form of a distributed Bragg reflector (DBR) fabricated by spin-coating alternating layers of SiO2 and SnO2 nanoparticle suspensions onto a supportive glass substrate. The central wavelength and the width of the photonic stopband were programmatically tuned by changing the layer thickness and the refractive index contrast between the two dielectric materials. We explore the design sensitivities for a DBR with an optimized stopband frequency that can effectively act as a top angle-restricting optical element for a microcell-based LSC device, affording further capacities to boost the current output of a coupled photovoltaic cell. Detailed studies of the optical interactions between the photonic filter and the LSC using both experimental and computational approaches establish the requirements for optimum photon collection efficiencies. C1 [Xu, Lu; Yao, Yuan; Li, Lanfang; Nuzzo, Ralph G.] Univ Illinois, Frederick Seitz Mat Res Lab, Dept Chem, Urbana, IL 61801 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Mat Sci & Engn, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Bronstein, Noah D.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Nuzzo, RG (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, Dept Chem, Urbana, IL 61801 USA. EM r-nuzzo@illinois.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU "Light-Material Interactions in Energy Conversion" Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001293] FX This work was supported by the "Light-Material Interactions in Energy Conversion" Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001293. NR 44 TC 2 Z9 2 U1 11 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD FEB PY 2016 VL 3 IS 2 BP 278 EP 285 DI 10.1021/acsphotonics.5b00630 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA DE4GK UT WOS:000370587000018 ER PT J AU Campione, S Wendt, JR Keeler, GA Luk, TS AF Campione, Salvatore Wendt, Joel R. Keeler, Gordon A. Luk, Ting S. TI Near-Infrared Strong Coupling between Metamaterials and Epsilon-near-Zero Modes in Degenerately Doped Semiconductor Nanolayers SO ACS PHOTONICS LA English DT Article DE strong light-matter interaction; polariton splitting; epsilon-near-zero; nanoresonators; metamaterials; plasmonics; indium-tin-oxide nanolayer; near-infrared ID PERMITTIVITY; TRANSITION; SLAB AB Epsilon-near-zero (ENZ) modes provide a new path for tailoring light matter interactions at the nanoscale. In this paper, we analyze a strongly coupled system at near-infrared frequencies comprising plasmonic metamaterial resonators and ENZ modes supported by degenerately doped semiconductor nanolayers. In strongly coupled systems that combine optical cavities and intersubband transitions, the polariton splitting (i.e., the ratio of Rabi frequency to bare cavity frequency) scales with the square root of the wavelength, thus favoring the long-wavelength regime. In contrast, we observe that the polariton splitting in ENZ/metamaterial resonator systems increases linearly with the thickness of the nanolayer supporting the ENZ modes. In this work, we employ an indium-tin-oxide nanolayer and observe a large experimental polariton splitting of approximately 30% in the near-infrared. This approach opens up many promising applications, including nonlinear optical components and tunable optical filters based on controlling the polariton splitting by adjusting the frequency of the ENZ mode. C1 [Campione, Salvatore; Wendt, Joel R.; Keeler, Gordon A.; Luk, Ting S.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Campione, Salvatore; Luk, Ting S.] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. RP Campione, S; Luk, TS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.; Campione, S; Luk, TS (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. EM sncampi@sandia.gov; tsluk@sandia.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We acknowledge fruitful discussions with Dr. Michael B. Sinclair and Dr. Igal Brener from Sandia National Laboratories. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Portions of this work were supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 34 TC 4 Z9 4 U1 3 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD FEB PY 2016 VL 3 IS 2 BP 293 EP 297 DI 10.1021/acsphotonics.5b00663 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA DE4GK UT WOS:000370587000020 ER PT J AU Kapoor, M Isheim, D Vaynman, S Fine, ME Chung, YW AF Kapoor, M. Isheim, D. Vaynman, S. Fine, M. E. Chung, Y. -W. TI Effects of increased alloying element content on NiAl-type precipitate formation, loading rate sensitivity, and ductility of Cu- and NiAl-precipitation-strengthened ferritic steels SO ACTA MATERIALIA LA English DT Article DE Bcc-Cu; B2-NiAl-type; Precipitation-strengthened ferritic steel; Mechanical properties; loading rate sensitivity ID GRAIN-BOUNDARY SEGREGATION; MECHANICAL-PROPERTIES; ATOM-PROBE; FE-CU; COPPER; TEMPERATURE; EMBRITTLEMENT; MICROSCOPY; PARTICLES AB Two experimental bcc-Cu- and B2-NiAl-precipitation-strengthened ferritic steels with 6.3 at. % and 12.4 at. % Cu + Mn + Ni + Al, 950 MPa and 1600 MPa yield strength respectively, were studied. Atom probe tomography showed that the volume fraction and number density of NiAl-type precipitates in the heavier alloyed steel (designated as CF-9) is similar to 60-70 times greater than those in the lighter alloyed steel (designated as CF-2). This is attributed to the smaller lattice misfit between these NiAl-type precipitates and the ferritic matrix in CF-9 due to more incorporation of Mn atoms on the Al sub-lattice in the B2 NiAl unit cell. Loading rate sensitivity of hardness was measured for CF-2, CF-9 and SAE-1090, which does not have bcc-Cu precipitates. Results show that even though CF-2 and CF-9 have double and triple the strength of SAE-1090 respectively, their hardness shows weaker dependence on loading rate. This is attributed to the presence of bcc-Cu precipitates in CF-2 and CF-9 providing athermal activation of nearby screw dislocation motion. Auger electron spectroscopy studies of CF-9 samples reveal Cu segregation on grain boundaries. The observed Cu segregation is believed to be partly responsible for the lower elongation-to-failure of CF-9 compared with CF-2. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Kapoor, M.; Isheim, D.; Vaynman, S.; Fine, M. E.; Chung, Y. -W.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Kapoor, M.] Natl Energy Technol Lab, Struct Mat Dev Div, Albany, OR USA. RP Kapoor, M (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.; Kapoor, M (reprint author), Natl Energy Technol Lab, Struct Mat Dev Div, Albany, OR USA. EM monica.kapoor@netl.doe.gov RI Chung, Yip-Wah/B-7506-2009 FU National Science Foundation [CMMI-0826535]; MRSEC program of the National Science Foundation [DMR-1121262]; NSF-MRI [DMR-0420532]; ONR-DURIP [N00014-0400798, N00014-0610539, N00014-0910781]; Initiative for Sustainability and Energy at Northwestern FX This work was supported by the National Science Foundation, Grant No. CMMI-0826535 and made use of Northwestern University's Optical Microscopy and Metallographic Facility and the Center for Atom Probe Tomography, supported by the MRSEC program of the National Science Foundation, Grant No. DMR-1121262. The LEAP tomograph at NUCAPT was purchased and upgraded with funding from NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781) grants. Additional instrumentation at NUCAPT was supported by the Initiative for Sustainability and Energy at Northwestern. Monica Kapoor gratefully acknowledges the help from Dr. Rick Haasch, Center for Microanalysis of Materials, Materials Research Laboratory at University of Illinois at Urbana Champaign. NR 35 TC 2 Z9 2 U1 4 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2016 VL 104 BP 166 EP 171 DI 10.1016/j.actamat.2015.11.041 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DD1JK UT WOS:000369677800018 ER PT J AU Lebensohn, RA Zecevic, M Knezevic, M McCabe, RJ AF Lebensohn, Ricardo A. Zecevic, Miroslav Knezevic, Marko McCabe, Rodney J. TI Average intragranular misorientation trends in polycrystalline materials predicted by a viscoplastic self-consistent approach SO ACTA MATERIALIA LA English DT Article DE Polycrystal plasticity modeling; Micromechanics; Misorientation; Texture; Recrystallization ID FIELD FLUCTUATIONS; TEXTURE DEVELOPMENT; COMPOSITES; EVOLUTION; DEFORMATION; RECRYSTALLIZATION; FORMULATION; BEHAVIOR; COPPER AB This work presents estimations of average intragranular fluctuations of lattice rotation rates in polycrystalline materials, obtained by means of the viscoplastic self-consistent (VPSC) model. These fluctuations give a tensorial measure of the trend of misorientation developing inside each single crystal grain representing a polycrystalline aggregate. We first report details of the algorithm implemented in the VPSC code to estimate these fluctuations, which are then validated by comparison with corresponding full-field calculations. Next, we present predictions of average intragranular fluctuations of lattice rotation rates for cubic aggregates, which are rationalized by comparison with experimental evidence on annealing textures of fcc and bcc polycrystals deformed in tension and compression, respectively, as well as with measured intragranular misorientation distributions in a Cu polycrystal deformed in tension. The orientation-dependent and micromechanically-based estimations of intragranular misorientations that can be derived from the present implementation are necessary to formulate sound sub-models for the prediction of quantitatively accurate deformation textures, grain fragmentation, and recrystallization textures using the VPSC approach. Published by Elsevier Ltd on behalf of Acta Materialia Inc. C1 [Lebensohn, Ricardo A.; Zecevic, Miroslav; McCabe, Rodney J.] Div Mat Sci & Technol, Los Alamos, NM 87544 USA. [Zecevic, Miroslav; Knezevic, Marko] Univ New Hampshire, Dept Mech Engn, Durham, NH 03824 USA. RP Lebensohn, RA (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MS G755, Los Alamos, NM 87845 USA. EM lebenso@lanl.gov RI Lebensohn, Ricardo/A-2494-2008; OI Lebensohn, Ricardo/0000-0002-3152-9105; McCabe, Rodney /0000-0002-6684-7410 FU US Department of Energy, Office of Basic Energy Sciences (OBES) [FWP-06SCPE401]; LANL's Laboratory Directed Research and Development (LDRD) Project [20140630ER] FX This work was supported by US Department of Energy, Office of Basic Energy Sciences (OBES) FWP-06SCPE401 and LANL's Laboratory Directed Research and Development (LDRD) Project 20140630ER. NR 34 TC 5 Z9 5 U1 6 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2016 VL 104 BP 228 EP 236 DI 10.1016/j.actamat.2015.10.035 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DD1JK UT WOS:000369677800025 ER PT J AU Dingreville, R Berbenni, S AF Dingreville, Remi Berbenni, Stephane TI On the interaction of solutes with grain boundaries SO ACTA MATERIALIA LA English DT Article DE Grain boundaries; Dislocations; Disclinations; Solubility; Segregation ID VACANCY FORMATION ENERGIES; STRUCTURAL UNIT MODEL; TILT BOUNDARIES; EDGE DISLOCATION; BINDING FORCE; SEGREGATION; DIFFUSION; HYDROGEN; NICKEL; DEFORMATION AB Solute segregation to grain boundaries is considered by modeling solute atoms as misfitting inclusions within a disclination structural unit model describing the grain boundary structure and its intrinsic stress field. The solute distribution around grain boundaries is described through Fermi-Dirac statistics of site occupancy. The susceptibility of hydrogen segregation to symmetric tilt grain boundaries is discussed in terms of the misorientation angle, the defect type characteristics at the grain boundary, temperature, and the prescribed bulk hydrogen fraction of occupied sites. Through this formalism, it is found that hydrogen trapping on grain boundaries clearly correlates with the grain boundary structure (i.e. type of structural unit composing the grain boundary), and the associated grain boundary misorientation. Specifically, for symmetric tilt grain boundaries about the [0 0 1] axis, grain boundaries composed of both B and C structural units show a lower segregation susceptibility than other grain boundaries. A direct correlation between the segregation susceptibility and the intrinsic net defect density is provided through the Frank-Bilby formalism. Overall, the present formulation could prove to be a simple and useful model to identify classes of grain boundaries relevant to grain boundary engineering. