FN Thomson Reuters Web of Science™ VR 1.0 PT B AU Ho, CK Christian, JM Romano, D Yellowhair, J Siegel, N AF Ho, Clifford K. Christian, Joshua M. Romano, David Yellowhair, Julius Siegel, Nathan GP ASME TI CHARACTERIZATION OF PARTICLE FLOW IN A FREE-FALLING SOLAR PARTICLE RECEIVER SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2015, VOL 1 LA English DT Proceedings Paper CT 9th ASME International Conference on Energy Sustainability CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div ID GRANULAR SOLIDS; ORIFICES AB Falling particle receivers are being evaluated as an alternative to conventional fluid-based solar receivers to enable higher temperatures and higher efficiency power cycles with direct storage for concentrating solar power applications. This paper presents studies of the particle mass flow rate, velocity, particle-curtain opacity and density, and other characteristics of free-falling ceramic particles as a function of different discharge slot apertures. The methods to characterize the particle flow are described, and results are compared to theoretical and numerical models for unheated conditions. C1 [Ho, Clifford K.; Christian, Joshua M.; Yellowhair, Julius] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Romano, David] Polytech Univ Turin, Corso Duca Abruzzi 24, I-10129 Turin, Italy. [Siegel, Nathan] Bucknell Univ, 701 Moore Ave, Lewisburg, PA 17837 USA. RP Ho, CK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ckho@sandia.gov NR 12 TC 0 Z9 0 U1 2 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5684-0 PY 2016 AR V001T05A013 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA BE6KS UT WOS:000374279400037 ER PT B AU Ortega, JD Khivsara, SD Christian, JM Ho, CK AF Ortega, Jesus D. Khivsara, Sagar D. Christian, Joshua M. Ho, Clifford K. GP ASME TI DESIGN REQUIREMENTS FOR DIRECT SUPERCRITICAL CARBON DIOXIDE RECEIVER DEVELOPMENT AND TESTING SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2015, VOL 1 LA English DT Proceedings Paper CT 9th ASME International Conference on Energy Sustainability CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB This paper establishes the design requirements for the development and testing of direct supercritical carbon dioxide (sCO2) solar receivers. Current design considerations are based on the ASME Boiler and Pressure Vessel Code (BPVC). Section I (BPVC) considers typical boilers/superheaters (i.e. fired pressure vessels) which work under a constant low heat flux. Section VIII (BPVC) considers pressure vessels with operating pressures above 15 psig [2 bar] (i.e. unfired pressure vessels). Section III, Division I - Subsection NH (BPVC) considers a more detailed stress calculation, compared to Section I and Section VIII, and requires a creep-fatigue analysis. The main drawback from using the BPVC exclusively is the large safety requirements developed for nuclear power applications. As a result, a new set of requirements is needed to perform detailed thermal-structural analyses of solar thermal receivers subjected to a spatially-varying, high-intensity heat flux. The last design requirements document of this kind was an interim Sandia report developed in 1979 (SAND79-8183), but it only addresses some of the technical challenges in early-stage steam and molten-salt solar receivers but not the use of sCO2 receivers. This paper presents a combination of the ASME BPVC and ASME B31.1 Code modified appropriately to achieve the reliability requirements in sCO(2) solar power systems. There are five main categories in this requirements document: Operation and Safety, Materials and Manufacturing, Instrumentation, Maintenance and Environmental, and General requirements. This paper also includes the modeling guidelines and input parameters required in computational fluid dynamics and structural analyses utilizing ANSYS Fluent, ANSYS Mechanical, and nCode Design Life. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of sCO(2) receivers. C1 [Ortega, Jesus D.; Christian, Joshua M.; Ho, Clifford K.] Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. [Khivsara, Sagar D.] Indian Inst Sci, Dept Mech Engn, Bangalore 560012, KA, India. RP Ortega, JD (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. NR 8 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5684-0 PY 2016 AR V001T05A019 PG 6 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA BE6KS UT WOS:000374279400043 ER PT B AU Ortega, JD Christian, JM Ho, CK AF Ortega, Jesus D. Christian, Joshua M. Ho, Clifford K. GP ASME TI STRUCTURAL ANALYSIS OF A DIRECT HEATED TUBULAR SOLAR RECEIVER FOR SUPERCRITICAL CO2 BRAYTON CYCLE SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2015, VOL 1 LA English DT Proceedings Paper CT 9th ASME International Conference on Energy Sustainability CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Closed-loop super-critical carbon dioxide (sCO(2)) Brayton cycles are being evaluated in combination with concentrating solar power to provide higher thermal-to-electric conversion efficiencies relative to conventional steam Rankine cycles. However, high temperatures (650 - 700 degrees C) and pressures (20 - 25 MPa) are required in the solar receiver. In this study, an extensive material review was performed along with a tube size optimization following the ASME Boiler and Pressure Vessel Code and B31.1 and B313.3 codes respectively. Subsequently, a thermal-structural model was developed using ANSYS Fluent and Structural to design and analyze the tubular receiver that could provide the heat input for a similar to 2 MWth plant. The receiver will be required to provide an outlet temperature of 650 degrees C (at 25 MPa) or 700 degrees C (at 20 MPa). The induced thermal stresses were applied using a temperature gradient throughout the tube while a constant pressure load was applied on the inner wall. The resulting stresses have been validated analytically using constant surface temperatures. The cyclic loading analysis was performed using the Larson-Miller creep model in nCode Design Life to define the structural integrity of the receiver over the desired lifetime of similar to 10,000 cycles. The results have shown that the stresses induced by the thermal and pressure load can be withstood by the tubes selected. The creep-fatigue analysis displayed the damage accumulation due to the cycling and the permanent deformation of the tubes. Nonetheless, they are able to support the required lifetime. As a result, a complete model to verify the structural integrity and thermal performance of a high temperature and pressure receiver has been developed. This work will serve as reference for future design and evaluation of future direct and indirect tubular receivers. C1 [Ortega, Jesus D.; Christian, Joshua M.; Ho, Clifford K.] Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. RP Ortega, JD (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. NR 23 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5684-0 PY 2016 AR V001T05A015 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA BE6KS UT WOS:000374279400039 ER PT B AU Ortega, JD Khivsara, SD Christian, JM Yellowhair, JE Ho, CK AF Ortega, Jesus D. Khivsara, Sagar D. Christian, Joshua M. Yellowhair, Julius E. Ho, Clifford K. GP ASME TI COUPLED OPTICAL-THERMAL-FLUID MODELING OF A DIRECTLY HEATED TUBULAR SOLAR RECEIVER FOR SUPERCRITICAL CO2 BRAYTON CYCLE SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2015, VOL 1 LA English DT Proceedings Paper CT 9th ASME International Conference on Energy Sustainability CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div ID POWER; TEMPERATURE AB Recent studies have evaluated closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energy density system in comparison to conventional superheated steam Rankine systems. At turbine inlet conditions of 923K and 25 MPa, high thermal efficiency (similar to 50%) can be achieved. Achieving these high efficiencies will make concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. To incorporate a s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 923 K (at 25 MPa) is necessary. The s-CO2 will need to increase in temperature by similar to 200 K as it passes through the solar receiver to satisfy the temperature requirements of a s-CO2 Brayton cycle with recuperation and recompression. In this study, an optical-thermal-fluid model was developed to design and evaluate a tubular receiver that will receive a heat input similar to 2 MWth from a heliostat field. The ray-tracing tool SolTrace was used to obtain the heat-flux distribution on the surfaces of the receiver. Computational fluid dynamics (CFD) modeling using the Discrete Ordinates (DO) radiation model was used to predict the temperature distribution and the resulting receiver efficiency. The effect of flow parameters, receiver geometry and radiation absorption by s-CO2 were studied. The receiver surface temperatures were found to be within the safe operational limit while exhibiting a receiver efficiency of similar to 85%. C1 [Ortega, Jesus D.; Christian, Joshua M.; Yellowhair, Julius E.; Ho, Clifford K.] Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. [Khivsara, Sagar D.] Indian Inst Sci, Dept Mech Engn, Bangalore 560012, KA, India. RP Ortega, JD (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. NR 19 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5684-0 PY 2016 AR V001T05A018 PG 6 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA BE6KS UT WOS:000374279400042 ER PT J AU Peskin, ME AF Peskin, Michael E. TI On the Trail of the Higgs Boson SO ANNALEN DER PHYSIK LA English DT Review ID STANDARD MODEL; FIELD-THEORIES; ELECTROWEAK MEASUREMENTS; SUPERSYMMETRY BREAKING; MASSLESS PARTICLES; BROKEN SYMMETRIES; GAUGE-INVARIANCE; SUPERCONDUCTIVITY; DIMENSIONS; COLLISIONS AB I review theoretical issues associated with the Higgs boson and the mystery of spontaneous breaking of the electroweak gauge symmetry. This essay is intended as an introduction to the special issue of Annalen der Physik, "Particle Physics after the Higgs". C1 [Peskin, Michael E.] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. RP Peskin, ME (reprint author), Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. EM mpeskin@slac.stanford.edu FU U.S. Department of Energy [DE-AC02-76SF00515] FX I am grateful to Halina Abramowicz, Allen Caldwell, and Brian Foster for their invitation to write for this volume, to Raymond Brock and Beate Heinemann for their encouragement, and to many colleagues at SLAC and elsewere for discussions of the issues put forward here. This work was supported by the U.S. Department of Energy under contract DE-AC02-76SF00515. NR 81 TC 2 Z9 2 U1 5 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0003-3804 EI 1521-3889 J9 ANN PHYS-BERLIN JI Ann. Phys.-Berlin PD JAN PY 2016 VL 528 IS 1-2 SI SI BP 20 EP 34 DI 10.1002/andp.201500225 PG 15 WC Physics, Multidisciplinary SC Physics GA DJ2NI UT WOS:000374041200003 ER PT J AU Heinemann, B AF Heinemann, Beate TI LHC - perspectives at the energy frontier SO ANNALEN DER PHYSIK LA English DT Article DE LHC; future; higgs; dark matter; supersymmetry ID DYNAMICAL SYMMETRY-BREAKING; SUPERGAUGE TRANSFORMATIONS; MASS; MODEL; SUPERSYMMETRY; PARTICLE; DIMENSIONS; HIERARCHY; FERMIONS; PIONS AB After a design and construction phase that lasted more than two decades, the Large Hadron Collider (LHC) started its first run in 2010 and after just over two years, the discovery of the Higgs boson at the LHC was announced. In the future the LHC collision energy will be increased by nearly a factor of two, and the dataset will be increased by more than a factor of 100. These improvements dramatically increase the potential for finding new physics at the weak scale via either precision measurements or direct searches or both. The LHC is in a unique position to directly explore the weak energy scale and shed light on some of the biggest puzzles in nature, e.g. the origin of Dark Matter or the hierarchy problem. C1 [Heinemann, Beate] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Heinemann, Beate] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Heinemann, B (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA.; Heinemann, B (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM bheheinemann@berkeley.edu FU Office of Science, Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 75 TC 0 Z9 0 U1 0 U2 0 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0003-3804 EI 1521-3889 J9 ANN PHYS-BERLIN JI Ann. Phys.-Berlin PD JAN PY 2016 VL 528 IS 1-2 SI SI BP 123 EP 130 DI 10.1002/andp.201500212 PG 8 WC Physics, Multidisciplinary SC Physics GA DJ2NI UT WOS:000374041200015 ER PT J AU Venugopalan, R AF Venugopalan, Raju TI Why we need an electron-ion collider SO ANNALEN DER PHYSIK LA English DT Article AB We present a brief argument making the science case for an electron-ion collider. C1 [Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Venugopalan, R (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM raju@bnl.gov FU DOE [de-sc0012704] FX This work was supported under DOE Contract No. de-sc0012704. I am grateful to my BNL experimental colleagues Elke Aschenauer and Thomas Ullrich, as well as Rolf Ent from Jlab, and Abhay Deshpande of Stony Brook University, who have taught me some of the EIC lore. The support of my BNL theory colleagues is always forthcoming and greatly appreciated. I would also like to thank Marco Stratmann, Steve Vigdor and Werner Vogelsang for their very useful comments on the manuscript. NR 13 TC 1 Z9 1 U1 2 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0003-3804 EI 1521-3889 J9 ANN PHYS-BERLIN JI Ann. Phys.-Berlin PD JAN PY 2016 VL 528 IS 1-2 SI SI BP 131 EP 137 DI 10.1002/andp.201500248 PG 7 WC Physics, Multidisciplinary SC Physics GA DJ2NI UT WOS:000374041200016 ER PT J AU Cheng, YW Choi, DW Han, KS Mueller, KT Zhang, JG Sprenkle, VL Liu, J Li, GS AF Cheng, Yingwen Choi, Daiwon Han, Kee Sung Mueller, Karl T. Zhang, Ji-Guang Sprenkle, Vincent L. Liu, Jun Li, Guosheng TI Toward the design of high voltage magnesium-lithium hybrid batteries using dual-salt electrolytes SO CHEMICAL COMMUNICATIONS LA English DT Article ID RECHARGEABLE MG BATTERIES; ION BATTERY; STORAGE; INTERCALATION; PERFORMANCE; CHALLENGE; CHEMISTRY; DENSITY AB We report a design of high voltage magnesium-lithium (Mg-Li) hybrid batteries through rational control of the electrolyte chemistry, electrode materials and cell architecture. Prototype devices with a structure of Mg-Li/LiFePO4 (LFP) and Mg-Li/LiMn2O4 (LMO) have been investigated. A Mg-Li/LFP cell using a dual-salt electrolyte 0.2 M [Mg2Cl2(DME)(4)][AlCl4](2) and 1.0 M LiTFSI exhibits voltages higher than 2.5 V (vs. Mg) and a high specific energy density of 246 W h kg(-1) under conditions that are amenable for practical applications. The successful demonstrations reported here could be a significant step forward for practical hybrid batteries. C1 [Cheng, Yingwen; Choi, Daiwon; Zhang, Ji-Guang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng] Pacific NW Natl Lab, Energy Proc & Mat Div, Energy & Environm Directorate, Richland, WA 99354 USA. [Han, Kee Sung] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Mueller, Karl T.] Pacific NW Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99354 USA. RP Liu, J; Li, GS (reprint author), Pacific NW Natl Lab, Energy Proc & Mat Div, Energy & Environm Directorate, Richland, WA 99354 USA. EM jun.liu@pnnl.gov; guosheng.li@pnnl.gov RI Choi, Daiwon/B-6593-2008; Cheng, Yingwen/B-2202-2012; OI Cheng, Yingwen/0000-0002-0778-5504; Han, Kee Sung/0000-0002-3535-1818 FU U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability [57558]; DOE BER; DOE [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability under Contract No. 57558. NMR experiments were performed at EMSL, a DOE Office of Science user facility sponsored by the DOE BER and located at PNNL. PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RL01830. NR 31 TC 5 Z9 5 U1 18 U2 65 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 31 BP 5379 EP 5382 DI 10.1039/c6cc00986g PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DJ2KQ UT WOS:000374033700004 PM 26959513 ER PT J AU Brown, JL Gaunt, AJ King, DM Liddle, ST Reilly, SD Scott, BL Wooles, AJ AF Brown, Jessie L. Gaunt, Andrew J. King, David M. Liddle, Stephen T. Reilly, Sean D. Scott, Brian L. Wooles, Ashley J. TI Neptunium and plutonium complexes with a sterically encumbered triamidoamine (TREN) scaffold SO CHEMICAL COMMUNICATIONS LA English DT Article ID LIGAND MULTIPLE BONDS; CARBON-MONOXIDE; URANYL-ION; URANIUM; CHEMISTRY; SE; TE; REACTIVITY; ACTINIDE; NITRIDE AB The syntheses and characterisation of isostructural neptunium(IV) and plutonium(IV) complexes [An(IV)(TRENTIPS)(Cl)] [An = Np, Pu; TRENTIPS = {N(CH2CH2NSiPr3i)(3)}(3-)] are reported, along with the demonstration that they are likely reduced to the corresponding neptunium(III) and plutonium(III) products [An(III)(TRENTIPS)]; this chemistry provides new platforms fromwhich to target a plethora of unprecedented molecular functionalities in transuranic chemistry and the neptunium(IV) molecule is the first structurally characterised neptunium(IV)-amide complex. C1 [Brown, Jessie L.; Gaunt, Andrew J.; Reilly, Sean D.] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. [King, David M.; Liddle, Stephen T.; Wooles, Ashley J.] Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England. [Scott, Brian L.] Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. RP Gaunt, AJ (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA.; Liddle, ST (reprint author), Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England. EM gaunt@lanl.gov; steve.liddle@manchester.ac.uk RI Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Gaunt, Andrew/0000-0001-9679-6020 FU U. S. Department of Energy, Office of Science, Early Career Research Program; U. S. Department of Energy, Office of Science, Basic Energy Sciences, Heavy Element Chemistry Program; Royal Society; ERC; EPSRC; University of Nottingham; University of Manchester FX J. L. B., A. J. G., and S. D. R. thank the U. S. Department of Energy, Office of Science, Early Career Research Program for funding the neptunium chemistry and initial plutonium chemistry. A. J. G. also thanks the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Heavy Element Chemistry Program for funding completion of the plutonium chemistry and manuscript preparation. D. M. K., S. T. L., and A. J. W. thank the Royal Society, ERC, EPSRC, University of Nottingham, and University of Manchester for funding. We thank Mr Danil E. Smiles for assistance with unwrapping of multiply contained transuranic samples prior to transport to spectroscopic instrumentation and Dr Matthew S. Winston for providing an auxiliary sample of [(Li)3(TRENTIPS)] ligand. NR 33 TC 4 Z9 4 U1 3 U2 19 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 31 BP 5428 EP 5431 DI 10.1039/c6cc01656a PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DJ2KQ UT WOS:000374033700017 PM 27009799 ER PT J AU Littlejohn, AJ Lu, TM Zhang, LH Kisslinger, K Wang, GC AF Littlejohn, A. J. Lu, T. -M. Zhang, L. H. Kisslinger, K. Wang, G. -C. TI Orientation epitaxy of Ge1-xSnx films grown on single crystal CaF2 substrates SO CRYSTENGCOMM LA English DT Article ID THREADING DISLOCATION DENSITIES; SURFACE ENERGIES; HOLE MOBILITY; GE; SN; TEMPERATURE; GERMANIUM; SILICON; SEMICONDUCTORS; DIFFUSIVITY AB Ge1-xSnx films were grown via physical vapor deposition below the crystallization temperature of Ge on single crystal (111) and (100) CaF2 substrates to assess the role of Sn alloying in Ge crystallization. By studying samples grown at several growth temperatures ranging from 250 degrees C to 400 degrees C we report temperature-dependent trends in several of the films' properties. X-ray diffraction theta vs. two-theta (theta/2 theta) scans indicate single orientation Ge1-xSnx(111) films are grown on CaF2(111) substrates at each temperature, while a temperature-dependent superposition of (111) and (100) orientations are exhibited in films grown on CaF2(100) above 250 degrees C. This is the first report of (111) oriented Ge1-xSnx grown on a (100) oriented CaF2 substrate, which is successfully predicted by a superlattice area matching model. These results are confirmed by X-ray diffraction pole figure analysis. theta/2 theta results indicate substitutional Sn alloying in each film of about 5%, corroborated by energy dispersive spectroscopy. Additionally, morphological and electrical properties are measured by scanning electron microscopy, atomic force microscopy and Hall mobility measurements and are also shown to be dependent upon growth temperature. C1 [Littlejohn, A. J.; Lu, T. -M.; Wang, G. -C.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA. [Littlejohn, A. J.; Lu, T. -M.; Wang, G. -C.] Rensselaer Polytech Inst, Ctr Mat Devices & Integrated Syst, 110 8th St, Troy, NY 12180 USA. [Zhang, L. H.; Kisslinger, K.] Brookhaven Natl Lab, Ctr Funct Nanomat, Bldg 735,POB 5000, Upton, NY 11973 USA. RP Littlejohn, AJ (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA.; Littlejohn, AJ (reprint author), Rensselaer Polytech Inst, Ctr Mat Devices & Integrated Syst, 110 8th St, Troy, NY 12180 USA. EM littla4@rpi.edu FU NSF [DMR-1305293]; New York State Foundation of Science, Technology and Innovation (NYSTAR) through Focus Center-New York; Rensselaer; U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX This work is supported by NSF DMR-1305293, New York State Foundation of Science, Technology and Innovation (NYSTAR) through Focus Center-New York, and Rensselaer. This research used JEOL2100F TEM and Hitachi2700C-STEM of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under contract no. DE-SC0012704. We thank Robert Lord, Yu Xiang, Drs. J. K. Dash, L. Chen and Y. Yang for discussions, and Dr. Chen for taking the SEM image of the thick film for deposition rate calibration. NR 48 TC 0 Z9 0 U1 2 U2 4 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1466-8033 J9 CRYSTENGCOMM JI Crystengcomm PY 2016 VL 18 IS 15 BP 2757 EP 2769 DI 10.1039/c5ce02579f PG 13 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA DJ2PJ UT WOS:000374046800020 ER PT J AU Ramalho, TC de Castro, AA Silva, DR Silva, MC Franca, TCC Bennion, BJ Kuca, K AF Ramalho, Teodorico C. de Castro, Alexandre A. Silva, Daniela R. Silva, Maria Cristina Franca, Tanos C. C. Bennion, Brian J. Kuca, Kamil TI Computational Enzymology and Organophosphorus Degrading Enzymes: Promising Approaches Toward Remediation Technologies of Warfare Agents and Pesticides SO CURRENT MEDICINAL CHEMISTRY LA English DT Article DE Computational methods; bioremediation; organophosphates detoxification; warfare agents; pesticides; molecular docking; molecular dynamics simulations; quantum mechanics; QM/MM ID MOLECULAR-DYNAMICS SIMULATIONS; ANHYDRIDE HYDROLASE ACTIVITY; SERUM PARAOXONASE 1; DIISOPROPYL FLUOROPHOSPHATASE DFPASE; AMINO-ACID-RESIDUES; HUMAN BUTYRYLCHOLINESTERASE; BACTERIAL PHOSPHOTRIESTERASE; NERVE AGENTS; LOLIGO-VULGARIS; CHEMICAL WARFARE AB The re-emergence of chemical weapons as a global threat in hands of terrorist groups, together with an increasing number of pesticides intoxications and environmental contaminations worldwide, has called the attention of the scientific community for the need of improvement in the technologies for detoxification of organophosphorus (OP) compounds. A compelling strategy is the use of bioremediation by enzymes that are able to hydrolyze these molecules to harmless chemical species. Several enzymes have been studied and engineered for this purpose. However, their mechanisms of action are not well understood. Theoretical investigations may help elucidate important aspects of these mechanisms and help in the development of more efficient bio-remediators. In this review, we point out the major contributions of computational methodologies applied to enzyme based detoxification of OPs. Furthermore, we highlight the use of PTE, PON, DFP, and BuChE as enzymes used in OP detoxification process and how computational tools such as molecular docking, molecular dynamics simulations and combined quantum mechanical/molecular mechanics have and will continue to contribute to this very important area of research. C1 [Ramalho, Teodorico C.; de Castro, Alexandre A.; Silva, Daniela R.; Silva, Maria Cristina] Univ Fed Lavras, Dept Chem, BR-37200000 Lavras, Brazil. [Ramalho, Teodorico C.; Franca, Tanos C. C.; Kuca, Kamil] Univ Hradec Kralove, Fac Informat & Management, Ctr Basic & Appl Res, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic. [Silva, Maria Cristina] Univ Fed Minas Gerais, Dept Chem, BR-31270901 Belo Horizonte, MG, Brazil. [Franca, Tanos C. C.; Kuca, Kamil] Mil Inst Engn, Lab Mol Modeling Appl Chem & Biol Def, Rio De Janeiro, Brazil. [Franca, Tanos C. C.] Concordia Univ, Dept Chem & Biochem, 7141 Rue Sherbrooke W, Montreal, PQ H4B 1R6, Canada. [Bennion, Brian J.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Kuca, Kamil] Univ Hosp Hradec Kralove, Biomed Res Ctr, Hradec Kralove, Czech Republic. RP Ramalho, TC (reprint author), Univ Fed Lavras, Dept Chem, BR-37200000 Lavras, Brazil.; Kuca, K (reprint author), Univ Hosp Hradec Kralove, Biomed Res Ctr, Hradec Kralove, Czech Republic. EM teodorico.ramalho@gmail.com; kamil.kuca@fnhk.cz RI Franca, Tanos/I-9519-2012; Ramalho, Teodorico /H-3204-2012 OI Ramalho, Teodorico /0000-0002-7324-1353 FU Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [304557/2012-9, 474757/2012-9]; Fundacao de Amparo ao Ensino e Pesquisa do Estado do Rio de Janeiro (FAPERJ) [E-26/102.993/2012]; Fundacao de Amparo ao Ensino e Pesquisa de Minas Gerais (FAPEMIG) [PPM-00499-13, PPM-00434-13]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior/Ministerio da Defesa (CAPES/MD) [PD 1782/2008]; excellence project FIM; UHHK; U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX The authors wish to thank the Brazilian financial agencies Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) (Grants 304557/2012-9 and 474757/2012-9), Fundacao de Amparo ao Ensino e Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Grant E-26/102.993/2012), Fundacao de Amparo ao Ensino e Pesquisa de Minas Gerais (FAPEMIG) (Grant no PPM-00499-13, and PPM-00434-13) and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior/Ministerio da Defesa (CAPES/MD) (Edital PRODEFESA 2008, grant no PD 1782/2008) for financial support, and the Military Institute of Engineering (IME) and Federal University of Lavras (UFLA) for providing the physical infrastructure and working space. This work was also supported by excellence project FIM and UHHK. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release Number LLNL-JRNL-679655. NR 156 TC 0 Z9 0 U1 8 U2 16 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8673 EI 1875-533X J9 CURR MED CHEM JI Curr. Med. Chem. PY 2016 VL 23 IS 10 BP 1041 EP 1061 DI 10.2174/0929867323666160222113504 PG 21 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Pharmacology & Pharmacy SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy GA DJ3QN UT WOS:000374120800004 PM 26898655 ER PT J AU Hadi, P Ning, C Kubicki, JD Mueller, K Fagan, JW Luo, ZT Weng, LT McKay, G AF Hadi, Pejman Ning, Chao Kubicki, James D. Mueller, Karl Fagan, Jonathan W. Luo, Zhengtang Weng, Lutao McKay, Gordon TI Sustainable development of a surface-functionalized mesoporous aluminosilicate with ultra-high ion exchange efficiency SO INORGANIC CHEMISTRY FRONTIERS LA English DT Article ID HEAVY-METAL IONS; COAL FLY-ASH; RAY PHOTOELECTRON-SPECTROSCOPY; AB-INITIO; AQUEOUS-SOLUTION; MAS-NMR; SYNTHETIC RESIN; ALBITE GLASSES; WASTE-WATER; SILICA-GEL AB The present work employs a facile hydroxylation technique to efficiently functionalize the surface of a waste-derived aluminosilicate for ultra-high heavy metal uptake via ion exchange. The functionalization process leads to the transformation of a nonporous hydrophobic waste material to a mesoporous hydrophilic material with a high concentration of ion exchange sites. The modification of the surface and textural characteristics of the mesoporous aluminosilicate has been thoroughly elucidated. The functionalization brings about the partial depolymerization of the aluminosilicate network and the transformation of unreactive bridging oxygens (BO) into non-bridging oxygens (NBO) as active sites as evidenced by Si-29 NMR and FTIR. The positively-charged alkali metals bound to the NBO act as facile ion exchange sites. Ultra-high heavy metal uptake capacity of the functionalized material through a combination of ion exchange and physisorption mechanisms has revealed the great potential of this aluminosilicate material for treatment of heavy metal-laden wastewater in a sustainable manner for practical applications. C1 [Hadi, Pejman; Ning, Chao; Luo, Zhengtang; Weng, Lutao; McKay, Gordon] Hong Kong Univ Sci & Technol, Chem & Biomol Engn Dept, Kowloon, Hong Kong, Peoples R China. [Kubicki, James D.] Univ Texas El Paso, Dept Geol Sci, El Paso, TX 79968 USA. [Mueller, Karl; Fagan, Jonathan W.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. [Mueller, Karl] Pacific NW Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA. [Weng, Lutao] Hong Kong Univ Sci & Technol, Mat Characterizat & Preparat Facil, Kowloon, Hong Kong, Peoples R China. [McKay, Gordon] Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci Engn & Technol, Div Sustainable Dev, Doha, Qatar. RP McKay, G (reprint author), Hong Kong Univ Sci & Technol, Chem & Biomol Engn Dept, Kowloon, Hong Kong, Peoples R China.; McKay, G (reprint author), Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci Engn & Technol, Div Sustainable Dev, Doha, Qatar. EM kemckayg@ust.hk RI Kubicki, James/I-1843-2012 OI Kubicki, James/0000-0002-9277-9044 NR 77 TC 0 Z9 0 U1 2 U2 9 PU CHINESE CHEMICAL SOC PI TAIPEI PA PO BOX 1-18, NANKANG, TAIPEI 115, TAIWAN SN 2052-1553 J9 INORG CHEM FRONT JI Inorg. Chem. Front. PY 2016 VL 3 IS 4 BP 502 EP 513 DI 10.1039/c5qi00182j PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DJ2CP UT WOS:000374011600008 ER PT J AU Brabec, J Yang, C Epifanovsky, E Krylov, AI Ng, E AF Brabec, Jiri Yang, Chao Epifanovsky, Evgeny Krylov, Anna I. Ng, Esmond TI Reduced-cost sparsity-exploiting algorithm for solving coupled-cluster equations SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE coupled-cluster methods; sparsity; sparse correction; quasi-Newton; solvers ID ELECTRONIC-STRUCTURE CALCULATIONS; SINGULAR-VALUE DECOMPOSITION; INEXACT NEWTON METHODS; TRIPLES CORRECTION T; PERTURBATION-THEORY; CHOLESKY DECOMPOSITIONS; QUANTUM-CHEMISTRY; BRILLOUIN-WIGNER; DOUBLES MODEL; MULTIREFERENCE AB We present an algorithm for reducing the computational work involved in coupled-cluster (CC) calculations by sparsifying the amplitude correction within a CC amplitude update procedure. We provide a theoretical justification for this approach, which is based on the convergence theory of inexact Newton iterations. We demonstrate by numerical examples that, in the simplest case of the CCD equations, we can sparsify the amplitude correction by setting, on average, roughly 90% nonzero elements to zeros without a major effect on the convergence of the inexact Newton iterations. C1 [Brabec, Jiri; Yang, Chao; Ng, Esmond] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Epifanovsky, Evgeny; Krylov, Anna I.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. [Epifanovsky, Evgeny] Q Chem Inc, Suite 105, Pleasanton, CA 94588 USA. RP Brabec, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM jiri.brabec@jh-inst.cas.cz FU Scientific Discovery through Advanced Computing (SciDAC) program FX Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) program. NR 63 TC 1 Z9 1 U1 1 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 EI 1096-987X J9 J COMPUT CHEM JI J. Comput. Chem. PY 2016 VL 37 IS 12 BP 1059 EP 1067 DI 10.1002/jcc.24293 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DJ2HH UT WOS:000374024200003 PM 26804120 ER PT J AU Aoun, B AF Aoun, Bachir TI Fullrmc, a rigid body reverse monte carlo modeling package enabled with machine learning and artificial intelligence SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE reverse Monte Carlo; rigid body; machine learning; pair distribution function; modeling ID DISORDERED STRUCTURES; SIMULATION; RMC AB A new Reverse Monte Carlo (RMC) package fullrmc for atomic or rigid body and molecular, amorphous, or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython, C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with a set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modeling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. In addition, fullrmc provides a unique way with almost no additional computational cost to recur a group's selection, allowing the system to go out of local minimas by refining a group's position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group. (c) 2016 Wiley Periodicals, Inc. C1 [Aoun, Bachir] Argonne Natl Labs, Joint Ctr Energy Storage Res, 9700 South Cass Ave B109, Lemont, IL USA. RP Aoun, B (reprint author), Argonne Natl Labs, Joint Ctr Energy Storage Res, 9700 South Cass Ave B109, Lemont, IL USA. EM baoun@aps.anl.gov FU DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Basic Energy Sciences FX This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The author would like to thank B. Reinhart (ANL), P. Chupas (ANL) and K. Chapman (ANL) for the technical assistance and scientific inputs. The Tetrahydrofuran example was provided by the Joint Center for Energy Storage Research (JCESR) efforts an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. NR 19 TC 1 Z9 1 U1 4 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 EI 1096-987X J9 J COMPUT CHEM JI J. Comput. Chem. PY 2016 VL 37 IS 12 BP 1102 EP 1111 DI 10.1002/jcc.24304 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA DJ2HH UT WOS:000374024200007 PM 26800289 ER PT J AU Mistri, GK Aggarwal, SK Longman, D Agarwal, AK AF Mistri, Gayatri K. Aggarwal, Suresh K. Longman, Douglas Agarwal, Avinash K. TI Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article ID DIESEL-ENGINE; COMBUSTION CHARACTERISTICS; BIO-DIESEL; N-HEPTANE; FUEL; FLAMES; OXIDATION; PRESSURE; INJECTOR; OILS AB Biofuels produced from nonedible sources that are cultivated on marginal lands represent a viable source of renewable and carbon-neutral energy. In this context, biodiesel obtained from Jatropha and Karanja oil seeds have received significant interest, especially in South Asian subcontinent. Both of these fuels are produced from nonedible plant seeds with high oil content, which can be grown on marginal lands. In this research, we have investigated the performance and emission characteristics of Jatropha and Karanja methyl esters (biodiesel) and their blends with diesel. Another objective is to examine the effect of long-term storage on biodiesel's oxidative stability. The biodiesels were produced at Indian Institute of Technology Kanpur, (IIT Kanpur), India, and the engine experiments were performed in a single cylinder, four-stroke, compression ignition engine at Argonne National Laboratory (ANL), Chicago. An endoscope was used to visualize in-cylinder combustion events and examine the soot distribution. The effects of fuel and start of injection (SOI) on engine performance and emissions were investigated. Results indicated that ignition delay was shorter with biodiesel. Consequently, the cylinder pressure and premixed heat release were higher for diesel compared to biodiesel. Engine performance data for biodiesel (J100, K100) and biodiesel blends (J30, K30) showed an increase in brake thermal efficiency (BTE) (10.9%, 7.6% for biodiesel and blend, respectively), brake specific fuel consumption (BSFC) (13.1% and 5.6%), and nitrogen oxides (NOx) emission (9.8% and 12.9%), and a reduction in brake specific hydrocarbon emission (BSHC) (8.64% and 12.9%), and brake specific CO emission (BSCO) (15.56% and 4.0%). The soot analysis from optical images qualitatively showed that biodiesel and blends produced less soot compared to diesel. The temperature profiles obtained from optical imaging further supported higher NOx in biodiesels and their blends compared to diesel. Additionally, the data indicated that retarding the injection timing leads to higher BSFC, but lower flame temperatures and NOx levels along with higher soot formation for all test fuels. The physicochemical properties such as fatty acid profile, cetane number, and oxygen content in biodiesels support the observed combustion and emission characteristics of the fuels tested in this study. Finally, the effect of long-term storage is found to increase the glycerol content, acid value, and cetane number of the two biodiesels, indicating some oxidation of unsaturated fatty acids in the fuels. C1 [Mistri, Gayatri K.; Aggarwal, Suresh K.] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. [Longman, Douglas] Argonne Natl Lab, Engine Combust Res, Lemont, IL 60439 USA. [Agarwal, Avinash K.] Indian Inst Technol, Dept Mech Engn, Kanpur 208016, Uttar Pradesh, India. RP Aggarwal, SK (reprint author), Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. EM ska@uic.edu FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; USDOE Office of Energy Efficiency and Renewable Energy, Office of Vehicle Technology FX This manuscript has been created in collaboration with UChicago Argonne, LLC, operator of ANL (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. We gratefully acknowledge the USDOE Office of Energy Efficiency and Renewable Energy, Office of Vehicle Technology for partially funding the reported work. NR 39 TC 0 Z9 0 U1 0 U2 3 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0195-0738 J9 J ENERG RESOUR-ASME JI J. Energy Resour. Technol.-Trans. ASME PD JAN PY 2016 VL 138 IS 1 AR 011202 DI 10.1115/1.4031317 PG 13 WC Energy & Fuels SC Energy & Fuels GA DI7UA UT WOS:000373706300002 ER PT J AU Lawrie, BJ Otterstrom, N Pooser, RC AF Lawrie, B. J. Otterstrom, N. Pooser, R. C. TI Coherence area profiling in multi-spatial-mode squeezed states SO JOURNAL OF MODERN OPTICS LA English DT Article DE squeezed states; quantum optics; coherence areas ID QUANTUM LIMITS; ENTANGLEMENT; IMAGES; LIGHT AB The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. We also show that the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach. C1 [Lawrie, B. J.; Otterstrom, N.; Pooser, R. C.] Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN USA. [Otterstrom, N.] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. RP Lawrie, BJ (reprint author), Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN USA. EM lawriebj@ornl.gov OI Lawrie, Ben/0000-0003-1431-066X; Pooser, Raphael/0000-0002-2922-453X FU U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the SULI program; Laboratory Directed Research and Development program FX This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the SULI program. B.L. and R.C.P acknowledge support from the Laboratory Directed Research and Development program. NR 28 TC 1 Z9 1 U1 2 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0340 EI 1362-3044 J9 J MOD OPTIC JI J. Mod. Opt. PY 2016 VL 63 IS 10 BP 989 EP 994 DI 10.1080/09500340.2015.1080869 PG 6 WC Optics SC Optics GA DJ0QJ UT WOS:000373909000011 ER PT J AU Leibowitz, SG Comeleo, RL Wigington, PJ Weber, MH Sproles, EA Sawicz, KA AF Leibowitz, Scott G. Comeleo, Randy L. Wigington, Parker J., Jr. Weber, Marc H. Sproles, Eric A. Sawicz, Keith A. TI Hydrologic Landscape Characterization for the Pacific Northwest, USA SO JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION LA English DT Article DE hydrologic classification; hydrologic cycle; watersheds; rivers; streams; runoff; geospatial analysis; National Hydrography Dataset; NHD; Pacific Northwest ID CONTERMINOUS UNITED-STATES; CATCHMENT CLASSIFICATION; CLIMATE-CHANGE; FLOW REGIMES; OREGON; FRAMEWORK; STREAMS; RIVER; PRECIPITATION; TEMPERATURE AB We update the Wigington etal. (2013) hydrologic landscape (HL) approach to make it more broadly applicable and apply the revised approach to the Pacific Northwest (PNW; i.e., Oregon, Washington, and Idaho). Specific changes incorporated are the use of assessment units based on National Hydrography Dataset Plus V2 catchments, a modified snowmelt model validated over a broader area, an aquifer permeability index that does not require preexisting aquifer permeability maps, and aquifer and soil permeability classes based on uniform criteria. Comparison of Oregon results for the revised and original approaches found fewer and larger assessment units, loss of summer seasonality, and changes in rankings and proportions of aquifer and soil permeability classes. Differences could be explained by three factors: an increased assessment unit size, a reduced number of permeability classes, and use of smaller cutoff values for the permeability classes. The distributions of the revised HLs in five groups of Oregon rivers were similar to the original HLs but less variable. The improvements reported here should allow the revised HL approach to be applied more often insituations requiring hydrologic classification and allow greater confidence in results. We also apply the map results to the development of hydrologic landscape regions. C1 [Leibowitz, Scott G.; Comeleo, Randy L.; Wigington, Parker J., Jr.; Weber, Marc H.] US EPA, Natl Hlth & Environm Effects Res Lab, Western Ecol Div, 200 SW 35th St, Corvallis, OR 97333 USA. [Sproles, Eric A.] Univ La Serena, Ctr Adv Studies Arid Zones, La Serena, Chile. [Sawicz, Keith A.] US EPA, Oak Ridge Inst Sci & Educ, Natl Hlth & Environm Effects Res Lab, Western Ecol Div, Corvallis, OR 97333 USA. RP Leibowitz, SG (reprint author), US EPA, Natl Hlth & Environm Effects Res Lab, Western Ecol Div, 200 SW 35th St, Corvallis, OR 97333 USA. EM leibowitz.scott@epa.gov OI Weber, Marc/0000-0002-9742-4744 FU U.S. Environmental Protection Agency FX We thank James Wickham and Mohammad Safeeq for providing valuable comments that improved this article. The information in this document has been funded entirely by the U.S. Environmental Protection Agency, in part through an appointment to the Internship/Research Participation Program at the Office of Research and Development, U.S. Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA. This article has been subjected to Agency review and has been approved for publication. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. NR 49 TC 0 Z9 0 U1 7 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1093-474X EI 1752-1688 J9 J AM WATER RESOUR AS JI J. Am. Water Resour. Assoc. PY 2016 VL 52 IS 2 BP 473 EP 493 DI 10.1111/1752-1688.12402 PG 21 WC Engineering, Environmental; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA DI9FZ UT WOS:000373808800014 ER PT J AU Klett, M Gilbert, JA Trask, SE Polzin, BJ Jansen, AN Dees, DW Abraham, DP AF Klett, Matilda Gilbert, James A. Trask, Stephen E. Polzin, Bryant J. Jansen, Andrew N. Dees, Dennis W. Abraham, Daniel P. TI Electrode Behavior RE-Visited: Monitoring Potential Windows, Capacity Loss, and Impedance Changes in Li-1.03(Ni0.5Co0.2Mn0.3)(0.97)O-2/Silicon-Graphite Full Cells SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID LITHIUM-ION CELLS; FLUOROETHYLENE CARBONATE; VINYLENE CARBONATE; SILICON ANODES; NEGATIVE ELECTRODES; CATHODE MATERIALS; BATTERIES; PERFORMANCE; SPECTROSCOPY; LINI0.8CO0.15AL0.05O2 AB The capacity and power performance of lithium-ion battery cells evolve over time. The mechanisms leading to these changes can often be identified through knowledge of electrode potentials, which contain information about electrochemical processes at the electrode-electrolyte interfaces. In this study we monitor electrode potentials within full cells containing a Li-1.03(Ni0.5Co0.2Mn0.3)(0.97)O-2-based (NCM523) positive electrode, a silicon-graphite negative electrode, and an LiPF6-bearing electrolyte, with and without fluoroethylene carbonate (FEC) or vinylene carbonate (VC) additives. The electrode potentials are monitored with a Li-metal reference electrode (RE) positioned besides the electrode stack; changes in these potentials are used to examine electrode state-of-charge (SOC) shifts, material utilization, and loss of electrochemically active material. Electrode impedances are obtained with a LixSn RE located within the stack; the data display the effect of cell voltage and electrode SOC changes on the measured values after formation cycling and after aging. Our measurements confirm the beneficial effect of FEC and VC electrolyte additives in reducing full cell capacity loss and impedance rise after cycling in a 3.0-4.2 V range. Comparisons with data from a full cell containing a graphite-based negative highlight the consequences of including silicon in the electrode. Our observations on electrode potentials, capacity, and impedance changes on cycling are crucial to designing long-lasting, silicon-bearing, lithium-ion cells. (C) The Author(s) 2016. Published by ECS. C1 [Klett, Matilda; Gilbert, James A.; Trask, Stephen E.; Polzin, Bryant J.; Jansen, Andrew N.; Dees, Dennis W.; Abraham, Daniel P.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Klett, M; Abraham, DP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mklett@kth.se; abraham@anl.gov RI Jansen, Andrew/Q-5912-2016 OI Jansen, Andrew/0000-0003-3244-7790 FU Galo Foundation; Royal Swedish Academy of Engineering Sciences (IVA); Office of Vehicle Technologies at U.S. Department of Energy within core funding of the Applied Battery Research (ABR) for Transportation Program; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX M.K. acknowledges the generous grants from The Galo Foundation and The Royal Swedish Academy of Engineering Sciences (IVA) that enabled her research at Argonne National Laboratory. The work was also supported by the Office of Vehicle Technologies at the U.S. Department of Energy within the core funding of the Applied Battery Research (ABR) for Transportation Program. We are grateful to our many colleagues, especially K. Pupek, B. Ingram, T. Burrell, and W. Lu for their help and support during the course of this study. This manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 48 TC 5 Z9 5 U1 11 U2 33 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 6 BP A875 EP A887 DI 10.1149/2.0271606jes PG 13 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DJ1SY UT WOS:000373985300052 ER PT J AU Richey, FW McCloskey, BD Luntz, AC AF Richey, Francis W. McCloskey, Bryan D. Luntz, Alan C. TI Mg Anode Corrosion in Aqueous Electrolytes and Implications for Mg-Air Batteries SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID MAGNESIUM ALLOY AZ31; NONAQUEOUS LI-O-2 BATTERIES; SALINE SOLUTION; PURE MAGNESIUM; PERFORMANCE; SURFACE; ELECTROCHEMISTRY; DISSOLUTION; PROTECTION; PHOSPHATE AB Aqueous Mg-air primary batteries possess many favorable attributes for energy storage because Mg is affordable, abundant, and lightweight. However, parasitic corrosion of Mg in aqueous electrolytes generates H-2 and surprisingly increases with increasing current density during battery discharge (Mg oxidation), limiting the faradaic efficiency of aqueous Mg batteries. In this study, differential electrochemical mass spectrometry and H-2 pressure rise measurements were used to characterize Mg corrosion in Mg-air batteries employing aqueous electrolytes with salts (NaCl, NaNO3, NaPO4, and a NaCl/NaPO4 mixture) that provide various degrees of Mg passivation. H-2 evolution rates were highest in NaCl electrolytes and lowest in NaNO3 electrolytes. However, NaNO3 salts reduced the H-2-evolving corrosion rate at the expense of introducing a nitrate to nitrite corrosion reaction into the battery. The combined Mg corrosion rate in the nitrate-based electrolyte was still lowest among those electrolytes studied. The nitrate to nitrite corrosion reaction also lowered the magnitude of the Mg anodic potential and therefore decreased the overall Mg-O-2 battery voltage compared to the NaCl electrolyte. Nevertheless, Mg-O-2 batteries utilizing a NaNO3 electrolyte allowed for 60% larger discharge capacity and 50% higher Mg oxidation faradaic efficiency compared to a NaCl electrolyte. (C) The Author(s) 2016. Published by ECS. All rights reserved. C1 [Richey, Francis W.; McCloskey, Bryan D.; Luntz, Alan C.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Richey, Francis W.; Luntz, Alan C.] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA. [Richey, Francis W.; Luntz, Alan C.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [McCloskey, Bryan D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. RP McCloskey, BD (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.; McCloskey, BD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. EM bmcclosk@berkeley.edu FU Danish Council for Strategic Research [11-116792]; US Department of Energy [DE-AC02-05CH11231] FX F.R. gratefully acknowledges the ReLiable project (#11-116792) funded by the Danish Council for Strategic Research for financial support. The work at University of California, Berkeley/Lawrence Berkeley National Laboratory (LBNL) was supported in part by previous work performed through the Laboratory Directed Research and Development Program of LBNL under US Department of Energy Contract DE-AC02-05CH11231. The authors are also grateful for suggestions and guidance on cell design from Tom Adams of Adams & Chittenden Scientific Glassware. NR 30 TC 2 Z9 2 U1 15 U2 36 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 6 BP A958 EP A963 DI 10.1149/2.0781606jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DJ1SY UT WOS:000373985300083 ER PT J AU Siegal, MP Yelton, WG Perdue, BR Sava Gallis, DF Schwarz, HL AF Siegal, Michael P. Yelton, W. Graham Perdue, Brian R. Sava Gallis, Dorina F. Schwarz, Haiqing L. TI Nanoporous-Carbon as a Potential Host Material for Reversible Mg Ion Intercalation SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID NONAQUEOUS MAGNESIUM ELECTROCHEMISTRY; BATTERIES; ADSORPTION; GRAPHENE; PROGRESS; SURFACE; FILMS AB We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as an electrically conductive anode host material for Mg2+ intercalation. NPC has high surface area, and an open, accessible pore structure tunable via mass density that can improve diffusion. We fabricate 2032 coin cells using NPC coated stainless-steel disk anodes, metallic Mg cathodes, and a Grignard-based electrolyte. NPC mass density is controlled during growth, ranging from 0.06-1.3 g/cm(3). The specific surface area of NPC increases linearly from 1,000 to 1,700 m(2)/g as mass density decreases from 1.3 to 0.26 g/cm(3), however, the surface area falls off dramatically at lower mass densities, implying a lack of mechanical integrity in such nanostructures. These structural characterizations correlate directly with coin cell electrochemical measurements. In particular, cyclic voltammetry (CV) scans for NPC with density similar to 0.5 g/cm(3) and BET surface area similar to 1500 m(2)/g infer the possibility of reversible Mg-ion intercalation. Higher density NPC yields capacitive behavior, most likely resulting from the smaller interplanar spacings between graphene sheet fragments and tighter domain boundaries; lower density NPC results in asymmetrical CV scans, consistent with the likely structural degradation resulting from mass transport through soft, low-density carbon materials. (C) The Author(s) 2016. Published by ECS. All rights reserved. C1 [Siegal, Michael P.; Yelton, W. Graham; Perdue, Brian R.; Sava Gallis, Dorina F.; Schwarz, Haiqing L.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Siegal, MP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mpsiega@sandia.gov RI Sava Gallis, Dorina/D-2827-2015 FU U.S. Department of Energy [DE-AC04-94AL85000]; Laboratory Directed Research and Development program at Sandia National Laboratories FX The authors thank Lyle Brunke for growing the NPC films, Chris Apblett for use of a glove box to fabricate the Mg coin cells, and Kevin Zavadil for many useful discussions. This work is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 28 TC 0 Z9 0 U1 12 U2 37 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 6 BP A1030 EP A1035 DI 10.1149/2.0851606jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DJ1SY UT WOS:000373985300090 ER PT J AU Snyder, C Apblett, C Grillet, A Beechem, T Duquette, D AF Snyder, Chelsea Apblett, Christopher Grillet, Anne Beechem, Thomas Duquette, David TI Measuring Li+ Inventory Losses in LiCoO2/Graphite Cells Using Raman Microscopy SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID LITHIUM-ION BATTERIES; LICOO2 ELECTRODES; CAPACITY FADE; CATHODE; MECHANISMS AB The contribution from loss of Li+ inventory to capacity fade is described for slow rates (C/10) and long-term cycling (up to 80 cycles). It was found through electrochemical testing and ex-situ Raman analysis that at these slow rates, the entirety of capacity loss up to 80 cycles can be explained by loss of Li+ inventory in the cell. The Raman spectrum of LiCoO2 is sensitive to the state of lithiation and can therefore be leveraged to quantify the state of lithiation for individual particles. With these Raman derived estimates, the lithiation state of the cathode in the discharged state is compared to electrochemical data as a function of cycle number. High correlation is found between Raman quantifications of cycleable lithium and the capacity fade. Additionally, the linear relationship between discharge capacity and cell overpotential suggests that the loss of capacity stems from an impedance rise of the electrodes, which based on Li inventory losses, is caused by SEI formation and repair. (C) The Author(s) 2016. Published by ECS. All rights reserved. C1 [Snyder, Chelsea; Apblett, Christopher; Grillet, Anne; Beechem, Thomas] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Snyder, Chelsea; Duquette, David] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. RP Snyder, C (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA.; Snyder, C (reprint author), Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. EM ehlerc@rpi.edu FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Anthony McDonald for his assistance with Raman measurements. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 23 TC 2 Z9 2 U1 12 U2 20 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 6 BP A1036 EP A1041 DI 10.1149/2.1111606jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DJ1SY UT WOS:000373985300091 ER PT J AU Papandrew, AB St John, S Elgammal, RA Wilson, DL Atkinson, RW Lawton, JS Arruda, TM Zawodzinski, TA AF Papandrew, Alexander B. St John, Samuel Elgammal, Ramez A. Wilson, David L., III Atkinson, Robert W., III Lawton, Jamie S. Arruda, Thomas M. Zawodzinski, Thomas A., Jr. TI Vapor-Deposited Pt and Pd-Pt Catalysts for Solid Acid Fuel Cells: Short Range Structure and Interactions with the CsH2PO4 Electrolyte SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID OXYGEN REDUCTION REACTION; ELECTROCATALYTIC PERFORMANCE; CONDUCTOR CSH2PO4; OXIDE; OXIDATION; NANOPARTICLES; SPECTROSCOPY; MONOLAYER; STABILITY; RUTHENIUM AB State-of-the-art cathodes for solid acid fuel cells (SAFCs) based on the crystalline electrolyte CsH2PO4 (CDP) are comprised of a proton-conducting CDP network coated by a vapor-deposited nanostructured catalyst. Pd-rich (85 at%Pd) Pt-Pd oxygen reduction catalysts vapor-deposited on CDP display both extraordinary activity for oxygen reduction and poor stability in cathodes for SAFCs operating at 250 degrees C. Similar catalysts with lower Pd content (57 at%Pd) are less active and more stable. Using X-ray absorption spectroscopy (XAS), we find that these catalysts are structurally similar and that structural variations are insufficient to explain the observed differences in activity. XAS and solid-state and solution nuclear magnetic resonance (NMR) also show that additional water-soluble chemical species are present in the Pd-rich electrode after fuel cell operation. We attribute the presence of these species to the reactivity of the Pd-rich catalyst with CsH2PO4 and suggest that these products are the cause of the observed deactivation. (C) The Author(s) 2016. Published by ECS. All rights reserved. C1 [Papandrew, Alexander B.; St John, Samuel; Elgammal, Ramez A.; Wilson, David L., III; Atkinson, Robert W., III; Lawton, Jamie S.; Zawodzinski, Thomas A., Jr.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Arruda, Thomas M.] Salve Regina Univ, Dept Chem, Newport, RI 02840 USA. [Zawodzinski, Thomas A., Jr.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Papandrew, AB (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM apapandrew@utk.edu FU National Science Foundation through TN-SCORE [NSF EPS-1004083]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Financial support for this work was provided by the National Science Foundation through TN-SCORE (NSF EPS-1004083). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors also thank Carlos Steren for his assistance with NMR measurements. NR 35 TC 0 Z9 0 U1 10 U2 26 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 6 BP F464 EP F469 DI 10.1149/2.0371606jes PG 6 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DJ1SY UT WOS:000373985300074 ER PT J AU Zhao, BL Huang, J Fu, Q Yang, L Zhang, JY Xiang, B AF Zhao, Benliang Huang, Jian Fu, Qi Yang, Lei Zhang, Jingyu Xiang, Bin TI MoS2/NbSe2 Hybrid Nanobelts for Enhanced Hydrogen Evolution SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID MOS2 NANOSHEETS; SOLAR-CELLS; EFFICIENT; GRAPHENE; CATALYST; NANOPARTICLES; OXIDATION; H-2 AB Recently, MoS2 nanosheets have attracted extensive interest for the application in electrocatalytic hydrogen evolution reaction (HER) because of its highly active edge sites and chemical stability. However, the aggregation in nanosized MoS2 reduces the density of exposed surface edge sites, degrading its electrochemical catalytic activity. In this paper, we report a hybrid structure of MoS2/NbSe2 nanobelts with enhanced electrochemical catalytic performance. The hybrid structure feature and chemical composition were investigated by transmission electron microscopy and X-ray photoelectron spectroscopy. With the introduction of one dimensional metallic NbSe2, the MoS2 surface edge sites were highly exposed in MoS2/NbSe2 nanobelts, resulting in an enhanced electrocatalytic performance in HER. A Tafel slope of 79.5 eV/dec was obtained in MoS2/NbSe2, much lower than that of MoS2 (137.6 eV/dec). At the over potential of -0.65 V vs. RHE, the catalytic current density of MoS2/NbSe2 nanobelts is 205 mA/cm(2), five times larger than that of MoS2 nanosheets (43 mA/cm(2)). (C) 2016 The Electrochemical Society. All rights reserved. C1 [Zhao, Benliang; Huang, Jian; Fu, Qi; Yang, Lei; Xiang, Bin] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat Quantum Phy, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China. [Zhang, Jingyu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Xiang, B (reprint author), Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat Quantum Phy, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China. EM binxiang@ustc.edu.cn FU National Natural Science Foundation of China [21373196, 11434009]; National Program for Thousand Young Talents of China; Fundamental Research Funds for the Central Universities [WK2340000050, WK2060140014] FX This work was supported by the National Natural Science Foundation of China (21373196, 11434009), the National Program for Thousand Young Talents of China and the Fundamental Research Funds for the Central Universities (WK2340000050, WK2060140014). NR 27 TC 0 Z9 0 U1 10 U2 25 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2016 VL 163 IS 6 BP H384 EP H387 DI 10.1149/2.0451606jes PG 4 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA DJ1SY UT WOS:000373985300114 ER PT J AU Franco, M Panas, MW Marino, ND Lee, MCW Buchholz, KR Kelly, FD Bednarski, JJ Sleckman, BP Pourmand, N Boothroyd, JC AF Franco, Magdalena Panas, Michael W. Marino, Nicole D. Lee, Mei-Chong Wendy Buchholz, Kerry R. Kelly, Felice D. Bednarski, Jeffrey J. Sleckman, Barry P. Pourmand, Nader Boothroyd, John C. TI A Novel Secreted Protein, MYR1, Is Central to Toxoplasma's Manipulation of Host Cells SO MBIO LA English DT Article ID DENSE GRANULE PROTEIN; ONCOGENIC TRANSCRIPTION FACTOR; C-MYC; PARASITOPHOROUS VACUOLE; MALARIA PARASITES; IMMUNE-RESPONSE; GENE-EXPRESSION; IN-VIVO; GONDII; INFECTION AB The intracellular protozoan Toxoplasma gondii dramatically reprograms the transcriptome of host cells it infects, including substantially up-regulating the host oncogene c-myc. By applying a flow cytometry-based selection to infected mouse cells expressing green fluorescent protein fused to c-Myc (c-Myc-GFP), we isolated mutant tachyzoites defective in this host c-Myc up-regulation. Whole-genome sequencing of three such mutants led to the identification of MYR1 (Myc regulation 1; TGGT1_254470) as essential for c-Myc induction. MYR1 is a secreted protein that requires TgASP5 to be cleaved into two stable portions, both of which are ultimately found within the parasitophorous vacuole and at the parasitophorous vacuole membrane. Deletion of MYR1 revealed that in addition to its requirement for c-Myc up-regulation, the MYR1 protein is needed for the ability of Toxoplasma tachyzoites to modulate several other important host pathways, including those mediated by the dense granule effectors GRA16 and GRA24. This result, combined with its location at the parasitophorous vacuole membrane, suggested that MYR1 might be a component of the machinery that translocates Toxoplasma effectors from the parasitophorous vacuole into the host cytosol. Support for this possibility was obtained by showing that transit of GRA24 to the host nucleus is indeed MYR1-dependent. As predicted by this pleiotropic phenotype, parasites deficient in MYR1 were found to be severely attenuated in a mouse model of infection. We conclude, therefore, that MYR1 is a novel protein that plays a critical role in how Toxoplasma delivers effector proteins to the infected host cell and that this is crucial to virulence. IMPORTANCE Toxoplasma gondii is an important human pathogen and a model for the study of intracellular parasitism. Infection of the host cell with Toxoplasma tachyzoites involves the introduction of protein effectors, including many that are initially secreted into the parasitophorous vacuole but must ultimately translocate to the host cell cytosol to function. The work reported here identified a novel protein that is required for this translocation. These results give new insight into a very unusual cell biology process as well as providing a potential handle on a pathway that is necessary for virulence and, therefore, a new potential target for chemotherapy. C1 [Franco, Magdalena; Panas, Michael W.; Marino, Nicole D.; Buchholz, Kerry R.; Kelly, Felice D.; Boothroyd, John C.] Stanford Univ, Sch Med, Dept Microbiol & Immunol, Stanford, CA 94305 USA. [Franco, Magdalena] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA USA. [Lee, Mei-Chong Wendy; Pourmand, Nader] Univ Calif Santa Cruz, Dept Biomol Engn, Santa Cruz, CA 95064 USA. [Bednarski, Jeffrey J.] Washington Univ, Dept Pediat, St Louis, MO 63130 USA. [Sleckman, Barry P.] Washington Univ, Dept Pathol & Immunol, St Louis, MO USA. RP Boothroyd, JC (reprint author), Stanford Univ, Sch Med, Dept Microbiol & Immunol, Stanford, CA 94305 USA. EM jboothr@stanford.edu FU HHS \ National Institutes of Health (NIH) [R21-AI112962, RO1-AI73756, T32-AI007328, P01-35HG000205, T32-AI007290, F31-AI120649, K08AI102946-01, S10RR025518-01, P30-NS069375]; Alex's Lemonade Stand Foundation for Childhood Cancer (ALSF); Stanford University FX HHS vertical bar National Institutes of Health (NIH) provided funding to John Boothroyd under grant numbers R21-AI112962 and RO1-AI73756. HHS vertical bar National Institutes of Health (NIH) provided funding to Magdalena Franco under grant number T32-AI007328. HHS vertical bar National Institutes of Health (NIH) provided funding to Nader Pourmand under grant number P01-35HG000205. HHS vertical bar National Institutes of Health (NIH) provided funding to Michael William Panas under grant number T32-AI007290. HHS vertical bar National Institutes of Health (NIH) provided funding to Nicole D. Marino under grant number F31-AI120649. HHS vertical bar National Institutes of Health (NIH) provided funding to Jeffrey J. Bednarski under grant number K08AI102946-01. HHS vertical bar National Institutes of Health (NIH) provided funding to Magdalena Franco under grant number S10RR025518-01. HHS vertical bar National Institutes of Health (NIH) provided funding to Michael William Panas under grant number P30-NS069375. Alex's Lemonade Stand Foundation for Childhood Cancer (ALSF) provided funding to Jeffrey J. Bednarski.; Stanford University provided the Stanford Graduate Fellowship to Nicole D. Marino. NR 54 TC 7 Z9 7 U1 2 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD JAN-FEB PY 2016 VL 7 IS 1 AR e02231-15 DI 10.1128/mBio.02231-15 PG 16 WC Microbiology SC Microbiology GA DJ0ZO UT WOS:000373933100025 PM 26838724 ER PT J AU Hu, P Tom, L Singh, A Thomas, BC Baker, BJ Piceno, YM Andersen, GL Banfield, JF AF Hu, Ping Tom, Lauren Singh, Andrea Thomas, Brian C. Baker, Brett J. Piceno, Yvette M. Andersen, Gary L. Banfield, Jillian F. TI Genome-Resolved Metagenomic Analysis Reveals Roles for Candidate Phyla and Other Microbial Community Members in Biogeochemical Transformations in Oil Reservoirs SO MBIO LA English DT Article ID CRUDE-OIL; NORTH-SEA; ARCHAEOGLOBUS-FULGIDUS; PETROLEUM RESERVOIRS; DEEP SUBSURFACE; SP-NOV.; POLYSACCHARIDE HYDROLYSIS; NITROGEN-FIXATION; ORGANIC-MATTER; FIELD WATERS AB Oil reservoirs are major sites of methane production and carbon turnover, processes with significant impacts on energy resources and global biogeochemical cycles. We applied a cultivation-independent genomic approach to define microbial community membership and predict roles for specific organisms in biogeochemical transformations in Alaska North Slope oil fields. Produced water samples were collected from six locations between 1,128m(24 to 27 degrees C) and 2,743m(80 to 83 degrees C) below the surface. Microbial community complexity decreased with increasing temperature, and the potential to degrade hydrocarbon compounds was most prevalent in the lower-temperature reservoirs. Sulfate availability, rather than sulfate reduction potential, seems to be the limiting factor for sulfide production in some of the reservoirs under investigation. Most microorganisms in the intermediate-and higher-temperature samples were related to previously studied methanogenic and nonmethanogenic archaea and thermophilic bacteria, but one candidate phylum bacterium, a member of the Acetothermia (OP1), was present in Kuparuk sample K3. The greatest numbers of candidate phyla were recovered from the mesothermic reservoir samples SB1 and SB2. We reconstructed a nearly complete genome for an organism from the candidate phylum Parcubacteria (OD1) that was abundant in sample SB1. Consistent with prior findings for members of this lineage, the OD1 genome is small, and metabolic predictions support an obligately anaerobic, fermentation-based lifestyle. At moderate abundance in samples SB1 and SB2 were members of bacteria from other candidate phyla, including Microgenomates (OP11), Atribacteria (OP9), candidate phyla TA06 and WS6, and Marinimicrobia (SAR406). The results presented here elucidate potential roles of organisms in oil reservoir biological processes. IMPORTANCE The activities of microorganisms in oil reservoirs impact petroleum resource quality and the global carbon cycle. We show that bacteria belonging to candidate phyla are present in some oil reservoirs and provide the first insights into their potential roles in biogeochemical processes based on several nearly complete genomes. C1 [Hu, Ping; Tom, Lauren; Piceno, Yvette M.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA. [Singh, Andrea; Thomas, Brian C.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Baker, Brett J.] Univ Texas Austin, Inst Marine Sci, Dept Marine Sci, Port Aransas, TX 78712 USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu RI Baker, Brett/P-1783-2014; Tom, Lauren/E-9739-2015; Piceno, Yvette/I-6738-2016; Andersen, Gary/G-2792-2015; Hu, Ping/G-2384-2015 OI Baker, Brett/0000-0002-5971-1021; Piceno, Yvette/0000-0002-7915-4699; Andersen, Gary/0000-0002-1618-9827; FU University of California at Berkeley, Energy Biosciences Institute under U.S. Department of Energy [DE-AC02-05CH11231]; Department of Eenergy [DE-SC0004918] FX This work was supported by a subcontract from the University of California at Berkeley, Energy Biosciences Institute to Lawrence Berkeley National Laboratory under its U.S. Department of Energy contract DE-AC02-05CH11231. The ggkbase is supported by grant DE-SC0004918 (Systems Biology Knowledge Base Focus Area) from Department of Eenergy. NR 85 TC 6 Z9 6 U1 8 U2 18 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD JAN-FEB PY 2016 VL 7 IS 1 AR e01669-15 DI 10.1128/mBio.01669-15 PG 12 WC Microbiology SC Microbiology GA DJ0ZO UT WOS:000373933100035 PM 26787827 ER PT B AU Bravo, L Xue, QL Som, S Powell, C Kweon, CBM AF Bravo, Luis Xue, Qingluan Som, Sibendu Powell, Christopher Kweon, Chol-Bum M. GP ASME TI FUEL EFFECTS ON NOZZLE FLOW AND SPRAY USING FULLY COUPLED EULERIAN SIMULATIONS SO PROCEEDINGS OF THE ASME POWER CONFERENCE, 2015 LA English DT Proceedings Paper CT ASME 2015 Power Conference, POWER2015 CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Power Div ID X-RAY RADIOGRAPHY; SURROGATE MIXTURES; COMBUSTION; MODEL; JP-8; COMPONENTS AB The objective of this study is to examine the impact of single and multi-component surrogate fuel mixtures on the atomization and mixing characteristics of non-reacting isothermal diesel engine sprays. An Eulerian modeling approach was adopted to simulate both the internal nozzle flow dynamics and the emerging turbulent spray in the near nozzle region in a fully-coupled manner. The Volume of Fluids (VoF) methodology was utilized to treat the two-phase flow dynamics including a Homogenous Relaxation approach to account for nozzle cavitation effects. To enable accurate simulations, the nozzle geometry and in-situ multi-dimensional needle lift and off-axis motion profiles have been characterized via the X-ray phase-contrast technique at Argonne National Laboratory. The flow turbulence is treated via the classical k - epsilon Reynolds Average Navier Stoke (RANS) model with in-nozzle and near field resolution of 30 mu m. Several multi-component surrogate mixtures were implemented using linear blending rules to examine the behavior of petroleum, and alternative fuels including: JP -8, JP-5, Hydro-treated Renewable Jet (HRJ), Iso-Paraffinic Kerosene (IPK) with comparison to single component n-dodecane fuel on ECN Spray A nozzle spray dynamics. The results were validated using transient rate-of injection measurements from the Army Research Laboratory at Spray A conditions as well as projected density fields obtained from the line-of-sight measurements from X-ray radiography measurements at The Advanced Photon Source at Argonne National Laboratory. The conditions correspond to injection pressure, nominal fuel temperature, and ambient density of 1500 bar, 363 K, and 22.8 kg/m(3), respectively. The simulation results provide a unique high-fidelity contribution to the effects of fuels on the spray mixing dynamics. The results can lead to improvements in fuel mixture distributions enhancing performance of military vehicles. C1 [Bravo, Luis; Kweon, Chol-Bum M.] US Army Res Lab, Aberdeen Proving Ground, MD USA. [Xue, Qingluan; Som, Sibendu; Powell, Christopher] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Bravo, L (reprint author), US Army Res Lab, Aberdeen Proving Ground, MD USA. NR 21 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5660-4 PY 2016 AR V001T03A012 PG 11 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BE6DW UT WOS:000373970600032 ER PT B AU DuPont, B Azam, R Proper, S Cotilla-Sanchez, E Hoyle, C Piacenza, J Oryshchyn, D Zitney, S Bossart, S AF DuPont, Bryony Azam, Ridwan Proper, Scott Cotilla-Sanchez, Eduardo Hoyle, Christopher Piacenza, Joseph Oryshchyn, Danylo Zitney, Steve Bossart, Stephen GP ASME TI DECISION MAKING FOR THE COLLABORATIVE ENERGY SUPPLY SYSTEM OF OREGON AND WASHINGTON SO PROCEEDINGS OF THE ASME POWER CONFERENCE, 2015 LA English DT Proceedings Paper CT ASME 2015 Power Conference, POWER2015 CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Power Div AB As demand for electricity in the United States continues to increase, it is necessary to explore the means through which the modem power supply system can accommodate both increasing affluence (which is accompanied by increased per-capita consumption) and the continually growing global population. Though there has been a great deal of research into the theoretical optimization of large-scale power systems, research into the use of an existing power system as a foundation for this growth has yet to be fully explored. Current successful and robust power generation systems that have significant renewable energy penetration - despite not having been optimized a priori - can be used to inform the advancement of modem power systems to accommodate the increasing demand for electricity. Leveraging ongoing research projects at Oregon State University and the National Energy Technology Laboratory, this work explores how an accurate and state-of-the-art computational model of the Oregon/Washington (OR/WA) energy system can be employed as part of an overarching power systems optimization scheme that looks to inform the decision making process for next generation power supply systems. Research scenarios that explore an introductory multi-objective power flow analysis for the OR/WA grid will be shown, along with a discussion of future research directions. C1 [DuPont, Bryony; Azam, Ridwan; Proper, Scott; Cotilla-Sanchez, Eduardo; Hoyle, Christopher] Oregon State Univ, Corvallis, OR 97331 USA. [Piacenza, Joseph] Calif State Univ Fullerton, Fullerton, CA 92634 USA. [Oryshchyn, Danylo; Zitney, Steve; Bossart, Stephen] Natl Energy Technol Lab, Morgantown, WV USA. RP DuPont, B (reprint author), Oregon State Univ, Corvallis, OR 97331 USA. NR 15 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5660-4 PY 2016 AR V001T01A012 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BE6DW UT WOS:000373970600012 ER PT B AU Li, GN Li, SP Kim, GH AF Li, Genong Li, Shaoping Kim, Gi-Heon GP ASME TI TREATMENT OF ELECTRIC SHORT-CIRCUIT IN ELECTROCHEMICAL-THERMAL COUPLED BATTERY SIMULATIONS SO PROCEEDINGS OF THE ASME POWER CONFERENCE, 2015 LA English DT Proceedings Paper CT ASME 2015 Power Conference, POWER2015 CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Power Div ID LITHIUM-ION CELLS; MODEL AB Lithium-ion batteries have been widely used in electric vehicles (EVs). Their performance, life and safety are of great engineering importance. Using simulation tools, electric performance and thermal behavior of a battery can be computed to provide useful information in battery design. Internal short-circuit is one of the important failure modes in battery's safety study. Internal short treatment is added to the framework of the multi scale multi-dimensional (MSMD) battery modeling methodology. The method is demonstrated in the present paper by simulating a single lithium-ion battery cell. C1 [Li, Genong; Li, Shaoping] Ansys Inc, 10 Cavendish Court, Lebanon, NH 03766 USA. [Kim, Gi-Heon] Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. RP Li, GN (reprint author), Ansys Inc, 10 Cavendish Court, Lebanon, NH 03766 USA. NR 9 TC 0 Z9 0 U1 1 U2 5 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5660-4 PY 2016 AR V001T12A008 PG 7 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BE6DW UT WOS:000373970600094 ER PT B AU Smith, AD Omitaomu, OA Peck, JJ AF Smith, Amanda D. Omitaomu, Olufemi A. Peck, Jaron J. GP ASME TI MODELING THE IMPACTS OF SOLAR DISTRIBUTED GENERATION ON US WATER RESOURCES SO PROCEEDINGS OF THE ASME POWER CONFERENCE, 2015 LA English DT Proceedings Paper CT ASME 2015 Power Conference, POWER2015 CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Power Div AB Distributed electric power generation technologies typically use little or no water per unit of electrical energy produced; in particular, renewable energy sources such as solar PV systems do not require cooling systems and present an opportunity to reduce water usage for power generation. Within the US, the fuel mix used for power generation varies regionally, and certain areas use more water for power generation than others. The need to reduce water usage for power generation is even more urgent in view of climate change uncertainties. In this paper, we present an example case within the state of Tennessee, one of the top four states in water consumption for power generation and one of the states with little or no potential for developing centralized renewable energy generations. The potential for developing PV generation within Knox County, Tennessee, is studied, along with the potential for reducing water withdrawal and consumption within the Tennessee Valley stream region. Electric power generation plants in the region are quantified for their electricity production and expected water withdrawal and consumption over one year, where electrical generation data is provided over one year and water usage is modeled based on the cooling system(s) in use. Potential solar PV electrical production is modeled based on LiDAR data and weather data for the same year. Our proposed methodology can be summarized as follows: First, the potential solar generation is compared against the local grid demand. Next, electrical generation reductions are specified that would result in a given reduction in water withdrawal and a given reduction in water consumption, and compared with the current water withdrawal and consumption rates for the existing fuel mix. The increase in solar PV development that would produce an equivalent amount of power, is determined. In this way, we consider how targeted local actions may affect the larger stream region through thoughtful energy development. This model can be applied to other regions, other types of distributed generation, and used as a framework for modeling alternative growth scenarios in power production capacity in addition to modeling adjustments to existing capacity. C1 [Smith, Amanda D.; Peck, Jaron J.] Univ Utah, Salt Lake City, UT USA. [Omitaomu, Olufemi A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Smith, AD (reprint author), Univ Utah, Salt Lake City, UT USA. NR 23 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5660-4 PY 2016 AR V001T02A004 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BE6DW UT WOS:000373970600020 ER PT J AU Yue, YF Zhang, L Chen, JH Hensley, DK Dai, S Overbury, SH AF Yue, Yanfeng Zhang, Li Chen, Jihua Hensley, Dale K. Dai, Sheng Overbury, Steven H. TI Mesoporous xEr(2)O(3)center dot CoTiO3 composite oxide catalysts for low temperature dehydrogenation of ethylbenzene to styrene using CO2 as a soft oxidant SO RSC ADVANCES LA English DT Article ID PROMOTED IRON-OXIDE; OXIDATIVE DEHYDROGENATION; CARBON-DIOXIDE; CERIA; ALUMINA; NANOSHEETS; TIO2 AB A series of mesoporous xEr(2)O(3)center dot CoTiO3 composite oxide catalysts have been prepared using a template method and tested as a newtype of catalyst for the oxidative dehydrogenation of ethylbenzene to styrene by using CO2 as a soft oxidant. Among the catalysts tested, the 0.25Er(2)O(3)center dot CoTiO3 sample with a ratio of 1 : 4 : 4 content and calcined at 600 degrees C exhibited the highest ethylbenzene conversion (58%) and remarkable styrene selectivity (95%) at low temperature (450 degrees C). C1 [Yue, Yanfeng; Zhang, Li; Dai, Sheng; Overbury, Steven H.] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. [Yue, Yanfeng] Sul Ross State Univ, Dept Biol Geol & Phys Sci, Alpine, TX 79832 USA. [Chen, Jihua; Hensley, Dale K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Dai, S; Overbury, SH (reprint author), Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA.; Dai, S (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM dais@ornl.gov; overburysh@ornl.gov RI Chen, Jihua/F-1417-2011; Dai, Sheng/K-8411-2015 OI Chen, Jihua/0000-0001-6879-5936; Dai, Sheng/0000-0002-8046-3931 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. TEM (J. C.) and SEM (D. K. H.) experiments were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 26 TC 0 Z9 0 U1 7 U2 17 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 39 BP 32989 EP 32993 DI 10.1039/c6ra04228g PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DJ2PA UT WOS:000374045900070 ER PT J AU Rafailovic, LD Gammer, C Srajer, J Trisovic, T Rahel, J Karnthaler, HP AF Rafailovic, L. D. Gammer, C. Srajer, J. Trisovic, T. Rahel, J. Karnthaler, H. P. TI Surface enhanced Raman scattering of dendritic Ag nanostructures grown with anodic aluminium oxide SO RSC ADVANCES LA English DT Article ID GALVANIC REPLACEMENT SYNTHESIS; SILVER DENDRITES; SERS; DISPLACEMENT; DEPOSITION; NANODENDRITES; SUBSTRATE; FOIL AB We present the application of newly developed Ag nanodendrites (Ag-ND) grown together with anodic aluminium oxide for surface-enhanced Raman scattering (SERS). The Ag-ND yield very pronounced SERS using a self-assembled monolayer (SAM). This is confirmed by simulations showing hot spots in the electromagnetic field at the surfaces of the Ag-ND. SERS measurements reusing Ag-ND demonstrate its long-term stability even after one year. C1 [Rafailovic, L. D.] CEST, Wr Neustadt, Austria. [Gammer, C.; Karnthaler, H. P.] Univ Vienna, Phys Nanostruct Mat, Vienna, Austria. [Gammer, C.] Lawrence Berkeley Natl Lab, NCEM, Mol Foundry, Berkeley, CA USA. [Srajer, J.] AIT, Biosensor Technol, Vienna, Austria. [Trisovic, T.] Serbian Acad Arts & Sci, Inst Tech Sci, Belgrade, Serbia. [Rahel, J.] Masaryk Univ, Dept Phys Elect CEPLANT, Brno, Czech Republic. RP Rafailovic, LD (reprint author), CEST, Wr Neustadt, Austria.; Trisovic, T (reprint author), Serbian Acad Arts & Sci, Inst Tech Sci, Belgrade, Serbia. EM lidija.rafailovic@cest.at; trisa@tmf.bg.ac.rs RI Trisovic, Tomislav/F-9994-2010; OI Trisovic, Tomislav/0000-0003-2400-5984; Rahel, Jozef/0000-0002-2850-8039; Gammer, Christoph/0000-0003-1917-4978 FU COMET program by the Austrian Research Promotion Agency (FFG); government of Lower Austria; government of Upper Austria; Austrian Science Fund (FWF) [J3397]; Molecular Foundry, Lawrence Berkeley National Laboratory - U.S. Dept of Energy [DE-AC02-05CH11231] FX We would like to thank Dr A. H. Whitehead for stimulating, very helpful discussions. We are thankful to Prof. Dr C. Kleber for his scientific support and to him and to Mag. A. Balatka for provision of lab facilities. The work at CEST was supported within the COMET program by the Austrian Research Promotion Agency (FFG) and the governments of Lower Austria and Upper Austria. C. G. acknowledges support from the Austrian Science Fund (FWF):[J3397] and the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the U.S. Dept of Energy under Contract # DE-AC02-05CH11231. NR 25 TC 0 Z9 0 U1 9 U2 22 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 40 BP 33348 EP 33352 DI 10.1039/c5ra26632g PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DJ2OS UT WOS:000374045000015 ER PT J AU Li, YY Zhang, LH Wu, YQ AF Li, Yiyu Zhang, Lihua Wu, Yiquan TI Synthesis and characterization of calcium lanthanum sulfide via a wet chemistry route followed by thermal decomposition SO RSC ADVANCES LA English DT Article ID SINGLE-SOURCE PRECURSOR; METAL ALKOXIDES; CALA2S4 POWDERS; SULFIDIZATION; DENSIFICATION; NANOPARTICLES; SULFURIZATION; CDS AB Calcium lanthanum sulfide (CaLa2S4) has been extensively studied as a promising candidate for advanced infrared optical ceramics. In the present research, we report the successful synthesis of CaLa2S4 via a wet chemistry method followed by thermal decomposition. CaLa2S4 precursor material was first prepared by a facile ethanol-based wet chemical single-source precursor route. The precursor was then thermally decomposed in argon at high temperature to form CaLa2S4. The phase composition and morphology of the synthesized CaLa2S4 powder were confirmed and observed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), respectively. Surface area and pore size analyses showed that the CaLa2S4 powder had a high specific surface due to a combined effect of small particle size and the existence of mesopores. Optical characterization revealed that the synthesized CaLa2S4 powder exhibited quantum size confinement and near-band-edge photoluminescence. C1 [Li, Yiyu; Wu, Yiquan] Alfred Univ, New York State Coll Ceram, Kazuo Inamori Sch Engn, 2 Pine St, Alfred, NY 14802 USA. [Zhang, Lihua] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Wu, YQ (reprint author), Alfred Univ, New York State Coll Ceram, Kazuo Inamori Sch Engn, 2 Pine St, Alfred, NY 14802 USA. EM wuy@alfred.edu FU Office of Naval Research (ONR) [N00014-14-1-0546]; U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX We gratefully acknowledge the Office of Naval Research (ONR) (contract N00014-14-1-0546) for funding and supporting this research. This research used JEOL2100F TEM of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 31 TC 0 Z9 0 U1 8 U2 9 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 41 BP 34935 EP 34939 DI 10.1039/c6ra05912k PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DJ2QI UT WOS:000374049700100 ER PT J AU Smith, C Dagle, VL Flake, M Ramasamy, KK Kovarik, L Bowden, M Onfroy, T Dagle, RA AF Smith, Colin Dagle, Vanessa Lebarbier Flake, Matthew Ramasamy, Karthikeyan K. Kovarik, Libor Bowden, Mark Onfroy, Thomas Dagle, Robert A. TI Conversion of syngas-derived C-2+ mixed oxygenates to C-3-C-5 olefins over ZnxZryOz mixed oxide catalysts SO CATALYSIS SCIENCE & TECHNOLOGY LA English DT Article ID TRANSPORTATION FUELS; ACID CATALYSTS; ZINC-OXIDE; ETHANOL; ACETONE; BIOMASS; CONDENSATION; ISOBUTENE; CHEMICALS; ACETALDEHYDE AB In this study we report on a ZnxZryOz mixed oxide type catalyst capable of converting a syngas-derived C-2+ mixed oxygenate feedstock to isobutene-rich olefins. Aqueous model feed comprising of ethanol, acetaldehyde, acetic acid, ethyl acetate, methanol, and propanol was used as representative liquid product derived from a Rh-based mixed oxygenate synthesis catalyst. Greater than 50% carbon yield to C-3-C-5 mixed olefins was demonstrated when operating at 400-450 degrees C and 1 atm. In order to rationalize formation of the products observed feed components were individually evaluated. Major constituents of the feed mixture (ethanol, acetaldehyde, acetic acid, and ethyl acetate) were found to produce isobutene-rich olefins. C-C coupling was also demonstrated for propanol feedstock - a minor constituent of the mixed oxygenate feed - producing branched C-6 olefins, revealing scalability to alcohols higher than ethanol following an analogous reaction pathway. Using ethanol and propanol feed mixtures, cross-coupling reactions produced mixtures of C-4, C-5, and C-6 branched olefins. The presence of H-2 in the feed was found to facilitate hydrogenation of the ketone intermediates, thus producing straight chain olefins as byproducts. While activity loss from coking is observed complete catalyst regeneration is achieved by employing mild oxidation. For conversion of the mixed oxygenate feed a Zr/Zn ratio of 2.5 and a reaction temperature of 450 degrees C provides the best balance of stability, activity, and selectivity. X-ray diffraction and scanning transmission electron microscopy analysis reveals the presence of primarily cubic phase ZrO2 and a minor amount of the monoclinic phase, with ZnO being highly dispersed in the lattice. The presence of ZnO appears to stabilize the cubic phase resulting in less monoclinic phase as the ZnO concentration increases. Infrared spectroscopy shows the mixed oxide acid sites are characterized as primarily Lewis type acidity. The direct relationship between isobutene production and the ratio of basic/acidic sites was demonstrated. An optimized balance of active sites for isobutene production from acetone was obtained with a basic/acidic site ratio of similar to 2. This technology for the conversion of aqueous mixtures of C-2+ mixed oxygenates provides significant advantages over other presently studied catalysts in that its unique properties permit the utilization of a variety of feeds in a consistently selective manner. C1 [Smith, Colin; Dagle, Vanessa Lebarbier; Flake, Matthew; Ramasamy, Karthikeyan K.; Dagle, Robert A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Kovarik, Libor; Bowden, Mark] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Onfroy, Thomas] Univ Paris 06, Sorbonne Univ, UMR 7197, Lab React Surface, F-75005 Paris, France. [Onfroy, Thomas] CNRS, UMR 7197, Lab React Surface, F-75005 Paris, France. RP Dagle, RA (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM Robert.Dagle@pnnl.gov RI Kovarik, Libor/L-7139-2016 FU U.S. Department of Energy (DOE) Bioenergy Technologies Office; DOE's Office of Biological and Environmental Research FX This work was financially supported by the U.S. Department of Energy (DOE) Bioenergy Technologies Office and was performed at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Advanced catalyst characterization use was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory, which is a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. The authors would like to thank Theresa Lemmon and Marie Swita for analytical support of this project. Finally, the authors would like to thank Cary Counts of PNNL for help with technical editing of this manuscript. NR 38 TC 1 Z9 1 U1 11 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2044-4753 EI 2044-4761 J9 CATAL SCI TECHNOL JI Catal. Sci. Technol. PY 2016 VL 6 IS 7 BP 2325 EP 2336 DI 10.1039/c5cy01261a PG 12 WC Chemistry, Physical SC Chemistry GA DI6KS UT WOS:000373608400034 ER PT J AU Scofield, ME Koenigsmann, C Bobb-Semple, D Tao, J Tong, X Wang, L Lewis, CS Vukmirovic, MB Zhu, YM Adzic, RR Wong, SS AF Scofield, Megan E. Koenigsmann, Christopher Bobb-Semple, Dara Tao, Jing Tong, Xiao Wang, Lei Lewis, Crystal S. Vukmirovic, Miomir B. Zhu, Yimei Adzic, Radoslav R. Wong, Stanislaus S. TI Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction SO CATALYSIS SCIENCE & TECHNOLOGY LA English DT Article ID FUEL-CELLS; ELECTROCATALYTIC OXIDATION; PLATINUM NANOPARTICLES; SURFACE-PROPERTIES; SUPPORT MATERIALS; RUO2; ELECTROOXIDATION; ELECTRODES; NANOSTRUCTURES; NANOTUBE AB The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nano-particles (NPs). Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. Additionally, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material. C1 [Scofield, Megan E.; Koenigsmann, Christopher; Bobb-Semple, Dara; Wang, Lei; Lewis, Crystal S.; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Tao, Jing; Zhu, Yimei; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Bldg 480, Upton, NY 11973 USA. [Tong, Xiao] Brookhaven Natl Lab, Ctr Funct Nanomat, Bldg 735, Upton, NY 11973 USA. [Vukmirovic, Miomir B.; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Bldg 555, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM stanislaus.wong@stonybrook.edu FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy [DE-AC02-98CH10886, DE-SC-00112704] FX Research for all authors was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Experiments for this manuscript were performed in part at the Center for Functional Nanomaterials located at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 and DE-SC-00112704. NR 59 TC 1 Z9 1 U1 11 U2 31 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2044-4753 EI 2044-4761 J9 CATAL SCI TECHNOL JI Catal. Sci. Technol. PY 2016 VL 6 IS 7 BP 2435 EP 2450 DI 10.1039/c5cy01444a PG 16 WC Chemistry, Physical SC Chemistry GA DI6KS UT WOS:000373608400046 ER PT J AU Liu, R Chen, S Baker, ES Smith, RD Zeng, XC Gong, B AF Liu, Rui Chen, Shuang Baker, Erin S. Smith, Richard D. Zeng, Xiao Cheng Gong, Bing TI Surprising impact of remote groups on the folding-unfolding and dimer-chain equilibria of bifunctional H-bonding unimers (vol 52, pg 3773, 2016) SO CHEMICAL COMMUNICATIONS LA English DT Correction C1 [Liu, Rui; Gong, Bing] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Liu, Rui; Gong, Bing] Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. [Chen, Shuang] Nanjing Univ, Kuang Yaming Honors Sch, Nanjing 210023, Jiangsu, Peoples R China. [Baker, Erin S.; Smith, Richard D.] Pacific NW Natl Lab, Earth & Biol Sci Div, Richland, WA 99352 USA. [Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. RP Gong, B (reprint author), SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA.; Gong, B (reprint author), Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. EM bgong@buffalo.edu RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 NR 1 TC 0 Z9 0 U1 2 U2 11 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 29 BP 5205 EP 5205 DI 10.1039/c6cc90142e PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA DI6SG UT WOS:000373629800030 PM 27003741 ER PT J AU Rui, Z Zhang, WJ AF Rui, Zhe Zhang, Wenjun TI Engineering Biosynthesis of Non-ribosomal Peptides and Polyketides by Directed Evolution SO CURRENT TOPICS IN MEDICINAL CHEMISTRY LA English DT Review DE Biosynthesis; Directed evolution; High-throughput screening; Mutasynthesis; Natural product; Non-ribosomal peptide synthetase; Polyketide synthase ID NATURAL-PRODUCTS; COMBINATORIAL BIOSYNTHESIS; THIOESTERASE DOMAIN; ADENYLATION DOMAIN; CATALYTIC DOMAINS; ESCHERICHIA-COLI; SYNTHASE; SYNTHETASE; SPECIFICITY; BIOSENSORS AB Non-ribosomal peptides (NRPs) and polyketides (PKs) play key roles in pharmaceutical industry due to their promising biological activities. The structural complexity of NRPs and PKs, however, creates significant synthetic challenges for producing these natural products and their analogues by purely chemical means. Alternatively, difficult syntheses can be achieved by using biosynthetic enzymes with improved efficiency and altered selectivity that are acquired from directed evolution. Key to the successful directed evolution is the methodology of screening/selection. This review summarizes the screening/selection strategies that have been employed to improve or modify the functions of non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), in the hope of triggering the wide adoption of the directed evolution approaches in the engineered biosynthesis of NRPs and PKs for drug discovery. C1 [Rui, Zhe; Zhang, Wenjun] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Zhang, Wenjun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Zhang, WJ (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.; Zhang, WJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM wjzhang@berkeley.edu FU Pew Scholars Program FX This work was financially supported by the Pew Scholars Program (to W.Z.). NR 57 TC 1 Z9 1 U1 14 U2 21 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1568-0266 EI 1873-5294 J9 CURR TOP MED CHEM JI Curr. Top. Med. Chem. PY 2016 VL 16 IS 15 BP 1755 EP 1762 DI 10.2174/1568026616666151012112045 PG 8 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA DI4VX UT WOS:000373498600008 PM 26456467 ER PT J AU Whittemore, SM Bowden, M Karkamkar, A Parab, K Neiner, D Autrey, T Ishibashi, JSA Chen, G Liu, SY Dixon, DA AF Whittemore, Sean M. Bowden, Mark Karkamkar, Abhijeet Parab, Kshitij Neiner, Doinita Autrey, Tom Ishibashi, Jacob S. A. Chen, Gang Liu, Shih-Yuan Dixon, David A. TI Blending materials composed of boron, nitrogen and carbon to transform approaches to liquid hydrogen stores SO DALTON TRANSACTIONS LA English DT Article ID AMMONIA-BORANE DEHYDROGENATION; FUEL-CELL APPLICATIONS; N-H COMPOUNDS; STORAGE MATERIAL; THERMAL-DECOMPOSITION; CATALYZED DEHYDROGENATION; REGENERATION; RELEASE; BORAZINE; CYCLOHEXANE AB Mixtures of hydrogen storage materials containing the elements of boron, nitrogen, carbon, i.e., isomers of BN cyclopentanes are examined to find a 'fuel blend' that remains a liquid phase throughout hydrogen release, maximizes hydrogen storage density, minimizes impurities and remains thermally stable at ambient temperatures. We find that the mixture of ammonia borane dissolved in 3-methyl-1,2-dihydro1,2-azaborolidine (compound B) provide a balance of these properties and provides ca. 5.6 wt% hydrogen. The two hydrogen storage materials decompose at a faster rate than either individually and products formed are a mixture of molecular trimers. Digestion of the product mixture formed from the decomposition of the AB i B fuel blend with methanol leads to the two corresponding methanol adducts of the starting material and not a complex mixture of adducts. The work shows the utility of using blends of materials to reduce volatile impurities and preserve liquid phase. C1 [Whittemore, Sean M.; Karkamkar, Abhijeet; Parab, Kshitij] Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. [Bowden, Mark; Autrey, Tom] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Neiner, Doinita] US Borax Inc, Rio Tinto, Greenwood Village, CO 80111 USA. [Ishibashi, Jacob S. A.; Chen, Gang; Liu, Shih-Yuan] Boston Coll, Dept Chem, Chestnut Hill, MA 02467 USA. [Dixon, David A.] Univ Alabama, Dept Chem, Box 870336, Tuscaloosa, AL 35487 USA. RP Autrey, T (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM tom.autrey@pnnl.gov RI Liu, Shih-Yuan/J-7813-2012 OI Liu, Shih-Yuan/0000-0003-3148-9147 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-EE-0005658]; LaMattina Family Graduate Fellowship in Chemical Synthesis; Camille Dreyfus Teacher-Scholar Awards Program; Robert Ramsay Chair Fund of The University of Alabama FX This research was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (DE-EE-0005658). The Pacific Northwest National Laboratory is operated by Battelle for DOE. J. S. A. I. thanks the LaMattina Family Graduate Fellowship in Chemical Synthesis for support. S.