FN Thomson Reuters Web of Science™
VR 1.0
PT B
AU Ho, CK
Christian, JM
Romano, D
Yellowhair, J
Siegel, N
AF Ho, Clifford K.
Christian, Joshua M.
Romano, David
Yellowhair, Julius
Siegel, Nathan
GP ASME
TI CHARACTERIZATION OF PARTICLE FLOW IN A FREE-FALLING SOLAR PARTICLE
RECEIVER
SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON ENERGY
SUSTAINABILITY, 2015, VOL 1
LA English
DT Proceedings Paper
CT 9th ASME International Conference on Energy Sustainability
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div
ID GRANULAR SOLIDS; ORIFICES
AB Falling particle receivers are being evaluated as an alternative to conventional fluid-based solar receivers to enable higher temperatures and higher efficiency power cycles with direct storage for concentrating solar power applications. This paper presents studies of the particle mass flow rate, velocity, particle-curtain opacity and density, and other characteristics of free-falling ceramic particles as a function of different discharge slot apertures. The methods to characterize the particle flow are described, and results are compared to theoretical and numerical models for unheated conditions.
C1 [Ho, Clifford K.; Christian, Joshua M.; Yellowhair, Julius] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Romano, David] Polytech Univ Turin, Corso Duca Abruzzi 24, I-10129 Turin, Italy.
[Siegel, Nathan] Bucknell Univ, 701 Moore Ave, Lewisburg, PA 17837 USA.
RP Ho, CK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM ckho@sandia.gov
NR 12
TC 0
Z9 0
U1 2
U2 3
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5684-0
PY 2016
AR V001T05A013
PG 8
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels
SC Science & Technology - Other Topics; Energy & Fuels
GA BE6KS
UT WOS:000374279400037
ER
PT B
AU Ortega, JD
Khivsara, SD
Christian, JM
Ho, CK
AF Ortega, Jesus D.
Khivsara, Sagar D.
Christian, Joshua M.
Ho, Clifford K.
GP ASME
TI DESIGN REQUIREMENTS FOR DIRECT SUPERCRITICAL CARBON DIOXIDE RECEIVER
DEVELOPMENT AND TESTING
SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON ENERGY
SUSTAINABILITY, 2015, VOL 1
LA English
DT Proceedings Paper
CT 9th ASME International Conference on Energy Sustainability
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div
AB This paper establishes the design requirements for the development and testing of direct supercritical carbon dioxide (sCO2) solar receivers. Current design considerations are based on the ASME Boiler and Pressure Vessel Code (BPVC). Section I (BPVC) considers typical boilers/superheaters (i.e. fired pressure vessels) which work under a constant low heat flux. Section VIII (BPVC) considers pressure vessels with operating pressures above 15 psig [2 bar] (i.e. unfired pressure vessels). Section III, Division I - Subsection NH (BPVC) considers a more detailed stress calculation, compared to Section I and Section VIII, and requires a creep-fatigue analysis. The main drawback from using the BPVC exclusively is the large safety requirements developed for nuclear power applications. As a result, a new set of requirements is needed to perform detailed thermal-structural analyses of solar thermal receivers subjected to a spatially-varying, high-intensity heat flux. The last design requirements document of this kind was an interim Sandia report developed in 1979 (SAND79-8183), but it only addresses some of the technical challenges in early-stage steam and molten-salt solar receivers but not the use of sCO2 receivers. This paper presents a combination of the ASME BPVC and ASME B31.1 Code modified appropriately to achieve the reliability requirements in sCO(2) solar power systems. There are five main categories in this requirements document: Operation and Safety, Materials and Manufacturing, Instrumentation, Maintenance and Environmental, and General requirements. This paper also includes the modeling guidelines and input parameters required in computational fluid dynamics and structural analyses utilizing ANSYS Fluent, ANSYS Mechanical, and nCode Design Life. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of sCO(2) receivers.
C1 [Ortega, Jesus D.; Christian, Joshua M.; Ho, Clifford K.] Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA.
[Khivsara, Sagar D.] Indian Inst Sci, Dept Mech Engn, Bangalore 560012, KA, India.