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Dingreville, Remi] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Berbenni, Stephane] Univ Lorraine, CNRS, UMR 7239, LEM3, F-57045 Metz, France. RP Dingreville, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rdingre@sandia.gov OI Dingreville, Remi/0000-0003-1613-695X FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; French government through the National Research Agency (ANR) under the program "Investment in the future" (Labex DAMAS) [ANR-11-LABX-0008-01] FX Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. S.B. would also like to thank the support of the French government through the National Research Agency (ANR) under the program "Investment in the future" (Labex DAMAS referenced as ANR-11-LABX-0008-01). R.D. would like to thank Labex DAMAS and the Laboratoire d'Etude des Microstructures et de Mecanique des Materiaux (LEM3) for hosting him during the summer of 2015 to complete this work. NR 57 TC 1 Z9 1 U1 4 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB 1 PY 2016 VL 104 BP 237 EP 249 DI 10.1016/j.actamat.2015.11.017 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DD1JK UT WOS:000369677800026 ER PT J AU Kang, CM Wade, J Yun, S Lim, J Cho, H Roh, J Lee, H Nam, S Bradley, DDC Kim, JS Lee, C AF Kang, Chan-mo Wade, Jessica Yun, Sumin Lim, Jaehoon Cho, Hyunduck Roh, Jeongkyun Lee, Hyunkoo Nam, Sangwook Bradley, Donal D. C. Kim, Ji-Seon Lee, Changhee TI 1 GHz Pentacene Diode Rectifiers Enabled by Controlled Film Deposition on SAM-Treated Au Anodes SO ADVANCED ELECTRONIC MATERIALS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; MOLECULAR-ORIENTATION; ORGANIC TRANSISTORS; CHARGE INJECTION; HOLE INJECTION; POLYMER; MORPHOLOGY; GOLD; ELECTRODES; MOBILITY C1 [Kang, Chan-mo; Yun, Sumin; Lim, Jaehoon; Cho, Hyunduck; Roh, Jeongkyun; Lee, Hyunkoo; Nam, Sangwook; Lee, Changhee] Seoul Natl Univ, Dept Elect & Comp Engn, 1 Gwanak Ro, Seoul 08826, South Korea. [Kang, Chan-mo; Yun, Sumin; Lim, Jaehoon; Cho, Hyunduck; Roh, Jeongkyun; Lee, Hyunkoo; Nam, Sangwook; Lee, Changhee] Seoul Natl Univ, Interuniv Semicond Res Ctr, 1 Gwanak Ro, Seoul 08826, South Korea. [Kang, Chan-mo] Elect & Telecommun Res Inst, IoT Convergence Res Dept, 218 Gajeong Ro, Daejeon 34129, South Korea. [Wade, Jessica; Kim, Ji-Seon] Univ London Imperial Coll Sci Technol & Med, Dept Phys, South Kensington Campus, London SW7 2AZ, England. [Wade, Jessica; Kim, Ji-Seon] Univ London Imperial Coll Sci Technol & Med, Ctr Plast Elect, South Kensington Campus, London SW7 2AZ, England. [Lim, Jaehoon] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. [Lee, Hyunkoo] Elect & Telecommun Res Inst, Soft IO Interface Res Sect, 218 Gajeong Ro, Daejeon 34129, South Korea. [Bradley, Donal D. C.] Univ Oxford, Dept Elect Sci, Math Phys & Life Sci Div, Oxford OX1 3PD, England. [Bradley, Donal D. C.] Univ Oxford, Dept Phys, Math Phys & Life Sci Div, Oxford OX1 3PD, England. RP Lee, C (reprint author), Seoul Natl Univ, Dept Elect & Comp Engn, 1 Gwanak Ro, Seoul 08826, South Korea.; Lee, C (reprint author), Seoul Natl Univ, Interuniv Semicond Res Ctr, 1 Gwanak Ro, Seoul 08826, South Korea.; Kim, JS (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Phys, South Kensington Campus, London SW7 2AZ, England.; Kim, JS (reprint author), Univ London Imperial Coll Sci Technol & Med, Ctr Plast Elect, South Kensington Campus, London SW7 2AZ, England.; Bradley, DDC (reprint author), Univ Oxford, Dept Elect Sci, Math Phys & Life Sci Div, Oxford OX1 3PD, England.; Bradley, DDC (reprint author), Univ Oxford, Dept Phys, Math Phys & Life Sci Div, Oxford OX1 3PD, England. EM Donal.Bradley@mpls.ox.ac.uk; ji-seon.kim@imperial.ac.uk; chlee7@snu.ac.kr RI Lee, Changhee/A-2471-2009 OI Lee, Changhee/0000-0003-2800-8250 FU Global Frontier R&D Program on Center for Multiscale Energy System - National Research Foundation under the Ministry of Science, ICT Future, Korea [2011-0031567]; Human Resources Development programme of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Ministry of Trade, Industry, and Energy, Korea; UK Engineering and Physical Sciences Research Council [EP/K029843/1]; Global Partnership Funding the UK Science & Innovation Network [GPF-14 175]; UK Engineering and Physical Sciences Research Council via the "EPSRC Centre for Innovative Manufacturing in Large Area Electronics" [EP/K03099X/1] FX This work was supported by the Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Science, ICT & Future, Korea (Grant No. 2011-0031567). This work was also supported by the Human Resources Development programme (No. 20124010203170) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), funded by the Ministry of Trade, Industry, and Energy, Korea. This work was further supported by the UK Engineering and Physical Sciences Research Council (EP/K029843/1 and DTA studentship) and the Global Partnership Funding (GPF-14 175 Plastic Electronics) from the UK Science & Innovation Network. D.D.C.B. acknowledges partial support from the UK Engineering and Physical Sciences Research Council via the "EPSRC Centre for Innovative Manufacturing in Large Area Electronics" (EP/K03099X/1). NR 42 TC 2 Z9 2 U1 4 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2199-160X J9 ADV ELECTRON MATER JI Adv. Electron. Mater. PD FEB PY 2016 VL 2 IS 2 AR 1500282 DI 10.1002/aelm.201500282 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DE0SP UT WOS:000370335200010 ER PT J AU Cooper, F Dawson, JF AF Cooper, Fred Dawson, John F. TI Auxiliary field loop expansion of the effective action for a class of stochastic partial differential equations SO ANNALS OF PHYSICS LA English DT Article DE Stochastic PDEs; Effective action; Path integral; Auxiliary field loop expansion ID PARISI-ZHANG EQUATION; LARGE N; RENORMALIZATION; DYNAMICS; MODEL; TURBULENCE; SYSTEMS; LIMIT AB We present an alternative to the perturbative (in coupling constant) diagrammatic approach for studying stochastic dynamics of a class of reaction diffusion systems. Our approach is based on an auxiliary field loop expansion for the path integral representation for the generating functional of the noise induced correlation functions of the fields describing these systems. The systems we consider include Langevin systems describable by the set of self interacting classical fields phi(i)(x, t) in the presence of external noise eta(i)(x, t), namely (partial derivative(t) - nu del(2))phi - F[phi] = eta, as well as chemical reaction annihilation processes obtained by applying the many body approach of Doi-Peliti to the Master Equation formulation of these problems. We consider two different effective actions, one based on the Onsager-Machlup (OM) approach, and the other due to Janssen-deGenneris based on the Martin-Siggia-Rose (MSR) response function approach. For the simple models we consider, we determine an analytic expression for the Energy landscape (effective potential) in both formalisms and show how to obtain the more physical effective potential of the Onsager-Machlup approach from the MSR effective potential in leading order in the auxiliary field loop expansion. For the KPZ equation we find that our approximation, which is non-perturbative and obeys broken symmetry Ward identities, does not lead to the appearance of a fluctuation induced symmetry breakdown. This contradicts the results of earlier studies. (C) 2015 Elsevier Inc. All rights reserved. C1 [Cooper, Fred] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA. [Cooper, Fred] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Cooper, Fred] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Dawson, John F.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. RP Dawson, JF (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. EM cooper@santafe.edu; john.dawson@unh.edu OI Dawson, John/0000-0001-8060-5816 NR 52 TC 1 Z9 1 U1 1 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-4916 EI 1096-035X J9 ANN PHYS-NEW YORK JI Ann. Phys. PD FEB PY 2016 VL 365 BP 118 EP 154 DI 10.1016/j.aop.2015.12.007 PG 37 WC Physics, Multidisciplinary SC Physics GA DD8ZI UT WOS:000370215000009 ER PT J AU Adam, R Ade, PAR Aghanim, N Alves, MIR Arnaud, M Arzoumanian, D Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Colombi, S Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouillel, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejse, A Galeotta, S Gai, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, K Hanson, D Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneiss, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Marshal, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Descheness, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Reinecke, M Remazeilles, M Renault, C Ristorcelli, I Rocha, G Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savini, G Scott, D Soler, JD Spencer, LD Stolyarov', V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Wiesemeyer, H Yvon, D Zacchei, A Zonca, A AF Adam, R. Ade, P. A. R. Aghanim, N. Alves, M. I. R. Arnaud, M. Arzoumanian, D. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J-P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J-F Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouillel, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejse, A. Galeotta, S. Gai, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneiss, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J-M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Marshal, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Descheness, M-A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Pratt, G. W. Prunet, S. Puget, J-L. Rachen, J. P. Reach, W. T. Reinecke, M. Remazeilles, M. Renault, C. Ristorcelli, I. Rocha, G. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savini, G. Scott, D. Soler, J. D. Spencer, L. D. Stolyarov', V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A-S. Sygnet, J-F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Wiesemeyer, H. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: clouds; ISM: magnetic fields; ISM: structure; magnetohydrodynamics (MHD); polarization; turbulence ID TAURUS MOLECULAR CLOUD; MASS STAR-FORMATION; INFRARED POLARIMETRY; MILKY-WAY; FILAMENTARY CLOUDS; POLARIZATION MAPS; SPIRAL ARMS; GOULD BELT; TURBULENCE; GAS AB The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10(20) to 10(22) cm(2). We measure the magnetic field orientation on the plane of the sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM. C1 [Cardoso, J-F; Delabrouillel, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Via le Liegi 26, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov', V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 OHE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneiss, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Descheness, M-A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Dore, O.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Suur-Uski, A-S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via E Carnevale, I-00173 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Kneiss, R.] ESO Vitacura, European So Observ, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Suur-Uski, A-S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Ducout, A.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Descheness, M-A.; Pajot, F.; Ponthieu, N.; Puget, J-L.; Remazeilles, M.; Soler, J. D.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J-F; Colombi, S.; Ducout, A.; Elsner, F.; Gai, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J-F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov', V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J-M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Marshal, D. J.; Pratt, G. W.] Univ Paris Diderot, Serv Astrophys, Lab AIM, IRFU,CEA,DSM,CNRS,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J-F] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J-F] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Adam, R.; Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Inst Natl Polytech Grenoble, CNRS,IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Wiesemeyer, H.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejse, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Mail Stop 367-17, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov', V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J-P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac I, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Bracco, A (reprint author), Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. EM andrea.bracco@ias.u-psud.fr RI Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; OI Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Hivon, Eric/0000-0003-1880-2733; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416 FU European Research Council under the European Union/ERC [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 99 TC 7 Z9 7 U1 8 U2 13 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A135 DI 10.1051/0004-6361/201425044 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900145 ER PT J AU Adam, R Ade, PAR Aghanim, N Arnaud, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartlett, JG Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Challinor, A Chamballu, A Chary, RR Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Zotti, G Delabrouille, J Delouis, JM Desert, FX Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dunkley, J Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Guillet, V Hansen, FK Hanson, D Harrison, DL Helou, G Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hivon, E Hobson, M Holmes, WA Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jewell, J Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Knox, L Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leahy, JP Leonardi, R Lesgourgues, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Meinhold, PR Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Pagano, L Pajot, F Paladini, R Paoletti, D Partridge, B Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Remazeilles, M Renault, C Renzi, A Ricciardi, S Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G d'Orfeuil, BR Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Soler, JD Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vibert, L Vielva, P Villa, F Wade, LA Wandelt, BD Watson, R Wehus, IK White, M White, SDM Yvon, D Zacchei, A Zonca, A AF Adam, R. Ade, P. A. R. Aghanim, N. Arnaud, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Challinor, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Zotti, G. Delabrouille, J. Delouis, J. -M. Desert, F. -X. Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dunkley, J. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Hanson, D. Harrison, D. L. Helou, G. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hivon, E. Hobson, M. Holmes, W. A. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jewell, J. Jones, W. C. Juvela, M. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leahy, J. P. Leonardi, R. Lesgourgues, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Remazeilles, M. Renault, C. Renzi, A. Ricciardi, S. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rouille d'Orfeuil, B. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Soler, J. D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vibert, L. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Watson, R. Wehus, I. K. White, M. White, S. D. M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; cosmology: observations; ISM: structure; ISM: magnetic fields; polarization ID MICROWAVE BACKGROUND POLARIZATION; PRE-LAUNCH STATUS; INTERSTELLAR DUST; 353 GHZ; STATISTICAL PROPERTIES; FOREGROUND EMISSION; HIGH-FREQUENCY; MOLECULAR GAS; B-MODES; SUBMILLIMETER AB The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra C-l(EE) and C-l(BB) over the multipole range 40 < l < 600 well away from the Galactic plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws in multipole, C-l proportional to l(alpha), with exponents alpha(EE,BB) = -2.42 +/- 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with beta(d) = 1.59 and T-d = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B-and E-modes, C-l(BB) = C-l(EE) = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no "clean" windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power D-l(BB) equivalent to l(l + 1)C-l(BB)/(2 pi) of 1.32 x 10(-2) mu K-CMB(2) over the multipole range of the primordial recombination bump (40 < l < 120); the statistical uncertainty is +/-0.29 x 10(-2) mu K-CMB(2) and there is an additional uncertainty (+0.28, -0.24) x 10(-2) mu K-CMB(2) from the extrapolation. This level is the same magnitude as reported by BICEP2 over this l range, which highlights the need for assessment of the polarized dust signal even in the cleanest windows of the sky. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Sorbonne Paris Cite, APC, CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Viale Liegi 26, Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Dore, O.; Helou, G.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Challinor, A.] Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg, Tallahassee, FL 32306 USA. [Juvela, M.; Keihaenen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] ULL, Dept Astrofis, Tenerife 38206, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107,Casilla 19001, 3antiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; Ducout, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; Paladini, R.; Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Soler, J. D.; Vibert, L.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Delouis, J. -M.; Ducout, A.; Elsner, F.; Galli, S.; Hivon, E.; Mangilli, A.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Challinor, A.; Efstathiou, G.; Gratton, S.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Ducout, A.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Holmes, W. A.; Jewell, J.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Ducout, A.; Leahy, J. P.; Maffei, B.; Noviello, F.; Remazeilles, M.; Watson, R.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Challinor, A.; Gratton, S.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Rouille d'Orfeuil, B.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, Orsay, France. [Lesgourgues, J.] Univ Savoie, CNRS, LAPTh, BP110, F-74941 Annecy Le Vieux, France. [Catalano, A.; Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM,IRFU,Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris, France. [Adam, R.; Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Mail Stop 367-17, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Lesgourgues, J.] Ecole Polytech Fed Lausanne, SB ITP LPPC, CH-1015 Lausanne, Switzerland. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.; Dunkley, J.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Lesgourgues, J.] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Dolag, K.] Univ Munich, Univ Observ, Scheinerstr 1, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Aumont, J (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. EM jonathan.aumont@ias.u-psud.fr RI Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Pearson, Timothy/N-2376-2015; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; OI Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Pearson, Timothy/0000-0001-5213-6231; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Nati, Federico/0000-0002-8307-5088; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924 FU European Research Council under the European Union/ERC [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on. Some of the results in this paper have been derived using the HEALPix package. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 81 TC 172 Z9 172 U1 8 U2 18 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A133 DI 10.1051/0004-6361/201425034 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900143 ER PT J AU Ade, PAR Aghanim, N Alves, MIR Aniano, G Arnaud, M Ashdown, M Atunont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, FPL Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Avies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Draine, BT Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galcotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Holmes, WA Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Natoli, P Norgaard-Nielsen, HU Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Perdereau, O Perotto, L Perrotta, F Pettorino, V Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Ristorcelli, I Rocha, G Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D ScottI, D Spencer, LD Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Ysard, N Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Alves, M. I. R. Aniano, G. Arnaud, M. Ashdown, M. Atunont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, F. P. L. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Avies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Draine, B. T. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galcotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Holmes, W. A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J-M Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Natoli, P. Norgaard-Nielsen, H. U. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Perdereau, O. Perotto, L. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Pratt, G. W. Prunet, S. Puget, J-L Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ristorcelli, I. Rocha, G. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Scott, D., I Spencer, L. D. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Ysard, N. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE dust, extinction; ISM: general ID DIFFUSE INTERSTELLAR-MEDIUM; SPITZER-SPACE-TELESCOPE; NEARBY GALAXIES SURVEY; SMALL-MAGELLANIC-CLOUD; INFRARED-EMISSION; OPTICAL-PROPERTIES; ARRAY CAMERA; DATA RELEASE; MILKY-WAY; EXTINCTION AB We present all-sky modelling of the high resolution Planck, IRAS, andWISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density Sigma(Md), the dust optical extinction A(V), and the starlight intensity heating the bulk of the dust, parametrized by U-min. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31), the present dust mass estimates agree remarkably well (within 10%) with DL estimates based on independent Spitzer and Herschel data. We compare the DL optical extinction A(V) for the diffuse interstellar medium (ISM) with optical estimates for approximately 2 x 10(5) quasi-stellar objects (QSOs) observed in the Sloan Digital Sky Survey (SDSS). The DL A(V) estimates are larger than those determined towards QSOs by a factor of about 2, which depends on U-min. The DL fitting parameter U-min, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit A(V), and not only in the starlight intensity. These results show that some of the physical assumptions of the DL model will need to be revised. To circumvent the model deficiency, we propose an empirical renormalization of the DL A(V) estimate, dependent of U-min, which compensates for the systematic differences found with QSO observations. This renormalization, made to match the A(V) estimates towards QSOs, also brings into agreement the DL A(V) estimates with those derived for molecular clouds from the near-IR colours of stars in the 2 micron all sky survey (2MASS). The DL model and the QSOs data are also used to compress the spectral information in the Planck and IRAS observations for the diffuse ISM to a family of 20 SEDs normalized per A(V), parameterized by U-min, which may be used to test and empirically calibrate dust models. The family of SEDs and the maps generated with the DL model are made public in the Planck Legacy Archive. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, APC, Sorbonne Paris Cite, CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Viale Liegi 26, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Kneissl, R.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D., I] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, F. P. L.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Keihanen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.; Ysard, N.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00185 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] ULL, Dept Astrofis, Tenerife 38206, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] INAF Osservatorio Aston Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galcotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Aniano, G.; Atunont, J.; Boulanger, F.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J-L; Remazeilles, M.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91898 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Galli, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys, CNRS, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38200, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Colombo, F. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Holmes, W. A.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Avies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J-M; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75000 Paris, France. [Arnaud, M.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM,IRFU,Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Inst Natl Polytech Grenoble, CNRS,IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Mail Stop 367-17, Pasadena, CA 91125 USA. [Draine, B. T.] Princeton Univ Observ, Peyton Hall, Princeton, NJ 08544 USA. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Aniano, G; Boulanger, F (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91898 Orsay, France. EM ganiano@ias.u-psud.fr; francois.boulanger@ias.u-psud.fr RI Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Colombo, Loris/J-2415-2016; Remazeilles, Mathieu/N-1793-2015; Stolyarov, Vladislav/C-5656-2017; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Herranz, Diego/K-9143-2014; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015 OI Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Colombo, Loris/0000-0003-4572-7732; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; FU European Research Council under the European Union/ERC [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 80 TC 18 Z9 18 U1 2 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A132 DI 10.1051/0004-6361/201424945 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900142 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday', AJ Barreiro, RB Bartolo, N Battaner, E Benabed', K Benoit-Levy, A Bernard', JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borri, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Cardoso, JF Catalano, A Chamballu, A Chary, RR Chiang', HC Christensen', PR Colombo, LPL Combet, C Cri, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ De Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Dickinson, C Diego, JM Dole', H Donzelli, S Dore, O Douspis, M Dunkley, J Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frolov, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Guillet, V Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hornstrup, A Hovest, W Huang, Z Huffenberger, KM Hurier, G Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Kneiss', R Knoche, J Kunz, M Kurki-Suonio, H Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Leon-Tavares, J Levrier, E Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Perdereau, O Pettorino, V Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Serra, P Soler, JD Stolyarov, V Sudiwala, R Sunyaev, R Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J-P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Cardoso, J-F. Catalano, A. Chamballu, A. Chary, R-R. Chiang, H. C. Christensen, P. R. Colombo, L. P. L. Combet, C. Cri, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. De Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J-M. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dunkley, J. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Guillet, V. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hornstrup, A. Hovest, W. Huang, Z. Huffenberger, K. M. Hurier, G. Jaffe, T. R. Jones, W. C. Juvela, M. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneiss', R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lamarre, J-M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Leon-Tavares, J. Levrier, E. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M-A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Perdereau, O. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J-L Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Serra, P. Soler, J. D. Stolyarov, V. Sudiwala, R. Sunyaev, R. Suur-Uski, A-S Sygnet, J-F Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXVIII. E- and B-modes of dust polarization from the magnetized filamentary structure of the interstellar medium SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE polarization; galaxies: ISM; submillimeter: ISM; ISM: general ID ROTATION MEASURES; COSMIC WEB; EMISSION; GALAXY; MORPHOLOGY; WAVELETS; SPHERE; CLOUD AB The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. We present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder (SMAFF), we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2 degrees (corresponding to 3.5 pc in length for a typical distance of 100 pc). These filaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the C-l(TE)/C-l(EE) ratio, reported in the power spectra analysis of the Planck 353 GHz polarization maps. Future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter. C1 [Delabrouille, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Observ Paris, Sorbonne Paris Cite, APC,CNRS IN2P3,CEA Irfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Leon-Tavares, J.