-Y.L thanks the Camille Dreyfus Teacher-Scholar Awards Program for a Teacher-Scholar award. D. A. D. thanks the Robert Ramsay Chair Fund of The University of Alabama for support. NR 56 TC 1 Z9 1 U1 4 U2 15 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PY 2016 VL 45 IS 14 BP 6196 EP 6203 DI 10.1039/c5dt04276c PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DI6SP UT WOS:000373630800039 PM 26629961 ER PT J AU Smith, AMS Talhelm, AF Kolden, CA Newingham, BA Adams, HD Cohen, JD Yedinak, KM Kremens, RL AF Smith, Alistair M. S. Talhelm, Alan F. Kolden, Crystal A. Newingham, Beth A. Adams, Henry D. Cohen, Jack D. Yedinak, Kara M. Kremens, Robert L. TI The ability of winter grazing to reduce wildfire size and fire-induced plant mortality was not demonstrated: a comment on Davies et al. (2015) SO INTERNATIONAL JOURNAL OF WILDLAND FIRE LA English DT Article DE intensity; severity; thermocouples ID BROMUS-TECTORUM; GREAT-BASIN; SAGEBRUSH STEPPE; ECOSYSTEMS; GRASSLANDS; BUNCHGRASSES; RANGELANDS; DIVERSITY; DOMINANCE; BEHAVIOR AB A recent study by Davies et al. sought to test whether winter grazing could reduce wildfire size, fire behaviour and intensity metrics, and fire-induced plant mortality in shrub-grasslands. The authors concluded that ungrazed rangelands may experience fire-induced mortality of native perennial bunchgrasses. The authors also presented several statements regarding the benefits of winter grazing on post-fire plant community responses. However, we contend that the study by Davies et al. has underlying methodological errors, lacks data necessary to support their conclusions, and does not provide a thorough discussion on the effect of grazing on rangeland ecosystems. Importantly, Davies et al. presented no data on the post-fire mortality of the perennial bunchgrasses or on the changes in plant community composition following their experimental fires. Rather, Davies et al. inferred these conclusions based on their observed fire behaviour metrics of maximum temperature and a term described as the heat load'. However, we contend that neither metric is appropriate for describing the heat flux impacts on plants. This lack of post-fire data, several methodological errors and the use of inappropriate thermal metrics limit the authors' ability to support their stated conclusions. C1 [Smith, Alistair M. S.; Yedinak, Kara M.] Univ Idaho, Idaho Fire Initiat Res & Educ, 975 West 6th St, Moscow, ID 83844 USA. [Smith, Alistair M. S.; Talhelm, Alan F.; Yedinak, Kara M.] Univ Idaho, Dept Forest Rangeland & Fire Sci, 975 West 6th St, Moscow, ID 83844 USA. [Talhelm, Alan F.] US Environm Protect Agcy, Natl Ctr Environm Assessment, Oak Ridge Inst Sci Educ, Res Triangle Pk, NC USA. [Kolden, Crystal A.] Univ Idaho, Dept Geog, 875 Perimeter Dr, Moscow, ID 83844 USA. [Newingham, Beth A.] USDA ARS, Great Basin Rangelands Res Unit, 920 Valley Rd, Reno, NV 89512 USA. [Adams, Henry D.] Oklahoma State Univ, Dept Bot, 104 Life Sci Bldg E, Stillwater, OK 74078 USA. [Cohen, Jack D.] US Forest Serv, Missoula Fire Sci Lab, 7557 West Broadway St, Missoula, MT 59808 USA. [Kremens, Robert L.] Rochester Inst Technol, Coll Sci, Gosnell Hall 84, Rochester, NY 14623 USA. RP Smith, AMS (reprint author), Univ Idaho, Idaho Fire Initiat Res & Educ, 975 West 6th St, Moscow, ID 83844 USA.; Smith, AMS (reprint author), Univ Idaho, Dept Forest Rangeland & Fire Sci, 975 West 6th St, Moscow, ID 83844 USA. EM alistair@uidaho.edu NR 41 TC 2 Z9 2 U1 3 U2 7 PU CSIRO PUBLISHING PI CLAYTON PA UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA SN 1049-8001 EI 1448-5516 J9 INT J WILDLAND FIRE JI Int. J. Wildland Fire PY 2016 VL 25 IS 4 BP 484 EP 488 DI 10.1071/WF15163 PG 5 WC Forestry SC Forestry GA DI7VF UT WOS:000373709400012 ER PT J AU Maurice, S Clegg, SM Wiens, RC Gasnault, O Rapin, W Forni, O Cousin, A Sautter, V Mangold, N Le Deit, L Nachon, M Anderson, RB Lanza, NL Fabre, C Payre, V Lasue, J Meslin, PY Leveille, RJ Barraclough, L Beck, P Bender, SC Berger, G Bridges, JC Bridges, NT Dromart, G Dyar, MD Francis, R Frydenvang, J Gondet, B Ehlmann, BL Herkenhoff, KE Johnson, JR Langevin, Y Madsen, MB Melikechi, N Lacour, JL Le Mouelic, S Lewin, E Newsom, HE Ollila, AM Pinet, P Schroder, S Sirven, JB Tokar, RL Toplis, MJ d'Uston, C Vaniman, DT Vasavada, AR AF Maurice, S. Clegg, S. M. Wiens, R. C. Gasnault, O. Rapin, W. Forni, O. Cousin, A. Sautter, V. Mangold, N. Le Deit, L. Nachon, M. Anderson, R. B. Lanza, N. L. Fabre, C. Payre, V. Lasue, J. Meslin, P. -Y. Leveille, R. J. Barraclough, L. Beck, P. Bender, S. C. Berger, G. Bridges, J. C. Bridges, N. T. Dromart, G. Dyar, M. D. Francis, R. Frydenvang, J. Gondet, B. Ehlmann, B. L. Herkenhoff, K. E. Johnson, J. R. Langevin, Y. Madsen, M. B. Melikechi, N. Lacour, J. -L. Le Mouelic, S. Lewin, E. Newsom, H. E. Ollila, A. M. Pinet, P. Schroeder, S. Sirven, J. -B. Tokar, R. L. Toplis, M. J. d'Uston, C. Vaniman, D. T. Vasavada, A. R. TI ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars SO JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY LA English DT Article ID INDUCED BREAKDOWN SPECTROSCOPY; CURIOSITY ROVER; OMEGA/MARS EXPRESS; SPACE EXPLORATION; INSTRUMENT SUITE; YELLOWKNIFE BAY; CHEMISTRY; ORIGIN; ROCKS; TARGETS AB At Gale crater, Mars, ChemCam acquired its first laser-induced breakdown spectroscopy (LIBS) target on Sol 13 of the landed portion of the mission (a Sol is a Mars day). Up to Sol 800, more than 188 000 LIBS spectra were acquired on more than 5800 points distributed over about 650 individual targets. We present a comprehensive review of ChemCam scientific accomplishments during that period, together with a focus on the lessons learned from the first use of LIBS in space. For data processing, we describe new tools that had to be developed to account for the uniqueness of Mars data. With regard to chemistry, we present a summary of the composition range measured on Mars for major-element oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O) based on various multivariate models, with associated precisions. ChemCam also observed H, and the non-metallic elements C, O, P, and S, which are usually difficult to quantify with LIBS. F and Cl are observed through their molecular lines. We discuss the most relevant LIBS lines for detection of minor and trace elements (Li, Rb, Sr, Ba, Cr, Mn, Ni, and Zn). These results were obtained thanks to comprehensive ground reference datasets, which are set to mimic the expected mineralogy and chemistry on Mars. With regard to the first use of LIBS in space, we analyze and quantify, often for the first time, each of the advantages of using stand-off LIBS in space: no sample preparation, analysis within its petrological context, dust removal, sub-millimeter scale investigation, multi-point analysis, the ability to carry out statistical surveys and whole-rock analyses, and rapid data acquisition. We conclude with a discussion of ChemCam performance to survey the geochemistry of Mars, and its valuable support of decisions about selecting where and whether to make observations with more time and resource-intensive tools in the rover's instrument suite. In the end, we present a bird's-eye view of the many scientific results: discovery of felsic Noachian crust, first observation of hydrated soil, discovery of manganese-rich coatings and fracture fills indicating strong oxidation potential in Mars' early atmosphere, characterization of soils by grain size, and wide scale mapping of sedimentary strata, conglomerates, and diagenetic materials. C1 [Maurice, S.; Gasnault, O.; Rapin, W.; Forni, O.; Cousin, A.; Lasue, J.; Meslin, P. -Y.; Berger, G.; Schroeder, S.; Toplis, M. J.; d'Uston, C.] Univ Toulouse 3, CNRS, IRAP, Obs Midi Pyrenees, 9 Av Colonel Roche, F-31400 Toulouse, France. [Clegg, S. M.; Wiens, R. C.; Lanza, N. L.; Barraclough, L.; Frydenvang, J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Sautter, V.; Anderson, R. B.] Museum Natl Hist Nat, IMPMC, F-75231 Paris, France. [Mangold, N.; Le Deit, L.; Nachon, M.; Le Mouelic, S.] LPG Nantes, UMR CNRS 6112, Lab Planetol & Geodynam, Nantes, France. [Herkenhoff, K. E.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Fabre, C.; Payre, V.] Univ Lorraine, GeoRessources, Vandoeuvre Les Nancy, France. [Leveille, R. J.] Canadian Space Agcy, St Hubert, PQ, Canada. [Leveille, R. J.] McGill Univ, Dept Nat Resource Sci, Montreal, PQ, Canada. [Beck, P.] Univ Grenoble Alpes, Inst Planetol & Astrophys Grenoble, Grenoble, France. [Bender, S. C.; Tokar, R. L.; Vaniman, D. T.] Planetary Sci Inst, Tucson, AZ USA. [Bridges, J. C.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Bridges, N. T.; Johnson, J. R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Dromart, G.] Univ Lyon, ENS Lyon, Lab Geol Lyon, Lyon, France. [Dyar, M. D.] Mt Holyoke Coll, Dept Astron, South Hadley, MA USA. [Francis, R.] Univ Western Ontario, Ctr Planetary Sci & Explorat, London, ON, Canada. [Francis, R.; Ehlmann, B. L.; Vasavada, A. R.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Gondet, B.; Langevin, Y.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. [Madsen, M. B.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Melikechi, N.] Delaware State Univ, Opt Sci Ctr Appl Res, Dover, DE USA. [Lacour, J. -L.; Sirven, J. -B.] Commissariat Energie Atom & Energies Alternat, DEN, Dept Phys Chem, Saclay, France. [Lewin, E.] Univ Grenoble 1, CNRS, Inst Sci Terre, Grenoble, France. [Newsom, H. E.; Ollila, A. M.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Newsom, H. E.; Ollila, A. M.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. RP Maurice, S (reprint author), Univ Toulouse 3, CNRS, IRAP, Obs Midi Pyrenees, 9 Av Colonel Roche, F-31400 Toulouse, France. EM maurice@cesr.fr RI Frydenvang, Jens/D-4781-2013; Beck, Pierre/F-3149-2011; Sirven, Jean-Baptiste/H-5782-2013; LEWIN, Eric/F-1451-2017; OI Frydenvang, Jens/0000-0001-9294-1227; Sirven, Jean-Baptiste/0000-0002-5523-6809; Clegg, Sam/0000-0002-0338-0948 FU France by the French Space Agency (CNES); Centre National de la Recherche Scientifique (CNRS); NASA's Mars Program Office FX This work was supported in France by the French Space Agency (CNES), the Centre National de la Recherche Scientifique (CNRS), and many institutes and universities across the country. Collaboration with colleagues in the US was funded by NASA's Mars Program Office. NR 107 TC 7 Z9 7 U1 13 U2 37 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0267-9477 EI 1364-5544 J9 J ANAL ATOM SPECTROM JI J. Anal. At. Spectrom. PY 2016 VL 31 IS 4 BP 863 EP 889 DI 10.1039/c5ja00417a PG 27 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA DI4LC UT WOS:000373470400003 ER PT S AU Keegan, KP Glass, EM Meyer, F AF Keegan, Kevin P. Glass, Elizabeth M. Meyer, Folker BE Martin, F Uroz, S TI MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function SO MICROBIAL ENVIRONMENTAL GENOMICS (MEG) SE Methods in Molecular Biology LA English DT Article; Book Chapter DE Metagenomics; Comparative analysis; Sequence quality; Automated pipeline; High-throughput; matR ID SEQUENCING DATA; DATABASE; ALIGNMENT; RESOURCE; QUALITY; TOOL; ANNOTATIONS; PROJECT; SEARCH; GENOME AB Approaches in molecular biology, particularly those that deal with high-throughput sequencing of entire microbial communities (the field of metagenomics), are rapidly advancing our understanding of the composition and functional content of microbial communities involved in climate change, environmental pollution, human health, biotechnology, etc. Metagenomics provides researchers with the most complete picture of the taxonomic (i.e., what organisms are there) and functional (i.e., what are those organisms doing) composition of natively sampled microbial communities, making it possible to perform investigations that include organisms that were previously intractable to laboratory-controlled culturing; currently, these constitute the vast majority of all microbes on the planet. All organisms contained in environmental samples are sequenced in a culture-independent manner, most often with 16S ribosomal amplicon methods to investigate the taxonomic or whole-genome shotgun-based methods to investigate the functional content of sampled communities. Metagenomics allows researchers to characterize the community composition and functional content of microbial communities, but it cannot show which functional processes are active; however, near parallel developments in transcriptomics promise a dramatic increase in our knowledge in this area as well. Since 2008, MG-RAST (Meyer et al., BMC Bioinformatics 9: 386, 2008) has served as a public resource for annotation and analysis of metagenomic sequence data, providing a repository that currently houses more than 150,000 data sets (containing 60+ tera-base-pairs) with more than 23,000 publically available. MG-RAST, or the metagenomics RAST (rapid annotation using subsystems technology) server makes it possible for users to upload raw metagenomic sequence data in (preferably) fastq or fasta format. Assessments of sequence quality, annotation with respect to multiple reference databases, are performed automatically with minimal input from the user (see Subheading 4 at the end of this chapter for more details). Post-annotation analysis and visualization are also possible, directly through the web interface, or with tools like matR (metagenomic analysis tools for R, covered later in this chapter) that utilize the MG-RAST API (http://api.metagenomics.anl.gov/api.html) to easily download data from any stage in the MG-RAST processing pipeline. Over the years, MG-RAST has undergone substantial revisions to keep pace with the dramatic growth in the number, size, and types of sequence data that accompany constantly evolving developments in metagenomics and related -omic sciences(e.g., metatranscriptomics). C1 [Keegan, Kevin P.; Glass, Elizabeth M.; Meyer, Folker] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Keegan, Kevin P.; Meyer, Folker] Univ Chicago, Chicago, IL 60637 USA. RP Keegan, KP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 38 TC 8 Z9 8 U1 3 U2 12 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA SN 1064-3745 BN 978-1-4939-3369-3; 978-1-4939-3367-9 J9 METHODS MOL BIOL JI Methods Mol. Biol. PY 2016 VL 1399 BP 207 EP 233 DI 10.1007/978-1-4939-3369-3_13 D2 10.1007/978-1-4939-3369-3 PG 27 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Ecology; Microbiology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Microbiology GA BE5TW UT WOS:000373428100014 PM 26791506 ER PT S AU Aranson, IS AF Aranson, Igor S. BE Aranson, IS TI Macroscopic Model of Substrate-Based Cell Motility SO PHYSICAL MODELS OF CELL MOTILITY SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID ARBITRARY VISCOSITY CONTRAST; FISH EPIDERMAL KERATOCYTES; TRACTION FORCE MICROSCOPY; PHASE-FIELD MODEL; ACTIVE POLAR GELS; HELE-SHAW FLOWS; FOCAL ADHESIONS; RETROGRADE FLOW; CONTINUUM MODEL; MIGRATION SPEED C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 186 TC 0 Z9 0 U1 2 U2 4 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1618-7210 BN 978-3-319-24448-8; 978-3-319-24446-4 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2016 BP 1 EP 67 DI 10.1007/978-3-319-24448-8_1 D2 10.1007/978-3-319-24448-8 PG 67 WC Biophysics; Cell Biology; Mathematical & Computational Biology SC Biophysics; Cell Biology; Mathematical & Computational Biology GA BE5WQ UT WOS:000373556800002 ER PT S AU Aranson, IS AF Aranson, Igor S. BE Aranson, IS TI Physical Models of Cell Motility Preface SO PHYSICAL MODELS OF CELL MOTILITY SE Biological and Medical Physics Biomedical Engineering LA English DT Editorial Material; Book Chapter C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1618-7210 BN 978-3-319-24448-8; 978-3-319-24446-4 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2016 BP V EP VI D2 10.1007/978-3-319-24448-8 PG 2 WC Biophysics; Cell Biology; Mathematical & Computational Biology SC Biophysics; Cell Biology; Mathematical & Computational Biology GA BE5WQ UT WOS:000373556800001 ER PT S AU Aranson, IS AF Aranson, Igor S. BE Aranson, IS TI Cell Crawling Driven by Spontaneous Actin Polymerization Waves SO PHYSICAL MODELS OF CELL MOTILITY SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID REACTION-DIFFUSION WAVES; SELF-ORGANIZATION; LEADING-EDGE; MOTILE CELLS; DYNAMICS; PATTERNS; MICROTUBULES; LOCOMOTION; FRAGMENTS; COMPLEX C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 74 TC 0 Z9 0 U1 2 U2 3 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1618-7210 BN 978-3-319-24448-8; 978-3-319-24446-4 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2016 BP 69 EP 93 DI 10.1007/978-3-319-24448-8_2 D2 10.1007/978-3-319-24448-8 PG 25 WC Biophysics; Cell Biology; Mathematical & Computational Biology SC Biophysics; Cell Biology; Mathematical & Computational Biology GA BE5WQ UT WOS:000373556800003 ER PT S AU Aranson, IS AF Aranson, Igor S. BE Aranson, IS TI A Modular View of the Signaling System Regulating Chemotaxis SO PHYSICAL MODELS OF CELL MOTILITY SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID EUKARYOTIC CHEMOTAXIS; DICTYOSTELIUM-DISCOIDEUM; BACTERIAL CHEMOTAXIS; CELL-MIGRATION; LEADING-EDGE; MOTILE CELLS; EXCITABLE NETWORKS; SENSORY ADAPTATION; POSITIVE-FEEDBACK; SELF-ORGANIZATION C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 119 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1618-7210 BN 978-3-319-24448-8; 978-3-319-24446-4 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2016 BP 95 EP 134 DI 10.1007/978-3-319-24448-8_3 D2 10.1007/978-3-319-24448-8 PG 40 WC Biophysics; Cell Biology; Mathematical & Computational Biology SC Biophysics; Cell Biology; Mathematical & Computational Biology GA BE5WQ UT WOS:000373556800004 ER PT S AU Aranson, IS AF Aranson, Igor S. BE Aranson, IS TI Cell Locomotion in One Dimension SO PHYSICAL MODELS OF CELL MOTILITY SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID ACTIVE POLAR GELS; MOTILITY INITIATION; SELF-POLARIZATION; CORTICAL TENSION; RETROGRADE FLOW; BROWNIAN-MOTION; CRAWLING CELLS; SOFT MATERIALS; STRESS FIBER; MYOSIN-II C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 170 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 1618-7210 BN 978-3-319-24448-8; 978-3-319-24446-4 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2016 BP 135 EP 197 DI 10.1007/978-3-319-24448-8_4 D2 10.1007/978-3-319-24448-8 PG 63 WC Biophysics; Cell Biology; Mathematical & Computational Biology SC Biophysics; Cell Biology; Mathematical & Computational Biology GA BE5WQ UT WOS:000373556800005 ER PT J AU Pinera, ER Stojanoff, V AF Rudino Pinera, Enrique Stojanoff, Vivian TI Synchrotron Applications in Life Sciences SO PROTEIN AND PEPTIDE LETTERS LA English DT Editorial Material C1 [Rudino Pinera, Enrique] Univ Nacl Autonoma Mexico, Inst Biotecnol, Mexico City 04510, DF, Mexico. [Stojanoff, Vivian] Brookhaven Natl Lab, Photon Sci Directorate, Bldg745, Upton, NY 11973 USA. RP Pinera, ER (reprint author), Univ Nacl Autonoma Mexico, Inst Biotecnol, Mexico City 04510, DF, Mexico.; Stojanoff, V (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, Bldg745, Upton, NY 11973 USA. EM rudino@ibt.unam.mx; vivian.stojanoff@gmail.com NR 0 TC 0 Z9 0 U1 0 U2 0 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8665 EI 1875-5305 J9 PROTEIN PEPTIDE LETT JI Protein Pept. Lett. PY 2016 VL 23 IS 3 BP 200 EP 200 DI 10.2174/092986652303160215154208 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DI7XA UT WOS:000373714100001 PM 26795721 ER PT J AU Loutherback, K Birarda, G Chen, L Holman, HYN AF Loutherback, Kevin Birarda, Giovanni Chen, Liang Holman, Hoi-Ying N. TI Microfluidic Approaches to Synchrotron Radiation-Based Fourier Transform Infrared (SR-FTIR) Spectral Microscopy of Living Biosystems SO PROTEIN AND PEPTIDE LETTERS LA English DT Article DE FTIR; live cells; microfabrication; microfluidics; synchrotron radiation ID QUANTITATIVE IR SPECTROPHOTOMETRY; WATER H2O SOLUTIONS; FOCAL-PLANE ARRAY; SINGLE-CELL TRANSCRIPTOMICS; LIVE CELLS; REAL-TIME; PEPTIDE COMPOUNDS; SACCHAROMYCES-CEREVISIAE; FLUORESCENCE MICROSCOPY; PROTEIN AGGREGATION AB A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the water thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration. C1 [Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; Holman, Hoi-Ying N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Synchrotron Infrared Struct Biol Program, Berkeley, CA 94720 USA. [Birarda, Giovanni] Elettra Synchrotron Light Lab, SS 14 Km 163-5, I-34149 Trieste, Italy. RP Holman, HYN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Synchrotron Infrared Struct Biol Program, Berkeley, CA 94720 USA. EM hyholman@lbl.gov RI Chen, Liang/F-3496-2011; Holman, Hoi-Ying/N-8451-2014 OI Holman, Hoi-Ying/0000-0002-7534-2625 FU US Department of Energy, Office of Science, and Office of Biological and Environmental Research; [DE-AC02-225 05CH11231] FX This work was performed under the Berkeley Synchrotron Infrared Structural Biology (BSISB) Program funded by the US Department of Energy, Office of Science, and Office of Biological and Environmental Research. The Advanced Light Source is supported by the Director, Office of Science, and Office of Basic Energy Sciences. Both were supported through Contract DE-AC02-225 05CH11231. NR 119 TC 1 Z9 1 U1 6 U2 13 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8665 EI 1875-5305 J9 PROTEIN PEPTIDE LETT JI Protein Pept. Lett. PY 2016 VL 23 IS 3 BP 273 EP 282 DI 10.2174/0929866523666160106154035 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DI7XA UT WOS:000373714100008 PM 26732243 ER PT J AU Northrup, P Leri, A Tappero, R AF Northrup, Paul Leri, Alessandra Tappero, Ryan TI Applications of "Tender" Energy (1-5 keV) X-Ray Absorption Spectroscopy in Life Sciences SO PROTEIN AND PEPTIDE LETTERS LA English DT Article DE Calcium; EXAFS; microbeam; natural organochlorine; sulfur; tender-energy; XANES; X-ray absorption spectroscopy; X-ray spectromicroscopy ID WEATHERING PLANT-MATERIAL; OXALATE CRYSTAL-FORMATION; MEDICAGO-TRUNCATULA; ORGANIC-MATTER; CALCIUM; SULFUR; XANES; SOIL; SPECIATION; CHLORINE AB The "tender" energy range of 1 to 5 keV, between the energy ranges of most "hard" (>5 keV) and "soft" (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. This brief review describes the technique, its experimental challenges, recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences. C1 [Northrup, Paul; Tappero, Ryan] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Northrup, Paul] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11974 USA. [Leri, Alessandra] Marymount Manhattan Coll, Dept Nat Sci, 221 E 71st St, New York, NY 10021 USA. RP Northrup, P (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. EM northrup@bnl.gov FU DOE [DE-AC02-98CH10886 (NSLS), DE-FG02-12ER16342 (X15B)]; NSF [EAR-1128957]; NASA [NNX13AD12G] FX The authors are grateful to Vivian Stojanoff for providing the lysozyme crystal measured, Cindy Lee of Stony Brook University for providing sediment trap material and Tracy Punshon for the Medicago leaves. Measurements at the NSLS were supported by DOE contracts DE-AC02-98CH10886 (NSLS) and DE-FG02-12ER16342 (X15B, PN), NSF Grant EAR-1128957 (PN) and NASA NNX13AD12G (PN). Two reviewers contributed valuable advice on the manuscript. NR 29 TC 1 Z9 1 U1 4 U2 8 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8665 EI 1875-5305 J9 PROTEIN PEPTIDE LETT JI Protein Pept. Lett. PY 2016 VL 23 IS 3 BP 300 EP 308 DI 10.2174/0929866523666160107114505 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DI7XA UT WOS:000373714100011 PM 26740327 ER PT J AU Gupta, S Feng, J Chance, M Ralston, C AF Gupta, Sayan Feng, Jun Chance, Mark Ralston, Corie TI Recent Advances and Applications in Synchrotron X-Ray Protein Footprinting for Protein Structure and Dynamics Elucidation SO PROTEIN AND PEPTIDE LETTERS LA English DT Article DE Hydroxyl radical labeling; mass spectrometry; protein conformation; protein modification bound water ID ORANGE CAROTENOID PROTEIN; BURIED WATER-MOLECULES; ZINC TRANSPORTER YIIP; HEART CYTOCHROME-C; MASS-SPECTROMETRY; MEMBRANE-PROTEINS; NEUTRON-SCATTERING; CRYSTAL-STRUCTURE; CROSS-LINKING; ELECTRON CRYSTALLOGRAPHY AB Synchrotron X-ray Footprinting is a powerful in situ hydroxyl radical labeling method for analysis of protein structure, interactions, folding and conformation change in solution. In this method, water is ionized by high flux density broad band synchrotron X-rays to produce a steady-state concentration of hydroxyl radicals, which then react with solvent accessible side-chains. The resulting stable modification products are analyzed by liquid chromatography coupled to mass spectrometry. A comparative reactivity rate between known and unknown states of a protein provides local as well as global information on structural changes, which is then used to develop structural models for protein function and dynamics. In this review we describe the XF-MS method, its unique capabilities and its recent technical advances at the Advanced Light Source. We provide a comparison of other hydroxyl radical and mass spectrometry based methods with XF-MS. We also discuss some of the latest developments in its usage for studying bound water, transmembrane proteins and photosynthetic protein components, and the synergy of the method with other synchrotron based structural biology methods. C1 [Gupta, Sayan; Ralston, Corie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. [Feng, Jun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Expt Syst, Berkeley, CA 94720 USA. [Chance, Mark] Case Western Reserve Univ, Ctr Prote & Bioinformat, Cleveland, OH 44106 USA. RP Ralston, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. EM cyralston@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; NIBIB [P30-EB0966] FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The Center for Synchrotron Biosciences at the National Synchrotron Light Sources is supported by NIBIB under P30-EB0966. NR 112 TC 0 Z9 0 U1 0 U2 2 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8665 EI 1875-5305 J9 PROTEIN PEPTIDE LETT JI Protein Pept. Lett. PY 2016 VL 23 IS 3 BP 309 EP 322 DI 10.2174/0929866523666160201150057 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DI7XA UT WOS:000373714100012 PM 26833224 ER PT J AU Di, ZC Leyffer, S Wild, SM AF Di, Zichao (Wendy) Leyffer, Sven Wild, Stefan M. TI Optimization-Based Approach for Joint X-Ray Fluorescence and Transmission Tomographic Inversion SO SIAM JOURNAL ON IMAGING SCIENCES LA English DT Article DE tomographic reconstruction; X-ray fluorescence; X-ray transmission; joint inversion; nonlinear optimization; truncated-Newton method ID LIKELIHOOD IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY; ALGORITHM; REGULARIZATION; CONSTRAINTS; MICROSCOPY AB Fluorescence tomographic reconstruction, based on the detection of photons coming from fluorescent emission, can be used for revealing the internal elemental composition of a sample. On the other hand, conventional X-ray transmission tomography can be used for reconstructing the spatial distribution of the absorption coefficient inside a sample. In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities and formulate a nonlinear optimization-based approach for reconstruction of the elemental composition of a given object. This model provides a simultaneous reconstruction of both the quantitative spatial distribution of all elements and the absorption effect in the sample. Mathematically speaking, we show that compared with the single-modality inversion (i.e., the X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem, which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography arising mainly from the effects of self-absorption in the sample are partially mitigated. The use of this technique is demonstrated on the reconstruction of several synthetic samples. C1 [Di, Zichao (Wendy); Leyffer, Sven; Wild, Stefan M.] Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Di, ZC; Leyffer, S; Wild, SM (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wendydi@anl.gov; leyffer@anl.gov; wild@anl.gov RI Wild, Stefan/P-4907-2016 OI Wild, Stefan/0000-0002-6099-2772 FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under contract DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. Copyright is owned by SIAM to the extent not limited by these rights. NR 48 TC 0 Z9 0 U1 1 U2 2 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1936-4954 J9 SIAM J IMAGING SCI JI SIAM J. Imaging Sci. PY 2016 VL 9 IS 1 BP 1 EP 23 DI 10.1137/15M1021404 PG 23 WC Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Mathematics, Applied; Imaging Science & Photographic Technology SC Computer Science; Mathematics; Imaging Science & Photographic Technology GA DI6SD UT WOS:000373629500001 ER PT J AU Xi, YZ Li, RP Saad, Y AF Xi, Yuanzhe Li, Ruipeng Saad, Yousef TI AN ALGEBRAIC MULTILEVEL PRECONDITIONER WITH LOW-RANK CORRECTIONS FOR SPARSE SYMMETRIC MATRICES SO SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS LA English DT Article DE low-rank approximation; Schur complements; multilevel preconditioner; domain decomposition; incomplete factorization; Krylov subspace methods; Nested Dissection ordering ID NONSYMMETRIC LINEAR-SYSTEMS; DEGREE ORDERING ALGORITHM; DIRECT SOLVER; INTEGRAL-EQUATIONS; ILU PRECONDITIONER; H-MATRICES; FACTORIZATION; DIMENSIONS; CONVECTION; SUPERFAST AB This paper describes a multilevel preconditioning technique for solving sparse symmetric linear systems of equations. This "Multilevel Schur Low-Rank" (MSLR) preconditioner first builds a tree structure T based on a hierarchical decomposition of the matrix and then computes an approximate inverse of the original matrix level by level. Unlike classical direct solvers, the construction of the MSLR preconditioner follows a top-down traversal of T and exploits a low-rank property that is satisfied by the difference between the inverses of the local Schur complements and specific blocks of the original matrix. A few steps of the generalized Lanczos tridiagonalization procedure are applied to capture most of this difference. Numerical results are reported to illustrate the efficiency and robustness of the MSLR preconditioner with both two-and three-dimensional discretized PDE problems and with publicly available test problems. C1 [Xi, Yuanzhe; Saad, Yousef] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA. [Li, Ruipeng] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Xi, YZ; Saad, Y (reprint author), Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA.; Li, RP (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. EM yxi@cs.umn.edu; li50@llnl.gov; saad@cs.umn.edu FU NSF [DMS-1216366, DMS-1521573]; Minnesota Supercomputing Institute; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344 (LLNL-JRNL-680317)] FX This work was supported by the NSF under grants DMS-1216366 and DMS-1521573 and by the Minnesota Supercomputing Institute. The U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by these rights.; This author's work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 (LLNL-JRNL-680317). NR 47 TC 1 Z9 1 U1 2 U2 3 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0895-4798 EI 1095-7162 J9 SIAM J MATRIX ANAL A JI SIAM J. Matrix Anal. Appl. PY 2016 VL 37 IS 1 BP 235 EP 259 DI 10.1137/15M1021830 PG 25 WC Mathematics, Applied SC Mathematics GA DI6TP UT WOS:000373633400011 ER PT J AU Kouri, DP Surowiec, TM AF Kouri, D. P. Surowiec, T. M. TI RISK-AVERSE PDE-CONSTRAINED OPTIMIZATION USING THE CONDITIONAL VALUE-AT-RISK SO SIAM JOURNAL ON OPTIMIZATION LA English DT Article DE PDE optimization; conditional value-at-risk; uncertainty quantification ID PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; RANDOM INPUT DATA; MINIMIZATION; UNCERTAINTY; INTEGRATION AB Uncertainty is inevitable when solving science and engineering application problems. In the face of uncertainty, it is essential to determine robust and risk-averse solutions. In this work, we consider a class of PDE-constrained optimization problems in which the PDE coefficients and inputs may be uncertain. We introduce two approximations for minimizing the conditional value-at-risk (CVaR) for such PDE-constrained optimization problems. These approximations are based on the primal and dual formulations of CVaR. For the primal problem, we introduce a smooth approximation of CVaR in order to utilize derivative-based optimization algorithms and to take advantage of the convergence properties of quadrature-based discretizations. For this smoothed CVaR, we prove differentiability as well as consistency of our approximation. For the dual problem, we regularize the inner maximization problem, rigorously derive optimality conditions, and demonstrate the consistency of our approximation. Furthermore, we propose a fixed-point iteration that takes advantage of the structure of the regularized optimality conditions and provides a means of calculating worst-case probability distributions based on the given probability level. We conclude with numerical results. C1 [Kouri, D. P.] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, MS 1320, Albuquerque, NM 87185 USA. [Kouri, D. P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Surowiec, T. M.] Humboldt Univ, Dept Math, Unter Linden 6, D-10099 Berlin, Germany. RP Kouri, DP (reprint author), Sandia Natl Labs, Optimizat & Uncertainty Quantificat, MS 1320, Albuquerque, NM 87185 USA.; Surowiec, TM (reprint author), Humboldt Univ, Dept Math, Unter Linden 6, D-10099 Berlin, Germany. EM dpkouri@sandia.gov; surowiec@math.hu-berlin.de FU NNSA-ASC program; J. H. Wilkinson Fellowship; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DUG Research Center MATHEON Project [C28] FX This author's research was sponsored in part by the NNSA-ASC program. This research was partially performed at Argonne National Laboratory and was sponsored by the J. H. Wilkinson Fellowship. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.; The author gratefully acknowledges the support by the DUG Research Center MATHEON Project C28. NR 45 TC 1 Z9 1 U1 1 U2 1 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 1052-6234 EI 1095-7189 J9 SIAM J OPTIMIZ JI SIAM J. Optim. PY 2016 VL 26 IS 1 BP 365 EP 396 DI 10.1137/140954556 PG 32 WC Mathematics, Applied SC Mathematics GA DI6SW UT WOS:000373631500014 ER PT S AU Morozovska, AN Eliseev, EA Kalinin, SV AF Morozovska, Anna N. Eliseev, Eugene A. Kalinin, Sergei V. BE Seidel, J TI Topological Defects in Ferroic Materials SO TOPOLOGICAL STRUCTURES IN FERROIC MATERIALS: DOMAIN WALLS, VORTICES AND SKYRMIONS SE Springer Series in Materials Science LA English DT Article; Book Chapter ID SOLID-SOLUTION SYSTEM; DOMAIN-WALLS; THIN-FILMS; FLEXOELECTRIC POLARIZATION; ELECTRIC POLARIZATION; DIELECTRIC-PROPERTIES; THERMODYNAMIC THEORY; FERROELECTRICS; CRYSTALS; TITANATE AB Using Landau-Ginzburg-Devonshire theory we explore unusual electronic, structural and polar properties of the topological defects inherent in ferroics, such as ferroelectric and ferroelastic domain walls, which can have rich and tunable internal structure. Also we underline that the existence of 2D defects in ferroelectrics is similar to the cross-tie defects in the ferromagnetic Bloch domain walls. The seeding for the modulated phase can be a topological defect, such as a structural domain wall. C1 [Morozovska, Anna N.] Natl Acad Sci Ukraine, Inst Phys, 46 Pr Nauki, UA-03028 Kiev, Ukraine. [Eliseev, Eugene A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, 3 Krjijanovskogo, UA-03142 Kiev, Ukraine. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, Inst Phys, 46 Pr Nauki, UA-03028 Kiev, Ukraine. EM anna.n.morozovska@gmail.com; eugene.a.eliseev@gmail.com; sergei2@ornl.gov NR 94 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0933-033X BN 978-3-319-25301-5; 978-3-319-25299-5 J9 SPRINGER SER MATER S PY 2016 VL 228 BP 181 EP 197 DI 10.1007/978-3-319-25301-5_8 D2 10.1007/978-3-319-25301-5 PG 17 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA BE4BP UT WOS:000371484800009 ER PT S AU Banerjee, P Qian, YZ Heger, A Haxton, W AF Banerjee, Projjwal Qian, Yong-Zhong Heger, Alexander Haxton, Wick BE Liu, WP Li, ZH Wang, YB Guo, B Shen, YP TI Neutrino-Induced Nucleosynthesis in Helium Shells of Early Core-Collapse Supernovae SO 13TH INTERNATIONAL SYMPOSIUM ON ORIGIN OF MATTER AND EVOLUTION OF GALAXIES (OMEG2015) SE EPJ Web of Conferences LA English DT Proceedings Paper CT 13th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG) CY JUN 24-27, 2015 CL Beijing, PEOPLES R CHINA ID METAL-POOR STARS; BERYLLIUM ABUNDANCES; MASSIVE STARS; EARLY GALAXY; R-PROCESS; EVOLUTION; ELEMENTS AB We summarize our studies on neutrino-driven nucleosynthesis in He shells of early core-collapse supernovae with metallicities of Z less than or similar to 10(-3) Z(circle dot). We find that for progenitors of similar to 11-15M(circle dot), the neutrons released by He-4((nu) over bar (e), e(+)n)H-3 in He shells can be captured to produce nuclei with mass numbers up to A similar to 200. This mechanism is sensitive to neutrino emission spectra and flavor oscillations. In addition, we find two new primary mechanisms for neutrino-induced production of Be-9 in He shells. The first mechanism produces Be-9 via Li-7(n,gamma) Li-8(n,gamma)Li-9(e(-)(nu) over bar (e))Be-9 and relies on a low explosion energy for its survival. The second mechanism operates in progenitors of similar to 8M(circle dot), where Be-9 can be produced directly via Li-7(H-3,n(0))Be-9 during the rapid expansion of the shocked He-shell material. The light nuclei Li-7 and H-3 involved in these mechanisms are produced by neutrino interactions with He-4. We discuss the implications of neutrino-induced nucleosynthesis in He shells for interpreting the elemental abundances in metal-poor stars. C1 [Banerjee, Projjwal; Qian, Yong-Zhong] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Heger, Alexander] Monash Univ, Sch Phys & Astron, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Haxton, Wick] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94620 USA. [Haxton, Wick] Lawrence Berkeley Natl Lab, Berkeley, CA 94620 USA. [Qian, Yong-Zhong; Heger, Alexander] Shanghai Jiao Tong Univ, Dept Phys & Astron, INPAC, Ctr Nucl Astrophys, Shanghai 200240, Peoples R China. RP Banerjee, P (reprint author), Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. EM banerjee@physics.umn.edu NR 19 TC 0 Z9 0 U1 5 U2 5 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 109 AR 06001 DI 10.1051/epjconf/201610906001 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BE5FS UT WOS:000372789800022 ER PT S AU Rehm, KE AF Rehm, K. E. BE Liu, WP Li, ZH Wang, YB Guo, B Shen, YP TI Reactions on the surface and inside of neutron stars SO 13TH INTERNATIONAL SYMPOSIUM ON ORIGIN OF MATTER AND EVOLUTION OF GALAXIES (OMEG2015) SE EPJ Web of Conferences LA English DT Proceedings Paper CT 13th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG) CY JUN 24-27, 2015 CL Beijing, PEOPLES R CHINA ID IONIZATION-CHAMBER MUSIC; RELATIVISTIC HEAVY-IONS; RAY BURSTS; BEAMS; DISCOVERY; FUSION AB Measurements from orbiting X-ray satellites during the last decades have provided us with a wealth of information about nuclear reactions thought to occur in the extreme, high-density environment of neutron stars. With radioactive ion beams from first-generation facilities we have begun to study some of these processes in the laboratory. In this contribution I report on experiments performed with radioactive beams from the ATLAS accelerator at Argonne. I will discuss the nuclear physics of X-ray bursts and super-bursts, the production of in-flight radioactive beams, as well as novel detectors which are used in these experiments. C1 [Rehm, K. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Rehm, KE (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM rehm@anl.gov NR 25 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 109 AR 04001 DI 10.1051/epjconf/201610904001 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BE5FS UT WOS:000372789800005 ER PT S AU Tang, XD Bucher, B Fang, X Heger, A Almaraz-Calderon, S Alongi, A Ayangeakaa, AD Beard, M Best, A Browne, J Cahillane, C Couder, M deBoer, RJ Kontos, A Lamm, L Li, YJ Long, A Lu, W Lyons, S Notani, M Patel, D Paul, N Pignatari, M Roberts, A Robertson, D Smith, K Stech, E Talwar, R Tan, WP Wiescher, M Woosley, SE AF Tang, X. D. Bucher, B. Fang, X. Heger, A. Almaraz-Calderon, S. Alongi, A. Ayangeakaa, A. D. Beard, M. Best, A. Browne, J. Cahillane, C. Couder, M. deBoer, R. J. Kontos, A. Lamm, L. Li, Y. J. Long, A. Lu, W. Lyons, S. Notani, M. Patel, D. Paul, N. Pignatari, M. Roberts, A. Robertson, D. Smith, K. Stech, E. Talwar, R. Tan, W. P. Wiescher, M. Woosley, S. E. BE Liu, WP Li, ZH Wang, YB Guo, B Shen, YP TI First direct measurement of C-12(C-12,n)Mg-23 at stellar energies SO 13TH INTERNATIONAL SYMPOSIUM ON ORIGIN OF MATTER AND EVOLUTION OF GALAXIES (OMEG2015) SE EPJ Web of Conferences LA English DT Proceedings Paper CT 13th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG) CY JUN 24-27, 2015 CL Beijing, PEOPLES R CHINA ID MASSIVE STARS; NUCLEOSYNTHESIS; SIGNATURE; EVOLUTION; NUCLEAR AB Neutrons produced by the carbon fusion reaction C-12(C-12,n)Mg-23 play an important role in stellar nucleosynthesis. Past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement which extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction C-12(C-12,p)Na-23. The new reaction rate has been determined with a well-defined uncertainty which exceeds the precision required by astrophysics models. Using our constrained rate, we find that C-12(C-12,n)Mg-23 is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae. C1 [Tang, X. D.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China. [Bucher, B.; Fang, X.; Almaraz-Calderon, S.; Alongi, A.; Ayangeakaa, A. D.; Beard, M.; Best, A.; Browne, J.; Cahillane, C.; Couder, M.; deBoer, R. J.; Kontos, A.; Lamm, L.; Long, A.; Lu, W.; Lyons, S.; Notani, M.; Patel, D.; Paul, N.; Roberts, A.; Robertson, D.; Smith, K.; Stech, E.; Talwar, R.; Tan, W. P.; Wiescher, M.] Univ Notre Dame, Joint Inst Nucl Astrophys, Inst Struct & Nucl Astrophys, Notre Dame, IN 46556 USA. [Bucher, B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Heger, A.] Monash Univ, Sch Phys & Astron, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Heger, A.] Shanghai Jiao Tong Univ, Ctr Nucl Astrophys, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Heger, A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Li, Y. J.] China Inst Atom Energy, Beijing 102413, Peoples R China. [Pignatari, M.] Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Konkoly Observ, Konkoly Thege Miklosut 15-17, H-1121 Budapest, Hungary. [Pignatari, M.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Tang, XD (reprint author), Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China.; Bucher, B (reprint author), Univ Notre Dame, Joint Inst Nucl Astrophys, Inst Struct & Nucl Astrophys, Notre Dame, IN 46556 USA.; Bucher, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM xtang@impcas.ac.cn; bucher3@llnl.gov RI Tang, Xiaodong /F-4891-2016; Couder, Manoel/B-1439-2009; Tan, Wanpeng/A-4687-2008 OI Couder, Manoel/0000-0002-0636-744X; Tan, Wanpeng/0000-0002-5930-1823 NR 21 TC 0 Z9 0 U1 2 U2 9 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 109 AR 04009 DI 10.1051/epjconf/201610904009 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BE5FS UT WOS:000372789800013 ER PT S AU Avakian, H AF Avakian, H. BE Marquet, C Pire, B Sabatie, F TI Studies of the nucleon structure in back-to-back SIDIS SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique ID DEEP-INELASTIC SCATTERING; PROTON SPIN PUZZLE; PION ELECTROPRODUCTION; FRAGMENTATION FUNCTIONS; TRANSVERSE-MOMENTUM; ASYMMETRIES; TARGET AB The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong interactions, which was a major focus in last decades. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first studies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides access to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue to study the complex nucleon structure. Large acceptance of the Electron Ion Collider, allowing detection of two hadrons, produced back-to-back in the current and target fragmentation regions, combined with clear separation of two regions, would provide a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions. C1 [Avakian, H.] Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave Suite 5, Newport News, VA 23606 USA. RP Avakian, H (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave Suite 5, Newport News, VA 23606 USA. EM avakian@jlab.org NR 53 TC 0 Z9 0 U1 7 U2 7 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 01003 DI 10.1051/epjconf/201611201003 PG 8 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100003 ER PT S AU Balitsky, I AF Balitsky, Ian BE Marquet, C Pire, B Sabatie, F TI Rapidity evolution of gluon TMD from low to moderate x SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique AB I discuss how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at small x << 1 to linear evolution at moderate x similar to 1. C1 [Balitsky, Ian] JLab, 12000 Jefferson Ave, Newport News, VA 23606 USA. [Balitsky, Ian] Old Dominion Univ, Dept Phys, 1600 Elkhorn Ave, Norfolk, VA 23529 USA. RP Balitsky, I (reprint author), JLab, 12000 Jefferson Ave, Newport News, VA 23606 USA.; Balitsky, I (reprint author), Old Dominion Univ, Dept Phys, 1600 Elkhorn Ave, Norfolk, VA 23529 USA. EM balitsky@jlab.org NR 18 TC 0 Z9 0 U1 1 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 02002 DI 10.1051/epjconf/201611202002 PG 7 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100025 ER PT S AU Boer, M AF Boer, Marie BE Marquet, C Pire, B Sabatie, F TI Timelike Compton Scattering off the nucleon: observables and experimental perspectives for JLab at 12 GeV SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique ID GENERALIZED PARTON DISTRIBUTIONS; ELECTROPRODUCTION; PHOTONS; MESONS AB Hard exclusive processes such as photoproduction or electroproduction of photon or meson off the nucleon provide access to the Generalized Parton Distributions (GPDs), in the regime where the scattering amplitude is factorized into a hard and a soft part. GPDs contain the correlation between the longitudinal momentum fraction and the transverse spatial densities of quarks and gluons in the nucleon. Timelike Compton Scattering (TCS) correspond to the reaction gamma N -> gamma*N -> e(+) e(-) N, where the photon is scattered off a quark. It is measured through its interference with the associated Bethe-Heitler process, which has the same final state. TCS allows to access the GPDs and test their universality by comparison to the results obtained with the DVCS process (eN -> e gamma N). Also, results obtained with TCS provide additional independent constrains to the GPDs parameterization. We will present the physical motivations for TCS, with our theoretical predictions for TCS observables and their dependencies. We calculated for JLab 12 GeV energies all the single and double beam and/or target polarization observables off the proton and off the neutron. We will also present the experimental perspectives for the next years at JLab. Two proposals were already accepted at JLab: in Hall B, with the CLAS12 spectrometer, in order to measure the unpolarized cross section and in Hall A, with the SoLID spectrometer, in order to measure the unpolarized cross section and the beam spin asymmetry at high intensity. A Letter Of Intent was also submitted in order to measure the transverse target spin asymmetries in Hall C. We will discuss the merits of this different experiments and present some of the expected results. C1 [Boer, Marie] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Boer, Marie] Univ Paris Saclay, Univ Paris 11, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France. [Boer, Marie] Univ Paris Saclay, Univ Paris 11, CNRS IN2P3, Phys Theor Lab, F-91406 Orsay, France. RP Boer, M (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.; Boer, M (reprint author), Univ Paris Saclay, Univ Paris 11, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France.; Boer, M (reprint author), Univ Paris Saclay, Univ Paris 11, CNRS IN2P3, Phys Theor Lab, F-91406 Orsay, France. EM mboer@jlab.org NR 17 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 01005 DI 10.1051/epjconf/201611201005 PG 7 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100005 ER PT S AU Camsonne, A AF Camsonne, Alexandre BE Marquet, C Pire, B Sabatie, F TI The low Q(2) chicane and Compton polarimeter at the JLab EIC SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique AB The JLAB EIC (JLEIC) design includes a chicane after the interaction point to detect electron associated with production of quasi-real photon at the interaction. This chicane layout can also be used for Compton polarimetry to measure the electron beam polarization. This proceeding will present the layout of the low Q(2) chicane and the implementation and current R&D of a Compton polarimeter which would be located in the middle of this chicane. C1 [Camsonne, Alexandre] Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. RP Camsonne, A (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM camsonne@jlab.org NR 4 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 01007 DI 10.1051/epjconf/201611201007 PG 10 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100007 ER PT S AU Cosyn, W Guzey, V Sargsian, M Strikman, M Weiss, C AF Cosyn, W. Guzey, V. Sargsian, M. Strikman, M. Weiss, C. BE Marquet, C Pire, B Sabatie, F TI Electron-deuteron DIS with spectator tagging at EIC: Development of theoretical framework SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique ID HARD PROCESSES; NUCLEI AB An Electron-Ion Collider (EIC) would enable next-generation measurements of deep-inelastic scattering (DIS) on the deuteron with detection of a forward-moving nucleon (p, n) and measurement of its recoil momentum ("spectator tagging"). Such experiments offer full control of the nuclear configuration during the high-energy process and can be used for precision studies of the neutron's partonic structure and its spin dependence, nuclear modifications of partonic structure, and nuclear shadowing at small x. We review the theoretical description of spectator tagging at EIC energies (light-front nuclear structure, on-shell extrapolation in the recoil nucleon momentum, final-state interactions, diffractive effects at small x) and report about on-going developments. C1 [Cosyn, W.] Univ Ghent, B-9000 Ghent, Belgium. [Guzey, V.] Petersburg Nucl Phys Inst, Gatchina 188300, Russia. [Sargsian, M.] Florida Int Univ, Miami, FL 33199 USA. [Strikman, M.] Penn State Univ, University Pk, PA 16802 USA. [Weiss, C.] Jefferson Lab, Newport News, VA 23606 USA. RP Cosyn, W (reprint author), Univ Ghent, B-9000 Ghent, Belgium. NR 23 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 01022 DI 10.1051/epjconf/201611201022 PG 7 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100022 ER PT S AU Engelhardt, M Musch, B Bhattacharya, T Green, JR Gupta, R Hagler, P Krieg, S Negele, J Pochinsky, A Schafer, A Syritsyn, S Yoon, B AF Engelhardt, M. Musch, B. Bhattacharya, T. Green, J. R. Gupta, R. Haegler, P. Krieg, S. Negele, J. Pochinsky, A. Schaefer, A. Syritsyn, S. Yoon, B. BE Marquet, C Pire, B Sabatie, F TI Lattice QCD calculations of transverse momentum-dependent parton distributions (TMDs) SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique AB An ongoing program of evaluating TMD observables within Lattice QCD is reviewed, summarizing recent progress with respect to several challenges faced by such calculations. These lattice calculations are based on a definition of TMDs through hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for a lattice calculation. Data on the naively T-odd Sivers and Boer-Mulders effects as well as the transversity TMD are presented. C1 [Engelhardt, M.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Musch, B.; Haegler, P.; Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Bhattacharya, T.; Gupta, R.; Yoon, B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Green, J. R.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Krieg, S.] Berg Univ Wuppertal, Fachbereich 9, D-42119 Wuppertal, Germany. [Krieg, S.] Forschungszentrum Julich, Julich Supercomp Ctr, IAS, D-52425 Julich, Germany. [Negele, J.; Pochinsky, A.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Syritsyn, S.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. RP Engelhardt, M (reprint author), New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. EM engel@nmsu.edu OI Krieg, Stefan/0000-0002-8417-9823; Gupta, Rajan/0000-0003-1784-3058 NR 13 TC 1 Z9 1 U1 1 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 01008 DI 10.1051/epjconf/201611201008 PG 7 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100008 ER PT S AU Kumar, KS Deshpande, A Huang, J Riordan, S Zhao, YX AF Kumar, K. S. Deshpande, A. Huang, J. Riordan, S. Zhao, Y. X. BE Marquet, C Pire, B Sabatie, F TI Electroweak and BSM Physics at the EIC SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique ID SCATTERING; VIOLATION AB We discuss the QCD and electroweak physics that becomes accessible by the analysis of semi-leptonic neutral weak amplitudes in polarized electron-light ion collisions at an EIC. Specifically, we discuss the reach for precise weak mixing angle measurements at much higher Q(2) than fixed target measurements, new neutral current spin-independent and -dependent interference structure functions, and searches for e-tau charged lepton flavor violation. C1 [Kumar, K. S.; Deshpande, A.; Riordan, S.; Zhao, Y. X.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Huang, J.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Kumar, KS (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM krishna.kumar@stonybrook.edu NR 20 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 03004 DI 10.1051/epjconf/201611203004 PG 7 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100043 ER PT S AU Petti, R AF Petti, R. BE Marquet, C Pire, B Sabatie, F TI Interaction region design and auxiliary detector systems for an EIC SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION COLLIDER SE EPJ Web of Conferences LA English DT Proceedings Paper CT 6th International Conference on Physics Opportunities at an Electron-Ion Collider CY SEP 07-11, 2015 CL Ecole Polytechnique, FRANCE SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab HO Ecole Polytechnique AB There are a number of exciting physics opportunities at a future electron-ion collider facility. One possible design for such a facility is eRHIC, where the current RHIC facility located at Brookhaven National Lab would be transformed into an electron-ion collider. It is imperative for a seamless integration of auxiliary detector systems into the interaction region design to have a machine that meets the needs for the planned physics analyses, as well as take into account the space constraints due to the tunnel geometry and the necessary beam line elements. In this talk, we describe the current ideas for integrating a luminosity detector, electron polarimeter, roman pots, and a low Q(2)-tagger into the interaction region for eRHIC. C1 [Petti, R.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11793 USA. RP Petti, R (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11793 USA. EM rpetti@bnl.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 112 AR 02011 DI 10.1051/epjconf/201611202011 PG 6 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA BE5FU UT WOS:000372792100034 ER PT J AU Guryn, W AF Guryn, Wlodek TI CENTRAL EXCLUSIVE PARTICLE PRODUCTION IN DPE PROCESS: SEARCH FOR GLUEBALLS ETC SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 55th Cracow-School-of-Theoretical-Physics on Particles and Resonances of the Standard Model and Beyond CY JUN 20-28, 2015 CL Zakopane, POLAND SP Jagiellonian Univ, M Smoluchowski Inst Phys, Polish Acad Arts & Sci, PAN, H Niewodniczanski Inst Nucl Phys, AGH Univ Sci & Technol, Polish Acad Sci, Comm Phys, Polish Minist Sci & Higher Educ ID REACTION POMERON-POMERON; 450 GEV/C AB We shall discuss resonance production in the process of Central Exclusive Production (CEP) at hadron colliders. The corresponding program of glueball search in Double Pomeron Exchange (DPE) process shall also be discussed. As an exercise, we shall "construct" an experiment to measure CEP using the STAR experiment at the Relativistic Heavy Ion Collider (RHIC), where this program is currently under way. Preliminary pi(+)pi(-) mass spectra (dN/dM(X)) from the Central Exclusive Production (CEP) measured in the STAR detector shall be presented. For this measurement, one proton on each side of STAR was detected in the Roman Pots and the charged particle recoil system was measured in the Time Projection Chamber (TPC) of STAR. C1 [Guryn, Wlodek] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Guryn, W (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 18 TC 0 Z9 0 U1 0 U2 0 PU JAGIELLONIAN UNIV PRESS PI KRAKOW PA UL MICHALOWSKIEGO 9-2, KRAKOW, 31126, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD JAN PY 2016 VL 47 IS 1 BP 53 EP 58 DI 10.5506/APhysPolB.47.53 PG 6 WC Physics, Multidisciplinary SC Physics GA DH4OS UT WOS:000372765900002 ER PT J AU Wang, YF AF Wang, Yifeng TI Untitled SO AIMS ENVIRONMENTAL SCIENCE LA English DT Editorial Material C1 [Wang, Yifeng] Sandia Natl Labs, POB 5800,Mail Stop 0779, Albuquerque, NM 87185 USA. RP Wang, YF (reprint author), Sandia Natl Labs, POB 5800,Mail Stop 0779, Albuquerque, NM 87185 USA. EM ywang@sandia.gov NR 0 TC 0 Z9 0 U1 2 U2 2 PU AMER INST MATHEMATICAL SCIENCES-AIMS PI SPRINGFIELD PA PO BOX 2604, SPRINGFIELD, MO 65801-2604 USA SN 2372-0344 EI 2372-0352 J9 AIMS ENVIRON SCI JI AIMS Environ. Sci. PY 2016 VL 3 IS 1 BP 140 EP 140 DI 10.3934/environsci.2016.1.140 PG 1 WC Environmental Sciences SC Environmental Sciences & Ecology GA DG5NT UT WOS:000372125800009 ER PT J AU Kipling, Z Stier, P Johnson, CE Mann, GW Bellouin, N Bauer, SE Bergman, T Chin, M Diehl, T Ghan, SJ Iversen, T Kirkevag, A Kokkola, H Liu, XH Luo, G van Noije, T Pringle, KJ von Salzen, K Schulz, M Seland, O Skeie, RB Takemura, T Tsigaridis, K Zhang, K AF Kipling, Zak Stier, Philip Johnson, Colin E. Mann, Graham W. Bellouin, Nicolas Bauer, Susanne E. Bergman, Tommi Chin, Mian Diehl, Thomas Ghan, Steven J. Iversen, Trond Kirkevag, Alf Kokkola, Harri Liu, Xiaohong Luo, Gan van Noije, Twan Pringle, Kirsty J. von Salzen, Knut Schulz, Michael Seland, Oyvind Skeie, Ragnhild B. Takemura, Toshihiko Tsigaridis, Kostas Zhang, Kai TI What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3-UKCA and inter-model variation from AeroCom Phase II SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID LOG-NORMAL APPROXIMATION; CHEMISTRY-CLIMATE MODEL; BLACK CARBON; AIRCRAFT OBSERVATIONS; SIZE DISTRIBUTIONS; ABSORBING AEROSOLS; SULFUR EMISSIONS; UNIFIED MODEL; MINERAL DUST; GLOMAP-MODE AB The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3-UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions. We also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions. C1 [Kipling, Zak; Stier, Philip] Univ Oxford, Dept Phys, Oxford, England. [Johnson, Colin E.] Met Off Hadley Ctr, Exeter, Devon, England. [Mann, Graham W.] Univ Leeds, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England. [Mann, Graham W.; Pringle, Kirsty J.] Univ Leeds, Inst Climate & Atmospher Sci, Sch Earth & Environm, Leeds, W Yorkshire, England. [Bellouin, Nicolas] Univ Reading, Dept Meteorol, Reading, Berks, England. [Bauer, Susanne E.; Tsigaridis, Kostas] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Bauer, Susanne E.; Tsigaridis, Kostas] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Bergman, Tommi; Kokkola, Harri] Atmospher Res Ctr Eastern Finland, Finnish Meteorol Inst, Kuopio, Finland. [Chin, Mian] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Diehl, Thomas] European Commiss, Joint Res Ctr, Inst Environm & Sustainabil, Climate Risk Management Unit, Ispra, Italy. [Ghan, Steven J.; Zhang, Kai] Pacific NW Natl Lab, Richland, WA 99352 USA. [Iversen, Trond; Kirkevag, Alf; Schulz, Michael; Seland, Oyvind] Norwegian Meteorol Inst, Oslo, Norway. [Iversen, Trond] Univ Oslo, Dept Geosci, Oslo, Norway. [Liu, Xiaohong] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. [Luo, Gan] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA. [van Noije, Twan] Royal Netherlands Meteorol Inst, POB 201, NL-3730 AE De Bilt, Netherlands. [von Salzen, Knut] Environm Canada, Canadian Ctr Climate Modelling & Anal, Victoria, BC, Canada. [Skeie, Ragnhild B.] Ctr Int Climate & Environm Res Oslo, Oslo, Norway. [Takemura, Toshihiko] Kyushu Univ, Appl Mech Res Inst, Fukuoka 812, Japan. [Zhang, Kai] Max Planck Inst Meteorol, Bundesstr 55, D-20146 Hamburg, Germany. RP Kipling, Z (reprint author), Univ Oxford, Dept Phys, Oxford, England. EM zak.kipling@physics.ox.ac.uk RI Ghan, Steven/H-4301-2011; Takemura, Toshihiko/C-2822-2009; Kyushu, RIAM/F-4018-2015; Stier, Philip/B-2258-2008; Zhang, Kai/F-8415-2010; Skeie, Ragnhild/K-1173-2015; Bergman, Tommi/C-2445-2009; Chin, Mian/J-8354-2012; Liu, Xiaohong/E-9304-2011; Kokkola, Harri/J-5993-2014 OI Bellouin, Nicolas/0000-0003-2109-9559; Ghan, Steven/0000-0001-8355-8699; Takemura, Toshihiko/0000-0002-2859-6067; Stier, Philip/0000-0002-1191-0128; Zhang, Kai/0000-0003-0457-6368; Skeie, Ragnhild/0000-0003-1246-4446; Bergman, Tommi/0000-0002-6133-2231; Liu, Xiaohong/0000-0002-3994-5955; FU Natural Environment Research Council [NE/J022624/1]; Met Office; European Research Council under the European Union/ERC [FP7-280025]; Natural Environment Research Council (NERC) through the National Centre for Atmospheric Science (NCAS); Academy of Finland Centre of Excellence [272041]; US Department of Energy Office of Science Decadal and Regional Climate Prediction using Earth System Models (EaSM) programme; DOE [DE-AC06-76RLO 1830]; Research Council of Norway through the EarthClim [207711/E10]; EVA [229771]; NOTUR/NorStore projects, by the Norwegian Space Centre through PM-VRAE; EU; Canadian Foundation for Climate and Atmospheric Sciences (CFCAS); Environment Canada; Research Council of Norway; supercomputer system of the National Institute for Environmental Studies, Japan; Ministry of the Environment, Japan [S-12-3]; JSPS KAKENHI [15H01728, 15K12190]; NASA-MAP (NASA) [NNX09AK32G]; Max Planck Society FX This work was supported by the Natural Environment Research Council project GASSP (grant number NE/J022624/1) and the Met Office. P. Stier would like to acknowledge funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. FP7-280025. G. W. Mann was supported by the Natural Environment Research Council (NERC) through the National Centre for Atmospheric Science (NCAS). T. Bergman and H. Kokkola were supported by the Academy of Finland Centre of Excellence (project no. 272041). S. Ghan and X. Liu were supported by the US Department of Energy Office of Science Decadal and Regional Climate Prediction using Earth System Models (EaSM) programme. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. A. Kirkevag, T. Iversen and O. Seland (CAM4-Oslo) were supported by the Research Council of Norway through the EarthClim (207711/E10), EVA (229771) and NOTUR/NorStore projects, by the Norwegian Space Centre through PM-VRAE, and through the EU projects PEGASOS and ACCESS. K. von Salzen was supported by the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS) and Environment Canada. R. B. Skeie (OsloCTM2) was supported by the Research Council of Norway, through the grants SLAC, AEROCOM-P3 and ClimSense. T. Takemura was supported by the supercomputer system of the National Institute for Environmental Studies, Japan, the Environment Research and Technology Development Fund (S-12-3) of the Ministry of the Environment, Japan, and JSPS KAKENHI (grant numbers 15H01728 and 15K12190). K. Tsigaridis and S. E. Bauer were supported by NASA-MAP (NASA award number: NNX09AK32G). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. K. Zhang was supported by funding from the Max Planck Society. Simulations with ECHAM5-HAM2 were performed at the German Climate Computing Center (Deutsches Klimarechenzentrum GmbH, DKRZ). NR 90 TC 4 Z9 4 U1 3 U2 15 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 4 BP 2221 EP 2241 DI 10.5194/acp-16-2221-2016 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7KC UT WOS:000372971500023 ER PT J AU Bingol, K Bruschweiler-Li, L Li, DW Zhang, B Xie, MZ Bruschweiler, R AF Bingol, Kerem Bruschweiler-Li, Lei Li, Dawei Zhang, Bo Xie, Mouzhe Brueschweiler, Rafael TI Emerging new strategies for successful metabolite identification in metabolomics SO BIOANALYSIS LA English DT Review DE complex mixture analysis; metabolite databases; metabolomics; MS of metabolite mixtures; nanoparticle; assisted metabolomics; NMR of metabolite mixtures; paramagnetic relaxation enhancement ID NUCLEAR-MAGNETIC-RESONANCE; NMR-BASED METABOLOMICS; MASS-SPECTROMETRY; C-13 NMR; COMPLEX-MIXTURES; HUMAN URINE; STATISTICAL HETEROSPECTROSCOPY; CORRELATION SPECTROSCOPY; QUANTITATIVE-ANALYSIS; NATURAL-ABUNDANCE AB This review discusses strategies for the identification of metabolites in complex biological mixtures, as encountered in metabolomics, which have emerged in the recent past. These include NMR database-assisted approaches for the identification of commonly known metabolites as well as novel combinations of NMR and MS analysis methods for the identification of unknown metabolites. The use of certain chemical additives to the NMR tube can permit identification of metabolites with specific physical chemical properties. C1 [Bingol, Kerem] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bruschweiler-Li, Lei; Li, Dawei; Brueschweiler, Rafael] Ohio State Univ, Campus Chem Instrument Ctr, Columbus, OH 43210 USA. [Zhang, Bo; Xie, Mouzhe; Brueschweiler, Rafael] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA. [Brueschweiler, Rafael] Ohio State Univ, Dept Biol Chem & Pharmacol, Columbus, OH 43210 USA. RP Bruschweiler, R (reprint author), Ohio State Univ, Campus Chem Instrument Ctr, Columbus, OH 43210 USA.; Bruschweiler, R (reprint author), Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA.; Bruschweiler, R (reprint author), Ohio State Univ, Dept Biol Chem & Pharmacol, Columbus, OH 43210 USA. EM bruschweiler.1@osu.edu RI Li, Da-Wei/F-7233-2010 OI Li, Da-Wei/0000-0002-3266-5272 FU NIH [R01 GM 066041]; NIH (SECIM grant) [U24 DK097209-01A1] FX This work was supported by the NIH ( grant R01 GM 066041 and SECIM grant U24 DK097209-01A1). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. NR 81 TC 7 Z9 7 U1 12 U2 36 PU FUTURE SCI LTD PI LONDON PA UNITED HOUSE, 2 ALBERT PL, LONDON, N3 1QB, ENGLAND SN 1757-6180 EI 1757-6199 J9 BIOANALYSIS JI Bioanalysis PY 2016 VL 8 IS 6 BP 557 EP 573 DI 10.4155/bio-2015-0004 PG 17 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA DI1CZ UT WOS:000373234900008 PM 26915807 ER PT J AU Baylon, RAL Sun, JM Martin, KJ Venkitasubramanian, P Wang, Y AF Baylon, Rebecca A. L. Sun, Junming Martin, Kevin J. Venkitasubramanian, Padmesh Wang, Yong TI Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid-base pairs SO CHEMICAL COMMUNICATIONS LA English DT Article ID CATALYTIC CONVERSION; HZSM-5 ZEOLITE; MIXED OXIDES; ACETIC-ACID; BIO-ETHANOL; ACETONE; ISOBUTENE; BIOMASS; CHEMISTRY; ZNXZRYOZ AB We report the direct conversion of mixed carboxylic acids to C-3(=)-C-6(=) olefins with up to 60 mol% carbon yield through cascade (cross) ketonization, (cross) aldolization and self-deoxygenation reactions. Co-feeding hydrogen provides an additional ketone hydrogenation/dehydration pathway to a wider range of olefins. C1 [Baylon, Rebecca A. L.; Sun, Junming; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Martin, Kevin J.; Venkitasubramanian, Padmesh] Archer Daniels Midland Co, 1001 N Brush Coll Rd, Decatur, IL 62521 USA. [Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Sun, JM; Wang, Y (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.; Wang, Y (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM junming.sun@wsu.edu; yong.wang@pnnl.gov RI Sun, Junming/B-3019-2011 OI Sun, Junming/0000-0002-0071-9635 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC05-RL01830, FWP-47319]; Archer Daniels Midland Company (ADM) FX We acknowledge the financial support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences (DE-AC05-RL01830, FWP-47319) and Archer Daniels Midland Company (ADM). NR 25 TC 2 Z9 2 U1 16 U2 37 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 28 BP 4975 EP 4978 DI 10.1039/c5cc10528e PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DH9EL UT WOS:000373099100003 PM 26898532 ER PT J AU Zhang, RH Cho, S Lim, DG Hu, XY Stach, EA Handwerker, CA Agrawal, R AF Zhang, Ruihong Cho, Seonghyuk Lim, Daw Gen Hu, Xianyi Stach, Eric A. Handwerker, Carol A. Agrawal, Rakesh TI Metal-metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices SO CHEMICAL COMMUNICATIONS LA English DT Article ID CU2ZNSN(S,SE)(4) SOLAR-CELLS; LIGHT-EMITTING-DIODES; CU2ZNSNS4 NANOCRYSTALS; SOLVENT MIXTURE; RAMAN-SPECTRA; QUANTUM DOTS; EFFICIENCY; SEMICONDUCTORS; SNS; DISSOLUTION AB Bulk metals and metal chalcogenides are found to dissolve in primary amine-dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu2Sn(S-x, Se1-x)(3), and Cu2ZnSn(SxSe1-x)(4) (0 <= x <= 1) were deposited using the as-dissolved solutions. Cu2ZnSn(SxSe1-x)(4) solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively. C1 [Zhang, Ruihong; Lim, Daw Gen; Hu, Xianyi; Handwerker, Carol A.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Cho, Seonghyuk; Agrawal, Rakesh] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Agrawal, R (reprint author), Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. EM ruihong.zhang.1@purdue.edu; estachbnl@gmail.com; handwerker@purdue.edu; agrawalr@purdue.edu RI Stach, Eric/D-8545-2011 OI Stach, Eric/0000-0002-3366-2153 FU NSF Solar Economy IGERT program [0903670-DGE]; Center for Functional Nanomaterials, U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX The authors acknowledge C. K. Miskin, R. Boyne, P. Murria, L. Cain and Professor H. Kenttamaa, for assisting in the solution analysis. The authors also want to thank M. Koeper for performing quantum efficiency measurement, K. Brew and B. Graeser for preparing Mo-coated soda lime glass. This research was funded by NSF Solar Economy IGERT program (0903670-DGE). This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 36 TC 4 Z9 4 U1 17 U2 46 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 28 BP 5007 EP 5010 DI 10.1039/c5cc09915c PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DH9EL UT WOS:000373099100011 PM 26981781 ER PT J AU Jorda, J Leibly, DJ Thompson, MC Yeates, TO AF Jorda, J. Leibly, D. J. Thompson, M. C. Yeates, T. O. TI Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein SO CHEMICAL COMMUNICATIONS LA English DT Article ID PDU MICROCOMPARTMENT; DESIGN; ORGANELLES; CAGE; NANOMATERIALS; EVOLUTION; SYMMETRY; INSIGHTS AB We report the crystal structure of a novel 60-subunit dodecahedral cage that results from self-assembly of a re-engineered version of a natural protein (PduA) from the Pdu microcompartment shell. Biophysical data illustrate the dependence of assembly on solution conditions, opening up new applications in microcompartment studies and nanotechnology. C1 [Jorda, J.; Leibly, D. J.; Yeates, T. O.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Leibly, D. J.; Thompson, M. C.; Yeates, T. O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. RP Yeates, TO (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.; Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM yeates@mbi.ucla.edu OI Yeates, Todd/0000-0001-5709-9839 FU NSF [CHE-1332907]; NIH [AI081146, RR-15301]; Ruth L. Kirschstein National Research Service Award [T32GM007185]; DOE [DE-FC03-02ER63421]; DOE, Office of Basic Energy Sciences [DE-AC02 06CH11357] FX This work was supported by NSF grant CHE-1332907 and NIH grant AI081146. D. J. L. was supported by Ruth L. Kirschstein National Research Service Award T32GM007185. The authors thank Michael R. Sawaya, Duilio Cascio, and Dan McNamara for X-ray data collection at APS beamline 24-ID-C, and Joshuah Laniado for helpful suggestions. X-ray core facilities at UCLA are supported by DOE Grant DE-FC03-02ER63421. The NECAT beamlines of the Advanced Photon Source are supported by NIH Grant RR-15301 (NCRR). Use of the Advanced Photon Source is supported by the DOE, Office of Basic Energy Sciences, under Contract DE-AC02 06CH11357. NR 29 TC 0 Z9 0 U1 11 U2 18 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 28 BP 5041 EP 5044 DI 10.1039/c6cc00851h PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DH9EL UT WOS:000373099100020 PM 26988700 ER PT J AU Luo, YQ Ahlstrom, A Allison, SD Batjes, NH Brovkin, V Carvalhais, N Chappell, A Ciais, P Davidson, EA Finzi, AC Georgiou, K Guenet, B Hararuk, O Harden, JW He, YJ Hopkins, F Jiang, LF Koven, C Jackson, RB Jones, CD Lara, MJ Liang, JY McGuire, AD Parton, W Peng, CH Randerson, JT Salazar, A Sierra, CA Smith, MJ Tian, HQ Todd-Brown, KEO Torn, M van Groenigen, KJ Wang, YP West, TO Wei, YX Wieder, WR Xia, JY Xu, X Xu, XF Zhou, T AF Luo, Yiqi Ahlstrom, Anders Allison, Steven D. Batjes, Niels H. Brovkin, Victor Carvalhais, Nuno Chappell, Adrian Ciais, Philippe Davidson, Eric A. Finzi, Adrien C. Georgiou, Katerina Guenet, Bertrand Hararuk, Oleksandra Harden, Jennifer W. He, Yujie Hopkins, Francesca Jiang, Lifen Koven, Charlie Jackson, Robert B. Jones, Chris D. Lara, Mark J. Liang, Junyi McGuire, A. David Parton, William Peng, Changhui Randerson, James T. Salazar, Alejandro Sierra, Carlos A. Smith, Matthew J. Tian, Hanqin Todd-Brown, Katherine E. O. Torn, Margaret van Groenigen, Kees Jan Wang, Ying Ping West, Tristram O. Wei, Yaxing Wieder, William R. Xia, Jianyang Xu, Xia Xu, Xiaofeng Zhou, Tao TI Toward more realistic projections of soil carbon dynamics by Earth system models SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID NET PRIMARY PRODUCTION; ORGANIC-MATTER MODELS; GLOBAL CLIMATE-CHANGE; DATA-ASSIMILATION; TERRESTRIAL ECOSYSTEMS; INCUBATION DATA; UNITED-STATES; LAND MODEL; HETEROTROPHIC RESPIRATION; TEMPERATURE SENSITIVITY AB Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool-and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields. C1 [Luo, Yiqi; Jiang, Lifen; Liang, Junyi] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Luo, Yiqi] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. [Ahlstrom, Anders; Jackson, Robert B.] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA. [Ahlstrom, Anders] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden. [Allison, Steven D.] Univ Calif Irvine, Dept Ecol & Evolut Biol, Irvine, CA USA. [Allison, Steven D.; He, Yujie; Hopkins, Francesca; Randerson, James T.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92717 USA. [Batjes, Niels H.] ISRIC World Soil Informat, Wageningen, Netherlands. [Brovkin, Victor] Max Planck Inst Meteorol, Hamburg, Germany. [Carvalhais, Nuno; Sierra, Carlos A.] Max Planck Inst Biogeochem, Jena, Germany. [Carvalhais, Nuno] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Ciencias & Engn Ambiente, CENSE, Caparica, Portugal. [Chappell, Adrian] CSIRO Land & Water Natl Res Flagship, Canberra, ACT, Australia. [Ciais, Philippe; Guenet, Bertrand] CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Davidson, Eric A.] Univ Maryland, Ctr Environm Sci, Appalachian Lab, Frostburg, MD USA. [Finzi, Adrien C.] Boston Univ, Dept Biol, Boston, MA 02215 USA. [Georgiou, Katerina] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Georgiou, Katerina; Koven, Charlie; Torn, Margaret] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hararuk, Oleksandra] Canadian Forest Serv, Pacific Forestry Ctr, Victoria, BC, Canada. [Harden, Jennifer W.] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. [Jones, Chris D.] Hadley Ctr, Met Off, Exeter, Devon, England. [Lara, Mark J.; McGuire, A. David] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA. [McGuire, A. David] US Geol Survey, Alaska Cooperat Fish & Wildlife Res Unit, Fairbanks, AK USA. [Parton, William] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. [Peng, Changhui] Univ Quebec, Inst Environm Sci, Montreal, PQ H3C 3P8, Canada. [Salazar, Alejandro] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Smith, Matthew J.] Microsoft Res, Sci Computat Lab, Cambridge, England. [Tian, Hanqin] Auburn Univ, Sch Forestry & Wildlife Sci, Int Ctr Climate & Global Change Res, Auburn, AL 36849 USA. [Todd-Brown, Katherine E. O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [van Groenigen, Kees Jan] No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA. [Wang, Ying Ping] CSIRO Ocean & Atmosphere Flagship, Aspendale, Vic, Australia. [West, Tristram O.] Joint Global Change Res Inst, College Pk, MD USA. [Wei, Yaxing] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Wieder, William R.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Xia, Jianyang] E China Normal Univ, Sch Ecol & Environm Sci, Shanghai 200062, Peoples R China. [Xu, Xia] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA USA. [Xu, Xiaofeng] Univ Texas El Paso, Dept Biol Sci, El Paso, TX 79968 USA. [Zhou, Tao] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. RP Luo, YQ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.; Luo, YQ (reprint author), Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. EM yluo@ou.edu RI Torn, Margaret/D-2305-2015; He, Yujie/E-2514-2017; Ahlstrom, Anders/F-3215-2017; Liang, Junyi/H-3203-2016; Davidson, Eric/K-4984-2013; Koven, Charles/N-8888-2014; Brovkin, Victor/C-2803-2016; Batjes, Niels/F-7195-2010; Allison, Steven/E-2978-2010; Xu, Xiaofeng/B-2391-2008; Smith, Melinda/J-8987-2014; Jones, Chris/I-2983-2014; wang, yp/A-9765-2011 OI van groenigen, kees jan/0000-0002-9165-3925; WIEDER, WILLIAM/0000-0001-7116-1985; He, Yujie/0000-0001-8261-5399; Ahlstrom, Anders/0000-0003-1642-0037; Liang, Junyi/0000-0001-8252-5502; Davidson, Eric/0000-0002-8525-8697; Koven, Charles/0000-0002-3367-0065; Brovkin, Victor/0000-0001-6420-3198; Batjes, Niels/0000-0003-2367-3067; Allison, Steven/0000-0003-4629-7842; Xu, Xiaofeng/0000-0002-6553-6514; FU United States National Science Foundation Research Coordination (RCN) grant [DEB 0840964]; Department of Energy [DE SC0008270]; U.S. Department of Energy [DE-SC0006982, DE-SC0008270, DE-SC0014062, DE-SC0004601, DE-SC0010715]; U.S. National Science Foundation (NSF) [DEB 0840964, DBI 0850290, EPS 0919466, EF 1137293]; Joint DECC/Defra Met Office Hadley Centre Climate Program [GA01101]; [UID/AMB/04085/2013] FX The paper stemmed from a workshop "Representing soil carbon dynamics in global land models to improve future IPCC assessments" held at Breckenridge, CO, USA on 12-14 June 2014. The workshop was financially supported by the United States National Science Foundation Research Coordination (RCN) grant DEB 0840964 and Department of Energy DE SC0008270. Y.L. was financially supported by U.S. Department of Energy grants DE-SC0006982, DE-SC0008270, DE-SC0014062, DE-SC0004601, and DE-SC0010715 and U.S. National Science Foundation (NSF) grants DBI 0850290, EPS 0919466, DEB 0840964, and EF 1137293; N.C. by Project UID/AMB/04085/2013; CDJ by the Joint DECC/Defra Met Office Hadley Centre Climate Program (GA01101). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Please contact the corresponding author at yluo@ou.edu for details of the data used in this work. NR 149 TC 15 Z9 15 U1 38 U2 77 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD JAN PY 2016 VL 30 IS 1 BP 40 EP 56 DI 10.1002/2015GB005239 PG 17 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA DH7HR UT WOS:000372964300003 ER PT J AU Dagle, VL Smith, C Flake, M Albrecht, KO Gray, MJ Ramasamy, KK Dagle, RA AF Dagle, Vanessa Lebarbier Smith, Colin Flake, Matthew Albrecht, Karl O. Gray, Michel J. Ramasamy, Karthikeyan K. Dagle, Robert A. TI Integrated process for the catalytic conversion of biomass-derived syngas into transportation fuels SO GREEN CHEMISTRY LA English DT Article ID ZNXZRYOZ MIXED OXIDES; ACID CATALYSTS; ISOBUTENE; ETHANOL; OLIGOMERIZATION; ACETONE; CHEMISTRY; ALCOHOLS; SITES AB Efficient synthesis of renewable fuels that will enable cost competitiveness with petroleum-derived fuels remains a grand challenge. In this paper, we report on an integrated catalytic approach for producing transportation fuels from biomass-derived syngas. This novel process represents an alternative to conventional fuel synthesis routes (e.g., Fischer-Tropsch, Methanol-to-Gasoline) that have drawbacks, particularly at the scale of biomass. Composition of the resulting hydrocarbon fuel can be modulated to produce predominantly middle distillates, which is constantly increasing in demand compared to gasoline fraction. In this process biomass-derived syngas is first converted over an Rh-based catalyst into a complex aqueous mixture of condensable C-2(+) oxygenated compounds (predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate). This multi-component aqueous mixture then is fed to a second reactor loaded with a ZnxZryOz mixed oxide catalyst, which has tailored acid-base sites, to produce an olefin mixture rich in isobutene. The olefins then are oligomerized using a solid acid catalyst (e.g., Amberlyst-36) to form condensable olefins with molecular weights that can be targeted for gasoline, jet, and/or diesel fuel applications. The product rich in long-chain olefins (C-7(+)) is finally sent to a fourth reactor required for hydrogenation of the olefins into paraffin fuels. Simulated distillation of the hydrotreated oligomerized liquid product indicates that similar to 75% of the hydrocarbons (iso-paraffins and cyclic compounds) are in the jet-fuel range. Process optimization for the oligomerization step could further improve yield to the jet-fuel range. All of these catalytic steps have been demonstrated in sequence, thus providing proof-of-concept for a new integrated process for the production of drop-in biofuels. Overall, we demonstrate approximately 41% carbon efficiency for converting syngas into jet-range hydrocarbons. This unique and flexible process does not require external hydrogen and also could be applied to non-syngas derived feedstock, such as fermentation products (e.g., ethanol, acetic acid, etc.), other oxygenates, and mixtures thereof containing alcohols, acids, aldehydes and/or esters. C1 [Dagle, Vanessa Lebarbier; Smith, Colin; Flake, Matthew; Albrecht, Karl O.; Gray, Michel J.; Ramasamy, Karthikeyan K.; Dagle, Robert A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Energy & Environm Directorate, Richland, WA 99352 USA. RP Dagle, RA (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Energy & Environm Directorate, Richland, WA 99352 USA. EM Robert.Dagle@pnnl.gov FU U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO); DOE's Office of Biological and Environmental Research FX This work was financially supported by the U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) and performed at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Advanced catalyst characterization use was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. The authors would like to thank Teresa Lemmon and Marie Swita for analytical support of this project. Finally, the authors would also like to thank Cary Counts for help with technical editing of this manuscript. NR 42 TC 2 Z9 2 U1 11 U2 32 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PY 2016 VL 18 IS 7 BP 1880 EP 1891 DI 10.1039/c5gc02298c PG 12 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DH7NR UT WOS:000372981400008 ER PT J AU Wang, YH Comes, RB Wolf, SA Lu, JW AF Wang, Yuhan Comes, Ryan B. Wolf, Stuart A. Lu, Jiwei TI Threshold Switching Characteristics of Nb/NbO2/TiN Vertical Devices SO IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY LA English DT Article DE Niobium dioxide; threshold switching; metal-insulator transition ID NIOBIUM DIOXIDE; NBO2 AB We have observed threshold switching (TS) with minimal hysteresis and a small threshold electric field (60-90 kV/cm) in Nb/NbO2/TiN structures. The TS was unipolar with certain repeatability. A less sharp but still sizable change in the device resistance can be observed up to 150 degrees C. The TS without Nb capping layer exhibited hysteretic characteristics. It was proposed that the surface Nb2O5 layer on NbO2 could significantly modify the TS in this vertical device. This understanding of the surface effect will allow further control of the non-linear IV characteristics for NbO2-based switches or selector devices. C1 [Wang, Yuhan; Wolf, Stuart A.; Lu, Jiwei] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Comes, Ryan B.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Wolf, Stuart A.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. RP Wang, YH (reprint author), Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. EM yw9ep@virginia.edu NR 23 TC 3 Z9 3 U1 7 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6734 J9 IEEE J ELECTRON DEVI JI IEEE J. Electron Devices Soc. PD JAN PY 2016 VL 4 IS 1 BP 11 EP 14 DI 10.1109/JEDS.2015.2503922 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA DH8PC UT WOS:000373055600003 ER PT J AU Davis, SJ Edwards, SB Teper, GE Bassett, DG McCarthy, MJ Johnson, SC Lawton, CR Hoffman, MJ Shelton, L Henry, SM Melander, DJ Muldoon, FM Alford, BD Rice, RE AF Davis, Scott J. Edwards, Shatiel B. Teper, Gerald E. Bassett, David G. McCarthy, Michael J. Johnson, Scott C. Lawton, Craig R. Hoffman, Matthew J. Shelton, Liliana Henry, Stephen M. Melander, Darryl J. Muldoon, Frank M. Alford, Brian D. Rice, Roy E. TI Maximizing the US Army's Future Contribution to Global Security Using the Capability Portfolio Analysis Tool (CPAT) SO INTERFACES LA English DT Article DE US Army; ground combat systems; portfolio optimization; fleet scheduling; decision support; mixed-integer linear programming AB Recent budget reductions have posed tremendous challenges to the U.S. Army in managing its portfolio of ground combat systems (tanks and other fighting vehicles), thus placing many important programs at risk. To address these challenges, the Army and a supporting team developed and applied the Capability Portfolio Analysis Tool (CPAT) to optimally invest in ground combat modernization over the next 25-35 years. CPAT provides the Army with the analytical rigor needed to help senior Army decision makers allocate scarce modernization dollars to protect soldiers and maintain capability overmatch. CPAT delivers unparalleled insight into multiple-decade modernization planning using a novel multiphase mixed-integer linear programming technique and illustrates a cultural shift toward analytics in the Army's acquisition thinking and processes. CPAT analysis helped shape decisions to continue modernization of the $10 billion Stryker family of vehicles (originally slated for cancellation) and to strategically reallocate over $20 billion to existing modernization programs by not pursuing the Ground Combat Vehicle program as originally envisioned. More than 40 studies have been completed using CPAT, applying operations research methods to optimally prioritize billions of taxpayer dollars and allowing Army acquisition executives to base investment decisions on analytically rigorous evaluations of portfolio trade-offs. C1 [Davis, Scott J.; Edwards, Shatiel B.; Teper, Gerald E.; Bassett, David G.; McCarthy, Michael J.; Johnson, Scott C.] United States Army, Warren, MI 48397 USA. [Lawton, Craig R.; Hoffman, Matthew J.; Shelton, Liliana; Henry, Stephen M.; Melander, Darryl J.; Muldoon, Frank M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Alford, Brian D.] Booz Allen Hamilton, Huntsville, AL 35806 USA. [Rice, Roy E.] Teledyne Brown Engn Inc, Huntsville, AL 35805 USA. RP Davis, SJ; Edwards, SB; Teper, GE; Bassett, DG; McCarthy, MJ; Johnson, SC (reprint author), United States Army, Warren, MI 48397 USA.; Lawton, CR; Hoffman, MJ; Shelton, L; Henry, SM; Melander, DJ; Muldoon, FM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.; Alford, BD (reprint author), Booz Allen Hamilton, Huntsville, AL 35806 USA.; Rice, RE (reprint author), Teledyne Brown Engn Inc, Huntsville, AL 35805 USA. EM scott.j.davis.civ@mail.mil; shatiel.b.edwards.civ@mail.mil; gerald.e.teper.civ@mail.mil; david.g.bassett.mil@mail.mil; michael.j.mccarthy.civ@mail.mil; scott.c.johnson98.civ@mail.mil; crlawto@sandia.gov; mjhoffm@sandia.gov; lshelto@sandia.gov; smhenry@sandia.gov; djmelan@sandia.gov; fmmuldo@sandia.gov; alford_brian@bah.com; roy.rice@teledyne.com FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank the Edelman selection committee, their coaches Randy Robinson and Greg Parlier, John Milne and Alice Mack for their valuable editorial feedback, Brent Peterson for his outstanding video production work, and David Cunnington and Daniel Thompson for their graphics and presentation expertise. The authors especially thank the Honorable Ms. Heidi Shyu and Lt. Gen. Michael Williamson for their video remarks supporting the impacts of the CPAT project. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration [Contract DE-AC04-94AL85000]. NR 12 TC 0 Z9 0 U1 2 U2 5 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0092-2102 EI 1526-551X J9 INTERFACES JI Interfaces PD JAN-FEB PY 2016 VL 46 IS 1 SI SI BP 91 EP 108 DI 10.1287/inte.2015.0824 PG 18 WC Management; Operations Research & Management Science SC Business & Economics; Operations Research & Management Science GA DH9QN UT WOS:000373130900007 ER PT S AU Kocheva, D Stegmann, R Rainovski, G Jolie, J Pietralla, N Stahl, C Petkov, P Blazhev, A Hennig, A Bauer, C Braunroth, T Carpenter, MP Cortes, L Dewald, A Djongolov, M Fransen, C Gladnishki, K Janssens, RVF Karayonchev, V Lettmann, M Lister, CJ Litzinger, J Moller, T Muller-Gatermann, C Scheck, M Scholz, P Schramm, C Thoele, P Werner, V Woelk, D Zhu, S Van Isacker, P AF Kocheva, D. Stegmann, R. Rainovski, G. Jolie, J. Pietralla, N. Stahl, C. Petkov, P. Blazhev, A. Hennig, A. Bauer, C. Braunroth, Th. Carpenter, M. P. Cortes, L. Dewald, A. Djongolov, M. Fransen, C. Gladnishki, K. Janssens, R. V. F. Karayonchev, V. Lettmann, M. Lister, C. J. Litzinger, J. Moeller, Th. Mueller-Gatermann, C. Scheck, M. Scholz, Ph. Schramm, C. Thoele, P. Werner, V. Woelk, D. Zhu, S. Van Isacker, P. BE Andreev, A Arsenyev, N Ershov, S Sargsyan, V Vdovin, A TI Search formixed-symmetry states of nuclei in the vicinity of the double-magic nucleus Pb-208 SO INTERNATIONAL CONFERENCE ON NUCLEAR STRUCTURE AND RELATED TOPICS (NSRT15) SE EPJ Web of Conferences LA English DT Proceedings Paper CT 7th International Conference on Nuclear Structure and Related Topics (NSRT) CY JUL 14-18, 2015 CL Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna, RUSSIA HO Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys ID COLLECTIVE MODES; SPECTROSCOPY; EXCITATIONS; PO-212; SCATTERING; BEAM AB In this work we present the results from two experiments dedicated to search for quadrupole-collective isovector valence-shell excitation, the states with so-called mixed proton-neutron symmetry (MSS), in nuclei around the doubly magic nucleus Pb-208. Po-212 was studied in an alpha-transfer reaction. Hg-204 was studied in an inverse kinematics Coulomb excitation reaction on a carbon target. Both experiments provide indications for existence of one-phonon MSSs. Those are the first experimentally identified MSSs in the mass A approximate to 208 region. C1 [Kocheva, D.; Rainovski, G.; Djongolov, M.; Gladnishki, K.] Sofia Univ St Kliment Ohridski, Fac Phys, Sofia 1164, Bulgaria. [Stegmann, R.; Pietralla, N.; Stahl, C.; Bauer, C.; Cortes, L.; Lettmann, M.; Moeller, Th.; Scheck, M.; Schramm, C.; Werner, V.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Jolie, J.; Blazhev, A.; Hennig, A.; Braunroth, Th.; Dewald, A.; Fransen, C.; Karayonchev, V.; Litzinger, J.; Mueller-Gatermann, C.; Scholz, Ph.; Thoele, P.; Woelk, D.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Petkov, P.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Janssens, R. V. F.; Zhu, S.] Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. [Van Isacker, P.] CEA, CNRS, IN2P3, Grand Accelerateur Natl Lons Lourds,DSM, BP 55027, F-14076 Caen 5, France. [Scheck, M.] Univ West Scotland, Paisley PA1 2BE, Renfrew, Scotland. [Scheck, M.] Scottish Univ Phys Alliance, Glasgow G12 8QQ, Lanark, Scotland. RP Rainovski, G (reprint author), Sofia Univ St Kliment Ohridski, Fac Phys, Sofia 1164, Bulgaria. EM rig@phys.uni-sofia.bg RI Kocheva, Diana/K-1388-2016; Rainovski, Georgi/A-3450-2008 OI Rainovski, Georgi/0000-0002-1729-0249 NR 42 TC 1 Z9 1 U1 0 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2016 VL 107 AR 03004 DI 10.1051/epjconf/201610703004 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FQ UT WOS:000372781500011 ER PT S AU Somov, A Somov, S Tolstukhin, I AF Somov, A. Somov, S. Tolstukhin, I. GP IOP TI Performance of the pair spectrometer of the GlueX experiment SO INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS (ICPPA-2015), PTS 1-4 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Particle Physics and Astrophysics (ICPPA) CY OCT 05-10, 2015 CL Moscow, RUSSIA SP Natl Res Nucl Univ MEPhI, Ctr Fundamental Res & Particle Phys AB The description of the pair spectrometer of the GlueX detector at Jefferson Lab and its performance during the first beam commissioning runs are presented. We measured the amount of light collected from each channel of the pair spectrometer hodoscopes and the time resolution of the pair spectrometer counters. C1 [Somov, A.] Thomas Jefferson Natl Accelerator Facil, Jefferson Ave 12000, Newport News, VA 23606 USA. [Somov, S.; Tolstukhin, I.] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Kashirskoe Highway 31, Moscow 115409, Russia. RP Tolstukhin, I (reprint author), Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Kashirskoe Highway 31, Moscow 115409, Russia. EM somov@jlab.org; s.v.somov@mail.ru; ivantol@jlab.org NR 2 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2016 VL 675 AR 042022 DI 10.1088/1742-6596/675/4/042022 PG 3 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA BE5AH UT WOS:000372460100131 ER PT S AU Amiri, BW Foster, JP Greenwood, LR AF Amiri, Benjamin W. Foster, John P. Greenwood, Larry R. BE Lyoussi, A TI Dosimetry Evaluation of In-Core and Above-Core Zirconium Alloy Samples in a PWR SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB A description of the neutron fluence analysis of activated zirconium alloys samples at a Westinghouse 3-loop reactor is presented. These samples were irradiated in the core and in the fuel plenum region, where dosimetry measurements are relatively rare compared with regions radially outward of the core. Dosimetry measurements performed by Batelle/PNNL are compared to the calculational models. Good agreement is shown with the in-core measurements when using analysis conditions expected to best represent this region, such as an assembly-specific axial power distribution. However, the use of these conditions to evaluate dosimetry in the fuel plenum region can lead to significant underestimation of the fluence. The use of a flat axial power distribution, however, does not underestimate the fluence in the fuel plenum region. C1 [Amiri, Benjamin W.] Westinghouse Elect Co LLC, Radiat Engn & Anal, Cranberry Township, PA 16066 USA. [Foster, John P.] Westinghouse Elect Co LLC, Nucl Fuel, Hopkins, SC 29061 USA. [Greenwood, Larry R.] Battelle Pacific Northwest Natl Lab, Richland, WA 99352 USA. RP Amiri, BW (reprint author), Westinghouse Elect Co LLC, Radiat Engn & Anal, Cranberry Township, PA 16066 USA. RI Greenwood, Lawrence/H-9539-2016 OI Greenwood, Lawrence/0000-0001-6563-0650 NR 8 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 02005 DI 10.1051/epjconf/201610602005 PG 6 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700014 ER PT S AU Carlson, AD Pronyaev, VG Capote, R Hale, GM Hambsch, FJ Kawano, T Kunieda, S Mannhart, W Nelson, RO Neudecker, D Schillebeeckx, P Simakov, S Smith, DL Talou, P Tao, X Wallner, A Wang, W AF Carlson, A. D. Pronyaev, V. G. Capote, R. Hale, G. M. Hambsch, F. -J. Kawano, T. Kunieda, S. Mannhart, W. Nelson, R. O. Neudecker, D. Schillebeeckx, P. Simakov, S. Smith, D. L. Talou, P. Tao, X. Wallner, A. Wang, W. BE Lyoussi, A TI Toward a New Evaluation of Neutron Standards SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse ID CAPTURE CROSS-SECTION; UNCERTAINTY QUANTIFICATION; N-TOF; SPECTRA; FACILITY; ENERGY; GELINA; CERN AB Measurements related to neutron cross section standards and certain prompt neutron fission spectra are being evaluated. In addition to the standard cross sections, investigations of reference data that are not as well known as the standards are being considered. Procedures and codes for performing this work are discussed. A number of libraries will use the results of this standards evaluation for new versions of their libraries. Most of these data have applications in neutron dosimetry. C1 [Carlson, A. D.] NIST, 100 Bur Dr,Stop 8463, Gaithersburg, MD 20899 USA. [Pronyaev, V. G.] IPPE, Bondarenko Sq 1, Obninsk 249033, Kaluga Region, Russia. [Capote, R.; Simakov, S.] IAEA, NAPC, Nucl Data Sect, A-1400 Vienna, Austria. [Hale, G. M.; Kawano, T.; Nelson, R. O.; Neudecker, D.; Talou, P.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Hambsch, F. -J.; Schillebeeckx, P.] EC, JRC, IRMM, Retieseweg 111, B-2440 Geel, Belgium. [Kunieda, S.] Japan Atom Energy Agcy, Nucl Data Ctr, 2-4 Shirane Shirakata, Tokai, Ibaraki 3191195, Japan. [Mannhart, W.] Phys Tech Bundesanstalt, Org 6 4, Bundesallee 100, D-38116 Braunschweig, Germany. [Smith, D. L.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Tao, X.; Wang, W.] CNDC, China Inst Atom Energy, POB 275 41, Beijing 102413, Peoples R China. [Wallner, A.] Australian Natl Univ, Res Sch Phys & Engn, Nucl Phys, Bldg 57, Canberra, ACT 0200, Australia. RP Carlson, AD (reprint author), NIST, 100 Bur Dr,Stop 8463, Gaithersburg, MD 20899 USA. EM carlson@nist.gov RI Capote Noy, Roberto/M-1245-2014 OI Capote Noy, Roberto/0000-0002-1799-3438 NR 47 TC 0 Z9 0 U1 1 U2 5 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 04002 DI 10.1051/epjconf/201610604002 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700038 ER PT S AU Coburn, J Luker, SM Parma, EJ DePriest, KR AF Coburn, Jonathan Luker, S. Michael Parma, Edward J. DePriest, K. Russell BE Lyoussi, A TI Modeling, Calibration, and Verification of a Fission Chamber for ACRR Experimenters SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB When performing research at a reactor facility, experimenters often need to determine the neutron fluence achieved during an operation. Facilities typically provide guidance in the form of neutron fluence per megajoule (MJ) or through passive dosimetry results. After experiment completion, there is sometimes a delay of several days (or weeks) before the passive dosimetry results are available. In the interim, an experimenter does not have confirmation that the desired irradiation levels were reached. Active dosimetry may provide an estimate of neutron fluxes, but few active detectors are available that have been calibrated to measure neutron fluxes obtained inside the Annular Core Research Reactor (ACRR) central cavity environment. For past experiments at the ACRR, the neutron fluence was calculated by integrating the response of a fission chamber rate detection signal and then normalizing this integral to fluence determined from passive dosimetry. An alternative method of directly measuring neutron flux is desired; the new methodology described provides a complete neutron flux profile after a reactor pulse, utilizing fission chamber physics in combination with a compensating ion chamber to extract and convert a current signal to neutron flux as a function of time. C1 [Coburn, Jonathan] N Carolina State Univ, Appl Nucl Technol, Sandia Natl Labs, Albuquerque, NM USA. [Luker, S. Michael; Parma, Edward J.; DePriest, K. Russell] Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA. RP Luker, SM (reprint author), Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA. EM smluker@sandia.