RP Ortega, JD (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA.
NR 8
TC 0
Z9 0
U1 1
U2 1
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5684-0
PY 2016
AR V001T05A019
PG 6
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels
SC Science & Technology - Other Topics; Energy & Fuels
GA BE6KS
UT WOS:000374279400043
ER
PT B
AU Ortega, JD
Christian, JM
Ho, CK
AF Ortega, Jesus D.
Christian, Joshua M.
Ho, Clifford K.
GP ASME
TI STRUCTURAL ANALYSIS OF A DIRECT HEATED TUBULAR SOLAR RECEIVER FOR
SUPERCRITICAL CO2 BRAYTON CYCLE
SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON ENERGY
SUSTAINABILITY, 2015, VOL 1
LA English
DT Proceedings Paper
CT 9th ASME International Conference on Energy Sustainability
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div
AB Closed-loop super-critical carbon dioxide (sCO(2)) Brayton cycles are being evaluated in combination with concentrating solar power to provide higher thermal-to-electric conversion efficiencies relative to conventional steam Rankine cycles. However, high temperatures (650 - 700 degrees C) and pressures (20 - 25 MPa) are required in the solar receiver. In this study, an extensive material review was performed along with a tube size optimization following the ASME Boiler and Pressure Vessel Code and B31.1 and B313.3 codes respectively. Subsequently, a thermal-structural model was developed using ANSYS Fluent and Structural to design and analyze the tubular receiver that could provide the heat input for a similar to 2 MWth plant. The receiver will be required to provide an outlet temperature of 650 degrees C (at 25 MPa) or 700 degrees C (at 20 MPa). The induced thermal stresses were applied using a temperature gradient throughout the tube while a constant pressure load was applied on the inner wall. The resulting stresses have been validated analytically using constant surface temperatures. The cyclic loading analysis was performed using the Larson-Miller creep model in nCode Design Life to define the structural integrity of the receiver over the desired lifetime of similar to 10,000 cycles. The results have shown that the stresses induced by the thermal and pressure load can be withstood by the tubes selected. The creep-fatigue analysis displayed the damage accumulation due to the cycling and the permanent deformation of the tubes. Nonetheless, they are able to support the required lifetime. As a result, a complete model to verify the structural integrity and thermal performance of a high temperature and pressure receiver has been developed. This work will serve as reference for future design and evaluation of future direct and indirect tubular receivers.
C1 [Ortega, Jesus D.; Christian, Joshua M.; Ho, Clifford K.] Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA.
RP Ortega, JD (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA.
NR 23
TC 0
Z9 0
U1 1
U2 1
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5684-0
PY 2016
AR V001T05A015
PG 9
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels
SC Science & Technology - Other Topics; Energy & Fuels
GA BE6KS
UT WOS:000374279400039
ER
PT B
AU Ortega, JD
Khivsara, SD
Christian, JM
Yellowhair, JE
Ho, CK
AF Ortega, Jesus D.
Khivsara, Sagar D.
Christian, Joshua M.
Yellowhair, Julius E.
Ho, Clifford K.
GP ASME
TI COUPLED OPTICAL-THERMAL-FLUID MODELING OF A DIRECTLY HEATED TUBULAR
SOLAR RECEIVER FOR SUPERCRITICAL CO2 BRAYTON CYCLE
SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON ENERGY
SUSTAINABILITY, 2015, VOL 1
LA English
DT Proceedings Paper
CT 9th ASME International Conference on Energy Sustainability
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div
ID POWER; TEMPERATURE
AB Recent studies have evaluated closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energy density system in comparison to conventional superheated steam Rankine systems. At turbine inlet conditions of 923K and 25 MPa, high thermal efficiency (similar to 50%) can be achieved. Achieving these high efficiencies will make concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. To incorporate a s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 923 K (at 25 MPa) is necessary. The s-CO2 will need to increase in temperature by similar to 200 K as it passes through the solar receiver to satisfy the temperature requirements of a s-CO2 Brayton cycle with recuperation and recompression. In this study, an optical-thermal-fluid model was developed to design and evaluate a tubular receiver that will receive a heat input similar to 2 MWth from a heliostat field. The ray-tracing tool SolTrace was used to obtain the heat-flux distribution on the surfaces of the receiver. Computational fluid dynamics (CFD) modeling using the Discrete Ordinates (DO) radiation model was used to predict the temperature distribution and the resulting receiver efficiency. The effect of flow parameters, receiver geometry and radiation absorption by s-CO2 were studied. The receiver surface temperatures were found to be within the safe operational limit while exhibiting a receiver efficiency of similar to 85%.