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneiss', R.] Atacama Large Millimeter Submillimeter Array, ALMA Santiago Cent Off, Alonso de Cordova 3107,763 0355 Casilla, Santiago, Chile. [Huang, Z.; Martin, P. G.; Miville-Deschenes, M-A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Helou, G.; Hildebrandt, S. R.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Plaza Murillo 2, E-28049 Madrid, Spain. [Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Ave Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Huffenberger, K. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihaenen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A-S; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Fraisse, A. A.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Rome, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Kneiss', R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107, Santiago, Chile. [Leonardi, R.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Leon-Tavares, J.] Univ Turku, Finnish Ctr Astron, ESO FINCA, Vaisalantie 20, Piikkio 21500, Finland. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A-S; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, FIN-00014 Helsinki, Finland. [Umana, G.] Osserv Astrofis Catania, INAF, Via S Sofia 78, I-95123 Catania, Italy. Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, I-40127 Trieste, Italy. [Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, I-40129 Bologna, Italy. [Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E. Bassini 15, I-20133 Milan, Italy. [Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, INFN, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. Inst Univ France, 103 bd St Michel, F-75005 Paris, France. [Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Miville-Deschenes, M-A.; Pajot, F.; Ponthieu, N.; Puget, J-L; Remazeilles, M.; Serra, P.; Soler, J. D.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. [Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J-F; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Leon-Tavares, J.] INAOE, Apartado Postal 51 & 216, Puebla 72000, Mexico. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Ave Castros S-N, E-39005 Santander, Spain. [Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA. [Maffei, B.; Remazeilles, M.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Sch Phys & Astron, Oxford Rd, Oxford M13 9PL, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Stolyarov, V.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Lamarre, J-M.; Levrier, E.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM IRFU Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Macias-Perez, J. F.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, Wales. [Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada. Sorbonne Univ UPMC, Inst Astrophys Paris, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian 369167, Zelenchukskiy R, Russia. Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Ghosh, T (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. EM tuhin.ghosh@ias.u-psud.fr RI Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; OI Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Matarrese, Sabino/0000-0002-2573-1243; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Huang, Zhiqi/0000-0002-1506-1063; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); European Research Council under the European Union/ERC [267934] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. Some of the results in this paper have been derived using the HEALPix package. NR 50 TC 1 Z9 1 U1 4 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A141 DI 10.1051/0004-6361/201526506 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900151 ER PT J AU Ade, PAR Aghanim, N Alves, MIR Arnaud, M Arzoumanian, D Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Berne, O Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejse, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Hanson, D Harrison, DL Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Nirgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Oppermann, N Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Perrotta, F Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ricciardi, S Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Savelainen, M Savini, G Scott, D Soler, JD Stolyarov, V Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Alves, M. I. R. Arnaud, M. Arzoumanian, D. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J-P. Berne, O. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Calabrese, E. Cardoso, J-F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejse, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Hanson, D. Harrison, D. L. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J-M. Lasenby, A. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. mendes, L. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M-A. moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Nirgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Perrotta, F. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Puget, J-L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ricciardi, S. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savelainen, M. Savini, G. Scott, D. Soler, J. D. Stolyarov, V. Sutton, D. Suur-Uski, A-S. Sygnet, J-F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXIII. Signature of the magnetic field geometry of interstellar filaments in dust polarization maps SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE dust, extinction; ISM: magnetic fields; polarization; submillimeter: ISM ID TAURUS MOLECULAR CLOUD; GOULD BELT SURVEY; GRAIN ALIGNMENT; DARK-CLOUDS; RADIATIVE TORQUES; PRESTELLAR CORES; STAR-FORMATION; SUPRATHERMAL ROTATION; INFRARED POLARIMETRY; IMAGING POLARIMETRY AB Planck observations at 353 GHz provide the first fully sampled maps of the polarized dust emission towards interstellar filaments and their backgrounds (i.e., the emission observed in the surroundings of the filaments). The data allow us to determine the intrinsic polarization properties of the filaments and therefore to provide insight into the structure of their magnetic field (B). We present the polarization maps of three nearby (several parsecs long) star-forming filaments of moderate column density (N-H about 10(22) cm(-2)): Musca, B211, and L1506. These three filaments are detected above the background in dust total and polarized emission. We use the spatial information to separate Stokes I, Q, and U of the filaments from those of their backgrounds, an essential step in measuring the intrinsic polarization fraction (p) and angle (psi) of each emission component. We find that the polarization angles in the three filaments (psi(fil)) are coherent along their lengths and not the same as in their backgrounds (psi(bg)). The differences between psi(fil) and psi(bg) are 12 degrees and 54 degrees for Musca and L1506, respectively, and only 6 degrees in the case of B211. These di ff erences for Musca and L1506 are larger than the dispersions of psi, both along the filaments and in their backgrounds. The observed changes of psi are direct evidence of variations of the orientation of the plane of the sky (POS) projection of the magnetic field. As in previous studies, we find a decrease of several per cent in p with N-H from the backgrounds to the crest of the filaments. We show that the bulk of the drop in p within the filaments cannot be explained by random fluctuations of the orientation of the magnetic field because they are too small (sigma(psi) < 10 degrees). We recognize the degeneracy between the dust alignment efficiency (by, e. g., radiative torques) and the structure of the B-field in causing variations in p, but we argue that the decrease in p from the backgrounds to the filaments results in part from depolarization associated with the 3D structure of the B-field: both its orientation in the POS and with respect to the POS. We do not resolve the inner structure of the filaments, but at the smallest scales accessible with Planck (similar to 0.2 pc), the observed changes of psi and p hold information on the magnetic field structure within filaments. They show that both the mean field and its fluctuations in the filaments are different from those of their backgrounds, which points to a coupling between the matter and the B-field in the filament formation process. C1 [Cardoso, J-F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, AstroParticule & Cosmol, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana, Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M-A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Nirgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A-S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34128 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A-S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Mitra, S.] IUCAA, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M-A.; Pajot, F.; Puget, J-L.; Remazeilles, M.; Soler, J. D.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J-F.; Colombi, S.; Ducout, A.; Elsner, F.; Hivon, E.; moneti, A.; Sygnet, J-F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Mangilli, A.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91400 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J-M.; Levrier, F.; Roudier, G.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,IRFU,CEA,DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J-F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J-F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejse, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] UPMC, Univ Paris 04, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Colombi, S.; Elsner, F.; Hivon, E.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J-P.; Berne, O.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac I, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Arzoumanian, D (reprint author), Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. EM doris.arzoumanian@ias.u-psud.fr RI Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; OI Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; TERENZI, LUCA/0000-0001-9915-6379; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); European Research Council under the European Union/ERC [267934] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 103 TC 4 Z9 4 U1 5 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A136 DI 10.1051/0004-6361/201425305 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900146 ER PT J AU Ade, PAR Aghanim, N Alves, MIR Arnaud, M Arzoumanian, D Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit, A Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Calabrese, E Cardoso, JF Catalano, A Chiang, HC Christensen, PR Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falceta-Goncalves, D Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Gudmundsson, JE Guillet, V Harrison, DL Helou, G Hennebelle, P Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Holmes, WA Hornstrup, A Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Netterfield, CB Noviello, F Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Soler, JD Stolyarov, V Sudiwala, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Ysard, N Yvon, D Zonca, A AF Ade, P. A. R. Aghanim, N. Alves, M. I. R. Arnaud, M. Arzoumanian, D. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit, A. Benoit-Levy, A. Bernard, J-P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chiang, H. C. Christensen, P. R. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falceta-Goncalves, D. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Guillet, V. Harrison, D. L. Helou, G. Hennebelle, P. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Holmes, W. A. Hornstrup, A. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Netterfield, C. B. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Soler, J. D. Stolyarov, V. Sudiwala, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Ysard, N. Yvon, D. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; ISM: magnetic fields; ISM: clouds; dust, extinction; submillimeter: ISM; infrared: ISM ID FAR-INFRARED POLARIMETRY; STAR-FORMATION; INTERSTELLAR CLOUDS; GRAIN ALIGNMENT; NONHOMOLOGOUS CONTRACTION; IMAGING POLARIMETRY; ALFVENIC TURBULENCE; VELOCITY ANISOTROPY; SOLAR NEIGHBORHOOD; RADIATIVE TORQUES AB Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, N-H. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from N-H approximate to 10(21) to 10(23) cm(-2), and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called "histogram of relative orientations". Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing N-H, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvenic or sub-Alfvenic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Benoit, A.; Curto, A.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J-P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, Tenerife 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.; Ysard, N.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34128 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Falceta-Goncalves, D.] Univ Sao Paulo, Escola Artes Ciencias & Humanidades, Rua Arlindo Bettio 1000, BR-03828000 Sao Paulo, Brazil. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28691, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, I-95123 Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00078 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Ducout, A.; Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, Inst Neel, CNRS, 25 Rue Martyrs, F-38042 Grenoble, France. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Soler, J. D.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR 8617, Batiment 121, F-91400 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys Paris, CNRS, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91405 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Hennebelle, P.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, Serv Astrophys, CEA,DSM,CNRS,CEA Saclay,IRFU, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Falceta-Goncalves, D.] Univ Edinburgh, Inst Astron, SUPA, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] Sorbonne Univ, UPMC, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J-P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Soler, JD (reprint author), Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR 8617, Batiment 121, F-91400 Orsay, France. EM jsolerpu@ias.u-psudfr RI Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Falceta-Goncalves, Diego/I-4576-2012; Ghosh, Tuhin/E-6899-2016; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; OI Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Pierpaoli, Elena/0000-0002-7957-8993; TERENZI, LUCA/0000-0001-9915-6379; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416 FU European Research Council under the European Union/ERC [267934] FX The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collabora tion. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 113 TC 10 Z9 10 U1 3 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A138 DI 10.1051/0004-6361/201525896 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900148 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aubourg, E Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Burigana, C Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Clements, DL Colombo, LPL Combet, C Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dolag, K Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Hornstrup, A Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kitaura, F Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Leon-Tavares, J Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Ma, YZ Macias-Perez, JF Maffei, B Maino, D Mak, DSY Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Noviello, F Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paoletti, D Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pointecouteau, E Polenta, G Pontineu, N Pratt, GW Puget, JL Puisieux, S Rachen, JP Racine, B Reach, WT Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Spencer, LD Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tucci, M Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wang, W Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aubourg, E. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombo, L. P. L. Combet, C. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dolag, K. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Hornstrup, A. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kitaura, F. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Leon-Tavares, J. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Ma, Y. -Z. Macias-Perez, J. F. Maffei, B. Maino, D. Mak, D. S. Y. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pointecouteau, E. Polenta, G. Pontineu, N. Pratt, G. W. Puget, J. -L. Puisieux, S. Rachen, J. P. Racine, B. Reach, W. T. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wang, W. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXVII. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; cosmology: observations; large-scale structure of Universe; galaxies: clusters: intracluster medium ID PARTICLE HYDRODYNAMICS SIMULATIONS; BULK FLOW; DENSITY FIELDS; COSMOLOGICAL IMPLICATIONS; WIENER RECONSTRUCTION; PECULIAR VELOCITIES; REDSHIFT SURVEYS; GALAXY SAMPLES; IRAS-GALAXIES; DARK ENERGY AB By looking at the kinetic Sunyaev-Zeldovich effect (kSZ) in Planck nominal mission data, we present a significant detection of baryons participating in large-scale bulk flows around central galaxies (CGs) at redshift z approximate to 0.1. We estimate the pairwise momentum of the kSZ temperature fluctuations at the positions of the Central Galaxy Catalogue (CGC) samples extracted from Sloan Digital Sky Survey (SDSS-DR7) data. For the foreground-cleaned SEVEM, SMICA, NILC, and COMMANDER maps, we find 1.8-2.5 sigma detections of the kSZ signal, which are consistent with the kSZ evidence found in individual Planck raw frequency maps, although lower than found in the WMAP-9yr W-band (3.3 sigma). We further reconstruct the peculiar velocity field from the CG density field, and compute for the first time the cross-correlation function between kSZ temperature fluctuations and estimates of CG radial peculiar velocities. This correlation function yields a 3.0-3.7 sigma detection of the peculiar motion of extended gas on Mpc scales in flows correlated up to distances of 80-100 h(-1) Mpc. Both the pairwise momentum estimates and the kSZ temperature-velocity field correlation find evidence for kSZ signatures out to apertures of 8 arcmin and beyond, corresponding to a physical radius of >1 Mpc, more than twice the mean virial radius of halos. This is consistent with the predictions from hydrodynamical simulations that most of the baryons are outside the virialized halos. We fit a simple model, in which the temperature-velocity cross-correlation is proportional to the signal seen in a semi-analytic model built upon N-body simulations, and interpret the proportionality constant as an effective optical depth to Thomson scattering. We find tau(T) = (1.4 +/- 0.5) x 10(-4); the simplest interpretation of this measurement is that much of the gas is in a diffuse phase, which contributes little signal to X-ray or thermal Sunyaev-Zeldovich observations. C1 [Aubourg, E.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Racine, B.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, Observ Paris, APC,CNRS,IN2P3,CEA,Irfu,Sorbonne Paris Cite, 10 Rue Alice Damon & Leonie Duquet, F-75205 Paris 13, France. [Leon-Tavares, J.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] Atacama Large Millimeter Submillimeter Array, ALMA Santiago Central Off, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Chamballu, A.; Puisieux, S.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Ma, Y. -Z.; Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] Univ London Univ Coll, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, 17 Blegdamsvej, Copenhagen, Denmark. [Kneissl, R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Leon-Tavares, J.] Univ Turku, Finnish Ctr Astron ESO FINCA, Vaisalantie 20, Piikkio 21500, Finland. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] IINAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Pontineu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Pontineu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Aumont, J.; Chamballu, A.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Pontineu, N.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR 8617, Batiment 121, Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Mak, D. S. Y.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Leon-Tavares, J.] INAOE, Apartado Postal 51 & 216, Puebla 72000, Mexico. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Ma, Y. -Z.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Mak, D. S. Y.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Henrot-Versille, S.; Mangilli, A.; Perdereau, O.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] CEA Saclay, Lab AIM, Serv Astrophys, CEA,DSM,CNRS,CEA Saclay,IRFU, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Infonnat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP7, Moscow 117997, Russia. [Kitaura, F.] Leibniz Inst Astrophys Potsdam AIP, Sternwarte 16, D-14482 Potsdam, Germany. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.; Wang, W.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, London WC1E 6I3T, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldng, Cardiff CF10 3AX, S Glam, Wales. [Bouchet, F. R.] Sorbonne Univ, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Dolag, K.] Univ Munich, Univ Observ, Scheinerstr 1, I-81679 Munich, Germany. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18071, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Hernandez-Monteagudo, C (reprint author), CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. EM chm@cefca.es RI Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Remazeilles, Mathieu/N-1793-2015; Renzi, Alessandro/K-4114-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; OI Pierpaoli, Elena/0000-0002-7957-8993; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Remazeilles, Mathieu/0000-0001-9126-6266; Renzi, Alessandro/0000-0001-9856-1970; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; TERENZI, LUCA/0000-0001-9915-6379; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); ERC [307209]; Marie Curie Career Integration Grant [CIG 294183]; Spanish Ministerio de Economia y Competitividad [AYA2012-30789] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/. This research was supported by ERC Starting Grant (No. 307209), by the Marie Curie Career Integration Grant CIG 294183 and by the Spanish Ministerio de Economia y Competitividad project AYA2012-30789. NR 65 TC 8 Z9 8 U1 3 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A140 DI 10.1051/0004-6361/201526328 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900150 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Barrena, R Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bikmaev, I Bohringer, H Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Burenin, R Burigana, C Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chary, RR Chiang, HC Chon, G Christensen, PR Clements, DL Colombo, LPL Combet, C Comis, B Crill, BP Curto, A Cuttaia, F Dahle, H Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Ferragamo, A Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Fromenteau, S Galeotta, S Galli, S Ganga, K Genova-Santos, RT Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Hansen, FK Harrison, DL Hempel, A Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, TR Keihanen, E Keskitalo, R Khamitov, I Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Leon-Tavares, J Levrier, F Lietzen, H Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S McGehee, P Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Perdereau, O Pettorino, V Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Stolyarov, V Streblyanska, A Sudiwala, R Sunyaev, R Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tramonte, D Tristram, M Tucci, M Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Barrena, R. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bikmaev, I. Bohringer, H. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burenin, R. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chary, R. -R. Chiang, H. C. Chon, G. Christensen, P. R. Clements, D. L. Colombo, L. P. L. Combet, C. Comis, B. Crill, B. P. Curto, A. Cuttaia, F. Dahle, H. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Ferragamo, A. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Fromenteau, S. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Hansen, F. K. Harrison, D. L. Hempel, A. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, T. R. Keihanen, E. Keskitalo, R. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Leon-Tavares, J. Levrier, F. Lietzen, H. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. McGehee, P. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Perdereau, O. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Stolyarov, V. Streblyanska, A. Sudiwala, R. Sunyaev, R. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tramonte, D. Tristram, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXVI. Optical identification and redshifts of Planck SZ sources with telescopes at the Canary Islands observatories SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE large-scale structure of Universe; galaxies: clusters: general; catalogs ID DIGITAL SKY SURVEY; GALAXY CLUSTER CATALOG; 720 SQUARE DEGREES; DATA RELEASE; COSMOLOGY; SAMPLE; CONSTRAINTS AB We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with telescopes at the Canary Islands observatories as part of the general optical follow-up programme undertaken by the Planck Collaboration. In total, 78 SZ sources are discussed. Deep-imaging observations were obtained for most of these sources; spectroscopic observations in either in long-slit or multi-object modes were obtained for many. We effectively used 37.5 clear nights. We found optical counterparts for 73 of the 78 candidates. This sample includes 53 spectroscopic redshift determinations, 20 of them obtained with a multi-object spectroscopic mode. The sample contains new redshifts for 27 Planck clusters that were not included in the first Planck SZ source catalogue (PSZ1). C1 [Cardoso, J. -F.; Delabrouille, J.; Fromenteau, S.; Ganga, K.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, AstroParticule & Cosmol, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Leon-Tavares, J.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Bauman Str 20, Kazan 420111, Russia. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] Atacama Large Millimeter Submillimeter Array, ALMA Santiago Cent Off, Alonso de Cordova 3107,Casilla 763, Santiago 0355, Chile. [Leonardi, R.] CGEE, SCS Qd 9,4 Andar,Ed Parque Cidade Corp, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Ave colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, 1200E, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Plaza Murillo 2, E-28006 Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Barrena, R.; Ferragamo, A.; Genova-Santos, R. T.; Hempel, A.; Lietzen, H.; Rebolo, R.; Streblyanska, A.; Tramonte, D.