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 05001 DI 10.1051/epjconf/201610605001 PG 10 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700053 ER PT S AU Greenwood, LR Johnson, CD AF Greenwood, L. R. Johnson, C. D. BE Lyoussi, A TI Least-Squares Neutron Spectral Adjustment with STAYSL PNNL SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB The STAYSL PNNL computer code, a descendant of the STAY'SL code [1], performs neutron spectral adjustment of a starting neutron spectrum, applying a least squares method to determine adjustments based on saturated activation rates, neutron cross sections from evaluated nuclear data libraries, and all associated covariances. STAYSL PNNL is provided as part of a comprehensive suite of programs [2], where additional tools in the suite are used for assembling a set of nuclear data libraries and determining all required corrections to the measured data to determine saturated activation rates. Neutron cross section and covariance data are taken from the International Reactor Dosimetry File (IRDF-2002) [3], which was sponsored by the International Atomic Energy Agency (IAEA), though work is planned to update to data from the IAEA's International Reactor Dosimetry and Fusion File (IRDFF) [4]. The nuclear data and associated covariances are extracted from IRDF-2002 using the third-party NJOY99 computer code [5]. The NJpp translation code converts the extracted data into a library data array format suitable for use as input to STAYSL PNNL. The software suite also includes three utilities to calculate corrections to measured activation rates. Neutron self-shielding corrections are calculated as a function of neutron energy with the SHIELD code and are applied to the group cross sections prior to spectral adjustment, thus making the corrections independent of the neutron spectrum. The SigPhi Calculator is a Microsoft Excel spreadsheet used for calculating saturated activation rates from raw gamma activities by applying corrections for gamma self-absorption, neutron burn-up, and the irradiation history. Gamma self-absorption and neutron burn-up corrections are calculated (iteratively in the case of the burn-up) within the SigPhi Calculator spreadsheet. The irradiation history corrections are calculated using the BCF computer code and are inserted into the SigPhi Calculator workbook for use in correcting the measured activities. Output from the SigPhi Calculator is automatically produced, and consists of a portion of the STAYSL PNNL input file data that is required to run the spectral adjustment calculations. Within STAYSL PNNL, the least-squares process is performed in one step, without iteration, and provides rapid results on PC platforms. STAYSL PNNL creates multiple output files with tabulated results, data suitable for plotting, and data formatted for use in subsequent radiation damage calculations using the SPECTER computer code (which is not included in the STAYSL PNNL suite). All components of the software suite have undergone extensive testing and validation prior to release and test cases are provided with the package. [GRAPHICS] . C1 [Greenwood, L. R.; Johnson, C. D.] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. RP Greenwood, LR (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM larry.greenwood@pnnl.gov RI Greenwood, Lawrence/H-9539-2016 OI Greenwood, Lawrence/0000-0001-6563-0650 NR 9 TC 0 Z9 0 U1 2 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 07001 DI 10.1051/epjconf/201610607001 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700071 ER PT S AU Griffin, P AF Griffin, Patrick BE Lyoussi, A TI Use of Neutron Benchmark Fields for the Validation of Dosimetry Cross Sections SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB The evolution of validation metrics for dosimetry cross sections in neutron benchmark fields is explored. The strength of some of the metrics in providing validation evidence is examined by applying them to the Cf-252 spontaneous fission standard neutron benchmark field, the U-235 thermal neutron fission reference benchmark field, the ACRR pool-type reactor central cavity reference benchmark fields, and the SPR-III fast burst reactor central cavity. The IRDFF dosimetry cross section library is used in the validation study and observations are made on the amount of coverage provided to the library contents by validation data available in these benchmark fields. C1 [Griffin, Patrick] Sandia Natl Labs, Radiat Effects Sci & Applicat Dept, POB 5800, Albuquerque, NM 87185 USA. RP Griffin, P (reprint author), Sandia Natl Labs, Radiat Effects Sci & Applicat Dept, POB 5800, Albuquerque, NM 87185 USA. EM pjgriff@sandia.gov NR 9 TC 0 Z9 0 U1 1 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 04001 DI 10.1051/epjconf/201610604001 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700037 ER PT S AU Hehr, BD Parma, EJ Peters, CD Naranjo, GE Luker, SM AF Hehr, Brian D. Parma, Edward J. Peters, Curtis D. Naranjo, Gerald E. Luker, S. Michael BE Lyoussi, A TI Characterization of Novel Calorimeters in the Annular Core Research Reactor SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n, gamma) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n, gamma) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. C1 [Hehr, Brian D.; Parma, Edward J.; Luker, S. Michael] Sandia Natl Labs, Appl Nucl Technol Dept, POB 5800, Albuquerque, NM 87185 USA. [Peters, Curtis D.; Naranjo, Gerald E.] Sandia Natl Labs, Adv Nucl Concepts Dept, POB 5800, Albuquerque, NM 87185 USA. RP Hehr, BD (reprint author), Sandia Natl Labs, Appl Nucl Technol Dept, POB 5800, Albuquerque, NM 87185 USA. EM bdhehr@sandia.gov NR 4 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 01001 DI 10.1051/epjconf/201610601001 PG 8 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700001 ER PT S AU Holden, NE AF Holden, N. E. BE Lyoussi, A TI 2013 Review of Neutron and Non-Neutron Nuclear Data SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB The results of a review and evaluation of neutron and non-neutron nuclear data published in the scientific literature over the past three years since the ISRD-14 Symposium has been performed and the highlights are presented. Included in the data review are the status of new chemical elements, new measurements of the isotopic composition for many chemical elements and the resulting change in the atomic weight values. New half-life measurements for both short-lived and long-lived nuclides, some alpha decay and double beta decay measurements for quasi-stable nuclides are discussed. The latest evaluation of atomic masses has been published. Data from new measurements on the very heavy (transmeitnerium) elements are discussed and tabulated. Data on various recent neutron cross section and resonance integral measurements are discussed and tabulated. C1 [Holden, N. E.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Holden, NE (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. NR 20 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 04003 DI 10.1051/epjconf/201610604003 PG 8 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700039 ER PT S AU Hu, JP Holden, NE Reciniello, RN AF Hu, J. -P. Holden, N. E. Reciniello, R. N. BE Lyoussi, A TI Dosimetry in Thermal Neutron Irradiation Facility at BMRR SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than the statistical mean derived from the Monte-Carlo modeling (5% uncertainty). The dose rate measured by ion chambers was 6-10% lower than the output tallies (7% uncertainty). The detailed dosimetry that was performed at the TNIF for the NCT will be described. C1 [Hu, J. -P.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Holden, N. E.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Reciniello, R. N.] Brookhaven Natl Lab, Radiol Control Div, Upton, NY 11973 USA. RP Hu, JP (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. NR 12 TC 0 Z9 0 U1 1 U2 3 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 01002 DI 10.1051/epjconf/201610601002 PG 10 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700002 ER PT S AU Kahler, AC MacInnes, M Chadwick, MB AF Kahler, A. C. MacInnes, M. Chadwick, M. B. BE Lyoussi, A TI A Re-Analysis of Historical Los Alamos Critical Assembly Reaction Rate Measurements SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB Starting in the 1950s and continuing into the early 1970s, a number of foil irradiations and fission chamber measurements were made in a variety of Fast critical assemblies at Los Alamos National Laboratory. These include (i) Godiva, a bare HEU spherical assembly; (ii) Flattop-25, a spherical assembly consisting of an HEU core and a natural uranium reflector; (iii) Jezebel, a bare Pu-239 assembly; and (iv) Flattop-Pu, a spherical assembly consisting of a Pu-239 core and a natural uranium reflector. In most instances the irradiations occur at or near the center of the assembly, but in selected instances data were obtained for a radial traverse extending into the Flattop reflector region. Measurements were made for a number of threshold reactions, including Sc-45(n, 2n) (44)mSc, V-51(n, alpha) 48Sc, As-75(n, 2n) As-74, Y-89(n, 2n) Y-88, Zr-90(n, 2n) Zr-89, Rh-103(n, 2n) (102)gRh, Ag-107(n, 2n) (106)mAg, Tm-169(n, 2n) Tm-168, Lu-175(n, 2n) Lu-174, Ir-191(n, 2n) Ir-190, Au-197(n, 2n) Au-196, Tl-203(n, 2n) Tl-202, Pb-204(n, 2n) Pb-203 and U-238(n, 2n) U-237. Fission ratio data for U-238(n, f)/U-235(n, f) and Pu-239(n, f)/U-235(n, f) were also obtained. We report C/E values from MCNP6 calculations using ENDF/B-VII. 1 and IRDFF-v1.03 cross section data. C1 [Kahler, A. C.; MacInnes, M.; Chadwick, M. B.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Kahler, AC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM akahler@lanl.gov NR 6 TC 0 Z9 0 U1 1 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 04007 DI 10.1051/epjconf/201610604007 PG 7 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700043 ER PT S AU Kaiser, K Nowlen, KC DePriest, KR AF Kaiser, Krista Nowlen, K. Chantel DePriest, K. Russell BE Lyoussi, A TI Characterization of the Annular Core Research Reactor (ACRR) Neutron Radiography System Imaging Plane SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB The Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1) available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures. C1 [Kaiser, Krista] Sandia Natl Labs, Nucl Facil Operat, POB 5800,MS1142, Albuquerque, NM 87185 USA. [Nowlen, K. Chantel] Sandia Natl Labs, Nucl Engn & Maintenance, POB 5800,MS1142, Albuquerque, NM 87185 USA. [DePriest, K. Russell] Sandia Natl Labs, Appl Nucl Technol, POB 5800,MS1146, Albuquerque, NM 87185 USA. RP Kaiser, K (reprint author), Sandia Natl Labs, Nucl Facil Operat, POB 5800,MS1142, Albuquerque, NM 87185 USA. NR 6 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 01005 DI 10.1051/epjconf/201610601005 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700005 ER PT S AU Kulesza, JA Franceschini, F Evans, TM Gehin, JC AF Kulesza, Joel A. Franceschini, Fausto Evans, Thomas M. Gehin, Jess C. BE Lyoussi, A TI Overview of the Consortium for the Advanced Simulation of Light Water Reactors (CASL) SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB The Consortium for Advanced Simulation of Light Water Reactors (CASL) was established in July 2010 for the purpose of providing advanced modeling and simulation solutions for commercial nuclear reactors. The primary goal is to provide coupled, higher-fidelity, usable modeling and simulation capabilities than are currently available. These are needed to address light water reactor (LWR) operational and safety performance-defining phenomena that are not yet able to be fully modeled taking a first-principles approach. In order to pursue these goals, CASL has participation from laboratory, academic, and industry partners. These partners are pursuing the solution of ten major "Challenge Problems" in order to advance the state-of-the-art in reactor design and analysis to permit power uprates, higher burnup, life extension, and increased safety. At present, the problems being addressed by CASL are primarily reactor physics-oriented; however, this paper is intended to introduce CASL to the reactor dosimetry community because of the importance of reactor physics modelling and nuclear data to define the source term for that community and the applicability and extensibility of the transport methods being developed. C1 [Kulesza, Joel A.; Franceschini, Fausto] Westinghouse Elect Co LLC, 1000 Westinghouse Dr, Cranberry Township, PA 16066 USA. [Evans, Thomas M.; Gehin, Jess C.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RP Kulesza, JA (reprint author), Westinghouse Elect Co LLC, 1000 Westinghouse Dr, Cranberry Township, PA 16066 USA. EM kuleszj@westinghouse.com NR 5 TC 0 Z9 0 U1 1 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 03002 DI 10.1051/epjconf/201610603002 PG 7 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700027 ER PT S AU Parma, EJ Naranjo, GE Lippert, LL Vehar, DW AF Parma, Edward J. Naranjo, Gerald E. Lippert, Lance L. Vehar, David W. BE Lyoussi, A TI Neutron Environment Characterization of the Central Cavity in the Annular Core Research Reactor SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB Characterization of the neutron environment in the central cavity of the Sandia National Laboratories' Annular Core Research Reactor (ACRR) is important in order to provide experimenters with the most accurate spectral information and maintain a high degree of fidelity in performing reactor experiments. Characterization includes both modeling and experimental efforts. Building accurate neutronic models of the ACRR and the central cavity "bucket" environments that can be used by experimenters is important in planning and designing experiments, as well as assessing the experimental results and quantifying uncertainties. Neutron fluence characterizations of two bucket environments, LB44 and PLG, are presented. These two environments are used frequently and represent two extremes in the neutron spectrum. The LB44 bucket is designed to remove the thermal component of the neutron spectrum and significantly attenuate the gamma-ray fluence. The PLG bucket is designed to enhance the thermal component of the neutron spectrum and attenuate the gamma-ray fluence. The neutron characterization for each bucket was performed by irradiating 20 different activation foil types, some of which were cadmium covered, resulting in 37 different reactions at the peak axial flux location in each bucket. The dosimetry results were used in the LSL-M2 spectrum adjustment code with a 640-energy group MCNP-generated trial spectrum, self-shielding correction factors, the SNLRML or IRDFF dosimetry cross-section library, trial spectrum uncertainty, and trial covariance matrix, to generate a least-squares adjusted neutron spectrum, spectrum uncertainty, and covariance matrix. Both environment character-izations are well documented and the environments are available for use by experimenters. C1 [Parma, Edward J.; Vehar, David W.] Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA. [Naranjo, Gerald E.] Sandia Natl Labs, Adv Nucl Concepts, POB 5800, Albuquerque, NM 87185 USA. [Lippert, Lance L.] Sandia Natl Labs, Nucl Facil Operat, POB 5800, Albuquerque, NM 87185 USA. RP Parma, EJ (reprint author), Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA. EM ejparma@sandia.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 01003 DI 10.1051/epjconf/201610601003 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700003 ER PT S AU Remec, I Rosseel, TM Field, KG Le Pape, Y AF Remec, Igor Rosseel, Thomas M. Field, Kevin G. Le Pape, Yann BE Lyoussi, A TI Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradationa SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants. C1 [Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Le Pape, Yann] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RP Remec, I (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM remeci@ornl.gov RI Rosseel, Thomas/J-4086-2016 OI Rosseel, Thomas/0000-0001-9917-7073 NR 14 TC 1 Z9 1 U1 1 U2 3 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 02002 DI 10.1051/epjconf/201610602002 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700011 ER PT S AU Risner, JM Blakeman, ED AF Risner, J. M. Blakeman, E. D. BE Lyoussi, A TI Analysis of dpa Rates in the HFIR Reactor Vessel using a Hybrid Monte Carlo/Deterministic Method SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse ID VARIANCE REDUCTION AB The Oak Ridge High Flux Isotope Reactor (HFIR), which began full-power operation in 1966, provides one of the highest steady-state neutron flux levels of any research reactor in the world. An ongoing vessel integrity analysis program to assess radiation-induced embrittlement of the HFIR reactor vessel requires the calculation of neutron and gamma displacements per atom (dpa), particularly at locations near the beam tube nozzles, where radiation streaming effects are most pronounced. In this study we apply the Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) technique in the ADVANTG code to develop variance reduction parameters for use in the MCNP radiation transport code. We initially evaluated dpa rates for dosimetry capsule locations, regions in the vicinity of the HB-2 beamline, and the vessel beltline region. We then extended the study to provide dpa rate maps using three-dimensional cylindrical mesh tallies that extend from approximately 12 in. below to approximately 12 in. above the height of the core. The mesh tally structures contain over 15,000 mesh cells, providing a detailed spatial map of neutron and photon dpa rates at all locations of interest. Relative errors in the mesh tally cells are typically less than 1%. C1 [Risner, J. M.; Blakeman, E. D.] Oak Ridge Natl Lab, POB 2008,MS 6170, Oak Ridge, TN 37831 USA. RP Risner, JM (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6170, Oak Ridge, TN 37831 USA. EM risnerjm@ornl.gov NR 13 TC 0 Z9 0 U1 2 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 03003 DI 10.1051/epjconf/201610603003 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700028 ER PT S AU Simakov, S Capote, R Greenwood, L Griffin, P Kahler, A Pronyaev, V Trkov, A Zolotarev, K AF Simakov, Stanislav Capote, Roberto Greenwood, Lawrence Griffin, Patrick Kahler, Albert Pronyaev, Vladimir Trkov, Andrej Zolotarev, Konstantin BE Lyoussi, A TI Validation of IRDFF in Cf-252 Standard and IRDF-2002 Reference Neutron Fields SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse ID CROSS-SECTIONS; FISSION; SPECTRUM AB The results of validation of the latest release of International Reactor Dosimetry and Fusion File, IRDFF-1.03, in the standard Cf-252(s. f.) and reference U-235(nth, f) neutron benchmark fields are presented. The spectrum-averaged cross sections were shown to confirm IRDFF-1.03 in the Cf-252 standard spontaneous fission spectrum; that was not the case for the current recommended spectra for U-235(nth, f). IRDFF was also validated in the spectra of the research reactor facilities ISNF, Sigma-Sigma and YAYOI, which are available in the IRDF-2002 collection. The ISNF facility was re-simulated to remove unphysical oscillations in the spectrum. IRDFF-1.03 was shown to reproduce reasonably well the spectrum-averaged data measured in these fields except for the case of YAYOI. C1 [Simakov, Stanislav; Capote, Roberto; Trkov, Andrej] IAEA, POB 100, A-1400 Vienna, Austria. [Greenwood, Lawrence] Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. [Griffin, Patrick] Sandia Natl Labs, Org 1340,MS 1146,POB 5800, Albuquerque, NM USA. [Kahler, Albert] Los Alamos Natl Lab, Bikini Atoll Blvd,POB 1663, Los Alamos, NM USA. [Pronyaev, Vladimir; Zolotarev, Konstantin] Obninsk Phys & Power Engn Inst, Obninsk 249020, Russia. RP Simakov, S (reprint author), IAEA, POB 100, A-1400 Vienna, Austria. EM s.simakov@iaea.org RI Capote Noy, Roberto/M-1245-2014 OI Capote Noy, Roberto/0000-0002-1799-3438 NR 22 TC 0 Z9 0 U1 0 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 04011 DI 10.1051/epjconf/201610604011 PG 9 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700047 ER PT S AU Vargas, D Kurwitz, RC Carron, I DePriest, KR AF Vargas, Danilo Kurwitz, R. Cable Carron, Igor DePriest, K. Russell BE Lyoussi, A TI Development of a Neutron Spectroscopic System Utilizing Compressed Sensing Measurements SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY SE EPJ Web of Conferences LA English DT Proceedings Paper CT 15th International Symposium on Reactor Dosimetry (ISRD) CY MAY 18-23, 2014 CL Aix en Provence, FRANCE SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse AB A new approach to neutron detection capable of gathering spectroscopic information has been demonstrated. The approach relies on an asymmetrical arrangement of materials, geometry, and an ability to change the orientation of the detector with respect to the neutron field. Measurements are used to unfold the energy characteristics of the neutron field using a new theoretical framework of compressed sensing. Recent theoretical results show that the number of multiplexed samples can be lower than the full number of traditional samples while providing the ability to have some super-resolution. Furthermore, the solution approach does not require a priori information or inclusion of physics models. Utilizing the MCNP code, a number of candidate detector geometries and materials were modeled. Simulations were carried out for a number of neutron energies and distributions with preselected orientations for the detector. The resulting matrix (A) consists of n rows associated with orientation and m columns associated with energy and distribution where n < m. The library of known responses is used for new measurements Y (n x 1) and the solver is able to determine the system, Y = Ax where x is a sparse vector. Therefore, energy spectrum measurements are a combination of the energy distribution information of the identified elements of A. This approach allows for determination of neutron spectroscopic information using a single detector system with analog multiplexing. The analog multiplexing allows the use of a compressed sensing solution similar to approaches used in other areas of imaging. A single detector assembly provides improved flexibility and is expected to reduce uncertainty associated with current neutron spectroscopy measurement. C1 [Vargas, Danilo] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Kurwitz, R. Cable] Texas A&M Univ, Dept Nucl Engn, Syst Engn Initiat, College Stn, TX 77843 USA. [Carron, Igor] Nuit Blanche, Paris, France. [DePriest, K. Russell] Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA. RP Kurwitz, RC (reprint author), Texas A&M Univ, Dept Nucl Engn, Syst Engn Initiat, College Stn, TX 77843 USA. EM kurwitz@tamu.edu NR 12 TC 0 Z9 0 U1 1 U2 3 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1929-4 J9 EPJ WEB CONF PY 2016 VL 106 AR 07002 DI 10.1051/epjconf/201610607002 PG 8 WC Physics, Applied SC Physics GA BE5CT UT WOS:000372590700072 ER PT J AU Agnoli, S Favaro, M AF Agnoli, Stefano Favaro, Marco TI Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Review ID OXYGEN REDUCTION REACTION; CHEMICAL-VAPOR-DEPOSITION; NITROGEN-DOPED GRAPHENE; LITHIUM ION BATTERIES; METAL-FREE CATALYST; FUEL-CELL CATHODE; QUANTUM DOTS; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; ELECTROCATALYTIC ACTIVITY AB Graphene based materials can be effectively modified by doping in order to specifically tailor their properties toward specific applications. So far the most used and widely investigated dopant heteroatom is probably nitrogen. However, boron is also an equally important element that can induce novel and complementary properties leading to specific implementation in alternative devices and technologies. In this paper, we survey the most recent preparation methods of boron doped graphene, including materials with specific morphology such as nanoribbons, quantum dots and 3D interconnected systems. We illustrate the results of theoretical and experimental studies dealing with the description and understanding of the main structural, electronic and chemical properties of this material. The emerging applications of boron doped graphene in several technological fields such as electrochemistry, sensors, photovoltaics, catalysis and biology are extensively reviewed. C1 [Agnoli, Stefano] Univ Padua, Dept Chem Sci, Via F Marzolo 1, I-35131 Padua, Italy. [Favaro, Marco] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Agnoli, S (reprint author), Univ Padua, Dept Chem Sci, Via F Marzolo 1, I-35131 Padua, Italy. EM stefano.agnoli@unipd.it OI Favaro, Marco/0000-0002-3502-8332 FU Italian MIUR through the national grant Futuro in Ricerca "Beyond graphene: tailored C-layers for novel catalytic materials and green chemistry" [RBFR128BEC]; University of Padova [CPDA128318/12]; Office of Science, Office of Basic Energy Science (BES) of the U.S. Department of Energy (DOE) [DE-SC0004993] FX This work was partially supported by the Italian MIUR through the national grant Futuro in Ricerca 2012 RBFR128BEC "Beyond graphene: tailored C-layers for novel catalytic materials and green chemistry" and by the University of Padova funded project CPDA128318/12, "Study of the catalytic activity of complex graphene nanoarchitectures from ideal to real conditions". MF thanks the support from the Office of Science, Office of Basic Energy Science (BES) of the U.S. Department of Energy (DOE) under award no. DE-SC0004993 to the Joint Center for Artificial Photosynthesis (JCAP). NR 132 TC 10 Z9 10 U1 84 U2 185 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 14 BP 5002 EP 5025 DI 10.1039/c5ta10599d PG 24 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DH9MF UT WOS:000373119500002 ER PT J AU Maiti, D Daza, YA Yung, MM Kuhn, JN Bhethanabotla, VR AF Maiti, Debtanu Daza, Yolanda A. Yung, Matthew M. Kuhn, John N. Bhethanabotla, Venkat R. TI Oxygen vacancy formation characteristics in the bulk and across different surface terminations of La(1-x)SrxFe(1-y)CoyO(3-delta) perovskite oxides for CO2 conversion SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID THERMOCHEMICAL FUEL PRODUCTION; STRONTIUM SEGREGATION; FORMATION ENERGETICS; CARBON-DIOXIDE; CERIA SURFACES; ELECTRON-GAS; THIN-FILMS; ENERGY; DESCRIPTORS; TEMPERATURE AB Density functional theory (DFT) based investigation of two parameters of prime interest - oxygen vacancy and surface terminations along (100) and (110) planes - has been conducted for La(1-x)SrxFe(1-y)CoyO(3-delta) perovskite oxides in view of their application towards thermochemical carbon dioxide conversion reactions. The bulk oxygen vacancy formation energies for these mixed perovskite oxides are found to increase with increasing lanthanum and iron contents in the 'A' site and 'B' site, respectively. Surface terminations along (100) and (110) crystal planes are studied to probe their stability and their capabilities to accommodate surface oxygen vacancies. Amongst the various terminations, the oxygen-rich (110) surface and strontium-rich (100) surface are the most stable, while transition metal-rich terminations along (100) revealed preference towards the production of oxygen vacancies. The carbon dioxide adsorption strength, a key descriptor for CO2 conversion reactions, is found to increase on oxygen vacant surfaces thus establishing the importance of oxygen vacancies in CO2 conversion reactions. Amongst all the surface terminations, the lanthanum-oxygen terminated surface exhibited the strongest CO2 adsorption strength. The theoretical prediction of the oxygen vacancy trends and the stability of the samples were corroborated by the temperature-programmed reduction and oxidation reactions and in situ XRD crystallography. C1 [Maiti, Debtanu; Daza, Yolanda A.; Kuhn, John N.; Bhethanabotla, Venkat R.] Univ S Florida, Tampa, FL 33620 USA. [Yung, Matthew M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Bhethanabotla, VR (reprint author), Univ S Florida, Tampa, FL 33620 USA. EM bhethana@usf.edu FU NSF [CBET-1335817, CHE-1531590]; Office of Graduate Studies, USF; USF School of Graduate Studies; Florida Education Fund; NASA Florida Space Grant Consortium FX The authors acknowledge NSF award CBET-1335817 and CHE-1531590 for financial support and USF Research Computing. DM acknowledges the Office of Graduate Studies, USF for the USF Graduate Fellowship. YAD acknowledges the USF School of Graduate Studies for the Graduate Student Success Fellowship, the Florida Education Fund for the McKnight Dissertation Fellowship and the NASA Florida Space Grant Consortium for the Dissertation Improvement Fellowship. The authors thank Ryan A. Kent for his help with synthesis of the samples. NR 68 TC 1 Z9 1 U1 6 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 14 BP 5137 EP 5148 DI 10.1039/c5ta10284g PG 12 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DH9MF UT WOS:000373119500018 ER PT J AU Yang, X Tang, Y Cai, D Zhang, L Du, Y Zhou, S AF Yang, X. Tang, Y. Cai, D. Zhang, L. Du, Y. Zhou, S. TI COMPARATIVE ANALYSIS OF DIFFERENT NUMERICAL SCHEMES IN SOLUTE TRAPPING SIMULATIONS BY USING THE PHASE-FIELD MODEL WITH FINITE INTERFACE DISSIPATION SO JOURNAL OF MINING AND METALLURGY SECTION B-METALLURGY LA English DT Article DE Phase-field modeling; Solute trapping; Rapid solidification; Numerical scheme ID RAPID SOLIDIFICATION; LOCAL-NONEQUILIBRIUM; BINARY-ALLOYS; DIFFUSION; GROWTH; MOTION AB Two different numerical schemes, the standard explicit scheme and the time-elimination relaxation one, in the framework of phase-field model with finite interface dissipation were employed to investigate the solute trapping effect in a Si-4.5 at.% As alloy during rapid solidification. With the equivalent input, a unique solute distribution under the steady state can be obtained by using the two schemes without restriction to numerical length scale and interface velocity. By adjusting interface width and interface permeability, the experimental solute segregation coefficients can be well reproduced. The comparative analysis of advantages and disadvantages in the two numerical schemes indicates that the time-elimination relaxation scheme is preferable in one-dimensional phase-field simulation, while the standard explicit scheme seems to be the only choice for two- or three dimensional phase-field simulation. Furthermore, the kinetic phase diagrams in the Si-As system were predicted by using the phase-field simulation with the time-elimination relaxation scheme. C1 [Yang, X.; Tang, Y.; Cai, D.; Zhang, L.; Du, Y.] Cent S Univ, State Key Lab Powder Met, Changsha, Hunan, Peoples R China. [Zhou, S.] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. RP Zhang, L (reprint author), Cent S Univ, State Key Lab Powder Met, Changsha, Hunan, Peoples R China. EM lijun.zhang@csu.edu.cn FU National Natural Science Foundation for Youth of China [51301208]; National Natural Science Foundation of China [51474239]; Hunan Provincial Natural Science Foundation for Youth of China [2015JJ3146]; Innovation Foundation For Postgraduate of Central South University, Changsha, People's Republic of China; Fundamental Research Funds of Central South University, Changsha, People's Republic of China [2015zzts030]; China Scholarship Council [201506370114]; Central South University, Changsha, P.R. China FX The authors would like to acknowledge financial support from National Natural Science Foundation for Youth of China under Grant No. 51301208, National Natural Science Foundation of China under Grant No. 51474239, Hunan Provincial Natural Science Foundation for Youth of China under Grant No. 2015JJ3146, Innovation Foundation For Postgraduate and Fundamental Research Funds of Central South University (Grant No. 2015zzts030),Changsha, People's Republic of China and the State Scholarship Fund from China Scholarship Council (No.201506370114). Lijun Zhang acknowledges support from Shenghua Scholar Program of Central South University, Changsha, P.R. China. NR 32 TC 2 Z9 2 U1 0 U2 2 PU TECHNICAL FACULTY, BOR-SERBIA PI BOR PA UNIV BELGRADE, VOJSKE JUGOSLAVIJE 12, BOR, 19210, SERBIA SN 1450-5339 J9 J MIN METALL B JI J. Min. Metall. Sect. B-Metall. PY 2016 VL 52 IS 1 BP 77 EP 85 DI 10.2298/JMMB150716010Y PG 9 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA DH4QW UT WOS:000372771500011 ER PT J AU Chen, AP Chu, YH Li, RW Fix, T Hu, JM AF Chen, Aiping Chu, Ying-Hao Li, Run-Wei Fix, Thomas Hu, Jia-Mian TI Functional Oxide Thin Films and Nanostructures: Growth, Interface, and Applications SO JOURNAL OF NANOMATERIALS LA English DT Editorial Material ID NANOCOMPOSITE C1 [Chen, Aiping] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. [Chu, Ying-Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Li, Run-Wei] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Magnet Mat & Devices, Ningbo 315201, Zhejiang, Peoples R China. [Fix, Thomas] Univ Strasbourg, CNRS, Lab ICube, F-67037 Strasbourg, France. [Hu, Jia-Mian] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Chen, AP (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM apchen@lanl.gov RI Ying-Hao, Chu/A-4204-2008; Chen, Aiping/F-3212-2011; Xia, YuQing/C-9724-2017 OI Ying-Hao, Chu/0000-0002-3435-9084; Chen, Aiping/0000-0003-2639-2797; NR 9 TC 0 Z9 0 U1 7 U2 14 PU HINDAWI PUBLISHING CORP PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-4110 EI 1687-4129 J9 J NANOMATER JI J. Nanomater. PY 2016 AR 7198726 DI 10.1155/2016/7198726 PG 2 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DI4UE UT WOS:000373494100001 ER PT J AU Ha, J Chae, S Chou, KW Tyliszczak, T Monteiro, PJM AF Ha, J. Chae, S. Chou, K. W. Tyliszczak, T. Monteiro, P. J. M. TI Characterization of Class F Fly Ash Using STXM: Identifying Intraparticle Heterogeneity at Nanometer Scale SO JOURNAL OF NANOMATERIALS LA English DT Article ID BURNING POWER-PLANTS; POZZOLANIC REACTIVITY; MAS NMR; SEM-EDS; ZEOLITES; ALUMINUM; CONCRETE; CEMENT; MICROSTRUCTURE; GEOPOLYMERS AB Chemical and physical characterization of fly ash particles were conducted using scanning transmission X-ray microscopy (STXM). Compositional and spatial investigation and correlation among the main elemental constituents of fly ash (Al, Si, and Fe) were conducted based on microscopic and NEXAFS spectral analysis. Homogeneous oxidation and coordination state of Al and Fe were observed whereas Si shows spatial variation in its chemical state. We also identified that Si and Al are spatially correlated at nanometer scale in which high concentration of Si and Al was concurrently and consistently observed within the 30 nm resolution whereas Fe distribution did not show any specific correlation to Al and Si. Results of this study indicate that fly ash chemical composition has heterogeneous distribution depending on the elements which would determine and result in the differences in the reactivity. C1 [Ha, J.] Kean Univ, Sch Environm & Sustainabil Sci, Union, NJ 07083 USA. [Chae, S.; Monteiro, P. J. M.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Chou, K. W.; Tyliszczak, T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Chou, K. W.] Henkel Iberica SA, Edificio Eureka,Campus UAB, Barcelona 08193, Spain. RP Ha, J (reprint author), Kean Univ, Sch Environm & Sustainabil Sci, Union, NJ 07083 USA. EM haj@kean.edu FU Republic of Singapore's National Research Foundation; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX This research is funded by the Republic of Singapore's National Research Foundation through a grant to the Berkeley Education Alliance for Research in Singapore (BEARS) for the Singapore-Berkeley Building Efficiency and Sustainability in the Tropics (SinBerBEST) Program. The authors also wish to acknowledge Professor Wenk at University of California at Berkeley who helped them prepare STXM samples and Timothy Teague at University of California at Berkeley with his help on sample preparation. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract no. DE-AC02-05CH11231. NR 44 TC 0 Z9 0 U1 2 U2 4 PU HINDAWI PUBLISHING CORP PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-4110 EI 1687-4129 J9 J NANOMATER JI J. Nanomater. PY 2016 AR 8072518 DI 10.1155/2016/8072518 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DH7XP UT WOS:000373007700001 ER PT J AU Lu, XJ Xia, BY Liu, CM Yang, YF Tang, H AF Lu, Xujie Xia, Baoyu Liu, Cunming Yang, Yefeng Tang, Hao TI TiO2-Based Nanomaterials for Advanced Environmental and Energy-Related Applications SO JOURNAL OF NANOMATERIALS LA English DT Editorial Material ID PEROVSKITE SOLAR-CELLS; PHOTOCATALYTIC ACTIVITY; TIO2 FILMS; EFFICIENCY; STRATEGY; SPHERES C1 [Lu, Xujie] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. [Xia, Baoyu] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore. [Liu, Cunming] Univ S Florida, Dept Phys, 4202 East Fowler Ave, Tampa, FL 33620 USA. [Yang, Yefeng] Zhejiang Sci Tech Univ, Dept Mat Engn, Coll Mat & Text, Hangzhou 310018, Zhejiang, Peoples R China. [Tang, Hao] Rutgers State Univ, Dept Chem, 73 Warren St, Newark, NJ 07102 USA. RP Lu, XJ (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM xujie@lanl.gov RI Liu, Cunming/K-2976-2014; Tang, Hao/D-6482-2013; Lu, Xujie/L-9672-2014 OI Tang, Hao/0000-0003-1063-881X; Lu, Xujie/0000-0001-8402-7160 NR 18 TC 0 Z9 0 U1 6 U2 19 PU HINDAWI PUBLISHING CORP PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-4110 EI 1687-4129 J9 J NANOMATER JI J. Nanomater. PY 2016 AR 8735620 DI 10.1155/2016/8735620 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DH7YB UT WOS:000373008900001 ER PT S AU De, K Klimentov, A Maeno, T Mashinistov, R Nilsson, P Oleynik, D Panitkin, S Ryabinkin, E Wenaus, T AF De, K. Klimentov, A. Maeno, T. Mashinistov, R. Nilsson, P. Oleynik, D. Panitkin, S. Ryabinkin, E. Wenaus, T. BE Adam, GH Busa, J Hnatic, M TI Accelerating Science Impact through Big Data Workflow Management and Supercomputing SO MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS (MMCP 2015) SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on Mathematical Modeling and Computational Physics (MMCP) CY JUL 13-17, 2015 CL Acad Congress Ctr, Stara Lesna, SLOVAKIA SP Joint Inst Nucl Res, Inst Experimental Phys SAS, Slovak Phys Soc, Univ Pavol Jozef Safarik, Tech Univ, IFIN HH HO Acad Congress Ctr AB The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. ATLAS, one of the largest collaborations ever assembled in the the history of science, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. To manage the workflow for all data processing on hundreds of data centers the PanDA (Production and Distributed Analysis) Workload Management System is used. An ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF), is realizing within BigPanDA and megaPanDA projects. These projects are now exploring how PanDA might be used for managing computing jobs that run on supercomputers including OLCF's Titan and NRC-KI HPC2. The main idea is to reuse, as much as possible, existing components of the PanDA system that are already deployed on the LHC Grid for analysis of physics data. The next generation of PanDA will allow many data-intensive sciences employing a variety of computing platforms to benefit from ATLAS experience and proven tools in highly scalable processing. C1 [De, K.; Oleynik, D.] Univ Texas Arlington, Phys Dept, 502 Yates St, Arlington, TX 76019 USA. [Klimentov, A.; Maeno, T.; Nilsson, P.; Panitkin, S.; Wenaus, T.] Brookhaven Natl Lab, Phys Dept, Long Isl City, NY 11973 USA. [Klimentov, A.; Mashinistov, R.; Ryabinkin, E.] IV Kurchatov Atom Energy Inst, Natl Res Ctr, Kurchatov Complex NBIC Technol, 1 Akad Kurchatova Pl, Moscow 123182, Russia. [Oleynik, D.] Joint Inst Nucl Res, Lab Informat Technol, Dubna 141980, Moscow Region, Russia. RP Mashinistov, R (reprint author), IV Kurchatov Atom Energy Inst, Natl Res Ctr, Kurchatov Complex NBIC Technol, 1 Akad Kurchatova Pl, Moscow 123182, Russia. EM Ruslan.Mashinistov@cern.ch RI Mashinistov, Ruslan/M-8356-2015 OI Mashinistov, Ruslan/0000-0001-7925-4676 NR 12 TC 0 Z9 0 U1 0 U2 7 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1944-7 J9 EPJ WEB CONF PY 2016 VL 108 AR 01003 DI 10.1051/epjconf/201610801003 PG 9 WC Physics, Mathematical SC Physics GA BE5FR UT WOS:000372783700003 ER PT S AU Megino, FB Bejar, JC De, K Hover, J Klimentov, A Maeno, T Nilsson, P Oleynik, D Padolski, S Panitkin, S Petrosyan, A Wenaus, T AF Megino, Fernando Barreiro Bejar, Jose Caballero De, Kaushik Hover, John Klimentov, Alexei Maeno, Tadashi Nilsson, Paul Oleynik, Danila Padolski, Siarhei Panitkin, Sergey Petrosyan, Artem Wenaus, Torre CA ATLAS Collaboration BE Adam, GH Busa, J Hnatic, M TI PanDA: Exascale Federation of Resources for the ATLAS Experiment at the LHC SO MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS (MMCP 2015) SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on Mathematical Modeling and Computational Physics (MMCP) CY JUL 13-17, 2015 CL Acad Congress Ctr, Stara Lesna, SLOVAKIA SP Joint Inst Nucl Res, Inst Experimental Phys SAS, Slovak Phys Soc, Univ Pavol Jozef Safarik, Tech Univ, IFIN HH HO Acad Congress Ctr AB After a scheduled maintenance and upgrade period, the world's largest and most powerful machine - the Large Hadron Collider(LHC) - is about to enter its second run at unprecedented energies. In order to exploit the scientific potential of the machine, the experiments at the LHC face computational challenges with enormous data volumes that need to be analysed by thousand of physics users and compared to simulated data. Given diverse funding constraints, the computational resources for the LHC have been deployed in a worldwide mesh of data centres, connected to each other through Grid technologies. The PanDA (Production and Distributed Analysis) system was developed in 2005 for the ATLAS experiment on top of this heterogeneous infrastructure to seamlessly integrate the computational resources and give the users the feeling of a unique system. Since its origins, PanDA has evolved together with upcoming computing paradigms in and outside HEP, such as changes in the networking model, Cloud Computing and HPC. It is currently running steadily up to 200 thousand simultaneous cores (limited by the available resources for ATLAS), up to two million aggregated jobs per day and processes over an exabyte of data per year. The success of PanDA in ATLAS is triggering the widespread adoption and testing by other experiments. In this contribution we will give an overview of the PanDA components and focus on the new features and upcoming challenges that are relevant to the next decade of distributed computing workload management using PanDA. C1 [Megino, Fernando Barreiro; De, Kaushik; Oleynik, Danila] Univ Texas Arlington, 502 Yates St, Arlington, TX 76019 USA. [Bejar, Jose Caballero; Hover, John; Klimentov, Alexei; Maeno, Tadashi; Nilsson, Paul; Padolski, Siarhei; Panitkin, Sergey; Wenaus, Torre] Brookhaven Natl Lab, Long Isl City, NY 11973 USA. [Oleynik, Danila; Petrosyan, Artem] Joint Inst Nucl Res, Joliot Curie 6, Dubna 141980, Russia. RP Megino, FB (reprint author), Univ Texas Arlington, 502 Yates St, Arlington, TX 76019 USA. EM barreiro@uta.edu NR 19 TC 0 Z9 0 U1 2 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1944-7 J9 EPJ WEB CONF PY 2016 VL 108 AR 01001 DI 10.1051/epjconf/201610801001 PG 12 WC Physics, Mathematical SC Physics GA BE5FR UT WOS:000372783700001 ER PT J AU Choi, JJ Billinge, SJL AF Choi, Joshua J. Billinge, Simon J. L. TI Perovskites at the nanoscale: from fundamentals to applications SO NANOSCALE LA English DT Editorial Material ID HIGH-PERFORMANCE; SOLAR-CELLS; HALIDE PEROVSKITES; SINGLE-CRYSTALS; CH3NH3PBI3; DIFFUSION; LENGTHS C1 [Choi, Joshua J.] Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA. [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Choi, JJ (reprint author), Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA.; Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.; Billinge, SJL (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM jjc6z@virginia.edu; sb2896@columbia.edu NR 17 TC 2 Z9 2 U1 4 U2 18 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 12 BP 6206 EP 6208 DI 10.1039/c6nr90040b PG 3 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DH5SG UT WOS:000372851500001 PM 26949130 ER PT J AU Zhou, YY Yang, MJ Kwun, J Game, OS Zhao, YX Pang, SP Padture, NP Zhu, K AF Zhou, Yuanyuan Yang, Mengjin Kwun, Joonsuh Game, Onkar S. Zhao, Yixin Pang, Shuping Padture, Nitin P. Zhu, Kai TI Intercalation crystallization of phase-pure alpha-HC-(NH2)(2)PbI3 upon microstructurally engineered PbI2 thin films for planar perovskite solar cells SO NANOSCALE LA English DT Article ID FORMAMIDINIUM LEAD TRIHALIDE; HOLE-CONDUCTOR-FREE; PERFORMANCE; IODIDE; LIGHT AB The microstructure of the solid-PbI2 precursor thin film plays an important role in the intercalation crystallization of the formamidinium lead triiodide perovskite (alpha-HC(NH2)(2)PbI3). It is shown that microstructurally engineered PbI2 thin films with porosity and low crystallinity are the most favorable for conversion into uniform-coverage, phase-pure alpha-HC(NH2)(2)PbI3 perovskite thin films. Planar perovskite solar cells fabricated using these thin films deliver power conversion efficiency (PCE) up to 13.8%. C1 [Zhou, Yuanyuan; Kwun, Joonsuh; Game, Onkar S.; Padture, Nitin P.] Brown Univ, Sch Engn, Providence, RI 02912 USA. [Yang, Mengjin; Zhu, Kai] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. [Zhao, Yixin] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, Shanghai 200240, Peoples R China. [Pang, Shuping] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China. RP Padture, NP (reprint author), Brown Univ, Sch Engn, Providence, RI 02912 USA.; Zhu, K (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. EM nitin_padture@brown.edu; kai.zhu@nrel.gov RI Zhao, Yixin/D-2949-2012; Zhou, Yuanyuan/G-2173-2011; Padture, Nitin/A-9746-2009 OI Zhou, Yuanyuan/0000-0002-8364-4295; Padture, Nitin/0000-0001-6622-8559 FU National Science Foundation [DMR-1305913, OIA-1538893]; U.S. Department of Energy SunShot Initiative under Next Generation Photovoltaics 3 program [DE-FOA-0000990, DE-AC36-08-GO28308] FX Y. Z., J. K., O. S. G. and N. P. P acknowledge the support from the National Science Foundation (award nos. DMR-1305913 and OIA-1538893). M. Y. and K. Z. acknowledge the support from the U.S. Department of Energy SunShot Initiative under the Next Generation Photovoltaics 3 program (DE-FOA-0000990) for the work performed at the National Renewable Energy Laboratory (contract no. DE-AC36-08-GO28308). NR 32 TC 10 Z9 11 U1 10 U2 46 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 12 BP 6265 EP 6270 DI 10.1039/c5nr06189j PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DH5SG UT WOS:000372851500007 PM 26549434 ER PT J AU Zhou, M Qian, HF Sfeir, MY Nobusada, K Jin, RC AF Zhou, Meng Qian, Huifeng Sfeir, Matthew Y. Nobusada, Katsuyuki Jin, Rongchao TI Effects of single atom doping on the ultrafast electron dynamics of M1Au24(SR)(18) (M = Pd, Pt) nanoclusters SO NANOSCALE LA English DT Article ID RELAXATION DYNAMICS; OPTICAL-PROPERTIES; GOLD NANOCLUSTERS; AU-25 NANOCLUSTERS; CRYSTAL-STRUCTURE; AU NANOCLUSTERS; CLUSTERS; SPECTROSCOPY; LIGHT; NANOSTRUCTURES AB Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M-1@Au-24(SR)(18) (M = Pd, Pt; R = CH2CH2Ph) clusters using femtosecond visible and near infrared transient absorption spectroscopy. Three relaxation components are identified for both mono-doped clusters: (1) sub-picosecond relaxation within the M1Au12 core states; (2) core to shell relaxation in a few picoseconds; and (3) relaxation back to the ground state in more than one nanosecond. Despite similar relaxation pathways for the two doped nanoclusters, the coupling between the metal core and surface ligands is accelerated by over 30% in the case of the Pt dopant compared with the Pd dopant. Compared to Pd doping, the case of Pt doping leads to much more drastic changes in the steady state and transient absorption of the clusters, which indicates that the 5d orbitals of the Pt atom are more strongly mixed with Au 5d and 6s orbitals than the 4d orbitals of the Pd dopant. These results demonstrate that a single foreign atom can lead to entirely different excited state spectral features of the whole cluster compared to the parent Au-25(SR)(18) cluster. The detailed excited state dynamics of atomically precise Pd/Pt doped gold clusters help further understand their properties and benefit the development of energy-related applications. C1 [Zhou, Meng; Qian, Huifeng; Jin, Rongchao] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. [Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Nobusada, Katsuyuki] Inst Mol Sci, Dept Theoret & Computat Mol Sci, Okazaki, Aichi 4448585, Japan. [Nobusada, Katsuyuki] Kyoto Univ, Elements Strategy Initiat Catalysts & Batteries, Katsura, Kyoto 6158520, Japan. RP Jin, RC (reprint author), Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. EM rongchao@andrew.cmu.edu FU Air Force Office of Scientific Research under AFOSR Award [FA9550-15-1-9999 (FA9550-15-1-0154)]; JSPS KAKENHI [25288012]; Elements Strategy Initiative for Catalysts & Batteries (ESICB); Strategic Programs for Innovative Research (SPIRE), MEXT Japan; U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX R. J. acknowledges financial support from the Air Force Office of Scientific Research under AFOSR Award no. FA9550-15-1-9999 (FA9550-15-1-0154). K. N. acknowledges financial support by JSPS KAKENHI Grant Number 25288012, Elements Strategy Initiative for Catalysts & Batteries (ESICB), the Strategic Programs for Innovative Research (SPIRE), MEXT Japan. The femtosecond experiments used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 52 TC 6 Z9 6 U1 12 U2 32 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 13 BP 7163 EP 7171 DI 10.1039/c6nr01008c PG 9 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DH8QO UT WOS:000373060600028 PM 26967673 ER PT J AU Zhong, CY Chen, YP Xie, YE Yang, SYA Cohen, ML Zhang, SB AF Zhong, Chengyong Chen, Yuanping Xie, Yuee Yang, Shengyuan A. Cohen, Marvin L. Zhang, S. B. TI Towards three-dimensional Weyl-surface semimetals in graphene networks SO NANOSCALE LA English DT Article ID CARBON ALLOTROPES; FERMI ARCS; PHASE; DISCOVERY; POINTS; TAAS AB Graphene as a two-dimensional topological semimetal has attracted much attention for its outstanding properties. In contrast, three-dimensional (3D) topological semimetals of carbon are still rare. Searching for such materials with salient physics has become a new direction in carbon research. Here, using first-principles calculations and tight-binding modeling, we propose a new class of Weyl semimetals based on three types of 3D graphene networks. In the band structures of these materials, two flat Weyl surfaces appear in the Brillouin zone, which straddle the Fermi level and are robust against external strain. Their unique atomic and electronic structures enable applications in correlated electronics, as well as in energy storage, molecular sieves, and catalysis. When the networks are cut, the resulting slabs and nanowires remain semimetallic with Weyl lines and points at the Fermi surfaces, respectively. Between the Weyl lines, flat surface bands emerge with possible strong magnetism. The robustness of these structures can be traced back to a bulk topological invariant, ensured by the sublattice symmetry, and to the one-dimensional Weyl semimetal behavior of the zigzag carbon chain. C1 [Zhong, Chengyong; Chen, Yuanping; Xie, Yuee] Xiangtan Univ, Sch Phys & Optoelect, Xiangtan 411105, Hunan, Peoples R China. [Yang, Shengyuan A.] Singapore Univ Technol & Design, Res Lab Quantum Mat, Singapore 487372, Singapore. [Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cohen, Marvin L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, S. B.] Rensselaer Polytech Inst, Dept Phys, Appl Phys & Astron, Troy, NY 12180 USA. RP Chen, YP; Xie, YE (reprint author), Xiangtan Univ, Sch Phys & Optoelect, Xiangtan 411105, Hunan, Peoples R China.; Zhang, SB (reprint author), Rensselaer Polytech Inst, Dept Phys, Appl Phys & Astron, Troy, NY 12180 USA. EM chenyp@xtu.edu.cn; xieyech@xtu.edu.cn; zhangs9@rpi.edu RI Yang, Shengyuan/L-2848-2014 OI Yang, Shengyuan/0000-0001-6003-1501 FU National Natural Science Foundation of China [51176161, 51376005, 11474243]; Hunan Provincial Innovation Foundation for Post-graduate [CX2015B211]; Lawrence Berkeley National Lab through the Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [DMR15-1508412]; US DOE [DE-SC0002623]; [SUTD-SRG-EPD2013062]; [SUTD-T1-2015004] FX This work was supported by the National Natural Science Foundation of China (No. 51176161, 51376005 and, 11474243) and the Hunan Provincial Innovation Foundation for Post-graduate (No. CX2015B211). SAY was supported by SUTD-SRG-EPD2013062 and SUTD-T1-2015004. MLC was supported by the sp2 bonded materials program at the Lawrence Berkeley National Lab through the Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by the National Science Foundation under Grant No. DMR15-1508412. SBZ acknowledges support by US DOE under Grant No. DE-SC0002623. NR 48 TC 4 Z9 4 U1 11 U2 36 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 13 BP 7232 EP 7239 DI 10.1039/c6nr00882h PG 8 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DH8QO UT WOS:000373060600037 PM 26971563 ER PT J AU Hedrick, PW Hellsten, U Grattapaglia, D AF Hedrick, Philip W. Hellsten, Uffe Grattapaglia, Dario TI Examining the cause of high inbreeding depression: analysis of whole-genome sequence data in 28 selfed progeny of Eucalyptus grandis SO NEW PHYTOLOGIST LA English DT Article DE Eucalyptus grandis; heterozygosity; heterozygote advantage; linkage disequilibrium; pseudo-overdominance; tree; viability ID GLOBULUS; GROWTH AB The genome-wide heterozygosity at 9590 genes, all heterozygous in a single Eucalyptus grandis parent tree, was examined in a group of 28 S-1 offspring. Heterozygosity ranged from 52-79%, averaging 65.5%, much higher than the 50% expected under random segregation, supporting the occurrence of strong (47%) selection against homozygosity. The expected pattern of heterozygosity from theoretical calculations and simulations for recessive detrimentals (pseudo-overdominance) and intrinsic heterozygote advantage was examined and compared with that observed. The observed patterns are consistent with at least several detrimental loci with large effects on both parental chromosomes of the 11 pairs. It is likely that 100 or more genes, many with substantial effects on viability, are contributing to this inbreeding depression. Although our genome-wide analysis of nearly 10 000 genes strongly suggested that pseudo-overdominance was responsible for the observed high inbreeding depression, heterozygote advantage could not be excluded. Finding inconvertible evidence of the cause of inbreeding depression still presents a difficult challenge. This study is the first theoretical examination of the genomic effect of inbreeding in a forest tree and provides an approach to analyze these data to determine the extent and cause of inbreeding depression across other plant genomes. C1 [Hedrick, Philip W.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Hellsten, Uffe] US Dept Energy Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. [Grattapaglia, Dario] PqEB, EMBRAPA Recursos Genet & Biotecnol, Lab Genet Vegetal, BR-70770970 Brasilia, DF, Brazil. [Grattapaglia, Dario] Univ Catolica Brasilia, Programa Ciencias Genom & Biotecnol, SGAN 916, BR-70790160 Brasilia, DF, Brazil. RP Hedrick, PW (reprint author), Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. EM philip.hedrick@asu.edu FU University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US Department of Energy's Office of Science, Biological and Environmental Research Program; Los Alamos National Laboratory [DE-AC02-06NA25396]; Brazilian Ministry of Science, Technology and Innovation through its agency CNPq; Brazilian Federal District Research Foundation (FAP-DF) FX P.W.H. thanks the Ullman Professorship for partial support. Sequencing and sequence analysis were performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract no. DE-AC02-06NA25396. DG thanks the Brazilian Ministry of Science, Technology and Innovation through its agency CNPq and the Brazilian Federal District Research Foundation (FAP-DF) for support. We appreciate the comments of M. Bruford, D. Charlesworth, A. Garcia-Dorado, D. Hedgecock, O. Savolainen, J. Wang and several anonymous reviewers on earlier versions of the manuscript and the effort by D. Hedgecock to identify vQTLs. NR 22 TC 8 Z9 8 U1 5 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD JAN PY 2016 VL 209 IS 2 BP 600 EP 611 DI 10.1111/nph.13639 PG 12 WC Plant Sciences SC Plant Sciences GA DI3CT UT WOS:000373376500018 PM 26356869 ER PT J AU Coleman-Derr, D Desgarennes, D Fonseca-Garcia, C Gross, S Clingenpeel, S Woyke, T North, G Visel, A Partida-Martinez, LP Tringe, SG AF Coleman-Derr, Devin Desgarennes, Damaris Fonseca-Garcia, Citlali Gross, Stephen Clingenpeel, Scott Woyke, Tanja North, Gretchen Visel, Axel Partida-Martinez, Laila P. Tringe, Susannah G. TI Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species SO NEW PHYTOLOGIST LA English DT Article DE Agave; biogeography; cultivation; desert; iTags; microbial diversity; plant microbiome; plant-microbe interactions ID CRASSULACEAN ACID METABOLISM; BACTERIAL ROOT MICROBIOTA; FUNGAL COMMUNITY ANALYSIS; RHIZOSPHERE MICROBIOME; BIOFUEL FEEDSTOCK; DIVERSITY; SEQUENCES; MICROORGANISMS; EFFICIENCY; CONVERSION AB Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions. C1 [Coleman-Derr, Devin; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; Visel, Axel; Tringe, Susannah G.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Coleman-Derr, Devin; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; Visel, Axel; Tringe, Susannah G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Coleman-Derr, Devin] USDA ARS, Ctr Plant Gene Express, Albany, CA 94710 USA. [Desgarennes, Damaris; Fonseca-Garcia, Citlali; Partida-Martinez, Laila P.] Ctr Invest & Estudios Avanzados, Dept Ingn Genet, Irapuato 36821, Mexico. [North, Gretchen] Occidental Coll, Dept Biol, Los Angeles, CA 90041 USA. [Visel, Axel] Univ Calif Merced, Sch Nat Sci, Merced, CA 95343 USA. RP Visel, A; Tringe, SG (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.; Visel, A; Tringe, SG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA.; Partida-Martinez, LP (reprint author), Ctr Invest & Estudios Avanzados, Dept Ingn Genet, Irapuato 36821, Mexico.; Visel, A (reprint author), Univ Calif Merced, Sch Nat Sci, Merced, CA 95343 USA. EM avisel@lbl.gov; laila.partida@ira.cinvestav.mx; sgtringe@lbl.gov RI Partida-Martinez, Laila/A-5935-2009; Visel, Axel/A-9398-2009; OI Partida-Martinez, Laila/0000-0001-8037-2856; Visel, Axel/0000-0002-4130-7784; Gross, Stephen/0000-0003-0711-787X FU JGI Community Science Program (CSP); US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility [DE-AC02-05CH11231]; Consejo Nacional de Ciencia y Tecnologia in Mexico (CONACyT) [CB-2010-01-151007, INFR-2012-01-197799] FX We thank Kanwar Singh (Joint Genome Institute) for technical assistance during library construction, Derek Lundberg (Department of Biology, UNC) for support with the PNA protocol for 16S amplification, Edward Kirton (Joint Genome Institute) for bioinformatic and analytical support, Susanna Theroux (Joint Genome Institute) for editorial support in the preparation of the manuscript, and Carly Phillips and Walter Woodside for assistance in the harvesting of A. deserti samples from the Boyd Deep Canyon Desert Reserve. This project was supported by the JGI Community Science Program (CSP); the work conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under contract no. DE-AC02-05CH11231. L.P.P-M. acknowledges also Consejo Nacional de Ciencia y Tecnologia in Mexico (CONACyT), which supported this project with two grants: CB-2010-01-151007 and INFR-2012-01-197799. The authors declare no conflict of interest. NR 66 TC 23 Z9 24 U1 21 U2 55 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD JAN PY 2016 VL 209 IS 2 BP 798 EP 811 DI 10.1111/nph.13697 PG 14 WC Plant Sciences SC Plant Sciences GA DI3CT UT WOS:000373376500033 PM 26467257 ER PT J AU Hunke, EC AF Hunke, E. C. TI Weighing the importance of surface forcing on sea ice: a September 2007 modelling study SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE sea ice model; Arctic; September 2007; melt ponds; CICE ID MELT PONDS; RADIATION; CICE AB The sea ice minimum of September 2007 is represented in a 50-year simulation using the Los Alamos Sea Ice Model, CICE, in spite of the fact that only four atmospheric forcing fields vary interannually in the model simulation; all other atmospheric and oceanic forcing data are monthly mean climatologies. Simulation results support prior conclusions that an anomalous pressure pattern, ice-ocean albedo feedback effects on sea surface temperature, and the long-term sea ice thinning trend are primarily responsible for the sea ice minimum of 2007. In addition, the simulation indicates that cloudiness, precipitation, and other forcing quantities were of secondary importance. Here we explore the importance of applied atmospheric and oceanic surface forcing for the 2007 sea ice minimum event, along with a group of model parameterizations that control the surface radiation budget in sea ice (melt ponds). Of the oceanic forcing fields acting on sea ice, only the sea surface temperature varied interannually for simulating the 2007 event. Interannual variations of temperature and humidity play a role in the radiation balance applied at the snow and ice surface, and they both have the potential to significantly affect the ice edge. However, humidity (exclusive of clouds) is far less influential on ice volume than is air temperature. The inclusion of albedo changes due to melt ponding is also crucial for determining the radiation forcing experienced by the ice. We compare the effects of four different pond parameterizations now available in CICE for the September 2007 case, and find that while details may differ, they all are able to represent the 2007 event. The impact of feedbacks associated with the radiation balance differs among the pond simulations, presenting a key topic for future study. C1 [Hunke, E. C.] Los Alamos Natl Lab, MS-B216, Los Alamos, NM 87545 USA. RP Hunke, EC (reprint author), Los Alamos Natl Lab, MS-B216, Los Alamos, NM 87545 USA. EM eclare@lanl.gov FU Biological and Environmental Research division of the US Department of Energy Office of Science; [DE-AC52-06NA25396] FX This work was performed within the Climate, Ocean and Sea Ice Modeling (COSIM) program at Los Alamos National Laboratory, whose funding from the Biological and Environmental Research division of the US Department of Energy Office of Science is gratefully acknowledged. Los Alamos National Laboratory is operated by the National Nuclear Security Administration of the US Department of Energy under contract no. DE-AC52-06NA25396. I have no conflict of interest to declare with regard to the research presented in this article. NR 29 TC 2 Z9 2 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD JAN PY 2016 VL 142 IS 695 BP 539 EP 545 DI 10.1002/qj.2353 PN B PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7DJ UT WOS:000372951300002 ER PT J AU Jeevanjee, N Romps, DM AF Jeevanjee, Nadir Romps, David M. TI Effective buoyancy at the surface and aloft SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE buoyancy; convection; Archimedean bouyancy; effective buoyancy; large-eddy simulations ID CUMULUS CONVECTION; PARAMETERIZATION AB It is shown here that a wide, buoyant parcel of air at the surface accelerates far less rapidly than it does aloft. In particular, analytical formulae are derived for the effective buoyancy (i.e. the net vertical acceleration due to parcel buoyancy and environmental response) of idealized cylinders of diameter D and height H, located in free space and at the surface. These formulae quantify the decrease of effective buoyancy with increasing aspect ratio D/H, and show that this effect is more pronounced for surface cylinders, especially when D/H > 1. We gain intuition for these results by considering the pressure fields generated by these buoyant parcels, and we test our results with large-eddy simulations. Our formulae can inform parametrizations of the vertical velocity equation for clouds, and also provide a quantitative map of the grey zone' in numerical modelling between hydrostatic and non-hydrostatic regimes. C1 [Jeevanjee, Nadir] Univ Calif Berkeley, Dept Phys, 366 LeConte Hall MC 7300, Berkeley, CA 94720 USA. [Jeevanjee, Nadir; Romps, David M.] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA USA. [Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Jeevanjee, N (reprint author), Univ Calif Berkeley, Dept Phys, 366 LeConte Hall MC 7300, Berkeley, CA 94720 USA. EM jeevanje@berkeley.edu FU Scientific Discovery through Advanced Computing (SciDAC) program - US Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research [DE-AC02-05CH11231]; Office of Science of the US Department of Energy; National Science Foundation [ACI-1053575] FX This work was supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by the US Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research under contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy, and resources of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. We thank two anonymous referees for detailed and constructive reviews, and NJ thanks Wolfgang Langhans for discussions. NR 26 TC 2 Z9 2 U1 3 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD JAN PY 2016 VL 142 IS 695 BP 811 EP 820 DI 10.1002/qj.2683 PN B PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DH7DJ UT WOS:000372951300024 ER PT J AU Liu, J Krishna, KS Kumara, C Chattopadhyay, S Shibata, T Dass, A Kumar, CSSR AF Liu, Jing Krishna, Katla Sai Kumara, Chanaka Chattopadhyay, Soma Shibata, Tomohiro Dass, Amala Kumar, Challa S. S. R. TI Understanding Au similar to 98Ag similar to 46(SR)(60) nanoclusters through investigation of their electronic and local structure by X-ray absorption fine structure SO RSC ADVANCES LA English DT Article ID PROTECTED AU-25 NANOCLUSTERS; GOLD CLUSTERS; CHARGE REDISTRIBUTION; ALLOY NANOMOLECULES; CRYSTAL-STRUCTURE; AG ALLOYS; NANOPARTICLES; SPECTROSCOPY; PERSPECTIVE; STABILITY AB Here we report the electronic and local atomic structure of thiol-stabilized Au similar to 98Ag similar to 46(SR)(60) nanoclusters investigated by synchrotron radiation-based X-ray absorption fine structure (XAFS). Au L-3-edge X-ray absorption near edge fine structure (XANES) was used to examine the d band character of Au, which is highly related to the electronic, magnetic and catalytic activities of Au. It was observed that the d band hole population of Au in Au similar to 98Ag similar to 46(SR)(60) was higher than that of bulk Au. The formation of the AuAg alloy was confirmed by extended X-ray absorption fine structure (EXAFS). The EXAFS results also suggested that Au atoms in Au similar to 98Ag similar to 46(SR)(60) nanoclusters preferred to occupy the metal core sites, while the Ag atoms were mainly on the surface. C1 [Liu, Jing; Krishna, Katla Sai; Kumar, Challa S. S. R.] Louisiana State Univ, Ctr Adv Microstruct & Devices, Baton Rouge, LA 70806 USA. [Liu, Jing; Krishna, Katla Sai; Kumar, Challa S. S. R.] Louisiana State Univ, Cain Dept Chem Engn, Ctr Atom Level Catalyst Design, Chem Engn 110, 324,South Stadium Rd, Baton Rouge, LA 70803 USA. [Kumara, Chanaka; Dass, Amala] Univ Mississippi, Dept Chem & Biochem, Oxford, MS 38677 USA. [Chattopadhyay, Soma] CSRRI IIT, Sect 10 ID, Adv Photon Source, 9700 S Cass Ave, Lemont, IL 60439 USA. [Shibata, Tomohiro] Kennametal Inc, Mat Sci, 1600 Technol Way, Latrobe, PA 15650 USA. [Kumar, Challa S. S. R.] Rowland Inst Harvard, 100 Edwin H Land Blvd, Cambridge, MA 02142 USA. [Krishna, Katla Sai] Univ Texas El Paso, Dept Chem, El Paso, TX 79902 USA. [Chattopadhyay, Soma] Elgin Community Coll, Dept Phys Sci, 1700 Spartan Dr, Elgin, IL 60123 USA. RP Kumar, CSSR (reprint author), Louisiana State Univ, Ctr Adv Microstruct & Devices, Baton Rouge, LA 70806 USA.; Kumar, CSSR (reprint author), Louisiana State Univ, Cain Dept Chem Engn, Ctr Atom Level Catalyst Design, Chem Engn 110, 324,South Stadium Rd, Baton Rouge, LA 70803 USA.; Kumar, CSSR (reprint author), Rowland Inst Harvard, 100 Edwin H Land Blvd, Cambridge, MA 02142 USA. EM challa@fas.harvard.edu FU Center for Atomic Level Catalyst Design, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001058]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This material is based upon work supported as part of the Center for Atomic Level Catalyst Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001058. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. The use of the Advanced Photon Source at ANL was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. We are grateful to Dr Tianpin Wu of CSE division of Argonne National Laboratory for her help during EXAFS measurements of Au L3-edge. NR 39 TC 0 Z9 0 U1 4 U2 9 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 30 BP 25368 EP 25374 DI 10.1039/c5ra27396j PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA DG7GL UT WOS:000372252700065 ER PT J AU Zhang, W Sathitsuksanoh, N Simmons, BA Frazier, CE Barone, JR Renneckar, S AF Zhang, Wei Sathitsuksanoh, Noppadon Simmons, Blake A. Frazier, Charles E. Barone, Justin R. Renneckar, Scott TI Revealing the thermal sensitivity of lignin during glycerol thermal processing through structural analysis SO RSC ADVANCES LA English DT Article ID THERMOGRAVIMETRY MASS-SPECTROMETRY; DIFFERENTIAL SCANNING CALORIMETRY; NUCLEAR-MAGNETIC-RESONANCE; EUCALYPTUS-GLOBULUS WOOD; P-31 NMR-SPECTROSCOPY; CHAIN HYDROXYL-GROUPS; MULTIPHASE MATERIALS; PYROLYTIC CLEAVAGE; STEAM EXPLOSION; MODEL COMPOUNDS AB Woody biomass was treated in glycerol between 200 and 240 degrees C in an anhydrous environment to denature the biomass for biopolymer fractionation. After glycerol thermal processing (GTP), up to 41% of the initial Klason lignin of the starting biomass was recovered in a powdered form through a room temperature dioxane extraction followed by precipitation. P-31-nuclear magnetic resonance (NMR) of the GTP lignin revealed the syringyl phenolic functionality increased linearly with the log of the severity parameter establishing the impact of the thermal processing on structure. Further structural analysis via thioacidolysis and two-dimensional (2D) C-13-H-1 heteronuclear single quantum coherence (HSQC) NMR of the isolated lignin indicated GTP caused extensive beta-O-4 bond decomposition and the liberated phenolic OH did not undergo further coupling. At the same time, condensation occurred on the aromatic C-5 position of the phenylpropane units to yield GTP lignin with a relatively high molecular weight, comparable to that of enzymatic mild acidolysis lignin from non-thermally treated fibers. The recovered GTP lignin was more thermally stable compared to nearly all other lignin found in the literature. Additionally, the glass transition temperature was invariant to the processing severity parameters. These structural changes indicate lignin is highly sensitive to moderately high temperatures common to thermoplastic polymer processing conditions. C1 [Zhang, Wei; Frazier, Charles E.; Renneckar, Scott] Virginia Polytech Inst & State Univ, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA. [Zhang, Wei; Frazier, Charles E.; Renneckar, Scott] Virginia Polytech Inst & State Univ, Dept Sustainable Biomat, Blacksburg, VA 24061 USA. [Sathitsuksanoh, Noppadon] Univ Louisville, Dept Chem Engn, Louisville, KY 40292 USA. [Sathitsuksanoh, Noppadon] Univ Louisville, Conn Ctr Renewable Energy Res, Louisville, KY 40292 USA. [Sathitsuksanoh, Noppadon; Simmons, Blake A.] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA. [Simmons, Blake A.] Sandia Natl Labs, Biol & Engn Sci Ctr, Livermore, CA 94551 USA. [Barone, Justin R.] Virginia Polytech Inst & State Univ, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA. [Barone, Justin R.] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Renneckar, Scott] Univ British Columbia, Forest Sci Ctr 4034, Dept Wood Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. RP Renneckar, S (reprint author), Virginia Polytech Inst & State Univ, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA.; Renneckar, S (reprint author), Virginia Polytech Inst & State Univ, Dept Sustainable Biomat, Blacksburg, VA 24061 USA.; Renneckar, S (reprint author), Univ British Columbia, Forest Sci Ctr 4034, Dept Wood Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM scott.renneckar@ubc.ca FU USDA NIFA [2010-65504-20429]; Institute for Critical Technology and Science at Virginia Tech; Virginia Tech Graduate School; Office of Science, Office of Biological and Environmental Research, of the U.S. DOE [DE-AC02-05CH11231]; National Science Foundation [1355438]; Canada Research Chairs program FX The authors greatly acknowledge financial support from USDA NIFA 2010-65504-20429 for the work along with support from the Institute for Critical Technology and Science at Virginia Tech and the Virginia Tech Graduate School. Additionally, a portion of the work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. DOE under contract no. DE-AC02-05CH11231. NS was supported by the National Science Foundation under Cooperative Agreement No. 1355438. This research was undertaken, in part, thanks to funding from the Canada Research Chairs program. NR 84 TC 1 Z9 1 U1 5 U2 9 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 36 BP 30234 EP 30246 DI 10.1039/c6ra00745g PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA DH8QU UT WOS:000373061600044 ER PT J AU Ling, Y Li, WZ Wang, BY Gan, WJ Zhu, CH Brady, MA Wang, C AF Ling, Yang Li, Weizhen Wang, Baoyu Gan, Wenjun Zhu, Chenhui Brady, Michael A. Wang, Cheng TI Epoxy resin reinforced with nanothin polydopamine-coated carbon nanotubes: a study of the interfacial polymer layer thickness SO RSC ADVANCES LA English DT Article ID SURFACE-INITIATED POLYMERIZATION; GRAPHENE OXIDE NANOSHEETS; DOPAMINE-MODIFIED CLAY; MECHANICAL-PROPERTIES; MULTIFUNCTIONAL COATINGS; CROSS-LINKING; STEM-CELLS; FUNCTIONALIZATION; COMPOSITES; DIFFERENTIATION AB Carbon nanotubes (CNTs) functionalized by a nanothin poly(dopamine) (PDA) layer were produced by a one-pot, nondestructive approach, with direct polymerization of dopamine on the CNT surface. The thickness of the PDA layer can be well-controlled by the reaction time and the proportion of dopamine, and this thickness is found to be the key factor in controlling the dispersion of CNTs and the extent of the interfacial interactions between the CNT@PDA and epoxy resin. SEM results indicated that the dispersion of CNTs in epoxy was improved significantly by coating a nanothin PDA layer onto the CNT surface. In agreement with this finding, the CNTs functionalized with the thinnest PDA layer provided the best mechanical and thermal properties. This result confirmed that a thinner PDA layer could provide optimized interfacial interactions between the CNT@PDA and epoxy matrix and weaken the self-agglomeration of CNTs, which led to an improved effective stress and heat transfer between the CNTs and the polymer matrix. C1 [Ling, Yang; Li, Weizhen; Wang, Baoyu; Gan, Wenjun] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China. [Li, Weizhen] Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China. [Zhu, Chenhui; Brady, Michael A.; Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Li, WZ; Gan, WJ (reprint author), Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China.; Li, WZ (reprint author), Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China.; Wang, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM liweizhen@sues.edu.cn; wjgan@sues.edu.cn; cwang2@lbl.gov RI Wang, Cheng/A-9815-2014 FU Shanghai Municipal Education Commission [20120407]; Shanghai Young Teachers' Training [ZZGJD13018]; Shanghai University of Engineering Science Developing funding [2011XZ04]; Interdisciplinary Subject Construction funding [2012SCX005]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors wish to thank the Shanghai Municipal Education Commission (Overseas Visiting Scholar Project 20120407); Shanghai Young Teachers' Training-funded Projects (ZZGJD13018); Shanghai University of Engineering Science Developing funding (grant 2011XZ04) and Interdisciplinary Subject Construction funding (grant 2012SCX005). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 47 TC 0 Z9 0 U1 15 U2 43 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 37 BP 31037 EP 31045 DI 10.1039/c5ra26539h PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DH9LS UT WOS:000373118200033 ER PT J AU Wang, Z Ren, Y Ma, TY Zhuang, WD Lu, SG Xu, GL Abouimrane, A Amine, K Chen, ZH AF Wang, Zhong Ren, Yang Ma, Tianyuan Zhuang, Weidong Lu, Shigang Xu, Guiliang Abouimrane, Ali Amine, Khalil Chen, Zonghai TI Probing cation intermixing in Li2SnO3 SO RSC ADVANCES LA English DT Article ID LITHIUM-ION BATTERIES; SOLID-STATE NMR; CATHODE MATERIALS; VOLTAGE-FADE; STRUCTURAL-CHANGES; OXIDE ELECTRODES; MANGANESE OXIDES; ENERGY-DENSITY; 1ST PRINCIPLES; LI2MNO3 AB Li2MnO3 holds great promise as a key component for lithium-manganese-rich oxides as high-capacity and high-energy-density cathode materials for lithium-ion batteries. However, its structural complexity remains an unresolved puzzle, hindering the further development of this class of cathode materials. In this work, the structure of Li2SnO3 was investigated as a model of Li2MnO3. Specifically, the structural evolution of materials during the solid-state synthesis of Li2SnO3 was studied using in situ high-energy X-ray diffraction. It was confirmed that Li2SnO3 with a C2/c structure was formed using the solid-state process. However, the severe intralayer intermixing between Li and Sn was found to lead to several weakening or vanishing reflection peaks. C1 [Wang, Zhong; Zhuang, Weidong; Lu, Shigang] Gen Res Inst Nonferrous Met, 2 Xinjiekou Wai St, Beijing 100088, Peoples R China. [Wang, Zhong; Zhuang, Weidong; Lu, Shigang] China Automot Battery Res Inst Co Ltd, Beijing 101407, Peoples R China. [Ren, Yang] Argonne Natl Lab, Adv Photon Sources, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Ma, Tianyuan; Xu, Guiliang; Abouimrane, Ali; Amine, Khalil; Chen, Zonghai] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Abouimrane, Ali] Qatar Environm & Energy Res Inst, Qatar Fdn, POB 5825, Doha, Qatar. RP Wang, Z (reprint author), Gen Res Inst Nonferrous Met, 2 Xinjiekou Wai St, Beijing 100088, Peoples R China.; Wang, Z (reprint author), China Automot Battery Res Inst Co Ltd, Beijing 101407, Peoples R China.; Chen, ZH (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wangzhong@glabat.com; Zonghai.Chen@anl.gov RI XU, GUILIANG/F-3804-2017 FU National Nature Science Foundation of China [51302017]; Science and Technology Commission of Beijing, U.S. Department of Energy (DOE), Vehicle Technologies Office [Z121100006712002]; US Department of Energy by U Chicago Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Research was funded by the National Nature Science Foundation of China (No. 51302017), and the Science and Technology Commission of Beijing (No. Z121100006712002), U.S. Department of Energy (DOE), Vehicle Technologies Office. Support from Tien Duong and Peter Faguy of the U.S. DOE's Office of Vehicle Technologies Program, is gratefully acknowledged. Argonne National Laboratory operates for the US Department of Energy by U Chicago Argonne, LLC, under contract DE-AC02-06CH11357. Use of the Advanced Photon Source (APS) was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 37 TC 1 Z9 1 U1 6 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 37 BP 31559 EP 31564 DI 10.1039/c6ra00977h PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA DH9LS UT WOS:000373118200098 ER PT J AU Chowdhary, K Najm, HN AF Chowdhary, K. Najm, H. N. TI Data free inference with processed data products SO STATISTICS AND COMPUTING LA English DT Article DE Uncertainty quantification; Bayesian inference; Markov Chain Monte Carlo; Approximate Bayesian computation; Maximum entropy; Missing information ID PARAMETERS AB We consider the context of probabilistic inference of model parameters given error bars or confidence intervals on model output values, when the data is unavailable. We introduce a class of algorithms in a Bayesian framework, relying on maximum entropy arguments and approximate Bayesian computation methods, to generate consistent data with the given summary statistics. Once we obtain consistent data sets, we pool the respective posteriors, to arrive at a single, averaged density on the parameters. This approach allows us to perform accurate forward uncertainty propagation consistent with the reported statistics. C1 [Chowdhary, K.; Najm, H. N.] Sandia Natl Labs, Livermore, CA USA. RP Chowdhary, K (reprint author), Sandia Natl Labs, Livermore, CA USA. EM kennychowdhary@gmail.com FU Scientific Discovery through Advanced Computing (SciDAC) program by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL85000] FX Support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94-AL85000 NR 18 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0960-3174 EI 1573-1375 J9 STAT COMPUT JI Stat. Comput. PD JAN PY 2016 VL 26 IS 1-2 BP 149 EP 169 DI 10.1007/s11222-014-9484-y PG 21 WC Computer Science, Theory & Methods; Statistics & Probability SC Computer Science; Mathematics GA DI2RX UT WOS:000373347100011 ER PT J AU Dib, G Udpa, L AF Dib, Gerges Udpa, Lalita TI Design and performance of optimal detectors for guided wave structural health monitoring SO STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL LA English DT Review DE Ultrasonic guided waves; structural health monitoring; theory of detection; maximum likelihood; diversity ID PIEZOELECTRIC SENSOR/ACTUATOR NETWORK; LAMB WAVES; DIAGNOSTICS AB Ultrasonic guided wave measurements in structural health monitoring systems are affected over a long term by measurement noise, environmental conditions, transducer aging, and malfunction. This results in measurement variability which affects detection performance, especially in complex structures where baseline data comparison is required. This article derives the optimal detector structure, within the framework of detection theory, based on reducing a guided wave signal at the sensor into a single feature value that can be used for comparison with a threshold. Three different types of detectors are derived depending on the underlying structure's complexity: (a) simple structures where defect reflections can be identified without the need for baseline data; (b) simple structures that require baseline data due to overlap of defect scatter with scatter from structural features; and (c) complex structure with dense structural features that require baseline data. The detectors are derived by modeling the effects of variabilities and uncertainties as random processes. Analytical solutions for the performance of detectors in terms of the probability of detection and false alarm are derived. A finite element model that simulates guided wave inspection is used in a Monte-Carlo procedure to quantify the effects of environmental variability in terms of defect probability of detection. Results demonstrate that the problems of structural complexity and environmental variability introduce temporal diversity in the signals, which can be exploited to improve detection performance. C1 [Dib, Gerges] Pacific NW Natl Lab, 2400 Stevens Dr, Richland, WA 99354 USA. [Udpa, Lalita] Michigan State Univ, E Lansing, MI 48824 USA. RP Dib, G (reprint author), Pacific NW Natl Lab, 2400 Stevens Dr, Richland, WA 99354 USA. EM gerges.dib@pnnl.gov NR 23 TC 0 Z9 0 U1 4 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1475-9217 EI 1741-3168 J9 STRUCT HEALTH MONIT JI Struct. Health Monit. PD JAN PY 2016 VL 15 IS 1 BP 21 EP 37 DI 10.1177/1475921715620003 PG 17 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DH6MU UT WOS:000372905600002 ER PT J AU Wainwright, HM Orozco, AF Bucker, M Dafflon, B Chen, J Hubbard, SS Williams, KH AF Wainwright, Haruko M. Orozco, Adrian Flores Buecker, Matthias Dafflon, Baptiste Chen, Jinsong Hubbard, Susan S. Williams, Kenneth H. TI Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging SO WATER RESOURCES RESEARCH LA English DT Article ID SPECTRAL INDUCED POLARIZATION; URANIUM-CONTAMINATED AQUIFER; DISSOLVED ORGANIC-CARBON; BACTERIAL TRANSPORT SITE; GEOPHYSICAL-DATA; ZONE; DENITRIFICATION; BIOREMEDIATION; INVERSION; STREAM AB In floodplain environments, a naturally reduced zone (NRZ) is considered to be a common biogeochemical hot spot, having distinct microbial and geochemical characteristics. Although important for understanding their role in mediating floodplain biogeochemical processes, mapping the subsurface distribution of NRZs over the dimensions of a floodplain is challenging, as conventional wellbore data are typically spatially limited and the distribution of NRZs is heterogeneous. In this study, we present an innovative methodology for the probabilistic mapping of NRZs within a three-dimensional (3-D) subsurface domain using induced polarization imaging, which is a noninvasive geophysical technique. Measurements consist of surface geophysical surveys and drilling-recovered sediments at the U.S. Department of Energy field site near Rifle, CO (USA). Inversion of surface time domain-induced polarization (TDIP) data yielded 3-D images of the complex electrical resistivity, in terms of magnitude and phase, which are associated with mineral precipitation and other lithological properties. By extracting the TDIP data values colocated with wellbore lithological logs, we found that the NRZs have a different distribution of resistivity and polarization from the other aquifer sediments. To estimate the spatial distribution of NRZs, we developed a Bayesian hierarchical model to integrate the geophysical and wellbore data. In addition, the resistivity images were used to estimate hydrostratigraphic interfaces under the floodplain. Validation results showed that the integration of electrical imaging and wellbore data using a Bayesian hierarchical model was capable of mapping spatially heterogeneous interfaces and NRZ distributions thereby providing a minimally invasive means to parameterize a hydrobiogeochemical model of the floodplain. C1 [Wainwright, Haruko M.; Dafflon, Baptiste; Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Orozco, Adrian Flores; Buecker, Matthias] Vienna Univ Technol, Dept Geodesy & Geoinformat, A-1040 Vienna, Austria. [Buecker, Matthias] Univ Bonn, Dept Geophys, Steinmann Inst, Bonn, Germany. RP Wainwright, HM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM hmwainwright@lbl.gov RI Chen, Jinsong/A-1374-2009; Hubbard, Susan/E-9508-2010; Williams, Kenneth/O-5181-2014; Wainwright, Haruko/A-5670-2015; Dafflon, Baptiste/G-2441-2015; OI Williams, Kenneth/0000-0002-3568-1155; Wainwright, Haruko/0000-0002-2140-6072; Bucker, Matthias/0000-0003-4367-5131 FU Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area (SFA); U.S. Department of Energy (DOE), Office of Science, and Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This material is partially based upon work supported through the Lawrence Berkeley National Laboratory's Sustainable Systems Scientific Focus Area (SFA). The U.S. Department of Energy (DOE), Office of Science, and Office of Biological and Environmental Research funded the work under contract DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory; operated by the University of California). We would like to thank Joel Rowland at Los Alamos National Laboratory for providing advice that helped to strengthen the conceptual model of floodplain-related hot spots. Data sets are available upon request by contacting the corresponding author (Haruko M. Wainwright, hmwainwright@lbl.gov). NR 85 TC 6 Z9 6 U1 6 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD JAN PY 2016 VL 52 IS 1 BP 533 EP 551 DI 10.1002/2015WR017763 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DH9LO UT WOS:000373117800031 ER PT J AU Martinez, MJ Hesse, MA AF Martinez, M. J. Hesse, M. A. TI Two-phase convective CO2 dissolution in saline aquifers SO WATER RESOURCES RESEARCH LA English DT Article ID CAPILLARY TRANSITION ZONE; DIFFUSIVE BOUNDARY-LAYER; LONG-TERM STORAGE; POROUS-MEDIUM; MULTIPHASE FLOW; CARBON-DIOXIDE; STABILITY; SEQUESTRATION; PERFORMANCE; MEDIA AB Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. This removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions. C1 [Martinez, M. J.] Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. [Hesse, M. A.] Univ Texas Austin, Dept Geol Sci, Austin, TX USA. RP Martinez, MJ (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM mjmarti@sandia.gov RI Hesse, Marc/B-4914-2011 OI Hesse, Marc/0000-0002-2532-3274 FU Center for Frontiers of Subsurface Energy Security an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001114]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award DE-SC0001114. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Data used in line plots are available on contact of the corresponding author. NR 46 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD JAN PY 2016 VL 52 IS 1 BP 585 EP 599 DI 10.1002/2015WR017085 PG 15 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DH9LO UT WOS:000373117800034 ER PT S AU Denis-Petit, D Roig, O Meot, V Jandel, M Vieira, DJ Bond, EM Bredeweg, TA Couture, AJ Haight, RC Keksis, AL Rundberg, RS Ullmann, JL AF Denis-Petit, D. Roig, O. Meot, V. Jandel, M. Vieira, D. J. Bond, E. M. Bredeweg, T. A. Couture, A. J. Haight, R. C. Keksis, A. L. Rundberg, R. S. Ullmann, J. L. BE Serot, O TI Isomeric ratio measurements for the radiative neutron capture Lu-176(n,gamma) at DANCE SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE ID CROSS-SECTION; STELLAR INTERIORS; COSMIC CLOCK; LU-176; ABUNDANCES; DETECTOR; SOLAR; DECAY AB The isomeric ratio for the neutron capture reaction Lu-176(n,gamma) on the J(pi) = 5/2(-), 761.7 keV, T-1/2 = 32.8 ns level of Lu-177m, has been determined in the neutron energy range 8.5 eV-100 keV for the first time using the DANCE array at the Los Alamos National Laboratory. C1 [Denis-Petit, D.; Roig, O.; Meot, V.] CEA, DAM, DIF, F-91297 Arpajon, France. [Jandel, M.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Denis-Petit, D (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France. EM david.denis-petit@cea.fr NR 28 TC 0 Z9 0 U1 2 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 02004 DI 10.1051/epjconf/201611102004 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000006 ER PT S AU Diakaki, M Audouin, L Berthoumieux, E Calviani, M Colonna, N Dupont, E Duran, I Gunsing, F Leal-Cidoncha, E Le Naour, C Leong, LS Mastromarco, M Paradela, C Tarrio, D Tassan-Got, L Aerts, G Altstadt, S Alvarez, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Badurek, G Barbagallo, M Baumann, P Becares, V Becvar, F Belloni, F Berthier, B Billowes, J Boccone, V Bosnar, D Brugger, M Calvino, F Cano-Ott, D Capote, R Carrapio, C Cennini, P Cerutti, F Chiaveri, E Chin, M Cortes, G Cortes-Giraldo, MA Cosentino, L Couture, A Cox, J David, S Dillmann, I Domingo-Pardo, C Dressler, R Dridi, W Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Finocchiaro, P Fraval, K Fujii, K Furman, W Ganesan, S Garcia, AR Giubrone, G Gomez-Hornillos, MB Goncalves, IF Gonzalez-Romero, E Goverdovski, A Gramegna, F Griesmayer, E Guerrero, C Gurusamy, P Haight, R Heil, M Heinitz, S Igashira, M Isaev, S Jenkins, DG Jericha, E Kadi, Y Kaeppeler, F Karadimos, D Karamanis, D Kerveno, M Ketlerov, V Kivel, N Kokkoris, M Konovalov, V Krticka, M Kroll, J Lampoudis, C Langer, C Lederer, C Leeb, H Lo Meo, S Losito, R Lozano, M Manousos, A Marganiec, J Martinez, T Marrone, S Massimi, C Mastinu, P Mendoza, E Mengoni, A Milazzo, PM Mingrone, F Mirea, M Mondelaers, W Moreau, C Mosconi, M Musumarra, A O'Brien, S Pancin, J Patronis, N Pavlik, A Pavlopoulos, P Perkowski, J Perrot, L Pigni, MT Plag, R Plompen, A Plukis, L Poch, A Pretel, C Praena, J Quesada, J Rauscher, T Reifarth, R Riego, A Roman, F Rudolf, G Rubbia, C Rullhusen, P Salgado, J Santos, C Sarchiapone, L Sarmento, R Saxena, A Schillebeeckx, P Schmidt, S Schumann, D Stephan, C Tagliente, G Tain, JL Tavora, L Terlizzi, R Tsinganis, A Valenta, S Vannini, G Variale, V Vaz, P Ventura, A Versaci, R Vermeulen, MJ Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Wallner, A Walter, S Ware, T Weigand, M Weiss, C Wiesher, M Wisshak, K Wright, T Zugec, P AF Diakaki, M. Audouin, L. Berthoumieux, E. Calviani, M. Colonna, N. Dupont, E. Duran, I. Gunsing, F. Leal-Cidoncha, E. Le Naour, C. Leong, L. S. Mastromarco, M. Paradela, C. Tarrio, D. Tassan-Got, L. Aerts, G. Altstadt, S. Alvarez, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Badurek, G. Barbagallo, M. Baumann, P. Becares, V. Becvar, F. Belloni, F. Berthier, B. Billowes, J. Boccone, V. Bosnar, D. Brugger, M. Calvino, F. Cano-Ott, D. Capote, R. Carrapio, C. Cennini, P. Cerutti, F. Chiaveri, E. Chin, M. Cortes, G. Cortes-Giraldo, M. A. Cosentino, L. Couture, A. Cox, J. David, S. Dillmann, I. Domingo-Pardo, C. Dressler, R. Dridi, W. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Finocchiaro, P. Fraval, K. Fujii, K. Furman, W. Ganesan, S. Garcia, A. R. Giubrone, G. Gomez-Hornillos, M. B. Goncalves, I. F. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Griesmayer, E. Guerrero, C. Gurusamy, P. Haight, R. Heil, M. Heinitz, S. Igashira, M. Isaev, S. Jenkins, D. G. Jericha, E. Kadi, Y. Kaeppeler, F. Karadimos, D. Karamanis, D. Kerveno, M. Ketlerov, V. Kivel, N. Kokkoris, M. Konovalov, V. Krticka, M. Kroll, J. Lampoudis, C. Langer, C. Lederer, C. Leeb, H. Lo Meo, S. Losito, R. Lozano, M. Manousos, A. Marganiec, J. Martinez, T. Marrone, S. Massimi, C. Mastinu, P. Mendoza, E. Mengoni, A. Milazzo, P. M. Mingrone, F. Mirea, M. Mondelaers, W. Moreau, C. Mosconi, M. Musumarra, A. O'Brien, S. Pancin, J. Patronis, N. Pavlik, A. Pavlopoulos, P. Perkowski, J. Perrot, L. Pigni, M. T. Plag, R. Plompen, A. Plukis, L. Poch, A. Pretel, C. Praena, J. Quesada, J. Rauscher, T. Reifarth, R. Riego, A. Roman, F. Rudolf, G. Rubbia, C. Rullhusen, P. Salgado, J. Santos, C. Sarchiapone, L. Sarmento, R. Saxena, A. Schillebeeckx, P. Schmidt, S. Schumann, D. Stephan, C. Tagliente, G. Tain, J. L. Tavora, L. Terlizzi, R. Tsinganis, A. Valenta, S. Vannini, G. Variale, V. Vaz, P. Ventura, A. Versaci, R. Vermeulen, M. J. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Wallner, A. Walter, S. Ware, T. Weigand, M. Weiss, C. Wiesher, M. Wisshak, K. Wright, T. Zugec, P. BE Serot, O TI Towards the high-accuracy determination of the U-238 fission cross section at the threshold region at CERN - n_TOF SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE ID ANGULAR-DISTRIBUTION; FACILITY; PERFORMANCE AB The U-238 fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The U-238 fission cross section has been measured relative to the U-235 fission cross section at CERN - n_TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards. C1 [Diakaki, M.; Berthoumieux, E.; Dupont, E.; Gunsing, F.; Aerts, G.; Andriamonje, S.; Dridi, W.; Fraval, K.; Pancin, J.; Perrot, L.; Plukis, L.] CEA Saclay, Irfu SPhN, F-91191 Gif Sur Yvette, France. [Audouin, L.; Le Naour, C.; Leong, L. S.; Tassan-Got, L.; Berthier, B.; David, S.; Ferrant, L.; Isaev, S.; Stephan, C.] CNRS, IN2P3, IPN, F-91405 Orsay, France. [Calviani, M.; Gunsing, F.; Boccone, V.; Brugger, M.; Cennini, P.; Cerutti, F.; Chiaveri, E.; Chin, M.; Ferrari, A.; Guerrero, C.; Kadi, Y.; Losito, R.; Pavlopoulos, P.; Roman, F.; Rubbia, C.; Sarchiapone, L.; Tsinganis, A.; Versaci, R.; Vlachoudis, V.; Weiss, C.] CERN, Geneva, Switzerland. [Colonna, N.; Mastromarco, M.; Barbagallo, M.; Marrone, S.; Tagliente, G.; Terlizzi, R.; Variale, V.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Duran, I.; Leal-Cidoncha, E.; Paradela, C.; Tarrio, D.; Alvarez, H.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Leong, L. S.] JAEA, Tokyo, Japan. [Paradela, C.; Belloni, F.; Mondelaers, W.; Plompen, A.; Rullhusen, P.; Schillebeeckx, P.] EC JRC, IRMM, Geel, Belgium. [Tarrio, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Altstadt, S.; Langer, C.; Lederer, C.; Reifarth, R.; Schmidt, S.; Weigand, M.] Goethe Univ Frankfurt, D-60054 Frankfurt, Germany. [Alvarez-Velarde, F.; Becares, V.; Cano-Ott, D.; Embid-Segura, M.; Garcia, A. R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E.; Villamarin, D.; Vincente, M. C.] CIEMAT, E-28040 Madrid, Spain. [Andrzejewski, J.; Marganiec, J.; Perkowski, J.] Univ Lodz, PL-90131 Lodz, Poland. [Badurek, G.; Griesmayer, E.; Jericha, E.; Leeb, H.; Pigni, M. T.] Vienna Univ Technol, Atominst Osterreich Univ, Sydney, NSW, Australia. [Baumann, P.; Kerveno, M.; Rudolf, G.] CNRS, IN2P3, IPHC, Strasbourg, France. [Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S.] Charles Univ Prague, Prague, Czech Republic. [Billowes, J.; Ware, T.; Wright, T.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Bosnar, D.; Zugec, P.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia. [Calvino, F.; Poch, A.; Pretel, C.] Univ Politecn Madrid, E-28040 Madrid, Spain. [Capote, R.] IAEA, Nucl Data Sect, A-1400 Vienna, Austria. [Carrapio, C.; Goncalves, I. F.; Salgado, J.; Santos, C.; Sarmento, R.; Tavora, L.; Vaz, P.] Univ Lisbon, Inst Super Tecn, CTN, P-1699 Lisbon, Portugal. [Cortes, G.; Gomez-Hornillos, M. B.; Riego, A.] Univ Politecn Cataluna, Barcelona, Spain. [Cortes-Giraldo, M. A.; Lozano, M.; Praena, J.; Quesada, J.] Univ Seville, Seville, Spain. [Cosentino, L.; Finocchiaro, P.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95129 Catania, Italy. [Couture, A.; Cox, J.; O'Brien, S.; Wiesher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] KIT, Karlsruhe, Germany. [Domingo-Pardo, C.; Giubrone, G.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Dressler, R.; Heinitz, S.; Kivel, N.; Schumann, D.] PSI, Villigen, Switzerland. [Eleftheriadis, C.; Lampoudis, C.; Manousos, A.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Fujii, K.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy. [Furman, W.] JINR, Dubna, Russia. [Ganesan, S.; Gurusamy, P.; Saxena, A.] BARC, Bombay, Maharashtra, India. [Goverdovski, A.; Ketlerov, V.; Konovalov, V.] IPPE, Obninsk, Russia. [Gramegna, F.; Mastinu, P.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. [Haight, R.] LANL, Los Alamos, NM USA. [Igashira, M.] Tokyo Inst Technol, Tokyo, Japan. [Jenkins, D. G.; Vermeulen, M. J.] Univ York, York YO10 5DD, N Yorkshire, England. [Karadimos, D.; Karamanis, D.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Kokkoris, M.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Lo Meo, S.; Mengoni, A.] ENEA, Bologna, Italy. [Massimi, C.; Mingrone, F.; Vannini, G.; Ventura, A.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Massimi, C.; Mingrone, F.; Vannini, G.; Ventura, A.] Sez INFN Bologna, Bologna, Italy. [Mirea, M.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Musumarra, A.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Musumarra, A.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95129 Catania, Italy. [Pavlik, A.] Univ Vienna, Fac Phys, A-1010 Vienna, Austria. [Rauscher, T.] Univ Hertfordshire, Ctr Astrophys Res, Sch Phys Astron Math, Hatfield AL10 9AB, Herts, England. [Rauscher, T.] Univ Basel, Dept Phys, CH-4003 Basel, Switzerland. [Wallner, A.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. RP Diakaki, M (reprint author), CEA Saclay, Irfu SPhN, F-91191 Gif Sur Yvette, France. EM maria.diakaki@cea.fr RI Vaz, Pedro/K-2464-2013; Mirea, Mihail/C-2297-2011; Rauscher, Thomas/D-2086-2009; Mendoza Cembranos, Emilio/K-5789-2014; Chin, Mary Pik Wai/B-6644-2012; Calvino, Francisco/K-5743-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/K-2008-2015; Martinez, Trinitario/K-6785-2014; OI Vaz, Pedro/0000-0002-7186-2359; Mirea, Mihail/0000-0002-9333-6595; Rauscher, Thomas/0000-0002-1266-0642; Mendoza Cembranos, Emilio/0000-0002-2843-1801; Chin, Mary Pik Wai/0000-0001-5176-9723; Calvino, Francisco/0000-0002-7198-4639; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0003-2499-5586; Martinez, Trinitario/0000-0002-0683-5506; Tarrio, Diego/0000-0002-9858-3341; Garcia Rios, Aczel Regino/0000-0002-7955-1475 NR 20 TC 1 Z9 1 U1 13 U2 25 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 02002 DI 10.1051/epjconf/201611102002 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000004 ER PT S AU Diez, CJ Michel-Sendis, F Cabellos, O Wiarda, D Dunn, ME AF Diez, C. J. Michel-Sendis, F. Cabellos, O. Wiarda, D. Dunn, M. E. BE Serot, O TI On the processing of JEFF-3.2 neutron data library with AMPX 6.2 for its use with the SCALE tool suite SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE AB New processing capabilities are under development at the NEA Data Bank (DB) that aim to provide enlarged and enhanced nuclear data services to member countries in the framework of processing, verification and benchmarking of evaluated nuclear data. Within the context of the Joint Evaluated Fission and Fusion Nuclear Data Library Project (JEFF), we undertake to generate, with the latest version of AMPX processing code, a JEFF-3.2 incident-neutron nuclear data application library for the SCALE tool suite. In this paper we describe the requirements, in terms of nuclear data content, for new data to be considered and used in the SCALE tool suite. An overview of how to process and prepare JEFF-3.2 incident-neutron data with AMPX for its application in SCALE neutron transport codes is given. The resulting library is verified and tested at differential and integral level by comparing the performance of JEFF-3.2 in AMPX format with other processing and transport codes. C1 [Diez, C. J.; Michel-Sendis, F.; Cabellos, O.] OECD Nucl Energy Agcy NEA, Data Bank, F-92130 Issy Les Moulineaux, France. [Wiarda, D.; Dunn, M. E.] Oak Ridge Natl Lab, Reactor & Nucl Syst Div, Oak Ridge, TN 37831 USA. RP Diez, CJ (reprint author), OECD Nucl Energy Agcy NEA, Data Bank, F-92130 Issy Les Moulineaux, France. EM carlosjavier.diez@oecd.org NR 8 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 06003 DI 10.1051/epjconf/201611106003 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000019 ER PT S AU Neudecker, D Talou, P Kawano, T Kahler, AC Rising, ME White, MC AF Neudecker, D. Talou, P. Kawano, T. Kahler, A. C. Rising, M. E. White, M. C. BE Serot, O TI Evaluating the Pu-239 Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE ID COVARIANCES; PLUTONIUM; URANIUM AB We present a new evaluation of the Pu-239 prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed. C1 [Neudecker, D.; Talou, P.; Kawano, T.; Kahler, A. C.; Rising, M. E.; White, M. C.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Neudecker, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dneudecker@lanl.gov NR 25 TC 0 Z9 0 U1 3 U2 3 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 05004 DI 10.1051/epjconf/201611105004 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000016 ER PT S AU Nobre, GPA Herman, M Brown, D Capote, R Trkov, A Leal, L Plompen, A Danon, Y Qian, J Ge, ZG Liu, TJ Lu, HL Ruan, XC AF Nobre, G. P. A. Herman, M. Brown, D. Capote, R. Trkov, A. Leal, L. Plompen, A. Danon, Y. Qian, Jing Ge, Zhigang Liu, Tingjin Lu, Hnalin Ruan, Xichao BE Serot, O TI New Fe-56 Evaluation for the CIELO project SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE ID LIBRARY AB The Collaborative International Evaluated Library Organisation (CIELO) aims to provide revised and updated evaluations for Pu-239, U-238,U-235, Fe-56, O-16, and H-1 through international collaboration. This work, which is part of the CIELO project, presents the initial results for the evaluation of the Fe-56 isotope, with neutron-incident energy ranging from 0 to 20 MeV. The Fe-56(n,p) cross sections were fitted to reproduce the ones from IRDFF dosimetry file. Our preliminary file provides good cross-section agreements for the main angle-integrated reactions, as well as a reasonable overall agreement for angular distributions and double-differential spectra, when compared to previous evaluations. C1 [Nobre, G. P. A.; Herman, M.; Brown, D.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Capote, R.; Trkov, A.] IAEA, POB 100, A-1400 Vienna, Austria. [Leal, L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Plompen, A.] EC JRC IRMM, Geel, Belgium. [Danon, Y.] Rensselaer Polytech Inst, Troy, NY USA. [Qian, Jing; Ge, Zhigang; Liu, Tingjin] CNDC, POB 275-41, Beijing 102413, Peoples R China. [Lu, Hnalin; Ruan, Xichao] CIAE, POB 275-41, Beijing 102413, Peoples R China. RP Nobre, GPA (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM gnobre@bnl.gov RI Capote Noy, Roberto/M-1245-2014 OI Capote Noy, Roberto/0000-0002-1799-3438 NR 11 TC 0 Z9 0 U1 1 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 03001 DI 10.1051/epjconf/201611103001 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000008 ER PT S AU Paradela, C Duran, I Tassan-Got, L Audouin, L Berthier, B Isaev, S Le Naour, C Stephan, C Tarrio, D Abbondanno, U Aerts, G Alvarez-Pol, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Badurek, G Baumann, P Becvar, F Berthoumieux, E Calvino, F Calviani, M Cano-Ott, D Capote, R Carrapio, C Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillmann, I Domingo-Pardo, C Dridi, W Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Ferreira-Marques, R Fujii, K Furman, W Goncalves, IF Gonzalez-Romero, E Goverdovski, A Gramegna, F Guerrero, C Gunsing, F Haight, R Heil, M Igashira, M Jericha, E Kadi, Y Kaeppeler, F Karadimos, D Kerveno, M Ketlerov, V Koehler, P Konovalov, V Krticka, M Lampoudis, C Lederer, C Leeb, H Lindote, A Lukic, S Marganiec, J Martinez, T Marrone, S Massimi, C Mastinu, P Mengoni, A Milazzo, PM Moreau, C Mosconi, M Pancin, SJ Pavlik, A Pavlopoulos, P Perrot, L Plag, R Plompen, A Plukis, A Poch, A Pretel, C Praena, J Quesada, J Rauscher, T Reifarth, R Rubbia, C Rudolf, G Rullhusen, P Salgado, J Santos, C Sarchiapone, L Savvidis, I Tagliente, G Tain, JL Tavora, L Terlizzi, R Vaz, P Ventura, A Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Weiss, C Wiesher, M Wisshak, K AF Paradela, C. Duran, I. Tassan-Got, L. Audouin, L. Berthier, B. Isaev, S. Le Naour, C. Stephan, C. Tarrio, D. Abbondanno, U. Aerts, G. Alvarez-Pol, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Badurek, G. Baumann, P. Becvar, F. Berthoumieux, E. Calvino, F. Calviani, M. Cano-Ott, D. Capote, R. Carrapio, C. Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillmann, I. Domingo-Pardo, C. Dridi, W. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Fujii, K. Furman, W. Goncalves, I. F. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Guerrero, C. Gunsing, F. Haight, R. Heil, M. Igashira, M. Jericha, E. Kadi, Y. Kaeppeler, F. Karadimos, D. Kerveno, M. Ketlerov, V. Koehler, P. Konovalov, V. Krticka, M. Lampoudis, C. Lederer, C. Leeb, H. Lindote, A. Lukic, S. Marganiec, J. Martinez, T. Marrone, S. Massimi, C. Mastinu, P. Mengoni, A. Milazzo, P. M. Moreau, C. Mosconi, M. Pancin, S. J. Pavlik, A. Pavlopoulos, P. Perrot, L. Plag, R. Plompen, A. Plukis, A. Poch, A. Pretel, C. Praena, J. Quesada, J. Rauscher, T. Reifarth, R. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Santos, C. Sarchiapone, L. Savvidis, I. Tagliente, G. Tain, J. L. Tavora, L. Terlizzi, R. Vaz, P. Ventura, A. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Weiss, C. Wiesher, M. Wisshak, K. CA N TOF Collaboration BE Serot, O TI High accuracy U-235(n,f) data in the resonance energy region SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE AB The U-235 neutron-induced cross section is widely used as reference cross section for measuring other fission cross sections, but in the resonance region it is not considered as an IAEA standard because of the scarce experimental data covering the full region. In this work, we deal with a new analysis of the experimental data obtained with a detection setup based on parallel plate ionization chambers (PPACs) at the CERN n_TOF facility in the range from 1 eV to 10 keV. The relative cross section has been normalised to the IAEA value in the region between 7.8 and 11 eV, which is claimed as well-known. Comparison with the ENDF/B-VII evaluation and the IAEA reference file from 100 eV to 10 keV are provided. C1 [Paradela, C.; Plompen, A.; Rullhusen, P.] EC JRC IRMM, Retieseweg 111, B-2440 Geel, Belgium. [Paradela, C.; Duran, I.; Tarrio, D.; Alvarez-Pol, H.; Mengoni, A.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Tassan-Got, L.; Audouin, L.; Berthier, B.; Isaev, S.; Le Naour, C.; Stephan, C.; David, S.; Ferrant, L.] CNRS, IN2P3, IPN, F-91405 Orsay, France. [Abbondanno, U.; Tagliente, G.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, S. J.; Perrot, L.; Plukis, A.] CEA Saclay, Irfu, SPhN, F-91191 Gif Sur Yvette, France. [Alvarez-Velarde, F.; Cano-Ott, D.; Gonzalez-Romero, E.; Martinez, T.; Villamarin, D.] CIEMAT, E-28040 Madrid, Spain. [Andrzejewski, J.; Marganiec, J.] Univ Lodz, PL-90131 Lodz, Poland. [Badurek, G.; Jericha, E.; Lederer, C.; Leeb, H.] Vienna Univ Technol, Atominst Osterreich Univ, Vienna, Austria. [Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.] CNRS, IN2P3, IPHC, Strasbourg, France. [Becvar, F.; Embid-Segura, M.; Krticka, M.; Vincente, M. C.] Charles Univ Prague, Prague, Czech Republic. [Calvino, F.; Cortes, G.; Poch, A.; Pretel, C.] Univ Politecn Cataluna, Barcelona, Spain. [Calviani, M.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Guerrero, C.; Kadi, Y.; Mengoni, A.; Rubbia, C.; Sarchiapone, L.; Vlachoudis, V.; Weiss, C.] CERN, Geneva, Switzerland. [Capote, R.; Guerrero, C.; Quesada, J.] Univ Seville, Seville, Spain. [Carrapio, C.; Goncalves, I. F.; Salgado, J.; Santos, C.; Tavora, L.; Vaz, P.] Univ Lisbon, Inst Super Tecn, CTN, P-1699 Lisbon, Portugal. [Chepel, V.; Ferreira-Marques, R.; Lindote, A.] LIP Coimbra, Coimbra, Portugal. [Colonna, N.; Marrone, S.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Tarrio, D.; Couture, A.; Cox, J.; Wiesher, M.] Uppsala Univ, Dept Phys & Astron, S-75105 Uppsala, Sweden. [Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] Karlsruhe Inst Technol, Inst Kernphys, Campus North, D-76021 Karlsruhe, Germany. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Eleftheriadis, C.; Lampoudis, C.; Savvidis, I.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Fujii, K.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy. [Furman, W.; Konovalov, V.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia. [Goverdovski, A.; Ketlerov, V.] IPPE, Obninsk, Russia. [Gramegna, F.; Mastinu, P.; Praena, J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. [Haight, R.; Koehler, P.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Igashira, M.] Tokyo Inst Technol, Tokyo 152, Japan. [Karadimos, D.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Massimi, C.; Pavlopoulos, P.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Ventura, A.] ENEA, Bologna, Italy. [Rauscher, T.] Univ Basel, Dept Phys & Astron, CH-4003 Basel, Switzerland. RP Paradela, C (reprint author), EC JRC IRMM, Retieseweg 111, B-2440 Geel, Belgium.; Paradela, C (reprint author), Univ Santiago de Compostela, Santiago De Compostela, Spain. EM carlos.PARADELA-DOBARRO@ec.europa.eu RI Vaz, Pedro/K-2464-2013; Rauscher, Thomas/D-2086-2009; Calvino, Francisco/K-5743-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/K-2008-2015; Alvarez Pol, Hector/F-1930-2011; Martinez, Trinitario/K-6785-2014; OI Vaz, Pedro/0000-0002-7186-2359; Rauscher, Thomas/0000-0002-1266-0642; Calvino, Francisco/0000-0002-7198-4639; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0003-2499-5586; Alvarez Pol, Hector/0000-0001-9643-6252; Martinez, Trinitario/0000-0002-0683-5506; Tarrio, Diego/0000-0002-9858-3341 NR 7 TC 1 Z9 1 U1 11 U2 20 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 02003 DI 10.1051/epjconf/201611102003 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000005 ER PT S AU Porta, A Zakari-Issoufou, AA Fallot, M Algora, A Tain, JL Valencia, E Rice, S Bui, VM Cormon, S Estienne, M Agramunt, J Aysto, J Bowry, M Briz, JA Caballero-Folch, R Cano-Ott, D Cucouanes, A Elomaa, VV Eronen, T Estevez, E Farrelly, GF Garcia, AR Gelletly, W Gomez-Hornillos, MB Gorlychev, V Hakala, J Jokinen, A Jordan, MD Kankainen, A Karvonen, P Kolhinen, VS Kondev, FG Martinez, T Mendoza, E Molina, F Moore, I Perez-Cerdan, AB Podolyak, Z Penttila, H Regan, PH Reponen, M Rissanen, J Rubio, B Shiba, T Sonzogni, AA Weber, C AF Porta, A. Zakari-Issoufou, A. -A. Fallot, M. Algora, A. Tain, J. L. Valencia, E. Rice, S. Bui, V. M. Cormon, S. Estienne, M. Agramunt, J. Aysto, J. Bowry, M. Briz, J. A. Caballero-Folch, R. Cano-Ott, D. Cucouanes, A. Elomaa, V. -V. Eronen, T. Estevez, E. Farrelly, G. F. Garcia, A. R. Gelletly, W. Gomez-Hornillos, M. B. Gorlychev, V. Hakala, J. Jokinen, A. Jordan, M. D. Kankainen, A. Karvonen, P. Kolhinen, V. S. Kondev, F. G. Martinez, T. Mendoza, E. Molina, F. Moore, I. Perez-Cerdan, A. B. Podolyak, Zs. Penttila, H. Regan, P. H. Reponen, M. Rissanen, J. Rubio, B. Shiba, T. Sonzogni, A. A. Weber, C. CA IGISOL Collaboration BE Serot, O TI Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE AB Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. Rb-92,Rb-93 are two fission products of importance in reactor antineutrino spectra and decay heat, but their beta-decay properties are not well known. New measurements of Rb-92,Rb-93 beta-decay properties have been performed at the IGISOL facility (Jyvaskyla, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for Rb-93, our measured beta feedings for Rb-92 and we show the impact of these results on reactor antineutrino spectra and decay heat calculations. C1 [Porta, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Bui, V. M.; Cormon, S.; Estienne, M.; Briz, J. A.; Cucouanes, A.; Shiba, T.] Univ Nantes, Ecole Mines Nantes, CNRS, SUBATECH,IN2P3, F-44307 Nantes, France. [Algora, A.; Tain, J. L.; Valencia, E.; Agramunt, J.; Estevez, E.; Gelletly, W.; Jordan, M. D.; Molina, F.; Perez-Cerdan, A. B.; Rubio, B.] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain. [Algora, A.] MTA ATOMKI, Inst Nucl Res, H-4026 Debrecen, Hungary. [Rice, S.; Bowry, M.; Farrelly, G. F.; Gelletly, W.; Podolyak, Zs.; Regan, P. H.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Aysto, J.] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland. [Caballero-Folch, R.; Gomez-Hornillos, M. B.; Gorlychev, V.] Univ Politecn Cataluna, ES-08034 Barcelona, Spain. [Cano-Ott, D.; Garcia, A. R.; Martinez, T.; Mendoza, E.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Elomaa, V. -V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Moore, I.; Penttila, H.; Reponen, M.; Rissanen, J.; Weber, C.; IGISOL Collaboration] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland. [Kondev, F. G.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Molina, F.] Comis Chilena Energia Nucl, POB 188, Santiago, Chile. [Regan, P. H.] Natl Phys Lab, Teddington TW11 0LW, Middx, England. [Reponen, M.] RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Sonzogni, A. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Weber, C.] Univ Munich, Fac Phys, Coulombwall 1, D-85748 Garching, Germany. RP Porta, A (reprint author), Univ Nantes, Ecole Mines Nantes, CNRS, SUBATECH,IN2P3, F-44307 Nantes, France. EM porta@subatech.in2p3.fr RI Martinez, Trinitario/K-6785-2014; Mendoza Cembranos, Emilio/K-5789-2014; Moore, Iain/D-7255-2014 OI Martinez, Trinitario/0000-0002-0683-5506; Jokinen, Ari/0000-0002-0451-125X; Garcia Rios, Aczel Regino/0000-0002-7955-1475; Mendoza Cembranos, Emilio/0000-0002-2843-1801; Moore, Iain/0000-0003-0934-8727 NR 21 TC 0 Z9 0 U1 3 U2 9 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 08006 DI 10.1051/epjconf/201611108006 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000031 ER PT S AU Regnier, D Dubray, N Schunck, N Verriere, M AF Regnier, D. Dubray, N. Schunck, N. Verriere, M. BE Serot, O TI Microscopic predictions of fission yields based on the time dependent GCM formalism SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE AB Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+Pu-239 low energy induced fission. This work is the result of a collaboration between CEA, DAM, DIF and LLNL on nuclear fission theory. C1 [Regnier, D.; Dubray, N.; Verriere, M.] CEA, DAM, DIF, F-91297 Arpajon, France. [Schunck, N.] LLNL, Nucl & Chem Sci Div, Livermore, CA 94551 USA. RP Regnier, D; Dubray, N (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France. EM david.regnier@cea.fr; noel.dubray@cea.fr NR 10 TC 0 Z9 0 U1 1 U2 3 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 08005 DI 10.1051/epjconf/201611108005 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000030 ER PT S AU Walsh, JA Forget, B Smith, KS Brown, FB AF Walsh, Jonathan A. Forget, Benoit Smith, Kord S. Brown, Forrest B. BE Serot, O TI Neutron Cross Section Processing Methods for Improved Integral Benchmarking of Unresolved Resonance Region Evaluations SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 4th International Workshop On Nuclear Data Evaluation for Reactor Applications(WONDER) CY OCT 05-08, 2015 CL Aix en Provence, FRANCE AB In this work we describe the development and application of computational methods for processing neutron cross section data in the unresolved resonance region (URR). These methods are integrated with a continuous-energy Monte Carlo neutron transport code, thereby enabling their use in high-fidelity analyses. Enhanced understanding of the effects of URR evaluation representations on calculated results is then obtained through utilization of the methods in Monte Carlo integral benchmark simulations of fast spectrum critical assemblies. First, we present a so-called on-the-fly (OTF) method for calculating and Doppler broadening URR cross sections. This method proceeds directly from ENDF-6 average unresolved resonance parameters and, thus, eliminates any need for a probability table generation pre-processing step in which tables are constructed at several energies for all desired temperatures. Significant memory reduction may be realized with the OTF method relative to a probability table treatment if many temperatures are needed. Next, we examine the effects of using a multi-level resonance formalism for resonance reconstruction in the URR. A comparison of results obtained by using the same stochastically-generated realization of resonance parameters in both the single-level Breit-Wigner (SLBW) and multi-level Breit-Wigner (MLBW) formalisms allows for the quantification of level-level interference effects on integrated tallies such as k(eff) and energy group reaction rates. Though, as is well-known, cross section values at any given incident energy may differ significantly between single-level and multi-level formulations, the observed effects on integral results are minimal in this investigation. Finally, we demonstrate the calculation of true expected values, and the statistical spread of those values, through independent Monte Carlo simulations, each using an independent realization of URR cross section structure throughout. It is observed that both probability table and OTF treatments reproduce the true expected values, calculated by averaging the results of many independent simulations, quite well. However, the spread of independent calculation results is shown to be relatively significant. The k(eff) eigenvalues for fast spectrum systems can differ by more than 250 pcm from one simulation to the next. C1 [Walsh, Jonathan A.; Forget, Benoit; Smith, Kord S.] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave,24-107, Cambridge, MA 02139 USA. [Walsh, Jonathan A.; Brown, Forrest B.] Los Alamos Natl Lab, XCP 3, Monte Carlo Methods Codes & Appl, POB 1663, Los Alamos, NM 87545 USA. RP Walsh, JA (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave,24-107, Cambridge, MA 02139 USA.; Walsh, JA (reprint author), Los Alamos Natl Lab, XCP 3, Monte Carlo Methods Codes & Appl, POB 1663, Los Alamos, NM 87545 USA. EM walshjon@mit.edu NR 12 TC 0 Z9 0 U1 2 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X BN 978-2-7598-1970-6 J9 EPJ WEB CONF PY 2016 VL 111 AR 06001 DI 10.1051/epjconf/201611106001 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BE5FX UT WOS:000372797000017 ER PT J AU Kotwal, AV Jayatilaka, B AF Kotwal, Ashutosh V. Jayatilaka, Bodhitha TI Comparison of horace and photos Algorithms for Multiphoton Emission in the Context of W Boson Mass Measurement SO ADVANCES IN HIGH ENERGY PHYSICS LA English DT Article AB W boson mass measurement is sensitive to QED radiative corrections due to virtual photon loops and real photon emission. The largest shift in the measured mass, which depends on the transverse momentum spectrum of the charged lepton from the boson decay, is caused by the emission of real photons from the final-state lepton. There are a number of calculations and codes available to model the final-state photon emission. We perform a detailed study, comparing the results from horace and photos implementations of the final-state multiphoton emission in the context of a direct measurement of W boson mass at Tevatron. Mass fits are performed using a simulation of the CDF II detector. C1 [Kotwal, Ashutosh V.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Jayatilaka, Bodhitha] Fermilab Natl Accelerator Lab, Sci Comp Div, POB 500, Batavia, IL 60510 USA. RP Kotwal, AV (reprint author), Duke Univ, Dept Phys, Durham, NC 27708 USA. EM ashutosh.kotwal@duke.edu FU U.S. Department of Energy, Office of High Energy Physics; Fermi National Accelerator Laboratory (Fermilab); United States Department of Energy [DE-AC02-07CH11359] FX The authors wish to thank Ilija Bizjak for his assistance with the HORACE program and Zbigniew Was for providing the interface to the photos program. The authors wish to thank William Ashmanskas, Franco Bedeschi, Daniel Beecher, Ilija Bizjak, Kenichi Hatakeyama, Christopher Hays, Mark Lancaster, Sarah Malik, Larry Nodulman, Peter Renton, Tom Riddick, Ravi Shekhar, Melvyn Shochet, Oliver Stelzer-Chilton, Siyuan Sun, David Waters, Yu Zeng, and other colleagues in the CDF Collaboration for helpful discussions. They also thank Carlo Carloni Calame, Guido Montagna, Alessandro Vicini, Doreen Wackeroth, and Zbigniew Was for discussions regarding electroweak radiative corrections. They acknowledge the support of the U.S. Department of Energy, Office of High Energy Physics, and the Fermi National Accelerator Laboratory (Fermilab). The computational resources used in this study were provided by Fermilab. Fermilab is operated by Fermi Research Alliance, LLC, under Contract no. DE-AC02-07CH11359 with the United States Department of Energy. NR 15 TC 0 Z9 0 U1 1 U2 1 PU HINDAWI PUBLISHING CORP PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-7357 EI 1687-7365 J9 ADV HIGH ENERGY PHYS JI Adv. High. Energy Phys. PY 2016 AR 1615081 DI 10.1155/2016/1615081 PG 9 WC Physics, Particles & Fields SC Physics GA DH2RM UT WOS:000372633800001 ER PT J AU Polisetti, S Bible, AN Morrell-Falvey, JL Bohn, PW AF Polisetti, Sneha Bible, Amber N. Morrell-Falvey, Jennifer L. Bohn, Paul W. TI Raman chemical imaging of the rhizosphere bacterium Pantoea sp YR343 and its co-culture with Arabidopsis thaliana SO ANALYST LA English DT Article ID SURFACE-ENHANCED RAMAN; GROWTH-PROMOTING RHIZOBACTERIA; RESONANCE RAMAN; PLANT-GROWTH; MASS-SPECTROMETRY; SCATTERING SERS; SPECTROSCOPY; SILVER; MICROSCOPY; NANOPARTICLES AB Chemical imaging of plant-bacteria co-cultures makes it possible to characterize bacterial populations and behaviors and their interactions with proximal organisms, under conditions closest to the environment in the rhizosphere. Here Raman micro-spectroscopy and confocal Raman imaging are used as minimally invasive probes to study the rhizosphere bacterial isolate, Pantoea sp. YR343, and its co-culture with model plant Arabidopsis thaliana by combining enhanced Raman spectroscopies with electron microscopy and principal component analysis (PCA). The presence of carotenoid pigments in the wild type Pantoea sp. YR343 was characterized using resonance Raman scattering, which was also used to confirm successful disruption of the crtB gene in an engineered carotenoid mutant strain. Other components of the Pantoea sp. YR343 cells were imaged in the presence of resonantly enhanced pigments using a combination of surface enhanced Raman imaging and PCA. Pantoea sp. YR343 cells decorated with Ag colloid synthesized ex situ gave spectra dominated by carotenoid scattering, whereas colloids synthesized in situ produced spectral signatures characteristic of flavins in the cell membrane. Scanning electron microscopy (SEM) of whole cells and transmission electron microscopy (TEM) images of thinly sliced cross-sections were used to assess structural integrity of the coated cells and to establish the origin of spectral signatures based on the position of Ag nanoparticles in the cells. Raman imaging was also used to characterize senescent green Arabidopsis thaliana plant roots inoculated with Pantoea sp. YR343, and PCA was used to distinguish spectral contributions from plant and bacterial cells, thereby establishing the potential of Raman imaging to visualize the distribution of rhizobacteria on plant roots. C1 [Polisetti, Sneha; Bohn, Paul W.] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA. [Bible, Amber N.; Morrell-Falvey, Jennifer L.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Bohn, Paul W.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. RP Bohn, PW (reprint author), Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA.; Bohn, PW (reprint author), Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. EM pbohn@nd.edu RI Morrell-Falvey, Jennifer/A-6615-2011 OI Morrell-Falvey, Jennifer/0000-0002-9362-7528 FU Department of Energy through Oak Ridge National Laboratory (PTX-UT-Battelle) [ORNL-4000132808]; Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Area; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by Department of Energy through a subcontract from Oak Ridge National Laboratory (PTX-UT-Battelle), grant ORNL-4000132808. (SP). Work at ORNL was sponsored by the Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). Oak Ridge National Laboratory is managed by UT-Battelle LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The authors acknowledge W. Archer and T. Orlova (University of Notre Dame, Notre Dame) for experimental advice and assistance with TEM and SEM sample preparation and image acquisition. We also acknowledge R. Masyuko for her preliminary work in characterizing the bacterial strains and D. A. Wheatcraft who developed the PCA codes. NR 53 TC 0 Z9 0 U1 10 U2 23 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 EI 1364-5528 J9 ANALYST JI Analyst PY 2016 VL 141 IS 7 BP 2175 EP 2182 DI 10.1039/c6an00080k PG 8 WC Chemistry, Analytical SC Chemistry GA DH3AB UT WOS:000372657900007 PM 26948490 ER PT J AU Wang, SQ Thomas, A Lee, E Yang, S Cheng, XH Liu, YL AF Wang, Shunqiang Thomas, Antony Lee, Elaine Yang, Shu Cheng, Xuanhong Liu, Yaling TI Highly efficient and selective isolation of rare tumor cells using a microfluidic chip with wavy-herringbone micro-patterned surfaces SO ANALYST LA English DT Article ID CANCER-CELLS; PROSTATE-CANCER; CAPTURE; MICROMIXERS; DEVICES; RELEASE; MICROVORTEX; LITHOGRAPHY; ENRICHMENT; PARTICLES AB Circulating tumor cells (CTCs) in peripheral blood have been recognized as a general biomarker for diagnosing cancer and providing guidance for personalized treatments. Yet due to their rarity, the challenge for their clinical utility lies in the efficient isolation while avoiding the capture of other non-targeted white blood cells (WBCs). In this paper, a wavy-herringbone (HB) microfluidic chip coated with antibody directly against epithelial cell adhesion molecule (anti-EpCAM) was developed for highly efficient and selective isolation of tumor cells from tumor cell-spiked whole blood samples. By extending the concept of the hallmark HB-Chip in the literature, the wavy-HB chip not only achieves high capture efficiency (up to 85.0%) by micro-vortexes induced by HB structures, but also achieves high purity (up to 39.4%) due to the smooth wavy microstructures. These smooth wavy-HB structures eliminate the ultra-low shear rate regions in the traditional grooved-HB structures that lead to non-specific trapping of cells. Compared with the grooved-HB chip with sharp corners, the wavy-HB chip shows significantly higher purity while maintaining similarly high capture efficiency. Furthermore, the wavy-HB chip has up to 11% higher captured cell viability over the grooved-HB chip. The distributions of tumor cells and WBCs along the grooves and waves are investigated to help understand the mechanisms behind the better performance of the wavy-HB chip. The wavy-HB chip may serve as a promising platform for CTC capture and cancer diagnosis. C1 [Wang, Shunqiang; Liu, Yaling] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA. [Thomas, Antony; Cheng, Xuanhong; Liu, Yaling] Lehigh Univ, Bioengn Program, Bethlehem, PA 18015 USA. [Lee, Elaine] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lee, Elaine; Yang, Shu] Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA. [Cheng, Xuanhong] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. RP Liu, YL (reprint author), Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA.; Liu, YL (reprint author), Lehigh Univ, Bioengn Program, Bethlehem, PA 18015 USA. EM yal310@lehigh.edu RI Wang, Shunqiang/L-1622-2016; Yang, Shu/D-9758-2011 OI Wang, Shunqiang/0000-0003-2339-8130; FU National Science Foundation (NSF) [CBET-1264808, DMS-1516236]; National Institute of Health (NIH) [EB015105]; NSF [CBET-1263940] FX This work was supported in part by National Science Foundation (NSF) grant CBET-1264808 (to Y. Liu and X. Cheng), DMS-1516236 (to Y. Liu), and National Institute of Health (NIH) grant EB015105 (to Y. Liu), NSF grant CBET-1263940 (to S. Yang). The authors thank Dr. Younghyun Cho in the University of Pennsylvania for helpful discussions and suggestions, Dr. Susan Perry in Lehigh University for sharing lab facilities and Dr. Lynne Cassimeris in Lehigh University for sharing the HCT-116 cell line. NR 54 TC 6 Z9 6 U1 8 U2 31 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 EI 1364-5528 J9 ANALYST JI Analyst PY 2016 VL 141 IS 7 BP 2228 EP 2237 DI 10.1039/c6an00236f PG 10 WC Chemistry, Analytical SC Chemistry GA DH3AB UT WOS:000372657900013 PM 26907962 ER PT J AU Tang, YT Rosenberg, JN Bohutskyi, P Yu, G Betenbaugh, MJ Wang, F AF Tang, Yuting Rosenberg, Julian N. Bohutskyi, Pavlo Yu, Geng Betenbaugh, Michael J. Wang, Fei TI Microalgae as a Feedstock for Biofuel Precursors and Value-Added Products: Green Fuels and Golden Opportunities SO BIORESOURCES LA English DT Review DE Microalgae; Biofuels; Biochemicals; Lipid Profiles; Algal Strain Development ID IN-SITU TRANSESTERIFICATION; FATTY-ACID-COMPOSITION; ELEVATED CO2 CONCENTRATION; ALGA SCENEDESMUS-QUADRICAUDA; CELL-WALL POLYSACCHARIDES; WASTE-WATER TREATMENT; CHLORELLA-VULGARIS; BIODIESEL PRODUCTION; LIGHT-INTENSITY; CHLAMYDOMONAS-REINHARDTII AB The prospects of biofuel production from microalgal carbohydrates and lipids coupled with greenhouse gas mitigation due to photosynthetic assimilation of CO2 have ushered in a renewed interest in algal feedstock. Furthermore, microalgae (including cyanobacteria) have become established as commercial sources of value-added biochemicals such as polyunsaturated fatty acids and carotenoid pigments used as antioxidants in nutritional supplements and cosmetics. This article presents a comprehensive synopsis of the metabolic basis for accumulating lipids as well as applicable methods of lipid and cellulose bioconversion and final applications of these natural or refined products from microalgal biomass. For lipids, one-step in situ transesterification offers a new and more accurate approach to quantify oil content. As a complement to microalgal oil fractions, the utilization of cellulosic biomass from microalgae to produce bioethanol by fermentation, biogas by anaerobic digestion, and bio-oil by hydrothermal liquefaction are discussed. Collectively, a compendium of information spanning green renewable fuels and value-added nutritional compounds is provided. C1 [Tang, Yuting; Wang, Fei] Nanjing Forestry Univ, Jiangsu Key Lab Biomass Based Green Fuels & Chem, Coll Chem Engn, 159 Longpan St, Nanjing 210037, JS, Peoples R China. [Rosenberg, Julian N.; Bohutskyi, Pavlo; Yu, Geng; Betenbaugh, Michael J.] Johns Hopkins Univ, Dept Chem & Biomol Engn, 3400 N Charles St, Baltimore, MD 21218 USA. [Bohutskyi, Pavlo] Pacific NW Natl Lab, Div Biol Sci, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Wang, F (reprint author), Nanjing Forestry Univ, Jiangsu Key Lab Biomass Based Green Fuels & Chem, Coll Chem Engn, 159 Longpan St, Nanjing 210037, JS, Peoples R China. EM hgwf@njfu.edu.cn FU Natural Science Foundation of Jiangsu Universities [11KJA480001]; national Natural Science Foundation of China [31170537]; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD); National Science Foundation [NSF-EFRI-1332344]; DOE DE [SC0012658]; Johns Hopkins Environment, Energy, Sustainability & Health Institute (E2SHI) FX The authors gratefully acknowledge the financial support from the Natural Science Foundation of Jiangsu Universities (11KJA480001), the national Natural Science Foundation of China (31170537) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Partial support was also provided by grant number NSF-EFRI-1332344 from the National Science Foundation (MJB), DOE DE SC0012658 grant (MJB) and a fellowship to JNR from the Johns Hopkins Environment, Energy, Sustainability & Health Institute (E2SHI). NR 203 TC 2 Z9 2 U1 9 U2 16 PU NORTH CAROLINA STATE UNIV DEPT WOOD & PAPER SCI PI RALEIGH PA CAMPUS BOX 8005, RALEIGH, NC 27695-8005 USA SN 1930-2126 J9 BIORESOURCES JI BioResources PY 2016 VL 11 IS 1 BP 2850 EP 2885 PG 36 WC Materials Science, Paper & Wood SC Materials Science GA DG8GO UT WOS:000372321200075 ER PT J AU Flood, D Proulx, C Robertson, EJ Battigelli, A Wang, S Schwartzberg, AM Zuckermann, RN AF Flood, Dillon Proulx, Caroline Robertson, Ellen J. Battigelli, Alessia Wang, Shuo Schwartzberg, Adam M. Zuckermann, Ronald N. TI Improved chemical and mechanical stability of peptoid nanosheets by photo-crosslinking the hydrophobic core SO CHEMICAL COMMUNICATIONS LA English DT Article ID ARYL HALIDES; NONBIOLOGICAL POLYMER; SECONDARY-STRUCTURE; UNACTIVATED ARENES; SIDE-CHAINS; ARYLATION; BENZENE AB Peptoid nanosheets can be broadly functionalized for a variety of applications. However, they are susceptible to degradation when exposed to chemical or mechanical stress. To improve their strength, photolabile monomers were introduced in order to crosslink the nanosheet interior. Photo-crosslinking produced a more robust material that can survive sonication, lyophilization, and other biochemical manipulations. C1 [Flood, Dillon; Proulx, Caroline; Robertson, Ellen J.; Battigelli, Alessia; Wang, Shuo; Schwartzberg, Adam M.; Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Zuckermann, RN (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov FU Defense Threat Reduction Agency [DTRA10027-15875]; DARPA Fold F(x) program; Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy [DEAC02-05CH11231]; Natural Sciences and Engineering Council of Canada (NSERC); Advanced Light Source, at Lawrence Berkeley National Laboratory FX This project was funded by the Defense Threat Reduction Agency under Contract No. DTRA10027-15875 and the DARPA Fold F(x) program. The work was conducted at the Molecular Foundry with support from the Advanced Light Source, at Lawrence Berkeley National Laboratory, both of which are supported by the Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DEAC02-05CH11231. We also thank R. Garcia, M. Connolly and B. Rad for their insightful discussions and inspiration. C. P. is grateful for a postdoctoral fellowship from the Natural Sciences and Engineering Council of Canada (NSERC). NR 31 TC 1 Z9 1 U1 6 U2 24 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 26 BP 4753 EP 4756 DI 10.1039/c6cc00588h PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DH3BN UT WOS:000372662100003 PM 26864502 ER PT J AU Leggett, CJ Parker, BF Teat, SJ Zhang, Z Dau, PD Lukens, WW Peterson, SM Cardenas, AJP Warner, MG Gibson, JK Arnold, J Rao, L AF Leggett, C. J. Parker, B. F. Teat, S. J. Zhang, Z. Dau, P. D. Lukens, W. W. Peterson, S. M. Cardenas, A. J. P. Warner, M. G. Gibson, J. K. Arnold, J. Rao, L. TI Structural and spectroscopic studies of a rare non-oxido V(v) complex crystallized from aqueous solution SO CHEMICAL SCIENCE LA English DT Article ID VANADIUM(V) COMPLEXES; SEA WATER; X-RAY; URANIUM; SEAWATER; AMAVADIN; EXTRACTION; AMIDOXIME; RECOVERY; STEREOCHEMISTRY AB A non-oxido V(V) complex with glutaroimide-dioxime (H3L), a ligand for recovering uranium from seawater, was synthesized from aqueous solution as Na[V(L)(2)]center dot 2H(2)O, and the structure determined by X-ray diffraction. It is the first non-oxido V(V) complex that has been directly synthesized in and crystallized from aqueous solution. The distorted octahedral structure contains two fully deprotonated ligands (L3-) coordinating to V5+, each in a tridentate mode via the imide N (RV-N = 1.96 angstrom) and oxime O atoms (RV-O = 1.87-1.90 angstrom). Using O-17-labelled vanadate as the starting material, concurrent O-17/V-51/H-1/C-13 NMR, in conjunction with ESI-MS, unprecedentedly demonstrated the stepwise displacement of the oxido V=O bonds by glutaroimide-dioxime and verified the existence of the "bare" V5+/glutaroimide-dioxime complex, [V(L)(2)](-), in aqueous solution. In addition, the crystal structure of an intermediate 1 : 1 V(V)/glutaroimide-dioxime complex, [VO2(HL)](-), in which the oxido bonds of vanadate are only partially displaced, corroborates the observations by NMR and ESI-MS. Results from this work provide important insights into the strong sorption of vanadium on poly(amidoxime) sorbents in the recovery of uranium from seawater. Also, because vanadium plays important roles in biological systems, the syntheses of the oxido and non-oxido V5+ complexes and the unprecedented demonstration of the displacement of the oxido V=O bonds help with the on-going efforts to develop new vanadium compounds that could be of importance in biological applications. C1 [Leggett, C. J.; Parker, B. F.; Zhang, Z.; Dau, P. D.; Lukens, W. W.; Gibson, J. K.; Arnold, J.; Rao, L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Parker, B. F.; Arnold, J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Teat, S. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Peterson, S. M.; Warner, M. G.] Pacific NW Natl Lab, Natl Secur Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. [Cardenas, A. J. P.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. RP Rao, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Teat, SJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM SJTeat@lbl.gov; LRao@lbl.gov RI Arnold, John/F-3963-2012 OI Arnold, John/0000-0001-9671-227X FU Fuel Cycle Research and Development Campaign (FCRD)/Fuel Resources Program, Office of Nuclear Energy, the U.S. Department of Energy (USDOE), at Lawrence Berkeley National Laboratory (LBNL); Nuclear Energy University Program (NEUP) at University of California, Berkeley (UCB); USDOE, Office of Science, Office of Basic Energy Sciences; USDOE, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division (CSGB), Heavy Element Chemistry Program at LBNL [DE-AC02-05CH11231]; FCRD/Fuel Resources Program, Office of Nuclear Energy, USDOE, at Pacific Northwest National Laboratory (PNNL) FX C. J. Leggett and L. Rao were supported by the Fuel Cycle Research and Development Campaign (FCRD)/Fuel Resources Program, Office of Nuclear Energy, the U.S. Department of Energy (USDOE), at Lawrence Berkeley National Laboratory (LBNL). B. F. Parker and J. Arnold were supported by the Nuclear Energy University Program (NEUP) at University of California, Berkeley (UCB). Collection and analysis of the single-crystal X-ray diffraction data for Na[V(L)2]center dot 2H2O(cr) were performed by S. J. Teat at the Advanced Light Source (ALS) and supported by USDOE, Office of Science, Office of Basic Energy Sciences. Z. Zhang's work on 17O-labelled NMR and ESI-MS, W. W. Lukens' work on EPR, and P. D. Dau/J. K. Gibson's work on ethanol-spray ESI-MS were supported by USDOE, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division (CSGB), Heavy Element Chemistry Program under Contract No. DE-AC02-05CH11231 at LBNL. S. Peterson, A. J. P. Cardenas and M. Warner were supported by the FCRD/Fuel Resources Program, Office of Nuclear Energy, USDOE, at Pacific Northwest National Laboratory (PNNL). The authors thank Dr R. Nichiporuk and Dr Z. Zhou at the QB3/Mass Spectrometry Facility (UCB) for collecting the ESI-MS spectra (methanol spray). NR 44 TC 11 Z9 11 U1 12 U2 24 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2041-6520 EI 2041-6539 J9 CHEM SCI JI Chem. Sci. PY 2016 VL 7 IS 4 BP 2775 EP 2786 DI 10.1039/c5sc03958d PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA DH2KQ UT WOS:000372614800042 ER PT J AU Diaz-Torres, R Menelaou, M Roubeau, O Sorrenti, A Brandariz-de-Pedro, G Sanudo, EC Teat, SJ Fraxedas, J Ruiz, E Aliaga-Alcalde, N AF Diaz-Torres, Raul Menelaou, Melita Roubeau, Olivier Sorrenti, Alessandro Brandariz-de-Pedro, Guillem Carolina Sanudo, E. Teat, Simon J. Fraxedas, Jordi Ruiz, Eliseo Aliaga-Alcalde, Nuria TI Multiscale study of mononuclear Co-II SMMs based on curcuminoid ligands SO CHEMICAL SCIENCE LA English DT Article ID SINGLE-MOLECULE MAGNET; POSITIVE ANISOTROPY; COBALT(II) COMPLEX; ZERO-FIELD; RELAXATION; TRANSITION; ION; MANGANESE(II); FLUORESCENCE; NANOSCIENCE AB This work introduces a novel family of Co-II species having a curcuminoid (CCMoid) ligand, 9Accm, attached, namely [Co(9Accm)(2)(py)(2)] (1) and [Co(9Accm)(2)(2,2'-bpy)] (2), achieved in high yields by the use of a microwave reactor, and exhibiting two different arrangements for the 9Accm ligands, described as "cis"(2) and "trans"(1). The study of the similarities/differences of the magnetic, luminescent and surface behaviors of the two new species, 1 and 2, is the main objective of the present work. The determined single-crystal structures of both compounds are the only Co-II-CCMoid structures described in the literature so far. Both compounds exhibit large positive D values, that of 1 (D = +74 cm(-1)) being three times larger than that of 2 (D = +24 cm(-1)), and behave as mononuclear Single-Molecule Magnets (SMMs) in the presence of an external magnetic field. Their similar structures but different anisotropy and SMM characteristics provide, for the first time, deep insight on the spin-orbital effects thanks to the use of CASSCF/NEVPT2 calculations implementing such contributions. Further magnetic studies were performed in solution by means of paramagnetic H-1 NMR, where both compounds (1 and 2) are stable in CDCl3 and display high symmetry. Paramagnetic NMR appears to be a useful diagnostic tool for the identification of such molecules in solution, where the resonance values found for the methine group (-CH-) of 9Accm vary significantly depending on the cis or trans disposition of the ligands. Fluorescence studies show that both systems display chelation enhancement of quenching (CHEQ) with regard to the free ligand, while 1 and 2 display similar quantum yields. Deposition of 1-2 on HOPG and Si(100) surfaces using spin-coating was studied using AFM; UV photoemission experiments under the same conditions display 2 as the most robust system. The measured occupied density of states of 2 with UV photoemission is in excellent agreement with theoretical DFT calculations. C1 [Diaz-Torres, Raul; Menelaou, Melita; Brandariz-de-Pedro, Guillem; Carolina Sanudo, E.; Ruiz, Eliseo] Univ Barcelona, Dept Quim Inorgan, Diagonal 645, Barcelona 08028, Spain. [Roubeau, Olivier] CSIC, ICMA, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. [Roubeau, Olivier] Univ Zaragoza, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. [Sorrenti, Alessandro] ICMAB Inst Ciencia Mat Barcelona, CSIC, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Fraxedas, Jordi] CSIC, ICN2, Campus UAB, Barcelona 08193, Spain. [Fraxedas, Jordi] Barcelona Inst Sci & Technol, Campus UAB, Barcelona 08193, Spain. [Ruiz, Eliseo] Univ Barcelona, Inst Quim Teor & Computac, Diagonal 645, E-08028 Barcelona, Spain. [Aliaga-Alcalde, Nuria] ICMAB Inst Ciencia Mat Barcelona, CSIC, ICREA, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain. [Carolina Sanudo, E.] Univ Barcelona, Inst Nanociencia & Nanotecnol, Diagonal 645, E-08028 Barcelona, Spain. RP Aliaga-Alcalde, N (reprint author), ICMAB Inst Ciencia Mat Barcelona, CSIC, ICREA, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain. EM nuria.aliaga@icrea.cat RI Aliaga-Alcalde, Nuria/H-5886-2011; Menelaou, Melita/J-9511-2014; Roubeau, Olivier/A-6839-2010; Ruiz, Eliseo/A-6268-2011; Sanudo, E. Carolina/A-8384-2014 OI Aliaga-Alcalde, Nuria/0000-0003-1080-3862; Menelaou, Melita/0000-0001-7845-8802; Roubeau, Olivier/0000-0003-2095-5843; Ruiz, Eliseo/0000-0001-9097-8499; Sanudo, E. Carolina/0000-0001-9647-6406 FU MICINN (Spain) [CTQ2012-32247, CTQ2011-23862-C02-01, MAT2012-38319-C02, MAT2013-47869-C4-2-P]; Severo Ochoa Program (MINECO) [SEV-2013-0295]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC0205CH11231] FX The authors thank Dr N. Clos and Dr G. Oncins from the UB for their great assistance. This work was supported by the MICINN (Spain) (Projects CTQ2012-32247, CTQ2011-23862-C02-01, MAT2012-38319-C02 and MAT2013-47869-C4-2-P). ICN2 acknowledges support from the Severo Ochoa Program (MINECO, Grant SEV-2013-0295). ER thanks Generalitat de Catalunya (ICREA Academia). The Advanced Light Source (S. J. T.) is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract DE-AC0205CH11231. NR 68 TC 10 Z9 10 U1 10 U2 19 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2041-6520 EI 2041-6539 J9 CHEM SCI JI Chem. Sci. PY 2016 VL 7 IS 4 BP 2793 EP 2803 DI 10.1039/c5sc03298a PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA DH2KQ UT WOS:000372614800044 ER PT J AU Aromi, G Beavers, CM Costa, JS Craig, GA Espallargas, GM Orera, A Roubeau, O AF Aromi, G. Beavers, C. M. Sanchez Costa, J. Craig, G. A. Minguez Espallargas, G. Orera, A. Roubeau, O. TI Snapshots of a solid-state transformation: coexistence of three phases trapped in one crystal SO CHEMICAL SCIENCE LA English DT Article ID POROUS COORDINATION POLYMER; METAL-ORGANIC FRAMEWORK; X-RAY-ANALYSIS; SINGLE-CRYSTAL; SPIN-CROSSOVER; MOLECULAR MATERIAL; NETWORK; COMPLEX AB Crystal-to-crystal transformations have been crucial in the understanding of solid-state processes, since these may be studied in detail by means of single crystal X-ray diffraction (SCXRD) techniques. The description of the mechanisms and potential intermediates of those processes remains very challenging. In fact, solid-state transient states have rarely been observed, at least to a sufficient level of detail. We have investigated the process of guest extrusion from the non-porous molecular material [Fe(bpp)(H2L)](ClO4)(2)center dot 1.5C(3)H(6)O (bpp = 2,6-bis(pyrazol-3-yl) pyridine; H2L = 2,6-bis(5-(2-methoxyphenyl)- pyrazol-3-yl) pyridine; C3H6O = acetone), which occurs through ordered diffusion of acetone in a crystal-to-crystal manner, leading to dramatic structural changes. The slow kinetics of the transition allows thermal trapping of the system at various intermediate stages. The transiting single crystal can be then examined at these points through synchrotron SCXRD, offering a window upon the mechanism of the transformation at the molecular scale. These experiments have unveiled the development of an ordered intermediate phase, distinct from the initial and the final states, coexisting as the process advances with either of these two phases or, at a certain moment with both of them. The new intermediate phase has been structurally characterized in full detail by SCXRD, providing insights into the mechanism of this diffusion triggered solid-state phenomenon. The process has been also followed by calorimetry, optical microscopy, local Raman spectroscopy and powder X-ray diffraction. The discovery and description of an intermediate ordered state in a molecular solid-state transformation is of great interest and will help to understand the mechanistic details and reaction pathways underlying these transformations. C1 [Aromi, G.; Sanchez Costa, J.; Craig, G. A.] Univ Barcelona, Dept Quim Inorgan, Diagonal 645, Barcelona 08028, Spain. [Beavers, C. M.] Berkeley Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Minguez Espallargas, G.] Univ Valencia, Inst Ciencia Mol ICMol, C Catedratico Jose Beltran 2, Paterna 46980, Spain. [Orera, A.; Roubeau, O.] CSIC, ICMA, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. [Orera, A.; Roubeau, O.] Univ Zaragoza, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. RP Aromi, G (reprint author), Univ Barcelona, Dept Quim Inorgan, Diagonal 645, Barcelona 08028, Spain.; Beavers, CM (reprint author), Berkeley Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Roubeau, O (reprint author), CSIC, ICMA, Plaza San Francisco S-N, E-50009 Zaragoza, Spain.; Roubeau, O (reprint author), Univ Zaragoza, Plaza San Francisco S-N, E-50009 Zaragoza, Spain. EM guillem.aromi@qi.ub.es; cmbeavers@lbl.gov; roubeau@unizar.es RI Aromi, Guillem/I-2483-2015; Roubeau, Olivier/A-6839-2010; Beavers, Christine/C-3539-2009; Orera, Alodia/B-9524-2009; Minguez Espallargas, Guillermo/D-3164-2013; Sanchez Costa, Jose/N-9085-2014 OI Aromi, Guillem/0000-0002-0997-9484; Roubeau, Olivier/0000-0003-2095-5843; Beavers, Christine/0000-0001-8653-5513; Minguez Espallargas, Guillermo/0000-0001-7855-1003; Sanchez Costa, Jose/0000-0001-5426-7956 FU ERC [258060]; Spanish MICINN [MAT2011-24284, CTQ2012-32247, CTQ-2014-59209-P]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Juan de la Cierva; Ramon y Cajal FX GA thanks the Generalitat de Catalunya for the prize ICREA Academia 2008 and 2013, for excellence in research and the ERC for a Starting Grant (258060 FuncMolQIP). The authors thank the Spanish MICINN for funding through MAT2011-24284 (OR), CTQ2012-32247 (GA, GAC and JSC), CTQ-2014-59209-P (GME), a "Juan de la Cierva" (JSC) and "Ramon y Cajal" (GME) fellowship. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 42 TC 8 Z9 8 U1 6 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2041-6520 EI 2041-6539 J9 CHEM SCI JI Chem. Sci. PY 2016 VL 7 IS 4 BP 2907 EP 2915 DI 10.1039/c5sc04287a PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DH2KQ UT WOS:000372614800057 ER PT J AU Dion, M AF Dion, Michael TI Improving Alpha Spectrometry Energy Resolution by Ion Implantation with ICP-MS Reply SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Letter C1 [Dion, Michael] Pacific Northwest Natl Lab, Richland, WA USA. RP Dion, M (reprint author), Pacific Northwest Natl Lab, Richland, WA USA. EM michael.dion@pnnl.gov OI Dion, Michael/0000-0002-3030-0050 NR 0 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JAN PY 2016 VL 307 IS 1 BP 7 EP 7 DI 10.1007/s10967-015-4167-5 PG 1 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DG7LD UT WOS:000372264900004 ER PT J AU Steeb, JL Mertz, CJ Finck, MR Engelstad, G Carney, KP Chamberlain, DB AF Steeb, Jennifer L. Mertz, Carol J. Finck, Martha R. Engelstad, Gary Carney, Kevin P. Chamberlain, David B. TI Impact of an external radiation field on handheld XRF measurements for nuclear forensics applications SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Handheld XRF; Portable; Nuclear forensics; RDD; Dead-time ID X-RAY-FLUORESCENCE; PORTABLE XRF; SAMPLES; RAMAN AB X-ray fluorescence (XRF) is an attractive technique for nuclear forensics applications. We evaluated a handheld XRF device by applying an external radiation field (10 mR/h-17 R/h) using two types of radiography sources: a Co-60 radiography camera for high-energy gamma emissions and an 192 Ir radiography camera for several low-energy gamma (0.604, 0.468, and 0.317 MeV) and decay daughter X-ray emissions. External radiation tests proved that radiation, in general, has a significant effect on the dead time or background at dose rates over 1 R/h for both the Ir-192 and Co-60 sources. C1 [Steeb, Jennifer L.; Mertz, Carol J.; Chamberlain, David B.] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. [Finck, Martha R.; Engelstad, Gary; Carney, Kevin P.] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. RP Steeb, JL (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM steeb@anl.gov FU U.S. Department of Energy, Nuclear Energy Research and Development Program [W-31-109-ENG-38]; UChicago Argonne, LLC; Battelle Energy Alliance, LLC [DE-AC07-05ID14517, DE-AC02-06CH11357]; U.S. Department of Energy FX The authors acknowledge the U.S. Department of Energy, Nuclear Energy Research and Development Program under Contract no. W-31-109-ENG-38 for funding. This manuscript has been authored by UChicago Argonne, LLC, and Battelle Energy Alliance, LLC, under Contracts no. DE-AC07-05ID14517 and DE-AC02-06CH11357 with the U.S. Department of Energy. The United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 16 TC 0 Z9 0 U1 5 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD JAN PY 2016 VL 307 IS 1 BP 751 EP 760 DI 10.1007/s10967-015-4105-6 PG 10 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DG7LD UT WOS:000372264900092 ER PT J AU Zhang, F Nemeth, K Bareno, J Dogan, F Bloom, ID Shaw, LL AF Zhang, Fan Nemeth, Karoly Bareno, Javier Dogan, Fulya Bloom, Ira D. Shaw, Leon L. TI Experimental and theoretical investigations of functionalized boron nitride as electrode materials for Li-ion batteries SO RSC ADVANCES LA English DT Article ID EXFOLIATION PROCESS; GRAPHENE OXIDE; NANOSHEETS; STORAGE; CHALLENGES; STABILITY; NANOTUBES; ENERGY; ANODE AB The feasibility of synthesizing functionalized h-BN (FBN) via the reaction between molten LiOH and solid h-BN is studied for the first time and its first ever application as an electrode material in Li-ion batteries is evaluated. Density functional theory (DFT) calculations are performed to provide mechanistic understanding of the possible electrochemical reactions derived from the FBN. Various materials characterizations reveal that the melt-solid reaction can lead to exfoliation and functionalization of h-BN simultaneously, while electrochemical analysis proves that the FBN can reversibly store charges through surface redox reactions with good cycle stability and coulombic efficiency. DFT calculations have provided physical insights into the observed electrochemical properties derived from the FBN. C1 [Zhang, Fan; Shaw, Leon L.] IIT, Mech Mat & Aerosp Engn Dept, Chicago, IL 60616 USA. [Nemeth, Karoly] IIT, Dept Phys, Chicago, IL 60616 USA. [Bareno, Javier; Dogan, Fulya; Bloom, Ira D.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Shaw, LL (reprint author), IIT, Mech Mat & Aerosp Engn Dept, Chicago, IL 60616 USA.; Nemeth, K (reprint author), IIT, Dept Phys, Chicago, IL 60616 USA. EM nemeth@agni.phys.iit.edu; lshaw2@iit.edu NR 41 TC 1 Z9 1 U1 19 U2 38 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 33 BP 27901 EP 27914 DI 10.1039/c6ra03141b PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA DH2VD UT WOS:000372644100073 ER PT J AU Balestra, P Giannetti, F Caruso, G Alfonsi, A AF Balestra, P. Giannetti, F. Caruso, G. Alfonsi, A. TI New RELAP5-3D Lead and LBE Thermophysical Properties Implementation for Safety Analysis of Gen IV Reactors SO SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS LA English DT Article ID SOFT-SPHERE EQUATION; STATE AB The latest versions of RELAP5-3D(C) code allow the simulation of thermodynamic system, using different type of working fluids, that is, liquid metals, molten salt, diathermic oil, and so forth, thanks to the ATHENA code integration. The RELAP5-3D(C) water thermophysical properties are largely verified and validated; however there are not so many experiments to generate the liquid metals ones in particular for the Lead and the Lead Bismuth Eutectic. Recently, new and more accurate experimental data are available for liquid metals. The comparison between these state-of-the-art data and the RELAP5-3D(C) default thermophysical properties shows some discrepancy; therefore a tool for the generation of new properties binary files has been developed. All the available data came from experiments performed at atmospheric pressure. Therefore, to extend the pressure domain below and above this pressure, the tool fits a semiempirical model (soft sphere model with inverse-power-law potential), specific for the liquid metals. New binary files of thermophysical properties, with a detailed mesh grid of point to reduce the code mass error (especially for the Lead), were generated with this tool. Finally, calculations using a simple natural circulation loop were performed to understand the differences between the default and the new properties. C1 [Balestra, P.; Giannetti, F.; Caruso, G.] Univ Roma La Sapienza, Dept Astronaut Elect & Energy Engn, Corso Vittorio Emanuele II 244, I-00186 Rome, Italy. [Alfonsi, A.] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83402 USA. RP Balestra, P (reprint author), Univ Roma La Sapienza, Dept Astronaut Elect & Energy Engn, Corso Vittorio Emanuele II 244, I-00186 Rome, Italy. EM paolo.balestra@uniroma1.it RI Caruso, Gianfranco/D-9598-2011; Giannetti, Fabio/E-6727-2012 OI Caruso, Gianfranco/0000-0001-6137-9235; Giannetti, Fabio/0000-0003-1005-7492 NR 12 TC 0 Z9 0 U1 2 U2 8 PU HINDAWI PUBLISHING CORP PI NEW YORK PA 315 MADISON AVE 3RD FLR, STE 3070, NEW YORK, NY 10017 USA SN 1687-6075 EI 1687-6083 J9 SCI TECHNOL NUCL INS JI Sci. Technol. Nucl. Install. PY 2016 AR 1687946 DI 10.1155/2016/1687946 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DH2LK UT WOS:000372617100001 ER PT S AU Bazilevsky, A AF Bazilevsky, A. CA RHIC Spin Collaboration GP IOP TI The RHIC Spin Program Overview SO XVI WORKSHOP ON HIGH ENERGY SPIN PHYSICS (D-SPIN2015) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 16th Workshop on High Energy Spin Physics (D-SPIN) CY SEP 08-12, 2015 CL Dubna, RUSSIA ID DEEP-INELASTIC-SCATTERING; ASYMMETRIES; PROTON AB After more than a decade of RHIC running as a polarized proton collider, we summarize recent achievements of the RHIC spin program and their impact on our understanding of the nucleon's spin structure, i.e. the individual parton (quarks and gluons) contributions to the helicity structure of the nucleon, and to understand the origin of the transverse spin phenomena. Open questions are identified and a suite of future measurements with polarized beams at RHIC to address them is laid out. C1 [Bazilevsky, A.; RHIC Spin Collaboration] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Bazilevsky, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM shura@bnl.gov NR 38 TC 0 Z9 0 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2016 VL 678 AR 012059 DI 10.1088/1742-6596/678/1/012059 PG 8 WC Physics, Particles & Fields SC Physics GA BE4ZK UT WOS:000372400500059 ER PT S AU Filatov, Y Kondratenko, AM Kondratenko, MA Kovalenko, A Derbenev, YS Lin, F Morozov, VS Zhang, Y AF Filatov, Yu Kondratenko, A. M. Kondratenko, M. A. Kovalenko, A. Derbenev, Ya S. Lin, F. Morozov, V. S. Zhang, Y. GP IOP TI Superconducting racetrack booster for the ion complex of MEIC SO XVI WORKSHOP ON HIGH ENERGY SPIN PHYSICS (D-SPIN2015) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 16th Workshop on High Energy Spin Physics (D-SPIN) CY SEP 08-12, 2015 CL Dubna, RUSSIA AB The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c. The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex. C1 [Kondratenko, A. M.; Kondratenko, M. A.] Sci & Tech Lab Zaryad, Novosibirsk 630090, Russia. [Filatov, Yu; Kovalenko, A.] Joint Inst Nucl Res, Dubna 141980, Russia. [Filatov, Yu] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia. [Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.] Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. RP Kondratenko, AM (reprint author), Sci & Tech Lab Zaryad, Novosibirsk 630090, Russia. EM kondratenkom@mail.ru RI Filatov, Yury/D-8894-2016 OI Filatov, Yury/0000-0002-4783-9079 NR 12 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2016 VL 678 AR 012015 DI 10.1088/1742-6596/678/1/012015 PG 4 WC Physics, Particles & Fields SC Physics GA BE4ZK UT WOS:000372400500015 ER PT S AU Abdelrahman, M ElBatanouny, M Serrato, M Dixon, K Larosche, C Ziehl, P AF Abdelrahman, Marwa ElBatanouny, Mohamed Serrato, Michael Dixon, Kenneth Larosche, Carl Ziehl, Paul BE Chimenti, DE Bond, LJ TI Classification of Alkali-Silica Reaction and Corrosion Distress Using Acoustic Emission SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs AB The Nuclear Regulatory Commission regulates approximately 100 commercial nuclear power reactor facilities that contribute about 20% of the total electric energy produced in the United States. Half of these reactor facilities are over 30 years old and are approaching their original design service life. Due to economic and durability considerations, significant portions of many of the facilities were constructed with reinforced concrete, including the containment facilities, cooling towers, and foundations. While most of these concrete facilities have performed exceptionally well throughout their initial expected service life, some are beginning to exhibit different forms of concrete deterioration. In this study, acoustic emission (AE) is used to monitor two main concrete deterioration mechanisms; alkali-silica reaction (ASR) distress and corrosion of reinforcing steel. An accelerated ASR test was conducted where specimens were continuously monitored with AE. The results show that AE can detect and classify damage due to ASR distress in the specimens. AE was also used to remotely monitor active corrosion regions in a reactor facility. AE monitoring of accelerated corrosion testing was also conducted on a concrete block specimen cut from a similar reactor building. Electrochemical measurements were conducted to correlate AE activity to quantifiable corrosion measurements and to enhance capabilities for service life prediction. C1 [Abdelrahman, Marwa; Ziehl, Paul] Univ S Carolina, Dept Civil & Environm Engn, 300 Main St, Columbia, SC 29208 USA. [ElBatanouny, Mohamed] Wiss Janney Elstner & Associates Inc, 330 Pfingsten Rd, Northbrook, IL 60062 USA. [Serrato, Michael; Dixon, Kenneth] Savannah River Natl Lab, Environm Restorat Technol Sect, Aiken, SC 29808 USA. [Larosche, Carl] Wiss Janney Eviler Associates Inc, 9511 N Lake Creek Pkwy, Austin, TX 78717 USA. RP Ziehl, P (reprint author), Univ S Carolina, Dept Civil & Environm Engn, 300 Main St, Columbia, SC 29208 USA. EM abdelram@email.sc.edu; melbatanouny@wje.com; michael.serrato@srnl.doe.gov; kenneth.dixon@srnl.doe.gov; clarosche@wje.com; ziehl@cec.sc.edu NR 15 TC 0 Z9 0 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 140001 DI 10.1063/1.4940610 PG 10 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800164 ER PT S AU Almansouri, H Clayton, D Kisner, R Polsky, Y Bouman, C Santos-Villalobos, H AF Almansouri, Hani Clayton, Dwight Kisner, Roger Polsky, Yarom Bouman, Charles Santos-Villalobos, Hector BE Chimenti, DE Bond, LJ TI Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs ID CT AB Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data. C1 [Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Santos-Villalobos, Hector] Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Almansouri, Hani; Bouman, Charles] Purdue Univ, 610 Purdue Mall, W Lafayette, IN 47907 USA. RP Santos-Villalobos, H (reprint author), Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM halmanso@purdue.edu; claytonda@ornl.gov; kisnerra@ornl.gov; polskyy@ornl.gov; bouman@purdue.edu; hsantos@ornl.gov NR 19 TC 0 Z9 0 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 020013 DI 10.1063/1.4940459 PG 9 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800013 ER PT S AU Clayton, D Barker, A Albright, A Santos-Villalobos, H AF Clayton, Dwight Barker, Alan Albright, Austin Santos-Villalobos, Hector BE Chimenti, DE Bond, LJ TI Improved Synthetic Aperture Focusing Technique Results of Thick Concrete Specimens through Frequency Banding SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs AB A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on ultrasonic data collected from thick, complex concrete structures such as in NPPs. Towards these goals, we apply the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular NDE technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To minimize artifacts caused by boundary effects, the dimensions of the specimens should not be too compact. In this paper, we apply this enhanced SAFT technique to a 2.134 m x 2.134 m x 1.016 m concrete test specimen with twenty deliberately embedded defects(1). C1 [Clayton, Dwight; Barker, Alan; Albright, Austin; Santos-Villalobos, Hector] Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Clayton, D; Barker, A; Albright, A; Santos-Villalobos, H (reprint author), Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM claytonda@ornl.gov; barkeram@ornl.gov; albrightap@ornl.gov; hsantos@ornl.gov NR 3 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 020012 DI 10.1063/1.4940458 PG 10 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800012 ER PT S AU Dib, G Larche, M Diaz, AA Crawford, SL Prowant, MS Anderson, MT AF Dib, Gerges Larche, Michael Diaz, Aaron A. Crawford, Susan L. Prowant, Matthew S. Anderson, Michael T. BE Chimenti, DE Bond, LJ TI Experimental Validation of Ultrasonic NDE Simulation Software SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs AB Computer modeling and simulation is becoming an essential tool for transducer design and insight into ultrasonic nondestructive evaluation (UT-NDE). As the popularity of simulation tools for UT-NDE increases, it becomes important to assess their reliability to model acoustic responses from defects in operating components and provide information that is consistent with in-field inspection data. This includes information about the detectability of different defect types for a given UT probe. Recently, a cooperative program between the Electrical Power Research Institute and the U.S. Nuclear Regulatory Commission was established to validate numerical modeling software commonly used for simulating UT-NDE of nuclear power plant components. In the first phase of this cooperative, extensive experimental UT measurements were conducted on machined notches with varying depth, length, and orientation in stainless steel plates. Then, the notches were modeled in CIVA, a semi-analytical NDE simulation platform developed by the French Commissariat a l'Energie Atomique, and their responses compared with the experimental measurements. Discrepancies between experimental and simulation results are due to either improper inputs to the simulation model, or to incorrect approximations and assumptions in the numerical models. To address the former, a variation study was conducted on the different parameters that are required as inputs for the model, specifically the specimen and transducer properties. Then, the ability of simulations to give accurate predictions regarding the detectability of the different defects was demonstrated. This includes the results in terms of the variations in defect amplitude indications, and the ratios between tip diffracted and specular signal amplitudes. C1 [Dib, Gerges; Larche, Michael; Diaz, Aaron A.; Crawford, Susan L.; Prowant, Matthew S.; Anderson, Michael T.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Dib, G (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM gerges.dib@pnnl.gov NR 6 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 170004 DI 10.1063/1.4940627 PG 10 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800181 ER PT S AU Eisenmann, D Margetan, FJ Koester, L Clayton, D AF Eisenmann, David Margetan, Frank J. Koester, Lucas Clayton, Dwight BE Chimenti, DE Bond, LJ TI Inspection of a Large Concrete Block Containing Embedded Defects Using Ground Penetrating Radar SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs AB Ground penetrating radar (GPR), also known as impulse response radar, was used to examine a thick concrete block containing reinforcing steel bars (rebar) and embedded defects. The block was located at the University of Minnesota, measured approximately 7 feet tall by 7 feet wide by 40 inches deep, and was intended to simulate certain aspects of a concrete containment wall at a nuclear power plant. This paper describes the measurements that were made and various analyses of the data. We begin with a description of the block itself and the GPR equipment and methods used in our inspections. The methods include the application of synthetic aperture focusing techniques (SAFT). We then present and discuss GPR images of the block's interior made using 1600-MHz, 900-MHz, and 400-MHz antennas operating in pulse/echo mode. A number of the embedded defects can be seen, and we discuss how their relative detectability can be quantified by comparison to the response from nearby rebar. We next discuss through-transmission measurements made using pairs of 1600-MHz and 900-MHz antennas, and the analysis of that data to deduce the average electromagnetic (EM) wave speed and attenuation of the concrete. Through the 40-inch thickness, attenuation rises approximately linearly with frequency at a rate near 0.7 dB/inch/GHz. However, there is evidence that EM properties vary with depth in the block. We conclude with a brief summary and a discussion of possible future work. C1 [Eisenmann, David; Margetan, Frank J.; Koester, Lucas] Iowa State Univ, Ctr Nondestruct Evaluat, 1915 Scholl Rd, Ames, IA 50011 USA. [Clayton, Dwight] Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Eisenmann, D (reprint author), Iowa State Univ, Ctr Nondestruct Evaluat, 1915 Scholl Rd, Ames, IA 50011 USA. EM djeisen@iastate.edu NR 5 TC 0 Z9 0 U1 3 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 020014 DI 10.1063/1.4940460 PG 10 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800014 ER PT S AU Glass, SW Ramuhalli, P Fifield, LS Prowant, MS Dib, G Tedeschi, JR Suter, JD Jones, AM Good, MS Pardini, AF Hartman, TS AF Glass, S. W. Ramuhalli, P. Fifield, L. S. Prowant, M. S. Dib, G. Tedeschi, J. R. Suter, J. D. Jones, A. M. Good, M. S. Pardini, A. F. Hartman, T. S. BE Chimenti, DE Bond, LJ TI Assessment of NDE for Key Indicators of Aging Cables in Nuclear Power Plants - Interim Status SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs AB Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. System tests verify cable function under normal loads; however, the concern is over cable performance under exceptional loads associated with design-basis events (DBEs). The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program to justify cable performance under normal operation as well as accident conditions. Currently the gold standard for determining cable insulation degradation is the elongation-at-break (EAB). This, however, is an ex-situ measurement and requires removal of a sample for laboratory investigation. A reliable nondestructive examination (NDE) in-situ approach is desirable to objectively determine the suitability of the cable for service. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none of these tests are suitable for all cable configurations nor does any single test confirm all features of interest. Nevertheless, the complete collection of test possibilities offers a powerful range of tools to assure the integrity of critical cables. Licensees and regulators have settled on a practical program to justify continued operation based on condition monitoring of a lead sample set of cables where test data is tracked in a database and the required test data are continually adjusted based on plant and fleet-wide experience. As part of the Light Water Reactor Sustainability program sponsored by the U.S. Nuclear Regulatory Commission, the U.S. Department of Energy, and industry (represented by the Electric Power Research Institute), an assessment of cable NDE methods was commissioned. delta time domain reflectometry, frequency domain reflectometry (FDR), partial discharge, and other techniques) and local insulation measurement (indenter, dynamic mechanical analysis interdigital capacitance, infrared spectral measurement, etc.). This aging cable NDE program update reviews the full range of techniques but focuses on the most interesting test approaches that have a chance to be deployed in-situ, particularly including delta that have been reviewed most completely in this progress period. C1 [Glass, S. W.; Ramuhalli, P.; Fifield, L. S.; Prowant, M. S.; Dib, G.; Tedeschi, J. R.; Suter, J. D.; Jones, A. M.; Good, M. S.; Pardini, A. F.; Hartman, T. S.] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. RP Glass, SW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Bill.Glass@pnnl.gov NR 14 TC 0 Z9 0 U1 3 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR UNSP 170006 DI 10.1063/1.4940629 PG 14 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800183 ER PT S AU Hughes, MS McCarthy, JE Bruillard, PJ Marsh, JN Wickline, SA AF Hughes, Michael S. McCarthy, John E. Bruillard, Paul J. Marsh, Jon N. Wickline, Samuel A. BE Chimenti, DE Bond, LJ TI High Contrast Ultrasonic Imaging of Resin-Rich Regions in Graphite/Epoxy Composites Using Entropy SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs ID WAVE-FORMS; STEROID TREATMENT; SHANNON ENTROPY; DYSTROPHIC MICE; SIGNAL RECEIVER; RENYI ENTROPY AB This study compares different approaches for imaging a near-surface resin-rich defect in a thin graphite/epoxy plate using backscattered ultrasound. The specimen was created by cutting a circular hole in the second ply; this region filled with excess resin from the graphite/epoxy sheets during the curing process. Backscattered waveforms were acquired using a 4 in. focal length, 5MHz center frequency broadband transducer, scanned on a 100x100 grid of points that were 0.03x0.03 in. apart. The specimen was scanned with the defect side closest to the transducer. Consequently, the reflection from the resin-rich region cannot be gated from the large front-wall echo. At each point in the grid 256 waveforms were averaged together and subsequently used to produce peak-to-peak, Signal Energy (sum of squared digitized waveform values), as well as entropy images of two different types (a Renyi entropy, and a joint entropy). As the figure shows, all of the entropy images exhibit better border delineation and defect contrast than the either the peak-to-peak or Signal Energy. The best results are obtained using the joint entropy of the backscattered waveforms with a reference function. Two different references are examined. The first is a reflection of the insonifying pulse from a stainless steel reflector. The second is an approximate optimum obtained from an iterative parametric search. The joint entropy images produced using this reference exhibit three times the contrast obtained in previous studies. C1 [Hughes, Michael S.; Bruillard, Paul J.] Pacific NW Natl Lab, Richland, WA 99354 USA. [McCarthy, John E.] Washington Univ, Depart Math, St Louis, MO USA. [Marsh, Jon N.; Wickline, Samuel A.] Washington Univ, Sch Med, St Louis, MO USA. RP Hughes, MS (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM michael.s.hughes@pnnl.gov NR 19 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 120002 DI 10.1063/1.4940587 PG 7 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800141 ER PT S AU Larche, MR Baldwin, DL Edwards, MK Mathews, RA Prowant, MS Diaz, AA AF Larche, M. R. Baldwin, D. L. Edwards, M. K. Mathews, R. A. Prowant, M. S. Diaz, A. A. BE Chimenti, DE Bond, LJ TI Progress in the Development and Demonstration of a 2D-Matrix Phased Array Ultrasonic Probe for Under-Sodium Viewing SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs AB Optically opaque liquid sodium used in liquid metal fast reactors poses a unique set of challenges for nondestructive evaluation. The opaque nature of the sodium prevents visual examinations of components within this medium, but ultrasonic waves are able to propagate through sodium so an ultrasonic testing (UT) technique can be applied for imaging objects in sodium. A UT sensor used in liquid sodium during a refueling outage must be capable of withstanding the 260 degrees C corrosive environment and must also be able to wet (couple the ultrasonic waves) so that sound can propagate into the sodium. A multi-year iterative design effort, based on earlier work in the 1970s, has set out to improve the design and fabrication processes needed for a UT sensor technology capable of overcoming the temperature and wetting issues associated with this environment. Robust materials and improved fabrication processes have resulted in single-element sensors and two different linear-array sensors that have functioned in liquid sodium. More recent efforts have been focused on improving signal-to-noise ratio and image resolution in the highly attenuating liquid sodium. In order to accomplish this, modeling and simulation tools were used to design a 60-element 2D phased-array sensor operating at 2 MHz that features a separate transmitter and receiver. This design consists of 30 transmit elements and another 30 receive elements, each arranged in a rectangular matrix pattern that is 10 rows tall and 3 wide. The fabrication of this 2D array is currently underway and will be followed by a series of performance tests in water, hot oil, and finally in liquid sodium at 260 degrees C. The performance testing cycle will evaluate multiple characteristics of the sensor that are crucial to performance including: transmit-uniformity, element sensitivity variations, element-to-element energy leakage, sound field dimensions, and spatial resolution. This paper will present a summary of results from the previous UT sensors as well as the results to date on the 2D phased-array sensor fabrication and evaluation. C1 [Larche, M. R.; Baldwin, D. L.; Edwards, M. K.; Mathews, R. A.; Prowant, M. S.; Diaz, A. A.] Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. RP Larche, MR (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. EM Michael.Larche@pnnl.gov NR 4 TC 0 Z9 0 U1 2 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 170005 DI 10.1063/1.4940628 PG 8 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800182 ER PT S AU Lau, SJ Moore, DG Stair, SL Nelson, CL AF Lau, Sarah J. Moore, David G. Stair, Sarah L. Nelson, Ciji L. BE Chimenti, DE Bond, LJ TI Application of Temporal Moments and Other Signal Processing Algorithms to Analysis of Ultrasonic Signals through Melting Wax SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs ID MEDIA AB Ultrasonic analysis is being explored as a way to capture events during melting of highly dispersive wax. Typical events include temperature changes in the material, phase transition of the material, surface flows and reformations, and void filling as the material melts. Melt tests are performed with wax to evaluate the usefulness of different signal processing algorithms in capturing event data. Several algorithm paths are being pursued. The first looks at changes in the velocity of the signal through the material. This is only appropriate when the changes from one ultrasonic signal to the next can be represented by a linear relationship, which is not always the case. The second tracks changes in the frequency content of the signal. The third algorithm tracks changes in the temporal moments of a signal over a full test. This method does not require that the changes in the signal be represented by a linear relationship, but attaching changes in the temporal moments to physical events can be difficult. This paper describes the algorithm paths applied to experimental data from ultrasonic signals as wax melts and explores different ways to display the results. C1 [Lau, Sarah J.; Moore, David G.; Nelson, Ciji L.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Stair, Sarah L.] Baylor Univ, Dept Mech Engn, Waco, TX 76798 USA. RP Lau, SJ; Moore, DG; Nelson, CL (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA.; Stair, SL (reprint author), Baylor Univ, Dept Mech Engn, Waco, TX 76798 USA. EM slau@sandia.gov; dgmoore@sandia.gov; Sarah_Stair@baylor.edu; cijnels@sandia.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 180006 DI 10.1063/1.4940636 PG 9 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800190 ER PT S AU Meyer, RM Komura, I Kim, KC Zetterwall, T Cumblidge, SE Prokofiev, I AF Meyer, Ryan M. Komura, Ichiro Kim, Kyung-cho Zetterwall, Tommy Cumblidge, Stephen E. Prokofiev, Iouri BE Chimenti, DE Bond, LJ TI Overview of the Program to Assess the Reliability of Emerging Nondestructive Techniques Open Testing and Study of Flaw Type Effect on NDE Response SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs AB In February 2012, the U.S. Nuclear Regulatory Commission (NRC) executed agreements with VTT Technical Research Centre of Finland, Nuclear Regulatory Authority of Japan (NRA, former JNES), Korea Institute of Nuclear Safety (KINS), Swedish Radiation Safety Authority (SSM), and Swiss Federal Nuclear Safety Inspectorate (ENSI) to establish the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT). The goal of PARENT is to investigate the effectiveness of current emerging and perspective novel nondestructive examination procedures and techniques to find flaws in nickel-alloy welds and base materials. This is done by conducting a series of open and blind international round-robin tests on a set of large-bore dissimilar metal welds (LBDMW), small-bore dissimilar metal welds (SBDMW), and bottom-mounted instrumentation (BMI) penetration weld test blocks. The purpose of blind testing is to study the reliability of more established techniques and included only qualified teams and procedures. The purpose of open testing is aimed at a more basic capability assessment of emerging and novel technologies. The range of techniques applied in open testing varied with respect to maturity and performance uncertainty and were applied to a variety of simulated flaws. This paper will include a brief overview of the PARENT blind and open testing techniques and test blocks and present some of the blind testing results. C1 [Meyer, Ryan M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Komura, Ichiro] Japan Power Engn & Inspect Corp, Yokohama, Kanagawa, Japan. [Kim, Kyung-cho] Korea Inst Nucl Safety, Daejeon, South Korea. [Zetterwall, Tommy] Swedish Qualificat Ctr, Taby, Sweden. [Cumblidge, Stephen E.; Prokofiev, Iouri] US Nucl Regulatory Commiss, Washington, DC 20555 USA. RP Meyer, RM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Ryan.Meyer@pnnl.gov NR 3 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 200010 DI 10.1063/1.4940654 PG 11 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800208 ER PT S AU Smith, JA Lacy, JM Levesque, D Monchalin, JP Lord, M AF Smith, James A. Lacy, Jeffrey M. Levesque, Daniel Monchalin, Jean-Pierre Lord, Martin BE Chimenti, DE Bond, LJ TI Use of the Hugoniot Elastic Limit in Laser Shockwave Experiments to Relate Velocity Measurements SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs ID INTERFACE STRENGTH; SPALLATION TECHNIQUE; WAVES; PULSE AB The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. This fuel-cladding interface qualification will ensure the survivability of the fuel plates in the harsh reactor environment even under abnormal operating conditions. One of the concerns of the project is the difficulty of calibrating and standardizing the laser shock technique. An analytical study under development and experimental testing supports the hypothesis that the Hugoniot Elastic Limit (HEL) in materials can be a robust and simple benchmark to compare stresses generated by different laser shock systems. C1 [Smith, James A.; Lacy, Jeffrey M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Levesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin] Natl Res Council Canada, Boucherville, PQ, Canada. RP Smith, JA (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM James.Smith@INL.gov NR 24 TC 0 Z9 0 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 080005 DI 10.1063/1.4940537 PG 10 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800091 ER PT S AU Sun, JG Tao, N AF Sun, J. G. Tao, N. BE Chimenti, DE Bond, LJ TI Thermal Property Measurement for Thermal Barrier Coatings Using Pulsed Thermal Imaging - Multilayer Analysis Method SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON RELIABILITY OF NDE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE) CY JUL 26-31, 2015 CL Minneapolis, MN SP Ctr Nondestruct Evaluat, QNDE Programs ID DIFFUSIVITY MEASUREMENTS AB Thermal barrier coatings (TBCs) are extensively used on hot gas-path components in gas turbines to improve engine performance and extend component life. TBC thermal properties, specifically the thermal conductivity and heat capacity (the product of density and specific heat), are important parameters in these applications. These TBC properties are usually measured by destructive methods with specially prepared TBC samples. Nondestructive evaluation (NDE) methods have been developed in recently years that can measure TBC properties on natural TBC samples. However, many have limitations when examining TBCs on engine components. One exception is the pulsed thermal imaging multilayer analysis (PTI-MLA) method, which can be applied to essentially any TBC samples with one or more coating layers and can determine TBC property distributions over the entire TBC surface. This paper describes its basic theories and implementations and discusses its potential applications to all areas of TBC studies. C1 [Sun, J. G.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Tao, N.] Capital Normal Univ, Beijing, Peoples R China. RP Sun, JG (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sun@anl.gov NR 17 TC 0 Z9 0 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1353-5 J9 AIP CONF PROC PY 2016 VL 1706 AR 100004 DI 10.1063/1.4940564 PG 6 WC Physics, Applied SC Physics GA BE4LT UT WOS:000371907800118 ER PT J AU Pyatina, T Sugama, T AF Pyatina, Tatiana Sugama, Toshifumi TI Resistance of fly ash-Portland cement blends to thermal shock SO ADVANCES IN CEMENT RESEARCH LA English DT Article ID INFRARED-SPECTROSCOPY; TEMPERATURE; HYDRATION; GEOPOLYMERS; RAMAN; REFLECTANCE; ACTIVATION; CONCRETE; MORTARS; RATIO AB Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90% fly ash F (FAF) were left to set at room temperature, then hydrated for 24 h at 85 degrees C and then for an additional 24 h at 300 degrees C, and tested in five thermal-shock cycles (600 degrees C heat - 25 degrees C water quenching). X-ray diffraction (XRD) and thermal gravimetric analyses, along with calorimetric measurements and scanning electron microscope-energy-dispersive X-ray tests demonstrated that the activated blends form more hydrates after 24 h at 300 degrees C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and soda-ash engendered the concomitant hydration of ordinary Portland cement (OPC) and class F fly ash (FAF), with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime and wairakite, along with the amorphous FAF hydration products. In sodium sulfate-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after five thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermal shock. There was no significant difference in the performance of the blends with different activators. C1 [Pyatina, Tatiana; Sugama, Toshifumi] Brookhaven Natl Lab, Sustainable Energy Technol, Upton, NY 11973 USA. RP Pyatina, T (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol, Upton, NY 11973 USA. FU Geothermal Technologies Office in the US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), under the auspices of the US DOE, Washington, DC [DE-AC02-98CH 10886-98CH10886]; US Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX This publication was based on the work supported by the Geothermal Technologies Office in the US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), under the auspices of the US DOE, Washington, DC, under Contract No. DE-AC02-98CH 10886 -98CH10886. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. NR 43 TC 2 Z9 2 U1 2 U2 4 PU ICE PUBLISHING PI WESTMINISTER PA INST CIVIL ENGINEERS, 1 GREAT GEORGE ST, WESTMINISTER SW 1P 3AA, ENGLAND SN 0951-7197 EI 1751-7605 J9 ADV CEM RES JI Adv. Cem. Res. PY 2016 VL 28 IS 2 BP 121 EP 131 DI 10.1680/adcr.15.00030 PG 11 WC Construction & Building Technology; Materials Science, Multidisciplinary SC Construction & Building Technology; Materials Science GA DG3ON UT WOS:000371979400007 ER PT J AU Wang, YP Jiang, J Chen-Charpentier, B Agusto, FB Hastings, A Hoffman, F Rasmussen, M Smith, MJ Todd-Brown, K Wang, Y Xu, X Luo, YQ AF Wang, Y. P. Jiang, J. Chen-Charpentier, B. Agusto, F. B. Hastings, A. Hoffman, F. Rasmussen, M. Smith, M. J. Todd-Brown, K. Wang, Y. Xu, X. Luo, Y. Q. TI Responses of two nonlinear microbial models to warming and increased carbon input SO BIOGEOSCIENCES LA English DT Article ID SOIL ORGANIC-MATTER; MICHAELIS-MENTEN KINETICS; TROPICAL FOREST; DECOMPOSITION; NITROGEN; TEMPERATURE; RESPIRATION; LITTERFALL; EFFICIENCY; CO2 AB A number of nonlinear microbial models of soil carbon decomposition have been developed. Some of them have been applied globally but have yet to be shown to realistically represent soil carbon dynamics in the field. A thorough analysis of their key differences is needed to inform future model developments. Here we compare two nonlinear microbial models of soil carbon decomposition: one based on reverse Michaelis-Menten kinetics (model A) and the other on regular Michaelis-Menten kinetics (model B). Using analytic approximations and numerical solutions, we find that the oscillatory responses of carbon pools to a small perturbation in their initial pool sizes dampen faster in model A than in model B. Soil warming always decreases carbon storage in model A, but in model B it predominantly decreases carbon storage in cool regions and increases carbon storage in warm regions. For both models, the CO2 efflux from soil carbon decomposition reaches a maximum value some time after increased carbon input (as in priming experiments). This maximum CO2 efflux (F-max) decreases with an increase in soil temperature in both models. However, the sensitivity of F-max to the increased amount of carbon input increases with soil temperature in model A but decreases monotonically with an increase in soil temperature in model B. These differences in the responses to soil warming and carbon input between the two nonlinear models can be used to discern which model is more realistic when compared to results from field or laboratory experiments. These insights will contribute to an improved understanding of the significance of soil microbial processes in soil carbon responses to future climate change. C1 [Wang, Y. P.] CSIRO Ocean & Atmosphere, PMB 1, Aspendale, Vic 3195, Australia. [Jiang, J.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. [Chen-Charpentier, B.] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA. [Agusto, F. B.] Austin Peay State Univ, Dept Math & Stat, Clarksville, TN 37044 USA. [Hastings, A.] Univ Calif Davis, Dept Environm Sci & Policy, One Shields Ave, Davis, CA 95616 USA. [Hoffman, F.] Oak Ridge Natl Lab, Computat Earth Sci Grp, POB 2008, Oak Ridge, TN 37831 USA. [Rasmussen, M.] Univ London Imperial Coll Sci Technol & Med, Dept Math, Huxley Bldg, London, England. [Smith, M. J.] Microsoft Res, Computat Sci Lab, Cambridge, England. [Todd-Brown, K.; Xu, X.; Luo, Y. Q.] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Wang, Y.] Univ Oklahoma, Dept Math, Norman, OK 73019 USA. [Todd-Brown, K.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, YP (reprint author), CSIRO Ocean & Atmosphere, PMB 1, Aspendale, Vic 3195, Australia. EM yingping.wang@csiro.au RI Hoffman, Forrest/B-8667-2012; wang, yp/A-9765-2011; OI Hoffman, Forrest/0000-0001-5802-4134; Todd-Brown, Katherine/0000-0002-3109-8130 FU National Science Foundation; US Department of Homeland Security; US Department of Agriculture through NSF [EF-0832858]; University of Tennessee, Knoxville FX This work was assisted through participation of the authors in the working group Nonautonomous Systems and Terrestrial Carbon Cycle, at the National Institute for Mathematical and Biological Synthesis, an institute sponsored by the National Science Foundation, the US Department of Homeland Security, and the US Department of Agriculture through NSF award no. EF-0832858, with additional support from the University of Tennessee, Knoxville. We are grateful for the constructive comments from the associate editor and three reviewers. Source code and data used in this study are available on request by email (yingping.wang@csiro.au). NR 50 TC 1 Z9 1 U1 7 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2016 VL 13 IS 4 BP 887 EP 902 DI 10.5194/bg-13-887-2016 PG 16 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DG4ZR UT WOS:000372082200001 ER PT J AU dos Santos, LT Marra, DM Trumbore, S de Camargo, PB Negron-Juarez, RI Lima, AJN Ribeiro, GHPM dos Santos, J Higuchi, N AF dos Santos, Leandro T. Marra, Daniel Magnabosco Trumbore, Susan de Camargo, Plinio B. Negron-Juarez, Robinson I. Lima, Adriano J. N. Ribeiro, Gabriel H. P. M. dos Santos, Joaquim Higuchi, Niro TI Windthrows increase soil carbon stocks in a central Amazon forest SO BIOGEOSCIENCES LA English DT Article ID NORTHEASTERN COSTA-RICA; BARRO-COLORADO ISLAND; TROPICAL PASTURES; BRAZILIAN AMAZON; LARGE BLOWDOWNS; ORGANIC-MATTER; TREEFALL PITS; RAIN-FOREST; DISTURBANCE; DYNAMICS AB Windthrows change forest structure and species composition in central Amazon forests. However, the effects of widespread tree mortality associated with wind disturbances on soil properties have not yet been described in this vast region. We investigated short-term effects (7 years after disturbance) of widespread tree mortality caused by a squall line event from mid-January of 2005 on soil carbon stocks and concentrations in a central Amazon terra firme forest. The soil carbon stock (averaged over a 0-30 cm depth profile) in disturbed plots (61.4 +/- 8.2 Mg ha(-1), mean +/- 95% confidence interval) was marginally higher (p = 0.09) than that from undisturbed plots (47.7 +/- 13.6 Mg ha(-1)). The soil organic carbon concentration in disturbed plots (2.0 +/- 0.17 %) was significantly higher (p < 0.001) than that from undisturbed plots (1.36 +/- 0.24 %). Moreover, soil carbon stocks were positively correlated with soil clay content (r(2) = 0.332, r = 0.575 and p = 0.019) and with tree mortality intensity (r(2) = 0.257, r = 0.506 and p = 0.045). Our results indicate that large inputs of plant litter associated with large windthrow events cause a short-term increase in soil carbon content, and the degree of increase is related to soil clay content and tree mortality intensity. The higher carbon content and potentially higher nutrient availability in soils from areas recovering from windthrows may favor forest re-growth and increase vegetation resilience. C1 [dos Santos, Leandro T.; Marra, Daniel Magnabosco; Lima, Adriano J. N.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Higuchi, Niro] Inst Nacl de Pesquisas da Amazonia, Lab Manejo Florestal, Manaus, Amazonas, Brazil. [Marra, Daniel Magnabosco; Trumbore, Susan] Max Planck Inst Biochem, Biogeochem Proc Dept, Jena, Germany. [Marra, Daniel Magnabosco] Univ Leipzig, AG Spezielle Bot & Funktionelle Biodiversitat, D-04109 Leipzig, Germany. [de Camargo, Plinio B.] Ctr Energia Nucl Agr, Piracicaba, Brazil. [Negron-Juarez, Robinson I.