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Bikmaev, I.; Khamitov, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kremlevskaya Str 18, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] Univ London Univ Coll, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00173 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Kneissl, R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Leon-Tavares, J.] Univ Turku, Finnish Ctr Astron ESO FINCA, Vaisalantie 20, Piikkio 21500, Finland. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00136 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Clements, D. L.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Chary, R. -R.; McGehee, P.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Fromenteau, S.; Hurier, G.; Kunz, M.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Leon-Tavares, J.] INAOE, Apartado Postal 51 & 216, Puebla 72000, Mexico. [Barrena, R.; Ferragamo, A.; Genova-Santos, R. T.; Hempel, A.; Lietzen, H.; Rebolo, R.; Rubino-Martin, J. A.; Streblyanska, A.; Tramonte, D.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Maffei, B.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91400 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, Serv Astrophys, CEA,DSM,CNRS,CEA Saclay,IRFU, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Bohringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Burenin, R.] Moscow Inst Phys & Technol, Inst Sky Per 9, Dolgoprudnyi 141700, Russia. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] Sorbonne Univ, UPMC, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Burenin, R.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Khamitov, I.] Akdeniz Univ Campus, TUBITAK Natl Observ, TR-07058 Antalya, Turkey. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Hempel, A.] Univ Andres Bello, Dept Ciencias Fis, Fac Ciencias Exactas, Santiago De Compostela 8370134, Spain. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18010, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, Granada 18010, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. RP Rubino-Martin, JA (reprint author), Inst Astrofis Canarias, C Via Lactea S-N, Tenerife, Spain. EM jalberto@iac.es RI Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Remazeilles, Mathieu/N-1793-2015; Renzi, Alessandro/K-4114-2015; Nati, Federico/I-4469-2016; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; OI Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Remazeilles, Mathieu/0000-0001-9126-6266; Renzi, Alessandro/0000-0001-9856-1970; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; TERENZI, LUCA/0000-0001-9915-6379; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Pierpaoli, Elena/0000-0002-7957-8993; Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); CCI International Time Programme at the Canary Islands observatories [ITP12-2, ITP13-8]; NASA; CNES; CNRS; SDSS; Alfred P. Sloan Foundation; National Aeronautics and Space Administration; National Science Foundation; US Department of Energy; Japanese Monbukagakusho; Max Planck Society; Spanish Ministry of Economy and Competitiveness (MINECO) [MINECO SEV-2011-0187]; Consolider-Ingenio project [CSD2010-00064] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. This article is based on observations made with a) the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos (ORM) of the Instituto de Astrofisica de Canarias (IAC), in the island of La Palma; b) the Isaac Newton Telescope and the William Herschel Telescope operated on the island of La Palma by the ISAAC Newton Group of Telescopes in the Spanish ORM of the IAC; c) the italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish ORM of the IAC; d) the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish ORM of the IAC; and e) the IAC80 telescope operated on the island of Tenerife by the IAC in the Spanish Observatorio del Teide. This research has been carried out with telescope time awarded by the CCI International Time Programme at the Canary Islands observatories (programmes ITP12-2 and ITP13-8). This research has made use of the following databases: the NED database, operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA; SIMBAD, operated at CDS, Strasbourg, France; the SZ-Cluster Database operated by the Integrated Data and Operation Center (IDOC) at the IAS under contract with CNES and CNRS; and the SDSS. Funding for the Sloan Digital Sky Survey (SDSS) has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the US Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. A.S., R.B., H.L., and J.A.R.M. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) under the 2011 Severo Ochoa Program MINECO SEV-2011-0187, and the Consolider-Ingenio project CSD2010-00064 (EPI: Exploring the Physics of Inflation). NR 53 TC 0 Z9 0 U1 3 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A139 DI 10.1051/0004-6361/201526345 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900149 ER PT J AU Aghanim, N Alves, MIR Arnaud, M Arzoumanian, D Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Burigana, C Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Colombi, S Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Frejsel, A Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Guillet, V Hansen, FK Hanson, D Harrison, DL Henrot-Versille, S Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jewell, J Juvela, M Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Noviello, F Novikov, D Novikov, I Oppermann, N Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Patanchon, G Perdereau, O Pettorino, V Piacentini, F Piat, M Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prezeau, G Prunet, S Puget, JL Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Soler, JD Spencer, LD Stolyarov, V Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Wiesemeyer, H Yvon, D Zacchei, A Zonca, A AF Aghanim, N. Alves, M. I. R. Arnaud, M. Arzoumanian, D. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Frejsel, A. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Guillet, V. Hansen, F. K. Hanson, D. Harrison, D. L. Henrot-Versille, S. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jewell, J. Juvela, M. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Pettorino, V. Piacentini, F. Piat, M. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prezeau, G. Prunet, S. Puget, J. -L. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Soler, J. D. Spencer, L. D. Stolyarov, V. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Wiesemeyer, H. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXIV. The magnetic field structure in the Rosette Nebula SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: magnetic fields; polarization; radiation mechanisms: general; radio continuum: ISM; submillimeter: ISM ID H-II REGIONS; MOLECULAR CLOUDS; STAR-FORMATION; FARADAY-ROTATION; STOKES PARAMETERS; ELEPHANT-TRUNK; GALACTIC PLANE; HII-REGIONS; NGC 2244; EMISSION AB Planck has mapped the polarized dust emission over the whole sky, making it possible to trace the Galactic magnetic field structure that pervades the interstellar medium (ISM). We combine polarization data from Planck with rotation measure (RM) observations towards a massive star-forming region, the Rosette Nebula in the Monoceros molecular cloud, to study its magnetic field structure and the impact of an expanding H II region on the morphology of the field. We derive an analytical solution for the magnetic field, assumed to evolve from an initially uniform configuration following the expansion of ionized gas and the formation of a shell of swept-up ISM. From the RM data we estimate a mean value of the line-of-sight component of the magnetic field of about 3 mu G (towards the observer) in the Rosette Nebula, for a uniform electron density of about 12 cm(-3). The dust shell that surrounds the Rosette H II region is clearly observed in the Planck intensity map at 353 GHz, with a polarization signal significantly different from that of the local background when considered as a whole. The Planck observations constrain the plane-of-the-sky orientation of the magnetic field in the Rosette's parent molecular cloud to be mostly aligned with the large-scale field along the Galactic plane. The Planck data are compared with the analytical model, which predicts the mean polarization properties of a spherical and uniform dust shell for a given orientation of the field. This comparison leads to an upper limit of about 45 degrees on the angle between the line of sight and the magnetic field in the Rosette complex, for an assumed intrinsic dust polarization fraction of 4%. This field direction can reproduce the RM values detected in the ionized region if the magnetic field strength in the Monoceros molecular cloud is in the range 6.5-9 mu G. The present analytical model is able to reproduce the RM distribution across the ionized nebula, as well as the mean dust polarization properties of the swept-up shell, and can be directly applied to other similar objects. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roudier, G.; Savelainen, M.; Scott, D.] Univ Paris Diderot, AstroParticule & Cosmol, Sorbonne Paris Cite, APC,CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Damon & Leonie Duquet, Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7950 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Viale Liegi 26, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, LAM, CNRS, UMR 7326, F-13388 Marseille, France. [Curto, A.; Hobson, M.; Lasenby, A.] Univ Cambridge, Astrophys Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Hanson, D.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Sandri, M.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Tuovinen, J.] Univ Dublin Trinity Coll, CRANN, Pearse St, Dublin 2, Ireland. [Dore, O.; Prezeau, G.; Renzi, A.; Santos, D.] CALTECH, Pasadena, CA 91125 USA. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.; Rosset, C.] CSIC, Madrid, Spain. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.] Tech Univ Denmark, DTU Space, Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, E-33007 Oviedo, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z4, Canada. [Colombo, L. P. L.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Juvela, M.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Chiang, H. C.; Fraisse, A. A.] Princeton Univ, Dept Phys, 1746 Elizabeth, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Savini, G.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34128 Trieste, Italy. [Rusholme, B.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rosset, C.; Soler, J. D.] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Dupac, X.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35141 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, I-00136 Rome, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Stolyarov, V.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Savini, G.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Rusholme, B.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Jaffe, A. H.; Ponthieu, N.] CNRS, IPAG, F-38000 Grenoble, France. [Ducout, A.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Spencer, L. D.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Chamballu, A.; Dole, H.; Douspis, M.; Ghosh, T.; Guillet, V.; Hurier, G.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Rocha, G.; Roudier, G.] Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Ducout, A.; Elsner, F.; Galli, S.; Hivon, E.; Mangilli, A.; Moneti, A.; Prunet, S.; Ristorcelli, I.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rebolo, R.; Rosset, C.; Soler, J. D.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, Inst Fis Cantabria, CSIC, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hanson, D.; Hildebrandt, S. R.; Holmes, W. A.; Jewell, J.; Lawrence, C. R.; Pietrobon, D.; Prezeau, G.; Renzi, A.; Santos, D.; Scott, D.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.; Roudier, G.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Harrison, D. L.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Catalano, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Scott, D.] Observ Paris, LERMA, CNRS, 61 Ave Observ, F-57014 Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.; Renault, C.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA,DSM,CNRS,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Rubino-Martin, J. A.; Sutton, D.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS, IN2P3,Inst Natl Polytech Grenoble, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ensslin, T. A.; Hovest, W.; Knoche, J.; Reinecke, M.; Rossetti, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Wiesemeyer, H.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Hanson, D.] McGill Univ, McGill Phys, Ernest Rutherford Phys Bldg,3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Frejsel, A.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observat Cosmol, Mail Stop 367-17, Pasadena, CA 91125 USA. UCL, Opt Sci Lab, Gower St, London, England. [Novikov, D.] Russian Acad Sci, PN Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Munshi, D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Subdept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Colombi, S.; Elsner, F.; Hivon, E.; Prunet, S.; Ristorcelli, I.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Sandri, M.