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate Sci Dept, Berkeley, CA 94720 USA. RP Marra, DM (reprint author), Inst Nacl de Pesquisas da Amazonia, Lab Manejo Florestal, Manaus, Amazonas, Brazil.; Marra, DM (reprint author), Max Planck Inst Biochem, Biogeochem Proc Dept, Jena, Germany.; Marra, DM (reprint author), Univ Leipzig, AG Spezielle Bot & Funktionelle Biodiversitat, D-04109 Leipzig, Germany. EM dmarra@bgc-jena.mpg.de RI Negron-Juarez, Robinson/I-6289-2016; Camargo, Plinio/D-6635-2012 FU Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [MCTI/N14/2012, 473357/2012-7]; INCT - Madeiras da Amazonia; Biogeochemistry Processes Department of the Max Planck Institute for Biogeochemistry; Laboratorio de Manejo Florestal (LMF/INPA); Office of Science, Office of Biological and Environmental Research of the US Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge the workers from the EEST/INPA for giving support with the fieldwork, and the lab team of the CENA-USP and the Laboratorio Tematico de Solos e Plantas (LTSP/INPA) for giving support with the soil analyses. We also acknowledge the SUFRAMA for allowing us to access part of the study area. At last, we acknowledge Edzo Velkamp, an anonymous referee, and Hermann F. Jungkunst for providing valuable comments during the revision of this article. This study was financed by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) within the project SAWI (Chamada Universal MCTI/N14/2012, Proc. 473357/2012-7) and the INCT - Madeiras da Amazonia. It has also been supported by the Tree Assimilation and Carbon Allocation Physiology Experiment (TACAPE), a joint project between the Biogeochemistry Processes Department of the Max Planck Institute for Biogeochemistry and the Laboratorio de Manejo Florestal (LMF/INPA). Robinson I. Negron-Juarez was supported by the Office of Science, Office of Biological and Environmental Research of the US Department of Energy under contract no. DE-AC02-05CH11231 as part of Next-Generation Ecosystems Experiments (NGEE Tropics) and the Regional and Global Climate Modeling (RGCM) Program. NR 65 TC 0 Z9 0 U1 10 U2 22 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2016 VL 13 IS 4 BP 1299 EP 1308 DI 10.5194/bg-13-1299-2016 PG 10 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DG4ZR UT WOS:000372082200028 ER PT J AU Marra, DM Higuchi, N Trumbore, SE Ribeiro, GHPM dos Santos, J Carneiro, VMC Lima, AJN Chambers, JQ Negron-Juarez, RI Holzwarth, F Reu, B Wirth, C AF Marra, Daniel Magnabosco Higuchi, Niro Trumbore, Susan E. Ribeiro, Gabriel H. P. M. dos Santos, Joaquim Carneiro, Vilany M. C. Lima, Adriano J. N. Chambers, Jeffrey Q. Negron-Juarez, Robinson I. Holzwarth, Frederic Reu, Bjoern Wirth, Christian TI Predicting biomass of hyperdiverse and structurally complex central Amazonian forests - a virtual approach using extensive field data SO BIOGEOSCIENCES LA English DT Article ID TROPICAL RAIN-FORESTS; WOOD DENSITY; ABOVEGROUND BIOMASS; CARBON STOCKS; ALLOMETRIC MODELS; SECONDARY FOREST; CENTRAL-EUROPE; LIFE-HISTORY; TREE HEIGHT; DISTURBANCE AB Old-growth forests are subject to substantial changes in structure and species composition due to the intensification of human activities, gradual climate change and extreme weather events. Trees store ca. 90% of the total aboveground biomass (AGB) in tropical forests and precise tree biomass estimation models are crucial for management and conservation. In the central Amazon, predicting AGB at large spatial scales is a challenging task due to the heterogeneity of successional stages, high tree species diversity and inherent variations in tree allometry and architecture. We parameterized generic AGB estimation models applicable across species and a wide range of structural and compositional variation related to species sorting into height layers as well as frequent natural disturbances. We used 727 trees (diameter at breast height >= 5 cm) from 101 genera and at least 135 species harvested in a contiguous forest near Manaus, Brazil. Sampling from this data set we assembled six scenarios designed to span existing gradients in floristic composition and size distribution in order to select models that best predict AGB at the landscape level across successional gradients. We found that good individual tree model fits do not necessarily translate into reliable predictions of AGB at the landscape level. When predicting AGB (dry mass) over scenarios using our different mod-els and an available pantropical model, we observed systematic biases ranging from -31% (pantropical) to +39 %, with root-mean-square error (RMSE) values of up to 130 Mg ha(-1) (pantropical). Our first and second best models had both low mean biases (0.8 and 3.9 %, respectively) and RMSE (9.4 and 18.6 Mg ha(-1)) when applied over scenarios. Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex tropical forests, especially allowing good performance at the margins of data availability for model construction/calibration, requires the inclusion of predictors that express inherent variations in species architecture. The model of interest should comprise the floristic composition and size-distribution variability of the target forest, implying that even generic global or pantropical biomass estimation models can lead to strong biases. Reliable biomass assessments for the Amazon basin (i. e., secondary forests) still depend on the collection of allometric data at the local/regional scale and forest inventories including speciesspecific attributes, which are often unavailable or estimated imprecisely in most regions. C1 [Marra, Daniel Magnabosco; Holzwarth, Frederic; Reu, Bjoern; Wirth, Christian] Univ Leipzig, AG Spezielle Bot & Funkt Biodiversitat, Leipzig, Germany. [Marra, Daniel Magnabosco; Trumbore, Susan E.] Max Planck Inst Biogeochem, Biogeochem Proc Dept, D-07745 Jena, Germany. [Marra, Daniel Magnabosco; Higuchi, Niro; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Carneiro, Vilany M. C.; Lima, Adriano J. N.] Inst Nacl de Pesquisas da Amazonia, Lab Manejo Florestal, Manaus, Amazonas, Brazil. [Chambers, Jeffrey Q.] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. [Negron-Juarez, Robinson I.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate Sci Dept, Berkeley, CA 94720 USA. [Reu, Bjoern] Univ Ind Santander, Escuela Biol, Bucaramanga, Colombia. [Wirth, Christian] German Ctr Integrat Biodivers Res iDiv, Leipzig, Germany. [Wirth, Christian] Max Planck Inst Biogeochem, Funct Biogeog Fellow Grp, D-07745 Jena, Germany. RP Marra, DM (reprint author), Univ Leipzig, AG Spezielle Bot & Funkt Biodiversitat, Leipzig, Germany.; Marra, DM (reprint author), Max Planck Inst Biogeochem, Biogeochem Proc Dept, D-07745 Jena, Germany.; Marra, DM (reprint author), Inst Nacl de Pesquisas da Amazonia, Lab Manejo Florestal, Manaus, Amazonas, Brazil. EM dmarra@bgc-jena.mpg.de RI Chambers, Jeffrey/J-9021-2014; Negron-Juarez, Robinson/I-6289-2016 OI Chambers, Jeffrey/0000-0003-3983-7847; FU Brazilian Council for Scientific and Technological Development (CNPq) [473357/2012-7, 14/2012]; Max Planck Institute for Biogeochemistry within the Tree Assimilation and Carbon Allocation Physiology Experiment (TACAPE); Office of Science, Office of Biological and Environmental Research, of the US Department of Energy [DE-AC02-05CH11231] FX This study has been possible thanks to the extensive fieldwork carried by members of the Laboratorio de Manejo Florestal (LMF) from the Instituto Nacional de Pesquisas da Amazonia (INPA). We gratefully acknowledge: Antonio F. da Silva, Armando N. Colares, Bertran A. da Silva (in memoriam), Geraldo A. da Mota, Geraldo E. da Silva, Francinilton R. de Araujo, Francisco H. M. dos Santos, Francisco Q. Reis, Jose M. de Souza, Jose M. B. da Paz, Jose M. G. Quintanilha Junior, Manoel F. J. de Souza, Manoel N. Taveira, Paulo J. Q. de Lacerda (in memoriam), Pedro L. de Figueiredo (in memoriam), Romeu D. de Paiva, Sebastiao M. do Nascimento, Sergio L. Leite, Valdecira M. J. Azevedo and Wanderley de L. Reis. This study was financed by the Brazilian Council for Scientific and Technological Development (CNPq) within the projects Piculus, INCT Madeiras da Amazonia and Succession After Windthrows (SAWI) (Chamada Universal MCTI/No 14/2012, Proc. 473357/2012-7), and supported by the Max Planck Institute for Biogeochemistry within the Tree Assimilation and Carbon Allocation Physiology Experiment (TACAPE). Robinson I. Negron-Juarez was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under contract no. DE-AC02-05CH11231 as part of Next-Generation Ecosystems Experiments (NGEE Tropics) and the Regional and Global Climate Modeling (RGCM) Program. NR 100 TC 1 Z9 1 U1 7 U2 15 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2016 VL 13 IS 5 BP 1553 EP 1570 DI 10.5194/bg-13-1553-2016 PG 18 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DG4ZU UT WOS:000372082500011 ER PT J AU Claure, MT Morrill, MR Goh, JW Chai, SH Dai, S Agrawal, PK Jones, CW AF Claure, Micaela Taborga Morrill, Michael R. Goh, Jin Wai Chai, Song-Hai Dai, Sheng Agrawal, Pradeep K. Jones, Christopher W. TI Insight into reaction pathways in CO hydrogenation reactions over K/MoS2 supported catalysts via alcohol/olefin co-feed experiments SO CATALYSIS SCIENCE & TECHNOLOGY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; MOLYBDENUM-BASED CATALYSTS; SYNTHESIS GAS CONVERSION; WALLED CARBON NANOTUBES; MG-AL HYDROTALCITE; HIGHER ALCOHOLS; SULFIDE CATALYSTS; SYNGAS; ETHANOL; POTASSIUM AB Reaction pathways for higher alcohol synthesis from syngas are studied over K/MoS2 domains supported on mesoporous carbon (C) and mixed MgAl oxide (MMO) via addition of methanol, ethanol, and ethylene co-feeds. A methanol co-feed results in an increase in ethanol and methane production for the catalysts studied. Ethanol or ethylene co-feeds yield increased C3+OH and C2+HC over the supported catalysts. No change is observed in the product distribution over K/bulk-MoS2 with an ethanol co-feed, but 1-propanol production significantly increases in the presence of ethylene, suggesting the formation of ethyl species from ethanol and/or the adsorption of ethanol are rate-controlling for 1-propanol formation when ethanol is co-fed. Ethylene and ethanol co-feeds yield similar production rates of C3+OH over the MMO catalyst, indicating that alcohol formation likely proceeds primarily via the same acyl intermediate as olefin carbonylation. Supports do seem to have an important influence on the reaction pathways. Specifically, acidic carbon support seems to facilitate alcohol dehydration/hydrogenation to produce alkanes, while MMO influences methanol plus 1-propanol coupling to form isobutyl alcohol. However, Mo-K-MMO sites are key for superior normalized C3+OH productivity with ethanol and ethylene co-feeds over the MMO catalyst. C1 [Claure, Micaela Taborga; Morrill, Michael R.; Goh, Jin Wai; Agrawal, Pradeep K.; Jones, Christopher W.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Chai, Song-Hai; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Agrawal, PK; Jones, CW (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. EM pradeep.agrawal@chbe.gatech.edu; cjones@chbe.gatech.edu RI Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 FU U.S. DOE Office of Science, Center for Understanding and Control of Acid Gas Evolution of Materials for Energy; Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012577] FX The authors would like to thank Dr. Liwei Li for fruitful discussions. CWJ, MTC, SHC, and SD thank the U.S. DOE Office of Science for particular support of this work (travel, coordination, and partial support for MTC and SHC) as part of the Center for Understanding and Control of Acid Gas Evolution of Materials for Energy, and Energy Frontier Research Center, funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0012577. NR 55 TC 2 Z9 2 U1 14 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2044-4753 EI 2044-4761 J9 CATAL SCI TECHNOL JI Catal. Sci. Technol. PY 2016 VL 6 IS 6 BP 1957 EP 1966 DI 10.1039/c5cy01587a PG 10 WC Chemistry, Physical SC Chemistry GA DG6DQ UT WOS:000372172800042 ER PT J AU Huang, JP Poyraz, AS Takeuchi, KJ Takeuchi, ES Marschilok, AC AF Huang, Jianping Poyraz, Altug S. Takeuchi, Kenneth J. Takeuchi, Esther S. Marschilok, Amy C. TI MxMn8O16 (M = Ag or K) as promising cathode materials for secondary Mg based batteries: the role of the cation M SO CHEMICAL COMMUNICATIONS LA English DT Article ID OCTAHEDRAL MOLECULAR-SIEVES; MANGANESE OXIDE; ENERGY-STORAGE; ELECTROCHEMICAL INSERTION; SILVER HOLLANDITE; HIGH-CAPACITY; MAGNESIUM; ION; ALPHA-MNO2; ELECTRODES AB AgxMn8O16 (Ag-OMS-2) and KxMn8O16 (K-OMS-2) were investigated as high voltage cathode materials for Mg based batteries. Both MxMn8O16 materials delivered high initial capacities (>180 mA h g(-1)), and KxMn8O16 showed high cycle stability with a reversible capacity of >170 mA h g(-1) after 20 cycles. C1 [Huang, Jianping; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Marschilok, Amy C.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Poyraz, Altug S.; Takeuchi, Esther S.] Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA. [Takeuchi, Kenneth J.; Takeuchi, Esther S.; Marschilok, Amy C.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. RP Takeuchi, KJ; Takeuchi, ES; Marschilok, AC (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Takeuchi, ES (reprint author), Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA.; Takeuchi, KJ; Takeuchi, ES; Marschilok, AC (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM kenneth.takeuchi.1@stonybrook.edu; esther.takeuchi@stonybrook.edu; amy.marschilok@stonybrook.edu RI Huang, Jianping/C-9379-2014 OI Huang, Jianping/0000-0002-8391-1381 FU Center for Mesoscale Transport Properties, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673]; Department of Energy, Office of Electricity; Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Materials synthesis and characterization was supported as part of the Center for Mesoscale Transport Properties, an Energy Frontier Research Center supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award #DE-SC0012673. Electrochemistry in magnesium electrolyte was supported by the Department of Energy, Office of Electricity, administered through Sandia National Laboratories, Purchase Order #1275961. XPS experiments were carried out at the Center for Functional Nanomaterials at Brookhaven National Laboratory, which is supported by the Department of Energy, Office of Basic Energy Sciences (DE-AC02-98CH10886). NR 29 TC 2 Z9 2 U1 13 U2 50 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 21 BP 4088 EP 4091 DI 10.1039/c6cc00025h PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DG3ZV UT WOS:000372010600024 PM 26899919 ER PT J AU Xu, J Lin, F Nordlund, D Crumlin, EJ Wang, F Bai, JM Doeff, MM Tong, W AF Xu, Jing Lin, Feng Nordlund, Dennis Crumlin, Ethan J. Wang, Feng Bai, Jianming Doeff, Marca M. Tong, Wei TI Elucidation of the surface characteristics and electrochemistry of high-performance LiNiO2 SO CHEMICAL COMMUNICATIONS LA English DT Article ID LITHIUM-ION BATTERIES; LAYERED CATHODE MATERIALS; ELECTRODE MATERIALS; OXIDE; CHEMISTRY; BEHAVIOR; LI; MN AB Phase pure LiNiO2 was prepared using a solid-state method and the optimal synthesis conditions led to a remarkably high capacity of 200 mA h g(-1) with excellent retention. The combination of bulk and surface characterization elucidated an essential role of the excess Li in phase formation during synthesis and the subsequent electrochemical performance. C1 [Xu, Jing; Lin, Feng; Doeff, Marca M.; Tong, Wei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. [Nordlund, Dennis] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Crumlin, Ethan J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Wang, Feng] Brookhaven Natl Lab, Dept Sustainable Energy Technol, Upton, NY 11973 USA. [Bai, Jianming] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Tong, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. EM weitong@lbl.gov RI Nordlund, Dennis/A-8902-2008 OI Nordlund, Dennis/0000-0001-9524-6908 FU Energy Efficiency and Renewable Energy (EERE), Office of Vehicle Technologies of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; U.S. DOE Office of EERE under the Advanced Battery Materials Research program [DE-SC0012704]; Office of Science, Office of Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), Office of Vehicle Technologies of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Soft XAS experiments were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. DOE Office of Science by Stanford University. The use of the SSRL, SLAC National Accelerator Laboratory, was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. J. Bai and F. Wang thank the support by the U.S. DOE Office of EERE under the Advanced Battery Materials Research program, Contract No. DE-SC0012704. Use of the National Synchrotron Light Source II, Brookhaven National Laboratory, was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. Synchrotron XPS was carried out at beamline 9.3.2 at the Advanced Light Source in Lawrence Berkeley National Laboratory (LBNL), which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE under Contract No. DE-AC02-05CH11231. The authors are grateful for the support for Raman characterization from Dr. Robert Kostecki and Dr. Jarry Angelique in LBNL. NR 20 TC 4 Z9 4 U1 7 U2 27 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 22 BP 4239 EP 4242 DI 10.1039/c5cc09434h PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DG6ER UT WOS:000372175700030 PM 26911422 ER PT J AU Jin, T Xiong, Y Zhu, X Tian, ZQ Tao, DJ Hu, J Jiang, DE Wang, HL Liu, HL Dai, S AF Jin, Tian Xiong, Yan Zhu, Xiang Tian, Ziqi Tao, Duan-Jian Hu, Jun Jiang, De-en Wang, Hualin Liu, Honglai Dai, Sheng TI Rational design and synthesis of a porous, task-specific polycarbazole for efficient CO2 capture SO CHEMICAL COMMUNICATIONS LA English DT Article ID CARBON-DIOXIDE CAPTURE; BENZIMIDAZOLE-LINKED POLYMERS; COVALENT ORGANIC FRAMEWORKS; GAS-STORAGE; ADSORPTION; NETWORKS; DENSITY; FUNCTIONALIZATION; SEPARATION; CONVERSION AB We present a rational design and synthesis of a novel porous pyridine-functionalized polycarbazole for efficient CO2 capture based on the density functional theory calculations. The task-specific polymer, generated through a one-step FeCl3-catalyzed oxidative coupling reaction, exhibits a superior CO2 uptake at 1.0 bar and 273 K (5.57 mmol g(-1)). C1 [Jin, Tian; Xiong, Yan; Hu, Jun; Liu, Honglai] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China. [Jin, Tian; Xiong, Yan; Hu, Jun; Liu, Honglai] E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China. [Zhu, Xiang; Tao, Duan-Jian; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Tian, Ziqi; Jiang, De-en] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. [Wang, Hualin] E China Univ Sci & Technol, State Environm Protect Key Lab Environm Risk Asse, Shanghai 200237, Peoples R China. [Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Liu, HL (reprint author), E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China.; Liu, HL (reprint author), E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China.; Zhu, X; Dai, S (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.; Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM hlliu@ecust.edu.cn; xiang@utk.edu; zhuxiang.ecust@gmail.com; hlliu@ecust.edu.cn; dais@ornl.gov RI Zhu, Xiang/P-6867-2014; Dai, Sheng/K-8411-2015; Jiang, De-en/D-9529-2011 OI Zhu, Xiang/0000-0002-3973-4998; Dai, Sheng/0000-0002-8046-3931; Jiang, De-en/0000-0001-5167-0731 FU National Key Technology Support Program of China [2015BAC04B01]; National Natural Science Foundation of China [91334203, 21376074, 21321064]; 111 Project of Ministry of Education of China [B08021]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division FX TJ, YX and HLL were supported by the National Key Technology Support Program of China (2015BAC04B01), the National Natural Science Foundation of China (No. 91334203, 21376074 and 21321064) and the 111 Project of Ministry of Education of China (No. B08021). XZ, ZT, DJ and SD were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. NR 37 TC 10 Z9 10 U1 20 U2 88 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 24 BP 4454 EP 4457 DI 10.1039/c6cc00573j PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DG6EI UT WOS:000372174700005 PM 26864392 ER PT J AU Pan, FX Xu, CQ Li, LJ Min, X Wang, JQ Li, J Zhai, HJ Sun, ZM AF Pan, Fu-Xing Xu, Cong-Qiao Li, Lei-Jiao Min, Xue Wang, Jian-Qiang Li, Jun Zhai, Hua-Jin Sun, Zhong-Ming TI A niobium-necked cluster [As3Nb(As3Sn3)](3-) with aromatic Sn-3(2-) SO DALTON TRANSACTIONS LA English DT Article ID METAL-MEDIATED ACTIVATION; DELTAHEDRAL ZINTL IONS; INTERMETALLOID CLUSTERS; PHOTOELECTRON-SPECTROSCOPY; DIRECT EXTRACTION; SANDWICH COMPLEX; COVALENT RADII; GAS-PHASE; AB-INITIO; TRANSITION AB We describe here the synthesis and characterization of a ternary cluster compound [As3Nb(As3Sn3)](3)- (1), in which a niobium(v) atom is coordinated by an As-3(3-) triangle and a bowl -type As3Sn35- ligand. Cluster 1 was synthesized by dissolving K8NbSnAs5 (2) in the presence of [2.2.21crypt in ethylenediamine solution, filtered and layered with toluene, then crystallized in the form of [K([2.2.21crypt)](3)[As3Nb(As3Sn3)]center dot en.tol center dot The flower-vase shaped compound 1 features a new structure type, rather different from the known Zintl phases. The stability and bonding of 1 are elucidated via extensive bonding analyses. The Sn-3 ring is found to have n-aromaticity featuring a delocalized Sn-Sn-Sn sigma bond. Electronic structure calculations confirm the Nb(v) oxidation state and weak Nb-Sn and Sn-Sn bonding, in addition to the normal Nb-As and As-As bonds. C1 [Pan, Fu-Xing; Li, Lei-Jiao; Min, Xue; Sun, Zhong-Ming] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Jilin, Peoples R China. [Pan, Fu-Xing; Min, Xue] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Xu, Cong-Qiao; Li, Jun] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Xu, Cong-Qiao; Li, Jun] Tsinghua Univ, Key Lab Organ Optoelect & Mol Engn, Minist Educ, Beijing 100084, Peoples R China. [Wang, Jian-Qiang] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Li, Jun] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Zhai, Hua-Jin] Shanxi Univ, Inst Mol Sci, Nanocluster Lab, Taiyuan 030006, Peoples R China. RP Sun, ZM (reprint author), Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Jilin, Peoples R China.; Li, J (reprint author), Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China.; Li, J (reprint author), Tsinghua Univ, Key Lab Organ Optoelect & Mol Engn, Minist Educ, Beijing 100084, Peoples R China.; Li, J (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. EM junli@tsinghua.edu.cn; szm@ciac.ac.cn OI Xu, Cong-Qiao/0000-0003-4593-3288 FU NSF of China [21171162, 21221062, 21573138]; Jilin Province Youth Foundation [20130522132JH]; SRF for ROCS (Chinese Ministry of Education); State Key Laboratory of Quantum Optics and Quantum Optics Devices [KF201402]; Shanxi University FX This work was supported by the NSF of China (21171162, 21221062, 21573138), Jilin Province Youth Foundation (20130522132JH), SRF for ROCS (Chinese Ministry of Education), and the State Key Laboratory of Quantum Optics and Quantum Optics Devices (KF201402). H. J. Z. gratefully acknowledges the start-up fund from Shanxi University for support. The calculations were performed at the Tsinghua National Laboratory for Information Science and Technology. We thank Prof. Yong Pei for valuable discussions. NR 84 TC 1 Z9 1 U1 5 U2 23 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PY 2016 VL 45 IS 9 BP 3874 EP 3879 DI 10.1039/c6dt00028b PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DF2AG UT WOS:000371140900028 PM 26905226 ER PT J AU Guo, XF Tiferet, E Qi, L Solomon, JM Lanzirotti, A Newville, M Engelhard, MH Kukkadapu, RK Wu, D Ilton, ES Asta, M Sutton, SR Xu, HW Navrotsky, A AF Guo, Xiaofeng Tiferet, Eitan Qi, Liang Solomon, Jonathan M. Lanzirotti, Antonio Newville, Matthew Engelhard, Mark H. Kukkadapu, Ravi K. Wu, Di Ilton, Eugene S. Asta, Mark Sutton, Stephen R. Xu, Hongwu Navrotsky, Alexandra TI U(V) in metal uranates: a combined experimental and theoretical study of MgUO4, CrUO4, and FeUO4 SO DALTON TRANSACTIONS LA English DT Article ID HIGH-TEMPERATURE CALORIMETRY; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; URANIUM-COMPOUNDS; FORMATION ENTHALPIES; STANDARD ENTHALPIES; MAGNETIC-STRUCTURES; OXIDATION-STATE; ENERGETICS; SYSTEM AB Although pentavalent uranium can exist in aqueous solution, its presence in the solid state is uncommon. Metal monouranates, MgUO4, CrUO4 and FeUO4 were synthesized for detailed structural and energetic investigations. Structural characteristics of these uranates used powder X-ray diffraction, synchrotron X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and Fe-57-Mossbauer spectroscopy. Enthalpies of formation were measured by high temperature oxide melt solution calorimetry. Density functional theory (DFT) calculations provided both structural and energetic information. The measured structural and thermodynamic properties show good consistency with those predicted from DFT. The presence of U5+ has been solidly confirmed in CrUO4 and FeUO4, which are thermodynamically stable compounds, and the origin and stability of U5+ in the system was elaborated by DFT. The structural and thermodynamic behaviour of U5+ elucidated in this work is relevant to fundamental actinide redox chemistry and to applications in the nuclear industry and radioactive waste disposal. C1 [Guo, Xiaofeng; Xu, Hongwu] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Guo, Xiaofeng; Tiferet, Eitan; Wu, Di; Navrotsky, Alexandra] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA. [Guo, Xiaofeng; Tiferet, Eitan; Wu, Di; Navrotsky, Alexandra] Univ Calif Davis, Nanomat Environm Agr & Technol Organized Res Unit, Davis, CA 95616 USA. [Tiferet, Eitan] Nucl Res Ctr Negev, Israel Inst, POB 9001, IL-84190 Beer Sheva, Israel. [Qi, Liang; Solomon, Jonathan M.; Asta, Mark] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Qi, Liang] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Lanzirotti, Antonio; Newville, Matthew; Sutton, Stephen R.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. [Engelhard, Mark H.; Kukkadapu, Ravi K.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Ilton, Eugene S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Sutton, Stephen R.] Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA. RP Navrotsky, A (reprint author), Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA.; Navrotsky, A (reprint author), Univ Calif Davis, Nanomat Environm Agr & Technol Organized Res Unit, Davis, CA 95616 USA. EM anavrotsky@ucdavis.edu RI Wu, Di/A-3039-2014; Qi, Liang/A-3851-2010; OI Wu, Di/0000-0001-6879-321X; Qi, Liang/0000-0002-0201-9333; Engelhard, Mark/0000-0002-5543-0812; Xu, Hongwu/0000-0002-0793-6923; Guo, Xiaofeng/0000-0003-3129-493X FU Materials Science of Actinides, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001089]; Office of Biological and Environmental Research; U.S. DOE [DE-AC06-76RLO1930]; National Science Foundation - Earth Sciences [EAR-1128799]; Department of Energy - GeoSciences [DE-FG02-94ER14466]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; laboratory-directed research and development (LDRD) program, through the G. T. Seaborg Institute, of Los Alamos National Laboratory (LANL); DOE [DE-AC52-06NA25396] FX This study, including synthesis, characterization, DFT calculations and calorimetric measurements, was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001089. The Mossbauer and XPS analyses were performed using EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is operated by Battelle for the U.S. DOE under contract DE-AC06-76RLO1930. The XAS work was performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR-1128799) and Department of Energy - GeoSciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The last stage of this work was also supported by the laboratory-directed research and development (LDRD) program, through the G. T. Seaborg Institute, of Los Alamos National Laboratory (LANL), which is operated by Los Alamos National Security LLC, under DOE Contract DE-AC52-06NA25396, in that X.G. is now pursuing a Seaborg postdoctoral fellowship at LANL. NR 75 TC 6 Z9 6 U1 11 U2 34 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 EI 1477-9234 J9 DALTON T JI Dalton Trans. PY 2016 VL 45 IS 11 BP 4622 EP 4632 DI 10.1039/c6dt00066e PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DG6JW UT WOS:000372191500023 PM 26854913 ER PT J AU Lampert, DJ Cai, H Elgowainy, A AF Lampert, David J. Cai, Hao Elgowainy, Amgad TI Wells to wheels: water consumption for transportation fuels in the United States SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID NATURAL-GAS; ENERGY; INTENSITY; OIL AB The sustainability of energy resources such as transportation fuels is increasingly connected to the consumption of water resources. Water is required for irrigation in the development of bioenergy, reservoir creation in hydroelectric power generation, drilling and resource displacement in petroleum and gas production, mineral extraction in mining operations, and cooling and processing in thermoelectric power generation. Vehicles powered by petroleum, electricity, natural gas, ethanol, biodiesel, and hydrogen fuel cells consume water resources indirectly through fuel production cycles, and it is important to understand the impacts of these technologies on water resources. Previous investigations of water consumption for transportation fuels have focused primarily on key processes and pathways, ignoring the impacts of many intermediate, inter-related processes used in fuel production cycles. Herein, the results of a life cycle analysis of water consumption for transportation fuels in the United States using an extensive system boundary that includes the water embedded in intermediate processing and transportation fuels are presented. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation ( GREET) model provides a comprehensive framework and system boundary for transportation fuel analysis in the United States. GREET was expanded to include water consumption and used to compare the water consumed per unit energy and per km traveled in light-duty vehicles. Many alternative fuels were found to consume larger quantities of water on a per km basis than traditional petroleum pathways, and it is therefore important to consider the implications of transportation and energy policy changes on water resources in the future. C1 [Lampert, David J.; Cai, Hao; Elgowainy, Amgad] Argonne Natl Lab, Div Energy Syst, 9700 South Cass Ave,Bldg 362, Lemont, IL 60439 USA. RP Lampert, DJ (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 South Cass Ave,Bldg 362, Lemont, IL 60439 USA. EM david.lampert@okstate.edu RI Lampert, David/G-2826-2016 OI Lampert, David/0000-0001-7357-1873 FU Bioenergy Technologies Office; Fuel Cell Technologies Office; Vehicle Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX This research effort was supported by the Bioenergy Technologies Office, Fuel Cell Technologies Office, and the Vehicle Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy under contract number DE-AC02-06CH11357. NR 42 TC 4 Z9 4 U1 6 U2 13 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2016 VL 9 IS 3 BP 787 EP 802 DI 10.1039/c5ee03254g PG 16 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DG7CY UT WOS:000372243600005 ER PT J AU Sathre, R Greenblatt, JB Walczak, K Sharp, ID Stevens, JC Ager, JW Houle, FA AF Sathre, Roger Greenblatt, Jeffery B. Walczak, Karl Sharp, Ian D. Stevens, John C. Ager, Joel W., III Houle, Frances A. TI Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SOLAR HYDROGEN-PRODUCTION; INTEGRATED PHOTOELECTROLYSIS SYSTEM; LIFE-CYCLE ASSESSMENT; PEROVSKITE PHOTOVOLTAICS; VAPOR-DEPOSITION; FILM; ELECTROCATALYSTS; EVOLUTION; PAYBACK; FUTURE AB The hydrogen energy provided by solar-driven photoelectrochemical (PEC) water splitting must be greater than the energy used to produce and operate the technology, as a fundamental system requirement to enable energetic benefits to society. PEC H-2 production will require significant advances from both basic scientific research and applied technology development, prior to manufacturing and field deployment. To identify opportunities and priorities, here we use prospective life cycle system modeling to investigate the net-energy significance of six characteristics describing the PEC life cycle: (1) embodied energy of active cell materials, (2) embodied energy of inactive module materials, (3) energy intensity of active cell fabrication, (4) energy intensity of PEC module assembly, (5) initial energy use for production of balance-of-system (BOS), and (6) ongoing energy use for operation and end-of-life of BOS. We develop and apply a system model describing material and energy flows during the full life cycle of louvered thin-film PEC cells and their associated modules and BOS components. We find that fabrication processes for the PEC cells, especially the thin-film deposition of active cell materials, are important drivers of net energy performance. Nevertheless, high solar-to-hydrogen (STH) conversion efficiency and long cell life span are primary design requirements for PEC systems, even if such performance requires additional energy and material inputs for production and operation. We discuss these and other system dynamics, and highlight pathways to improve net energy performance. C1 [Sathre, Roger; Greenblatt, Jeffery B.; Walczak, Karl; Sharp, Ian D.; Stevens, John C.; Ager, Joel W., III; Houle, Frances A.] Joint Ctr Artificial Photosynth, Berkeley, CA USA. [Sathre, Roger; Greenblatt, Jeffery B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA. [Walczak, Karl; Stevens, John C.; Ager, Joel W., III] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Sharp, Ian D.; Houle, Frances A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Sathre, R; Greenblatt, JB (reprint author), Joint Ctr Artificial Photosynth, Berkeley, CA USA.; Sathre, R; Greenblatt, JB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA. EM roger@transformativetechnologies.org; jbgreenblatt@lbl.gov FU Office of Science of the US Department of Energy [DE-SC0004993] FX This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the US Department of Energy under Award Number DE-SC0004993. NR 62 TC 4 Z9 4 U1 18 U2 56 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2016 VL 9 IS 3 BP 803 EP 819 DI 10.1039/c5ee03040d PG 17 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DG7CY UT WOS:000372243600006 ER PT J AU Su, NC Sun, DT Beavers, CM Britt, DK Queen, WL Urban, JJ AF Su, Norman C. Sun, Daniel T. Beavers, Christine M. Britt, David K. Queen, Wendy L. Urban, Jeffrey J. TI Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID MIXED-MATRIX MEMBRANES; METAL-ORGANIC FRAMEWORK; MICROWAVE-ASSISTED SYNTHESIS; GAS SEPARATION MEMBRANES; NANOCOMPOSITE MEMBRANES; FACILITATED TRANSPORT; CARBON-DIOXIDE; PERMEABILITY; COMPOSITES; UIO-66 AB The rise of anthropogenic global warming has sparked new interest in developing strategies to mitigate carbon dioxide emissions. Conventional carbon capture processes are not economically viable at scale due to their enormous energy cost. Membrane-based separation is a promising alternative, but its separation performance has traditionally been limited by a well-known trade-off between permeability and selectivity. Here, we report a hybrid polymer/inorganic membrane with dual transport pathways, which allows us to overcome this traditional limitation. The inorganic phase consists of a metal-organic framework (MOF), which is an ideal inorganic dispersant to construct dual transport pathways as the crystalline porous structure of MOFs is more amenable to molecular diffusion than polymers. Previous hybrid membrane research has failed to achieve sufficiently high loadings to establish a percolative network necessary for dual transport, often due to mechanical failure of the membrane at high loading. Using polysulfone and UiO-66-NH2 MOF as a model system, we achieve high MOF loadings (50 wt%) and observe the evolution from single mode to dual transport regimes. The newly formed percolative pathway through the MOF, which has not previously been observed, acts as a molecular highway for gases. As the MOF loading increases to 30 wt%, CO2 permeability increases linearly from 5.6 barrers in polysulfone homopolymer to 18 barrers. Crucially, between 30 and 40 wt%, a percolative MOF network arises and the CO2 permeability dramatically rises from 18 to 46 barrers; an eight-fold increase over pure polysulfone, while maintaining selectivity over methane and nitrogen near the pure polymer at 24 and 26, respectively. A similar phenomenon is observed in the measurement of the diffusion coefficient and is consistent with the formation of dual transport pathways. The findings in this study enable new approaches towards designing hybrid membranes with dual transport pathways. This is an important step towards a competitive membrane-based carbon capture process. C1 [Su, Norman C.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Su, Norman C.; Sun, Daniel T.; Britt, David K.; Queen, Wendy L.; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Sun, Daniel T.; Queen, Wendy L.] EPFL, Inst Sci & Ingn Chim, CH-1051 Sion, Switzerland. [Beavers, Christine M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Urban, JJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM jjurban@lbl.gov RI Beavers, Christine/C-3539-2009; Britt, David/D-4675-2009 OI Beavers, Christine/0000-0001-8653-5513; FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-ACO2-05CH11231]; Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship Program; Lawrence Berkeley National Laboratory Laboratory-Directed Research and Development Program; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362] FX X-ray diffraction measurements were collected at the Advanced Light Source, Beamline 12.2.2. Work at the Molecular Foundry and the Advanced Light Source was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-ACO2-05CH11231. N.S. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship Program. D.S. was supported by Lawrence Berkeley National Laboratory Laboratory-Directed Research and Development Program. W.Q. was supported by U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16362. NR 53 TC 8 Z9 9 U1 36 U2 100 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2016 VL 9 IS 3 BP 922 EP 931 DI 10.1039/c5ee02660a PG 10 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DG7CY UT WOS:000372243600021 ER PT J AU Martinez, AD Warren, EL Gorai, P Borup, KA Kuciauskas, D Dippo, PC Ortiz, BR Macaluso, RT Nguyen, SD Greenaway, AL Boettcher, SW Norman, AG Stevanovic, V Toberer, ES Tamboli, AC AF Martinez, Aaron D. Warren, Emily L. Gorai, Prashun Borup, Kasper A. Kuciauskas, Darius Dippo, Patricia C. Ortiz, Brenden R. Macaluso, Robin T. Nguyen, Sau D. Greenaway, Ann L. Boettcher, Shannon W. Norman, Andrew G. Stevanovic, Vladan Toberer, Eric S. Tamboli, Adele C. TI Solar energy conversion properties and defect physics of ZnSiP2 SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SINGLE-CRYSTALS; THIN-FILMS; N-TYPE; SEMICONDUCTORS; SILICON; ZNGEP2; GROWTH; PHOTOLUMINESCENCE; RECOMBINATION; ABSORPTION AB Implementation of an optically active material on silicon has been a persistent technological challenge. For tandem photovoltaics using a Si bottom cell, as well as for other optoelectronic applications, there has been a longstanding need for optically active, wide band gap materials that can be integrated with Si. ZnSiP2 is a stable, wide band gap (2.1 eV) material that is lattice matched with silicon and comprised of inexpensive elements. As we show in this paper, it is also a defect-tolerant material. Here, we report the first ZnSiP2 photovoltaic device. We show that ZnSiP2 has excellent photoresponse and high open circuit voltage of 1.3 V, as measured in a photoelectrochemical configuration. The high voltage and low band gap-voltage offset are on par with much more mature wide band gap III-V materials. Photoluminescence data combined with theoretical defect calculations illuminate the defect physics underlying this high voltage, showing that the intrinsic defects in ZnSiP2 are shallow and the minority carrier lifetime is 7 ns. These favorable results encourage the development of ZnSiP2 and related materials as photovoltaic absorber materials. C1 [Martinez, Aaron D.; Gorai, Prashun; Ortiz, Brenden R.; Stevanovic, Vladan; Toberer, Eric S.; Tamboli, Adele C.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Warren, Emily L.; Gorai, Prashun; Borup, Kasper A.; Kuciauskas, Darius; Dippo, Patricia C.; Norman, Andrew G.; Stevanovic, Vladan; Toberer, Eric S.; Tamboli, Adele C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Borup, Kasper A.] Aarhus Univ, Dept Chem, Langelandsgade 140, DK-8000 Aarhus C, Denmark. [Macaluso, Robin T.] Univ Texas Arlington, Dept Chem & Biochem, Arlington, TX 76019 USA. [Macaluso, Robin T.; Nguyen, Sau D.] Univ No Colorado, Dept Chem, Greeley, CO 80639 USA. [Greenaway, Ann L.; Boettcher, Shannon W.] Univ Oregon, Inst Mat Sci, Dept Chem & Biochem, Eugene, OR 97403 USA. RP Tamboli, AC (reprint author), Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA.; Tamboli, AC (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM adele.tamboli@nrel.gov RI Norman, Andrew/F-1859-2010; OI Norman, Andrew/0000-0001-6368-521X; Warren, Emily/0000-0001-8568-7881; Greenaway, Ann/0000-0001-6681-9965 FU National Renewable Energy Laboratory through the Laboratory-Directed Research and Development program; National Science Foundation through the Renewable Energy Materials Research and Engineering Center at the Colorado School of Mines under NSF [DMR-0820518]; NSF CAREER Award [1541230]; Danish Council for Independent Research (DFF) [4090-00071]; DFF Sapere Aude program FX The authors thank Anna Duda for depositing electrical contacts. Funding for this work was provided by the National Renewable Energy Laboratory through the Laboratory-Directed Research and Development program and by the National Science Foundation through the Renewable Energy Materials Research and Engineering Center at the Colorado School of Mines under NSF grant number DMR-0820518. RTM acknowledges NSF CAREER Award 1541230 for support of this work. KAB is thankful for funding from the Danish Council for Independent Research (DFF), grant no. 4090-00071, and the DFF Sapere Aude program. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 94 TC 2 Z9 2 U1 9 U2 24 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2016 VL 9 IS 3 BP 1031 EP 1041 DI 10.1039/c5ee02884a PG 11 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DG7CY UT WOS:000372243600033 ER PT J AU Xu, F Sun, J Konda, NVSNM Shi, J Dutta, T Scown, CD Simmons, BA Singh, S AF Xu, Feng Sun, Jian Konda, N. V. S. N. Murthy Shi, Jian Dutta, Tanmoy Scown, Corinne D. Simmons, Blake A. Singh, Seema TI Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SUBSEQUENT ENZYMATIC-HYDROLYSIS; SACCHAROMYCES-CEREVISIAE; BIOETHANOL PRODUCTION; WHEAT-STRAW; RICE STRAW; PRETREATMENT; SACCHARIFICATION; FERMENTATION; SUGARCANE; CHOLINIUM AB Producing concentrated sugars and minimizing water usage are key elements in the economics and environmental sustainability of advanced biofuels. Conventional pretreatment processes that require a water-wash step can result in losses of fermentable sugars and generate large volumes of wastewater or solid waste. To address these problems, we have developed high gravity biomass processing with a one-pot conversion technology that includes ionic liquid pretreatment, enzymatic saccharification, and yeast fermentation for the production of concentrated fermentable sugars and high-titer cellulosic ethanol. The use of dilute bio-derived ionic liquids (a.k.a. bionic liquids) enables one-pot, high-gravity bioethanol production due to their low toxicity to the hydrolytic enzyme mixtures and microbes used. We increased biomass digestibility at 430 wt% loading by understanding the relationship between ionic liquid and biomass loading, yielding 41.1 g L-1 of ethanol (equivalent to an overall yield of 74.8% on glucose basis) using an integrated one-pot fed-batch system. Our technoeconomic analysis indicates that the optimized one-pot configuration provides significant economic and environmental benefits for cellulosic biorefineries by reducing the amount of ionic liquid required by similar to 90% and pretreatment-related water inputs and wastewater generation by B85%. In turn, these improvements can reduce net electricity use, greenhouse gas-intensive chemical inputs for wastewater treatment, and waste generation. The result is an overall 40% reduction in the cost of cellulosic ethanol produced and a reduction in local burdens on water resources and waste management infrastructure. C1 [Xu, Feng; Sun, Jian; Konda, N. V. S. N. Murthy; Shi, Jian; Dutta, Tanmoy; Scown, Corinne D.; Simmons, Blake A.; Singh, Seema] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA. [Xu, Feng; Sun, Jian; Shi, Jian; Dutta, Tanmoy; Simmons, Blake A.; Singh, Seema] Sandia Natl Labs, Biol & Engn Sci Ctr, Livermore, CA USA. [Konda, N. V. S. N. Murthy] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Scown, Corinne D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA. RP Singh, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA.; Singh, S (reprint author), Sandia Natl Labs, Biol & Engn Sci Ctr, Livermore, CA USA. EM seesing@sandia.gov RI Scown, Corinne/D-1253-2013; OI Dutta, Tanmoy/0000-0002-7597-9028 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX The enzyme mixtures used in this study were obtained as a gift from Novozymes. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 31 TC 8 Z9 8 U1 32 U2 63 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2016 VL 9 IS 3 BP 1042 EP 1049 DI 10.1039/c5ee02940f PG 8 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA DG7CY UT WOS:000372243600034 ER PT J AU Moses, EI Lindl, JD Spaeth, ML Patterson, RW Sawicki, RH Atherton, LJ Baisden, PA Lagin, LJ Larson, DW MacGowan, BJ Miller, GH Rardin, DC Roberts, VS Van Wonterghem, BM Wegner, PJ AF Moses, E. I. Lindl, J. D. Spaeth, M. L. Patterson, R. W. Sawicki, R. H. Atherton, L. J. Baisden, P. A. Lagin, L. J. Larson, D. W. MacGowan, B. J. Miller, G. H. Rardin, D. C. Roberts, V. S. Van Wonterghem, B. M. Wegner, P. J. TI Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE National Ignition Facility; National Ignition Campaign; high energy density science ID INERTIAL FUSION ENERGY; CONFINEMENT FUSION; TARGET PHYSICS; LASER SYSTEM; PERFORMANCE; LIFE; NIF; IMPLOSION; MATTER; POWER AB The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3 omega light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besides the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This paper provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. They are covered in more detail in the papers that follow. C1 [Moses, E. I.; Lindl, J. D.; Spaeth, M. L.; Patterson, R. W.; Sawicki, R. H.; Atherton, L. J.; Baisden, P. A.; Lagin, L. J.; Larson, D. W.; MacGowan, B. J.; Miller, G. H.; Rardin, D. C.; Roberts, V. S.; Van Wonterghem, B. M.; Wegner, P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. RP Lindl, JD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. EM lindl1@llnl.gov FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344. NR 63 TC 4 Z9 4 U1 5 U2 13 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 1 EP 24 PG 24 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600001 ER PT J AU Spaeth, ML Manes, KR Kalantar, DH Miller, PE Heebner, JE Bliss, ES Speck, DR Parham, TG Whitman, PK Wegner, PJ Baisden, PA Menapace, JA Bowers, MW Cohen, SJ Suratwala, TI Di Nicola, JM Newton, MA Adams, JJ Trenholme, JB Finucane, RG Bonanno, RE Rardin, DC Arnold, PA Dixit, SN Erbert, GV Erlandson, AC Fair, JE Feigenbaum, E Gourdin, WH Hawley, RA Honig, J House, RK Jancaitis, KS LaFortune, KN Larson, DW Le Galloudec, BJ Lindl, JD MacGowan, BJ Marshall, CD McCandless, KP McCracken, RW Montesanti, RC Moses, EI Nostrand, MC Pryatel, JA Roberts, VS Rodriguez, SB Rowe, AW Sacks, RA Salmon, JT Shaw, MJ Sommer, S Stolz, CJ Tietbohl, GL Widmayer, CC Zacharias, R AF Spaeth, M. L. Manes, K. R. Kalantar, D. H. Miller, P. E. Heebner, J. E. Bliss, E. S. Speck, D. R. Parham, T. G. Whitman, P. K. Wegner, P. J. Baisden, P. A. Menapace, J. A. Bowers, M. W. Cohen, S. J. Suratwala, T. I. Di Nicola, J. M. Newton, M. A. Adams, J. J. Trenholme, J. B. Finucane, R. G. Bonanno, R. E. Rardin, D. C. Arnold, P. A. Dixit, S. N. Erbert, G. V. Erlandson, A. C. Fair, J. E. Feigenbaum, E. Gourdin, W. H. Hawley, R. A. Honig, J. House, R. K. Jancaitis, K. S. LaFortune, K. N. Larson, D. W. Le Galloudec, B. J. Lindl, J. D. MacGowan, B. J. Marshall, C. D. McCandless, K. P. McCracken, R. W. Montesanti, R. C. Moses, E. I. Nostrand, M. C. Pryatel, J. A. Roberts, V. S. Rodriguez, S. B. Rowe, A. W. Sacks, R. A. Salmon, J. T. Shaw, M. J. Sommer, S. Stolz, C. J. Tietbohl, G. L. Widmayer, C. C. Zacharias, R. TI Description of the NIF Laser SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE ICF; fusion driver; NIF laser ID NATIONAL-IGNITION-FACILITY; PERFORMANCE OPERATIONS MODEL; INERTIAL-CONFINEMENT FUSION; SUBCRITICAL CRACK-GROWTH; WAVE-FRONT CONTROL; PHOSPHATE-GLASSES; PLASMA ELECTRODES; FORCE MICROSCOPY; OPTICAL SWITCHES; POROUS SILICA AB The possibility of imploding small capsules to produce mini-fusion explosions was explored soon after the first thermonuclear explosions in the early 1950s. Various technologies have been pursued to achieve the focused power and energy required for laboratory-scale fusion. Each technology has its own challenges. For example, electron and ion beams can deliver the large amounts of energy but must contend with Coulomb repulsion forces that make focusing these beams a daunting challenge. The demonstration of the first laser in 1960 provided a new option. Energy from laser beams can be focused and deposited within a small volume; the challenge became whether a practical laser system can be constructed that delivers the power and energy required while meeting all other demands for achieving a high-density, symmetric implosion. The National Ignition Facility (NIF) is the laser designed and built to meet the challenges for study of high-energy-density physics and inertial confinement fusion (ICF) implosions. This paper describes the architecture, systems, and subsystems of NIF. It describes how they partner with each other to meet these new, complex demands and describes how laser science and technology were woven together to bring NIF into reality. C1 [Spaeth, M. L.; Manes, K. R.; Kalantar, D. H.; Miller, P. E.; Heebner, J. E.; Bliss, E. S.; Speck, D. R.; Parham, T. G.; Whitman, P. K.; Wegner, P. J.; Baisden, P. A.; Menapace, J. A.; Bowers, M. W.; Cohen, S. J.; Suratwala, T. I.; Di Nicola, J. M.; Newton, M. A.; Adams, J. J.; Trenholme, J. B.; Finucane, R. G.; Bonanno, R. E.; Rardin, D. C.; Arnold, P. A.; Dixit, S. N.; Erbert, G. V.; Erlandson, A. C.; Fair, J. E.; Feigenbaum, E.; Gourdin, W. H.; Hawley, R. A.; Honig, J.; House, R. K.; Jancaitis, K. S.; LaFortune, K. N.; Larson, D. W.; Le Galloudec, B. J.; Lindl, J. D.; MacGowan, B. J.; Marshall, C. D.; McCandless, K. P.; McCracken, R. W.; Montesanti, R. C.; Moses, E. I.; Nostrand, M. C.; Pryatel, J. A.; Roberts, V. S.; Rodriguez, S. B.; Rowe, A. W.; Sacks, R. A.; Salmon, J. T.; Shaw, M. J.; Sommer, S.; Stolz, C. J.; Tietbohl, G. L.; Widmayer, C. C.; Zacharias, R.] Lawrence Livermore Natl Lab, POB 808,L-462, Livermore, CA 94550 USA. RP Spaeth, ML (reprint author), Lawrence Livermore Natl Lab, POB 808,L-462, Livermore, CA 94550 USA. EM spaeth2@llnl.gov RI Trenholme, John/M-4805-2016 OI Trenholme, John/0000-0003-3673-6653 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 184 TC 5 Z9 6 U1 4 U2 12 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 25 EP 145 PG 121 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600002 ER PT J AU Manes, KR Spaeth, ML Adams, JJ Bowers, MW Bude, JD Carr, CW Conder, AD Cross, DA Demos, SG Di Nicola, JMG Dixit, SN Feigenbaum, E Finucane, RG Guss, GM Henesian, MA Honig, J Kalantar, DH Kegelmeyer, LM Liao, ZM MacGowan, BJ Matthews, MJ McCandless, KP Mehta, NC Miller, PE Negres, RA Norton, MA Nostrand, MC Orth, CD Sacks, RA Shaw, MJ Siegel, LR Stolz, CJ Suratwala, TI Trenholme, JB Wegner, PJ Whitman, PK Widmayer, CC Yang, ST AF Manes, K. R. Spaeth, M. L. Adams, J. J. Bowers, M. W. Bude, J. D. Carr, C. W. Conder, A. D. Cross, D. A. Demos, S. G. Di Nicola, J. M. G. Dixit, S. N. Feigenbaum, E. Finucane, R. G. Guss, G. M. Henesian, M. A. Honig, J. Kalantar, D. H. Kegelmeyer, L. M. Liao, Z. M. MacGowan, B. J. Matthews, M. J. McCandless, K. P. Mehta, N. C. Miller, P. E. Negres, R. A. Norton, M. A. Nostrand, M. C. Orth, C. D. Sacks, R. A. Shaw, M. J. Siegel, L. R. Stolz, C. J. Suratwala, T. I. Trenholme, J. B. Wegner, P. J. Whitman, P. K. Widmayer, C. C. Yang, S. T. TI Damage Mechanisms Avoided or Managed for NIF Large Optics SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE ICF lasers; pseudoscopic imaging; parasitic loss mechanisms for lasers ID LASER-INDUCED DAMAGE; STIMULATED BRILLOUIN-SCATTERING; NATIONAL IGNITION FACILITY; SPATIAL FILTER PINHOLE; FUSED-SILICA OPTICS; RAMAN-SCATTERING; WATER-VAPOR; WAVELENGTH IRRADIATION; REFRACTIVE-INDEX; INITIATED DAMAGE AB After every other failure mode has been considered, in the end, the high-performance limit of all lasers is set by optical damage. The demands of inertial confinement fusion (ICF) pushed lasers designed as ICF drivers into this limit from their very earliest days. The first ICF lasers were small, and their pulses were short. Their goal was to provide as much power to the target as possible. Typically, they faced damage due to high intensity on their optics. As requests for higher laser energy, longer pulse lengths, and better symmetry appeared, new kinds of damage also emerged, some of them anticipated and others unexpected. This paper will discuss the various types of damage to large optics that had to be considered, avoided to the extent possible, or otherwise managed as the National Ignition Facility (NIF) laser was designed, fabricated, and brought into operation. It has been possible for NIF to meet its requirements because of the experience gained in previous ICF systems and because NIF designers have continued to be able to avoid or manage new damage situations as they have appeared. C1 [Manes, K. R.; Spaeth, M. L.; Adams, J. J.; Bowers, M. W.; Bude, J. D.; Carr, C. W.; Conder, A. D.; Cross, D. A.; Demos, S. G.; Di Nicola, J. M. G.; Dixit, S. N.; Feigenbaum, E.; Finucane, R. G.; Guss, G. M.; Henesian, M. A.; Honig, J.; Kalantar, D. H.; Kegelmeyer, L. M.; Liao, Z. M.; MacGowan, B. J.; Matthews, M. J.; McCandless, K. P.; Mehta, N. C.; Miller, P. E.; Negres, R. A.; Norton, M. A.; Nostrand, M. C.; Orth, C. D.; Sacks, R. A.; Shaw, M. J.; Siegel, L. R.; Stolz, C. J.; Suratwala, T. I.; Trenholme, J. B.; Wegner, P. J.; Whitman, P. K.; Widmayer, C. C.; Yang, S. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Manes, KR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM manes1@llnl.gov RI Trenholme, John/M-4805-2016 OI Trenholme, John/0000-0003-3673-6653 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 201 TC 4 Z9 5 U1 11 U2 22 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 146 EP 249 PG 104 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600003 ER PT J AU Spaeth, ML Manes, KR Honig, J AF Spaeth, M. L. Manes, K. R. Honig, J. TI Cleanliness for the NIF 1 omega Laser Amplifiers SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE Flashlamp-induced aerosols; laser amplifier environment; laser slab damage ID CONTAMINATION PARTICLES; PROPAGATION AB During the years before the National Ignition Facility (NIF) laser system, a set of generally accepted cleaning procedures had been developed for the large 1 omega amplers of an inertial confinement fusion laser, and up until 1999 similar procedures were planned for NIF. Several parallel sets of test results were obtained from 1992 to 1999 for large amplifiers using these accepted cleaning procedures in the Beamlet physics test bed and in the Amplifier Module Prototype Laboratory (AMPLAB), a four-slab -high prototype large amplifier structure. Both of these showed damage to their slab surfaces that, if projected to operating conditions for NIF, would lead to higher than acceptable slab-refurbishment rates. This paper tracks the search for the smoking gun origin of this damage and describes the solution employed in NIF for avoiding flashlamp-induced aerosol damage to its 1 omega amplifier slabs. C1 [Spaeth, M. L.; Manes, K. R.; Honig, J.] Lawrence Livermore Natl Lab, POB 808,L-466, Livermore, CA 94550 USA. RP Spaeth, ML (reprint author), Lawrence Livermore Natl Lab, POB 808,L-466, Livermore, CA 94550 USA. EM Spaeth2@llnl.gov FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344. NR 21 TC 0 Z9 1 U1 2 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 250 EP 264 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600004 ER PT J AU Spaeth, ML Wegner, PJ Suratwala, TI Nostrand, MC Bude, JD Conder, AD Folta, JA Heebner, JE Kegelmeyer, LM MacGowan, BJ Mason, DC Matthews, MJ Whitman, PK AF Spaeth, M. L. Wegner, P. J. Suratwala, T. I. Nostrand, M. C. Bude, J. D. Conder, A. D. Folta, J. A. Heebner, J. E. Kegelmeyer, L. M. MacGowan, B. J. Mason, D. C. Matthews, M. J. Whitman, P. K. TI Optics Recycle Loop Strategy for NIF Operations Above UV Laser-Induced Damage Threshold SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE Lasers and laser optics; laser damage; UV lasers ID FUSED-SILICA SURFACES; GALVANOMETER SCANNED CO2-LASER; CRYSTAL LIGHT VALVE; MATERIAL REMOVAL; 351 NM; GROWTH; MITIGATION; PRECURSORS; RELAXATION; MICROSCOPY AB The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world's largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm(2), more than twice the (3 omega only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics. Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, 4 J/cm(2), thus keeping the energy delivered to the target significantly below 1 MI. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MI on target, an increase in operational capability of more than 100%. In this review, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed. C1 [Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.; Nostrand, M. C.; Bude, J. D.; Conder, A. D.; Folta, J. A.; Heebner, J. E.; Kegelmeyer, L. M.; MacGowan, B. J.; Mason, D. C.; Matthews, M. J.; Whitman, P. K.] Lawrence Livermore Natl Lab, 7000 East Ave,L-580, Livermore, CA 94550 USA. RP Wegner, PJ (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-580, Livermore, CA 94550 USA. EM wegner1@llnl.gov FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program FX This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344. Much of the fundamental science enabling the loop technologies was supported by the Laboratory Directed Research and Development Program. NR 88 TC 2 Z9 2 U1 4 U2 9 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 265 EP 294 PG 30 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600005 ER PT J AU Baisden, PA Atherton, LJ Hawley, RA Land, TA Menapace, JA Miller, PE Runkel, MJ Spaeth, ML Stolz, CJ Suratwala, TI Wegner, PJ Wong, LL AF Baisden, P. A. Atherton, L. J. Hawley, R. A. Land, T. A. Menapace, J. A. Miller, P. E. Runkel, M. J. Spaeth, M. L. Stolz, C. J. Suratwala, T. I. Wegner, P. J. Wong, L. L. TI Large Optics for the National Ignition Facility SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE National Ignition Facility; optics fabrication for high-fluence lasers; large-aperture optical metrology tools ID PHOSPHATE LASER GLASSES; PLANE IRRADIANCE PROFILES; SUBCRITICAL CRACK-GROWTH; ATOMIC-FORCE MICROSCOPY; CONTINUOUS-PHASE-PLATE; ASTERISK-P CRYSTALS; SOL-GEL COATINGS; FUSED-SILICA; RAPID-GROWTH; DAMAGE PRECURSORS AB The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world's largest laser but also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF's high output energies and precision beam quality. This paper describes the multiyear, multisupplier development effort that was undertaken to develop the advanced optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused-silica lenses, windows, and phase plates; mirrors and polarizers with multilayer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3 omega) is provided. C1 [Baisden, P. A.; Atherton, L. J.; Hawley, R. A.; Land, T. A.; Menapace, J. A.; Miller, P. E.; Runkel, M. J.; Spaeth, M. L.; Stolz, C. J.; Suratwala, T. I.; Wegner, P. J.; Wong, L. L.] Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. RP Baisden, PA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. EM baisden1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 179 TC 2 Z9 7 U1 4 U2 8 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 295 EP 351 PG 57 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600006 ER PT J AU Brunton, G Casey, A Christensen, M Demaret, R Fedorov, M Flegel, M Folta, P Frazier, T Hutton, M Kegelmeyer, L Lagin, L Ludwigsen, P Reed, R Speck, D Wilhelmsen, K AF Brunton, G. Casey, A. Christensen, M. Demaret, R. Fedorov, M. Flegel, M. Folta, P. Frazier, T. Hutton, M. Kegelmeyer, L. Lagin, L. Ludwigsen, P. Reed, R. Speck, D. Wilhelmsen, K. TI Control and Information Systems for the National Ignition Facility SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE Control systems; information systems; software tools AB Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF's laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 mu m root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second. NIF's automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. This paper is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign. C1 [Brunton, G.; Casey, A.; Christensen, M.; Demaret, R.; Fedorov, M.; Flegel, M.; Folta, P.; Frazier, T.; Hutton, M.; Kegelmeyer, L.; Lagin, L.; Ludwigsen, P.; Reed, R.; Speck, D.; Wilhelmsen, K.] Lawrence Livermore Natl Lab, POB 808,L-488, Livermore, CA 94550 USA. RP Brunton, G (reprint author), Lawrence Livermore Natl Lab, POB 808,L-488, Livermore, CA 94550 USA. EM Brunton2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 16 TC 0 Z9 0 U1 2 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 352 EP 365 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600007 ER PT J AU Spaeth, ML Manes, KR Bowers, M Celliers, P Di Nicola, JM Di Nicola, P Dixit, S Erbert, G Heebner, J Kalantar, D Landen, O MacGowan, B Van Wonterghem, B Wegner, P Widmayer, C Yang, S AF Spaeth, Mary L. Manes, Kenneth R. Bowers, M. Celliers, P. Di Nicola, J. -M. Di Nicola, P. Dixit, S. Erbert, G. Heebner, J. Kalantar, D. Landen, O. MacGowan, B. Van Wonterghem, B. Wegner, P. Widmayer, C. Yang, S. TI National Ignition Facility Laser System Performance SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE ICF targets; thermal analysis; laser inertial fusion energy (LIFE) ID STIMULATED BRILLOUIN-SCATTERING; LIGHT AB The National Ignition Facility (NIF) laser is the culmination of more than 40 years of work at Lawrence Livermore National Laboratory dedicated to the delivery of laser systems capable of driving experiments for the study of high-energy-density physics. Although NIF was designed to support a number of missions, it was clear from the beginning that its biggest challenge was to meet the requirements for pursuit of inertial confinement fusion. Meeting the Project Completion Criteria for NIF in 2009 and for the National Ignition Campaign (NIC) in 2012 included meeting the NIF Functional Requirements and Primary Criteria that were established for the project in 1994. During NIC and as NIF transitioned to a user facility, its goals were expanded to include requirements defined by the broader user community as well as by laser system designers and operators. C1 [Spaeth, Mary L.; Manes, Kenneth R.; Bowers, M.; Celliers, P.; Di Nicola, J. -M.; Di Nicola, P.; Dixit, S.; Erbert, G.; Heebner, J.; Kalantar, D.; Landen, O.; MacGowan, B.; Van Wonterghem, B.; Wegner, P.; Widmayer, C.; Yang, S.] Lawrence Livermore Natl Lab, 7000 East Ave,L-466, Livermore, CA 94550 USA. RP Spaeth, ML (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-466, Livermore, CA 94550 USA. EM spaeth2@llnl.gov FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX This work is performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344. NR 40 TC 5 Z9 5 U1 3 U2 9 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 366 EP 394 PG 29 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600008 ER PT J AU Hamza, AV Nikroo, A Alger, E Antipa, N Atherton, LJ Barker, D Baxamusa, S Bhandarkar, S Biesiada, T Buice, E Carr, E Castro, C Choate, C Conder, A Crippen, J Dylla-Spears, R Dzenitis, E Eddinger, S Emerich, M Fair, J Farrell, M Felker, S Florio, J Forsman, A Giraldez, E Hein, N Hoover, D Horner, J Huang, H Kozioziemski, B Kroll, J Lawson, B Letts, SA Lord, D Mapoles, E Mauldin, M Miller, P Montesanti, R Moreno, K Parham, T Nathan, B Reynolds, J Sater, J Segraves, K Seugling, R Stadermann, M Strauser, R Stephens, R Suratwala, TI Swisher, M Taylor, JS Wallace, R Wegner, P Wilkens, H Yoxall, B AF Hamza, A. V. Nikroo, A. Alger, E. Antipa, N. Atherton, L. J. Barker, D. Baxamusa, S. Bhandarkar, S. Biesiada, T. Buice, E. Carr, E. Castro, C. Choate, C. Conder, A. Crippen, J. Dylla-Spears, R. Dzenitis, E. Eddinger, S. Emerich, M. Fair, J. Farrell, M. Felker, S. Florio, J. Forsman, A. Giraldez, E. Hein, N. Hoover, D. Horner, J. Huang, H. Kozioziemski, B. Kroll, J. Lawson, B. Letts, S. A. Lord, D. Mapoles, E. Mauldin, M. Miller, P. Montesanti, R. Moreno, K. Parham, T. Nathan, B. Reynolds, J. Sater, J. Segraves, K. Seugling, R. Stadermann, M. Strauser, R. Stephens, R. Suratwala, T. I. Swisher, M. Taylor, J. S. Wallace, R. Wegner, P. Wilkens, H. Yoxall, B. TI Target Development for the National Ignition Campaign SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE National Ignition Campaign; inertial confinement fusion; target development ID XRADIA MICROXCT MICROSCOPE; ICF SHELLS; QUANTITATIVE RADIOGRAPHY; NIF TARGETS; CALIBRATION; CAPSULES; DOPANT AB Complex and precise research targets are required for the inertial confinement fusion (ICF) experiments conducted at the National Ignition Facility. During the National Ignition Campaign (NIC) the target development team embarked on and completed a science and technology campaign to provide the capability to produce the required targets at the rate needed by the NIC. An engineering design for precision, manufacturing, and fielding was developed. This required new processes, new tooling, and equipment to metrologize and assemble components. In addition, development of new processing technology was also required. Since the NIC had to respond to new results from ICF experiments, the target development team had to respond as well. This required target designs that allowed for flexibility in accommodating changes in the targets for capsule dimensions and doping levels, hohlraztm dimensions and materials, and various new platforms to investigate new physics. A continuous improvement of processes was also required to meet stringent specifications and fielding requirements. C1 [Hamza, A. V.; Antipa, N.; Atherton, L. J.; Barker, D.; Baxamusa, S.; Bhandarkar, S.; Biesiada, T.; Buice, E.; Carr, E.; Castro, C.; Choate, C.; Conder, A.; Dylla-Spears, R.; Dzenitis, E.; Fair, J.; Felker, S.; Horner, J.; Kozioziemski, B.; Kroll, J.; Lawson, B.; Letts, S. A.; Lord, D.; Mapoles, E.; Miller, P.; Montesanti, R.; Parham, T.; Nathan, B.; Reynolds, J.; Sater, J.; Segraves, K.; Seugling, R.; Stadermann, M.; Suratwala, T. I.; Swisher, M.; Taylor, J. S.; Wallace, R.; Wegner, P.; Yoxall, B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Nikroo, A.; Alger, E.; Crippen, J.; Eddinger, S.; Emerich, M.; Farrell, M.; Florio, J.; Forsman, A.; Giraldez, E.; Hein, N.; Hoover, D.; Huang, H.; Mauldin, M.; Moreno, K.; Strauser, R.; Stephens, R.; Wilkens, H.] Gen Atom Co, La Jolla, CA 92121 USA. RP Hamza, AV (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hamza1@llnl.gov OI Stephens, Richard/0000-0002-7034-6141 FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344. NR 33 TC 1 Z9 1 U1 4 U2 9 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 395 EP 406 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600009 ER PT J AU Parham, T Kozioziemski, B Atkinson, D Baisden, P Bertolini, L Boehm, K Chernov, A Coffee, K Coffield, F Dylla-Spears, R Edwards, O Fair, J Fedorov, M Fry, J Gibson, C Haid, B Holunga, D Kohut, T Lewis, T Malsbury, T Mapoles, E Sater, J Skulina, K Trummer, D Walters, C AF Parham, T. Kozioziemski, B. Atkinson, D. Baisden, P. Bertolini, L. Boehm, K. Chernov, A. Coffee, K. Coffield, F. Dylla-Spears, R. Edwards, O. Fair, J. Fedorov, M. Fry, J. Gibson, C. Haid, B. Holunga, D. Kohut, T. Lewis, T. Malsbury, T. Mapoles, E. Sater, J. Skulina, K. Trummer, D. Walters, C. TI Cryogenic Target System for Hydrogen Layering SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE National Ignition Facility; cryogenic target; target positioner ID NATIONAL IGNITION FACILITY; TRITIUM AB A cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highly constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer. The team developed processes, procedures, software, and metrology techniques to form and qualify solid layers of hydrogen isotopes at a quality level and yield needed to support the National Ignition Campaign experimental program. The team has grown over 220 layers in NIF, and 52 have been shot to date. C1 [Parham, T.; Kozioziemski, B.; Atkinson, D.; Baisden, P.; Bertolini, L.; Chernov, A.; Coffee, K.; Coffield, F.; Dylla-Spears, R.; Edwards, O.; Fair, J.; Fedorov, M.; Fry, J.; Haid, B.; Holunga, D.; Kohut, T.; Malsbury, T.; Mapoles, E.; Sater, J.; Skulina, K.; Trummer, D.; Walters, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boehm, K.; Gibson, C.] Gen Atom Co, San Diego, CA 92121 USA. [Lewis, T.] AKIMA Infrastruct Serv LLC, Livermore, CA 94550 USA. RP Kozioziemski, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM Kozioziemski1@llnl.gov FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344. NR 25 TC 1 Z9 1 U1 4 U2 16 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 407 EP 419 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600010 ER PT J AU Kilkenny, JD Bell, PM Bradley, DK Bleuel, DL Caggiano, JA Dewald, EL Hsing, WW Kalantar, DH Kauffman, RL Larson, DJ Moody, JD Schneider, DH Schneider, MB Shaughnessy, DA Shelton, RT Stoeffl, W Widmann, K Yeamans, CB Batha, SH Grim, GP Herrmann, HW Merrill, FE Leeper, RJ Oertel, JA Sangster, TC Edgell, DH Hohenberger, M Glebov, VY Regan, SP Frenje, JA Gatu-Johnson, M Petrasso, RD Rinderknecht, HG Zylstra, AB Cooper, GW Ruiz, C AF Kilkenny, J. D. Bell, P. M. Bradley, D. K. Bleuel, D. L. Caggiano, J. A. Dewald, E. L. Hsing, W. W. Kalantar, D. H. Kauffman, R. L. Larson, D. J. Moody, J. D. Schneider, D. H. Schneider, M. B. Shaughnessy, D. A. Shelton, R. T. Stoeffl, W. Widmann, K. Yeamans, C. B. Batha, S. H. Grim, G. P. Herrmann, H. W. Merrill, F. E. Leeper, R. J. Oertel, J. A. Sangster, T. C. Edgell, D. H. Hohenberger, M. Glebov, V. Yu. Regan, S. P. Frenje, J. A. Gatu-Johnson, M. Petrasso, R. D. Rinderknecht, H. G. Zylstra, A. B. Cooper, G. W. Ruiz, C. TI The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012 SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE Target drive diagnostics; target response diagnostics; target assembly diagnostics ID FLIGHT; NOVA AB At the completion of the National Ignition Campaign (NIC), the National Ignition Facility (NIF) had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole U.S. inertial confinement fusion community. In 1994, the Joint Central Diagnostic Team documented a plan for a limited set of NIF diagnostics in the NIF Conceptual Design Report. Two decades later, these diagnostics, and many others, were installed workhorse tools for all users of NIF. We give a short description of each of the 36 different types of NIC diagnostics grouped by the function of the diagnostics, namely, target drive, target response and target assembly, stagnation, and burn. A comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova in 1999. Although NIF diagnostics have a much greater degree of automation and rigor than Nova's, new diagnostics are limited such as the higher-speed X-ray imager. Recommendations for future diagnostics on the NIF are discussed. C1 [Kilkenny, J. D.] Gen Atom, La Jolla, CA 92121 USA. [Bell, P. M.; Bradley, D. K.; Bleuel, D. L.; Caggiano, J. A.; Dewald, E. L.; Hsing, W. W.; Kalantar, D. H.; Kauffman, R. L.; Larson, D. J.; Moody, J. D.; Schneider, D. H.; Schneider, M. B.; Shaughnessy, D. A.; Shelton, R. T.; Stoeffl, W.; Widmann, K.; Yeamans, C. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Batha, S. H.; Grim, G. P.; Herrmann, H. W.; Merrill, F. E.; Leeper, R. J.; Oertel, J. A.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Sangster, T. C.; Edgell, D. H.; Hohenberger, M.; Glebov, V. Yu.; Regan, S. P.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Kilkenny, J. D.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Rinderknecht, H. G.; Zylstra, A. B.] MIT, Cambridge, MA 02139 USA. [Cooper, G. W.; Ruiz, C.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Kilkenny, JD (reprint author), Gen Atom, La Jolla, CA 92121 USA. EM kilkenny1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 64 TC 5 Z9 5 U1 7 U2 13 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 420 EP 451 PG 32 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600011 ER PT J AU Van Wonterghem, BM Brereton, SJ Burr, RF Folta, P Hardy, DL Jize, NN Kohut, TR Land, TA Merritt, BT AF Van Wonterghem, Bruno M. Brereton, Sandra J. Burr, Robert F. Folta, Peg Hardy, Diane L. Jize, Nicholas N. Kohut, Thomas R. Land, Terry A. Merritt, Bernard T. TI Operations on the National Ignition Facility SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE NIF operations; user facility; laser facility ID MANAGEMENT; EQUIPMENT; PROGRAM AB The National Ignition Facility (NIF) is a high-energy-density physics, experimental user facility that focuses up to 1.8 MJ of UV light in 192 laser beams onto a mm-sized target at the center of a target chamber. This paper describes how we conduct experimental shots on the NIF. We review processes and tools used to facilitate experiment planning and operations. Safety and radiological aspects of NIF's operations are discussed. We also describe efforts to continuously improve operational efficiency and further increase shot rate. C1 [Van Wonterghem, Bruno M.; Brereton, Sandra J.; Burr, Robert F.; Folta, Peg; Hardy, Diane L.; Jize, Nicholas N.; Kohut, Thomas R.; Land, Terry A.; Merritt, Bernard T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Van Wonterghem, BM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM VanWonterghem1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 15 TC 3 Z9 3 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JAN-FEB PY 2016 VL 69 IS 1 BP 452 EP 469 PG 18 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DG4LV UT WOS:000372044600012 ER PT J AU Li, M Pu, YQ Yoo, CG Ragauskas, AJ AF Li, Mi Pu, Yunqiao Yoo, Chang Geun Ragauskas, Arthur J. TI The occurrence of tricin and its derivatives in plants SO GREEN CHEMISTRY LA English DT Review ID ORYZA-SATIVA L.; ANTIOXIDANT FLAVONE GLYCOSIDES; BRAN CONSTITUENT TRICIN; STRAW LIGNIN STRUCTURE; SASA-ALBO-MARGINATA; NJAVARA RICE BRAN; CELLS IN-VITRO; HPLC-UV-MS; AERIAL PARTS; MASS-SPECTROMETRY AB Our understanding of the structure and biosynthetic pathway of lignin, a phenylpropanoid heteropolymer, continues to evolve, especially with the discovery of new lignin monomers/structural moieties such as monolignol acetate, hydroxycinnamyl aldehyde/alcohol, and p-hydroxybenzoate in the past decades. Recently, tricin has been reported as a component incorporated into monocot lignin. As a flavonoid compound widely distributed in herbaceous plants, tricin has been extensively studied due to its biological significance in plant growth as well as its potential for pharmaceutical importance. Tricin is biosynthesized as a constituent of plant secondary metabolites through a combination of phenylpropanoid and polyketide pathways. Tricin occurs in plants in either free or conjugated forms such as tricin-glycosides, tricinlignans, and tricin-lignan-glycosides. The emergence of tricin covalently incorporated with lignin biopolymer implies the possible association of lignification and tricin biosynthesis. This review summarizes the occurrence of tricin and its derivatives in plants. In addition, synthesis, potential application, and characterization of tricin are discussed. C1 [Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; Ragauskas, Arthur J.] Oak Ridge Natl Lab, Biosci Div, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; Ragauskas, Arthur J.] Joint Inst Biol Sci, Oak Ridge, TN 37831 USA. [Ragauskas, Arthur J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Ragauskas, AJ (reprint author), Oak Ridge Natl Lab, Biosci Div, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA.; Ragauskas, AJ (reprint author), Joint Inst Biol Sci, Oak Ridge, TN 37831 USA.; Ragauskas, AJ (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM aragausk@utk.edu RI Pu, Yunqiao/H-3206-2016; LI, Mi/Q-4261-2016; OI Pu, Yunqiao/0000-0003-2554-1447; LI, Mi/0000-0001-7523-1266; Ragauskas, Arthur/0000-0002-3536-554X; Yoo, Chang Geun/0000-0002-6179-2414 FU U.S. Department of Energy [DE-AC05-00OR22725]; BioEnergy Science Center (BESC); Office of Biological and Environmental Research in DOE Office of Science FX This manuscript has been authored by UT-Battelle, LLC under Contract no. DE-AC05-00OR22725 with the U.S. Department of Energy. The work was supported and performed as part of the BioEnergy Science Center (BESC). The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 185 TC 8 Z9 9 U1 6 U2 26 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PY 2016 VL 18 IS 6 BP 1439 EP 1454 DI 10.1039/c5gc03062e PG 16 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DG7GH UT WOS:000372252300001 ER PT J AU Nguyen, TY Cai, CM Osman, O Kumar, R Wyman, CE AF Thanh Yen Nguyen Cai, Charles M. Osman, Omar Kumar, Rajeev Wyman, Charles E. TI CELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings SO GREEN CHEMISTRY LA English DT Article ID SIMULTANEOUS SACCHARIFICATION; TECHNOECONOMIC EVALUATION; LIGNOCELLULOSIC BIOFUELS; BIOETHANOL PRODUCTION; WHEAT-STRAW; FERMENTATION; CELLULOSE; BIOMASS; HYDROLYSIS; LIGNIN AB A major challenge to economically produce ethanol from lignocellulosic biomass is to achieve industrially relevant ethanol titers (>50 g L-1) to control operating and capital costs for downstream ethanol operations while maintaining high ethanol yields. However, due to reduced fermentation effectiveness at high biomass solids loadings, excessive amounts of enzymes are typically required to obtain reasonable ethanol titers, thereby trading off reduced operating and capital costs with high enzyme costs. In this study, we applied our newly developed Co-Solvent Enhanced Lignocellulosic Fractionation (CELF) pretreatment to produce highly digestible glucan-rich solids from corn stover. Simultaneous saccharification and fermentation (SSF) was then applied to pretreated solids from CELF at 15.5 wt% solids loadings (corresponding to 11 wt% glucan loadings) in modified shake flasks to achieve an ethanol titer of 58.8 g L-1 at 89.2% yield with an enzyme loading of 15 mg-protein per g-glucan-in-raw-corn-stover (-RCS) in only 5 days. By comparison, SSF of corn stover solids from dilute acid pretreatment at 18.3 wt% solids loading (or 10 wt% glucan loading) only achieved an ethanol titer and a yield of 47.8 g L-1 and 73.0%, respectively, despite needing longer fermentation times (similar to 20 days) and an additional 18 h of prehydrolysis at 50 degrees C. Remarkably, although longer fermentation times were required at more economical enzyme loadings of 5 and 2 mg-protein per g-glucan-in-RCS, high solids SSF of CELF pretreated corn stover realized final ethanol titers consistently above 50 g L-1 and yields over 80%. C1 [Thanh Yen Nguyen; Cai, Charles M.; Osman, Omar; Kumar, Rajeev; Wyman, Charles E.] UC Riverside, Ctr Environm Res & Technol CE CERT, 1084 Columbia Ave, Riverside, CA 92507 USA. [Thanh Yen Nguyen; Osman, Omar; Wyman, Charles E.] UC Riverside, Dept Bioengn, 217 Mat Sci & Engn,900 Univ Ave, Riverside, CA 92507 USA. [Wyman, Charles E.] UC Riverside, Dept Chem & Environm Engn, 446 Winston Chung Hall,900 Univ Ave, Riverside, CA 92507 USA. [Cai, Charles M.; Kumar, Rajeev; Wyman, Charles E.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN USA. RP Wyman, CE (reprint author), UC Riverside, Ctr Environm Res & Technol CE CERT, 1084 Columbia Ave, Riverside, CA 92507 USA.; Wyman, CE (reprint author), UC Riverside, Dept Bioengn, 217 Mat Sci & Engn,900 Univ Ave, Riverside, CA 92507 USA.; Wyman, CE (reprint author), UC Riverside, Dept Chem & Environm Engn, 446 Winston Chung Hall,900 Univ Ave, Riverside, CA 92507 USA.; Wyman, CE (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN USA. EM cewyman@engr.ucr.edu RI Cai, Charles/E-4986-2012 OI Cai, Charles/0000-0002-5047-0815 FU Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science through the BioEnergy Science Center (BESC) at Oak Ridge National Laboratory [DE-PS02-06ER64304]; National Science Foundation [2013142496]; Ford Motor Company FX We are grateful for funding by the Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science through the BioEnergy Science Center (BESC) at Oak Ridge National Laboratory (Contract DE-PS02-06ER64304) for supporting this study. The award of a fellowship to the lead author by the National Science Foundation (Grant #2013142496) made her participation in this project possible. We also acknowledge the Center for Environmental Research and Technology (CE-CERT) of the Bourns College of Engineering for providing the facilities and the Ford Motor Company for funding the Chair in Environmental Engineering that facilitates projects such as this one. NR 51 TC 4 Z9 4 U1 10 U2 20 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PY 2016 VL 18 IS 6 BP 1581 EP 1589 DI 10.1039/c5gc01977j PG 9 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DG7GH UT WOS:000372252300018 ER PT J AU Choi, YS Singh, R Zhang, J Balasubramanian, G Sturgeon, MR Katahira, R Chupka, G Beckham, GT Shanks, BH AF Choi, Yong S. Singh, Rahul Zhang, Jing Balasubramanian, Ganesh Sturgeon, Matthew R. Katahira, Rui Chupka, Gina Beckham, Gregg T. Shanks, Brent H. TI Pyrolysis reaction networks for lignin model compounds: unraveling thermal deconstruction of beta-O-4 and alpha-O-4 compounds SO GREEN CHEMISTRY LA English DT Article ID PHENETHYL PHENYL ETHER; FLAME IONIZATION DETECTION; COAL-LIQUEFACTION MODEL; ALPHA/BETA-SELECTIVITIES; COMPUTATIONAL PREDICTION; LIGNOCELLULOSIC BIOMASS; DIBENZYL ETHER; BIO-OIL; CHEMISTRY; DENSITY AB Although lignin is one of the main components of biomass, its pyrolysis chemistry is not well understood due to complex heterogeneity. To gain insights into this chemistry, the pyrolysis of seven lignin model compounds (five beta-O-4 and two alpha-O-4 linked molecules) was investigated in a micropyrolyzer connected to GC-MS/FID. According to quantitative product mole balance for the reaction networks, concerted retro-ene fragmentation and homolytic dissociation were strongly suggested as the initial reaction step for beta-O-4 compounds and alpha-O-4 compounds, respectively. The difference in reaction pathway between compounds with different linkages was believed to result from thermodynamics of the radical initiation. The rate constants for the different reaction pathways were predicted from ab initio density functional theory calculations and pre-exponential literature values. The computational findings were consistent with the experiment results, further supporting the different pyrolysis mechanisms for the beta-ether linked and alpha-ether linked compounds. A combination of the two pathways from the dimeric model compounds was able to describe qualitatively the pyrolysis of a trimeric lignin model compound containing both beta-O-4 and alpha-O-4 linkages. C1 [Choi, Yong S.; Zhang, Jing; Shanks, Brent H.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. [Singh, Rahul; Balasubramanian, Ganesh] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Sturgeon, Matthew R.; Katahira, Rui; Chupka, Gina; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Shanks, BH (reprint author), Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. EM bshanks@iastate.edu FU U.S. Department of Energy through National Advanced Biofuels Consortium [DEEE0003044] FX The authors would like to acknowledge funding support from the U.S. Department of Energy through National Advanced Biofuels Consortium, grant number DEEE0003044. NR 52 TC 5 Z9 5 U1 3 U2 15 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9262 EI 1463-9270 J9 GREEN CHEM JI Green Chem. PY 2016 VL 18 IS 6 BP 1762 EP 1773 DI 10.1039/c5gc02268a PG 12 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DG7GH UT WOS:000372252300036 ER PT J AU Keahey, K Raicu, I Chard, K Nicolae, B AF Keahey, Kate Raicu, Ioan Chard, Kyle Nicolae, Bogdan TI Guest Editors Introduction: Special Issue on Scientific Cloud Computing SO IEEE TRANSACTIONS ON CLOUD COMPUTING LA English DT Editorial Material C1 [Keahey, Kate] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Raicu, Ioan] IIT, Dept Comp Sci, Chicago, IL 60616 USA. [Chard, Kyle] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Chard, Kyle] Argonne Natl Lab, Argonne, IL 60439 USA. [Nicolae, Bogdan] IBM Res, Dublin, Ireland. RP Keahey, K (reprint author), Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.; Raicu, I (reprint author), IIT, Dept Comp Sci, Chicago, IL 60616 USA.; Chard, K (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA.; Chard, K (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA.; Nicolae, B (reprint author), IBM Res, Dublin, Ireland. EM keahey@mcs.anl.gov; iraicu@cs.iit.edu; chard@uchicago.edu; bogdan.nicolae@acm.org NR 0 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-7161 J9 IEEE TRANS CLOUD COM JI IEEE Trans. Cloud Comput. PD JAN-MAR PY 2016 VL 4 IS 1 BP 4 EP 5 DI 10.1109/TCC.2015.2505022 PG 2 WC Computer Science, Software Engineering SC Computer Science GA DG2KC UT WOS:000371894800003 ER PT J AU Brink, AR Quinn, DD AF Brink, Adam R. Quinn, D. Dane TI Shear Effects on Energy Dissipation From an Elastic Beam on a Rigid Foundation SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME LA English DT Article ID BOLTED JOINTS; MICRO-SLIP; DYNAMICS; MODEL AB This work describes the energy dissipation arising from microslip for an elastic shell incorporating shear and longitudinal deformation resting on a rough-rigid foundation. This phenomenon is investigated using finite element (FE) analysis and nonlinear geometrically exact shell theory. Both approaches illustrate the effect of shear within the shell and observe a reduction in the energy dissipated from microslip as compared to a similar system neglecting shear deformation. In particular, it is found that the shear deformation allows for load to be transmitted beyond the region of slip so that the entire interface contributes to the load carrying capability of the shell. The energy dissipation resulting from the shell model is shown to agree well with that arising from the FE model, and this representation can be used as a basis for reduced order models that capture the microslip phenomenon. C1 [Brink, Adam R.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Quinn, D. Dane] Univ Akron, Dept Mech Engn, Akron, OH 44325 USA. RP Quinn, DD (reprint author), Univ Akron, Dept Mech Engn, Akron, OH 44325 USA. EM arbrink@sandia.gov; quinn@uakron.edu FU U.S. Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 24 TC 0 Z9 0 U1 0 U2 0 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0021-8936 EI 1528-9036 J9 J APPL MECH-T ASME JI J. Appl. Mech.-Trans. ASME PD JAN PY 2016 VL 83 IS 1 AR 011004 DI 10.1115/1.4031764 PG 7 WC Mechanics SC Mechanics GA DG5XZ UT WOS:000372156100004 ER PT J AU Fu, L Wang, ZG Batista, VS Yan, ECY AF Fu, Li Wang, Zhuguang Batista, Victor S. Yan, Elsa C. Y. TI New Insights from Sum Frequency Generation Vibrational Spectroscopy into the Interactions of Islet Amyloid Polypeptides with Lipid Membranes SO JOURNAL OF DIABETES RESEARCH LA English DT Article ID SOLID-STATE NMR; TYPE-2 DIABETES-MELLITUS; NONLINEAR OPTICS; IN-SITU; INFRARED-SPECTROSCOPY; MOLECULAR CHIRALITY; AQUEOUS INTERFACE; UNIFIED TREATMENT; IR SPECTROSCOPY; SFG-VS AB Studies of amyloid polypeptides on membrane surfaces have gained increasing attention in recent years. Several studies have revealed that membranes can catalyze protein aggregation and that the early products of amyloid aggregation can disrupt membrane integrity, increasing water permeability and inducing ion cytotoxicity. Nonetheless, probing aggregation of amyloid proteins on membrane surfaces is challenging. Surface-specific methods are required to discriminate contributions of aggregates at the membrane interface from those in the bulk phase and to characterize protein secondary structures in situ and in real time without the use of perturbing spectroscopic labels. Here, we review the most recent applications of sum frequency generation (SFG) vibrational spectroscopy applied in conjunction with computational modeling techniques, a joint experimental and computational methodology that has provided valuable insights into the aggregation of islet amyloid polypeptide (IAPP) on membrane surfaces. These applications show that SFG can provide detailed information about structures, kinetics, and orientation of IAPP during interfacial aggregation, relevant to the molecular mechanisms of type II diabetes. These recent advances demonstrate the promise of SFG as a new approach for studying amyloid diseases at the molecular level and for the rational drug design targeting early aggregation products on membrane surfaces. C1 [Fu, Li] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. [Wang, Zhuguang; Batista, Victor S.; Yan, Elsa C. Y.] Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA. RP Yan, ECY (reprint author), Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA. EM elsa.yan@yale.edu OI Fu, Li/0000-0003-0994-7789 FU National Science Foundation Grant [CHE 1213362]; National Institutes of Health Grant [1R56DK105381-01]; NSF Grant [CHE-1213742]; Starter Grant Award, Spectroscopy Society of Pittsburgh FX Elsa C. Y. Yan is the recipient of the Starter Grant Award, Spectroscopy Society of Pittsburgh, the National Science Foundation Grant (CHE 1213362), and the National Institutes of Health Grant (1R56DK105381-01). Victor S. Batista acknowledges high performance computing time from NERSC and support from the NSF Grant CHE-1213742. NR 112 TC 0 Z9 0 U1 5 U2 18 PU HINDAWI PUBLISHING CORP PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 2314-6745 EI 2314-6753 J9 J DIABETES RES JI J. Diabetes Res. PY 2016 AR 7293063 DI 10.1155/2016/7293063 PG 17 WC Endocrinology & Metabolism; Medicine, Research & Experimental SC Endocrinology & Metabolism; Research & Experimental Medicine GA DG7EP UT WOS:000372247900001 ER PT J AU Tu, TN Phan, NQ Vu, TT Nguyen, HL Cordova, KE Furukawa, H AF Tu, Thach N. Phan, Nghi Q. Vu, Thanh T. Nguyen, Ha L. Cordova, Kyle E. Hiroyasu Furukawa TI High proton conductivity at low relative humidity in an anionic Fe-based metal-organic framework SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID SUPERPROTONIC CONDUCTIVITY; COORDINATION POLYMER; MEMBRANE; NANOCHANNELS; CRYSTAL AB A metal-organic framework, termed VNU-15 (VNU = Vietnam National University), was synthesized and subsequent detailed structural analysis revealed that the crystalline structure adopted the fob topology. Due to integrated sulphate ligands accompanied by hydrogen-bonded dimethylammonium ions that lined the pore channels of VNU-15, the proton conductivity of this material reached 2.90 x 10(-2) S cm(-1) at 95 degrees C and 60% relative humidity. Remarkably, the high proton conductivity of VNU-15 was maintained under these conditions, without any appreciable loss, for 40 h. C1 [Tu, Thach N.; Phan, Nghi Q.; Vu, Thanh T.; Nguyen, Ha L.; Cordova, Kyle E.; Hiroyasu Furukawa] Vietnam Natl Univ Ho Chi Minh VNU HCM, Ctr Mol & NanoArchitecture MANAR, Ho Chi Minh City 721337, Vietnam. [Cordova, Kyle E.; Hiroyasu Furukawa] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Mat Sci Div,Berkeley Global Sci Inst, Berkeley, CA 94720 USA. [Hiroyasu Furukawa] King Fahd Univ Petr & Minerals, Ctr Res Excellence Nanotechnol CENT, Dhahran 31261, Saudi Arabia. RP Cordova, KE; Furukawa, H (reprint author), Vietnam Natl Univ Ho Chi Minh VNU HCM, Ctr Mol & NanoArchitecture MANAR, Ho Chi Minh City 721337, Vietnam.; Cordova, KE; Furukawa, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Mat Sci Div,Berkeley Global Sci Inst, Berkeley, CA 94720 USA.; Furukawa, H (reprint author), King Fahd Univ Petr & Minerals, Ctr Res Excellence Nanotechnol CENT, Dhahran 31261, Saudi Arabia. EM kcordova@berkeley.edu; furukawa@berkeley.edu RI Furukawa, Hiroyasu/C-5910-2008; OI Furukawa, Hiroyasu/0000-0002-6082-1738; Cordova, Kyle/0000-0002-4988-0497 FU VNU-HCM [A2015-50-01-HD-KHCN]; United States Office of Naval Research Global: Naval International Cooperative Opportunities in Science and Technology Program [N62909-15-1N056]; MANAR FX This work was financially supported by VNU-HCM (A2015-50-01-HD-KHCN) and the United States Office of Naval Research Global: Naval International Cooperative Opportunities in Science and Technology Program (No. N62909-15-1N056). We are grateful to Prof. O. M. Yaghi (UC Berkeley) for his continued support of MANAR. We acknowledge Mr T. L. H. Doan and Mr N. T. Hoang at MANAR for their valuable discussion and assistance on this work. We are grateful to Prof. D. Prosperio (University of Milan) for his assistance on the topological analysis of VNU-15. We thank Mr J. Yang (UC Berkeley) for performing the elemental microanalysis measurements. Finally, we appreciate the inputs provided by Profs. P. T. S. Nam (University of Technology, VNU-HCM) and H. T. Nguyen (University of Science, VNU-HCM). NR 37 TC 8 Z9 8 U1 12 U2 30 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 10 BP 3638 EP 3641 DI 10.1039/c5ta10467j PG 4 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DG3KB UT WOS:000371967000003 ER PT J AU Li, SX Yan, JL Li, CZ Liu, F Shi, MM Chen, HZ Russell, TP AF Li, Shuixing Yan, Jielin Li, Chang-Zhi Liu, Feng Shi, Minmin Chen, Hongzheng Russell, Thomas P. TI A non-fullerene electron acceptor modified by thiophene-2-carbonitrile for solution-processed organic solar cells SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID OPEN-CIRCUIT VOLTAGE; SMALL-MOLECULE; BUILDING-BLOCKS; DIKETOPYRROLOPYRROLE; EFFICIENT; PHOTOVOLTAICS; DESIGN; DERIVATIVES; DONOR AB Effective electron acceptor materials usually have a deep lowest unoccupied molecular orbital (LUMO) energy level that can split excitons and generate current. A non-fullerene electron acceptor (F8-DPPTCN) was developed, using fluorene as the core with arms of diketopyrrolopyrrole (DPP) having thiophene-2-carbonitrile as the terminal units. The new molecule had a LUMO of similar to 3.65 eV and a narrow bandgap (E-g) of 1.66 eV, owing to the electronegativity of the thiophene-2-carbonitrile group and its conjugation with DPP units. Organic solar cells (OSCs) with F8-DPPTCN as the acceptor and poly(3-hexylthiophene) (P3HT) as the donor were fabricated. A power conversion efficiency (PCE) of 2.37% was obtained with an open-circuit voltage (Voc) of 0.97 V, a short-circuit current (J(sc)) of 6.25 mA cm(-2), and a fill factor (FF) of 0.39. Structural characterization showed that P3HT and F8-DPPTCN were kinetically trapped in a weakly separated state whereas thermal annealing led to the crystallization of P3HT and the formation of a network structure with a mesh-size of several hundred nanometers. When a solvent additive, diiodooctane, was used and the mixture was thermally annealed, both P3HT and F8-DPPTCN crystallized and a multi-length scale network was formed. Though the PCEs were low, the changes in the PCE could be correlated with the morphological changes, opening pathways to increase performance further. C1 [Li, Shuixing; Yan, Jielin; Li, Chang-Zhi; Shi, Minmin; Chen, Hongzheng] Zhejiang Univ, Dept Polymer Sci & Engn, State Key Lab Silicon Mat, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Zhejiang, Peoples R China. [Liu, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Liu, Feng] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. RP Shi, MM; Chen, HZ (reprint author), Zhejiang Univ, Dept Polymer Sci & Engn, State Key Lab Silicon Mat, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Zhejiang, Peoples R China.; Liu, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA.; Liu, F (reprint author), Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. EM iamfengliu@gmail.com; minminshi@zju.edu.cn; hzchen@zju.edu.cn RI Liu, Feng/J-4361-2014 OI Liu, Feng/0000-0002-5572-8512 FU National Natural Science Foundation of China [21474088, 51261130582, 91233114, 51561145001]; Zhejiang Province Natural Science Foundation [LR13E030001]; 973 program [2014CB643503]; U.S. Office of Naval Research [N00014-15-1-2244]; DOE, Office of Science, and Office of Basic Energy Sciences FX M. Shi and H. Chen would like to gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 21474088, 51261130582, 91233114, and 51561145001) and Zhejiang Province Natural Science Foundation (No. LR13E030001). The work was also partly supported by 973 program (No. 2014CB643503). FL and TPR were supported by the U.S. Office of Naval Research under contract N00014-15-1-2244. Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source, and Molecular Foundry, Lawrence Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences. NR 38 TC 16 Z9 16 U1 23 U2 56 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 10 BP 3777 EP 3783 DI 10.1039/c6ta00056h PG 7 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DG3KB UT WOS:000371967000022 ER PT J AU Xia, YX Musumeci, C Bergqvist, J Ma, W Gao, F Tang, Z Bai, S Jin, YZ Zhu, CH Kroon, R Wang, C Andersson, MR Hou, LT Inganas, O Wang, EG AF Xia, Yuxin Musumeci, Chiara Bergqvist, Jonas Ma, Wei Gao, Feng Tang, Zheng Bai, Sai Jin, Yizheng Zhu, Chenhui Kroon, Renee Wang, Cheng Andersson, Mats R. Hou, Lintao Inganas, Olle Wang, Ergang TI Inverted all-polymer solar cells based on a quinoxaline-thiophene/naphthalene-diimide polymer blend improved by annealing SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID OPEN-CIRCUIT VOLTAGE; HIGH-MOBILITY; CONJUGATED POLYMERS; PERFORMANCE; MORPHOLOGY; EFFICIENCY; ACCEPTOR; CRYSTALLINITY; PHOTOVOLTAICS; AGGREGATION AB We have investigated the effect of thermal annealing on the photovoltaic parameters of all-polymer solar cells based on a quinoxaline-thiophene donor polymer (TQ1) and a naphthalene diimide acceptor polymer (N2200). The annealed devices show a doubled power conversion efficiency compared to nonannealed devices, due to the higher short-circuit current (J(sc)) and fill factor (FF), but with a lower open circuit voltage (V-oc). On the basis of the morphology-mobility examination by several scanning force microscopy techniques, and by grazing-incidence wide-angle X-ray scattering, we conclude that better charge transport is achieved by higher order and better interconnected networks of the bulk heterojunction in the annealed active layers. The annealing improves charge transport and extends the conjugation length of the polymers, which do help in charge generation and meanwhile reduce recombination. Photoluminescence, electroluminescence, and light intensity dependence measurements reveal how this morphological change affects charge generation and recombination. As a result, the J(sc) and FF are significantly improved. However, the smaller band gap and the higher HOMO level of TQ1 upon annealing causes a lower V-oc. The blend of an amorphous polymer TQ1, and a semi-crystalline polymer N2200, can thus be modified by thermal annealing to double the power conversion efficiency. C1 [Xia, Yuxin; Musumeci, Chiara; Bergqvist, Jonas; Gao, Feng; Tang, Zheng; Bai, Sai; Inganas, Olle] Linkoping Univ, Biomol & Organ Elect, IFM, SE-58183 Linkoping, Sweden. [Ma, Wei] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Jin, Yizheng; Kroon, Renee] Zhejiang Univ, State Key Lab Silicon Mat, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China. [Zhu, Chenhui; Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Andersson, Mats R.] Univ S Australia, Future Ind Inst, Mawson Lakes, SA 5095, Australia. [Xia, Yuxin; Hou, Lintao] Jinan Univ, Siyuan Lab, Dept Phys, Guangzhou 510632, Guangdong, Peoples R China. [Wang, Ergang] Chalmers, Dept Chem & Chem Engn, SE-41296 Gothenburg, Sweden. RP Inganas, O (reprint author), Linkoping Univ, Biomol & Organ Elect, IFM, SE-58183 Linkoping, Sweden.; Wang, EG (reprint author), Chalmers, Dept Chem & Chem Engn, SE-41296 Gothenburg, Sweden. EM oling@ifm.liu.se; ergang@chalmers.se RI Musumeci, Chiara/K-6827-2015; Gao, Feng/C-8797-2014; Tang, Zheng/D-7780-2013; Wang, Ergang/F-8157-2010; Wang, Cheng/A-9815-2014; MA, Wei/E-1254-2013; Bai, Sai/E-3032-2015; OI Musumeci, Chiara/0000-0001-7923-8086; Gao, Feng/0000-0002-2582-1740; Tang, Zheng/0000-0003-0036-2362; Wang, Ergang/0000-0002-4942-3771; MA, Wei/0000-0001-6926-1960; Bai, Sai/0000-0001-7623-686X; Kroon, Renee/0000-0001-8053-4288; Ma, Wei/0000-0002-7239-2010 FU Swedish Energy Agency; Swedish Research council, NSFC [21504006, 21534003]; Knut and Alice Wallenberg Foundation through a Wallenberg scholar grant; China Scholarship Council (CSC); graduate student short-term abroad research project of Jinan University; program for the Excellent Doctoral Dissertations of Guangdong Province [ybzzxm201114]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Swedish Energy Agency, the Swedish Research council, NSFC (21504006, 21534003), the Knut and Alice Wallenberg Foundation through a Wallenberg scholar grant to Olle Inganas and also supported by the China Scholarship Council (CSC) and graduate student short-term abroad research project of Jinan University. EW acknowledges the program for the Excellent Doctoral Dissertations of Guangdong Province (ybzzxm201114). FG acknowledges the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology) (2015-skllmd-02). X-ray data were acquired at beamlines 7.3.3 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 52 TC 6 Z9 6 U1 22 U2 46 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 10 BP 3835 EP 3843 DI 10.1039/c6ta00531d PG 9 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DG3KB UT WOS:000371967000030 ER PT J AU Ye, JC An, YH Montalvo, E Campbell, PG Worsley, MA Tran, IC Liu, YY Wood, BC Biener, J Jiang, HQ Tang, M Wang, YM AF Ye, Jianchao An, Yonghao Montalvo, Elizabeth Campbell, Patrick G. Worsley, Marcus A. Tran, Ich C. Liu, Yuanyue Wood, Brandon C. Biener, Juergen Jiang, Hanqing Tang, Ming Wang, Y. Morris TI Solvent-directed sol-gel assembly of 3-dimensional graphene-tented metal oxides and strong synergistic disparities in lithium storage SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID ENHANCED ELECTROCHEMICAL PERFORMANCE; ION BATTERY ANODES; HIGH-SURFACE-AREA; ENERGY-STORAGE; REVERSIBLE CAPACITY; ELECTRODE MATERIALS; FACILE SYNTHESIS; LI BATTERIES; COMPOSITE; NANOCOMPOSITES AB Graphene/metal oxide (GMO) nanocomposites promise a broad range of utilities for lithium ion batteries (LIBs), pseudocapacitors, catalysts, and sensors. When applied as anodes for LIBs, GMOs often exhibit high capacity, improved rate capability and cycling performance. Numerous studies have attributed these favorable properties to a passive role played by the exceptional electronic and mechanical properties of graphene in enabling metal oxides (MOs) to achieve near-theoretical capacities. In contrast, the effects of MOs on the active lithium storage mechanisms of graphene remain enigmatic. Via a unique two-step solvent-directed sol-gel process, we have synthesized and directly compared the electrochemical performance of several representative GMOs, namely Fe2O3/graphene, SnO2/graphene, and TiO2/graphene. We observe that MOs can play an equally important role in empowering graphene to achieve large reversible lithium storage capacity. The magnitude of capacity improvement is found to scale roughly with the surface coverage of MOs, and depend sensitively on the type of MOs. We define a synergistic factor based on the capacity contributions. Our quantitative assessments indicate that the synergistic effect is most achievable in conversion-reaction GMOs (Fe2O3/graphene and SnO2/graphene) but not in intercalation-based TiO2/graphene. However, a long cycle stability up to 2000 cycles was observed in TiO2/graphene nanocomposites. We propose a surface coverage model to qualitatively rationalize the beneficial roles of MOs to graphene. Our first-principles calculations further suggest that the extra lithium storage sites could result from the formation of Li2O at the interface with graphene during the conversion-reaction. These results suggest an effective pathway for reversible lithium storage in graphene and shift design paradigms for graphene-based electrodes. C1 [Ye, Jianchao; An, Yonghao; Montalvo, Elizabeth; Campbell, Patrick G.; Worsley, Marcus A.; Tran, Ich C.; Liu, Yuanyue; Wood, Brandon C.; Biener, Juergen; Wang, Y. Morris] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [An, Yonghao; Wang, Y. Morris] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85286 USA. [Liu, Yuanyue; Jiang, Hanqing] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Tang, Ming] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA. RP Wang, YM (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.; Wang, YM (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85286 USA. EM ymwang@llnl.gov RI Jiang, Hanqing/B-1810-2008; Wang, Yinmin (Morris)/F-2249-2010; OI Jiang, Hanqing/0000-0002-1947-4420; Worsley, Marcus/0000-0002-8012-7727; Campbell, Patrick/0000-0003-0167-4624; Liu, Yuanyue/0000-0002-5880-8649 FU US Department of Energy by LLNL [DE-AC52-07NA27344]; Laboratory Directed Research and Development (LDRD) programs of LLNL [12-ERD-053]; US Department of Energy [DE-AC36-08GO28308]; NSF [CMMI-1067947, CMMI-1162619]; DOE Office of Basic Energy Sciences Physical Behavior of Materials Program [DE-SC0014435] FX Discussion with J. Lee, T. van Buuren, A. Wittstock, M. D. Merrill, and B. Sadigh is acknowledged. The work was performed under the auspices of the US Department of Energy by LLNL under contract No. DE-AC52-07NA27344. The project is supported by the Laboratory Directed Research and Development (LDRD) programs of LLNL (12-ERD-053). Y. L. acknowledges the support by US Department of Energy under Contract No. DE-AC36-08GO28308. The first-principles calculations were performed by using NREL Peregrine supercomputer, as well as LLNL CAB supercomputer. H. J. acknowledges the support from NSF CMMI-1067947 and CMMI-1162619. M.T. acknowledges support from DOE Office of Basic Energy Sciences Physical Behavior of Materials Program under grant number DE-SC0014435. NR 74 TC 6 Z9 6 U1 26 U2 59 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 11 BP 4032 EP 4043 DI 10.1039/c5ta10730j PG 12 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DG6IZ UT WOS:000372189100008 ER PT J AU Pasta, M Wang, RY Ruffo, R Qiao, RM Lee, HW Shyam, B Guo, MH Wang, YY Wray, LA Yang, WL Toney, MF Cui, Y AF Pasta, Mauro Wang, Richard Y. Ruffo, Riccardo Qiao, Ruimin Lee, Hyun-Wook Shyam, Badri Guo, Minghua Wang, Yayu Wray, L. Andrew Yang, Wanli Toney, Michael F. Cui, Yi TI Manganese-cobalt hexacyanoferrate cathodes for sodium-ion batteries SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID SOFT-X-RAY; PRUSSIAN BLUE ANALOGS; SCALE ENERGY-STORAGE; LONG CYCLE LIFE; NICKEL HEXACYANOFERRATE; NEUTRON-DIFFRACTION; SPIN STATES; ELECTRODES; SPECTROSCOPY; TEMPERATURE AB Prussian Blue analogues (PBAs) have shown promise as electrode materials for grid-scale batteries because of their high cycle life and rapid kinetics in aqueous-based electrolytes. However, these materials suffer from relatively low specific capacity, which may limit their practical applications. Here, we investigate strategies to improve the specific capacity of these materials while maintaining their cycling stability and elucidate mechanisms that enhance their electrochemical properties. In particular, we have studied the electrochemical and structural properties of manganese hexacyanoferrate (MnHCFe) and cobalt hexacyanoferrate (CoHCFe) in an aqueous, sodium-ion electrolyte. We also studied manganese-cobalt hexacyanoferrate (Mn-CoHCFe) solid solutions with different Mn/Co ratios that combine properties of both MnHCFe and CoHCFe. The materials have the characteristic open-framework crystal structure of PBAs, and their specific capacities can be significantly improved by electrochemically cycling (oxidizing and reducing) both the carbon-coordinated Fe and the nitrogen-coordinated Co or Mn ions. In situ synchrotron X-ray diffraction studies and ex situ soft X-ray absorption spectroscopy combined with an in-depth electrochemical characterization provide insight into the different electrochemical properties associated with the Fe, Co, and Mn redox couples. We show that cycling the C-coordinated Fe preserves the crystal structure and enables the outstanding kinetics and cycle life previously displayed by PBAs in aqueous electrolytes. On the other hand, the N-coordinated Co and Mn ions exhibit a slower kinetic regime due to structural distortions resulting from the weak N-coordinated crystal field, but they still contribute significantly towards increasing the specific capacity of the materials. These results provide the understanding needed to drive future development of PBAs for grid-scale applications that require extremely high cycle life and kinetics. C1 [Pasta, Mauro; Wang, Richard Y.; Lee, Hyun-Wook; Cui, Yi] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Pasta, Mauro] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England. [Ruffo, Riccardo] Univ Milano Bicocca, Dipartimento Sci Mat, Via Cozzi 53, I-20125 Milan, Italy. [Qiao, Ruimin; Guo, Minghua; Yang, Wanli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Shyam, Badri; Toney, Michael F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Guo, Minghua; Wang, Yayu] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Wray, L. Andrew] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Cui, Yi] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. RP Cui, Y (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.; Cui, Y (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM yicui@stanford.edu RI Yang, Wanli/D-7183-2011; Ruffo, Riccardo/C-1508-2009; Lee, Hyun-Wook/Q-9222-2016; Qiao, Ruimin/E-9023-2013; OI Yang, Wanli/0000-0003-0666-8063; Ruffo, Riccardo/0000-0001-7509-7052; Lee, Hyun-Wook/0000-0001-9074-1619; Wang, Richard/0000-0003-0581-6917 FU Global Climate and Energy Project (GCEP) at Stanford; U.S. Department of Energy (DOE), Office of Electricity Delivery & Energy Reliability; Pacific Northwest National Laboratory; DOE [DEA C05-76RL01830]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Oronzio and Niccolo De Nora Foundation; National Science Foundation; National Defense Science & Engineering Graduate Fellowship; Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology [2012038593]; Laboratory-Directed Research and Development (LDRD) program at the Lawrence Berkeley National Laboratory; China Scholarship Council; Fondazione Cariplo [2011-0312] FX The authors would like to acknowledge support from the Global Climate and Energy Project (GCEP) at Stanford as well as the U.S. Department of Energy (DOE), Office of Electricity Delivery & Energy Reliability for this research through collaboration with the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle under Contract DEA C05-76RL01830. Use of the Stanford Synchrotron Radiation Light-source, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Use of the Advanced Light Source, Lawrence Berkeley National Laboratory, is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. M.P. acknowledges the support of the Oronzio and Niccolo De Nora Foundation. R.Y.W acknowledges support from the National Science Foundation Graduate Research Fellowship and the National Defense Science & Engineering Graduate Fellowship. H.W.L. acknowledges support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology under Contract No. 2012038593. Ruimin Qiao acknowledges support from the Laboratory-Directed Research and Development (LDRD) program at the Lawrence Berkeley National Laboratory. M.G. is supported by China Scholarship Council Fellowship. R.R. acknowledges support from Fondazione Cariplo (contract 2011-0312). NR 45 TC 5 Z9 5 U1 44 U2 101 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 11 BP 4211 EP 4223 DI 10.1039/c5ta10571d PG 13 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DG6IZ UT WOS:000372189100027 ER PT J AU Gindt, BP Abebe, DG Tang, ZJ Lindsey, MB Chen, J Elgammal, RA Zawodzinski, TA Fujiwara, T AF Gindt, B. P. Abebe, D. G. Tang, Z. J. Lindsey, M. B. Chen, J. Elgammal, R. A. Zawodzinski, T. A. Fujiwara, T. TI Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID NAFION PERFLUOROSULFONIC MEMBRANES; SULFURIC-ACID; POROUS MEMBRANES; PERFORMANCE; TRANSPORT; POLYMERIZATION; CONDUCTIVITY; NANOCHANNELS; MONOLITHS; POLYMERS AB Nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA-PSU-PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration. C1 [Gindt, B. P.; Abebe, D. G.; Fujiwara, T.] Univ Memphis, Dept Chem, 213 Smith Chem Bldg, Memphis, TN 38152 USA. [Tang, Z. J.; Zawodzinski, T. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lindsey, M. B.; Elgammal, R. A.; Zawodzinski, T. A.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Chen, J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Fujiwara, T (reprint author), Univ Memphis, Dept Chem, 213 Smith Chem Bldg, Memphis, TN 38152 USA. EM tfjiwara@memphis.edu RI Chen, Jihua/F-1417-2011 OI Chen, Jihua/0000-0001-6879-5936 FU NSF [EPS-1004083]; U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability FX This work was supported by the NSF-funded TN-SCORE program, NSF EPS-1004083, under Thrust 2 and by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability (Dr Imre Gyuk). NR 34 TC 3 Z9 3 U1 24 U2 51 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2016 VL 4 IS 11 BP 4288 EP 4295 DI 10.1039/c6ta00698a PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA DG6IZ UT WOS:000372189100035 ER PT J AU Gan, YY Zhao, HJ Hoelzer, DT Yun, D AF Gan, Yingye Zhao, Huijuan Hoelzer, David T. Yun, Di TI Energetic Study of Helium Cluster Nucleation and Growth in 14YWT through First Principles SO MATERIALS LA English DT Article DE helium bubbles; nanostructured ferritic alloys; first principles theory; formation criteria ID NANOSTRUCTURED FERRITIC ALLOY; REACTOR STRUCTURAL-MATERIALS; ATOM-PROBE TOMOGRAPHY; AUGMENTED-WAVE METHOD; MECHANICAL-PROPERTIES; HIGH-TEMPERATURES; STAINLESS-STEEL; ION-IRRADIATION; POWER-SYSTEMS; BASIS-SET AB First principles calculations have been performed to energetically investigate the helium cluster nucleation, formation and growth behavior in the nano-structured ferritic alloy 14YWT. The helium displays strong affinity to the oxygen: vacancy (O:Vac) pair. By investigating various local environments of the vacancy, we find that the energy cost for He cluster growth increases with the appearance of solutes in the reference unit. He atom tends to join the He cluster in the directions away from the solute atoms. Meanwhile, the He cluster tends to expand in the directions away from the solute atoms. A growth criterion is proposed based on the elastic instability strain of the perfect iron lattice in order to determine the maximum number of He atoms at the vacancy site. We find that up to seven He atoms can be trapped at a single vacancy. However, it is reduced to five if the vacancy is pre-occupied by an oxygen atom. Furthermore, the solute atoms within nanoclusters, such as Ti and Y, will greatly limit the growth of the He cluster. A migration energy barrier study is performed to discuss the reduced mobility of the He atom/He cluster in 14YWT. C1 [Gan, Yingye; Zhao, Huijuan] Clemson Univ, Dept Mech Engn, Clemson, SC 29631 USA. [Hoelzer, David T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. [Yun, Di] Xi An Jiao Tong Univ, Sch Nucl Sci & Technol, 28 Xian Ning West Rd, Xian 710049, Peoples R China. RP Zhao, HJ (reprint author), Clemson Univ, Dept Mech Engn, Clemson, SC 29631 USA. EM ygan@clemson.edu; hzhao2@clemson.edu; hoelzerd@ornl.gov; diyun1979@xjtu.edu.cn RI Hoelzer, David/L-1558-2016; Yun, Di/K-6441-2013 OI Yun, Di/0000-0002-9767-3214 FU Nuclear Energy University Program (NEUP) program under Department of Energy [13-5408] FX We gratefully acknowledge support from the Nuclear Energy University Program (NEUP) program under Award Number 13-5408 by the Department of Energy. NR 53 TC 0 Z9 0 U1 1 U2 7 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1944 J9 MATERIALS JI Materials PD JAN PY 2016 VL 9 IS 1 AR 17 DI 10.3390/ma9010017 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA DG5DS UT WOS:000372095300003 ER PT J AU Mo, K Yun, D Miao, YB Liu, X Pellin, M Almer, J Park, JS Stubbins, JF Zhu, SF Yacout, AM AF Mo, Kun Yun, Di Miao, Yinbin Liu, Xiang Pellin, Michael Almer, Jonathan Park, Jun-Sang Stubbins, James F. Zhu, Shaofei Yacout, Abdellatif M. TI Investigation of High-Energy Ion-Irradiated MA957 Using Synchrotron Radiation under In-Situ Tension SO MATERIALS LA English DT Article DE synchrotron radiation; oxide dispersion-strengthened (ODS); ion irradiation; in situ tensile test ID X-RAY-DIFFRACTION; FERRITIC ALLOY MA957; DISPERSION-STRENGTHENED MATERIAL; ATOM-PROBE TOMOGRAPHY; F/M ODS STEEL; ELECTRON-MICROSCOPY; NEUTRON-IRRADIATION; HIGH-TEMPERATURES; STAINLESS-STEEL; LATTICE STRAIN AB In this study, an MA957 oxide dispersion-strengthened (ODS) alloy was irradiated with high-energy ions in the Argonne Tandem Linac Accelerator System. Fe ions at an energy of 84 MeV bombarded MA957 tensile specimens, creating a damage region similar to 7.5 mu m in depth; the peak damage (similar to 40 dpa) was estimated to be at similar to 7 mu m from the surface. Following the irradiation, in-situ high-energy X-ray diffraction measurements were performed at the Advanced Photon Source in order to study the dynamic deformation behavior of the specimens after ion irradiation damage. In-situ X-ray measurements taken during tensile testing of the ion-irradiated MA957 revealed a difference in loading behavior between the irradiated and un-irradiated regions of the specimen. At equivalent applied stresses, lower lattice strains were found in the radiation-damaged region than those in the un-irradiated region. This might be associated with a higher level of Type II stresses as a result of radiation hardening. The study has demonstrated the feasibility of combining high-energy ion radiation and high-energy synchrotron X-ray diffraction to study materials' radiation damage in a dynamic manner. C1 [Mo, Kun; Yun, Di; Miao, Yinbin; Pellin, Michael; Yacout, Abdellatif M.] Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60439 USA. [Yun, Di] Xi An Jiao Tong Univ, Dept Nucl Engn, Xian 710049, Shaanxi, Peoples R China. [Liu, Xiang; Stubbins, James F.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Almer, Jonathan; Park, Jun-Sang] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Stubbins, James F.] Kyushu Univ, Int Inst Carbon Neutral Energy Res, Fukuoka 8190395, Japan. [Zhu, Shaofei] Argonne Natl Lab, Div Phys, Lemont, IL 60439 USA. RP Mo, K (reprint author), Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60439 USA. EM kunmo@anl.gov; diyun1979@mail.xjtu.edu.cn; ymiao@anl.gov; xliu128@illinois.edu; pellin@anl.gov; almer@aps.anl.gov; parkjs@aps.anl.gov; jstubbin@illinois.edu; zhu@anl.gov; yacout@anl.gov RI Pellin, Michael/B-5897-2008; Liu, Xiang/D-2005-2017; OI Pellin, Michael/0000-0002-8149-9768; Liu, Xiang/0000-0002-2634-1888; Miao, Yinbin/0000-0002-3128-4275 FU U.S. Department of Energy [DE-AC-02-06CH11357]; International Institute for Carbon Neutral Energy Research (WPI-I2CNER) - World Premier International Research Center Initiative (WPI), Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC-02-06CH11357 between UChicago Argonne, LLC and the Department of Energy. The authors gratefully acknowledge the support of the International Institute for Carbon Neutral Energy Research (WPI-I2CNER), sponsored by the World Premier International Research Center Initiative (WPI), Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors would like to thank Carolyn Tomchik for editing the manuscript. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 51 TC 3 Z9 3 U1 1 U2 10 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1944 J9 MATERIALS JI Materials PD JAN PY 2016 VL 9 IS 1 AR 15 DI 10.3390/ma9010015 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA DG5DS UT WOS:000372095300001 ER PT J AU Shu, SP Zhang, X Bellon, P Averback, RS AF Shu, Shipeng Zhang, Xuan Bellon, Pascal Averback, Robert S. TI Non-equilibrium Grain Boundary Wetting in Cu-Ag Alloys Containing W Nanoparticles SO MATERIALS RESEARCH LETTERS LA English DT Article DE Grain-Boundary Wetting; Nanoparticles; Coarsening Resistance; Non-equilibrium Nanostructuring ID PHASE-SEPARATION; BINARY-MIXTURES; SOLID-PHASE; IN SYSTEM; IRRADIATION; PARTICLES; TEMPERATURE; MODEL AB Adding nanoparticles to soft matter and liquids is known to provide remarkable control in the processing of novel materials. Here, we demonstrate a similar potential in crystalline solids. Specifically, we show that the addition of a high density of W nanoparticles dramatically alters the coarsening behavior of precipitate-hardened Cu-Ag alloys. First, the nanoparticles suppress precipitate growth, but far more surprisingly, they induce non-equilibrium Ag wetting layers on grain boundaries. This observation is explained using kinetic Monte Carlo simulations, which show that caging of Ag precipitates by the W nanoparticles suppresses their growth and drives the formation of wetting layers. C1 [Shu, Shipeng; Zhang, Xuan; Bellon, Pascal; Averback, Robert S.] Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. [Zhang, Xuan] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Shu, SP (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM shu13@illinois.edu OI Shu, Shipeng/0000-0003-3859-5014 FU US National Science Foundation [DMR-1306475] FX This research was supported by US National Science Foundation under Grant Number DMR-1306475. The work was carried out in part in the Frederick-Seitz Materials Research Laboratory Central Facilities, University of Illinois at Urbana-Champaign. NR 18 TC 1 Z9 1 U1 4 U2 11 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 2166-3831 J9 MATER RES LETT JI Mater. Res. Lett. PY 2016 VL 4 IS 1 BP 22 EP 26 DI 10.1080/21663831.2015.1090496 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA DG6UV UT WOS:000372222500002 ER PT J AU Hoang, S Ashraf, A Eisaman, MD Nykypanchuk, D Nam, CY AF Hoang, Son Ashraf, Ahsan Eisaman, Matthew D. Nykypanchuk, Dmytro Nam, Chang-Yong TI Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects SO NANOSCALE LA English DT Article ID QUANTUM DOTS; LIGHT; EFFICIENCY; NANOMEMBRANES; DYNAMICS; SYSTEMS; LAYERS AB Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices. C1 [Hoang, Son; Nykypanchuk, Dmytro; Nam, Chang-Yong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Ashraf, Ahsan; Eisaman, Matthew D.] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. [Ashraf, Ahsan; Eisaman, Matthew D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Eisaman, Matthew D.] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA. RP Nykypanchuk, D; Nam, CY (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM dnykypan@bnl.gov; cynam@bnl.gov RI Hoang, Son/F-2795-2013; Nam, Chang-Yong/D-4193-2009 OI Hoang, Son/0000-0002-1225-6121; Nam, Chang-Yong/0000-0002-9093-4063 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX This research was carried out at the Center for Functional Nanomaterials (S. H., D. N., C.-Y. N.) and Sustainable Energy Technologies Department (A. A. and M. D. E.), and Brookhaven National Laboratory (BNL), which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract no. DE-SC0012704. NR 31 TC 2 Z9 2 U1 2 U2 7 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 11 BP 5873 EP 5883 DI 10.1039/c5nr07932b PG 11 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DG7DV UT WOS:000372245900011 PM 26677967 ER PT J AU Battistoni, M Xue, QL Som, S AF Battistoni, Michele Xue, Qingluan Som, Sibendu TI Large-Eddy Simulation (LES) of Spray Transients: Start and End of Injection Phenomena SO OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES LA English DT Article; Proceedings Paper CT IFP Energies Nouvelles International Conference for Internal Combustion Engine Flows CY DEC 04-05, 2014 CL Rueil Malmaison, FRANCE ID X-RAY RADIOGRAPHY; RELAXATION MODEL; TURBULENT FLOWS; 2-PHASE FLOW; ATOMIZATION; COMBUSTION; RESOLUTION; JETS AB This work reports investigations on Diesel spray transients, accounting for internal nozzle flow and needle motion, and demonstrates how seamless calculations of internal flow and external jet can be accomplished in a Large-Eddy Simulation (LES) framework using an Eulerian mixture model. Sub-grid stresses are modeled with the Dynamic Structure (DS) model, a non-viscosity based one-equation LES model. Two problems are studied with high level of spatial and temporal resolution. The first one concerns an End-Of-Injection (EOI) case where gas ingestion, cavitation, and dribble formation are resolved. The second case is a Start-Of-Injection (SOI) simulation that aims at analyzing the effect of residual gas trapped inside the injector sac on spray penetration and rate of fuel injection. Simulation results are compared against experiments carried out at Argonne National Laboratory (ANL) using synchrotron X-ray. A mesh sensitivity analysis is conducted to assess the quality of the LES approach by evaluating the resolved turbulent kinetic energy budget and comparing the outcomes with a length-scale resolution index. LES of both EOI and SOI processes have been carried out on a single hole Diesel injector, providing insights in to the physics of the processes, with internal and external flow details, and linking the phenomena at the end of an injection event to those at the start of a new injection. Concerning the EOI, the model predicts ligament formation and gas ingestion, as observed experimentally, and the amount of residual gas in the nozzle sac matches with the available data. The fast dynamics of the process is described in detail. The simulation provides unique insights into the physics at the EOI. Similarly, the SOI simulation shows how gas is ejected first, and liquid fuel starts being injected with a delay. The simulation starts from a very low needle lift and is able to predict the actual Rate-Of-Injection (ROI) and jet penetration, based only on the prescribed needle motion. Finally, guidelines and future improvements of the model are discussed concerning the simulation of the transient injection phases. C1 [Battistoni, Michele; Xue, Qingluan; Som, Sibendu] Argonne Natl Lab, Chicago, IL USA. [Battistoni, Michele] Univ Perugia, 67 Via G Duranti, I-06125 Perugia, Italy. RP Battistoni, M (reprint author), Argonne Natl Lab, Chicago, IL USA.; Battistoni, M (reprint author), Univ Perugia, 67 Via G Duranti, I-06125 Perugia, Italy. EM michele.battistoni@unipg.it RI Battistoni, Michele/M-9194-2014 OI Battistoni, Michele/0000-0001-6807-9657 FU Argonne, a US Department of Energy Office of Science laboratory [DE-AC02- 06CH11357]; DOE's Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02- 06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This research was funded by DOE's Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy, under Contract No. DE-AC02-06CH11357. The authors wish to thank Gurpreet Singh and Leo Breton, program managers at DOE, for their support. NR 54 TC 3 Z9 3 U1 2 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1294-4475 EI 1953-8189 J9 OIL GAS SCI TECHNOL JI Oil Gas Sci. Technol. PD JAN-FEB PY 2016 VL 71 IS 1 AR 4 DI 10.2516/ogst/2015024 PG 24 WC Energy & Fuels; Engineering, Chemical; Engineering, Petroleum SC Energy & Fuels; Engineering GA DG6GF UT WOS:000372180800005 ER PT S AU Balasubramanian, S Weber, AZ AF Balasubramanian, Sivagaminathan Weber, Adam Z. BE Franco, AA Doublet, ML Bessler, WG TI Continuum, Macroscopic Modeling of Polymer-Electrolyte Fuel Cells SO PHYSICAL MULTISCALE MODELING AND NUMERICAL SIMULATION OF ELECTROCHEMICAL DEVICES FOR ENERGY CONVERSION AND STORAGE: FROM THEORY TO ENGINEERING TO PRACTICE SE Green Energy and Technology LA English DT Article; Book Chapter ID GAS-DIFFUSION LAYERS; ANGLE X-RAY; PERFLUORINATED IONOMER MEMBRANES; EFFECTIVE TRANSPORT-PROPERTIES; PROTON-EXCHANGE MEMBRANES; OXYGEN REDUCTION REACTION; ATOMIC-FORCE MICROSCOPY; PERFLUOROSULFONIC ACID MEMBRANES; MICROELECTRODE NAFION INTERFACE; ION-CONTAINING POLYMERS AB In this chapter, the modeling equations and approaches for continuum modeling of phenomena in polymer-electrolyte fuel cells are introduced and discussed. Specific focus is made on the underlying transport, thermodynamic, and kinetic equations, and how these can be applied towards more complex fuel-cell issues such as multiphase flow. In addition, porous-media models including impact of droplets and pore-network modeling are introduced, as well methodologies towards modeling reaction rates in fuel-cell catalyst layers including physics-based impedance modeling. Finally, future directions for fuel-cell modeling are discussed. C1 [Balasubramanian, Sivagaminathan; Weber, Adam Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Weber, AZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM azweber@lbl.gov NR 208 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1865-3529 BN 978-1-4471-5677-2; 978-1-4471-5676-5 J9 GREEN ENERGY TECHNOL PY 2016 BP 91 EP 149 DI 10.1007/978-1-4471-5677-2_4 D2 10.1007/978-1-4471-5677-2 PG 59 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BE2MC UT WOS:000369631400005 ER PT J AU Li, A Li, WZ Ling, Y Gan, WJ Brady, MA Wang, C AF Li, Ao Li, Weizhen Ling, Yang Gan, Wenjun Brady, Michael A. Wang, Cheng TI Effects of silica-coated carbon nanotubes on the curing behavior and properties of epoxy composites SO RSC ADVANCES LA English DT Article ID MECHANICAL-PROPERTIES; CURE BEHAVIOR; ELECTRICAL-CONDUCTIVITY; THERMAL-CONDUCTIVITY; FRACTURE-TOUGHNESS; RAMAN-SPECTROSCOPY; NANOCOMPOSITES; FUNCTIONALIZATION; RESIN; DISPERSION AB Multi-walled carbon nanotubes (MWCNTs) were coated with silica by a sol-gel method to improve interfacial bonding and dispersion of nanotubes in the diglycidyl ether of bisphenol A (DGEBA) matrix. TEM and FE-SEM measurements showed that the silica shell was successfully coated on the surface of r-MWCNTs (as-received MWCNTs), and that the dispersion of MWCNT@SiO2 in the epoxy matrix and interfacial adhesion between MWCNTs and epoxy were improved through the silica shell formation. The effects of silica-coated multi-walled carbon nanotube (MWCNT@SiO2) addition on the curing behavior of epoxy resin, and on the physical and thermomechanical properties of epoxy composites, were studied. FT-IR measurements of different blends at different curing times indicated that the curing reaction was accelerated with the presence of MWCNTs and increased with the content of MWCNT@SiO2. DSC results confirmed that the value of activation energy decreased with the introduction of MWCNTs in the order of MWCNT@SiO2 < r-MWCNTs < epoxy. It was found that the thermal conductivity of epoxy composites were significantly enhanced by incorporation of MWCNT@SiO2, relative to composites with r-MWCNTs, while the values of the glass transition temperature slightly increased, and the high electrical resistivity of these composites was retained overall. C1 [Li, Ao; Li, Weizhen; Ling, Yang; Gan, Wenjun] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, 333 Longteng Rd, Shanghai 201620, Peoples R China. [Gan, Wenjun; Brady, Michael A.; Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Li, WZ; Gan, WJ (reprint author), Shanghai Univ Engn Sci, Coll Chem & Chem Engn, 333 Longteng Rd, Shanghai 201620, Peoples R China.; Gan, WJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM liweizhen@sues.edu.cn; wjgan@sues.edu.cn RI Wang, Cheng/A-9815-2014 FU Shanghai Municipal Education Commission [20120407]; Shanghai Young Teachers' Training-funded Projects [ZZGJD13018]; Shanghai University of Engineering Science [2011XZ04, 0501-13-018, 2012SCX005] FX The authors wish to thank the Shanghai Municipal Education Commission (Overseas Visiting Scholar Project 20120407); Shanghai Young Teachers' Training-funded Projects (ZZGJD13018); Shanghai University of Engineering Science Developing funding (grant 2011XZ04), start-up project funding (grant 0501-13-018) and Interdisciplinary Subject Construction funding (grant 2012SCX005). NR 43 TC 1 Z9 1 U1 7 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 28 BP 23318 EP 23326 DI 10.1039/c5ra25182f PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DG7GQ UT WOS:000372253200023 ER PT J AU Datskos, P Polizos, G Bhandari, M Cullen, DA Sharma, J AF Datskos, P. Polizos, G. Bhandari, M. Cullen, D. A. Sharma, J. TI Colloidosome like structures: self-assembly of silica microrods SO RSC ADVANCES LA English DT Article ID PICKERING EMULSIONS; GOLD NANOPARTICLES; PARTICLES; MICROCAPSULES; NANORODS AB Self-assembly of one-dimensional structures is attracting a great deal of interest because assembled structures can provide better properties compared to individual building blocks. In the present work, silica microrod self-assembly has been demonstrated by exploiting Pickering emulsion based strategy. Micron-sized silica rods were synthesized employing previously reported methods based on polyvinylpyrrolidone/pentanol emulsion droplets. Rods self-assembled to make structures in the range of approximate to 10-40 mm. Smooth rods assembled better than segmented rods. The assembled structures were bonded by weak van der Waals forces. C1 [Datskos, P.; Polizos, G.; Sharma, J.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Nanosyst Separat & Mat Res Grp, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Bhandari, M.] Oak Ridge Natl Lab, Bldg Technol Res & Integrat Ctr, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Cullen, D. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Sharma, J (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Nanosyst Separat & Mat Res Grp, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM sharmajk@ornl.gov RI Cullen, David/A-2918-2015 OI Cullen, David/0000-0002-2593-7866 FU U.S. Department of Energy [DE-AC05-00OR22725]; DOE's Building Technology office [1027-1605] FX J. Sharma is a Staff Scientist at the Oak Ridge National Laboratory managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. This work is supported by DOE's Building Technology office award# 1027-1605 to J. S. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 27 TC 1 Z9 1 U1 10 U2 32 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2016 VL 6 IS 32 BP 26734 EP 26737 DI 10.1039/c5ra25817k PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DG7GV UT WOS:000372253700029 ER PT S AU Pathak, S AF Pathak, Siddhartha BE Paris, O TI Collective Behaviour of Vertically Aligned Carbon Nanotubes: from a Single Tube towards Complex Networks SO STRUCTURE AND MULTISCALE MECHANICS OF CARBON NANOMATERIALS SE CISM Courses and Lectures LA English DT Article; Book Chapter ID STRESS-STRAIN CURVES; MECHANICAL-PROPERTIES; UNIAXIAL COMPRESSION; CELLULAR SOLIDS; SILICON-CARBIDE; METALLIC FOAMS; IN-SITU; ARRAYS; NANOINDENTATION; INDENTATION C1 [Pathak, Siddhartha] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. RP Pathak, S (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. NR 63 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER-VERLAG WIEN PI VIENNA PA SACHSENPLATZ 4-6, A-1201 VIENNA, AUSTRIA SN 0254-1971 BN 978-3-7091-1887-0; 978-3-7091-1885-6 J9 CISM COURSES LECT PY 2016 VL 563 BP 191 EP 226 DI 10.1007/978-3-7091-1887-0_8 D2 10.1007/ 978-3-7091-1887-0 PG 36 WC Engineering, Mechanical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Mechanics SC Engineering; Science & Technology - Other Topics; Materials Science; Mechanics GA BE2NB UT WOS:000369652200009 ER PT S AU Wong, CY AF Wong, Cheuk-Yin BE AlvarezCastillo, D Blaschke, D Kekelidze, V Matveev, V Sorin, A TI Analytical Expressions for the Hard-Scattering Production of Massive Partons SO 15TH INTERNATIONAL CONFERENCE ON STRANGENESS IN QUARK MATTER (SQM2015) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 15th International Conference on Strangeness in Quark Matter (SQM) CY JUL 06-11, 2015 CL Dubna, RUSSIA SP Joint Inst Nucl Res, Veksler & Baldin Lab High Energy Phys ID PP AB We obtain explicit expressions for the two-particle differential cross section E(c)E(kappa)d sigma-(AB -> c kappa X)/dcd kappa and the two-particle angular correlation function d sigma(AB -> c kappa X)/d Delta phi d Delta y in the hard-scattering production of massive partons in order to exhibit the "ridge" structure on the away side in the hard-scattering process. The single-particle production cross section d sigma(AB -> cX)/dy(c)c(T)dc(T) is also obtained and compared with the ALICE experimental data for charm production in pp collisions at 7 TeV at LHC. C1 [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Wong, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2016 VL 668 AR 012097 DI 10.1088/1742-6596/668/1/012097 PG 4 WC Physics, Particles & Fields SC Physics GA BE4GK UT WOS:000371691300097 ER PT J AU Martin, JL Read, RJ Wakatsuki, S AF Martin, Jennifer L. Read, Randy J. Wakatsuki, Soichi TI Expanding beyond biological crystallography SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Editorial Material DE editorial; structural biology C1 [Martin, Jennifer L.] Univ Queensland, Inst Mol Biosci, Queensland Biosci Precinct, Brisbane, Qld 4072, Australia. [Read, Randy J.] Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Wellcome Trust MRC Bldg,Hills Rd, Cambridge CB2 0XY, England. [Wakatsuki, Soichi] Stanford Univ, Sch Med, SLAC, Photon Sci, 2575 Sand Hill Rd,MS 69, Menlo Pk, CA 94025 USA. [Wakatsuki, Soichi] Stanford Univ, Sch Med, Struct Biol, 2575 Sand Hill Rd,MS 69, Menlo Pk, CA 94025 USA. RP Martin, JL (reprint author), Univ Queensland, Inst Mol Biosci, Queensland Biosci Precinct, Brisbane, Qld 4072, Australia.; Read, RJ (reprint author), Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Wellcome Trust MRC Bldg,Hills Rd, Cambridge CB2 0XY, England.; Wakatsuki, S (reprint author), Stanford Univ, Sch Med, SLAC, Photon Sci, 2575 Sand Hill Rd,MS 69, Menlo Pk, CA 94025 USA.; Wakatsuki, S (reprint author), Stanford Univ, Sch Med, Struct Biol, 2575 Sand Hill Rd,MS 69, Menlo Pk, CA 94025 USA. EM j.martin@imb.uq.edu.au; rjr27@cam.ac.uk; soichi.wakatsuki@stanford.edu RI Read, Randy/L-1418-2013 OI Read, Randy/0000-0001-8273-0047 NR 0 TC 0 Z9 0 U1 0 U2 1 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND EI 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD JAN PY 2016 VL 72 BP 1 EP 1 DI 10.1107/S2059798315023761 PN 1 PG 1 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA DF9UO UT WOS:000371707300001 PM 26894528 ER PT J AU Baxter, EL Aguila, L Alonso-Mori, R Barnes, CO Bonagura, CA Brehmer, W Brunger, AT Calero, G Caradoc-Davies, TT Chatterjee, R Degrado, WF Fraser, JS Ibrahim, M Kern, J Kobilka, BK Kruse, AC Larsson, KM Lemke, HT Lyubimov, AY Manglik, A McPhillips, SE Norgren, E Pang, SS Soltis, SM Song, JH Thomaston, J Tsai, Y Weis, WI Woldeyes, RA Yachandra, V Yano, J Zouni, A Cohen, AE AF Baxter, Elizabeth L. Aguila, Laura Alonso-Mori, Roberto Barnes, Christopher O. Bonagura, Christopher A. Brehmer, Winnie Brunger, Axel T. Calero, Guillermo Caradoc-Davies, Tom T. Chatterjee, Ruchira Degrado, William F. Fraser, James S. Ibrahim, Mohamed Kern, Jan Kobilka, Brian K. Kruse, Andrew C. Larsson, Karl M. Lemke, Heinrik T. Lyubimov, Artem Y. Manglik, Aashish McPhillips, Scott E. Norgren, Erik Pang, Siew S. Soltis, S. M. Song, Jinhu Thomaston, Jessica Tsai, Yingssu Weis, William I. Woldeyes, Rahel A. Yachandra, Vittal Yano, Junko Zouni, Athina Cohen, Aina E. TI High-density grids for efficient data collection from multiple crystals SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article DE XFELs; high-throughput crystallography; serial crystallography; sample delivery; automation for sample-exchange robots ID X-RAY-DIFFRACTION; SERIAL FEMTOSECOND CRYSTALLOGRAPHY; LIPIDIC CUBIC PHASE; MACROMOLECULAR CRYSTALLOGRAPHY; PHOTOSYSTEM-II; PROTEIN CRYSTALS; ROOM-TEMPERATURE; BIOLOGICAL CRYSTALLOGRAPHY; SYNCHROTRON-RADIATION; ANGSTROM RESOLUTION AB Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into theBlu-Ice Blu-Ice/DCSS DCSS experimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures. C1 [Baxter, Elizabeth L.; Aguila, Laura; Brehmer, Winnie; McPhillips, Scott E.; Soltis, S. M.; Song, Jinhu; Tsai, Yingssu; Cohen, Aina E.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Alonso-Mori, Roberto; Kern, Jan; Lemke, Heinrik T.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Barnes, Christopher O.; Calero, Guillermo] Univ Pittsburgh, Sch Med, Dept Struct Biol, Pittsburgh, PA 15261 USA. [Bonagura, Christopher A.; Norgren, Erik] Art Robbins Instruments, Sunnyvale, CA 94089 USA. [Brunger, Axel T.; Kobilka, Brian K.; Kruse, Andrew C.; Lyubimov, Artem Y.; Manglik, Aashish; Weis, William I.] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. [Brunger, Axel T.; Lyubimov, Artem Y.] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA. [Caradoc-Davies, Tom T.; Pang, Siew S.] Monash Univ, ARC Ctr Excellence Adv Mol Imaging, Melbourne, Vic 3800, Australia. [Caradoc-Davies, Tom T.] Australian Synchrotron, 800 Blackburn Rd, Melbourne, Vic 3168, Australia. [Chatterjee, Ruchira; Kern, Jan; Yachandra, Vittal; Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Bioscences Div, Berkeley, CA 94720 USA. [Degrado, William F.; Thomaston, Jessica] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA. [Fraser, James S.; Woldeyes, Rahel A.] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA. [Ibrahim, Mohamed; Zouni, Athina] Humboldt Univ, Inst Biol, D-10099 Berlin, Germany. [Larsson, Karl M.] Stanford Univ, Sch Med, Stanford, CA 94305 USA. [Weis, William I.] Stanford Univ, Dept Struct Biol, Stanford, CA 94305 USA. RP Cohen, AE (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. EM acohen@slac.stanford.edu RI Lemke, Henrik Till/N-7419-2016; OI Lemke, Henrik Till/0000-0003-1577-8643; Fraser, James/0000-0002-5080-2859 FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-76SF00515]; LCLS Ultrafast Science Instruments project - US Department of Energy, Office of Basic Energy Sciences; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; US Department of Energy Office of Biological and Environmental Research; National Institutes of Health (NIH), National Institute of General Medical Sciences [P41GM103393]; NSF Graduate Research Fellowship; NIH [GM110580]; NSF [STC-1231306]; Office of Science, OBES, Chemical Sciences, Geosciences and Biosciences CSGB of the DOE [DE-AC02-05CH11231]; National Institutes of Health (NIH) [GM055302, GM110501]; DFG-Cluster of Excellence 'UniCat' coordinated by Technische Universitat at Berlin [Sfb1078, TPA5]; Human Frontiers Science Project [RGP0063/2013 310] FX Portions of this research were carried out at the Linac Coherent Light Source (LCLS), a National User Facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The XPP instruments were funded through the LCLS Ultrafast Science Instruments project funded by the US Department of Energy, Office of Basic Energy Sciences. Use of the Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the US Department of Energy Office of Biological and Environmental Research and by the National Institutes of Health (NIH), National Institute of General Medical Sciences (including P41GM103393). RAW is supported by an NSF Graduate Research Fellowship. JSF is supported by NIH GM110580 and NSF STC-1231306. JY and VKY are supported by Office of Science, OBES, Chemical Sciences, Geosciences and Biosciences CSGB of the DOE under Contract No. DE-AC02-05CH11231 for X-ray methodology and instrumentation. The LCLS is acknowledged for beamtime access under experiment No. XPPG7814. This work is supported by National Institutes of Health (NIH) grants GM055302 (VKY) and GM110501 (JY), the DFG-Cluster of Excellence 'UniCat' coordinated by the Technische Universitat at Berlin and Sfb1078, TPA5 (AZ and MI) and the Human Frontiers Science Project Award No. RGP0063/2013 310 (JY and AZ). NR 52 TC 8 Z9 8 U1 5 U2 20 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD JAN PY 2016 VL 72 BP 2 EP 11 DI 10.1107/S2059798315020847 PN 1 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA DF9UO UT WOS:000371707300002 PM 26894529 ER PT J AU Moriarty, NW Tronrud, DE Adams, PD Karplus, PA AF Moriarty, Nigel W. Tronrud, Dale E. Adams, Paul D. Karplus, P. Andrew TI A new default restraint library for the protein backbone inPhenix Phenix: a conformation-dependent geometry goes mainstream SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Editorial Material DE covalent geometry restraints; crystallographic refinement; protein structure; validation; Phenix ID IMPROVES CRYSTALLOGRAPHIC REFINEMENT; RESOLUTION; ABINITIO AB Chemical restraints are a fundamental part of crystallographic protein structure refinement. In response to mounting evidence that conventional restraints have shortcomings, it has previously been documented that using backbone restraints that depend on the protein backbone conformation helps to address these shortcomings and improves the performance of refinements [Moriartyet al. et al. (2014),FEBS J. FEBS J.281 281, 4061-4071]. It is important that these improvements be made available to all in the protein crystallography community. Toward this end, a change in the default geometry library used byPhenix Phenix is described here. Tests are presented showing that this change will not generate increased numbers of outliers during validation, or deposition in the Protein Data Bank, during the transition period in which some validation tools still use the conventional restraint libraries. C1 [Moriarty, Nigel W.; Adams, Paul D.] Lawrence Berkeley Natl Lab, Phys Biosci, Berkeley, CA 94720 USA. [Tronrud, Dale E.; Karplus, P. Andrew] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97377 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Moriarty, NW (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci, Berkeley, CA 94720 USA. EM nwmoriarty@lbl.gov RI Adams, Paul/A-1977-2013 OI Adams, Paul/0000-0001-9333-8219 FU NIGMS NIH HHS [R01 GM083136, 1P01 GM063210, P01 GM063210, R01-GM083136] NR 19 TC 6 Z9 6 U1 0 U2 5 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND EI 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD JAN PY 2016 VL 72 BP 176 EP 179 DI 10.1107/S2059798315022408 PN 1 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA DF9UO UT WOS:000371707300018 PM 26894545 ER PT J AU Hu, GZ Gracia-Espino, E Sandstrom, R Sharifi, T Cheng, SD Shen, HJ Wang, CY Guo, SJ Yang, G Wagberg, T AF Hu, Guangzhi Gracia-Espino, Eduardo Sandstrom, Robin Sharifi, Tiva Cheng, Shaodong Shen, Hangjia Wang, Chuanyi Guo, Shaojun Yang, Guang Wagberg, Thomas TI Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt3Co-Pt core-shell nanoparticles SO CATALYSIS SCIENCE & TECHNOLOGY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; METHANOL OXIDATION REACTION; ALLOY NANOPARTICLES; SURFACE-COMPOSITION; CATALYSTS; NI; PERFORMANCE; ALKALINE; METALS; PTCU3 AB PtM-based core-shell nanoparticles are a new class of active and stable nanocatalysts for promoting oxygen reduction reaction (ORR); however, the understanding of their high electrocatalytic performance for ORR at the atomistic level is still a great challenge. Herein, we report the synthesis of highly ordered and homogeneous truncated cuboctahedral Pt3Co-Pt core-shell nanoparticles (cs-Pt3Co). By combining atomic resolution electron microscopy, X-ray photoelectron spectroscopy, extensive first-principles calculations, and many other characterization techniques, we conclude that the cs-Pt3Co nanoparticles are composed of a complete or nearly complete Pt monolayer skin, followed by a secondary shell containing 5-6 layers with similar to 78 at% of Pt, in a Pt3Co configuration, and finally a Co-rich core with 64 at% of Pt. Only this particular structure is consistent with the very high electrocatalytic activity of cs-Pt3Co nanoparticles for ORR, which is about 6 times higher than commercial 30%-Pt/Vulcan and 5 times more active than non-faceted (spherical) alloy Pt3Co nanoparticles. Our study gives an important insight into the atomistic design and understanding of advanced bimetallic nanoparticles for ORR catalysis and other important industrial catalytic applications. C1 [Hu, Guangzhi; Gracia-Espino, Eduardo; Sandstrom, Robin; Sharifi, Tiva; Wagberg, Thomas] Umea Univ, Dept Phys, S-90187 Umea, Sweden. [Cheng, Shaodong; Yang, Guang] Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China. [Cheng, Shaodong; Yang, Guang] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China. [Shen, Hangjia; Wang, Chuanyi] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Lab Environm Sci & Technol, Urumqi 830011, Peoples R China. [Guo, Shaojun] Los Alamos Natl Lab, Phys Chem & Appl Spect, POB 1663, Los Alamos, NM 87545 USA. RP Gracia-Espino, E; Wagberg, T (reprint author), Umea Univ, Dept Phys, S-90187 Umea, Sweden.; Yang, G (reprint author), Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China.; Yang, G (reprint author), Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China. EM Eduardo.gracia@physics.umu.se; g.yang@mail.xjtu.edu.cn; Thomas.wagberg@physics.umu.se RI Yang, Guang/C-9022-2011; Cheng, Shaodong/P-6440-2014 OI Yang, Guang/0000-0003-1117-1238; FU Artificial Leaf Project Umea (K&A Wallenberg Foundation); Swedish Research Council [2013-5252]; 1000-Talent Program (Recruitment Program of Global Expert, in Chinese); Special Talent Foundation of Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences; National Natural Science Foundation of China [21505154, 51202180]; Angpanneforeningen's Foundation [14-541]; Fundamental Research Funds for the Central Universities in China; Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry FX This work was supported by the Artificial Leaf Project Umea (K&A Wallenberg Foundation) and by the Swedish Research Council (Grant dnr 2013-5252). G.H. acknowledges support from the 1000-Talent Program (Recruitment Program of Global Expert, in Chinese: Qian-Ren-Ji-Hua) and the Special Talent Foundation of Director of Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences and National Natural Science Foundation of China (21505154). E.G.E. acknowledges support from Angpanneforeningen's Foundation (14-541). G.Y. acknowledges the funding from the National Natural Science Foundation of China (Grant No. 51202180), the Fundamental Research Funds for the Central Universities in China and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. The theoretical simulations were performed on resources provided by the Swedish National Infrastructure for Computing at the High Performance Computing Center North (HPC2N). We wish to thank Qingxue Lai and Prof. Yanyu Liang of the Nanjing University of Aeronautics and Astronautics for assistance with electrochemical measurements. NR 36 TC 2 Z9 2 U1 12 U2 36 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2044-4753 EI 2044-4761 J9 CATAL SCI TECHNOL JI Catal. Sci. Technol. PY 2016 VL 6 IS 5 BP 1393 EP 1401 DI 10.1039/c5cy01128k PG 9 WC Chemistry, Physical SC Chemistry GA DF8KW UT WOS:000371607600014 ER PT J AU Kim, J Kim, KH Oang, KY Lee, JH Hong, K Cho, H Huse, N Schoenlein, RW Kim, TK Ihee, H AF Kim, Jeongho Kim, Kyung Hwan Oang, Key Young Lee, Jae Hyuk Hong, Kiryong Cho, Hana Huse, Nils Schoenlein, Robert W. Kim, Tae Kyu Ihee, Hyotcherl TI Tracking reaction dynamics in solution by pump-probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering) SO CHEMICAL COMMUNICATIONS LA English DT Article ID ULTRAFAST ELECTRON-DIFFRACTION; TRANSIENT MOLECULAR-STRUCTURES; PROTEIN STRUCTURAL DYNAMICS; PHOTOACTIVE YELLOW PROTEIN; TIME-RESOLVED DIFFRACTION; 2-DIMENSIONAL INFRARED-SPECTROSCOPY; FEMTOSECOND-STIMULATED RAMAN; CU(I) PHENANTHROLINE COMPLEX; SPIN-CROSSOVER DYNAMICS; EXCITED-STATE STRUCTURE AB Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump-probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive to changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions. C1 [Kim, Jeongho] Inha Univ, Dept Chem, Inchon 402751, South Korea. [Kim, Kyung Hwan; Oang, Key Young; Ihee, Hyotcherl] Ctr Nanomat & Chem React, Inst Basic Sci, Taejon 305701, South Korea. [Kim, Kyung Hwan; Oang, Key Young; Ihee, Hyotcherl] Korea Adv Inst Sci & Technol, Dept Chem, Taejon 305701, South Korea. [Lee, Jae Hyuk; Cho, Hana; Schoenlein, Robert W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [Hong, Kiryong; Cho, Hana; Kim, Tae Kyu] Pusan Natl Univ, Dept Chem, Busan 609735, South Korea. [Hong, Kiryong; Cho, Hana; Kim, Tae Kyu] Pusan Natl Univ, Chem Inst Funct Mat, Busan 609735, South Korea. [Cho, Hana] Korea Res Inst Standard & Sci, Div Metrol Qual Life, Ctr Inorgan Anal, Daejeon 305340, South Korea. [Huse, Nils] Univ Hamburg, Max Planck Res Dept Struct Dynam, D-22607 Hamburg, Germany. [Huse, Nils] Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. RP Kim, J (reprint author), Inha Univ, Dept Chem, Inchon 402751, South Korea.; Ihee, H (reprint author), Ctr Nanomat & Chem React, Inst Basic Sci, Taejon 305701, South Korea.; Ihee, H (reprint author), Korea Adv Inst Sci & Technol, Dept Chem, Taejon 305701, South Korea.; Kim, TK (reprint author), Pusan Natl Univ, Dept Chem, Busan 609735, South Korea.; Kim, TK (reprint author), Pusan Natl Univ, Chem Inst Funct Mat, Busan 609735, South Korea. EM jkim5@inha.ac.kr; tkkim@pusan.ac.kr; hyotcherl.ihee@kaist.ac.kr RI Ihee, Hyotcherl/C-1614-2011; KIM, TAE KYU/A-8737-2016; Huse, Nils/A-5712-2017; OI KIM, TAE KYU/0000-0002-9578-5722; Huse, Nils/0000-0002-3281-7600; Kim, Jeongho/0000-0003-4085-293X FU Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [NRF-2014R1A1A1002511, 2013R1A1A2009575, 2014R1A4A1001690, 2011-0031558]; TJ Park Science Fellowship of POSCO TJ Park Foundation; [IBS-R004-G2] FX We greatly appreciate our co-workers listed in many references of this article. We acknowledge other research groups who have made significant contributions to the advance of TRXL and TRXAS as well as other related X-ray techniques. This work was supported by IBS-R004-G2. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2014R1A1A1002511, 2013R1A1A2009575, 2014R1A4A1001690, and 2011-0031558). This research has been supported by the TJ Park Science Fellowship of POSCO TJ Park Foundation. NR 228 TC 4 Z9 4 U1 8 U2 45 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 19 BP 3734 EP 3749 DI 10.1039/c5cc08949b PG 16 WC Chemistry, Multidisciplinary SC Chemistry GA DF6PG UT WOS:000371477100001 PM 26785280 ER PT J AU Liu, R Cheng, S Baker, ES Smith, RD Zeng, XC Gong, B AF Liu, Rui Cheng, Shuang Baker, Erin S. Smith, Richard D. Zeng, Xiao Cheng Gong, Bing TI Surprising impact of remote groups on the folding-unfolding and dimer-chain equilibria of bifunctional H-bonding unimers SO CHEMICAL COMMUNICATIONS LA English DT Article ID BONDED MOLECULAR DUPLEXES; SUPRAMOLECULAR POLYMERS; HYDROGEN-BONDS; AQUEOUS-MEDIA; DNA COMPLEX; FOLDAMERS; ARRAYS; ASSOCIATION; WATER; MACROCYCLES AB Oligoamide 1, consisting of two H-bonding units linked by a trimethylene linker, was previously found to form a very stable, folded dimer. In this work, replacing the side chains and end groups of 1 led to derivatives that show the surprising impact of end groups on the folding and dimer-chain equilibria of the resultant molecules. C1 [Liu, Rui; Gong, Bing] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Liu, Rui; Gong, Bing] Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. [Cheng, Shuang] Nanjing Univ, Kuang Yaming Honors Sch, Nanjing 210023, Jiangsu, Peoples R China. [Baker, Erin S.; Smith, Richard D.] Pacific NW Natl Lab, Earth & Biol Sci Div, Richland, WA 99352 USA. [Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. RP Gong, B (reprint author), SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA.; Gong, B (reprint author), Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. EM bgong@buffalo.edu RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU US National Science Foundation [CHE-1306326, CBET-1512164]; National Natural Science Foundation of China [NSFC-91227109]; NIGMS [P41 GM103493]; NIEHS [R01ES022190]; DOE [DE-AC05-76RLO-1830] FX This work was supported by the US National Science Foundation (CHE-1306326 and CBET-1512164), and the National Natural Science Foundation of China (NSFC-91227109). The mass spectrometric measurements were supported by grants from the NIGMS (P41 GM103493) and NIEHS (R01ES022190). This work was performed in the Environmental Molecular Science Laboratory, a DOE/BER national scientific user facility at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by Battelle under contract no. DE-AC05-76RLO-1830. NR 53 TC 2 Z9 2 U1 3 U2 12 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2016 VL 52 IS 19 BP 3773 EP 3776 DI 10.1039/c6cc00224b PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DF6PG UT WOS:000371477100007 PM 26830456 ER PT J AU Zhou, M Wang, HL Guo, SJ AF Zhou, Ming Wang, Hsing-Lin Guo, Shaojun TI Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials SO CHEMICAL SOCIETY REVIEWS LA English DT Review ID METAL-FREE ELECTROCATALYSTS; NITROGEN-DOPED GRAPHENE; PEM FUEL-CELL; ELECTROCHEMICAL ENERGY APPLICATIONS; NANOTUBE-MODIFIED ELECTRODES; CATALYST-FREE SYNTHESIS; LITHIUM ION BATTERIES; POROUS CARBON; MESOPOROUS CARBON; CATHODE CATALYST AB One of the critical issues in the industrial development of fuel cells (e.g., proton exchange membrane fuel cells, direct methanol fuel cells and biofuel cells) is the high cost, serious intermediate tolerance, anode crossover, sluggish kinetics, and poor stability of the platinum (Pt) as the preferred electrocatalysts for the oxygen reduction reaction (ORR) at the cathode. The development of novel noble-metal-free electrocatalysts with low cost, high activity and practical durability for ORR has been considered as one of the most active and competitive fields in chemistry and materials science. In this critical review, we will summarize recent advances on engineering advanced carbon nanomaterials with different dimensions for the rational design and synthesis of noble-metal-free oxygen reduction electrocatalysts including heteroatom-doped carbon nanomaterials, transition metal-based nanoparticle (NP)-carbon nanomaterial composites and especially the stable iron carbide (Fe3C)-based NP-carbon nanomaterial composites. Introducing advanced carbon nanomaterials with high specific surface area and stable structure into the noble-metal-free ORR field has not only led to a maximized electrocatalyst surface area for the electron transfer but also resulted in enhanced electrocatalyst stability for long-term operation. Therefore, the rational design and synthesis of noble-metal-free electrocatalysts based on heteroatoms, transition metal-based NPs and Fe3C-based NP functionalized carbon nanomaterials are of special relevance for their ORR applications, and represents a rapidly growing branch of research. The demonstrated examples in this review will open new directions on designing and optimizing advanced carbon nanomaterials for the development of extremely active and durable earth-abundant cathodic catalysts for fuel cell applications. C1 [Zhou, Ming] NE Normal Univ, Key Lab Polyoxometalate Sci, Minist Educ, Fac Chem, Changchun 130024, Jilin Province, Peoples R China. [Zhou, Ming] NE Normal Univ, Natl & Local United Engn Lab Power Batteries, Changchun 130024, Jilin Province, Peoples R China. [Wang, Hsing-Lin] Los Alamos Natl Lab, Phys Chem & Appl Spect, Div Chem, POB 1663, Los Alamos, NM 87545 USA. [Guo, Shaojun] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China. [Guo, Shaojun] Peking Univ, Coll Engn, Dept Energy & Resources Engn, Beijing 100871, Peoples R China. RP Zhou, M (reprint author), NE Normal Univ, Key Lab Polyoxometalate Sci, Minist Educ, Fac Chem, Changchun 130024, Jilin Province, Peoples R China.; Zhou, M (reprint author), NE Normal Univ, Natl & Local United Engn Lab Power Batteries, Changchun 130024, Jilin Province, Peoples R China.; Wang, HL (reprint author), Los Alamos Natl Lab, Phys Chem & Appl Spect, Div Chem, POB 1663, Los Alamos, NM 87545 USA.; Guo, SJ (reprint author), Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China.; Guo, SJ (reprint author), Peking Univ, Coll Engn, Dept Energy & Resources Engn, Beijing 100871, Peoples R China. EM zhoum739@nenu.edu.cn; hwang@lanl.gov; guosj@pku.edu.cn RI Guo, Shaojun/A-8449-2011; Zhou, Ming/B-7451-2009 OI Guo, Shaojun/0000-0002-5941-414X; Zhou, Ming/0000-0003-2239-9342 FU Northeast Normal University startup funds; Recruitment Program of Global Youth Experts; Laboratory Directed Research and Development program under the U.S. Department of Energy; Peking University FX M. Z. is grateful to financial support from Northeast Normal University startup funds and the Recruitment Program of Global Youth Experts. H. L. W. would like to acknowledge financial support by the Laboratory Directed Research and Development program under the auspices of the U.S. Department of Energy. S. G. acknowledges the support by Peking University start up funds and Recruitment Program of Global Youth Experts. NR 291 TC 58 Z9 58 U1 249 U2 535 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0306-0012 EI 1460-4744 J9 CHEM SOC REV JI Chem. Soc. Rev. PY 2016 VL 45 IS 5 BP 1273 EP 1307 DI 10.1039/c5cs00414d PG 35 WC Chemistry, Multidisciplinary SC Chemistry GA DF8JV UT WOS:000371604800007 PM 26647087 ER PT J AU Leu, BM Sturza, MI Hong, JW Alatas, A Baran, V Fassler, TF AF Leu, Bogdan M. Sturza, Mihai I. Hong, Jiawang Alatas, Ahmet Baran, Volodymyr Faessler, Thomas F. TI Elastic properties of type-I clathrate K8Zn4Sn42 determined by inelastic X-ray scattering SO EPL LA English DT Article ID HIGH-PRESSURE; TRANSITION; SPECTROSCOPY; TEMPERATURE; EXCITATIONS; DYNAMICS; STATES; MODES AB We measured the phonon dispersion at ambient conditions in single-crystal type-I clathrate K8Zn4Sn42, a material with promising thermoelectric properties that has only recently been synthesized, using the high-energy resolution inelastic X-ray scattering (IXS) technique. From the sound velocities along high-symmetry directions, we extracted the elastic constants (C-11, C-12, C-44 = 63.2, 19.1, 21.9GPa, respectively). Experimental results agree with the predictions from first-principles calculations on the hypothetical, "guest-free", type-I clathrate Sn-46. The size of the crystal investigated was several orders of magnitude smaller than what is required for neutron and ultrasonic measurements. Due to this essential property, together with the high-energy resolution, high-momentum-transfer resolution, and the access to the strongest Bragg reflections, IXS is the technique of choice for measuring the full elastic constant tensor for microcrystals. Copyright (C) EPLA, 2016 C1 [Leu, Bogdan M.; Alatas, Ahmet] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sturza, Mihai I.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Hong, Jiawang] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. [Baran, Volodymyr; Faessler, Thomas F.] Tech Univ Munich, Dept Chem, Garching, Germany. RP Leu, BM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RI Hong, Jiawang/B-2864-2009 OI Hong, Jiawang/0000-0002-9915-8072 FU U.S. DOE [DE-AC02-06CH11357]; Center for Accelerating Materials Modeling - U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX The use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. JH was supported by the Center for Accelerating Materials Modeling, funded by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 57 TC 0 Z9 0 U1 4 U2 13 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD JAN PY 2016 VL 113 IS 1 AR 16001 DI 10.1209/0295-5075/113/16001 PG 6 WC Physics, Multidisciplinary SC Physics GA DF6QB UT WOS:000371479500015 ER PT J AU Tinkham, WT Hoffman, CM Canfield, JM Vakili, E Reich, RM AF Tinkham, Wade T. Hoffman, Chad M. Canfield, Jesse M. Vakili, Emma Reich, Robin M. TI Using the photoload technique with double sampling to improve surface fuel loading estimates SO INTERNATIONAL JOURNAL OF WILDLAND FIRE LA English DT Article DE fuels; ratio estimation; regression estimation ID FOREST; BIOMASS AB Accurate surface fuel load estimates based on the planar intercept method require a considerable amount of time and cost. Recently the photoload method has been proposed as an alternative for sampling of fine woody surface fuels. To evaluate the use of photoload fuel sampling, six simulated fuel beds of 100 photoload visual estimates and destructively sampled fuel loads were generated at three levels of fuel loading (0.016, 0.060, and 0.120 kg m(-2)) and two levels of variability (coefficients of variation of similar to 42 and 85%). We assessed the accuracy and precision of simple random sampling with and without double sampling on surface fuel load estimation. Direct visual estimates often overestimated fuel loads where actual fuel loading was low and underestimated fuel loads where fuel loads were large. We found that double sampling with a classical regression estimation approach provided the most accurate and precise fuel load estimates, substantially improving the accuracy and precision achieved over standard photoload estimation when 20 and double sampling rate 20%. These results indicate that fine woody fuel loading estimation with the photoload technique can be improved by incorporating a double sampling approach. C1 [Tinkham, Wade T.; Hoffman, Chad M.; Vakili, Emma; Reich, Robin M.] Colorado State Univ, Dept Forest & Rangeland Stewardship, 1472 Campus Delivery, Ft Collins, CO 80523 USA. [Canfield, Jesse M.] Los Alamos Natl Lab, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87545 USA. RP Tinkham, WT (reprint author), Colorado State Univ, Dept Forest & Rangeland Stewardship, 1472 Campus Delivery, Ft Collins, CO 80523 USA. EM Wade.Tinkham@colostate.edu OI Hoffman, Chad/0000-0001-8715-937X FU Joint Fire Sciences grant [13-1-04-53]; McIntire-Stennis Program FX The collection and analysis of this dataset would not have been possible without support from Joint Fire Sciences grant 13-1-04-53 and the McIntire-Stennis Program. NR 20 TC 2 Z9 2 U1 0 U2 0 PU CSIRO PUBLISHING PI CLAYTON PA UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA SN 1049-8001 EI 1448-5516 J9 INT J WILDLAND FIRE JI Int. J. Wildland Fire PY 2016 VL 25 IS 2 BP 224 EP 228 DI 10.1071/WF15027 PG 5 WC Forestry SC Forestry GA DF8EV UT WOS:000371591000010 ER PT S AU Tak, T Choe, J Jeong, Y Lee, D Kim, TK AF Tak, Taewoo Choe, Jiwon Jeong, Yongjin Lee, Deokjung Kim, T. K. BE Mohamed, AA Idris, FM Hasan, AB Hamzah, Z TI Study for Requirement of Advanced Long Life Small Modular Fast Reactor SO INTERNATIONAL NUCLEAR SCIENCE, TECHNOLOGY AND ENGINEERING CONFERENCE 2015 (INUSTEC2015) SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Nuclear Science, Technology and Engineering Conference (iNuSTEC) CY AUG 17-19, 2015 CL Univ Sains Islam Malaysia, Nilai, MALAYSIA SP Minist Sci Technol & Innovat Malaysia, Minist Educ Malaysia, Malaysian Nucl Agcy, Int Atom Energy Agcy, Hitachi GE, Japan Atom Energy Agcy, Tokyo Inst Technol, Seoul Natl Univ, ASME Sect Malaysia, Reactor Interest Grp, NGO, Malaysian Nucl Soc, Univ Tenaga Nas, Univ Teknologi MARA, Univ Teknologi Malaysia, Univ Islam Antarabangsa Malaysia, Univ Kebangsaan Malaysia, Univ Malaya, Univ Tun Hussien Malaysia HO Univ Sains Islam Malaysia AB To develop an advanced long-life SMR core concept, the feasibility of the long-life breed-and-burn core concept has been assessed and the preliminary selection on the reactor design requirement such as fuel form, coolant material has been performed. With the simplified cigar-type geometry of 8m-tall CANDLE reactor concept, it has demonstrated the strengths of breed-and-burn strategy. There is a saturation region in the graph for the multiplication factors, which means that a steady breeding is being proceeded along the axial direction. The propagation behavior of the CANDLE core can be also confirmed through the evolution of the axial power profile. Coolant material is expected to have low melting point, density, viscosity and absorption cross section and a high boiling point, specific heat, and thermal conductivity. In this respect, sodium is preferable material for a coolant of this nuclear power plant system. The metallic fuel has harder spectrum compared to the oxide and carbide fuel, which is favorable to increase the breeding and extend the cycle length. C1 [Tak, Taewoo; Choe, Jiwon; Jeong, Yongjin; Lee, Deokjung] Ulsan Natl Inst Sci & Technol, 50 UNIST Gil, Ulsan 689798, South Korea. [Kim, T. K.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60564 USA. RP Lee, D (reprint author), Ulsan Natl Inst Sci & Technol, 50 UNIST Gil, Ulsan 689798, South Korea. EM ttwispy@unist.ac.kr; chi91023@unist.ac.kr; yjjeong09@unist.ac.kr; deokjung@unist.ac.kr; tkkim@anl.gov NR 17 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1351-1 J9 AIP CONF PROC PY 2016 VL 1704 AR 020001 DI 10.1063/1.4940059 PG 6 WC Nuclear Science & Technology; Physics, Nuclear SC Nuclear Science & Technology; Physics GA BE3ZH UT WOS:000371423800001 ER PT J AU Voss, JD Kugblenu, R Salter, K Johnson, L Reeves, WK AF Voss, Jameson D. Kugblenu, Richard Salter, Khabira Johnson, Lucas Reeves, Will K. TI Case series of 23 deaths from Hymenoptera stings among United States Air Force populations SO JOURNAL OF HYMENOPTERA RESEARCH LA English DT Article DE Hymenoptera; bees; wasps; stings; mortality; military; Air Force Mortality Registry ID SERVICE MEMBERS AB Medical conditions arising from hymenopteran sting allergy or mass envenomation are a serious health concern, particularly in austere environments. Both practicing allergists and entomological pest control personnel should consider the relevance of stinging insects when responding to problems with Hymenoptera. Recent occupational reviews of civilian deaths from insect bites and stings prompted our review of the US Air Force Mortality Registry to determine the relevance of insect stings and bites as a cause of death in the US Air Force. After reviewing over 40 years of death records we identified 23 death records, among US Air Force Active duty, guard, or retirees that arose directly from hymenopteran stings. C1 [Voss, Jameson D.; Reeves, Will K.] US Air Force Sch Aerosp Med, PHR, 2510 5th St, Wright Patterson AFB, OH 45433 USA. [Kugblenu, Richard] Oak Ridge Inst Sci & Educ, Wright Patterson AFB, OH 45433 USA. [Salter, Khabira] Decypher, Wright Patterson AFB, OH 45433 USA. [Johnson, Lucas] Uniformed Serv Univ Hlth Sci, Dept Prevent Med & Biometr, Washington, DC USA. [Reeves, Will K.] 2510 Fifth St,Bldg 840, Wright Patterson AFB, OH 45433 USA. RP Reeves, WK (reprint author), US Air Force Sch Aerosp Med, PHR, 2510 5th St, Wright Patterson AFB, OH 45433 USA.; Reeves, WK (reprint author), 2510 Fifth St,Bldg 840, Wright Patterson AFB, OH 45433 USA. EM will.reeves@us.af.mil NR 8 TC 0 Z9 0 U1 3 U2 3 PU PENSOFT PUBL PI SOFIA PA 12 PROF GEORGI ZLATARSKI ST, SOFIA, 1700, BULGARIA SN 1070-9428 EI 1314-2607 J9 J HYMENOPT RES JI J. Hymenopt. Res. PY 2016 VL 48 BP 95 EP 99 DI 10.3897/JHR.48.7905 PG 5 WC Entomology SC Entomology GA DG0HU UT WOS:000371746700006 ER PT J AU Aab, A Abreu, P Aglietta, M Ahn, EJ Al Samarai, I Albuquerque, IFM Allekotte, I Allison, P Almela, A Castillo, JA Alvarez-Muniz, J Batista, RA Ambrosio, M Aminaei, A Anastasi, GA Anchordoqui, L Andringa, S Aramo, C Arqueros, F Arsene, N Asorey, H Assis, P Aublin, J Avila, G Awal, N Badescu, AM Baus, C Beatty, JJ Becker, KH Bellido, JA Berat, C Bertaina, ME Bertou, X Biermann, PL Billoir, P Blaess, SG Blanco, A Blanco, M Blazek, J Bleve, C Bluemer, H Bohacova, M Boncioli, D Bonifazi, C Borodai, N Brack, J Brancus, I Bretz, T Bridgeman, A Brogueira, P Buchholz, P Bueno, A Buitink, S Buscemi, M Caballero-Mora, KS Caccianiga, B Caccianiga, L Candusso, M Caramete, L Caruso, R Castellina, A Cataldi, G Cazon, L Cester, R Chavez, AG Chiavassa, A Chinellato, JA Chudoba, J Cilmo, M Clay, RW Cocciolo, G Colalillo, R Coleman, A Collica, L Coluccia, MR Conceicao, R Contreras, F Cooper, MJ Cordier, A Coutu, S Covault, CE Cronin, J Dallier, R Daniel, B Dasso, S Daumiller, K Dawson, BR de Almeida, RM de Jong, SJ De Mauro, G Neto, JRTD De Mitri, I de Oliveira, J de Souza, V del Pera, L Deligny, O Dhita, N Di Giulio, C Di Matteot, A Diaz, JC Castro, MLD Diogo, F Dobrigkeit, C Docters, W D'Olivo, JC Dorofeev, A Hasankiadeh, QD dos Anjos, RC Dova, MT Ebr, J Enge, R Erdmann, M Erfani, M Escobar, CO Eser, J Espadanal, J Etchegoyeng, A Falcke, H Fang, K Farrar, G Fauth, AC Fazzini, N Ferguson, AP Fick, B Figueira, JM Filevich, A Filipcic, A Fratu, O Freire, MM Fujii, T Garcia, B Garcia-Gamez, D Garcia-Pinto, D Gate, F Gemmeke, H Gherghel-Lascu, A Ghia, PL Giaccari, U Giammarchi, M Giller, M Glas, D Glaser, C Glass, H Golup, G Berisso, MG Vitale, PFG Gonzalez, N Gookin, B Gordon, J Gorgi, A Gorham, P Gouffon, P Griffith, N Grillo, AF Grubb, TD Guarino, F Guedes, GP Hampel, MR Hansen, P Harari, D Harrison, TA Hartmann, S Harton, JL Haungs, A Hebbeker, T Heck, D Heimann, P Herve, AE Hill, GC Hojvat, C Hohon, N Holt, E Homola, P Horandel, JR Horvath, P Hrabovsky, M Huber, D Huege, T Insolia, A Isar, PG Jandt, I Jansen, S Jarne, C Johnsen, JA Josebachuili, M Kaapa, A Kambeitz, O Kampert, KH Kasper, P Katkov, I Keilhauer, B Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Krause, R Krohm, N Kuempe, D Mezek, GK Kunka, N Awad, AWK LaHurd, D Lang, A Latronico, L Lauer, R Lauscher, M Lautridou, P Le Coz, S Lebrun, D Lebrun, P de Oliveira, MAL Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopes, L Lopez, R Casado, AL Louedec, K Lucero, A Malacari, M Mallamaci, M Maller, J Mandat, D Mantsch, P Mariazzi, AG Marin, V Maris, IC Marsella, G Martello, D Martinez, H Bravo, OM Martraire, D Meza, JJM Mathes, HJ Mathys, S Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mayotte, E Mazur, PO Medina, C Medina-Tanco, G Meissner, R Meo, VBB Melo, D Menshikov, A Messina, S Micheletti, MI Middendorf, L Minaya, IA Miramonti, L Mitrica, B Molina-Bueno, L Mollerach, S Montanet, F Morello, C Mostafa, M Moura, CA Muller, G Muller, MA Muller, S Navas, S Necesa, P Nellen, L Nelles, A Neuser, J Nguyen, PH Niculescu-Oglinzanu, M Niechcio, M Niemietz, L Niggemann, T Nitz, D Nosek, D Novotny, V Nozka, L Nunez, LA Ochilo, L Oikonomou, F Olinto, A Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Papenbreer, P Parente, G Parra, A Paul, T Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Petermann, E Peters, C Petrera, S Petrov, Y Phuntsok, J Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirrone, V Platino, M Plum, M Porcelli, A Porowski, C Prado, RR Privitera, R Prouza, M Quel, EJ Querchfeld, S Quinn, S Rautenberg, J Rave, O Ravignani, D Reinert, D Revenu, B Ridky, J Risse, M Ristori, P Rizi, V de Carvalho, WR Rojo, JR Rodriguez-Frias, MD Rogozin, D Rosado, J Roth, M Roulet, E Rovero, AC Saffi, SJ Saftoiu, A Salazar, H Saleh, A Greus, FS Salina, G Gomez, JDS Sanchez, F Sanchez-Lucas, P Santos, EM Santos, E Sarazin, F Sarkar, B Sarmento, R Sarmiento-Cano, C Sato, R Scarso, C Schauer, M Scherini, V Schieler, H Schmidt, D Scholten, O Schoorlemmer, H Schovanek, P Schroder, FG Schulz, A Schulz, J Schumacher, J Sciutto, SJ Segreto, A Settimo, M Shadkam, A Shellard, RC Sig, G Sima, O Smialkowski, A Smida, R Snow, GR Sommers, P Sonntag, S Sorokin, J Squartini, R Srivastava, YN Stanca, D Stanic, S Stapleton, J Stasielak, J Stephan, M Stutz, A Suarez, F Duran, MS Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Taborda, OA Tapia, A Tepe, A Theodoro, VM Timmermans, C Peixoto, CJT Toma, G Tomankova, L Tome, B Tonachini, A Elipe, GT Machado, DT Travnicek, P Trini, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van Aar, G van Bodegom, P van den Berg, AM van Velzen, S van Vliet, A Varela, E Cardenas, BV Varner, G Vasquez, R Vazquez, JR Vazquez, RA Veberie, D Verzi, V Vicha, J Videla, M Villasenor, L Vlcek, B Vorobiov, S Wahlberg, H Wainberg, O Walz, D Watson, AA Weber, M Weidenhaupt, K Weindl, A Werner, F Widom, A Wiencke, L Wilczynski, H Winchen, T Wittkowski, D Wundheiler, B Wykes, S Yang, L Yapici, T Yushkov, A Zas, E Zavrtanik, D Zavrtanik, M Zepeda, A Zimmermann, B Ziolkowski, M Zuccarello, F AF Aab, A. Abreu, P. Aglietta, M. Ahn, E. J. Al Samarai, I. Albuquerque, I. F. M. Allekotte, I. Allison, P. Almela, A. Alvarez Castillo, J. Alvarez-Muniz, J. Batista, R. Alves Ambrosio, M. Aminaei, A. Anastasi, G. A. Anchordoqui, L. Andringa, S. Aramo, C. Arqueros, F. Arsene, N. Asorey, H. Assis, P. Aublin, J. Avila, G. Awal, N. Badescu, A. M. Baus, C. Beatty, J. J. Becker, K. H. Bellido, J. A. Berat, C. Bertaina, M. E. Bertou, X. Biermann, P. L. Billoir, P. Blaess, S. G. Blanco, A. Blanco, M. Blazek, J. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Borodai, N. Brack, J. Brancus, I. Bretz, T. Bridgeman, A. Brogueira, P. Buchholz, P. Bueno, A. Buitink, S. Buscemi, M. Caballero-Mora, K. S. Caccianiga, B. Caccianiga, L. Candusso, M. Caramete, L. Caruso, R. Castellina, A. Cataldi, G. Cazon, L. Cester, R. Chavez, A. G. Chiavassa, A. Chinellato, J. A. Chudoba, J. Cilmo, M. Clay, R. W. Cocciolo, G. Colalillo, R. Coleman, A. Collica, L. Coluccia, M. R. Conceicao, R. Contreras, F. Cooper, M. J. Cordier, A. Coutu, S. Covault, C. E. Cronin, J. Dallier, R. Daniel, B. Dasso, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. de Jong, S. J. De Mauro, G. de Mello Neto, J. R. T. De Mitri, I. de Oliveira, J. de Souza, V. del Pera, L. Deligny, O. Dhita, N. Di Giulio, C. Di Matteot, A. Diaz, J. C. Diaz Castro, M. L. Diogo, F. Dobrigkeit, C. Docters, W. D'Olivo, J. C. Dorofeev, A. Hasankiadeh, Q. Dorosti dos Anjos, R. C. Dova, M. T. Ebr, J. Enge, R. Erdmann, M. Erfani, M. Escobar, C. O. Eser, J. Espadanal, J. Etchegoyeng, A. Falcke, H. Fang, K. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Fick, B. Figueira, J. M. Filevich, A. Filipcic, A. Fratu, O. Freire, M. M. Fujii, T. Garcia, B. Garcia-Gamez, D. Garcia-Pinto, D. Gate, F. Gemmeke, H. Gherghel-Lascu, A. Ghia, P. L. Giaccari, U. Giammarchi, M. Giller, M. Glas, D. Glaser, C. Glass, H. Golup, G. Gomez Berisso, M. Gomez Vitale, P. F. Gonzalez, N. Gookin, B. Gordon, J. Gorgi, A. Gorham, P. Gouffon, P. Griffith, N. Grillo, A. F. Grubb, T. D. Guarino, F. Guedes, G. P. Hampel, M. R. Hansen, P. Harari, D. Harrison, T. A. Hartmann, S. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Heimann, P. Herve, A. E. Hill, G. C. Hojvat, C. Hohon, N. Holt, E. Homola, P. Horandel, J. R. Horvath, P. Hrabovsky, M. Huber, D. Huege, T. Insolia, A. Isar, P. G. Jandt, I. Jansen, S. Jarne, C. Johnsen, J. A. Josebachuili, M. Kaeaepae, A. Kambeitz, O. Kampert, K. H. Kasper, P. Katkov, I. Keilhauer, B. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Krause, R. Krohm, N. Kuempe, D. Mezek, G. Kukec Kunka, N. Awad, A. W. Kuotb LaHurd, D. Lang, A. Latronico, L. Lauer, R. Lauscher, M. Lautridou, P. Le Coz, S. Lebrun, D. Lebrun, P. Leigui de Oliveira, M. A. Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopes, L. Lopez, R. Lopez Casado, A. Louedec, K. Lucero, A. Malacari, M. Mallamaci, M. Maller, J. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, V. Maris, I. C. Marsella, G. Martello, D. Martinez, H. Martinez Bravo, O. Martraire, D. Masias Meza, J. J. Mathes, H. J. Mathys, S. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mayotte, E. Mazur, P. O. Medina, C. Medina-Tanco, G. Meissner, R. Meo, V. B. B. Melo, D. Menshikov, A. Messina, S. Micheletti, M. I. Middendorf, L. Minaya, I. A. Miramonti, L. Mitrica, B. Molina-Bueno, L. Mollerach, S. Montanet, F. Morello, C. Mostafa, M. Moura, C. A. Mueller, G. Muller, M. A. Mueller, S. Navas, S. Necesa, P. Nellen, L. Nelles, A. Neuser, J. Nguyen, P. H. Niculescu-Oglinzanu, M. Niechcio, M. Niemietz, L. Niggemann, T. Nitz, D. Nosek, D. Novotny, V. Nozka, L. Nunez, L. A. Ochilo, L. Oikonomou, F. Olinto, A. Pacheco, N. Pakk Selmi-Dei, D. Palatka, M. Pallotta, J. Papenbreer, P. Parente, G. Parra, A. Paul, T. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Petermann, E. Peters, C. Petrera, S. Petrov, Y. Phuntsok, J. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirrone, V. Platino, M. Plum, M. Porcelli, A. Porowski, C. Prado, R. R. Privitera, R. Prouza, M. Quel, E. J. Querchfeld, S. Quinn, S. Rautenberg, J. Rave, O. Ravignani, D. Reinert, D. Revenu, B. Ridky, J. Risse, M. Ristori, P. Rizi, V. Rodrigues de Carvalho, W. Rodriguez Rojo, J. Rodriguez-Frias, M. D. Rogozin, D. Rosado, J. Roth, M. Roulet, E. Rovero, A. C. Saffi, S. J. Saftoiu, A. Salazar, H. Saleh, A. Greus, F. Salesa Salina, G. Sanabria Gomez, J. D. Sanchez, F. Sanchez-Lucas, P. Santos, E. M. Santos, E. Sarazin, F. Sarkar, B. Sarmento, R. Sarmiento-Cano, C. Sato, R. Scarso, C. Schauer, M. Scherini, V. Schieler, H. Schmidt, D. Scholten, O. Schoorlemmer, H. Schovanek, P. Schroeder, F. G. Schulz, A. Schulz, J. Schumacher, J. Sciutto, S. J. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sig, G. Sima, O. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sonntag, S. Sorokin, J. Squartini, R. Srivastava, Y. N. Stanca, D. Stanic, S. Stapleton, J. Stasielak, J. Stephan, M. Stutz, A. Suarez, F. Suarez Duran, M. Suomijaervi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Taborda, O. A. Tapia, A. Tepe, A. Theodoro, V. M. Timmermans, C. Todero Peixoto, C. J. Toma, G. Tomankova, L. Tome, B. Tonachini, A. Torralba Elipe, G. Torres Machado, D. Travnicek, P. Trini, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van Aar, G. van Bodegom, P. van den Berg, A. M. van Velzen, S. van Vliet, A. Varela, E. Vargas Cardenas, B. Varner, G. Vasquez, R. Vazquez, J. R. Vazquez, R. A. Veberie, D. Verzi, V. Vicha, J. Videla, M. Villasenor, L. Vlcek, B. Vorobiov, S. Wahlberg, H. Wainberg, O. Walz, D. Watson, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Werner, F. Widom, A. Wiencke, L. Wilczynski, H. Winchen, T. Wittkowski, D. Wundheiler, B. Wykes, S. Yang, L. Yapici, T. Yushkov, A. Zas, E. Zavrtanik, D. Zavrtanik, M. Zepeda, A. Zimmermann, B. Ziolkowski, M. Zuccarello, F. CA Pierre Auger Collaboration TI Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Pattern recognition, cluster finding, calibration and fitting methods; Timing detectors; Detector alignment and calibration methods (lasers, sources, particle-beams) AB To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a "beacon transmitter" which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA. C1 [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Roulet, E.; Taborda, O. A.] CNEA UNCuyo CONICET, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Roulet, E.; Taborda, O. A.] CNEA UNCuyo CONICET, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] CITEDEF, Ctr Invest Laseres & Aplicac, Villa Martelli, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] Consejo Nacl Invest Cient & Tecn, Villa Martelli, Argentina. [Dasso, S.; Masias Meza, J. J.; Piegaia, R.; Pieroni, P.] Univ Buenos Aires, Dept Fis, FCEyN, Buenos Aires, DF, Argentina. [Dasso, S.; Masias Meza, J. J.; Piegaia, R.; Pieroni, P.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Dova, M. T.; Hansen, P.; Jarne, C.; Sciutto, S. J.; Wahlberg, H.] Univ Nacl La Plata, IFLP, RA-1900 La Plata, Buenos Aires, Argentina. [Dova, M. T.; Hansen, P.; Jarne, C.; Sciutto, S. J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Dasso, S.; Rovero, A. C.; Supanitsky, A. D.] CONICET UBA, Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina. [Freire, M. M.; Micheletti, M. I.] CONICET UNR, Inst Fis Rosario IFIR, Rosario, Santa Fe, Argentina. [Freire, M. M.; Micheletti, M. I.] UNR, Fac Ciencias Bioquim & Farmaceut, Rosario, Santa Fe, Argentina. [Garcia, B.] UNSAM, CONICET, CNEA, Inst Tecnol Detecc Astroparticulas, Mendoza, Argentina. [Garcia, B.] CONICET CNEA, Univ Tecnol Nacl, Fac Reg Mendoza, Mendoza, Argentina. [Almela, A.; Etchegoyeng, A.; Figueira, J. M.; Filevich, A.; Gonzalez, N.; Hampel, M. R.; Josebachuili, M.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchez, F.; Suarez, F.; Tapia, A.; Videla, M.; Wainberg, O.; Wundheiler, B.] UNSAM, CONICET, CNEA, Inst Tecnol Detecc & Astroparticulas, Buenos Aires, DF, Argentina. [Avila, G.; Contreras, F.; Gomez Vitale, P. F.; Kleinfeller, J.; Rodriguez Rojo, J.; Sato, R.; Scarso, C.; Squartini, R.] Observ Pierre Auger, Malargue, Argentina. [Avila, G.; Gomez Vitale, P. F.] Comis Nacl Energia Atom, Malargue, Argentina. [Almela, A.; Etchegoyeng, A.; Suarez, F.; Wainberg, O.] Univ Tecnol Nacl, Fac Reg Buenos Aires, Buenos Aires, DF, Argentina. [Bellido, J. A.; Blaess, S. G.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Grubb, T. D.; Harrison, T. A.; Hill, G. C.; Malacari, M.; Nguyen, P. H.; Saffi, S. J.; Sorokin, J.; van Bodegom, P.] Univ Adelaide, Adelaide, SA, Australia. [Maurizio, D.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, RJ, Brazil. [Todero Peixoto, C. J.] Univ Sao Paulo, Escola Engn Lorena, Lorena, SP, Brazil. [de Souza, V.; dos Anjos, R. C.; Prado, R. R.] Univ Sao Paulo, Inst Fis Sao Carlos, Sao Carlos, SP, Brazil. [Albuquerque, I. F. M.; Gouffon, P.; Santos, E. M.] Univ Sao Paulo, Inst Fis, CP 20516, BR-01498 Sao Paulo, SP, Brazil. [Chinellato, J. A.; Daniel, B.; Diaz Castro, M. L.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Pakk Selmi-Dei, D.; Santos, E.; Theodoro, V. M.] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira De Santana, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Muller, M. A.] Univ Fed Pelotas, Pelotas, RS, Brazil. [Leigui de Oliveira, M. A.; Moura, C. A.] Univ Fed ABC, Santo Andre, SP, Brazil. [Bonifazi, C.; de Mello Neto, J. R. T.; Giaccari, U.; Melo, D.; Torres Machado, D.; Vasquez, R.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, RJ, Brazil. [de Almeida, R. M.; de Oliveira, J.] Univ Fed Fluminense, EEIMVR, Volta Redonda, RJ, Brazil. [Asorey, H.; Nunez, L. A.; Sanabria Gomez, J. D.; Sarmiento-Cano, C.; Suarez Duran, M.] Univ Ind Santander, Bucaramanga, Colombia. [Nosek, D.; Novotny, V.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Blazek, J.; Bohacova, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Mandat, D.; Necesa, P.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovanek, P.; Travnicek, P.; Vicha, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Horvath, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Al Samarai, I.; Deligny, O.; Lhenry-Yvon, I.; Martraire, D.; Suomijaervi, T.] Univ Paris 11, CNRS, IN2P3, Inst Phys Nucl Orsay, F-91405 Orsay, France. [Cordier, A.; Garcia-Gamez, D.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Ghia, P. L.; Letessier-Selvon, A.; Settimo, M.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, Paris, France. [Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Ghia, P. L.; Letessier-Selvon, A.; Settimo, M.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Berat, C.; Le Coz, S.; Lebrun, D.; Louedec, K.; Montanet, F.; Stutz, A.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [Dallier, R.] Observ Paris, CNRS, INSU, Stn Radioastron Nancay, Nancay, France. [Dallier, R.; Gate, F.; Lautridou, P.; Maller, J.; Marin, V.; Rave, O.; Revenu, B.] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, Nantes, France. [Becker, K. H.; Homola, P.; Jandt, I.; Kaeaepae, A.; Kampert, K. H.; Krohm, N.; Mathys, S.; Neuser, J.; Niemietz, L.; Papenbreer, P.; Querchfeld, S.; Rautenberg, J.; Sarkar, B.; Schauer, M.; Winchen, T.; Wittkowski, D.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Baus, C.; Bluemer, H.; Eser, J.; Huber, D.; Kambeitz, O.; Katkov, I.; Lang, A.; Link, K.; Werner, F.] Karlsruhe Inst Technol, Inst Expt Kernphys IEKP, Campus South, D-76021 Karlsruhe, Germany. [Bluemer, H.; Bridgeman, A.; Daumiller, K.; Hasankiadeh, Q. Dorosti; Enge, R.; Haungs, A.; Heck, D.; Herve, A. E.; Holt, E.; Huege, T.; Keilhauer, B.; Klages, H. O.; Awad, A. W. Kuotb; Mathes, H. J.; Mueller, S.; Pierog, T.; Porcelli, A.; Rogozin, D.; Roth, M.; Schieler, H.; Schmidt, D.; Schroeder, F. G.; Schulz, A.; Smida, R.; Tomankova, L.; Ulrich, R.; Unger, M.; Veberie, D.; Weindl, A.] Karlsruhe Inst Technol, Inst Kernphys IKP, Campus North, D-76021 Karlsruhe, Germany. [Gemmeke, H.; Kleifges, M.; Kunka, N.; Menshikov, A.; Weber, M.; Zimmermann, B.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elekt IEKP, Campus North, D-76021 Karlsruhe, Germany. [Biermann, P. L.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Bretz, T.; Erdmann, M.; Glaser, C.; Hartmann, S.; Hebbeker, T.; Krause, R.; Kuempe, D.; Lauscher, M.; Meissner, R.; Middendorf, L.; Mueller, G.; Niggemann, T.; Peters, C.; Plum, M.; Reinert, D.; Schumacher, J.; Stephan, M.; Urban, M.; Walz, D.; Weidenhaupt, K.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Batista, R. Alves; Sig, G.; van Vliet, A.] Univ Hamburg, Inst Theoret Phys 2, Luruper Chaussee 149, Hamburg, Germany. [Aab, A.; Buchholz, P.; Erfani, M.; Heimann, P.; Niechcio, M.; Ochilo, L.; Risse, M.; Sonntag, S.; Tepe, A.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys Expt Teilchenphys 7, D-57068 Siegen, Germany. [Caccianiga, B.; Giammarchi, M.; Mallamaci, M.; Miramonti, L.] Univ Milan, Milan, Italy. [Caccianiga, B.; Giammarchi, M.; Mallamaci, M.; Miramonti, L.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Candusso, M.; Di Giulio, C.; Matthiae, G.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Anastasi, G. A.; Caruso, R.; Insolia, A.; Pirrone, V.; Zuccarello, F.] Univ Catania, Catania, Italy. [Anastasi, G. A.; Caruso, R.; Insolia, A.; Pirrone, V.; Zuccarello, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Cester, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Cester, R.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Bleve, C.; Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Lecce, Italy. [Bleve, C.; Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Di Matteot, A.; Petrera, S.; Rizi, V.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy. [Di Matteot, A.; Petrera, S.; Rizi, V.] Sezione Ist Nazl Fis Nucl, Laquila, Italy. [Petrera, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Laquila, Italy. [Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Bonifazi, C.; Grillo, A. F.] Ist Nazl Fis Nucl, Lab Naz Gran Sasso, Assergi, Laquila, Italy. [Aglietta, M.; Castellina, A.; Gorgi, A.; Morello, C.] Osservatorio Astrofis Torino, INAF, Turin, Italy. [Aglietta, M.; Bertaina, M. E.; Castellina, A.; Chiavassa, A.; Collica, L.; Gorgi, A.; Latronico, L.; Morello, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Bertaina, M. E.; Chiavassa, A.] Univ Turin, Turin, Italy. [Lopez, R.; Martinez Bravo, O.; Parra, A.; Salazar, H.; Varela, E.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Martinez, H.; Zepeda, A.] CINVESTAV, IPN, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico. [Pelayo, R.] Inst Politecn Nacl, Unidad Profes Interdisciplinaria Ingn & Tecnol Av, Mexico City, DF, Mexico. [Caballero-Mora, K. S.] Univ Autonoma Chiapas, Tuxtla Gutierrez, Chiapas, Mexico. [Chavez, A. G.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Alvarez Castillo, J.; D'Olivo, J. C.; Medina-Tanco, G.; Nellen, L.; Valdes Galicia, J. F.; Vargas Cardenas, B.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Aminaei, A.; Buitink, S.; de Jong, S. J.; De Mauro, G.; Falcke, H.; Horandel, J. R.; Jansen, S.; Nelles, A.; Schulz, J.; Timmermans, C.; van Aar, G.; van Velzen, S.; Wykes, S.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Docters, W.; Messina, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, KVI Ctr Adv Radiat Technol, Groningen, Netherlands. [de Jong, S. J.; Falcke, H.; Horandel, J. R.; Jansen, S.; Nelles, A.; Timmermans, C.] Nikhef, Sci Pk, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Pekala, J.; Porowski, C.; Stasielak, J.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Glas, D.; Smialkowski, A.; Szadkowski, Z.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Blanco, A.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Lopes, L.; Pimenta, M.; Sarmento, R.; Tome, B.] Univ Lisbon, Lab Instrumentacao & Fis Expt Particulas LIP, P-1699 Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Blanco, A.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Lopes, L.; Pimenta, M.; Sarmento, R.; Tome, B.] Univ Lisbon, Inst Super Tecn, P-1699 Lisbon, Portugal. [Brancus, I.; Gherghel-Lascu, A.; Mitrica, B.; Niculescu-Oglinzanu, M.; Saftoiu, A.; Stanca, D.; Toma, G.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania. [Caramete, L.; Isar, P. G.] Inst Space Sci, Bucharest, Romania. [Arsene, N.; Sima, O.] Univ Bucharest, Dept Phys, Bucharest, Romania. [Badescu, A. M.; Fratu, O.] Univ Politehn Bucuresti, Bucharest, Romania. [Filipcic, A.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Expt Particle Phys Dept, Ljubljana, Slovenia. [Filipcic, A.; Mezek, G. Kukec; Saleh, A.; Stanic, S.; Trini, M.; Vorobiov, S.; Yang, L.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Arqueros, F.; Garcia-Pinto, D.; Minaya, I. A.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [del Pera, L.; Pacheco, N.; Rodriguez-Frias, M. D.; Vlcek, B.] Univ Alcala de Henares, Madrid, Spain. [Bueno, A.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.] Univ Granada, Granada, Spain. [Bueno, A.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Lopez Casado, A.; Parente, G.; Rodrigues de Carvalho, W.; Torralba Elipe, G.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Covault, C. E.; Ferguson, A. P.; LaHurd, D.; Quinn, S.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Johnsen, J. A.; Medina, C.; Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Brack, J.; Dorofeev, A.; Gookin, B.; Harton, J. L.; Petrov, Y.] Colorado State Univ, Ft Collins, CO 80523 USA. [Anchordoqui, L.; Paul, T.] CUNY Herbert H Lehman Coll, Dept Phys & Astron, Bronx, NY 10468 USA. [Ahn, E. J.; Escobar, C. O.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Matthews, J.; Shadkam, A.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Dhita, N.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.; Yapici, T.] Michigan Technol Univ, Houghton, MI 49931 USA. [Awal, N.; Farrar, G.; Unger, M.] NYU, New York, NY USA. [Paul, T.; Srivastava, Y. N.; Swain, J.; Widom, A.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Beatty, J. J.; Gordon, J.; Griffith, N.; Stapleton, J.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Coleman, A.; Coutu, S.; Mostafa, M.; Oikonomou, F.; Phuntsok, J.; Greus, F. Salesa; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA. [Cronin, J.; Fang, K.; Fujii, T.; Olinto, A.; Privitera, R.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Gorham, P.; Schoorlemmer, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Lauer, R.; Matthews, J. A. J.] Univ New Mexico, Albuquerque, NM 87131 USA. [Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England. [Scholten, O.] Vrije Univ Brussels, Brussels, Belgium. RP Aab, A (reprint author), Univ Siegen, Fachbereich Phys Expt Teilchenphys 7, D-57068 Siegen, Germany. EM auger_spokespersons@fnal.gov RI Fauth, Anderson/F-9570-2012; Abreu, Pedro/L-2220-2014; Assis, Pedro/D-9062-2013; Navas, Sergio/N-4649-2014; Arqueros, Fernando/K-9460-2014; Cazon, Lorenzo/G-6921-2014; Conceicao, Ruben/L-2971-2014; Bueno, Antonio/F-3875-2015; Beatty, James/D-9310-2011; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; de Mello Neto, Joao/C-5822-2013; Gouffon, Philippe/I-4549-2012; Badescu, Alina/B-6087-2012; Rosado, Jaime/K-9109-2014; zas, enrique/I-5556-2015; Chinellato, Jose Augusto/I-7972-2012; Caramete, Laurentiu/C-2328-2011; Chinellato, Carola Dobrigkeit /F-2540-2011; Brogueira, Pedro/K-3868-2012; Moura Santos, Edivaldo/K-5313-2016; Tome, Bernardo/J-4410-2013; Alvarez-Muniz, Jaime/H-1857-2015; Ridky, Jan/H-6184-2014; Pimenta, Mario/M-1741-2013; de souza, Vitor/D-1381-2012; Guarino, Fausto/I-3166-2012; Zuccarello, Francesca/R-1834-2016; Colalillo, Roberta/R-5088-2016; Buscemi, Mario/R-5071-2016; Valino, Ines/J-8324-2012; Horvath, Pavel/G-6334-2014; De Mitri, Ivan/C-1728-2017; Mitrica, Bogdan/D-5201-2009; Alves Batista, Rafael/K-6642-2012; Nosek, Dalibor/F-1129-2017 OI Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Fauth, Anderson/0000-0001-7239-0288; Abreu, Pedro/0000-0002-9973-7314; Assis, Pedro/0000-0001-7765-3606; Navas, Sergio/0000-0003-1688-5758; Arqueros, Fernando/0000-0002-4930-9282; Cazon, Lorenzo/0000-0001-6748-8395; Conceicao, Ruben/0000-0003-4945-5340; Bueno, Antonio/0000-0002-7439-4247; Beatty, James/0000-0003-0481-4952; de Mello Neto, Joao/0000-0002-3234-6634; Gouffon, Philippe/0000-0001-7511-4115; Rosado, Jaime/0000-0001-8208-9480; zas, enrique/0000-0002-4430-8117; Chinellato, Jose Augusto/0000-0002-3240-6270; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Brogueira, Pedro/0000-0001-6069-4073; Moura Santos, Edivaldo/0000-0002-2818-8813; Tome, Bernardo/0000-0002-7564-8392; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Novotny, Vladimir/0000-0002-4319-4541; Garcia, Beatriz/0000-0003-0919-2734; Nunez, Luis/0000-0003-4575-5899; Ridky, Jan/0000-0001-6697-1393; Pimenta, Mario/0000-0002-2590-0908; Rizi, Vincenzo/0000-0002-5277-6527; Garcia Pinto, Diego/0000-0003-1348-6735; Guarino, Fausto/0000-0003-1427-9885; Zuccarello, Francesca/0000-0003-1853-2550; Colalillo, Roberta/0000-0002-4179-9352; Buscemi, Mario/0000-0003-2123-5434; Valino, Ines/0000-0001-7823-0154; Horvath, Pavel/0000-0002-6710-5339; De Mitri, Ivan/0000-0002-8665-1730; Alves Batista, Rafael/0000-0003-2656-064X; Nosek, Dalibor/0000-0001-6219-200X FU Comision Nacional de Energia Atomica, Argentina; Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Argentina; Gobierno de la Provincia de Mendoza, Argentina; Municipalidad de Malargue, Argentina; NDM Holdings, Argentina; Valle Las Lenas, Argentina; Australian Research Council [DP150101622]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil; Financiadora de Estudos e Projetos (FINEP), Brazil; Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Brazil; Sao Paulo Research Foundation (FAPESP), Brazil [2010/07359-6, 1999/05404-3]; Ministerio de Ciencia e Tecnologia (MCT), Brazil; Czech Science Foundation, Czech Republic [14-17501S]; Centre de Calcul IN2P3/CNRS, France; Centre National de la Recherche Scientifique (CNRS), France; Conseil Regional Ile-de-France, France; Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), France; Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Institut Lagrange de Paris (ILP) within the Investissements d'Avenir Programme, France [LABEX ANR-10-LABX-63, ANR-11-IDEX-0004-02]; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Deutsche Forschungsgemeinschaft (DFG), Germany; Finanzministerium Baden-Wurttemberg, Germany; Helmholtz Alliance for Astroparticle Physics (HAP), Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Germany; Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Germany; Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Istituto Nazionale di Astrofisica (INAF), Italy; Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Gran Sasso Center for Astroparticle Physics (CFA), Italy; CETEMPS Center of Excellence, Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Netherlands; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Poland [ERA-NET-ASPERA/01/11, ERA-NET-ASPERA/02/11]; National Science Centre, Poland [2013/08/M/ST9/00322, 2013/08/M/ST9/00728, HARMONIA 5 - 2013/10/M/ST9/00062]; Portuguese national funds, Portugal; FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects, Romania [20/2012, 194/2012, 1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, PN-II-RU-PD-2011-3-0062]; Minister of National Education, Programme Space Technology and Advanced Research (STAR), Romania [83/2013]; Slovenian Research Agency, Slovenia; Comunidad de Madrid, Spain; FEDER funds, Spain; Ministerio de Educacion y Ciencia, Spain; Xunta de Galicia, Spain; European Community 7th Framework Program, Spain [FP7-PEOPLE-2012-IEF-328826]; Science and Technology Facilities Council, United Kingdom; Department of Energy, U.S.A. [DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107, DE-SC0011689]; National Science Foundation, U.S.A. [0450696]; Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program [PIRSES-2009-GA-246806]; UNESCO; [MSMT-CR LG13007]; [7AMB14AR005] FX The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support:; Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council (DP150101622); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6 and No. 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; Grant No. MSMT-CR LG13007, No. 7AMB14AR005, and the Czech Science Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63, within the Investissements d'Avenir Programme Grant No. ANR-11-IDEX-0004-02, France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5 - 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects Grants No. 20/2012 and No. 194/2012, Grants No. 1/ASPERA2/2012 ERA-NET, No. PN-II-RU-PD-2011-3-0145-17 and No. PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme Space Technology and Advanced Research (STAR), Grant No. 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689, National Science Foundation, Grant No. 0450696, The Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO. NR 21 TC 2 Z9 2 U1 12 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR P01018 DI 10.1088/1748-0221/11/01/P01018 PG 31 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800106 ER PT J AU Abir, MI Islam, FF Craft, A Williams, WJ Wachs, DM Chichester, DL Meyer, MK Lee, HK AF Abir, M. I. Islam, F. F. Craft, A. Williams, W. J. Wachs, D. M. Chichester, D. L. Meyer, M. K. Lee, H. K. TI Determination of optimal imaging parameters for the reconstruction of a nuclear fuel assembly using limited angle neutron tomography SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT International Workshop on Imaging CY SEP 07-10, 2015 CL Varenna, ITALY DE Image reconstruction in medical imaging; Inspection with neutrons; Neutron radiography ID TOMOSYNTHESIS; REMOVAL; CT AB The core components of nuclear reactors (e.g., fuel assemblies, spacer grids, control rods) encounter harsh environments due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of nuclear power plants; post-irradiation examination (PIE) can reveal information about the integrity of these components. Neutron computed tomography (CT) is one important PIE measurement tool for nondestructively evaluating the structural integrity of these items. CT typically requires many projections to be acquired from different view angles, after which a mathematical algorithm is used for image reconstruction. However, when working with heavily irradiated materials and irradiated nuclear fuel, obtaining many projections is laborious and expensive. Image reconstruction from a smaller number of projections has been explored to achieve faster and more cost-efficient PIE. Classical reconstruction methods (e.g., filtered backprojection), unfortunately, do not typically offer stable reconstructions from a highly asymmetric, few-projection data set and often create severe streaking artifacts. We propose an iterative reconstruction technique to reconstruct curved, plate-type nuclear fuel assemblies using limited-angle CT. The performance of the proposed method is assessed using simulated data and validated through real projections. We also discuss the systematic strategy for establishing the conditions of reconstructions and finding the optimal imaging parameters for reconstructions of the fuel assemblies from few projections using limited-angle CT. Results show that a fuel assembly can be reconstructed using limited-angle CT if 36 or more projections are taken from a particular direction with 1 degrees angular increment. C1 [Abir, M. I.; Craft, A.; Williams, W. J.; Wachs, D. M.; Chichester, D. L.; Meyer, M. K.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. [Islam, F. F.; Lee, H. K.] Missouri Univ Sci & Technol, Dept Min & Nucl Engn, 301 W 14th St, Rolla, MO 65409 USA. RP Abir, MI (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM muhammad.abir@inl.gov RI Craft, Aaron/B-7579-2017 OI Craft, Aaron/0000-0002-7092-3826 NR 17 TC 0 Z9 0 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01016 DI 10.1088/1748-0221/11/01/C01016 PG 17 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800016 ER PT J AU Anderson, J Borga, A Boterenbrood, H Chen, H Chen, K Drake, G Donszelmann, M Francis, D Gorini, B Lanni, F Miotto, GL Levinson, L Narevicius, J Roich, A Ryu, S Schreuder, F Schumacher, J Vandelli, W Vermeulen, J Wu, W Zhang, J AF Anderson, J. Borga, A. Boterenbrood, H. Chen, H. Chen, K. Drake, G. Donszelmann, M. Francis, D. Gorini, B. Lanni, F. Miotto, G. Lehmann Levinson, L. Narevicius, J. Roich, A. Ryu, S. Schreuder, F. Schumacher, J. Vandelli, W. Vermeulen, J. Wu, W. Zhang, J. TI A new approach to front-end electronics interfacing in the ATLAS experiment SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Data acquisition circuits; Data acquisition concepts AB For new detector and trigger systems to be installed in the ATLAS experiment after LHC Run 2, a new approach will be followed for Front-End electronics interfacing. The FELIX (Front-End LInk eXchange) system will function as gateway connecting: on one side to detector and trigger electronics links, as well as providing timing and trigger information; and on the other side a commodity switched network built using standard technology (either Ethernet or Infiniband). The new approach is described in this paper, and results achieved so far are presented. C1 [Anderson, J.; Drake, G.; Ryu, S.; Zhang, J.] Argonne Natl Lab, 9700 South Cass Ave B109, Lemont, IL 60439 USA. [Chen, H.; Chen, K.; Lanni, F.; Wu, W.] Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. [Francis, D.; Gorini, B.; Miotto, G. Lehmann; Schumacher, J.; Vandelli, W.] CERN, CH-1211 Geneva 23, Switzerland. [Borga, A.; Boterenbrood, H.; Schreuder, F.; Vermeulen, J.] Univ Amsterdam, Nikhef Natl Inst Subatom Phys, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands. [Schumacher, J.] Univ Paderborn, Dept Comp Sci, Pohlweg 47, D-33098 Paderborn, Germany. [Levinson, L.; Narevicius, J.; Roich, A.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Donszelmann, M.] Radboud Univ Nijmegen, Comeniuslaan 4, NL-6525 HP Nijmegen, Netherlands. RP Borga, A (reprint author), Univ Amsterdam, Nikhef Natl Inst Subatom Phys, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands. EM andrea.borga@nikhef.nl NR 2 TC 3 Z9 3 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01055 DI 10.1088/1748-0221/11/01/C01055 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800055 ER PT J AU Bartoldus, R Claus, R Garelli, N Herbst, RT Huffer, M Lakovidis, G Iordanidou, K Kwan, K Kocian, M Lankford, AJ Moschovakos, P Nelson, A Ntekas, K Ruckman, L Russell, J Schernau, M Schlenker, S Su, D Valderanis, C Wittgen, M Yildiz, SC AF Bartoldus, R. Claus, R. Garelli, N. Herbst, R. T. Huffer, M. Lakovidis, G. Iordanidou, K. Kwan, K. Kocian, M. Lankford, A. J. Moschovakos, P. Nelson, A. Ntekas, K. Ruckman, L. Russell, J. Schernau, M. Schlenker, S. Su, D. Valderanis, C. Wittgen, M. Yildiz, S. C. TI A new ATLAS muon CSC readout system with system on chip technology on ATCA platform SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Electronic detector readout concepts (gas, liquid); Modular electronics; Data acquisition concepts AB The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2. C1 [Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Kocian, M.; Ruckman, L.; Russell, J.; Su, D.; Wittgen, M.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Lakovidis, G.; Iordanidou, K.; Moschovakos, P.; Ntekas, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Iordanidou, K.] Univ Athens, GR-10679 Athens, Greece. [Kwan, K.] Chinese Univ Hong Kong, Hong Kong, Peoples R China. [Lankford, A. J.; Nelson, A.; Schernau, M.; Yildiz, S. C.] Univ Calif Irvine, Irvine, CA 92697 USA. [Moschovakos, P.; Ntekas, K.] Natl Tech Univ Athens, Athens 15973, Greece. [Schlenker, S.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Valderanis, C.] Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany. [Iordanidou, K.] Columbia Univ, Nevis Lab, Irvington, NY USA. RP Yildiz, SC (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. EM cenk.yildiz@cern.ch NR 6 TC 0 Z9 0 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01059 DI 10.1088/1748-0221/11/01/C01059 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800059 ER PT J AU Fernandez-Martinez, P Ullan, M Flores, D Hidalgo, S Quirion, D Lynn, D AF Fernandez-Martinez, P. Ullan, M. Flores, D. Hidalgo, S. Quirion, D. Lynn, D. TI Rad-hard vertical JFET switch for the HV-MUX system of the ATLAS upgrade Inner Tracker SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Radiation-hard electronics; Voltage distributions; Large detector systems for particle and astroparticle physics ID SIMULATION; DETECTORS AB This work presents a new silicon vertical JFET (V-JFET) device, based on the trenched 3D-detector technology developed at IMB-CNM, to be used as a switch for the High-Voltage powering scheme of the ATLAS upgrade Inner Tracker. The optimization of the device characteristics is performed by 2D and 3D TCAD simulations. Special attention has been paid to the on-resistance and the switch-off and breakdown voltages to meet the specific requirements of the system. In addition, a set of parameter values has been extracted from the simulated curves to implement a SPICE model of the proposed V-JFET transistor. As these devices are expected to operate under very high radiation conditions during the whole experiment life-time, a study of the radiation damage effects and the expected degradation of the device performance is also presented at the end of the paper. C1 [Fernandez-Martinez, P.; Ullan, M.; Flores, D.; Hidalgo, S.; Quirion, D.] CSIC, IMB CNM, Inst Microelect Barcelona, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Lynn, D.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Fernandez-Martinez, P (reprint author), CSIC, IMB CNM, Inst Microelect Barcelona, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. EM pablo.fernandez@csic.es RI Hidalgo, Salvador/B-2649-2012; OI Hidalgo, Salvador/0000-0002-8070-3499; Quirion, David/0000-0002-5309-0535 NR 9 TC 1 Z9 1 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01043 DI 10.1088/1748-0221/11/01/C01043 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800043 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Flechl, M Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Knunz, V Konig, A Krammer, M Kratschmer, I Liko, D Matsushita, T Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schieckl, J Schofbeck, R Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Lauwers, J Luyckx, S Ochesanu, S Rougny, R Van de Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N De Bruyn, I Deroover, K Heracleous, N Keaveney, J Lowette, S Moreels, L Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Van Parijs, I Barria, P Brun, H Caillol, C Clerbaux, B De Lentdecker, G Delannoy, H Fasanella, G Favart, L Gay, APR Grebenyuk, A Karapostoli, G Lenzi, T Leonard, A Maerschalk, T Marinov, A Pernie, L Randle-Conde, A Reis, T Seva, T Velde, CV Vanlaer, P Yonamine, R Zenoni, F Zhang, F Beernaert, K Benucci, L Cimmino, A Crucy, S Dobur, D Fagot, A Garcia, G Gul, M Mccartin, J Rios, AAO Poyraz, D Ryckbosch, D Salva, S Sigamani, M Strobbe, N Tytgat, M Van Driessche, W Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bondu, O Brochet, S Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Mertens, A Nuttens, C Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Belly, N Hammad, GH Alda, WL Alves, GA Brito, L Martins, MC Hamer, M Hensel, C Herrera, CM Moraes, A Pol, ME Teles, PR Das Chagas, EBB Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Guativa, LMH Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Ahuja, S Bernardes, CA Santos, AD Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Moon, CS Novaes, SF Padula, SS Abad, DR Vargas, JCR Aleksandrov, A Hadjiiska, R Iaydjiev, P Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Ahmad, M Bian, JG Chen, GM Chen, HS Chen, M Cheng, T Du, R Jiang, CH Plestina, R Romeo, F Shaheen, SM Tao, J Wang, C Wang, Z Zhang, H Asawatangtrakuldee, C Ban, Y Li, Q Liu, S Mao, Y Qian, SJ Wang, D Xu, Z Zou, W Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Puljak, I Cipriano, PMR Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Micanovic, S Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Bodlak, M Finger, M Finger, M Abdelalim, AA Awad, A El Sawy, M Mahrous, A Mohammed, Y Radi, A Calpas, B Kadastik, M Murumaa, M Raidal, M Tiko, A Veelken, C Eerola, P Pekkanen, J Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Machet, M Malcles, J Rander, J Rosowsky, A Titov, M Zghiche, A Antropov, I Baffioni, S Beaudette, F Busson, P Cadamuro, L Chapon, E Charlot, C Dahms, T Davignon, O Filipovic, N Florent, A de Cassagnac, RG Lisniak, S Mastrolorenzo, L Mine, P Naranjo, IN Nguyen, M Ochando, C Ortona, G Paganini, P Pigard, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Strebler, T Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Buttignol, M Chabert, EC Chanon, N Collard, C Conte, E Coubez, X Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Merlin, JA Skovpen, K Van Hove, P Gadrat, S Beauceron, S Bernet, C Boudoul, G Bouvier, E Montoya, CAC Chierici, R Contardo, D Courbon, B Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Lagarde, F Laktineh, IB Lethuillier, M Mirabito, L Pequegnot, AL Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Donckt, MV Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Edelhoff, M Feld, L Heister, A Kiesel, MK Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Schael, S Schulte, JF Verlage, T Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Endres, M Erdmann, M Erdweg, S Esch, T Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Pook, T Radziej, M Reithler, H Rieger, M Scheuch, F Sonnenschein, L Teyssier, D Thuer, S Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Hoehle, F Kargoll, B Kress, T Kuessel, Y Khunsken, A Lingemann, J Nehrkorn, A Nowack, A Nugent, IM Pistone, C Pooth, O Stahl, A Martin, MA Asin, I Bartosik, N Behnke, O Behrens, U Bell, AJ Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dolinska, G Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Gallo, E Garcia, JG Geiser, A Gizhko, A Gunnellini, P Hauk, J Hempel, M Jung, H Kalogeropoulos, A Karacheban, O Kasemann, M Katsas, P Kieseler, J Kleinwort, C Korol, I Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Roland, B Sahin, MO Saxena, P Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trippkewitz, KD Walsh, R Wissing, C Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gonzalez, D Gorner, M Haller, J Hoffmann, M Hoing, RS Junkes, A Klanner, R Kogler, R Lapsien, T Lenz, T Marchesini, I Marconi, D Meyer, M Nowatschin, D Ott, J Pantaleo, F Peiffer, T Perieanu, A Pietsch, N Poehlsen, J Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schwandt, J Seidel, M Sola, V Stadie, H Steinbruck, G Tholen, H Troendle, D Usai, E Vanelderen, L Vanhoefer, A Vormwald, B Akbiyik, M Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T Colombo, F De Boer, W Descroix, A Dierlamm, A Fink, S Frensch, F Giffels, M Gilbert, A Hartmann, F Heindl, SM Husemann, U Katkov, I Kornmayer, A Pardo, PL Maier, B Mildner, H Mozer, MU Muller, T Muller, T Plagge, M Quast, G Rabbertz, K Rocker, S Roscher, F Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weber, M Weiler, T Wohrmann, C Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Tziaferi, E Evangelou, I Flouris, G Foudas, C Kokkas, P Loukas, N Manthos, N Papadopoulos, I Paradas, E Strologas, J Bencze, G Hajdu, C Hazi, A Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Szillasi, Z Bartok, M Makovec, A Raics, P Trocsanyi, ZL Ujvari, B Mal, P Mandal, K Sahoo, N Swain, SK Bansal, S Beni, SB Bhatnagar, V Chawla, R Gupta, R Bhawandeep, U Kalsi, AK Kaur, A Kaur, M Kumar, R Mehta, A Mittal, M Singh, JB Walia, G Kumar, A Bhardwaj, A Choudhary, BC Garg, RB Kumar, A Malhotra, S Naimuddin, M Nishu, N Ranjan, K Sharma, R Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dey, S Dutta, S Jain, S Majumdar, N Modak, A Mondal, K Mukherjee, S Mukhopadhyay, S Roy, A Roy, D Chowdhury, SR Sarkar, S Sharan, M Abdulsalam, A Chudasama, R Dutta, D Jha, V Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Mahakud, B Maity, M Majumder, G Mazumdar, K Mitra, S Mohanty, GB Parida, B Sarkar, T Sudhakar, K Sur, N Sutar, B Wickramage, N Chauhan, S Dube, S Sharma, S Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Caputo, C Colaleo, A Creanza, D Cristella, L De Filippis, N De Palma, M Fiore, L Iaseili, G Maggi, G Maggi, M Miniello, G My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Ranieri, A Selvaggi, G Silvestris, L Venditti, R Verwilligen, P Abbiendi, G Battilana, C Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Chhibra, SS Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Viliani, L Benussi, L Bianco, S Fabbri, F Piccolo, D Primavera, F Calvelli, V Ferro, F Lo Vetere, M Monge, MR Robutti, E Tosi, S Brianza, L Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, R Malvezzi, S Manzoni, RA Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Esposito, M Fabozzi, F Iorio, AOM Lanza, G Lista, L Meola, S Merola, M Paolucci, P Sciacca, C Thyssen, F Azzi, P Bacchetta, N Bellato, M Benato, L Boletti, A Branca, A Osso, MD Dorigo, T Dosselli, U Fanzago, F Gozzelino, A Gulmini, M Lacaprara, S Margoni, M Meneguzzo, BT Montecassiano, F Passaseo, M Pazzini, J Pegoraro, M Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Ventura, S Zanetti, M Zotto, P Zucchetta, A Braghieri, A Magnani, A Montagna, P Raffi, SP Re, V Rieeardi, C Salvini, P Vai, I Vitulo, R Solestizi, LA Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fedi, G Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Gelli, S Jorda, C Longo, E Margaroli, F Meridiani, P Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Costa, M Covarelli, R Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Maco, V Monteil, E Musich, M Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Ravera, F Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Zanetti, A Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Sakharov, A Son, DC Cifuentes, JAB Kim, H Kim, TJ Ryu, MS Song, S Choi, S Go, Y Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, K Lee, KS Lee, S Park, SK Roh, Y Yoo, HD Choi, M Kim, H Kim, JH Lee, JSH Park, IC Ryu, G Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Yu, I Juodagalvis, A Vaitkus, J Ahmed, I Ibrahim, ZA Komaragiri, JR Ali, MABM Idris, FM Abdullah, WATW Yusli, MN Linares, EC Castilla-Valdez, H De la Cruz-Burelo, E Heredia-de la Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Pineda, AM Krofcheck, D Butler, PH Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Khurshid, T Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Silva, CBDE Di Francesco, A Faccioli, P Parracho, PGF Gallinaro, M Leonardo, N Iglesias, LL Nguyen, F Antunes, JR Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Laney, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Vlasov, E Zhokin, A Bylinkin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Baskakov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Myagkov, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, JA Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Cuevas, J Menendez, JF Folgueras, S Caballero, IG Cortezon, EP Garcia, JMV Cabrillo, IJ Calderon, A De Saa, JRC Manzano, PDC Campderros, JD Fernandez, M Garcia-Ferrero, J Gomez, G Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Berruti, GM Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dorney, B du Pree, T Dunser, M Dupont, N Elliott-Peisert, A Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Harris, P Hegeman, J Innocente, V Janot, P Kirschenmann, H Kortelainen, MJ Kousouris, K Krajczar, K Lecoq, P Lourenco, C Lucchini, MT Magini, N Malgeri, L Mannelli, M Martelli, A Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Nemallapudi, MV Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Peruzzi, M Petrilli, A Petrucciani, G Pfeiffer, A Piparo, D Racz, A Rolandi, G Rovere, M Ruan, M Sakulin, H Schafer, C Schwick, C Sharma, A Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Triossi, A Tsirou, A Veres, GI Wardle, N Wohri, HK Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Buchmann, MA Casal, B Dissertori, G Dittmar, M Donega, M Eller, P Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lustermann, W Mangano, B Marionneau, M del Arbol, PMR Masciovecchio, M Meister, D Micheli, F Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrozzi, L Quittnat, M Rossini, M Starodumov, A Takahashi, M Tavolaro, VR Theofilatos, K Wallny, R Aarrestad, TK Amsler, C Caminada, L Canelli, MF Chiochia, V De Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Lange, C Ngadiuba, J Pinna, D Robmann, P Ronga, FJ Salerno, D Yang, Y Cardaci, M Chen, KH Doan, TH Jain, S Khurana, R Konyushikhin, M Kuo, CM Lin, W Lu, YJ Yu, SS Kumar, A Bartek, R Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Fiori, F Grundler, U Hou, WS Hsiung, Y Liu, YF Lu, RS Moya, MM Petrakou, E Tsai, JF Tzeng, YM Asavapibhop, B Kovitanggoon, K Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Cerci, S Demiroglu, ZS Dozen, C Dumanoglu, I Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Tai, B Topakli, H Vergili, M Zorbilmez, C Akin, IV Bilin, B Bilmis, S Isildak, B Karapinar, G Yalvac, M Zeyrek, M Albayrak, EA Gulmez, E Kaya, M Kaya, O Yetkin, T Cankocak, K Sen, S Vardarli, FI Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, JJ Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Sakuma, T El Nasr-Storey, SS Senkin, S Smith, D Smith, VJ Bell, KW Belyaev, A Brew, C Brown, RM Cieri, D Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Thomas, L Tomalin, IR Williams, T Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Casasso, S Citron, M Colling, D Corpe, L Cripps, N Dauncey, P Davies, G De Wit, A Della Negra, M Dunne, P Elwood, A Ferguson, W Fulcher, J Futyan, D Hall, G Iles, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Richards, A Rose, A Seez, C Tapper, A Uchida, K Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Borzou, A Call, K Dittmann, J Hatakeyama, K Kasmi, A Liu, H Pastika, N Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Gastler, D Lawson, P Rankin, D Richardson, C Rohlf, J St John, J Sulak, L Zou, D Alimena, J Berry, E Bhattacharya, S Cutts, D Dhingra, N Ferapontov, A Garabedian, A Hakala, J Heintz, U Laird, E Landsberg, G Mao, Z Narain, M Piperov, S Sagir, S Sinthuprasith, T Syarif, R Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Paneva, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Negrete, MO Shrinivas, A Wei, H Wimpenny, S Yates, BR Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Holzner, A Kelley, R Klein, D Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Vartak, A Wasserbaech, S Welke, C Wurthwein, F Yagil, A Della Porta, GZ Barge, D Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Gran, J Incandela, J Justus, C Mccoll, N Mullin, SD Richman, J Stuart, D Suarez, I To, W West, C Yoo, J Anderson, D Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Pierini, M Spiropulu, M Vlimant, JR Xie, S Zhu, RY Andrews, MB Azzolini, V Calamba, A Carlson, B Ferguson, T Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Jensen, F Johnson, A Krohn, M Mulholland, T Nauenberg, U Stenson, K Wagner, SR Alexander, J Chatterjee, A Chaves, J Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Rinkevicius, A Ryd, A Skinnari, L Soffi, L Sun, W Tan, SM Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Wittich, P Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Hu, Z Jindariani, S Johnson, M Joshi, U Jung, AW Klima, B Kreis, B Kwant, S Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T De Sa, RL Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Pedro, K Prokofyev, O Rakness, G Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Weber, HA Whitbeck, A Yang, F Acosta, D Avery, P Bortignon, P Bourilkov, D Carnes, A Carver, M Curry, D Das, S Di Giovanni, GP Field, RD Furic, IK Hugon, J Konigsberg, J Korytov, A Low, JF Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Rank, D Rossin, R Shchutska, L Snowball, M Sperka, D Terentyev, N Wang, J Wang, S Yelton, J Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Bhopatkar, V Hohlmann, M Kalakhety, H Noonan, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Silkworth, C Turner, P Varelas, N Wu, Z Zakaria, M Bilki, B Clarida, W Dilsiz, K Durgut, S Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Snyder, C Tan, P Tiras, E Wetzel, J Yi, K Anderson, I Barnett, BA Blumenfeld, B Fehling, D Feng, L Gritsan, AV Maksimovic, P Martin, C Osherson, M Swartz, M Xiao, M Xin, Y You, C Baringer, P Bean, A Benelli, G Bruner, C Kenny, RP Majumder, D Malek, M Murray, M Sanders, S Stringer, R Wang, Q Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Mohammadi, A Saini, LK Skhirtladze, N Toda, S Lange, D Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Ferraioli, C Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Kunkle, J Lu, Y Mignerey, AC Shin, YH Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Baty, A Bierwagen, K Brandt, S Busza, W Cali, IA Demiragli, Z Di Matteo, L Ceballos, GG Goncharov, M Gulhan, D Iiyama, Y Innocenti, GM Klute, M Kovalskyi, D Lai, YS Lee, YJ Levin, A Luckey, PD Marini, AC Mcginn, C Mironov, C Niu, X Paus, C Ralph, D Roland, C Roland, G Salfeld-Nebgen, J Stephans, GSF Sumorok, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Dahmes, B Finkel, A Gude, A Hansen, P Kalafut, S Kao, SC Klapoetke, K Kubota, Y Lesko, Z Mans, J Nourbakhsh, S Ruckstuhl, N Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Suarez, RG Kamalieddin, R Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Meier, F Monroy, J Ratnikov, F Siado, JE Snow, GR Alyari, M Dolen, J George, J Godshalk, A Harrington, C Iashvili, I Kaisen, J Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Hortiangtham, A Massironi, A Morse, DM Nash, D Orimoto, T De Lima, RT Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Trovato, M Velasco, M Brinkerhoff, A Dev, N Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Lynch, S Marinelli, N Meng, F Mueller, C Musienko, Y Pearson, T Planer, M Reinsvold, A Ruchti, R Smith, G Taroni, S Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hart, A Hill, C Hughes, R Ji, W Kotov, K Ling, TY Liu, B Luo, W Puigh, D Rodenburg, M Winer, BL Wulsin, HW Driga, O Elmer, P Hardenbrook, J Hebda, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Palmer, C Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Malik, S Barnes, VE Benedetti, D Bortoletto, D Gutay, L Jha, MK Jones, M Jung, K Kress, M Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Guilbaud, M Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A de Barbaro, P Demina, R Eshaq, Y Ferbel, T Galanti, M Garcia-Bellido, A Han, J Harel, A Hindrichs, O Khukhunaishvili, A Petrillo, G Verzetti, M Demortier, L Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hughes, E Kaplan, S Elayavalli, RK Lath, A Nash, K Panwalkar, S Park, M Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Riley, G Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Flanagan, W Gilmore, J Kamon, T Krutelyov, V Montalvo, R Mueller, R Osipenkov, I Pakhotin, Y Patel, R Perloff, A Roe, J Rose, A Safonov, A Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kunori, S Lamichhane, K Lee, SW Libeiro, T Undleeb, S Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Mao, Y Melo, A Ni, H Sheldon, P Snook, B Tuo, S Velkovska, J Xu, Q Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wolfe, E Wood, J Xia, F Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Christian, A Dasu, S Dodd, L Duric, S Friis, E Gomber, B Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Ruggles, T Sarangi, T Savin, A Sharma, A Smith, N Smith, WH Taylor, D Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Eroe, J. Flechl, M. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Knuenz, V. Koenig, A. Krammer, M. Kraetschmer, I. Liko, D. Matsushita, T. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schieckl, J. Schoefbeck, R. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Lauwers, J. Luyckx, S. Ochesanu, S. Rougny, R. Van de Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. De Bruyn, I. Deroover, K. Heracleous, N. Keaveney, J. Lowette, S. Moreels, L. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Van Parijs, I. Barria, P. Brun, H. Caillol, C. Clerbaux, B. De Lentdecker, G. Delannoy, H. Fasanella, G. Favart, L. Gay, A. P. R. Grebenyuk, A. Karapostoli, G. Lenzi, T. Leonard, A. Maerschalk, T. Marinov, A. Pernie, L. Randle-conde, A. Reis, T. Seva, T. Velde, C. Vander Vanlaer, P. Yonamine, R. Zenoni, F. Zhang, F. Beernaert, K. Benucci, L. Cimmino, A. Crucy, S. Dobur, D. Fagot, A. Garcia, G. Gul, M. Mccartin, J. Rios, A. A. Ocampo Poyraz, D. Ryckbosch, D. Salva, S. Sigamani, M. Strobbe, N. Tytgat, M. Van Driessche, W. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bondu, O. Brochet, S. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Mertens, A. Nuttens, C. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Belly, N. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Correa Martins Junior, M. Hamer, M. Hensel, C. Mora Herrera, C. Moraes, A. Pol, M. E. Rebello Teles, P. Belchior Batista Das Chagas, E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Huertas Guativa, L. M. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Ahuja, S. Bernardes, C. A. De Souza Santos, A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Moon, C. S. Novaes, S. F. Padula, Sandra S. Romero Abad, D. Ruiz Vargas, J. C. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Ahmad, M. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Cheng, T. Du, R. Jiang, C. H. Plestina, R. Romeo, F. Shaheen, S. M. Tao, J. Wang, C. Wang, Z. Zhang, H. Asawatangtrakuldee, C. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Xu, Z. Zou, W. Avila, C. Cabrera, A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Puljak, I. Cipriano, P. M. Ribeiro Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Micanovic, S. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Bodlak, M. Finger, M. Finger, M., Jr. Abdelalim, A. A. Awad, A. El Sawy, M. Mahrous, A. Mohammed, Y. Radi, A. Calpas, B. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Veelken, C. Eerola, P. Pekkanen, J. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Machet, M. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Zghiche, A. Antropov, I. Baffioni, S. Beaudette, F. Busson, P. Cadamuro, L. Chapon, E. Charlot, C. Dahms, T. Davignon, O. Filipovic, N. Florent, A. de Cassagnac, R. Grapier Lisniak, S. Mastrolorenzo, L. Mine, P. Naranjo, I. N. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Pigard, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Strebler, T. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Buttignol, M. Chabert, E. C. Chanon, N. Collard, C. Conte, E. Coubez, X. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Merlin, J. A. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Bernet, C. Boudoul, G. Bouvier, E. Montoya, C. A. Carrillo Chierici, R. Contardo, D. Courbon, B. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Lagarde, F. Laktineh, I. B. Lethuillier, M. Mirabito, L. Pequegnot, A. L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Edelhoff, M. Feld, L. Heister, A. Kiesel, M. K. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Schael, S. Schulte, J. F. Verlage, T. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Endres, M. Erdmann, M. Erdweg, S. Esch, T. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Pook, T. Radziej, M. Reithler, H. Rieger, M. Scheuch, F. Sonnenschein, L. Teyssier, D. Thueer, S. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Khuensken, A. Lingemann, J. Nehrkorn, A. Nowack, A. Nugent, I. M. Pistone, C. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behnke, O. Behrens, U. Bell, A. J. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dolinska, G. Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Gallo, E. Garcia, J. Garay Geiser, A. Gizhko, A. Gunnellini, P. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Karacheban, O. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Korol, I. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Roland, B. Sahin, M. OE. Saxena, P. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trippkewitz, K. D. Walsh, R. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Gonzalez, D. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Junkes, A. Klanner, R. Kogler, R. Lapsien, T. Lenz, T. Marchesini, I. Marconi, D. Meyer, M. Nowatschin, D. Ott, J. Pantaleo, F. Peiffer, T. Perieanu, A. Pietsch, N. Poehlsen, J. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schwandt, J. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Tholen, H. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Vormwald, B. Akbiyik, M. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. Colombo, F. De Boer, W. Descroix, A. Dierlamm, A. Fink, S. Frensch, F. Giffels, M. Gilbert, A. Hartmann, F. Heindl, S. M. Husemann, U. Katkov, I. Kornmayer, A. Pardo, P. Lobelle Maier, B. Mildner, H. Mozer, M. U. Mueller, T. Mueller, Th. Plagge, M. Quast, G. Rabbertz, K. Roecker, S. Roscher, F. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weber, M. Weiler, T. Woehrmann, C. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Tziaferi, E. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Loukas, N. Manthos, N. Papadopoulos, I. Paradas, E. Strologas, J. Bencze, G. Hajdu, C. Hazi, A. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Szillasi, Z. Bartok, M. Makovec, A. Raics, P. Trocsanyi, Z. L. Ujvari, B. Mal, P. Mandal, K. Sahoo, N. Swain, S. K. Bansal, S. Beni, S. B. Bhatnagar, V. Chawla, R. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, A. Kaur, M. Kumar, R. Mehta, A. Mittal, M. Singh, J. B. Walia, G. Kumar, Ashok Bhardwaj, A. Choudhary, B. C. Garg, R. B. Kumar, A. Malhotra, S. Naimuddin, M. Nishu, N. Ranjan, K. Sharma, R. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dey, S. Dutta, S. Jain, Sa. Majumdar, N. Modak, A. Mondal, K. Mukherjee, S. Mukhopadhyay, S. Roy, A. Roy, D. Chowdhury, S. Roy Sarkar, S. Sharan, M. Abdulsalam, A. Chudasama, R. Dutta, D. Jha, V. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Mahakud, B. Maity, M. Majumder, G. Mazumdar, K. Mitra, S. Mohanty, G. B. Parida, B. Sarkar, T. Sudhakar, K. Sur, N. Sutar, B. Wickramage, N. Chauhan, S. Dube, S. Sharma, S. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Caputo, C. Colaleo, A. Creanza, D. Cristella, L. De Filippis, N. De Palma, M. Fiore, L. Iaseili, G. Maggi, G. Maggi, M. Miniello, G. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Ranieri, A. Selvaggi, G. Silvestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Battilana, C. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Chhibra, S. S. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Viliani, L. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Primavera, F. Calvelli, V. Ferro, F. Lo Vetere, M. Monge, M. R. Robutti, E. Tosi, S. Brianza, L. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, R. Malvezzi, S. Manzoni, R. A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Esposito, M. Fabozzi, F. Iorio, A. O. M. Lanza, G. Lista, L. Meola, S. Merola, M. Paolucci, P. Sciacca, C. Thyssen, F. Azzi, P. Bacchetta, N. Bellato, M. Benato, L. Boletti, A. Branca, A. Osso, M. Dail' Dorigo, T. Dosselli, U. Fanzago, F. Gozzelino, A. Gulmini, M. Lacaprara, S. Margoni, M. Meneguzzo, Ba. T. Montecassiano, F. Passaseo, M. Pazzini, J. Pegoraro, M. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Ventura, S. Zanetti, M. Zotto, P. Zucchetta, A. Braghieri, A. Magnani, A. Montagna, P. Raffi, S. P. Re, V. Rieeardi, C. Salvini, P. Vai, I. Vitulo, R. Solestizi, L. Alunni Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Costa, M. Covarelli, R. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Maco, V. Monteil, E. Musich, M. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Ravera, F. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Zanetti, A. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Sakharov, A. Son, D. C. Cifuentes, J. A. Brochero Kim, H. Kim, T. J. Ryu, M. S. Song, S. Choi, S. Go, Y. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Park, S. K. Roh, Y. Yoo, H. D. Choi, M. Kim, H. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Yu, I. Juodagalvis, A. Vaitkus, J. Ahmed, I. Ibrahim, Z. A. Komaragiri, J. R. Ali, M. A. B. Md Idris, F. Mohamad Abdullah, W. A. T. Wan Yusli, M. N. Casimiro Linares, E. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-de la Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Sanchez-Hernandez, A. Carrillo Moreno, S. Vazquez Valencia, F. Pedraza, I. Salazar Ibarguen, H. A. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Beirao Da Cruz E Silva, C. Di Francesco, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Leonardo, N. Lloret Iglesias, L. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Laney, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Vlasov, E. Zhokin, A. Bylinkin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Baskakov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Myagkov, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Palencia Cortezon, E. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Castinieiras De Saa, J. R. Castro Manzano, P. De Duarte Campderros, J. Fernandez, M. Garcia-Ferrero, J. Gomez, G. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Gomez, J. Piedra Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Berruti, G. M. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dorney, B. du Pree, T. Duenser, M. Dupont, N. Elliott-Peisert, A. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kirschenmann, H. Kortelainen, M. J. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Lucchini, M. T. Magini, N. Malgeri, L. Mannelli, M. Martelli, A. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Nemallapudi, M. V. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Peruzzi, M. Petrilli, A. Petrucciani, G. Pfeiffer, A. Piparo, D. Racz, A. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Schaefer, C. Schwick, C. Sharma, A. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Triossi, A. Tsirou, A. Veres, G. I. Wardle, N. Woehri, H. K. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Buchmann, M. A. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Eller, P. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lustermann, W. Mangano, B. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Micheli, F. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrozzi, L. Quittnat, M. Rossini, M. Starodumov, A. Takahashi, M. Tavolaro, V. R. Theofilatos, K. Wallny, R. Aarrestad, T. K. Amsler, C. Caminada, L. Canelli, M. F. Chiochia, V. De Cosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Ngadiuba, J. Pinna, D. Robmann, P. Ronga, F. J. Salerno, D. Yang, Y. Cardaci, M. Chen, K. H. Doan, T. H. Jain, Sh. Khurana, R. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Yu, S. S. Kumar, Arun Bartek, R. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Fiori, F. Grundler, U. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Moya, M. Minano Petrakou, E. Tsai, J. F. Tzeng, Y. M. Asavapibhop, B. Kovitanggoon, K. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Cerci, S. Demiroglu, Z. S. Dozen, C. Dumanoglu, I. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Tai, B. Topakli, H. Vergili, M. Zorbilmez, C. Akin, I. V. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Yalvac, M. Zeyrek, M. Albayrak, E. A. Gulmez, E. Kaya, M. Kaya, O. Yetkin, T. Cankocak, K. Sen, S. Vardarli, F. I. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. El Nasr-storey, S. Seif Senkin, S. Smith, D. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cieri, D. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Thomas, L. Tomalin, I. R. Williams, T. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Casasso, S. Citron, M. Colling, D. Corpe, L. Cripps, N. Dauncey, P. Davies, G. De Wit, A. Della Negra, M. Dunne, P. Elwood, A. Ferguson, W. Fulcher, J. Futyan, D. Hall, G. Iles, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Richards, A. Rose, A. Seez, C. Tapper, A. Uchida, K. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Borzou, A. Call, K. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Pastika, N. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Gastler, D. Lawson, P. Rankin, D. Richardson, C. Rohlf, J. St John, J. Sulak, L. Zou, D. Alimena, J. Berry, E. Bhattacharya, S. Cutts, D. Dhingra, N. Ferapontov, A. Garabedian, A. Hakala, J. Heintz, U. Laird, E. Landsberg, G. Mao, Z. Narain, M. Piperov, S. Sagir, S. Sinthuprasith, T. Syarif, R. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Paneva, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Negrete, M. Olmedo Shrinivas, A. Wei, H. Wimpenny, S. Yates, B. R. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Holzner, A. Kelley, R. Klein, D. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Vartak, A. Wasserbaech, S. Welke, C. Wuerthwein, F. Yagil, A. Della Porta, G. Zevi Barge, D. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Incandela, J. Justus, C. Mccoll, N. Mullin, S. D. Richman, J. Stuart, D. Suarez, I. To, W. West, C. Yoo, J. Anderson, D. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Pierini, M. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Andrews, M. B. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Nauenberg, U. Stenson, K. Wagner, S. R. Alexander, J. Chatterjee, A. Chaves, J. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Rinkevicius, A. Ryd, A. Skinnari, L. Soffi, L. Sun, W. Tan, S. M. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Wittich, P. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Hu, Z. Jindariani, S. Johnson, M. Joshi, U. Jung, A. W. Klima, B. Kreis, B. Kwant, S. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. De Sa, R. Lopes Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Pedro, K. Prokofyev, O. Rakness, G. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Weber, H. A. Whitbeck, A. Yang, F. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carnes, A. Carver, M. Curry, D. Das, S. Di Giovanni, G. P. Field, R. D. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Low, J. F. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Rank, D. Rossin, R. Shchutska, L. Snowball, M. Sperka, D. Terentyev, N. Wang, J. Wang, S. Yelton, J. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Bhopatkar, V. Hohlmann, M. Kalakhety, H. Noonan, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Gonzalez, I. D. Sandoval Silkworth, C. Turner, P. Varelas, N. Wu, Z. Zakaria, M. Bilki, B. Clarida, W. Dilsiz, K. Durgut, S. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Snyder, C. Tan, P. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Barnett, B. A. Blumenfeld, B. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Martin, C. Osherson, M. Swartz, M. Xiao, M. Xin, Y. You, C. Baringer, P. Bean, A. Benelli, G. Bruner, C. Kenny, R. P., III Majumder, D. Malek, M. Murray, M. Sanders, S. Stringer, R. Wang, Q. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Mohammadi, A. Saini, L. K. Skhirtladze, N. Toda, S. Lange, D. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Baty, A. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Demiragli, Z. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Iiyama, Y. Innocenti, G. M. Klute, M. Kovalskyi, D. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Marini, A. C. Mcginn, C. Mironov, C. Niu, X. Paus, C. Ralph, D. Roland, C. Roland, G. Salfeld-Nebgen, J. Stephans, G. S. F. Sumorok, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Dahmes, B. Finkel, A. Gude, A. Hansen, P. Kalafut, S. Kao, S. C. Klapoetke, K. Kubota, Y. Lesko, Z. Mans, J. Nourbakhsh, S. Ruckstuhl, N. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Kamalieddin, R. Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Meier, F. Monroy, J. Ratnikov, F. Siado, J. E. Snow, G. R. Alyari, M. Dolen, J. George, J. Godshalk, A. Harrington, C. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Hortiangtham, A. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. De Lima, R. Teixeira Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Trovato, M. Velasco, M. Brinkerhoff, A. Dev, N. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Lynch, S. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Pearson, T. Planer, M. Reinsvold, A. Ruchti, R. Smith, G. Taroni, S. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hart, A. Hill, C. Hughes, R. Ji, W. Kotov, K. Ling, T. Y. Liu, B. Luo, W. Puigh, D. Rodenburg, M. Winer, B. L. Wulsin, H. W. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Palmer, C. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Malik, S. Barnes, V. E. Benedetti, D. Bortoletto, D. Gutay, L. Jha, M. K. Jones, M. Jung, K. Kress, M. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Guilbaud, M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Galanti, M. Garcia-Bellido, A. Han, J. Harel, A. Hindrichs, O. Khukhunaishvili, A. Petrillo, G. Verzetti, M. Demortier, L. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hughes, E. Kaplan, S. Elayavalli, R. Kunnawalkam Lath, A. Nash, K. Panwalkar, S. Park, M. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Riley, G. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Krutelyov, V. Montalvo, R. Mueller, R. Osipenkov, I. Pakhotin, Y. Patel, R. Perloff, A. Roe, J. Rose, A. Safonov, A. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Undleeb, S. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Mao, Y. Melo, A. Ni, H. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wolfe, E. Wood, J. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Christian, A. Dasu, S. Dodd, L. Duric, S. Friis, E. Gomber, B. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Ruggles, T. Sarangi, T. Savin, A. Sharma, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. CA CMS Collaboration TI Reconstruction and identification of tau lepton decays to hadrons and nu(tau) at CMS SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Particle identification methods; Large detector systems for particle and astroparticle physics ID PP COLLISIONS; ROOT-S=7 TEV AB This paper describes the algorithms used by the CMS experiment to reconstruct and identify tau -> hadrons + nu(tau) decays during Run 1 of the LHC. The performance of the algorithms is studied in proton-proton collisions recorded at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb(-1). The algorithms achieve an identification efficiency of 50-60%, with misidentification rates for quark and gluon jets, electrons, and muons between per mille and per cent levels. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Knuenz, V.; Koenig, A.; Krammer, M.; Kraetschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieckl, J.; Schoefbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van de Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium. [Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Leonard, A.; Maerschalk, T.; Marinov, A.; Pernie, L.; Randle-conde, A.; Reis, T.; Seva, T.; Velde, C. Vander; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Fasanella, D.] Univ Libre Bruxelles, Brussels, Belgium. [Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Rios, A. A. Ocampo; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Belly, N.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Ahuja, S.; Dogra, S.; Fernandez Perez Tomei, T. R.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; De Souza Santos, A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Zhang, F.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Puljak, I.; Cipriano, P. M. Ribeiro] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.] Inst Rudjer Boskov, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Abdelalim, A. A.; Awad, A.; El Sawy, M.; Mahrous, A.; Mohammed, Y.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia. [Eerola, P.; Pekkanen, J.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; de Cassagnac, R. Grapier; Lisniak, S.; Mastrolorenzo, L.; Mine, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.] Univ Strasbourg, Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Gadrat, S.] CNRS, IN2P3, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Montoya, C. A. Carrillo; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Bernet, C.; Autermann, C.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thueer, S.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. OE.; Saxena, P.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.] Deutsch Elekt Synchrotron, Hamburg, Germany. [Gallo, E.; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.] Univ Hamburg, Hamburg, Germany. [Weber, H.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Pardo, P. Lobelle; Maier, B.; Mildner, H.; Mozer, M. U.; Mueller, T.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Woehrmann, C.; Wolf, R.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Bartok, M.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Bartok, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bansal, S.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Banerjee, S.; Aziz, T.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.] Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. [Chauhan, S.; Dube, S.; Sharma, S.] Indian Inst Sci Educ & Res, Pune, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci, IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaseili, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Calabria, C.; Caputo, C.; Cristella, L.; De Palma, M.; Miniello, G.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaseili, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.; Viliani, L.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, POB 13, I-00044 Frascati, Italy. [Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Calvelli, V.; Lo Vetere, M.; Monge, M. R.; Tosi, S.] Univ Genoa, Genoa, Italy. [Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, R.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Via Celoria 16, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, R.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Esposito, M.; Sciacca, C.; Fiori, F.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy. [Azzi, P.; Bacchetta, N.; Bellato, M.; Benato, L.; Boletti, A.; Branca, A.; Osso, M. Dail'; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Margoni, M.; Meneguzzo, Ba. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Benato, L.; Boletti, A.; Branca, A.; Osso, M. Dail'; Margoni, M.; Meneguzzo, Ba. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.] Univ Padua, Padua, Italy. [Zanetti, M.] Univ Trento, Trento, Italy. [Braghieri, A.; Magnani, A.; Montagna, P.; Raffi, S. P.; Re, V.; Salvini, P.; Vai, I.; Vitulo, R.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Montagna, P.; Raffi, S. P.; Vitulo, R.] Univ Pavia, Via Palestro 3, I-27100 Pavia, Italy. [Solestizi, L. Alunni; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Solestizi, L. Alunni; Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Argiro, S.; Bellan, R.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monteil, E.; Obertino, M. M.; Pacher, L.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.] Univ Torino, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. [Cifuentes, J. A. Brochero; Kim, H.; Kim, T. J.; Ryu, M. S.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Lee, S.; Kim, H.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Yoo, H. D.] Seoul Natl Univ, Seoul, South Korea. [Kim, H.; Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Yusli, M. N.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Casimiro Linares, E.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de la Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmad, A.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Finger, M.; Finger, M., Jr.; Tsamalaidze, Z.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Laney, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, Gatchina, St Petersburg, Russia. [Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bylinkin, A.; Azarkin, M.; Dremin, I.; Leonidov, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Leninsky Prospect 53, Moscow 117924, Russia. [Popov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, POB 550, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Castinieiras De Saa, J. R.; Castro Manzano, P. De; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Gomez, J. Piedra; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Rabady, D.; Merlin, J. A.; Lingemann, J.; Pantaleo, F.; Hartmann, F.; Kornmayer, A.; Silvestris, L.; Battilana, C.; Marzocchi, B.; Di Guida, S.; Meola, S.; Paolucci, P.; Azzi, P.; Osso, M. Dail'; Zucchetta, A.; Ciangottini, D.; Donato, S.; D'imperio, G.; Traczyk, P.; Arcidiacono, R.; Finco, L.; Candelise, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duenser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Woehri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Apollinari, G.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Moya, M. Minano; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Topakli, H.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Albayrak, E. A.; Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Sen, S.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Natl Sci Ctr, Kharkov Inst Phys & Technol, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-storey, S. Seif; Senkin, S.; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Newbold, D. M.; Bell, K. W.; Brew, C.; Brown, R. M.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Thomas, L.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St John, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Berry, E.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Sinthuprasith, T.; Syarif, R.] Brown Univ, Providence, RI 02912 USA. [Chauhan, S.; Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Paneva, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wuerthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dubinin, M.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Cheng, T.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwant, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.] Univ Illinois, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Wang, J.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Dahmes, B.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.; Wood, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA. [Elwood, A.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Malik, S.] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.] Univ Rochester, Rochester, NY 14627 USA. [Demortier, L.] Rockefeller Univ, 1230 York Ave, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Rose, A.; Bouhali, O.; Hernandez, A. Castaneda; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Sharma, A.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fruehwirth, R.; Jeitler, M.; Krammer, M.; Schieckl, J.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Abdelalim, A. A.; Mahrous, A.] Helwan Univ, Cairo, Egypt. [Abdelalim, A. A.] Zewail City Sci & Technol, Zewail, Egypt. [Awad, A.; Radi, A.] Ain Shams Univ, Cairo, Egypt. [Awad, A.; El Sawy, M.; Radi, A.] British Univ Egypt, Cairo, Egypt. [El Sawy, M.] Beni Suef Univ, Bani Sweif, Egypt. [Mohammed, Y.] Fayoum Univ, Al Fayyum, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Hempel, M.; Karacheban, O.; Lohmann, W.; Marfin, I.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Bhowmik, S.; Maity, M.; Sarkar, T.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Gulmini, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Idris, F. Mohamad] Agensi Nuklear Malaysia, MOSTI, Kajang, Malaysia. [Heredia-de la Cruz, I.] Consejo Nacl Ciencia & Technol, Mexico City, DF, Mexico. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Orfanelli, S.] Natl Tech Univ Athens, Athens, Greece. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Cerci, S.; Tai, B.] Adiyaman Univ, Adiyaman, Turkey. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Sen, S.] Hacettepe Univ, Ankara, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Acosta, M. Vazquez] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Bouhali, O.; Hernandez, A. Castaneda] Texas A&M Univ Qatar, Doha, Qatar. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. EM cms-publication-committee-chair@cern.ch RI Dudko, Lev/D-7127-2012; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Leonidov, Andrey/M-4440-2013; Paulini, Manfred/N-7794-2014; Moraes, Arthur/F-6478-2010; Dremin, Igor/K-8053-2015; ciocci, maria agnese /I-2153-2015; Kirakosyan, Martin/N-2701-2015; TUVE', Cristina/P-3933-2015; Mundim, Luiz/A-1291-2012; VARDARLI, Fuat Ilkehan/B-6360-2013; Konecki, Marcin/G-4164-2015; Vogel, Helmut/N-8882-2014; Benussi, Luigi/O-9684-2014; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Calderon, Alicia/K-3658-2014; Goh, Junghwan/Q-3720-2016; Flix, Josep/G-5414-2012; Ruiz, Alberto/E-4473-2011; Petrushanko, Sergey/D-6880-2012; Azarkin, Maxim/N-2578-2015; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Verwilligen, Piet/M-2968-2014; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Stahl, Achim/E-8846-2011; Da Silveira, Gustavo Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; Della Ricca, Giuseppe/B-6826-2013; Montanari, Alessandro/J-2420-2012; Lokhtin, Igor/D-7004-2012; Manganote, Edmilson/K-8251-2013; Calvo Alamillo, Enrique/L-1203-2014; Matorras, Francisco/I-4983-2015; Hernandez Calama, Jose Maria/H-9127-2015; Cerrada, Marcos/J-6934-2014; Andreev, Vladimir/M-8665-2015; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Novaes, Sergio/D-3532-2012 OI Luukka, Panja/0000-0003-2340-4641; Dudko, Lev/0000-0002-4462-3192; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Moraes, Arthur/0000-0002-5157-5686; ciocci, maria agnese /0000-0003-0002-5462; TUVE', Cristina/0000-0003-0739-3153; Mundim, Luiz/0000-0001-9964-7805; Konecki, Marcin/0000-0001-9482-4841; Vogel, Helmut/0000-0002-6109-3023; Benussi, Luigi/0000-0002-2363-8889; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Flix, Josep/0000-0003-2688-8047; Ruiz, Alberto/0000-0002-3639-0368; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Stahl, Achim/0000-0002-8369-7506; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Della Ricca, Giuseppe/0000-0003-2831-6982; Montanari, Alessandro/0000-0003-2748-6373; Calvo Alamillo, Enrique/0000-0002-1100-2963; Matorras, Francisco/0000-0003-4295-5668; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Cerrada, Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Novaes, Sergio/0000-0003-0471-8549 FU Austrian Federal Ministry of Science, Research and Economy; Austrian Science Fund; Belgian Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; Brazilian Funding Agency (CNPq); Brazilian Funding Agency (CAPES); Brazilian Funding Agency (FAPERJ); Brazilian Funding Agency (FAPESP); Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences, Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Croatian Science Foundation; Research Promotion Foundation, Cyprus; Ministry of Education and Research, Estonia; European Regional Development Fund, Estonia; Estonian Research Council, Estonia [IUT23-4, IUT23-6]; Academy of Finland; Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France; Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; Bundesministerium fur Bildung und Forschung, Germany; Deutsche Forschungsgemeinschaft, Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation, Hungary; National Innovation Office, Hungary; Department of Atomic Energy, India; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Science, ICT and Future Planning, Republic of Korea; National Research Foundation (NRF), Republic of Korea; Lithuanian Academy of Sciences; Ministry of Education (Malaysia); University of Malaya (Malaysia); Mexican Funding Agency (CINVESTAV); Mexican Funding Agency (CONACYT); Mexican Funding Agency (SEP); Mexican Funding Agency (UASLP-FAI); Ministry of Business, Innovation and Employment, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education, Poland; National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of Sciences; Russian Foundation for Basic Research; Ministry of Education, Science and Technological Development of Serbia; Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain; Swiss Funding Agency (ETH Board); Swiss Funding Agency (ETH Zurich); Swiss Funding Agency (PSI); Swiss Funding Agency (SNF); Swiss Funding Agency (UniZH); Swiss Funding Agency (Canton Zurich); Swiss Funding Agency (SER); Ministry of Science and Technology, Taipei; Thailand Center of Excellence in Physics; Institute for the Promotion of Teaching Science and Technology of Thailand; Special Task Force for Activating Research; National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; National Academy of Sciences of Ukraine, Ukraine; State Fund for Fundamental Researches, Ukraine; Science and Technology Facilities Council, U.K.; US Department of Energy; US National Science Foundation; Marie-Curie programme (European Union); European Research Council (European Union); EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of the Foundation for Polish Science; European Union, Regional Development Fund; OPUS programme of the National Science Center (Poland); Compagnia di San Paolo (Torino); Consorzio per la Fisica (Trieste); MIUR project (Italy) [20108T4XTM]; Thalis programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); Welch Foundation [C-1845] FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses.; Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, U.K.; the US Department of Energy, and the US National Science Foundation.; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS programme of the National Science Center (Poland); the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation, contract C-1845. NR 67 TC 1 Z9 1 U1 17 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR P01019 DI 10.1088/1748-0221/11/01/P01019 PG 76 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800107 ER PT J AU Kreis, B Berryhill, J Cavanaugh, R Mishra, K Rivera, R Uplegger, L Apanasevich, L Zhang, J Marrouche, J Wardle, N Aggleton, R Ball, F Brooke, J Newbold, D Paramesvaran, S Smith, D Baber, M Bundock, A Citron, M Elwood, A Hall, G Iles, G Laner, C Penning, B Rose, A Tapper, A Foudas, C Beaudette, F Cadamuro, L Mastrolorenzo, L Romanteau, T Sauvan, JB Strebler, T Zabi, A Barbieri, R Cali, IA Innocenti, GM Lee, YJ Roland, C Wyslouch, B Guilbaud, M Li, W Northup, M Tran, B Durkin, T Harder, K Harper, S Shepherd-Themistocleous, C Thea, A Williams, T Cepeda, M Dasu, S Dodd, L Forbes, R Gorski, T Klabbers, P Levine, A Ojalvo, I Ruggles, T Smith, N Smith, W Svetek, A Tikalsky, J Vicente, M AF Kreis, B. Berryhill, J. Cavanaugh, R. Mishra, K. Rivera, R. Uplegger, L. Apanasevich, L. Zhang, J. Marrouche, J. Wardle, N. Aggleton, R. Ball, F. Brooke, J. Newbold, D. Paramesvaran, S. Smith, D. Baber, M. Bundock, A. Citron, M. Elwood, A. Hall, G. Iles, G. Laner, C. Penning, B. Rose, A. Tapper, A. Foudas, C. Beaudette, F. Cadamuro, L. Mastrolorenzo, L. Romanteau, T. Sauvan, J. B. Strebler, T. Zabi, A. Barbieri, R. Cali, I. A. Innocenti, G. M. Lee, Y. -J. Roland, C. Wyslouch, B. Guilbaud, M. Li, W. Northup, M. Tran, B. Durkin, T. Harder, K. Harper, S. Shepherd-Themistocleous, C. Thea, A. Williams, T. Cepeda, M. Dasu, S. Dodd, L. Forbes, R. Gorski, T. Klabbers, P. Levine, A. Ojalvo, I. Ruggles, T. Smith, N. Smith, W. Svetek, A. Tikalsky, J. Vicente, M. TI Run 2 upgrades to the CMS Level-1 calorimeter trigger SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Trigger concepts and systems (hardware and software); Trigger algorithms AB The CMS Level-1 calorimeter trigger is being upgraded in two stages to maintain performance as the LHC increases pile-up and instantaneous luminosity in its second run. In the first stage, improved algorithms including event-by-event pile-up corrections are used. New algorithms for heavy ion running have also been developed. In the second stage, higher granularity inputs and a time-multiplexed approach allow for improved position and energy resolution. Data processing in both stages of the upgrade is performed with new, Xilinx Virtex-7 based AMC cards. C1 [Kreis, B.; Berryhill, J.; Cavanaugh, R.; Mishra, K.; Rivera, R.; Uplegger, L.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Cavanaugh, R.; Apanasevich, L.; Zhang, J.] Univ Illinois, Chicago, IL USA. [Marrouche, J.; Wardle, N.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Aggleton, R.; Ball, F.; Brooke, J.; Newbold, D.; Paramesvaran, S.; Smith, D.] Univ Bristol, Bristol, Avon, England. [Baber, M.; Bundock, A.; Citron, M.; Elwood, A.; Hall, G.; Iles, G.; Laner, C.; Penning, B.; Rose, A.; Tapper, A.] Univ London Imperial Coll Sci Technol & Med, London, England. [Foudas, C.] Univ Ioannina, GR-45110 Ioannina, Greece. [Beaudette, F.; Cadamuro, L.; Mastrolorenzo, L.; Romanteau, T.; Sauvan, J. B.; Strebler, T.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Barbieri, R.; Cali, I. A.; Innocenti, G. M.; Lee, Y. -J.; Roland, C.; Wyslouch, B.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Guilbaud, M.; Li, W.; Northup, M.; Tran, B.] Rice Univ, Houston, TX USA. [Durkin, T.; Harder, K.; Harper, S.; Shepherd-Themistocleous, C.; Thea, A.; Williams, T.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Cepeda, M.; Dasu, S.; Dodd, L.; Forbes, R.; Gorski, T.; Klabbers, P.; Levine, A.; Ojalvo, I.; Ruggles, T.; Smith, N.; Smith, W.; Svetek, A.; Tikalsky, J.; Vicente, M.] Univ Wisconsin, Madison, WI USA. RP Kreis, B (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM kreis@fnal.gov NR 14 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01051 DI 10.1088/1748-0221/11/01/C01051 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800051 ER PT J AU Lenardo, B Li, Y Manalaysay, A Morad, J Payne, C Stephenson, S Szydagis, M Tripathi, M AF Lenardo, B. Li, Y. Manalaysay, A. Morad, J. Payne, C. Stephenson, S. Szydagis, M. Tripathi, M. TI Position reconstruction of bubble formation in liquid nitrogen using piezoelectric sensors SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Time projection Chambers (TPC); Noble liquid detectors (scintillation, ionization, double-phase); Liquid detectors; Cryogenic detectors ID SEARCH AB Cryogenic liquids, particularly liquid xenon and argon, are of interest as detector media for experiments in nuclear and particle physics. Here we present a new detector diagnostic technique using piezoelectric sensors to detect bubbling of the liquid. Bubbling can indicate locations of excess heat dissipation e.g., in immersed electronics. They can also interfere with normal event evolution by scattering of light or by interrupting the drift of ionization charge. In our test apparatus, four sensors are placed in the vacuum space of a double-walled dewar of liquid nitrogen and used to detect and locate a source of bubbling inside the liquid volume. Utilizing the differences in transmitted frequencies through the different media present in the experiment, we find that sound traveling in a direct path from the source to the sensor can be isolated with appropriate filtering. The location of the source is then reconstructed using the time difference of arrivals (TDOA) information. The reconstruction algorithm is shown to have a 95.8% reproducibility rate and reconstructed positions are self-consistent to an average +/- 0.5 cm around the mean in x, y, and z. Systematic effects are observed to cause errors in reconstruction when bubbles occur very close to the surfaces of the liquid volume. C1 [Lenardo, B.; Li, Y.; Manalaysay, A.; Morad, J.; Payne, C.; Stephenson, S.; Tripathi, M.] Univ Calif Davis, One Shields Ave, Davis, CA 95616 USA. [Lenardo, B.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Szydagis, M.] SUNY Albany, 1400 Washington Ave, Albany, NY 12222 USA. RP Lenardo, B (reprint author), Univ Calif Davis, One Shields Ave, Davis, CA 95616 USA.; Lenardo, B (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM lenardo1@llnl.gov FU U.S. Department of Energy [DE-FG02-91ER40674]; DOE [DE-NA0000979]; Lawrence Scholars Program at the Lawrence Livermore National Laboratory (LLNL); U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344, LLNL-CONF-678285] FX The authors would like to acknowledge Marshall Styczinski and Gavin Fields for preliminary efforts on the present work. We would also like to thank Ray Gerhard, Britt Holbrook, David Hemer, and Keith DeLong for their engineering expertise and support. The sensor readout circuit was designed by Ilan Levine of Indiana University South Bend. This work at the University of California, Davis was supported by U.S. Department of Energy grant DE-FG02-91ER40674, as well as supported by DOE grant DE-NA0000979, which funds the seven universities involved in the Nuclear Science and Security Consortium. Brian Lenardo is supported by the Lawrence Scholars Program at the Lawrence Livermore National Laboratory (LLNL). LLNL is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. LLNL-CONF-678285. NR 11 TC 1 Z9 1 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR P01013 DI 10.1088/1748-0221/11/01/P01013 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800101 ER PT J AU Schambach, J Contin, G Greiner, L Stezelberger, T Sun, X Szelezniak, M Vu, C AF Schambach, J. Contin, G. Greiner, L. Stezelberger, T. Sun, X. Szelezniak, M. Vu, C. TI The STAR Heavy Flavor Tracker PXL detector readout electronics SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Data acquisition circuits; Front-end electronics for detector readout; Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases); Digital electronic circuits ID MAPS AB The Heavy Flavor Tracker (HFT) is a recently installed micro-vertex detector upgrade to the STAR experiment at RHIC, consisting of three subsystems with various technologies of silicon sensors arranged in 4 concentric cylinders. The two innermost layers of the HFT close to the beam pipe, the Pixel ("PXL") subsystem, employ CMOS Monolithic Active Pixel Sensor (MAPS) technology that integrate the sensor, front-end electronics, and zero-suppression circuitry in one silicon die. This paper presents selected characteristics of the PXL detector part of the HFT and the hardware, firmware and software associated with the readout system for this detector. C1 [Schambach, J.] Univ Texas Austin, 1 Univ Stn, Austin, TX 78712 USA. [Contin, G.; Greiner, L.; Stezelberger, T.; Vu, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sun, X.] Cent China Normal Univ, Wuhan, Peoples R China. [Szelezniak, M.] Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. RP Schambach, J (reprint author), Univ Texas Austin, 1 Univ Stn, Austin, TX 78712 USA. EM jschamba@physics.utexas.edu NR 5 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01034 DI 10.1088/1748-0221/11/01/C01034 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800034 ER PT J AU Xiao, L Liu, C Liu, T Chen, H Chen, J Chen, K Feng, Y Gong, D Guo, D He, H Hou, S Huang, G Sun, X Tang, Y Teng, PK Xiang, AC Xu, H Ye, J You, Y AF Xiao, L. Liu, C. Liu, T. Chen, H. Chen, J. Chen, K. Feng, Y. Gong, D. Guo, D. He, H. Hou, S. Huang, G. Sun, X. Tang, Y. Teng, P. -K. Xiang, A. C. Xu, H. Ye, J. You, Y. TI The clock and control system for the ATLAS Liquid Argon Calorimeter Phase-I upgrade SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Radiation-hard electronics; Front-end electronics for detector readout; Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases) AB A Liquid-argon Trigger Digitizer Board (LTDB) is being developed to upgrade the ATLAS Liquid Argon Calorimeter Phase-I trigger electronics. The LTDB located at the front end needs to obtain the clock signals and be configured and monitored remotely from the back end. A clock and control system is being developed for the LTDB and the major functions of the system have been evaluated. The design and evaluation of the clock and control system are presented in this paper. C1 [Xiao, L.; He, H.; Huang, G.; Sun, X.] Cent China Normal Univ, Wuhan 430079, Hubei, Peoples R China. [Xiao, L.; Liu, C.; Liu, T.; Gong, D.; Guo, D.; He, H.; Xiang, A. C.; Ye, J.; You, Y.] So Methodist Univ, Dallas, TX 75275 USA. [Chen, H.; Chen, K.; Xu, H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Chen, J.; Feng, Y.; Tang, Y.] Univ Houston, Houston, TX 77004 USA. [Guo, D.] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China. [He, H.] Shenzhen Polytech, Shenzhen 518055, Peoples R China. [Hou, S.] Acad Sinica, Taipei 11529, Taiwan. RP Liu, C (reprint author), So Methodist Univ, Dallas, TX 75275 USA. EM tliu@mail.smu.edu; gmhuang@phy.ccnu.edu.cn NR 10 TC 0 Z9 0 U1 4 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01062 DI 10.1088/1748-0221/11/01/C01062 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800062 ER PT J AU Bajaj, S Wang, H Doak, JW Wolverton, C Snyder, GJ AF Bajaj, Saurabh Wang, Heng Doak, Jeff W. Wolverton, Chris Snyder, G. Jeffrey TI Calculation of dopant solubilities and phase diagrams of X-Pb-Se (X = Br, Na) limited to defects with localized charge SO JOURNAL OF MATERIALS CHEMISTRY C LA English DT Article ID HIGH THERMOELECTRIC PERFORMANCE; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; FIGURE; NANOSTRUCTURES; SEMICONDUCTORS; EFFICIENCY; MOBILITY; BANDS; MERIT AB The control of defects, particularly impurities, to tune the concentrations of electrons and holes is of utmost importance in the use of semiconductor materials. To estimate the amount of dopant that can be added to a semiconductor without precipitating secondary phases, a detailed phase diagram is needed. The ability of ab initio computational methods to predict defect stability can greatly accelerate the discovery of new semiconductors by calculating phase diagrams when time-consuming experimental ones are not available. DFT defect energy calculations are particularly successful in identifying doping strategies by determining the energy of multiple defect charge states in large band gap semiconductors and insulators. In metals, detailed phase diagrams can be determined from such calculations but only one, uncharged defect is needed. In this work, we have calculated dopant solubilities of Br and Na in the thermoelectric material PbSe by mapping its solvus boundaries in different regions of the respective ternary phase diagrams using DFT defect energy calculations. The narrow gap PbSe provides an example where defects with nominal charge state (based on valence counting) have properly-localized charge states. However, defects with unexpected charge states produce delocalized electrons, which are then, in effect, defects with the expected charge state. Simply applying the methods for calculating multiple defect charge states in PbSe and treating themas separate defects fails to predict properties measured by experiments. Performing thermodynamic calculations using only the expected charge states, excluding others, enables accurate prediction of experimentally measured doping efficiencies and phase diagrams. Identifying which defect charge states to include in thermodynamic calculations will expedite the use of such calculations for other semiconductors in understanding phase diagrams and devising effective doping strategies. C1 [Bajaj, Saurabh; Wang, Heng; Snyder, G. Jeffrey] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA. [Bajaj, Saurabh] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Doak, Jeff W.; Wolverton, Chris; Snyder, G. Jeffrey] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Snyder, GJ (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM jeff.snyder@northwestern.edu RI Wang, Heng/O-5418-2014; Snyder, G. Jeffrey/E-4453-2011; Wolverton, Christopher/B-7542-2009 OI Snyder, G. Jeffrey/0000-0003-1414-8682; FU Department of Energys Basic Energy Sciences program - the Materials Project [EDCBEE]; Office of Science of the U.S. Department of Energy [DEAC02-05CH11231]; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DEFG02-07ER46433] FX This work was supported by the Department of Energys Basic Energy Sciences program - the Materials Project - under Grant No. EDCBEE. Work at Lawrence Berkeley, through discussions with Qimin Yan, Mark Asta, and Jeff Neaton, was supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. J. W. D. and C. W. acknowledge support by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Grant DEFG02-07ER46433. The authors acknowledge the Chemical Engineering Cluster at Texas A&M University and the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy, for providing computing resources useful in conducting the research reported in this work. The figures in this article have been created using the LevelScheme scientific figure preparation system.40 NR 48 TC 1 Z9 1 U1 8 U2 14 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7526 EI 2050-7534 J9 J MATER CHEM C JI J. Mater. Chem. C PY 2016 VL 4 IS 9 BP 1769 EP 1775 DI 10.1039/c5tc03970c PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DF6QI UT WOS:000371480300003 ER PT J AU Hu, W Wang, T Zhang, RQ Yang, JL AF Hu, Wei Wang, Tian Zhang, Ruiqi Yang, Jinlong TI Effects of interlayer coupling and electric fields on the electronic structures of graphene and MoS2 heterobilayers SO JOURNAL OF MATERIALS CHEMISTRY C LA English DT Article ID HEXAGONAL BORON-NITRIDE; DENSITY-FUNCTIONAL THEORY; AB-INITIO; BLACK PHOSPHORUS; EFFECT TRANSISTORS; MEMORY DEVICES; HETEROSTRUCTURES; NANOCOMPOSITE; HYDROCARBONS; COMPOSITES AB Combining the electronic structures of graphene and molybdenum disulphide (MoS2) monolayers in two-dimensional (2D) ultrathin graphene and MoS2 heterostructures has been realized experimentally for novel nanoelectronic devices. Here, first-principles calculations are performed to investigate the effects of interlayer coupling and the electric field on the electronic structures of graphene and MoS2 heterobilayers (G/MoS2 HBLs). We find that an n-type Schottky contact is formed at the G/MoS2 interface with a small Schottky barrier of 0.23 eV, because the work function of graphene is close to the electron affinity of MoS2. Furthermore, increasing the interfacial distances between graphene and MoS2 can reduce the n-type Schottky barriers at the G/MoS2 interface. But applying the electric field perpendicular to the G/MoS2 HBL can not only control the Schottky barriers but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the G/MoS2 interface. Tunable p-type doping in graphene is easily achieved at negative electric fields because electrons can easily transfer from the Dirac point of graphene to the conduction band of MoS2. C1 [Hu, Wei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Wang, Tian] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230026, Anhui, Peoples R China. [Zhang, Ruiqi; Yang, Jinlong] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Zhang, Ruiqi; Yang, Jinlong] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. RP Hu, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.; Yang, JL (reprint author), Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China.; Yang, JL (reprint author), Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. EM whu@lbl.gov; jlyang@ustc.edu.cn RI Yang, Jinlong/D-3465-2009; OI Yang, Jinlong/0000-0002-5651-5340; Hu, Wei/0000-0001-9629-2121 FU National Key Basic Research Program [2011CB921404]; NSFC [21121003, 91021004, 21233007, 21222304]; Chinese Academy of Sciences (CAS) [XDB01020300]; Scientific Discovery through Advanced Computing (SciDAC) Program - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences; USTCSCC, SCCAS, Tianjin, and Shanghai Supercomputer Centers FX This work is partially supported by the National Key Basic Research Program (2011CB921404), by NSFC (21121003, 91021004, 21233007, 21222304), by Chinese Academy of Sciences (CAS) (XDB01020300), and by USTCSCC, SCCAS, Tianjin, and Shanghai Supercomputer Centers. This work is also partially supported by the Scientific Discovery through Advanced Computing (SciDAC) Program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences (W. H.). We thank the National Energy Research Scientific Computing (NERSC) center for the computational resources. NR 63 TC 8 Z9 8 U1 21 U2 61 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7526 EI 2050-7534 J9 J MATER CHEM C JI J. Mater. Chem. C PY 2016 VL 4 IS 9 BP 1776 EP 1781 DI 10.1039/c6tc00207b PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DF6QI UT WOS:000371480300004 ER PT J AU Rungtaweevoranit, B Zhao, YB Choi, KM Yaghi, OM AF Rungtaweevoranit, Bunyarat Zhao, Yingbo Choi, Kyung Min Yaghi, Omar M. TI Cooperative effects at the interface of nanocrystalline metal-organic frameworks SO NANO RESEARCH LA English DT Review DE metal-organic framework; inorganic nanocrystal; cooperative effects; interface design ID POROUS COORDINATION POLYMERS; HETEROGENEOUS CATALYSTS; MODULATED SYNTHESIS; PD NANOPARTICLES; LIGHT-SCATTERING; CRYSTAL-GROWTH; GOLD NANORODS; AT-MOF; SHELL; CORE AB Controlling the chemistry at the interface of nanocrystalline solids has been a challenge and an important goal to realize desired properties. Integrating two different types of materials has the potential to yield new functions resulting from cooperative effects between the two constituents. Metal-organic frameworks (MOFs) are unique in that they are constructed by linking inorganic units with organic linkers where the building units can be varied nearly at will. This flexibility has made MOFs ideal materials for the design of functional entities at interfaces and hence allowing control of properties. This review highlights the strategies employed to access synergistic functionality at the interface of nanocrystalline MOFs (nMOFs) and inorganic nanocrystals (NCs). C1 [Rungtaweevoranit, Bunyarat; Zhao, Yingbo; Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. RP Rungtaweevoranit, B; Zhao, YB; Yaghi, OM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM bunyaratr@berkeley.edu; zhaoyybb@berkeley.edu; yaghi@berkeley.edu OI Yaghi, Omar/0000-0002-5611-3325; Rungtaweevoranit, Bunyarat/0000-0002-9069-4370 FU Royal Thai Government Scholarship; BASF (Ludwigshafen, Germany); U.S. Department of Defense, Defense Threat Reduction Agency [HDTRA 1-12-1-0053] FX B. R. is supported by the Royal Thai Government Scholarship. Research in the Yaghi group on nanoMOFs is supported by BASF (Ludwigshafen, Germany) and U.S. Department of Defense, Defense Threat Reduction Agency (No. HDTRA 1-12-1-0053). We thank Profs. Gabor Somorjai and Peidong Yang and their research group members for our ongoing collaborations on aspects of this review. NR 46 TC 5 Z9 5 U1 33 U2 97 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA SN 1998-0124 EI 1998-0000 J9 NANO RES JI Nano Res. PD JAN PY 2016 VL 9 IS 1 BP 47 EP 58 DI 10.1007/s12274-015-0970-0 PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DG1AQ UT WOS:000371797800004 ER PT J AU Salandrino, A Wang, Y Zhang, X AF Salandrino, Alessandro Wang, Yuan Zhang, Xiang TI Nonlinear infrared plasmonic waveguide arrays SO NANO RESEARCH LA English DT Article DE infrared plasmonics; plasmonic waveguides; nonlinear plasmonics; waveguide theory; waveguide arrays ID SURFACE-PLASMONS; METAMATERIALS AB The large negative permittivity of noble metals in the infrared region prevents the possibility of highly confined plasmons in simple waveguide structures such as thin films or rods. This is a critical obstacle to applications of nonlinear plasmonics in the telecommunication wavelength region. We theoretically propose and numerically demonstrate that such limitation can be overcome by exploiting inter-element coupling effects in a plasmonic waveguide array. The supermodes of a plasmonic array span a large range of effective indices, making these structures ideal for broadband mode-multiplexed interconnects for integrated photonic devices. We show such plasmonic waveguide arrays can significantly enhance nonlinear optical interactions when operating in a high-index, tightly bound supermode. For example, a third-order nonlinear coefficient in such a waveguide can be more than three orders of magnitude larger compared to silicon waveguides of similar dimensions. These findings open new design possibilities towards the application of plasmonics in integrated optical devices in the telecommunications spectral region. C1 [Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Salandrino, Alessandro] Univ Kansas, Dept EECS, Lawrence, KS 66045 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA.; Zhang, X (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM xzhang@me.berkeley.edu RI Zhang, Xiang/F-6905-2011; Wang, Yuan/F-7211-2011 FU U.S. Air Force Office of Scientific Research (AFOSR) MURI program [FA9550-12-1-0024] FX This work was supported by U.S. Air Force Office of Scientific Research (AFOSR) MURI program (No. FA9550-12-1-0024). NR 24 TC 0 Z9 0 U1 8 U2 16 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 100084, PEOPLES R CHINA SN 1998-0124 EI 1998-0000 J9 NANO RES JI Nano Res. PD JAN PY 2016 VL 9 IS 1 BP 224 EP 229 DI 10.1007/s12274-016-0994-0 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DG1AQ UT WOS:000371797800019 ER PT J AU Zhu, J Quan, Z Wang, C Wen, X Jiang, Y Fang, J Wang, Z Zhao, Y Xu, H AF Zhu, J. Quan, Z. Wang, C. Wen, X. Jiang, Y. Fang, J. Wang, Z. Zhao, Y. Xu, H. TI Structural evolution and mechanical behaviour of Pt nanoparticle superlattices at high pressure SO NANOSCALE LA English DT Article ID NANOCRYSTALS; ASSEMBLIES; NANOCUBES; ENERGY; PHASE AB High pressure is an effective means for tuning the interparticle distances of nanoparticle (NP) superlattices and thus for modifying their physical properties and functionalities. In this work, we determined the evolution of inter-NP distances of a Pt NP superlattice with increasing pressure using an in situ synchrotron small-angle X-ray scattering (SAXS) technique in a diamond-anvil cell (DAC). Transmission electron microscopy (TEM) was used to characterize the microstructures of pre- and post-compression samples. Our results demonstrate that the evolution of Pt NP assemblies with increasing pressure consists of four stages: (1) ligand elastic response, (2) uniform compression, (3) ligand detachment from NP surfaces, and (4) deviatoric compression of ligands between neighboring NPs. By controlling the magnitudes of applied pressure and deviatoric stress, one can sinter NPs into novel architectures such as nanowires and nanoceramics. C1 [Zhu, J.; Zhao, Y.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Quan, Z.; Xu, H.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Wang, C.; Fang, J.] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. [Wen, X.] Chinese Acad Sci, Inst Coal Chem, Taiyuan 030001, Shanxi, Peoples R China. [Jiang, Y.] Univ New Mexico, TEM Lab, Albuquerque, NM 87131 USA. [Wang, Z.] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA. RP Zhu, J (reprint author), Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA.; Xu, H (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.; Fang, J (reprint author), SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. EM jlzhu04@physics.unlv.edu; jfang@binghamton.edu; hxu@lanl.gov OI Xu, Hongwu/0000-0002-0793-6923 FU laboratory-directed research and development (LDRD) program of Los Alamos National Laboratory; NSF [DMR-0936384]; High Pressure Science and Engineering Center; University of Nevada at Las Vegas; National Nuclear Security Administration under Stewardship Science Academic Alliances program through DOE Cooperative Agreement [DE-NA0001982]; Los Alamos National Security LLC under DOE [DE-AC52-06NA25396] FX This work was supported by the laboratory-directed research and development (LDRD) program of Los Alamos National Laboratory, which is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. The experimental work has benefited from the use of CHESS at Cornell University, which is supported by the NSF award DMR-0936384. The later stage of the work was also supported by the High Pressure Science and Engineering Center, the University of Nevada at Las Vegas, which was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement #DE-NA0001982. NR 30 TC 0 Z9 0 U1 10 U2 32 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 9 BP 5214 EP 5218 DI 10.1039/c5nr08291a PG 5 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DF6PW UT WOS:000371479000047 PM 26878810 ER PT J AU Jubb, AM Jiao, Y Eres, G Retterer, ST Gu, B AF Jubb, A. M. Jiao, Y. Eres, G. Retterer, S. T. Gu, B. TI Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates SO NANOSCALE LA English DT Article ID PLASMON RESONANCE SENSORS; PERCHLORATE DETECTION; SINGLE-MOLECULE; BOWTIE NANOANTENNA; SCATTERING SERS; ARRAYS; NANOPARTICLES; FABRICATION; MONOLAYERS; FIELD AB We demonstrate large area arrays of elevated gold ellipse dimers with precisely controlled gaps for use as sensitive and highly controllable surface enhanced Raman scattering (SERS) substrates. The enhanced Raman signal observed with SERS arises from both localized and long range plasmonic effects. By controlling the geometry of a SERS substrate, in this case the size and aspect ratio of individual ellipses, the plasmon resonance can be tuned in a broad wavelength range, providing a method for designing the response of SERS substrates at different excitation wavelengths. Plasmon effects exhibited by the elevated gold ellipse dimer substrates are also demonstrated and confirmed through finite difference time domain (FDTD) simulations. A plasmon resonance red shift with an increase of the ellipse aspect ratio is observed, allowing systematic control of the resulting SERS signal intensity. Optimized elevated ellipse dimer substrates with 10 +/- 2 nm gaps exhibit uniform SERS enhancement factors on the order of 10(9) for adsorbed p-mercaptoaniline molecules. C1 [Jubb, A. M.; Jiao, Y.; Gu, B.] Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA. [Eres, G.; Retterer, S. T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Eres, G.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Jubb, AM; Gu, B (reprint author), Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA. EM jubbam@ornl.gov; gub1@ornl.gov RI Jubb, Aaron/G-4538-2013; Eres, Gyula/C-4656-2017 OI Jubb, Aaron/0000-0001-6875-1079; Eres, Gyula/0000-0003-2690-5214 FU Environmental Security and Technology Certification Program (ESTCP) of the U.S. Department of Defense; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, Office of Science; U.S. Department of Energy; DOE Scientific User Facilities Division; US DOE [DE-AC05-00OR22725] FX This research was supported in part by the Environmental Security and Technology Certification Program (ESTCP) of the U.S. Department of Defense. The contribution by G.E. was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. The fabrication of elevated Au ellipse dimers and the 633 nm SERS spectra collection were conducted at the Center for Nanophase Materials Sciences of Oak Ridge National Laboratory (ORNL), which is sponsored by DOE Scientific User Facilities Division. ORNL is managed by UT-Battelle, LLC, for US DOE under contract DE-AC05-00OR22725. The authors thank Nickolay Lavrik for his assistance with the 633 nm Raman measurements. NR 44 TC 3 Z9 3 U1 8 U2 40 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 10 BP 5641 EP 5648 DI 10.1039/c5nr08920d PG 8 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DF9FC UT WOS:000371665400030 PM 26893035 ER PT J AU Li, CY Liu, S Luk, TS Figiel, JJ Brener, I Brueck, SRJ Wang, GT AF Li, Changyi Liu, Sheng Luk, Ting. S. Figiel, Jeffrey J. Brener, Igal Brueck, S. R. J. Wang, George T. TI Intrinsic polarization control in rectangular GaN nanowire lasers SO NANOSCALE LA English DT Article ID PHOTONICS; EMISSION AB We demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444 kW cm(-2) and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control over the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates. C1 [Li, Changyi; Brueck, S. R. J.] Univ New Mexico, Ctr High Technol Mat, 1313 Goddard St SE, Albuquerque, NM 87106 USA. [Liu, Sheng; Luk, Ting. S.; Figiel, Jeffrey J.; Brener, Igal; Wang, George T.