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Alves, MIR (reprint author), CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France.; Alves, MIR (reprint author), Univ Paris 11, CNRS, UMR 8617, Inst Astrophys Spatiale, Batiment 121, F-91405 Orsay, France.; Alves, MIR (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. EM marta.alves@irap.omp.eu RI Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Renzi, Alessandro/K-4114-2015; Remazeilles, Mathieu/N-1793-2015; Ghosh, Tuhin/E-6899-2016; Novikov, Igor/N-5098-2015; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; Vielva, Patricio/F-6745-2014; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016 OI Valiviita, Jussi/0000-0001-6225-3693; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Renzi, Alessandro/0000-0001-9856-1970; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; TERENZI, LUCA/0000-0001-9915-6379; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); European Research Council under the European Union/ERC [267934] FX We thank the referee for the useful comments. We acknowledge the use of the HEALPix package and IRAS data. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, and JA (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A detailed description of the Planck Collaboration and a list of its members can be found at http://www.rssd.esa.int/index.php?project=PLANCK&page=Planck_Collaborati on. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 79 TC 0 Z9 0 U1 3 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A137 DI 10.1051/0004-6361/201525616 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900147 ER PT J AU Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bobin, J Bond, JR Borrill, J Bouchet, FR Brogan, CL Burigana, C Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Colombi, S Colombo, LPL Crill, BP Curto, A Cuttaia, F Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Dickinson, C Diego, JM Donzelli, S Dore, O Dupac, X Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Ganga, K Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, DL Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hobson, M Holmes, WA Huffenberger, KM Jaffe, AH Jaffe, TR Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Leonardi, R Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Maino, D Maris, M Marshall, DJ Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Noviello, E Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paladini, R Pasian, F Peel, M Perdereau, O Perrotta, F Piacentini, F Piat, M Pietrobon, D Plaszczynski, S Pointecouteau, E Polenta, G Popa, L Pratt, GW Puget, JL Rachen, JP Reach, WT Reich, W Reinecke, M Remazeilles, M Renault, C Rho, J Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Roudier, G Rusholme, B Sandri, M Savini, G Scott, D Stolyarov, V Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Yvon, D Zacchei, A Zonca, A AF Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P Bersanelli, M. Bielewicz, P. Bobin, J. Bond, J. R. Borrill, J. Bouchet, F. R. Brogan, C. L. Burigana, C. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Colombi, S. Colombo, L. P. L. Crill, B. P. Curto, A. Cuttaia, F. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Dickinson, C. Diego, J. M. Donzelli, S. Dore, O. Dupac, X. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. L. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hobson, M. Holmes, W. A. Huffenberger, K. M. Jaffe, A. H. Jaffe, T. R. Keihaenen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Leonardi, R. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Maino, D. Maris, M. Marshall, D. J. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Migliaccio, M. Miville-Deschenes, M-A Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Noviello, E. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paladini, R. Pasian, F. Peel, M. Perdereau, O. Perrotta, F. Piacentini, F. Piat, M. Pietrobon, D. Plaszczynski, S. Pointecouteau, E. Polenta, G. Popa, L. Pratt, G. W. Puget, J. -L. Rachen, J. P. Reach, W. T. Reich, W. Reinecke, M. Remazeilles, M. Renault, C. Rho, J. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Roudier, G. Rusholme, B. Sandri, M. Savini, G. Scott, D. Stolyarov, V. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXI. Microwave survey of Galactic supernova remnants SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: supernova remnants; cosmic rays; radio continuum: ISM ID WMAP OBSERVATIONS; FLUX-DENSITY; CYGNUS LOOP; CM OBSERVATIONS; RADIO-EMISSION; IA SUPERNOVA; FERMI-LAT; 32 GHZ; X-RAY; CATALOG AB The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, a single power law is evident for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, S-v proportional to v(-alpha), with the spectral index, alpha, increasing by 0.5-1 above a break frequency in the range 10-60 GHz. The break could be due to synchrotron losses. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, APC, CNRS,IN2P3,CEA,Irfu,Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 011E, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso de Cordova 3107,Casilla 763 0355, Santiago, Chile. [Leonardi, R.] CGEE, SCS Qd 9,Lote C,Torre C,4 Andar,Ed Parque Cidade, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M-A; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91101 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 91101 USA. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansennet, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Keihaenen, E.; Kurki-Suonio, H.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00100, Finland. [Lubin, P. M.; Zonca, A.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34128 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdainsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Kneissl, R.] European So Observ, ESO Vitacura, Alonso de Cordova 3107,Casilla 19001, Santiago, Chile. [Dupac, X.; Lopez-Caniego, M.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo del Castillo S-N, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ E Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Kurki-Suonio, H.; Lahteenmaki, A.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, SF-00100 Helsinki, Finland. [Umana, G.] INAF Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Morgante, G.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Via Gobefil 101, I-40126 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20100 Milan, Italy. [Burigana, C.; Finelli, F.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Gregorio, A.] INFN Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Desert, F. -X.] CNRS, IPAG, F-38000 Grenoble, France. [Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aumont, J.; Chamballu, A.; Kunz, M.; Miville-Deschenes, M-A; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, Batiment 121, F-91440 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Moneti, A.; Sygnet, J. -F.] CNRS, UMR 7095, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest 077125, Romania. [Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge 0133 011A, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Holmes, W. A.; Lawrence, C. R.; Pietrobon, D.; Rocha, G.; Roudier, G.; Wade, L. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, E.; Peel, M.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91400 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arnaud, M.; Bobin, J.; Chamballu, A.; Marshall, D. J.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, Lab AIM,IRFU,Serv Astrophys,CEA Saclay, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Renault, C.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, 84-32 Profsoyuznaya St,GSP-7, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany. [Reich, W.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Brogan, C. L.] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Savini, G.] UCL, Opt Sci Lab, Gower St, London, England. [Rho, J.] SETE Inst, MS 211-3, Moffett Field, CA 94035 USA. [Rho, J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, MS 211-3, Moffett Field, CA 94035 USA. [Baccigalupi, C.; Bielewicz, P.; de Zotti, G.; Perrotta, F.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Munshi, D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff 024 3AA, S Glam, Wales. [Bouchet, F. R.] UPMC, Univ Paris 04, UMR 7095, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Benabed, K.; Benoit-Levy, A.; Colombi, S.] Univ Paris 06, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18010, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computat 1, Granada 18010, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Reach, WT (reprint author), Univ Space Res Assoc, Stratospher Observ Infrared Astron, MS 232-11, Moffett Field, CA 94035 USA. EM wreach@sofia.usra.edu RI Atrio-Barandela, Fernando/A-7379-2017; Novikov, Igor/N-5098-2015; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; Remazeilles, Mathieu/N-1793-2015; Lopez-Caniego, Marcos/M-4695-2013; Martinez-Gonzalez, Enrique/E-9534-2015; Piacentini, Francesco/E-7234-2010; Gonzalez-Nuevo, Joaquin/I-3562-2014; Nati, Federico/I-4469-2016; Lahteenmaki, Anne/L-5987-2013; Toffolatti, Luigi/K-5070-2014; Tomasi, Maurizio/I-1234-2016; Colombo, Loris/J-2415-2016; Herranz, Diego/K-9143-2014; popa, lucia/B-4718-2012; Vielva, Patricio/F-6745-2014; OI Savini, Giorgio/0000-0003-4449-9416; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; Peel, Mike/0000-0003-3412-2586; Remazeilles, Mathieu/0000-0001-9126-6266; Scott, Douglas/0000-0002-6878-9840; Huffenberger, Kevin/0000-0001-7109-0099; Bouchet, Francois/0000-0002-8051-2924; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Piacentini, Francesco/0000-0002-5444-9327; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Nati, Federico/0000-0002-8307-5088; Toffolatti, Luigi/0000-0003-2645-7386; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Herranz, Diego/0000-0003-4540-1417; Vielva, Patricio/0000-0003-0051-272X; Ricciardi, Sara/0000-0002-3807-4043; TERENZI, LUCA/0000-0001-9915-6379; Reach, William/0000-0001-8362-4094; Valiviita, Jussi/0000-0001-6225-3693; Zacchei, Andrea/0000-0003-0396-1192; Lilje, Per/0000-0003-4324-7794 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. NR 71 TC 0 Z9 0 U1 4 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A134 DI 10.1051/0004-6361/201425022 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900144 ER PT J AU Trabert, E Beiersdorfer, P Brickhouse, NS Golub, L AF Traebert, Elmar Beiersdorfer, Peter Brickhouse, Nancy S. Golub, Leon TI Low-density laboratory spectra near the He II lambda 304 line SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Sun: corona; atomic data; methods: laboratory: atomic; techniques: spectroscopic; Sun: UV radiation ID EXTREME-ULTRAVIOLET REGION; AN ATOMIC DATABASE; BEAM ION-TRAP; EMISSION-LINES; CORONAL LINES; AR-XIV; FE-VII; CHIANTI; ANGSTROM; INSTRUMENT AB Aims. To interpret the EUV spectra of the solar corona, one hopes for laboratory data of specific chemical elements obtained under coronal conditions. Methods. EUV spectra of He, C, N, O, F, Ne, S, Ar, Fe, and Ni in a 40 angstrom wide wavelength interval near lambda 304 were excited in an electron beam ion trap. Results. We observe some two hundred lines about half of which are not yet identified and included in spectral models. Conclusions. Our data provide a check on the atomic data bases underlying the spectral models that are used to interpret solar corona data. However, a multitude of mostly weak additional lines taken together represent a flux that is comparable to that of various primary lines. C1 [Traebert, Elmar; Beiersdorfer, Peter] Lawrence Livermore Natl Lab, Div Phys, Phys & Life Sci, Livermore, CA 94550 USA. [Traebert, Elmar] Ruhr Univ Bochum, Astron Inst, Fak Phys, D-44780 Bochum, Germany. [Brickhouse, Nancy S.; Golub, Leon] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RP Trabert, E; Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Div Phys, Phys & Life Sci, Livermore, CA 94550 USA.; Trabert, E (reprint author), Ruhr Univ Bochum, Astron Inst, Fak Phys, D-44780 Bochum, Germany. EM traebert@astro.rub.de; beiersdorfer1@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; German Research Association (DFG) [Tr171/18, Tr171/19] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. E.T. acknowledges support from the German Research Association (DFG) (grants Tr171/18 and Tr171/19). NR 32 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A115 DI 10.1051/0004-6361/201527825 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900126 ER PT J AU Zirnstein, EJ Funsten, HO Heerikhuisen, J McComas, DJ AF Zirnstein, E. J. Funsten, H. O. Heerikhuisen, J. McComas, D. J. TI Effects of solar wind speed on the secondary energetic neutral source of the Interstellar Boundary Explorer ribbon SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Sun: heliosphere; solar wind; ISM: atoms; ISM: magnetic fields ID ATOM ENA FLUX; PICK-UP IONS; IBEX RIBBON; MAGNETIC-FIELD; OUTER HELIOSHEATH; LO OBSERVATIONS; HELIOSPHERIC MODELS; SPECTRAL PROPERTIES; CHARGE-EXCHANGE; HYDROGEN FLUX AB The Interstellar Boundary EXplorer (IBEX) ribbon is an intense energetic neutral atom (ENA) emission feature encircling the sky, spanning energies <= 0.5-6 keV. The ribbon may be produced by the "secondary ENA" mechanism, where ENAs emitted from a source plasma population inside the heliosphere propagate outside the heliopause, undergo two charge-exchange events, and become secondary ENAs that may be directed back toward Earth and detected by IBEX. In this scenario, the source plasma population is governed by the interaction of the solar wind (SW) with the interstellar medium and is thus sensitive to the global SW properties. Moreover, this scenario predicts that the distance to the source of secondary ENAs depends on the ENA energy and SW speed, which in turn may affect the shape of the ribbon. In this paper, we use a computational model of the heliosphere with simplified SW boundary conditions to analyze the influence of ENA energy and SW speed, independent of time and latitude, on the global spatial and geometric properties of the ribbon. We find a strong dependence of the simulated ribbon energy spectrum and spatial symmetry on SW speed and ENA energy, and only a slight dependence on ribbon geometry. Our results suggest a significant number of primary ENAs from the inner heliosheath may contribute to the pickup ion source population outside the heliopause, depending on the ENA energy and SW speed. The lack of variation in the simulated ribbon center as a function of ENA energy and SW speed, in contrast to the observations, implies that the asymmetry of the SW plays an important role in determining the position of the ribbon. Comparisons to the IBEX data also signify the ribbon's dependence on the properties of the local interstellar medium, particularly the interstellar magnetic field. C1 [Zirnstein, E. J.; McComas, D. J.] Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA. [Funsten, H. O.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Heerikhuisen, J.] Univ Alabama, Dept Space Sci, 301 Sparkman Dr, Huntsville, AL 35899 USA. [McComas, D. J.] Univ Texas San Antonio, Dept Phys & Astron, 1 UTSA Circle, San Antonio, TX 78249 USA. RP Zirnstein, EJ (reprint author), Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA. EM ezirnstein@swri.edu OI Funsten, Herbert/0000-0002-6817-1039; Heerikhuisen, Jacob/0000-0001-7867-3633 FU United States Department of Energy; NASA [NNX14AP24G, NNX12AH44G, NNX14AF43G, NNX14AJ53G] FX This work was carried out as part of the IBEX mission, which is part of NASAs Explorer Program. Work at Los Alamos was performed under the auspices of the United States Department of Energy. J.H. acknowledges support from NASA grants NNX14AP24G, NNX12AH44G, NNX14AF43G, and NNX14AJ53G. E.Z. thanks George Livadiotis for helpful discussions. NR 79 TC 4 Z9 4 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2016 VL 586 AR A31 DI 10.1051/0004-6361/201527437 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DD1XG UT WOS:000369715900042 ER PT J AU Schlecht, W Li, KL Hu, DH Dong, WJ AF Schlecht, William Li, King-Lun Hu, Dehong Dong, Wenji TI Fluorescence Based Characterization of Calcium Sensitizer Action on the Troponin Complex SO CHEMICAL BIOLOGY & DRUG DESIGN LA English DT Article DE cardiac tropnin; drug screening; fluorescence spectroscopy ID HUMAN CARDIAC TROPONIN; CANINE VENTRICULAR MYOCARDIUM; RESONANCE ENERGY-TRANSFER; GUINEA-PIG HEART; THIN FILAMENT; CA2+ SENSITIZERS; CONFORMATIONAL TRANSITIONS; MUSCLE-CONTRACTION; REGULATORY DOMAIN; INOTROPIC AGENT AB Calcium sensitizers enhance the transduction of the Ca2+ signal into force within the heart and have found use in treating heart failure. However the mechanisms of action for most Ca2+ sensitizers remain unclear. To address this issue an efficient fluorescence based approach to Ca2+ sensitizer screening was developed which monitors cardiac troponin C's (cTnC's) hydrophobic cleft. This approach was tested on four common Ca2+-sensitizers, EMD 57033, levosimendan, bepridil and pimobendan with the aim of elucidating the mechanisms of action for each as well as proving the efficacy of the new screening method. Ca2+-titration experiments were employed to determine the effect on CA(2+) sensitivity and cooperativity of cTnC opening, while stopped flow experiments were used to investigate the impact on cTnC relaxation kinetics. Bepridil was shown to increase the sensitivity of cTnC for CA(2+) under all reconstitution conditions, sensitization by the other drugs was context dependent. Levosimendan and pimobendan reduced the rate of cTnC closing consistent with a stabilization of cTnC's open conformation while bepridil increased the rate of relaxation. Experiments were also run on samples containing cTnT(T204E), a known CA(2+)-desensitizing phosphorylation mimic. Levosimendan, bepridil, and pimobendan were found to elevate the CA(2+)-sensitivity of cTnT(T204E) containing samples in this context. C1 [Schlecht, William; Li, King-Lun; Dong, Wenji] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, POB 646515, Pullman, WA 99164 USA. [Hu, Dehong] Pacific NW Natl Lab, Environm & Mol Sci Lab, 3335 Innovat Blvd, Richland, WA 99354 USA. RP Schlecht, W (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, POB 646515, Pullman, WA 99164 USA. EM william.schlecht@email.wsu.edu RI Hu, Dehong/B-4650-2010 OI Hu, Dehong/0000-0002-3974-2963 FU National Institutes of Health [HL80186, IR21HL109693]; EMSL, PNNL [34731]; M. J. Murdock Charitable Trust; NIH/NIGMS [T32-GM008336] FX This work was partially supported by the National Institutes of Health Grant HL80186 (W.-J. D.) and IR21HL109693 (W.-J. D.), and Instrument Usage grant (ID: 34731 to W.-J. D. and D. H.) from EMSL, PNNL, and by the M. J. Murdock Charitable Trust (W.-J. D.). Partial support for this publication came from the NIH/NIGMS through an institutional training grant award T32-GM008336. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIGMS or NIH. NR 53 TC 1 Z9 1 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1747-0277 EI 1747-0285 J9 CHEM BIOL DRUG DES JI Chem. Biol. Drug Des. PD FEB PY 2016 VL 87 IS 2 BP 171 EP 181 DI 10.1111/cbdd.12651 PG 11 WC Biochemistry & Molecular Biology; Chemistry, Medicinal SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy GA DE2VM UT WOS:000370485300002 PM 26375298 ER PT J AU Min, SX Rasul, S Li, HF Grills, DC Takanabe, K Li, LJ Huang, KW AF Min, Shixiong Rasul, Shahid Li, Huaifeng Grills, David C. Takanabe, Kazuhiro Li, Lain-Jong Huang, Kuo-Wei TI Electrocatalytic Reduction of Carbon Dioxide with a Well-Defined PN3-Ru Pincer Complex SO CHEMPLUSCHEM LA English DT Article DE electrocatalysts; electrochemistry; N,P ligands; redox; ruthenium ID LOW-PRESSURE HYDROGENATION; CO2 REDUCTION; ELECTROCHEMICAL REDUCTION; EFFICIENT ELECTROCATALYST; REVERSIBLE HYDROGENATION; BOND ACTIVATION; AQUEOUS CO2; NI PINCER; CATALYST; FORMATE AB A well-defined PN3-Ru pincer complex (5) bearing a redox-active bipyridine ligand with an aminophosphine arm has been established as an effective and stable molecular electrocatalyst for CO2 reduction to CO and HCOOH with negligible formation of H-2 in a H2O/MeCN mixture. C1 [Min, Shixiong; Rasul, Shahid; Li, Huaifeng; Takanabe, Kazuhiro; Li, Lain-Jong; Huang, Kuo-Wei] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia. [Min, Shixiong; Rasul, Shahid; Li, Huaifeng; Takanabe, Kazuhiro; Li, Lain-Jong; Huang, Kuo-Wei] King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr, Thuwal 239556900, Saudi Arabia. [Min, Shixiong] Beifang Univ Nationalities, Sch Chem & Chem Engn, Ningxia 750021, Peoples R China. [Grills, David C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Huang, KW (reprint author), King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia.; Huang, KW (reprint author), King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr, Thuwal 239556900, Saudi Arabia. EM hkw@kaust.edu.sa RI Grills, David/F-7196-2016; Li, Lain-Jong/D-5244-2011; Takanabe, Kazuhiro/D-6119-2011 OI Grills, David/0000-0001-8349-9158; Li, Lain-Jong/0000-0002-4059-7783; Takanabe, Kazuhiro/0000-0001-5374-9451 FU King Abdullah University of Science and Technology; National Natural Science Foundation of China [21463001]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences [DE-AC02-98CH10886, DE-SC0012704] FX We are grateful for the generous financial support from King Abdullah University of Science and Technology and the National Natural Science Foundation of China (grant no. 21463001). Work at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences& Biosciences under contracts DE-AC02-98CH10886 and DE-SC0012704. NR 62 TC 0 Z9 1 U1 11 U2 55 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2192-6506 J9 CHEMPLUSCHEM JI ChemPlusChem PD FEB PY 2016 VL 81 IS 2 BP 166 EP 171 DI 10.1002/cplu.201500474 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA DE2QB UT WOS:000370470700002 ER PT J AU Sun, WY Yang, B Hansen, N Westbrook, CK Zhang, F Wang, G Moshammer, K Law, CK AF Sun, Wenyu Yang, Bin Hansen, Nils Westbrook, Charles K. Zhang, Feng Wang, Gao Moshammer, Kai Law, Chung K. TI An experimental and kinetic modeling study on dimethyl carbonate (DMC) pyrolysis and combustion SO COMBUSTION AND FLAME LA English DT Article DE Dimethyl carbonate (DMC); Pyrolysis; Laminar premixed flame; Kinetic model ID PHOTOIONIZATION MASS-SPECTROMETRY; LOW-PRESSURE FLAMES; IGNITION DELAY TIMES; SMALL ALKYL ESTERS; PREMIXED FLAMES; HIGH-TEMPERATURE; OXYGENATED HYDROCARBONS; THERMAL-DECOMPOSITION; METHYL BUTANOATE; SHOCK-TUBE AB Dimethyl carbonate (DMC) is a promising oxygenated additive or substitute for hydrocarbon fuels, because of the absence of C-C bonds and the large oxygen content in its molecular structure. To better understand its chemical oxidation and combustion kinetics, flow reactor pyrolysis at different pressures (40, 200 and 1040 mbar) and low-pressure laminar premixed flames with different equivalence ratios (1.0 and 1.5) were investigated. Mole fraction profiles of many reaction intermediates and products were obtained within estimated experimental uncertainties. From theoretical calculations and estimations, a detailed kinetic model for DMC pyrolysis and high-temperature combustion consisting of 257 species and 1563 reactions was developed. The performance of the kinetic model was then analyzed using detailed chemical composition information, primarily from the present measurements. In addition, it was examined against the chemical structure of an opposed-flow diffusion flame, relying on global combustion properties such as the ignition delay times and laminar burning velocities. These extended comparisons yielded overall satisfactory agreement, demonstrating the applicability of the present model over a wide range of high-temperature conditions. (c) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Sun, Wenyu; Yang, Bin; Law, Chung K.] Tsinghua Univ, Ctr Combust Energy, Beijing 100084, Peoples R China. [Sun, Wenyu; Yang, Bin; Law, Chung K.] Tsinghua Univ, Dept Thermal Engn, Beijing 100084, Peoples R China. [Hansen, Nils; Moshammer, Kai] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Westbrook, Charles K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Zhang, Feng; Wang, Gao] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China. [Moshammer, Kai] Univ Bielefeld, Dept Chem, D-33615 Bielefeld, Germany. [Law, Chung K.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. RP Yang, B (reprint author), Tsinghua Univ, Ctr Combust Energy, Beijing 100084, Peoples R China.; Yang, B (reprint author), Tsinghua Univ, Dept Thermal Engn, Beijing 100084, Peoples R China. EM byang@tsinghua.edu.cn RI Yang, Bin/A-7158-2008; Hansen, Nils/G-3572-2012; Zhang, Feng/K-8505-2012 OI Yang, Bin/0000-0001-7333-0017; FU Natural Science Foundation of China [51306102, U1332208]; U.S. Department of Energy (USDOE), Office of Basic Energy Sciences (BES) [DE-AC04-94-AL85000, DE-SC0001198]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US Department of Energy, Office of Vehicle Technologies; Office of Science, BES, USDOE [DE-AC02-05CH11231]; National Nuclear Security Administration [DE-AC04-94-AL85000] FX This research is mostly supported by the Natural Science Foundation of China (51306102, U1332208). NH is supported by the U.S. Department of Energy (USDOE), Office of Basic Energy Sciences (BES) under Grant No. DE-AC04-94-AL85000 and DE-SC0001198 (the Energy Frontier Research Center for Combustion Science). The LLNL work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by the US Department of Energy, Office of Vehicle Technologies. The measurements were performed within the "Flame Team" collaboration at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, USA, and we thank the students and postdocs for the help with the data acquisition. The experiments were profited from the expert technical assistance of Paul Fugazzi. The Advanced Light Source is supported by the Director, Office of Science, BES, USDOE under Contract No. DE-AC02-05CH11231. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL85000. The authors thank Prof. Katharina Kohse-Hoinghaus of Bielefeld University and Prof. Fei Qi of Shanghai Jiaotong University for their supports of this work, helpful discussions and critical review of the manuscript NR 62 TC 5 Z9 5 U1 16 U2 48 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD FEB PY 2016 VL 164 BP 224 EP 238 DI 10.1016/j.combustflame.2015.11.019 PG 15 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA DE2MK UT WOS:000370461200018 ER PT J AU Wang, ZD Zhang, LD Moshammer, K Popolan-Vaida, DM Shankar, VSB Lucassen, A Hemken, C Taatjes, CA Leone, SR Kohse-Hoinghaus, K Hansen, N Dagaut, P Sarathy, SM AF Wang, Zhandong Zhang, Lidong Moshammer, Kai Popolan-Vaida, Denisia M. Shankar, Vijai Shankar Bhavani Lucassen, Arnas Hemken, Christian Taatjes, Craig A. Leone, Stephen R. Kohse-Hoeinghaus, Katharina Hansen, Nils Dagaut, Philippe Sarathy, S. Mani TI Additional chain-branching pathways in the low-temperature oxidation of branched alkanes SO COMBUSTION AND FLAME LA English DT Article DE Auto-oxidation; Chain-branching; Highly oxidized multifunctional molecules; Peroxides; Alternative isomerization; Synchrotron VUV photoionization mass spectrometry ID CHEMICAL KINETIC-MODELS; NORMAL-HEXADECANE AUTOXIDATION; LIQUID-PHASE AUTOXIDATION; SECONDARY ORGANIC AEROSOL; PRESSURE RATE RULES; ELEVATED-TEMPERATURES; COMBUSTION CHEMISTRY; HYDROCARBON FUELS; N-HEPTANE; AUTOIGNITION CHEMISTRY AB Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultraviolet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS). Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C8H14O4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C8H16O5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C8H16O5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O-2 addition, intramolecular isomerization, and OH release; C8H14O4 species are proposed to result from subsequent reactions of C8H16O5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. The results presented herei