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Liu, Sheng; Luk, Ting. S.; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. RP Wang, GT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gtwang@sandia.gov FU Sandia's Solid-State-Lighting Science Energy Frontier Research Center; U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences; Sandia's Laboratory Directed Research and Development program; U. S. DOE, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division; Lock-heed Martin Corporation; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Dr Jeremy B. Wright for helpful discussions and a critical reading of this manuscript. C.L. and S.R.J.B. acknowledge funding from Sandia's Solid-State-Lighting Science Energy Frontier Research Center, funded by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. S.L., T.S.L., and I.B. acknowledge funding from Sandia's Laboratory Directed Research and Development program. G.T.W. and J.J.F. acknowledge funding from the U. S. DOE, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lock-heed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 29 TC 4 Z9 4 U1 5 U2 20 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2016 VL 8 IS 10 BP 5682 EP 5687 DI 10.1039/c5nr07504a PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DF9FC UT WOS:000371665400035 PM 26899502 ER PT J AU Li, Q Zhang, J Wang, LS Hao, J Yin, PC Wei, YG AF Li, Qiang Zhang, Jin Wang, Longsheng Hao, Jian Yin, Panchao Wei, Yongge TI Nucleophilic substitution reaction for rational post-functionalization of polyoxometalates SO NEW JOURNAL OF CHEMISTRY LA English DT Article ID ORGANOIMIDO DERIVATIVES; HYBRID; NANOSCALE; DESIGN; CLUSTERS; HEXAMOLYBDATE; CATALYSIS; DEVICES; CARBON AB A hexamolybdate-based organic-inorganic hybrid molecule containing a chloralkane fragment is synthesized and its Cl atom can be substituted by iodine and nitrate through nucleophilic substitution reactions in high yields, which provide a post-functionalization protocol to bring in various additional functional groups into polyoxometalate-based hybrid materials under mild conditions. C1 [Li, Qiang; Zhang, Jin; Wang, Longsheng; Hao, Jian; Wei, Yongge] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Li, Qiang] Beijing Forestry Univ, Dept Chem, Beijing 100083, Peoples R China. [Yin, Panchao] Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Wei, Yongge] Peking Univ, State Key Lab Nat & Biomimet Drugs, Beijing 100191, Peoples R China. RP Wei, YG (reprint author), Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China.; Yin, PC (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA.; Wei, YG (reprint author), Peking Univ, State Key Lab Nat & Biomimet Drugs, Beijing 100191, Peoples R China. EM yinp@ornl.gov; yonggewei@tsinghua.edu.cn RI Yin, Panchao/J-3322-2013 OI Yin, Panchao/0000-0003-2902-8376 FU Neutron Sciences Directorate in Oak Ridge National Laboratory; Office of Science of the US Department of Energy [DE-AC05-00-OR22725]; National Natural Science Foundation of China (NSFC) [21225103, 21221062]; Tsinghua University Initiative Foundation Research Program [20131089204] FX We acknowledge the Clifford G. Shull Fellowship support from Neutron Sciences Directorate in Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00-OR22725, and the support from the National Natural Science Foundation of China (NSFC No. 21225103 and 21221062) and Tsinghua University Initiative Foundation Research Program No. 20131089204. NR 34 TC 1 Z9 1 U1 4 U2 17 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1144-0546 EI 1369-9261 J9 NEW J CHEM JI New J. Chem. PY 2016 VL 40 IS 2 BP 906 EP 909 DI 10.1039/c5nj01090j PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DF7SX UT WOS:000371559000004 ER PT J AU Zhang, L Jia, YL Wang, H Zhang, DW Zhang, Q Liu, Y Li, ZT AF Zhang, Liang Jia, Youli Wang, Hui Zhang, Dan-Wei Zhang, Qi Liu, Yi Li, Zhan-Ting TI pH-Responsive single-layer honeycomb supramolecular organic frameworks that exhibit antimicrobial activity SO POLYMER CHEMISTRY LA English DT Article ID AMPHIPHILIC PYRENE OLIGOMERS; ON-SURFACE POLYMERIZATION; 2-DIMENSIONAL POLYMERS; AIR/WATER INTERFACE; ARCHITECTURES; DIMERIZATION; GROWTH; WATER AB Two two-dimensional (2D) single-layer supramolecular organic frameworks (SOFs) have been constructed in water. One framework displays pH-responsive self-assembly and de-assembly and both exhibit activity against methicillin-resistant Staphylococcus aureus. C1 [Zhang, Liang; Jia, Youli; Wang, Hui; Zhang, Dan-Wei; Zhang, Qi; Li, Zhan-Ting] Fudan Univ, Dept Chem, Collaborat Innovat Ctr Chem Energy Mat IChEM, 220 Handan Rd, Shanghai 200433, Peoples R China. [Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Zhang, DW; Zhang, Q; Li, ZT (reprint author), Fudan Univ, Dept Chem, Collaborat Innovat Ctr Chem Energy Mat IChEM, 220 Handan Rd, Shanghai 200433, Peoples R China.; Liu, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM zhangdw@fudan.edu.cn; qizhang_chem@fudan.edu.cn; yliu@lbl.gov; ztli@fudan.edu.cn RI Liu, yi/A-3384-2008 OI Liu, yi/0000-0002-3954-6102 FU Science and Technology Commission of Shanghai Municipality [13M1400200]; Ministry of Science and Technology [2013CB834501]; Ministry of Education of China Research Fund for Doctoral Program; National Science Foundation of China [21432004, 21529201, 91527301]; Molecular Foundry, Lawrence Berkeley National Laboratory; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was financially supported by the Science and Technology Commission of Shanghai Municipality (13M1400200), the Ministry of Science and Technology (2013CB834501), the Ministry of Education of China Research Fund for the Doctoral Program, and the National Science Foundation of China (No. 21432004, 21529201 and 91527301). We thank the Shanghai Synchrotron Radiation Facility for providing the BL16B beamline for collecting the solution-phase synchrotron X-ray scattering data. The support from the Molecular Foundry, Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy under the Contract no. DE-AC02-05CH11231 is also appreciated. NR 33 TC 3 Z9 4 U1 8 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1759-9954 EI 1759-9962 J9 POLYM CHEM-UK JI Polym. Chem. PY 2016 VL 7 IS 10 BP 1861 EP 1865 DI 10.1039/c5py02054a PG 5 WC Polymer Science SC Polymer Science GA DG1GY UT WOS:000371815300002 ER PT B AU Rupnowski, P Ulsh, M Sopori, B AF Rupnowski, Peter Ulsh, Michael Sopori, Bhushan GP ASME TI HIGH THROUGHPUT AND HIGH RESOLUTION IN-LINE MONITORING OF PEMFC MATERIALS BY MEANS OF VISIBLE LIGHT DIFFUSE REFLECTANCE IMAGING AND COMPUTER VISION SO PROCEEDINGS OF THE ASME 13TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2015 LA English DT Proceedings Paper CT 13th ASME Fuel Cell Science, Engineering, and Technology Conference CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div ID INFRARED THERMOGRAPHY; RAPID DETECTION; THIN-FILMS; THICKNESS; PROFILOMETRY AB In this paper we present results from our recent work in which polymer electrolyte membrane fuel cell electrodes with intentionally introduced known defects were imaged and analyzed using a fuel cell scanner recently developed at the National Renewable Energy Laboratory. The defect types considered included particle debris, scuffs, scores, slits, and laser perforated pinholes. The debris defects were analyzed on samples from three different production stages, whereas the other defect types were introduced in a membrane tacked on a catalyst-coated diffusion media. We are showing that the fuel cell scanner can generate good quality, high resolution images of both baseline and defect-containing material. Based on the scanned images, an automatic, computer vision algorithm is developed that identifies presence and location of debris particles. The presented results clearly indicate that the in-line visible-light-diffuse-reflectance-based system can be successfully employed to monitor quality and to detect critical defects in fuel cell electrodes that are transported with high speed in a high volume manufacturing facility. C1 [Rupnowski, Peter; Ulsh, Michael; Sopori, Bhushan] Natl Renewable Energy Lab, Golden, CO USA. RP Rupnowski, P (reprint author), Natl Renewable Energy Lab, Golden, CO USA. NR 15 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5661-1 PY 2016 AR V001T04A002 PG 10 WC Electrochemistry; Energy & Fuels; Engineering, Mechanical SC Electrochemistry; Energy & Fuels; Engineering GA BE4FO UT WOS:000371648500010 ER PT B AU Tucker, D Haynes, C Geoghegan, P AF Tucker, David Haynes, Comas Geoghegan, Patrick GP ASME TI NEEDS AND APPROACHES FOR NOVEL CHARACTERIZATION OF DIRECT HYBRID FUEL CELL/GAS TURBINES SO PROCEEDINGS OF THE ASME 13TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2015 LA English DT Proceedings Paper CT 13th ASME Fuel Cell Science, Engineering, and Technology Conference CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div DE SOFC turbine hybrid simulation characterization AB Solid oxide fuel cell (SOFC)/ gas turbine (GT) hybrid systems possess the capacity for unprecedented performances, such as electric efficiencies nearly twice that of conventional heat engines at variable scale power ratings inclusive of distributed generation. Additionally, these hybrids can have excellent operational flexibility with turndowns possibly as great as 85%. There are, however, developmental needs such as turbomachinery characterization and re-design. A leading example is that of greater propensity to have occurrences of stall-surge given the significantly different operating environment in contrast to conventional heat engines. Additionally, dynamic variation in power generation has to be done with significant a priori insight to avoid thermomechanical threats to cell stack and turbomachinery. State-of-the-art approaches involving hardware-in-the-loop simulation and, ultimately, additive manufacturing are being pursued to enable such characterization and re-design considerations given variable and dynamic operability requirements. Compressor performance in hybrid systems has been characterized at the United States National Energy Technology Laboratory (NETL), inclusive of a capability of feed forward hardware-in-the-loop simulation of hybrid systems under dynamic conditions and a capability of replacing turbine and compressor components at a relatively low cost. This paper highlights some of the simulation results, and the net result is an approach that addresses hybrid system developmental needs for accommodating generation transients. C1 [Tucker, David] Natl Energy Technol Lab, Morgantown, WV USA. [Haynes, Comas] Georgia Tech Res Inst, Atlanta, GA 30332 USA. [Haynes, Comas; Geoghegan, Patrick] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Tucker, D (reprint author), Natl Energy Technol Lab, Morgantown, WV USA. NR 11 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5661-1 PY 2016 AR V001T05A001 PG 6 WC Electrochemistry; Energy & Fuels; Engineering, Mechanical SC Electrochemistry; Energy & Fuels; Engineering GA BE4FO UT WOS:000371648500014 ER PT B AU Boldon, L Sabharwall, P Liu, L AF Boldon, Lauren Sabharwall, Piyush Liu, Li (Emily) GP ASME TI EXERGY ANALYSIS FOR SMALL MODULAR REACTOR HYBRID ENERGY SYSTEM SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div ID COST AB Nuclear hybrid energy systems (NHES) with the capability to store energy will advance the development of renewable energy technologies by providing reliable, non-carbon emitting, and integrated base-load nuclear energy. Small modular reactors (SMRs) will be significant in establishing hybrid energy systems because of their inherent financial advantages over larger commercial reactors; flexible deployment and faster onsite assembly; and ability to closely match required energy needs for industrial process heat applications. An SMR is a thermal energy plant comprised of many complex systems that interact with each other and their surroundings. To study such a system and set appropriate prices for outputs, it is important to assess thermoeconomics or the effective utility and costs of all resources. At its core, thermoeconomics is based upon the quality of energy, or exergy, flowing into and out of each component within a system. Limited research into the thermoeconomics behind SMRs has been performed, leaving an important gap in understanding. This article presents relevant exergetic cost theory and details methods behind an exergy analysis for an SMR-wind-storage system. To perform this analysis, both the physical and economic environments are identified to provide information on how overall system efficiencies and costs may be analyzed. The physical environment incorporates the actual system components, necessary raw materials, and the surroundings or reference environment. The economic environment refers to the upfront installation and operational costs in addition to market prices. In a purely thermodynamic exergy analysis, the exergetic cost may be determined from the physical environment alone and describes the necessary exergy for production to occur. To improve or optimize a system, system efficiency must be balanced with economics to make NHES more competitive and further their development. C1 [Boldon, Lauren; Liu, Li (Emily)] Rensselaer Polytech Inst, Troy, NY USA. [Sabharwall, Piyush] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Boldon, L (reprint author), Rensselaer Polytech Inst, Troy, NY USA. NR 7 TC 0 Z9 0 U1 4 U2 6 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 8 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300002 ER PT B AU Hawkes, GL Sterbentz, JW Pham, BT AF Hawkes, Grant L. Sterbentz, James W. Pham, Binh T. GP ASME TI SENSITIVITY EVALUATION OF THE DAILY THERMAL PREDICTIONS OF THE AGR-2 EXPERIMENT IN THE ADVANCED TEST REACTOR SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div AB A temperature sensitivity evaluation has been performed for an individual test capsule in the AGR-2 TRISO particle fuel experiment. The AGR-2 experiment is the second in a series of fueled test experiments for TRISO coated fuel particles run in the Advanced Test Reactor at the Idaho National Laboratory. A series of cases were compared to a base case by varying different input parameters in an ABAQUS finite element thermal model. Most input parameters were varied by +/- 10%, with one parameter +/- 20%, to show the temperature sensitivity to each parameter. The most sensitive parameters were the outer control gap distance, heat rate in the fuel compacts, and neon gas fraction. The thermal conductivity of the fuel compacts and thermal conductivity of the graphite holder were of moderate sensitivity. The least sensitive parameters were the emissivities of the stainless steel and graphite, along with gamma heat rate in the non -fueled components. Sensitivity calculations were also performed for the fast neutron fluence, which showed a general, but minimal, temperature rise with increasing fluence. C1 [Hawkes, Grant L.; Sterbentz, James W.; Pham, Binh T.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Hawkes, GL (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 9 TC 0 Z9 0 U1 2 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 9 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300012 ER PT B AU Mohamed, W Roh, HS Hofman, G Medvedev, PG AF Mohamed, Walid Roh, Hee Seok Hofman, Gerard Medvedev, Pavel G. GP ASME TI IMPACT OF MECHANICAL CONSTRAINTS ON THE IRRADIATION PERFORMANCE OF U10MO MONOLITHIC MINI-PLATES SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div DE Monolithic Fuel Plate; U10Mo; Irradiation; Mechanical constraints; Finite Element Analysis ID FUEL AB For the conversion of high performance research reactors to low enrichment Uranium fuel, U-Mo alloy based fuels in monolithic form were proposed. These plate-type fuels consist of a high uranium density, low enrichment uranium (LEU) foil contained within a diffusion barrier, and encapsulated within a cladding. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance have been evaluated. In this work, the effects of mechanical constraints on the thermo-mechanical behavior of a plate were studied. To evaluate these effects, a selected plate from RERTR-12 experiments (Plate L1P756) was simulated. Four distinct cases which represent four distinct welding conditions were considered. Evaluation of the stress-strain fields in the fuel elements revealed that mechanical constraints may impact the plate's performance. These constraints include (a) inlet side, (b) outlet side, (c) both inlet and outlet sides; and finally, (d) entire long edges. Results of these cases were then compared with the ideal case. The peak stress-strain magnitudes, displacement, stress and strain profiles on the fuel elements are evaluated to make a comparative assessment. The results indicated that the cases with constraints on "inlet side only" and "outlet side only" yielded lower cladding strains compared with other cases. The difference on the displacement profiles on the fuel foil was not significant. Peak stresses on the foil did not change considerably. These results imply that the mechanical constraints effects peak cladding strains, while it does not cause significant effects on the fuel behavior. C1 [Mohamed, Walid; Roh, Hee Seok; Hofman, Gerard] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Medvedev, Pavel G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Mohamed, W (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wmohamed@anl.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 13 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300008 ER PT B AU Moisseytsev, A Sienicki, JJ AF Moisseytsev, Anton Sienicki, James J. GP ASME TI LESSONS LEARNED AND IMPROVEMENTS IN ANL PLANT DYNAMICS CODE SIMULATION OF EXPERIMENTAL S-CO2 LOOPS SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div AB Validation of the ANL Plant Dynamics Code with the experimental data from integral S-CO2 cycle facilities has been continued. Several code modifications as well as modeling approaches and assumptions were introduced to improve both the code's capabilities in modeling the experimental loops and the agreement of the code prediction with the experimental data. The lessons learned from the code improvement and modeling experience important for the validation of the codes with the experimental data from small-scale integral loops are presented. C1 [Moisseytsev, Anton; Sienicki, James J.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Moisseytsev, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 12 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300003 ER PT B AU Ozaltun, H Medvedev, P AF Ozaltun, Hakan Medvedev, Pavel GP ASME TI EFFECTS OF THE SHAPE OF THE FOIL CORNERS ON THE IRRADIATION PERFORMANCE OF U10MO ALLOY BASED MONOLITHIC MINI-PLATES SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div DE Monolithic Fuel Plate; U10Mo; Irradiation; Sensitivity; Foil corners; Finite Element Analysis ID FUEL AB Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These fuel elements are comprised of a high density, low enrichment, U-Mo alloy based fuel foil, sandwiched between Zirconium liners and encapsulated in Aluminum cladding. The use of a high density fuel in a foil form presents a number of fabrication and operational concerns, such as: foil centering, flatness of the foil, fuel thickness variation, geometrical tilting, foil corner shape etc. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance have been evaluated. As a part of these series of sensitivity studies, the shape of the foil corners were studied. To understand the effects of the corner shapes of the foil on thermo-mechanical performance of the plates, a behavioral model was developed for a selected plate from RERTR-12 experiments (Plate L1P785). Both fabrication and irradiation processes were simulated. Once the thermo-mechanical behavior the plate is understood for the nominal case, the simulations were repeated for two additional corner shapes to observe the changes in temperature, displacement and stress-strain fields. The results from the fabrication simulations indicated that the foil corners do not alter the post-fabrication stress-strain magnitudes. Furthermore, the irradiation simulations revealed that post-fabrication stresses of the foil would be relieved very quickly in operation. While, foils with chamfered and filleted corners yielded stresses with comparable magnitudes, they are slightly lower in magnitudes, and provided a more favorable mechanical response compared with the foil with sharp corners. C1 [Ozaltun, Hakan; Medvedev, Pavel] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Ozaltun, H (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM hakan.ozaltun@inl.gov NR 18 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 14 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300007 ER PT B AU Sienicki, JJ Moisseytsev, A Krajtl, L AF Sienicki, James J. Moisseytsev, Anton Krajtl, Lubomir GP ASME TI A SUPERCRITICAL CO2 BRAYTON CYCLE POWER CONVERTER FOR A SODIUM-COOLED FAST REACTOR SMALL MODULAR REACTOR SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div AB Although a number of power conversion applications have been identified or have even been developed (e.g., waste heat recovery) for supercritical carbon dioxide (S-CO2) cycles including fossil fuel combustors, concentrated solar power (i.e., solar power towers), and marine propulsion, the benefits of S-CO2 Brayton cycle power conversion are especially prominent for applications to nuclear power reactors. In particular, the S-CO2 Brayton cycle is well matched to the Sodium-Cooled Fast Reactor (SFR) nuclear power reactor system and offers significant benefits for SFRs. The recompression closed Brayton cycle is highly recuperated and wants to operate with an approximate optimal S-CO2 temperature rise in the sodium-to-CO2 heat exchangers of about 150 degrees C which is well matched to the sodium temperature rise through the core that is also about 150 degrees C. Use of the S-CO2 Brayton cycle eliminates sodium-water reactions and can reduce the nuclear power plant cost per unit electrical power. A conceptual design of an optimized S-CO2 Brayton cycle power converter and supporting systems has been developed for the Advanced Fast Reactor - 100 (AFR-100) 100 MWe-class (250 MWt) SFR Small Modular Reactor (SMR). The AFR-100 is under ongoing development at Argonne National Laboratory (ANL) to target emerging markets where a clean, secure, and stable source of electricity is required but a large-scale power plant cannot be accommodated. The S-CO2 Brayton cycle components and cycle conditions were optimized to minimize the power plant cost per unit electrical power (i.e., $/kWe). For a core outlet temperature of 550 degrees C and turbine inlet temperature of 517 degrees C, a cycle efficiency of 42.3 % is calculated that exceeds that obtained with a traditional superheated steam cycle by one percentage point or more. A normal shutdown heat removal system incorporating a pressurized pumped S-CO2 loop slightly above the critical pressure on each of the two intermediate sodium loops has been developed to remove heat from the reactor when the power converter is shut down. Three-dimensional layouts of S-CO2 Brayton cycle power converter and shutdown heat removal components and piping have been determined and three-dimensional CAD drawings prepared. The S-CO2 Brayton cycle power converter is found to have a small footprint reducing the space requirements for components and systems inside of both the turbine generator building and reactor building. The results continue to validate earlier notions about the benefits of S-CO2 Brayton cycle power conversion for SFRs including higher efficiency, improved economics, elimination of sodium-water reactions, load following, and smaller footprint. C1 [Sienicki, James J.; Moisseytsev, Anton; Krajtl, Lubomir] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Sienicki, JJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 4 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 10 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300004 ER PT B AU Wen, HM Van Rooyen, IJ Hill, CM Trowbridge, TL Coryell, BD AF Wen, Haiming Van Rooyen, Isabella J. Hill, Connie M. Trowbridge, Tammy L. Coryell, Ben D. GP ASME TI FISSION PRODUCTS DISTRIBUTION IN TRISO COATED FUEL PARTICLES IRRADIATED TO 3.22 X 10(21) N/CM2 FAST FLUENCE AT 1092 degrees C SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div DE TRISO fuel particles; irradiation; fission product; transport ID RELEASE AB Mechanisms by which fission products (especially silver [Ag]) migrate across the coating layers of tristructural isotropic (TRISO) coated fuel particles designed for next generation nuclear reactors have been the subject of a variety of research activities due to the complex nature of the migration mechanisms. This paper presents results obtained from the electron microscopic examination of selected irradiated TRISO coated particles from fuel compact 1-3-1 irradiated in the first Advanced Gas Reactor experiment (AGR-1) that was performed as part of the Next Generation Nuclear Plant (NGNP) project. It is of specific interest to study particles of this compact as they were fabricated using a different carrier gas composition ratio for the SiC layer deposition compared with the baseline coated fuel particles reported on previously. Basic scanning electron microscopy (SEM) and SEM montage investigations of the particles indicate a correlation between the distribution of fission product precipitates and the proximity of the inner pyrolytic carbon (IPyC)-silicon carbide (SiC) interface to the fuel kernel. Transmission electron microscopy (TEM) samples were sectioned by focused ion beam (FIB) technique from the IPyC layer, the SiC layer and the IPyC-SiC interlayer of the coated fuel particle. Detailed TEM and scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectroscopy (EDS) were performed to identify fission products and characterize their distribution across the IPyC and SiC layers in the areas examined. Results indicate the presence of palladium-silicon uranium (Pd-Si-U), Pd-Si, Pd-U, Pd, U, U-Si precipitates in the SiC layer and the presence of Pd-Si-U, Pd-Si, U-Si, U precipitates in the IPyC layer. No Ag-containing precipitates are evident in the IPyC or SiC layers. With increased distance from the IPyC-SiC interface, there are less U-containing precipitates, however, such precipitates are present across nearly the entire SiC layer. C1 [Wen, Haiming; Van Rooyen, Isabella J.; Hill, Connie M.; Trowbridge, Tammy L.; Coryell, Ben D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Van Rooyen, IJ (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM isabella.vanrooyen@inl.gov RI Wen, Haiming/B-3250-2013 OI Wen, Haiming/0000-0003-2918-3966 NR 16 TC 0 Z9 0 U1 1 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 13 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300010 ER PT B AU Wright, J Ozaltun, H AF Wright, Jill Ozaltun, Hakan GP ASME TI EFFECTS OF THE FOIL CENTERING ON THE IRRADIATION PERFORMANCE OF U10MO ALLOY BASED MONOLITHIC MINI-PLATES SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015 LA English DT Proceedings Paper CT American-Society-of-Mechanical-Engineers Nuclear Forum CY JUN 28-JUL 02, 2015 CL San Diego, CA SP ASME, Nucl Engn Div DE Monolithic Fuel Plate; U10Mo; Irradiation; Sensitivity; Foil centering; Finite Element Analysis ID FUEL; BEHAVIOR AB Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These plate-type fuels consist of a high uranium density LEU foil contained within diffusion barriers and encapsulated within a cladding material. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance have been evaluated. For this work, the effects of fuel foil centering on the thermo-mechanical performance of the mini-plates were studied. To evaluate these effects, a selected plate from RERTR-12 experiments, the Plate L1P756, was considered. The fuel foil was moved within the fuel plate to study the effects of the fuel centering on stress, strain and overall shape of the fuel elements. The thickness of the fuel foil, thickness of the Zr-liners and total thickness of the plate were held constant, except the centerline alignment of the fuel foil. For this, the position, of the fuel foil was varied from the center position to a maximum offset corresponding to the minimum allowable aluminum cladding thickness of 0.1524 mm. Results for various offset cases were then compared to each other and to the ideal case of a centered fuel foil. Fabrication simulations indicated that the thermal expansion mismatch results in warping of the fuel plate during fabrication as the fuel plate is cooled from the HIP temperature when the fuel is not centered. Even if the model is constrained during cooling to simulate the rigid HIP can surrounding the fuel plate during cooling, warping is observed when the constraint is removed. Similarly, irradiation simulations revealed that the fuel offset causes virtually all irradiation-induced swelling to occur on the thin-cladding side of the plate. This is observed even for the smallest offset that was considered. The total magnitude of the swelling is approximately same for all offsets values. C1 [Wright, Jill; Ozaltun, Hakan] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Wright, J (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM jill.wright@ird.gov NR 24 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5686-4 PY 2016 PG 10 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BE4FQ UT WOS:000371649300009 ER PT J AU Xu, XF Goswami, S Gulledge, J Wullschleger, SD Thornton, PE AF Xu, Xiaofeng Goswami, Santonu Gulledge, Jay Wullschleger, Stan D. Thornton, Peter E. TI Interdisciplinary research in climate and energy sciences SO WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT LA English DT Review ID BUDGETS; CARBON AB Due to the complex nature of climate change, interdisciplinary research approaches involving knowledge and skills from a broad range of disciplines have been adopted for studying changes in the climate system as well as strategies for mitigating climate change (i.e., greenhouse gas emissions reductions) and adapting to its impacts on society and natural systems. Harnessing of renewable energy sources to replace fossil fuels is widely regarded as a long-term mitigation strategy that requires the synthesis of knowledge from engineering, technology, and natural and social sciences. In this study, we examine how the adoption of interdisciplinary approaches has evolved over time and in different geographic regions. We conducted a comprehensive literature survey using an evaluation matrix of keywords, in combination with a word cloud analysis, to evaluate the spatiotemporal dynamics of scholarly discourse about interdisciplinary approaches to climate change and renewable energy research and development (R&D). Publications that discuss interdisciplinary approaches to climate change and renewable energy have substantially increased over the last 60 years; it appears, however, that the nature, timing, and focus of these publications vary across countries and through time. Over the most recent three decades, the country-level contribution to interdisciplinary research for climate change has become more evenly distributed, but this was not true for renewable energy research, which remained dominated by the United Sates and a few other major economies. The research topics have also evolved: Water resource management was emphasized from 1990s to 2000s, policy and adaptation were emphasized from the 2000s to 2010-2013, while vulnerability became prominent during the most recent years (2010-2013). Our analysis indicates that the rate of growth of interdisciplinary research for renewable energy lags behind that for climate change, possibly because knowledge emanating from climate change science has motivated the subsequent upswing in renewable energy R&D. (C) 2015 The Authors. WIREs Energy and Environment published by John Wiley & Sons, Ltd. C1 [Xu, Xiaofeng; Goswami, Santonu; Gulledge, Jay; Wullschleger, Stan D.; Thornton, Peter E.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Xu, Xiaofeng; Goswami, Santonu; Gulledge, Jay; Wullschleger, Stan D.; Thornton, Peter E.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Xu, Xiaofeng] Univ Texas El Paso, Dept Biol Sci, El Paso, TX 79968 USA. RP Xu, XF; Goswami, S (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.; Xu, XF; Goswami, S (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA.; Xu, XF (reprint author), Univ Texas El Paso, Dept Biol Sci, El Paso, TX 79968 USA. EM xxu2@utep.edu; goswamis@ornl.gov RI Wullschleger, Stan/B-8297-2012; Xu, Xiaofeng/B-2391-2008; OI Wullschleger, Stan/0000-0002-9869-0446; Xu, Xiaofeng/0000-0002-6553-6514; Gulledge, Jay/0000-0002-9779-8690; Thornton, Peter/0000-0002-4759-5158 FU DOE [DE-AC05-00OR22725] FX We thank Drs Virginia Dale, Rebecca A. Efroymson, Yetta Jager, and Bruce Tonn at Oak Ridge National Laboratory for their constructive comments and Ms Amy Harkey at Oak Ridge National Laboratory for editing the language. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. NR 37 TC 1 Z9 1 U1 3 U2 7 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-8396 EI 2041-840X J9 WIRES ENERGY ENVIRON JI Wiley Interdiscip. Rev. Energy Environ. PD JAN-FEB PY 2016 VL 5 IS 1 BP 49 EP 56 DI 10.1002/wene.180 PG 8 WC Energy & Fuels SC Energy & Fuels GA DF6SC UT WOS:000371485600005 ER PT J AU Stupak, I Joudrey, J Smith, CT Pelkmans, L Chum, H Cowie, A Englund, O Goh, CS Junginger, M AF Stupak, Inge Joudrey, Jamie Smith, C. Tattersall Pelkmans, Luc Chum, Helena Cowie, Annette Englund, Oskar Goh, Chun Sheng Junginger, Martin TI A global survey of stakeholder views and experiences for systems needed to effectively and efficiently govern sustainability of bioenergy SO WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT LA English DT Review ID FOREST CERTIFICATION; ROUND-TABLE; PALM OIL; STANDARDS; MARKET; LEGITIMACY; BIOMASS; BIODIVERSITY; CHALLENGES; BIOFUELS AB Different governance mechanisms have emerged to ensure biomass and bioenergy sustainability amidst a myriad of related public and private regulations that have existed for decades. We conducted a global survey with 59 questions which examined 192 stakeholders' views and experiences related to (1) the multi-leveled governance to which they are subjected, (2) the impacts of that governance on bioenergy production and trade, and (3) the most urgent areas for improvement of certification schemes. The survey revealed significant support along the whole supply chain for new legislation which uses market-based certification schemes to demonstrate compliance (co-regulation). Some respondents did not see a need for new regulation, and meta-standards is a promising approach for bridging divergent views, especially if other proof than certification will be an option. Most respondents had so far experienced positive or neutral changes to their bioenergy production or trade after the introduction of new sustainability governance. Legislative requirements and a green business profile were important motivations for getting certified, while lack of market advantages, administrative complexity and costs all were barriers of varying importance. A need to include, e.g., regular standard revision and dealing with conflicting criteria was identified by respondents associated with bioenergy schemes. Respondents associated with forestry schemes saw less need for revisions, but some were interested in supply chain sustainability criteria. Significant differences among schemes suggest it is crucial in the future to examine the tradeoffs between certification costs, schemes' inclusiveness, the quality of their substantive and procedural rules, and the subsequent effectiveness on-the-ground. (C) 2015 John Wiley & Sons, Ltd. C1 [Stupak, Inge] Univ Copenhagen, Fac Sci, Dept Geosci & Nat Resource Management, Copenhagen, Denmark. [Joudrey, Jamie] Univ Toronto, Fac Forestry, Toronto, ON, Canada. [Smith, C. Tattersall] Univ Toronto, Dept Geog, Toronto, ON M5S 1A1, Canada. [Pelkmans, Luc] VITO NV, Unit Separat & Convers Proc, Mol, Belgium. [Chum, Helena] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. [Cowie, Annette] Univ New England, NSW Dept Primary Ind, Armidale, NSW, Australia. [Englund, Oskar] Chalmers, Dept Energy & Environm, Div Phys Resource Theory, S-41296 Gothenburg, Sweden. [Goh, Chun Sheng; Junginger, Martin] Univ Utrecht, Copernicus Inst Sustainable Dev, Energy & Resources, Utrecht, Netherlands. RP Stupak, I (reprint author), Univ Copenhagen, Fac Sci, Dept Geosci & Nat Resource Management, Copenhagen, Denmark. EM ism@ign.ku.dk RI Goh, Chun Sheng/K-3364-2012; Junginger, Martin/A-2687-2009; OI Junginger, Martin/0000-0002-5010-2051; Englund, Oskar/0000-0002-1662-6951 FU IEA Bioenergy Executive Committee; Nordic Energy Research (ENERWOODS); EUDP program under the Danish Energy Agency FX The authors gratefully acknowledge the IEA Bioenergy Executive Committee for providing funding to make the project possible, and the Nordic Energy Research (ENERWOODS) and the EUDP program under the Danish Energy Agency for supporting the work with supplementary funding. We sincerely thank the key organizations that generously prioritized giving us very helpful feedback for improving the survey design and questions. FSC, PEFC, and the INBIOM network kindly published the invitation to participate in their newsletters, and colleagues provided us with relevant contacts from their networks. Torben Martinussen, University of Copenhagen, was indispensable in providing statistical advice and feedback and suggestions from two anonymous reviewers were greatly appreciated and helped improve the paper. Finally, we would especially like to thank the respondents of the survey, for providing thoughtful and engaging answers, and helping to move the discussion beyond the identification of the challenges, toward solutions. NR 94 TC 0 Z9 0 U1 2 U2 10 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-8396 EI 2041-840X J9 WIRES ENERGY ENVIRON JI Wiley Interdiscip. Rev. Energy Environ. PD JAN-FEB PY 2016 VL 5 IS 1 BP 89 EP 118 DI 10.1002/wene.166 PG 30 WC Energy & Fuels SC Energy & Fuels GA DF6SC UT WOS:000371485600008 ER PT S AU Creutz, M AF Creutz, Michael BE Andrianov, A Brambilla, N Kim, V Kolevatov, S TI Gauge field topology and the hadron spectrum SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th Conference on Quark Confinement and Hadron Spectrum CY SEP 08-12, 2014 CL Saint Petersburg, RUSSIA SP Saint Petersburg State Univ DE gauge fields; topology; chiral anomalies ID SYMMETRY-BREAKING; CHIRAL-SYMMETRY; LATTICE; INSTANTONS; BEHAVIOR; QUARKS; U(1); MASS AB Topologically non-trivial gauge field configurations are an interesting aspect of non-abelian gauge theories. These become particularly important upon quantizing the theory, especially through their effect on the pseudo-scalar spectrum. These effects are closely tied to chiral anomalies and the possibility of CP violation in the strong interactions. C1 [Creutz, Michael] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Creutz, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 26 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1348-1 J9 AIP CONF PROC PY 2016 VL 1701 AR 020008 DI 10.1063/1.4938597 PG 11 WC Physics, Applied SC Physics GA BE4FZ UT WOS:000371663500008 ER PT S AU Gursoy, U Kharzeev, D Rajagopal, K AF Gursoy, Umut Kharzeev, Dmitri Rajagopal, Krishna BE Andrianov, A Brambilla, N Kim, V Kolevatov, S TI Magnetohydrodynamics and charge identified directed flow in heavy ion collisions SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th Conference on Quark Confinement and Hadron Spectrum CY SEP 08-12, 2014 CL Saint Petersburg, RUSSIA SP Saint Petersburg State Univ AB Strong magnetic fields produced in any non-central heavy ion collision are expected to affect the dynamics of the hot QCD matter produced in this collision. The magnetic field is time -dependent and the medium is expanding, which leads to the induction of charged currents due to the combination of Faraday and Hall effects. We study the imprint the magnetic fields produced in non-central heavy ion collisions leave on the azimuthal distributions and correlations of the produced charged hadrons by employing an analytic solution to hydrodynamics combined with the electromagnetic effects in a perturbative fashion. We use the Cooper-Frye freeze-out procedure on an isothermal freeze-out surface to obtain the azimuthal hadron distributions. We find that the charged currents induced by the present of the electromagnetic fields result in a charge -dependent directed flow v(1) that is odd in rapidity and odd under charge exchange. It can be detected by measuring correlations between the directed flow of charged hadrons at different rapidities, < v(1)(-/+) (y(1))v(1)(-/+)(y(2)))>. C1 [Gursoy, Umut] Univ Utrecht, Inst Theoret Phys, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands. [Kharzeev, Dmitri] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kharzeev, Dmitri] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Rajagopal, Krishna] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. RP Gursoy, U (reprint author), Univ Utrecht, Inst Theoret Phys, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands. NR 32 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1348-1 J9 AIP CONF PROC PY 2016 VL 1701 AR 030006 DI 10.1063/1.4938612 PG 8 WC Physics, Applied SC Physics GA BE4FZ UT WOS:000371663500023 ER PT S AU Kim, S Petreczky, P Rothkopf, A AF Kim, Seyong Petreczky, Peter Rothkopf, Alexander BE Andrianov, A Brambilla, N Kim, V Kolevatov, S TI Lattice NRQCD study on in-medium bottomonium spectra using a novel Bayesian reconstruction approach SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th Conference on Quark Confinement and Hadron Spectrum CY SEP 08-12, 2014 CL Saint Petersburg, RUSSIA SP Saint Petersburg State Univ DE Bottomonium; Lattice QCD; NRQCD; Finite-temperature ID HEAVY QUARKONIUM; BOUND-STATES; QCD; SUPPRESSION; EQUATION; PLASMA AB We present recent results on the in-medium modification of S- and P -wave bottomonium states around the deconfinement transition. Our study uses lattice QCD with Nf = 2+ 1 light quark flavors to describe the non-perturbative thermal QCD medium between 140MeV< T < 249MeV and deploys lattice regularized non-relativistic QCD (NRQCD) effective field theory to capture the physics of heavy quark bound states immersed therein. The spectral functions of the S-3(1) (T) and P-3(1) (xbi) bottomonium states are extracted from Euclidean time Monte Carlo simulations using a novel Bayesian prescription, which provides higher accuracy than the Maximum Entropy Method. Based on a systematic comparison of interacting and free spectral functions we conclude that the ground states of both the S -wave (T) and P -wave (xbi) channel survive up to T = 249MeV. Stringent upper limits on the size of the in -medium modification of bottomonium masses and widths are provided. C1 [Kim, Seyong] Sejong Univ, Dept Phys, Seoul 143747, South Korea. [Petreczky, Peter] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Rothkopf, Alexander] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. RP Kim, S (reprint author), Sejong Univ, Dept Phys, Seoul 143747, South Korea. NR 39 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1348-1 J9 AIP CONF PROC PY 2016 VL 1701 AR 060017 DI 10.1063/1.4938680 PG 8 WC Physics, Applied SC Physics GA BE4FZ UT WOS:000371663500091 ER PT S AU Nebreda, J Carraseo, JA Londergan, JT Pelaez, JR Szczepaniak, AP AF Nebreda, J. Carraseo, J. A. Londergan, J. T. Pelaez, J. R. Szczepaniak, A. P. BE Andrianov, A Brambilla, N Kim, V Kolevatov, S TI Regge trajectories of ordinary and non-ordinary mesons from their scattering poles SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th Conference on Quark Confinement and Hadron Spectrum CY SEP 08-12, 2014 CL Saint Petersburg, RUSSIA SP Saint Petersburg State Univ DE Regge Theory; Light scalar mesons AB Our results on obtaining the Regge trajectory of a resonance from its pole in a scattering process and from analytic constraints in the complex angular momentum plane are presented. The method, suited for resonances that dominate au elastic scattering amplitude, has been applied to the rho(770), f(2)(1270), f(2)(1525) and f(0)(500) resonances. Whereas for the first three we obtain linear Regge trajectories, characteristic of ordinary quark-antiquark states, for the latter we find a nonlinear trajectory with a much smaller slope at the resonance mass. We also show that if a linear trajectory with a slope of typical size is imposed for the f(0)(500), the corresponding amplitude is at odds with the data. This provides a strong indication of the non-ordinary nature of the sigma meson. C1 [Nebreda, J.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Nebreda, J.; Londergan, J. T.; Szczepaniak, A. P.] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA. [Nebreda, J.; Londergan, J. T.; Szczepaniak, A. P.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Nebreda, J.; Carraseo, J. A.; Pelaez, J. R.] Univ Complutense Madrid, Dept Fis Teor 2, E-28040 Madrid, Spain. [Szczepaniak, A. P.] Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. RP Nebreda, J (reprint author), Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. NR 16 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1348-1 J9 AIP CONF PROC PY 2016 VL 1701 AR 040015 DI 10.1063/1.4938632 PG 6 WC Physics, Applied SC Physics GA BE4FZ UT WOS:000371663500043 ER PT S AU Prelovsek, S Lang, CB Leskovec, L Mohler, D AF Prelovsek, Sasa Lang, C. B. Leskovec, Luka Mohler, Daniel BE Andrianov, A Brambilla, N Kim, V Kolevatov, S TI Lattice QCD simulations of the Z(c)(+) channel SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th Conference on Quark Confinement and Hadron Spectrum CY SEP 08-12, 2014 CL Saint Petersburg, RUSSIA SP Saint Petersburg State Univ DE charmonium-like states; lattice QCD; tetraquark ID GAUGE-THEORY AB We discuss the lattice QCD simulations that search for the Z(c)(+) with the unconventional quark content (c) over barc (d) over baru in the channel I-G(J(PC)) = 1(+)(1(+-)). The major challenge is due to the two-meson states J/psi pi, psi(2S)pi, psi(1D)pi, D (D) over bar*, D*(D) over bar*, eta(c)rho that are also inevitably present in this channel. The available lattice simulations find expected two-meson eigenstates, but no additional eigenstate as a candidate for Z(c)(+). This is in a striking contrast to the lattice results in the flavour non-exotic channels, where additional states are found in relation to most of the known resonances and bound states. C1 [Prelovsek, Sasa] Univ Ljubljana, Dept Phys, Jadranska 19, Ljubljana 1000, Slovenia. [Lang, C. B.] Graz Univ, Inst Phys, A-8010 Graz, Austria. [Prelovsek, Sasa; Leskovec, Luka] Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia. [Mohler, Daniel] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Prelovsek, S (reprint author), Univ Ljubljana, Dept Phys, Jadranska 19, Ljubljana 1000, Slovenia.; Prelovsek, S (reprint author), Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia. NR 22 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1348-1 J9 AIP CONF PROC PY 2016 VL 1701 AR 050012 DI 10.1063/1.4938652 PG 6 WC Physics, Applied SC Physics GA BE4FZ UT WOS:000371663500063 ER PT S AU Bajt, S Prasciolu, M Morgan, AJ Chapman, HN Krzywinski, J Andrejczuk, A AF Bajt, Sasa Prasciolu, Mauro Morgan, Andrew J. Chapman, Henry N. Krzywinski, Jacek Andrejczuk, Andrzej BE DeJonge, MD Paterson, DJ Ryan, CG TI One Dimensional Focusing with High Numerical Aperture Multilayer Laue Lens SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Conference on X-Ray Microscopy CY OCT 26-31, 2014 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Bruker, Xradia HO Australian Synchrotron ID FABRICATION AB Multilayer Laue lenses (MLLs) capitalize on the developments in multilayer deposition technologies for fabricating reflective coatings, specifically undertaken for EUV lithography, where layer thicknesses of several nanometers can be achieved. MLLs are deposited layer by layer, with their thicknesses following the zone plate law, and then pieces are sliced and extracted for use in focusing. Rays are reflected in the Laue geometry. The efficiency of a MLL can be very high, and is maximized by making the slice equal to about a half Pendellosung period so that most energy is transferred from the undiffracted to the diffracted beam, and by ensuring that the Bragg condition is met at each point in the zone plate. This latter condition requires that the layers are tilted to the beam by an amount that varies with layer position; e.g. for focusing a collimated beam, the layers should be normal to a cylinder of radius of twice the focal length. We have fabricated such tilted-zone MLLs and find that they exhibit improved efficiency across their entire pupil as compared with parallel-zone MLLs. This leads to a higher effective NA of the optic and hence higher resolution. C1 [Bajt, Sasa; Prasciolu, Mauro] DESY, Photon Sci, Notkestr 85, D-22607 Hamburg, Germany. [Morgan, Andrew J.; Chapman, Henry N.] DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany. [Chapman, Henry N.] Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22607 Hamburg, Germany. [Chapman, Henry N.] Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22607 Hamburg, Germany. [Krzywinski, Jacek] SLAC, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Andrejczuk, Andrzej] Univ Bialystok, Fac Phys, K Ciolkowskiego 1L, PL-15245 Bialystok, Poland. RP Bajt, S (reprint author), DESY, Photon Sci, Notkestr 85, D-22607 Hamburg, Germany. EM sasa.bajt@desy.de RI Andrejczuk, Andrzej/B-4031-2013 OI Andrejczuk, Andrzej/0000-0001-9736-6321 NR 11 TC 0 Z9 0 U1 4 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1343-6 J9 AIP CONF PROC PY 2016 VL 1696 AR 020049 DI 10.1063/1.4937543 PG 6 WC Microscopy; Physics, Applied SC Microscopy; Physics GA BE4GB UT WOS:000371671300049 ER PT S AU Chang, H Cummings, M Shirato, N Stripe, B Rosenmann, D Preissner, C Freeland, JW Kersell, H Hla, SW Rose, V AF Chang, Hao Cummings, Marvin Shirato, Nozomi Stripe, Benjamin Rosenmann, Daniel Preissner, Curt Freeland, John W. Kersell, Heath Hla, Saw-Wai Rose, Volker BE DeJonge, MD Paterson, DJ Ryan, CG TI Ultra-High Vacuum Compatible Optical Chopper System for Synchrotron X-ray Scanning Tunneling Microscopy SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Conference on X-Ray Microscopy CY OCT 26-31, 2014 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Bruker, Xradia HO Australian Synchrotron ID RADIATION AB High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM. C1 [Chang, Hao; Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W.; Rose, Volker] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Chang, Hao; Kersell, Heath; Hla, Saw-Wai] Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA. [Rosenmann, Daniel; Kersell, Heath; Hla, Saw-Wai; Rose, Volker] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Chang, H; Rose, V (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA.; Chang, H (reprint author), Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA.; Rose, V (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hc000211@ohio.edu; vrose@anl.gov RI Rose, Volker/B-1103-2008 OI Rose, Volker/0000-0002-9027-1052 NR 18 TC 0 Z9 0 U1 3 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1343-6 J9 AIP CONF PROC PY 2016 VL 1696 AR 020001 DI 10.1063/1.4937495 PG 4 WC Microscopy; Physics, Applied SC Microscopy; Physics GA BE4GB UT WOS:000371671300001 ER PT S AU Chen, S Paunesku, T Yuan, Y Deng, J Jin, Q Hong, YP Vine, DJ Lai, B Flachenecker, C Hornberger, B Brister, K Jacobsen, C Woloschak, GE Vogt, S AF Chen, S. Paunesku, T. Yuan, Y. Deng, J. Jin, Q. Hong, Y. P. Vine, D. J. Lai, B. Flachenecker, C. Hornberger, B. Brister, K. Jacobsen, C. Woloschak, G. E. Vogt, S. BE DeJonge, MD Paterson, DJ Ryan, CG TI 2D/3D Cryo X-ray Fluorescence Imaging at the Bionanoprobe at the Advanced Photon Source SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Conference on X-Ray Microscopy CY OCT 26-31, 2014 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Bruker, Xradia HO Australian Synchrotron ID EPIDERMAL-GROWTH-FACTOR; NUCLEAR-LOCALIZATION; MICROSCOPY; RECEPTOR AB Trace elements, particularly metals, play very important roles in biological systems. Synchrotron-based hard X-ray fluorescence microscopy offers the most suitable capabilities to quantitatively study trace metals in thick biological samples, such as whole cells and tissues. In this manuscript, we have demonstrated X-ray fluorescence imaging of frozen-hydrated whole cells using the recent developed Bionanoprobe (BNP). The BNP provides spatial resolution down to 30 nm and cryogenic capabilities. Frozen-hydrated biological cells have been directly examined on a sub-cellular level at liquid nitrogen temperatures with minimal sample preparation. C1 [Chen, S.; Vine, D. J.; Lai, B.; Jacobsen, C.; Vogt, S.] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Paunesku, T.; Yuan, Y.; Woloschak, G. E.; Vogt, S.] Northwester Univ, Dept Radiat Oncol, Chicago, IL 60611 USA. [Deng, J.; Jacobsen, C.] Northwestern Univ, Appl Phys, Evanston, IL 60208 USA. [Jin, Q.; Hong, Y. P.; Jacobsen, C.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Flachenecker, C.; Hornberger, B.] Carl Zeiss Xray Microscopy, Pleasanton, CA 94588 USA. [Brister, K.] Northwestern Univ, Synchrotron Res Ctr, Argonne, IL 60439 USA. [Jacobsen, C.] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA. RP Chen, S (reprint author), Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. EM sichen@aps.anl.gov RI Vogt, Stefan/J-7937-2013; Jacobsen, Chris/E-2827-2015; Paunesku, Tatjana/A-3488-2017; Woloschak, Gayle/A-3799-2017 OI Vogt, Stefan/0000-0002-8034-5513; Jacobsen, Chris/0000-0001-8562-0353; Paunesku, Tatjana/0000-0001-8698-2938; Woloschak, Gayle/0000-0001-9209-8954 NR 16 TC 0 Z9 0 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1343-6 J9 AIP CONF PROC PY 2016 VL 1696 AR 020028 DI 10.1063/1.4937522 PG 5 WC Microscopy; Physics, Applied SC Microscopy; Physics GA BE4GB UT WOS:000371671300028 ER PT S AU Deng, J Vine, DJ Chen, S Nashed, YSG Jin, Q Peterka, T Vogt, S Jacobsen, C AF Deng, J. Vine, D. J. Chen, S. Nashed, Y. S. G. Jin, Q. Peterka, T. Vogt, S. Jacobsen, C. BE DeJonge, MD Paterson, DJ Ryan, CG TI Advances and challenges in cryo ptychography at the Advanced Photon Source SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Conference on X-Ray Microscopy CY OCT 26-31, 2014 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Bruker, Xradia HO Australian Synchrotron DE ptychography; cryogenic sample; parallel computation; fly scan; 3D ptychography ID RAY-DIFFRACTION MICROSCOPY; COMPUTED-TOMOGRAPHY; RESOLUTION; NANOTOMOGRAPHY AB Ptychography has emerged as a nondestructive tool to quantitatively study extended samples at a high spatial resolution. In this manuscript, we report on recent developments from our team. We have combined cryo ptychography and fluorescence microscopy to provide simultaneous views of ultrastructure and elemental composition, we have developed multi-GPU parallel computation to speed up ptychographic reconstructions, and we have implemented fly-scan ptychography to allow for faster data acquisition. We conclude with a discussion of future challenges in high-resolution 3D ptychography. C1 [Deng, J.] Northwestern Univ, Appl Phys, Evanston, IL 60208 USA. [Vine, D. J.; Chen, S.; Vogt, S.; Jacobsen, C.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Nashed, Y. S. G.; Peterka, T.] Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Jacobsen, C.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Jacobsen, C.] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA. RP Deng, J (reprint author), Northwestern Univ, Appl Phys, Evanston, IL 60208 USA. RI Vogt, Stefan/J-7937-2013; Jacobsen, Chris/E-2827-2015 OI Vogt, Stefan/0000-0002-8034-5513; Jacobsen, Chris/0000-0001-8562-0353 NR 34 TC 0 Z9 0 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1343-6 J9 AIP CONF PROC PY 2016 VL 1696 AR 020030 DI 10.1063/1.4937524 PG 6 WC Microscopy; Physics, Applied SC Microscopy; Physics GA BE4GB UT WOS:000371671300030 ER PT S AU Jacobsen, C AF Jacobsen, Chris BE DeJonge, MD Paterson, DJ Ryan, CG TI Future challenges for x-ray microscopy SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Conference on X-Ray Microscopy CY OCT 26-31, 2014 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Bruker, Xradia HO Australian Synchrotron DE x-ray microscopy; cryo microscopy; single particle imaging ID CRYO-ELECTRON-MICROSCOPY; RADIATION-DAMAGE; CRYOELECTRON MICROSCOPY; BIOLOGICAL APPLICATIONS; GIANT MIMIVIRUS; ION-CHANNEL; TOMOGRAPHY; CRYOTOMOGRAPHY; RESOLUTION; CARBOXYSOMES AB X-ray microscopy has made immense progress over the time of the "modern" conference series dating back to 1983 [1]. Knowing well that predictions of the future inevitably provide fodder for embarrassing retrospectives, it is nevertheless worthwhile to consider a few recent developments and what they might suggest for future challenges in x-ray microscopy. C1 [Jacobsen, Chris] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Jacobsen, Chris] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA. [Jacobsen, Chris] Northwestern Univ, Chem Life Proc Inst, Evanston, IL USA. RP Jacobsen, C (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.; Jacobsen, C (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL USA.; Jacobsen, C (reprint author), Northwestern Univ, Chem Life Proc Inst, Evanston, IL USA. RI Jacobsen, Chris/E-2827-2015 OI Jacobsen, Chris/0000-0001-8562-0353 NR 67 TC 0 Z9 0 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1343-6 J9 AIP CONF PROC PY 2016 VL 1696 AR 020035 DI 10.1063/1.4937529 PG 7 WC Microscopy; Physics, Applied SC Microscopy; Physics GA BE4GB UT WOS:000371671300035 ER PT S AU Mak, R Wild, SM Jacobsen, C AF Mak, Rachel Wild, Stefan M. Jacobsen, Chris BE DeJonge, MD Paterson, DJ Ryan, CG TI Non-negative matrix analysis in x-ray spectromicroscopy: choosing regularizers SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Conference on X-Ray Microscopy CY OCT 26-31, 2014 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Bruker, Xradia HO Australian Synchrotron DE x-ray spectromicroscopy; x-ray microscopy; multivariate statistical analysis; non-negative matrix analysis; optimization AB In x-ray spectromicroscopy, a set of images can be acquired across an absorption edge to reveal chemical speciation. We previously described the use of non-negative matrix approximation methods for improved classification and analysis of these types of data. We present here an approach to find appropriate values of regularization parameters for this optimization approach. C1 [Mak, Rachel; Jacobsen, Chris] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA. [Wild, Stefan M.] Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Jacobsen, Chris] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Mak, R (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL USA. RI Jacobsen, Chris/E-2827-2015; Wild, Stefan/P-4907-2016 OI Jacobsen, Chris/0000-0001-8562-0353; Wild, Stefan/0000-0002-6099-2772 NR 6 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1343-6 J9 AIP CONF PROC PY 2016 VL 1696 AR 020034 DI 10.1063/1.4937528 PG 4 WC Microscopy; Physics, Applied SC Microscopy; Physics GA BE4GB UT WOS:000371671300034 ER PT S AU Zhu, XH Tyliszczak, T Shiu, HW Shapiro, D Bazylinski, DA Lins, U Hitchcock, AP AF Zhu, X. H. Tyliszczak, T. Shiu, H. -W. Shapiro, D. Bazylinski, D. A. Lins, U. Hitchcock, A. P. BE DeJonge, MD Paterson, DJ Ryan, CG TI Magnetic studies of magnetotactic bacteria by soft X-ray STXM and ptychography SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Conference on X-Ray Microscopy CY OCT 26-31, 2014 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Bruker, Xradia HO Australian Synchrotron ID MAGNETOSOMES; MICROSCOPY AB Magnetotactic bacteria (MTB) biomineralize chains of nanoscale magnetite single crystals which align the cell with the earth's magnetic field and assist the cell to migrate to, and maintain its position at, the oxic-anoxic transition zone, their preferred habitat. Here we describe use of multi-edge scanning transmission X-ray microscopy (STXM) to investigate the chemistry and magnetism of MTB on an individual cell basis. We report measurements of the orientation of the magnetic vector of magnetosome chains relative to the location of the single flagellum in marine vibrio, Magnetovibrio blakemorei strain MV-1 cells from both the southern and northern hemisphere. We also report a major improvement in both spatial resolution and spectral quality through the use of spectro-ptychography at the Fe L-3 edge. C1 [Zhu, X. H.; Hitchcock, A. P.] McMaster Univ, Chem & Chem Biol, Hamilton, ON L8S 4M1, Canada. [Tyliszczak, T.; Shiu, H. -W.; Shapiro, D.] LBNL, Adv Light Source, Berkeley, CA 94720 USA. [Shiu, H. -W.] NSRRC, Hsinchu 30076, Taiwan. [Bazylinski, D. A.] Univ Nevada, Life Sci, Las Vegas, NV 89154 USA. [Lins, U.] Univ Fed Rio de Janeiro, Dept Microbiol Geral, Rio de Janeiro, RJ, Brazil. RP Hitchcock, AP (reprint author), McMaster Univ, Chem & Chem Biol, Hamilton, ON L8S 4M1, Canada. EM aph@mcmaster.ca NR 11 TC 2 Z9 2 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1343-6 J9 AIP CONF PROC PY 2016 VL 1696 AR 020002 DI 10.1063/1.4937496 PG 5 WC Microscopy; Physics, Applied SC Microscopy; Physics GA BE4GB UT WOS:000371671300002 ER PT J AU Dastmalchi, B Tassin, P Koschny, T Soukoulis, CM AF Dastmalchi, Babak Tassin, Philippe Koschny, Thomas Soukoulis, Costas M. TI A New Perspective on Plasmonics: Confinement and Propagation Length of Surface Plasmons for Different Materials and Geometries SO ADVANCED OPTICAL MATERIALS LA English DT Article ID WAVE-GUIDES; SUBWAVELENGTH OPTICS; NANO-OPTICS; GRAPHENE; POLARITONS; SPECTROSCOPY; EXCITATION; METALS; SILVER; LIGHT AB Surface-plasmon polaritons are electromagnetic waves propagating on the surface of a metal. Thanks to subwavelength confinement, they can concentrate optical energy on the micrometer or even nanometer scale, enabling new applications in bio-sensing, optical interconnects, and nonlinear optics, where small footprint and strong field concentration are essential. The major obstacle in developing plasmonic applications is dissipative loss, which limits the propagation length of surface plasmons and broadens the bandwidth of surface-plasmon resonances. Here, a new analysis of plasmonic materials and geometries is presented which fully considers the tradeoff between propagation length and degree of confinement. It is based on a two-dimensional analysis of two independent figures of merit and the analysis is applied to relevant plasmonic materials, e.g., noble metals, aluminum, silicon carbide, doped semiconductors, graphene, etc. The analysis provides guidance on how to improve the performance of any particular plasmonic application and substantially eases the selection of the plasmonic material. C1 [Dastmalchi, Babak; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Dastmalchi, Babak; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Dastmalchi, Babak; Soukoulis, Costas M.] FORTH, IESL, Iraklion 71110, Crete, Greece. [Tassin, Philippe] Chalmers Univ, Dept Appl Phys, SE-41296 Gothenburg, Sweden. RP Tassin, P (reprint author), Chalmers Univ, Dept Appl Phys, SE-41296 Gothenburg, Sweden. EM graphenemodulators@gmail.com RI Soukoulis, Costas/A-5295-2008; Dastmalchi, Babak/C-9050-2013; bagheri, amir/C-3274-2017 OI Dastmalchi, Babak/0000-0002-2701-3712; FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering (U.S. Department of Energy) [DE-AC02-07CH11358]; U.S. Office of Naval Research [N00014-14-1-0474]; European Research Council [320081] FX Work at Ames Laboratory was partially supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering (Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract No. DE-AC02-07CH11358), by the U.S. Office of Naval Research, award No. N00014-14-1-0474 (simulations). The European Research Council under the ERC Advanced Grant No. 320081 (PHOTOMETA) supported work (theory) at FORTH. NR 62 TC 10 Z9 10 U1 9 U2 34 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2195-1071 J9 ADV OPT MATER JI Adv. Opt. Mater. PD JAN PY 2016 VL 4 IS 1 BP 177 EP 184 DI 10.1002/adom.201500446 PG 8 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA DF3SQ UT WOS:000371268300019 ER PT J AU Ilgu, M Nilsen-Hamilton, M AF Ilgu, Muslum Nilsen-Hamilton, Marit TI Aptamers in analytics SO ANALYST LA English DT Review ID SURFACE-PLASMON RESONANCE; FREE ELECTROCHEMICAL APTASENSOR; LABEL-FREE DETECTION; IN-VITRO SELECTION; THROUGHPUT SEQUENCE-ANALYSIS; INDUCED STRAND DISPLACEMENT; GREEN FLUORESCENT PROTEIN; POTASSIUM-ION DETECTION; HIV-1 TAT PROTEIN; RNA APTAMER AB Nucleic acid aptamers are promising alternatives to antibodies in analytics. They are generally obtained through an iterative SELEX protocol that enriches a population of synthetic oligonucleotides to a subset that can recognize the chosen target molecule specifically and avidly. A wide range of targets is recognized by aptamers. Once identified and optimized for performance, aptamers can be reproducibly synthesized and offer other key features, like small size, low cost, sensitivity, specificity, rapid response, stability, and reusability. This makes them excellent options for sensory units in a variety of analytical platforms including those with electrochemical, optical, and mass sensitive transduction detection. Many novel sensing strategies have been developed by rational design to take advantage of the tendency of aptamers to undergo conformational changes upon target/analyte binding and employing the principles of base complementarity that can drive the nucleic acid structure. Despite their many advantages over antibodies, surprisingly few aptamers have yet been integrated into commercially available analytical devices. In this review, we discuss how to select and engineer aptamers for their identified application(s), some of the challenges faced in developing aptamers for analytics and many examples of their reported successful performance as sensors in a variety of analytical platforms. C1 [Ilgu, Muslum; Nilsen-Hamilton, Marit] Iowa State Univ, Roy J Carver Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. [Ilgu, Muslum; Nilsen-Hamilton, Marit] Aptalogic Inc, Ames, IA 50014 USA. [Nilsen-Hamilton, Marit] US DOE, Ames Lab, Ames, IA 50011 USA. RP Ilgu, M (reprint author), Iowa State Univ, Roy J Carver Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA.; Ilgu, M (reprint author), Aptalogic Inc, Ames, IA 50014 USA. EM ilgu@iastate.edu FU National Institutes of Health [1R43DK098031, 2R44DK098031] FX MI was supported by grants 1R43DK098031 and 2R44DK098031 from the National Institutes of Health. Images of antibodies in the graphical abstract from the RCSB PDB April 2001 Molecule of the Month feature by David Goodsell (DOI: 10.2210/rcsb_pdb/mom_2011_4). NR 223 TC 3 Z9 3 U1 23 U2 68 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 EI 1364-5528 J9 ANALYST JI Analyst PY 2016 VL 141 IS 5 BP 1551 EP 1568 DI 10.1039/c5an01824b PG 18 WC Chemistry, Analytical SC Chemistry GA DF3FO UT WOS:000371229600001 PM 26864075 ER PT J AU Kyle, JE Zhang, X Weitz, KK Monroe, ME Ibrahim, YM Moore, RJ Cha, J Sun, XF Lovelace, ES Wagoner, J Polyak, SJ Metz, TO Dey, SK Smith, RD Burnum-Johnson, KE Baker, ES AF Kyle, Jennifer E. Zhang, Xing Weitz, Karl K. Monroe, Matthew E. Ibrahim, Yehia M. Moore, Ronald J. Cha, Jeeyeon Sun, Xiaofei Lovelace, Erica S. Wagoner, Jessica Polyak, Stephen J. Metz, Thomas O. Dey, Sudhansu K. Smith, Richard D. Burnum-Johnson, Kristin E. Baker, Erin S. TI Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry SO ANALYST LA English DT Article ID RESOLUTION MS DETECTION; C VIRUS-INFECTION; HUMAN PLASMA; STRUCTURAL-CHARACTERIZATION; INDUCED DISSOCIATION; PHOSPHATIDYLCHOLINES; SEPARATION; UPLC; DERIVATIZATION; IMPLANTATION AB Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Mass spectrometry (MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids' biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are often unresolvable using present approaches. Here we show that combining liquid chromatography (LC) and structurally-based ion mobility spectrometry (IMS) measurement with MS analyses distinguishes lipid isomers and allows insight into biological and disease processes. C1 [Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Metz, Thomas O.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin S.] Pacific NW Natl Lab, Biol Sci Div, Richland, WA 99352 USA. [Cha, Jeeyeon; Sun, Xiaofei; Dey, Sudhansu K.] Cincinnati Childrens Hosp, Cincinnati, OH USA. [Lovelace, Erica S.; Wagoner, Jessica; Polyak, Stephen J.] Univ Washington, Dept Lab Med, Seattle, WA 98195 USA. [Polyak, Stephen J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. [Cha, Jeeyeon] Vanderbilt Univ, Med Ctr, Dept Med, Nashville, TN USA. RP Burnum-Johnson, KE; Baker, ES (reprint author), Pacific NW Natl Lab, Biol Sci Div, Richland, WA 99352 USA. EM kristin.burnum-johnson@pnnl.gov; erin.baker@pnnl.gov RI Smith, Richard/J-3664-2012; zhang, xuesong/B-7907-2009 OI Smith, Richard/0000-0002-2381-2349; FU National Institute of Environmental Health Sciences of the NIH [R01ES022190]; National Institute of General Medical Sciences [P41 GM103493]; Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory; U.S. Department of Energy Office of Biological and Environmental Research Genome Sciences Program; National Institute of Allergy and Infectious Diseases [U19AI106772]; NIH [HD068524, DA006668]; March of Dimes [21-FY12-127]; NCCIH [5R01AT006842, 3R01AT006842-03S1]; NIH Common Fund's Metabolomics Program; DOE [DE-AC05-76RL0 1830] FX Portions of this research were supported by grants from the National Institute of Environmental Health Sciences of the NIH (R01ES022190), National Institute of General Medical Sciences (P41 GM103493), the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory. This research utilized capabilities developed by the Panomics program (funded by the U.S. Department of Energy Office of Biological and Environmental Research Genome Sciences Program) and by the National Institute of Allergy and Infectious Diseases under grant U19AI106772. The research was also supported in part by grants from the NIH (HD068524 and DA006668) and March of Dimes (21-FY12-127) (to S. K. D.) and 5R01AT006842 and 3R01AT006842-03S1 from NCCIH and the NIH Common Fund's Metabolomics Program (to S. J. P.). This work was performed in the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a DOE national scientific user facility at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the DOE under contract DE-AC05-76RL0 1830. NR 42 TC 11 Z9 11 U1 13 U2 23 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 EI 1364-5528 J9 ANALYST JI Analyst PY 2016 VL 141 IS 5 BP 1649 EP 1659 DI 10.1039/c5an02062j PG 11 WC Chemistry, Analytical SC Chemistry GA DF3FO UT WOS:000371229600010 PM 26734689 ER PT J AU Golebiowska, B Wlodek, A Pieczka, A Borkiewicz, O Polak, M AF Golebiowska, Bozena Wlodek, Adam Pieczka, Adam Borkiewicz, Olaf Polak, Marta TI THE PHILIPSBORNITE-SEGNITITE SOLID-SOLUTION SERIES FROM REDZINY, EASTERN METAMORPHIC COVER OF THE KARKONOSZE GRANITE (SW POLAND) SO ANNALES SOCIETATIS GEOLOGORUM POLONIAE LA English DT Article DE arsenates; oxidation zone; philipsbornite; segnitite; carminite; chemical composition; Redziny ID SOUTHWESTERN POLAND; BOHEMIAN MASSIF; IZERA MASSIF; BROKEN-HILL; ALUNITE; MINERALS; MINERALIZATION; NOMENCLATURE; AUSTRALIA; JAROSITE AB Supergene minerals of the philipsbornite-segnitite series, PbAl3(AsO4)(AsO3OH)(OH)(6)-PbFe3+ (3)(AsO4) (AsO3OH)(OH)(6), accompanied by carminite, PbFe3+ (2)(AsO4)(2)(OH)(2), were found in relics of hydrothermal quartz-chlorite-arsenopyrite veins, associated with subordinate polymetallic ores disseminated in contact zones of a dolomitic marble deposit at Redziny, Western Sudetes, Poland, and recognized by means of electron microprobe and X-ray and electron-back-scattered diffraction (XRD and EBSD). Philipsbornite and segnitite, as the two minerals of the series, exhibit highly variable compositions, especially in terms of the range of Fe3+ <-> Al3+ substitution at the G site, with a distinct gap between the values of 0.52 and 0.89 for the Fe/(Al+Fe) ratio; substitutions at the D and T sites are less important. In this respect, the minerals are almost identical with philips-bornite and segnitite, known from other localities. The gap might be a consequence of the limited miscibility of the end-members, but also might be attributed to crystallization under the changing and distinctly differing activities of Al3+ and Fe3+. The unit-cell parameters of philipsbornite, a = 7.1245(13) angstrom, c = 17.0967(45) angstrom, make the mineral comparable with philipsbornites from other occurrences. The EBSD analysis confirmed the rhombohedral structure of both minerals and the space group symmetry R-3m. The minerals crystallized in the sequence: philipsbornite -> segnitite -> carminite, which reflects (i) decreasing acidity in the oxidation zone, due to the leaching of sulphate ions and interaction of the solutions with a nearby dolomite lens, and (ii) varying activities of Al3+, Fe3+ and Pb2+ cations, mobilized by the solutions through interaction with the silicate host containing disseminated arsenopyrite and subordinate sulphides, up to complete Pb2+ depletion. C1 [Golebiowska, Bozena; Wlodek, Adam; Pieczka, Adam; Polak, Marta] AGH Univ Sci & Technol, Dept Mineral Petrog & Geochem, Mickiewicza 30, PL-30059 Krakow, Poland. [Borkiewicz, Olaf] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60563 USA. RP Golebiowska, B (reprint author), AGH Univ Sci & Technol, Dept Mineral Petrog & Geochem, Mickiewicza 30, PL-30059 Krakow, Poland. EM goleb@agh.edu.pl FU AGH University of Science and Technology [11.11.140.319] FX The authors would like to thank Evgeny Galuskin, Krzysztof Szopa, Bartosz Budzyn and Frank Simpson for their helpful discussion on the manuscript. We also thank Piotr Dzierzanowski and Lidia Jezak (University of Warsaw) for their assistance during the EMP analyses. The work was financially supported by AGH University of Science and Technology Grant No 11.11.140.319. NR 48 TC 1 Z9 1 U1 4 U2 4 PU POLISH GEOLOGICAL SOC PI KRAKOW PA UL. OLEANDRY 2A, KRAKOW, POLAND SN 0208-9068 J9 ANN SOC GEOL POL JI Ann. Soc. Geol. Pol. PY 2016 VL 86 IS 1 BP 73 EP 83 PG 11 WC Geology SC Geology GA DF6YE UT WOS:000371503400005 ER PT J AU Feng, Y Kotamarthi, VR Coulter, R Zhao, C Cadeddu, M AF Feng, Y. Kotamarthi, V. R. Coulter, R. Zhao, C. Cadeddu, M. TI Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID OPTICAL DEPTH; SUMMER MONSOON; DUST AEROSOLS; GOCART MODEL; ANTHROPOGENIC AEROSOLS; CLIMATE SIMULATIONS; FORCING UNCERTAINTY; SOLAR ABSORPTION; COORDINATE MODEL; CARBON AB Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83% of the model's low bias is due to aerosol extinctions below similar to 2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48% more heating in the atmosphere and 21% more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7Kday(-1), which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II, underlining the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. In addition, the model results suggest that both the direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts. C1 [Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Cadeddu, M.] Argonne Natl Lab, Environm Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Zhao, C.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Feng, Y (reprint author), Argonne Natl Lab, Environm Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yfeng@anl.gov OI Kotamarthi, Veerabhadra Rao/0000-0002-2612-7590 FU U.S. Department of Energy (DOE) as part of Atmospheric System Research Program; Argonne National Laboratory under U.S. DOE [DE-AC02-06CH11357]; U.S. DOE as part of the Regional and Global Climate Modeling program [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy (DOE) as part of the Atmospheric System Research Program. Support for this research was provided to Y. Feng, V. R. Kotamarthi, R. Coulter, and M. Cadeddu by Argonne National Laboratory under U.S. DOE contract DE-AC02-06CH11357. C. Zhao's contribution to this study was supported by the U.S. DOE as part of the Regional and Global Climate Modeling program through contract DE-AC05-76RL01830. All of the numerical simulations were performed by using the computing cluster (Fusion) operated by the Argonne's Laboratory Computing Resource Center. NR 78 TC 6 Z9 6 U1 3 U2 8 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 1 BP 247 EP 264 DI 10.5194/acp-16-247-2016 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YG UT WOS:000371283900016 ER PT J AU Jahn, M Munoz-Esparza, D Chouza, F Reitebuch, O Knoth, O Haarig, M Ansmann, A AF Jaehn, M. Munoz-Esparza, D. Chouza, F. Reitebuch, O. Knoth, O. Haarig, M. Ansmann, A. TI Investigations of boundary layer structure, cloud characteristics and vertical mixing of aerosols at Barbados with large eddy simulations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SAHARAN DUST; NUMERICAL-SIMULATION; LIDAR MEASUREMENTS; HEAT ISLANDS; RAMAN LIDAR; AIR-FLOW; CONVECTION; MODEL; MESOSCALE; PARAMETERIZATION AB Large eddy simulations (LESs) are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Due to the presence of a topographically structured island surface in the domain center, the model setup has to be designed with open lateral boundaries. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude potential temperature perturbations. In this work, this method is for the first time tested and validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE field campaign is used for both model initialization and a comparison with Doppler wind and Raman lidar data. Several numerical sensitivity tests are carried out to demonstrate the problems related to "gray zone modeling" when using coarser spatial grid spacings beyond the inertial subrange of three-dimensional turbulence or when the turbulent marine boundary layer flow is replaced by laminar winds. Especially cloud properties in the downwind area west of Barbados are markedly affected in these kinds of simulations. Results of an additional simulation with a strong trade-wind inversion reveal its effect on cloud layer depth and location. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z approximate to 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength) and wind shear. Comparisons of LES model output with wind lidar data show similarities in the downwind vertical wind structure. Additionally, the model results accurately reproduce the development of the daytime convective boundary layer measured by the Raman lidar. C1 [Jaehn, M.; Knoth, O.; Haarig, M.; Ansmann, A.] Leibniz Inst Tropospher Res, Permoserstr 15, D-04318 Leipzig, Germany. [Munoz-Esparza, D.] Los Alamos Natl Lab, Earth & Environm Sci Div EES 16, POB 1663, Los Alamos, NM 87545 USA. [Chouza, F.; Reitebuch, O.] Inst Atmospher Phys, Deutsches Zentrum Luft & Raumfahrt DLR, Munchner Str 20, D-82234 Oberpfaffenhofen, Germany. RP Jahn, M (reprint author), Leibniz Inst Tropospher Res, Permoserstr 15, D-04318 Leipzig, Germany. EM jaehn@tropos.de FU TROPOS; Helmholtz Association; DLR; LMU; Earth Observatory Team NASA FX The first author was internally funded by TROPOS. The authors thank Bernd Heinold and the two reviewers for their constructive comments. Satellite data were downloaded from NOAA's web archive (ftp://ftp.nnvl.noaa.gov/GOES/). The basemap was provided by the Earth Observatory Team NASA (http://earthobservatory.nasa.gov). High-resolution topography data were provided by the CGIAR-CSI SRTM data set (http://srtm.csi.cgiar.org). Numerical simulations were performed at the HPC cluster of and at the Julich Supercomputing Centre (JSC). We would also like to thank Thomas Bjerring Kristensen from TROPOS for provision of CCN data. The SALTRACE campaign was mainly funded by the Helmholtz Association, DLR, LMU and TROPOS. NR 39 TC 1 Z9 1 U1 2 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 2 BP 651 EP 674 DI 10.5194/acp-16-651-2016 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YH UT WOS:000371284000013 ER PT J AU Zamora, LM Kahn, RA Cubison, MJ Diskin, GS Jimenez, JL Kondo, Y McFarquhar, GM Nenes, A Thornhill, KL Wisthaler, A Zelenyuk, A Ziemba, LD AF Zamora, L. M. Kahn, R. A. Cubison, M. J. Diskin, G. S. Jimenez, J. L. Kondo, Y. McFarquhar, G. M. Nenes, A. Thornhill, K. L. Wisthaler, A. Zelenyuk, A. Ziemba, L. D. TI Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID AEROSOL-SIZE DISTRIBUTIONS; IN-SITU CHARACTERIZATION; MIXED-PHASE CLOUDS; CONDENSATION NUCLEI; SPLAT II; PERFORMANCE-CHARACTERISTICS; STRATIFORM CLOUDS; MASS-SPECTROMETER; FIELD CAMPAIGN; BOREAL FORESTS AB The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were similar to 40-60% smaller than in background clouds. Based on the relationship between cloud droplet number (N-liq ) and various biomass burning tracers (BBt ) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3 x dln. N-liq/dln(BBt) to be similar to 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content C1 [Zamora, L. M.; Kahn, R. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Zamora, L. M.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Cubison, M. J.; Jimenez, J. L.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Cubison, M. J.; Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Diskin, G. S.; Thornhill, K. L.; Ziemba, L. D.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Kondo, Y.] Natl Inst Polar Res, Tokyo, Japan. [McFarquhar, G. M.] Univ Illinois, Urbana, IL USA. [Nenes, A.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Nenes, A.] Fdn Res & Technol Hellas, Patras, Greece. [Nenes, A.] Natl Observ Athens, Athens, Greece. [Wisthaler, A.] Univ Oslo, Dept Chem, Oslo, Norway. [Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria. [Zelenyuk, A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zamora, LM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.; Zamora, LM (reprint author), Oak Ridge Associated Univ, Oak Ridge, TN USA. EM lauren.m.zamora@nasa.gov RI Jimenez, Jose/A-5294-2008; OI Jimenez, Jose/0000-0001-6203-1847; McFarquhar, Greg/0000-0003-0950-0135; Zamora, Lauren/0000-0002-0878-4378 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division; Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG); NASA Postdoctoral Program at Goddard Space Flight Center; NASA [NNX12AC03G, NNX15AH33A] FX The authors would like to thank A. Aknan, B. Anderson, E. Apel, G. Chen, M. Couture, T. Garrett, K. B. Huebert, A. Khain, A. Korolev, T. Lathem, P. Lawson, R. Leaitch, J. Limbacher, J. Nelson, M. Pinsky, W. Ridgeway, A. Rangno, S. Williams, S. Woods, and Y. Yang for data and/or advice or help with various aspects of this project, and all others who were involved in collecting and funding the collection of the data sets we have used. We acknowledge the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division for providing the ISDAC data set. The authors also gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this publication. Plots were made with Ocean Data View (Schlitzer, R., Ocean Data View, http://odv.awi.de, 2015) and R (R Core Team, 2013). CH3CN measurements were supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG). T. Mikoviny is acknowledged for his support with the CH3CN data acquisition and analysis. LMZ's funding for this study was provided by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. M. J. Cubison and J. L. Jimenez were supported by NASA NNX12AC03G and NNX15AH33A. NR 127 TC 2 Z9 2 U1 4 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 2 BP 715 EP 738 DI 10.5194/acp-16-715-2016 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YH UT WOS:000371284000017 ER PT J AU Beyersdorf, AJ Ziemba, LD Chen, G Corr, CA Crawford, JH Diskin, GS Moore, RH Thornhill, KL Winstead, EL Anderson, BE AF Beyersdorf, A. J. Ziemba, L. D. Chen, G. Corr, C. A. Crawford, J. H. Diskin, G. S. Moore, R. H. Thornhill, K. L. Winstead, E. L. Anderson, B. E. TI The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, DC region SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID UNITED-STATES; DISCOVER-AQ; AIR-QUALITY; PM2.5; ABSORPTION; PROFILES; HUMIDITY; AIRBORNE; MASS AB In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ngm(-3) in the lowest 1 km, decreasing to 35 ngm(-3) in the free troposphere (above 3 km). Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed-layer aerosol extinction. Aerosol loading (dry extinction) was found to be the predominant source, accounting for 88 % on average of the measured spatial variability in ambient extinction, with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction. This work shows that extinction is driven to first order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite-modeling assimilation products that are able to capture these components of the aerosol optical depth (AOD)-PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day to day were large and could cause a bias of up to 27% if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km(2)). This is complimentary to the results of Chu et al. (2015), who determined that the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region. C1 [Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Corr, C. A.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Thornhill, K. L.; Winstead, E. L.] Sci Syst & Applicat Inc, Hampton, VA USA. RP Beyersdorf, AJ (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM andreas.j.beyersdorf@nasa.gov FU NASA's Earth Venture-1 Program through Earth System Science Pathfinder (ESSP) Program Office FX This research was funded by NASA's Earth Venture-1 Program through the Earth System Science Pathfinder (ESSP) Program Office. We thank the DISCOVER-AQ Science Team, especially the pilots and flight crews of NASA's P-3B. Boundary layer heights based on airborne measurements of the potential temperature profile were provided by Don Lenschow of the University Corporation for Atmospheric Research (UCAR). Thanks also to Joshua DiGangi and Michael Shook (both of NASA Langley) for valuable discussions during manuscript preparation. NR 32 TC 0 Z9 0 U1 18 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 2 BP 1003 EP 1015 DI 10.5194/acp-16-1003-2016 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YH UT WOS:000371284000032 ER PT J AU Xu, L Williams, LR Young, DE Allan, JD Coe, H Massoli, P Fortner, E Chhabra, P Herndon, S Brooks, WA Jayne, JT Worsnop, DR Aiken, AC Liu, S Gorkowski, K Dubey, MK Fleming, ZL Visser, S Prevot, ASH Ng, NL AF Xu, L. Williams, L. R. Young, D. E. Allan, J. D. Coe, H. Massoli, P. Fortner, E. Chhabra, P. Herndon, S. Brooks, W. A. Jayne, J. T. Worsnop, D. R. Aiken, A. C. Liu, S. Gorkowski, K. Dubey, M. K. Fleming, Z. L. Visser, S. Prevot, A. S. H. Ng, N. L. TI Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SECONDARY ORGANIC AEROSOL; MASS-SPECTROMETER DATA; POSITIVE MATRIX FACTORIZATION; SOUTHEASTERN UNITED-STATES; EQUILIBRATION TIME SCALES; SOURCE APPORTIONMENT; HIGH-RESOLUTION; PARTICULATE MATTER; BROWN CARBON; PHOTOCHEMICAL OXIDATION AB The composition of PM1 (particulate matter with diameter less than 1 mu m) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling,Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70% of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 degrees C in the TD, 40% of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer) only accounts for < 10% of the total OA (measured by a HR-ToF-AMS) at 250 degrees C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have undergone similar chemical processing as rBC in the atmosphere. Although the atomic O: C ratio of OOA is substantially larger than that of solid fuel OA and hydrocarbon-like OA, these three factors have similar volatility, which is inferred from the change in mass concentration after heating at 120 degrees C. Finally, we discuss the relationship between the mass fraction remaining (MFR) of OA after heating in the TD and atomic O: C of OA and find that particles with a wide range of O: C could have similar MFR after heating. This analysis emphasizes the importance of understanding the distribution of volatility and O: C in bulk OA. C1 [Xu, L.; Ng, N. L.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Williams, L. R.; Massoli, P.; Fortner, E.; Chhabra, P.; Herndon, S.; Brooks, W. A.; Jayne, J. T.; Worsnop, D. R.] Aerodyne Res Inc, Billerica, MA USA. [Young, D. E.; Allan, J. D.; Coe, H.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester, Lancs, England. [Allan, J. D.] Univ Manchester, Natl Ctr Atmospher Sci, Manchester, Lancs, England. [Aiken, A. C.; Liu, S.; Gorkowski, K.; Dubey, M. K.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Fleming, Z. L.] Univ Leicester, Dept Chem, Leicester LE1 7RH, Leics, England. [Fleming, Z. L.] Univ Leicester, Natl Ctr Atmospher Sci, Leicester, Leics, England. [Visser, S.; Prevot, A. S. H.] Paul Scherrer Inst, Lab Atmospher Chem, Villigen, Switzerland. [Ng, N. L.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Young, D. E.] Univ Calif Davis, Dept Environm Toxicol, Davis, CA 95616 USA. [Chhabra, P.] PerkinElmer Inc, Hopkinton, MA USA. [Liu, S.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Gorkowski, K.] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA. RP Ng, NL (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.; Ng, NL (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM ng@chbe.gatech.edu RI Prevot, Andre/C-6677-2008; Allan, James/B-1160-2010; Dubey, Manvendra/E-3949-2010; Liu, Shang/F-9085-2011; Worsnop, Douglas/D-2817-2009; Aiken, Allison/B-9659-2009; OI Prevot, Andre/0000-0002-9243-8194; Allan, James/0000-0001-6492-4876; Dubey, Manvendra/0000-0002-3492-790X; Liu, Shang/0000-0002-3403-8651; Worsnop, Douglas/0000-0002-8928-8017; Aiken, Allison/0000-0001-5749-7626; Coe, Hugh/0000-0002-3264-1713 FU US Department of Energy [DE-SC000602]; UK Natural Environment Research Council (NERC) ClearfLo project [NE/H008136/1]; National Centre for Atmospheric Science (NCAS); NERC PhD studentship [NE/I528142/1]; LANL's LDRD program; US DOE Office of Biological and Environmental Research Atmospheric System Research Program [F265]; Swiss National Science Foundation [200021_132467/1, 200020_150056]; European Community's Seventh Framework Programme [312284] FX This project was supported by the US Department of Energy (grant no. DE-SC000602) and in part by the UK Natural Environment Research Council (NERC) ClearfLo project (grant ref. NE/H008136/1), coordinated by the National Centre for Atmospheric Science (NCAS). D.E. Young acknowledges a NERC PhD studentship (ref. NE/I528142/1). A.C. Aiken acknowledges Director's postdoctoral funding from LANL's LDRD program. M.K. Dubey acknowledges support by the US DOE Office of Biological and Environmental Research Atmospheric System Research Program, F265 to LANL. Elemental analysis was funded by the Swiss National Science Foundation (grant nos. 200021_132467/1 and 200020_150056) and the European Community's Seventh Framework Programme (FP7/2007-2013; grant no. 312284). The authors would like to thank the Met Office for use of the NAME dispersion model and the Meteorological data used in it and for the Leicester University ALICE supercomputer for running the model. The authors gratefully acknowledge Ashley Williamson (DOE), Amon Haruta (Los Alamos National Laboratory), David Green (Kings College London), and Roger Moore (Kent County Showgrounds) for assistance with the organization of the field site in Detling, UK. Processed and quality assured data are available through the ClearfLo project archive at the British Atmospheric Data Centre (http://badc.nerc.ac.uk/browse/badc/clearflo) and through the US Department of Energy Atmospheric Radiation Measurement Archive (www.archive.arm.gov). Raw data are archived at the Georgia Institute of Technology and at Aerodyne Research, Inc. and are available on request. NR 94 TC 5 Z9 5 U1 20 U2 39 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 2 BP 1139 EP 1160 DI 10.5194/acp-16-1139-2016 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YH UT WOS:000371284000040 ER PT J AU Massart, S Agusti-Panareda, A Heymann, J Buchwitz, M Chevallier, F Reuter, M Hilker, M Burrows, JP Deutscher, NM Feist, DG Hase, F Sussmann, R Desmet, F Dubey, MK Griffith, DWT Kivi, R Petri, C Schneider, M Velazco, VA AF Massart, Sebastien Agusti-Panareda, Anna Heymann, Jens Buchwitz, Michael Chevallier, Frederic Reuter, Maximilian Hilker, Michael Burrows, John P. Deutscher, Nicholas M. Feist, Dietrich G. Hase, Frank Sussmann, Ralf Desmet, Filip Dubey, Manvendra K. Griffith, David W. T. Kivi, Rigel Petri, Christof Schneider, Matthias Velazco, Voltaire A. TI Ability of the 4-D-Var analysis of the GOSAT BESD XCO2 retrievals to characterize atmospheric CO2 at large and synoptic scales SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SCIAMACHY; ALGORITHM; VALIDATION; SATELLITE; PRODUCTS; SYSTEM; TCCON; TANSO AB This study presents results from the European Centre for Medium-Range Weather Forecasts (ECMWF) carbon dioxide (CO2) analysis system where the atmospheric CO2 is controlled through the assimilation of column-averaged dry-air mole fractions of CO2 (XCO2) from the Greenhouse gases Observing Satellite (GOSAT). The analysis is compared to a free-run simulation (without assimilation of XCO2), and they are both evaluated against XCO2 data from the Total Carbon Column Observing Network (TC-CON). We show that the assimilation of the GOSAT XCO2 product from the Bremen Optimal Estimation Differential Optical Absorption Spectroscopy (BESD) algorithm during the year 2013 provides XCO2 fields with an improved mean absolute error of 0.6 parts per million (ppm) and an improved station-to-station bias deviation of 0.7 ppm compared to the free run (1.1 and 1.4 ppm, respectively) and an improved estimated precision of 1 ppm compared to the GOSAT BESD data (3.3 ppm). We also show that the analysis has skill for synoptic situations in the vicinity of frontal systems, where the GOSAT retrievals are sparse due to cloud contamination. We finally computed the 10-day forecast from each analysis at 00: 00 UTC, and we demonstrate that the CO2 forecast shows synoptic skill for the largest-scale weather patterns (of the order of 1000 km) even up to day 5 compared to its own analysis. C1 [Massart, Sebastien; Agusti-Panareda, Anna] European Ctr Medium Range Weather Forecasts, Shinfield Pk, Reading RG2 9AX, Berks, England. [Heymann, Jens; Buchwitz, Michael; Reuter, Maximilian; Hilker, Michael; Burrows, John P.; Deutscher, Nicholas M.; Petri, Christof] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany. [Chevallier, Frederic] IPSL, CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Feist, Dietrich G.] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Hase, Frank; Schneider, Matthias] IMK ASF, Karlsruhe Inst Technol, Karlsruhe, Germany. [Sussmann, Ralf] IMK IFU, Karlsruhe Inst Technol, Garmisch Partenkirchen, Germany. [Desmet, Filip] Univ Antwerp, Dept Chem, B-2020 Antwerp, Belgium. [Dubey, Manvendra K.] Los Alamos Natl Lab, Earth & Environm Sci, Los Alamos, NM USA. [Deutscher, Nicholas M.; Griffith, David W. T.; Velazco, Voltaire A.] Univ Wollongong, Sch Chem, Ctr Atmospher Chem, Wollongong, NSW, Australia. [Kivi, Rigel] Arctic & Antarctic Res Inst, Finnish Meteorol Inst, Sodankyla, Finland. RP Massart, S (reprint author), European Ctr Medium Range Weather Forecasts, Shinfield Pk, Reading RG2 9AX, Berks, England. EM sebastien.massart@ecmwf.int RI Chevallier, Frederic/E-9608-2016; Feist, Dietrich/B-6489-2013; Velazco, Voltaire/H-2280-2011; Dubey, Manvendra/E-3949-2010; Reuter, Maximilian/L-3752-2014; Schneider, Matthias/B-1441-2013; Sussmann, Ralf/K-3999-2012; Burrows, John/B-6199-2014 OI Chevallier, Frederic/0000-0002-4327-3813; Feist, Dietrich/0000-0002-5890-6687; Velazco, Voltaire/0000-0002-1376-438X; Dubey, Manvendra/0000-0002-3492-790X; Reuter, Maximilian/0000-0001-9141-3895; Burrows, John/0000-0002-6821-5580 FU European Commission under the European Union's Horizon 2020 programme; European Space Agency (ESA) Greenhouse Gases Climate Change Initiative (GHG-CCI); LANL's LDRD programme; NASA [NAG5-12247, NNG05-GD07G]; Australian Research Council [DP140101552, DP110103118, DP0879468, LE0668470, LP0562346]; ICOS-INWIRE; InGOS; Senate of Bremen; ARC-DECRA fellowship [DE140100178] FX This study was funded by the European Commission under the European Union's Horizon 2020 programme. The development of the GOSAT BESD algorithm received funding from the European Space Agency (ESA) Greenhouse Gases Climate Change Initiative (GHG-CCI). TCCON data were obtained from the TCCON Data Archive, hosted by the Carbon Dioxide Information Analysis Center (CDIAC) - http://tccon.ornl.gov/.Garmisch work was funded in part via the ESA GHG-CCI project. Four Corners TCCON was funded by LANL's LDRD programme. Darwin and Wollongong TCCON measurements are funded by NASA grants NAG5-12247 and NNG05-GD07G and the Australian Research Council grants DP140101552, DP110103118, DP0879468, LE0668470 and LP0562346. We are grateful to the DOE ARM programme for technical support in Darwin, and Clare Murphy, Nicholas Jones and others for support in Wollongong. TCCON measurements in Bialystok and Orleans are supported by ICOS-INWIRE, InGOS and the Senate of Bremen. N. Deutscher is supported by an ARC-DECRA fellowship, DE140100178. The authors are grateful to Marijana Crepulja for the acquisition of the BESD GOSAT data at ECMWF and the preparation of the data for the assimilation. The authors would like to acknowledge Paul Wennberg, PI of the Lamont and Park Falls TCCON stations. Finally, we would like to express our great appreciation to William Lahoz, editor of this paper, for his useful comments during the revision process. NR 35 TC 7 Z9 7 U1 7 U2 15 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 3 BP 1653 EP 1671 DI 10.5194/acp-16-1653-2016 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YI UT WOS:000371284100028 ER PT J AU Gao, M Carmichael, GR Wang, Y Saide, PE Yu, M Xin, J Liu, Z Wang, Z AF Gao, M. Carmichael, G. R. Wang, Y. Saide, P. E. Yu, M. Xin, J. Liu, Z. Wang, Z. TI Modeling study of the 2010 regional haze event in the North China Plain SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SECONDARY ORGANIC AEROSOL; URBAN AIR-QUALITY; EASTERN CHINA; FORMATION MECHANISM; SIZE DISTRIBUTIONS; SOUTHERN HEBEI; WINTER HAZE; POLLUTION; IMPACT; TRANSPORT AB The online coupled Weather Research and Forecasting-Chemistry (WRF-Chem) model was applied to simulate a haze event that happened in January 2010 in the North China Plain (NCP), and was validated against various types of measurements. The evaluations indicate that WRF-Chem provides reliable simulations for the 2010 haze event in the NCP. This haze event was mainly caused by high emissions of air pollutants in the NCP and stable weather conditions in winter. Secondary inorganic aerosols also played an important role and cloud chemistry had important contributions. Air pollutants outside Beijing contributed about 64.5% to the PM2.5 levels in Beijing during this haze event, and most of them are from south Hebei, Tianjin city, Shandong and Henan provinces. In addition, aerosol feedback has important impacts on surface temperature, relative humidity (RH) and wind speeds, and these meteorological variables affect aerosol distribution and formation in turn. In Shijiazhuang, Planetary Boundary Layer (PBL) decreased about 278.2 m and PM2.5 increased more than 20 mu g m(-3) due to aerosol feedback. It was also shown that black carbon (BC) absorption has significant impacts on meteorology and air quality changes, indicating more attention should be paid to BC from both air pollution control and climate change perspectives. C1 [Gao, M.; Carmichael, G. R.; Yu, M.] Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA. [Gao, M.; Carmichael, G. R.; Saide, P. E.; Yu, M.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA. [Wang, Y.; Xin, J.; Liu, Z.; Wang, Z.] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & At, Beijing, Peoples R China. [Saide, P. E.] Natl Ctr Atmospher Res, Atmospher Chem Observat & Modeling ACOM Lab, POB 3000, Boulder, CO 80307 USA. [Yu, M.] Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Gao, M; Carmichael, GR (reprint author), Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA.; Gao, M; Carmichael, GR (reprint author), Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA. EM meng-gao@uiowa.edu; gcarmich@engineering.uiowa.edu RI Gao, Meng/P-8921-2015; 辛, 金元/F-7310-2012; Wang, Zifa/B-5799-2011 OI Gao, Meng/0000-0002-8657-3541; 辛, 金元/0000-0003-4243-5072; FU National Natural Science Foundation of China [41222033, 41375036]; CAS Strategic Priority Research Program Grant [XDA05100102, XDB05020103] FX Special thanks are given to Yuesi Wang, Jinyuan Xin and their research groups for providing measurements to evaluate model performance. The ground observation was supported by the National Natural Science Foundation of China (41222033; 41375036) and the CAS Strategic Priority Research Program Grant (XDA05100102, XDB05020103). We also would like to thank Yafang Cheng for her contributions to the development of emission processing model. The NCEP FNL data were available at http://rda.ucar.edu/datasets/ds083.2/. The MEIC emission inventory data are obtained from http://www.meicmodel.org/. The MOZART-4 chemical data are available at http://www.acd.ucar.edu/wrf-chem/mozart.shtml. Contact M. Gao (meng-gao@uiowa.edu) or G. R. Carmichael (gcarmich@engineering.uiowa.edu) for data requests. NR 67 TC 6 Z9 6 U1 24 U2 60 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2016 VL 16 IS 3 BP 1673 EP 1691 DI 10.5194/acp-16-1673-2016 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DF3YI UT WOS:000371284100029 ER PT J AU Kleinman, L Kuang, C Sedlacek, A Senum, G Springston, S Wang, J Zhang, Q Jayne, J Fast, J Hubbe, J Shilling, J Zaveri, R AF Kleinman, L. Kuang, C. Sedlacek, A. Senum, G. Springston, S. Wang, J. Zhang, Q. Jayne, J. Fast, J. Hubbe, J. Shilling, J. Zaveri, R. TI What do correlations tell us about anthropogenic-biogenic interactions and SOA formation in the Sacramento plume during CARES? SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SECONDARY ORGANIC AEROSOL; MEXICO-CITY; CARBONACEOUS AEROSOL; SIZE DISTRIBUTION; SIERRA-NEVADA; SAMPLE-SIZE; EMISSIONS; ISOPRENE; CALIFORNIA; OXIDATION AB During the Carbonaceous Aerosols and Radiative Effects Study (CARES) the US Department of Energy (DOE) G-1 aircraft was used to sample aerosol and gas phase compounds in the Sacramento, CA, plume and surrounding region. We present data from 66 plume transects obtained during 13 flights in which southwesterly winds transported the plume towards the foothills of the Sierra Nevada. Plume transport occurred partly over land with high isoprene emission rates. Our objective is to empirically determine whether organic aerosol (OA) can be attributed to anthropogenic or biogenic sources, and to determine whether there is a synergistic effect whereby OA concentrations are enhanced by the simultaneous presence of high concentrations of carbon monoxide (CO) and either isoprene, MVK + MACR (sum of methyl vinyl ketone and methacrolein), or methanol, which are taken as tracers of anthropogenic and biogenic emissions, respectively. Linear and bilinear correlations between OA, CO, and each of three biogenic tracers, "Bio", for individual plume transects indicate that most of the variance in OA over short timescales and distance scales can be explained by CO. For each transect and species a plume perturbation, (i.e., Delta OA, defined as the difference between 90th and 10th percentiles) was defined and regressions done amongst Delta values in order to probe day-to-day and location-dependent variability. Species that predicted the largest fraction of the variance in Delta OA were Delta O-3 and Delta CO. Background OA was highly correlated with background methanol and poorly correlated with other tracers. Because background OA was similar to 60% of peak OA in the urban plume, peak OA should be primarily biogenic and therefore non-fossil, even though the day-today and spatial variability of plume OA is best described by an anthropogenic tracer, CO. Transects were split into subsets according to the percentile rankings of Delta CO and Delta Bio, similar to an approach used by Setyan et al. (2012) and Shilling et al. (2013) to determine if anthropogenic-biogenic (A-B) interactions enhance OA production. As found earlier, Delta OA in the data subset having high Delta CO and high Delta Bio was several-fold greater than in other subsets. Part of this difference is consistent with a synergistic interaction between anthropogenic and biogenic precursors and part to an independent linear dependence