C1 [Ortega, Jesus D.; Christian, Joshua M.; Yellowhair, Julius E.; Ho, Clifford K.] Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA.
[Khivsara, Sagar D.] Indian Inst Sci, Dept Mech Engn, Bangalore 560012, KA, India.
RP Ortega, JD (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA.
NR 19
TC 0
Z9 0
U1 0
U2 1
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5684-0
PY 2016
AR V001T05A018
PG 6
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels
SC Science & Technology - Other Topics; Energy & Fuels
GA BE6KS
UT WOS:000374279400042
ER
PT J
AU Peskin, ME
AF Peskin, Michael E.
TI On the Trail of the Higgs Boson
SO ANNALEN DER PHYSIK
LA English
DT Review
ID STANDARD MODEL; FIELD-THEORIES; ELECTROWEAK MEASUREMENTS; SUPERSYMMETRY
BREAKING; MASSLESS PARTICLES; BROKEN SYMMETRIES; GAUGE-INVARIANCE;
SUPERCONDUCTIVITY; DIMENSIONS; COLLISIONS
AB I review theoretical issues associated with the Higgs boson and the mystery of spontaneous breaking of the electroweak gauge symmetry. This essay is intended as an introduction to the special issue of Annalen der Physik, "Particle Physics after the Higgs".
C1 [Peskin, Michael E.] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA.
RP Peskin, ME (reprint author), Stanford Univ, SLAC, Menlo Pk, CA 94025 USA.
EM mpeskin@slac.stanford.edu
FU U.S. Department of Energy [DE-AC02-76SF00515]
FX I am grateful to Halina Abramowicz, Allen Caldwell, and Brian Foster for
their invitation to write for this volume, to Raymond Brock and Beate
Heinemann for their encouragement, and to many colleagues at SLAC and
elsewere for discussions of the issues put forward here. This work was
supported by the U.S. Department of Energy under contract
DE-AC02-76SF00515.
NR 81
TC 2
Z9 2
U1 5
U2 8
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0003-3804
EI 1521-3889
J9 ANN PHYS-BERLIN
JI Ann. Phys.-Berlin
PD JAN
PY 2016
VL 528
IS 1-2
SI SI
BP 20
EP 34
DI 10.1002/andp.201500225
PG 15
WC Physics, Multidisciplinary
SC Physics
GA DJ2NI
UT WOS:000374041200003
ER
PT J
AU Heinemann, B
AF Heinemann, Beate
TI LHC - perspectives at the energy frontier
SO ANNALEN DER PHYSIK
LA English
DT Article
DE LHC; future; higgs; dark matter; supersymmetry
ID DYNAMICAL SYMMETRY-BREAKING; SUPERGAUGE TRANSFORMATIONS; MASS; MODEL;
SUPERSYMMETRY; PARTICLE; DIMENSIONS; HIERARCHY; FERMIONS; PIONS
AB After a design and construction phase that lasted more than two decades, the Large Hadron Collider (LHC) started its first run in 2010 and after just over two years, the discovery of the Higgs boson at the LHC was announced. In the future the LHC collision energy will be increased by nearly a factor of two, and the dataset will be increased by more than a factor of 100. These improvements dramatically increase the potential for finding new physics at the weak scale via either precision measurements or direct searches or both. The LHC is in a unique position to directly explore the weak energy scale and shed light on some of the biggest puzzles in nature, e.g. the origin of Dark Matter or the hierarchy problem.
C1 [Heinemann, Beate] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Heinemann, Beate] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Heinemann, B (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA.; Heinemann, B (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM bheheinemann@berkeley.edu
FU Office of Science, Office of High Energy Physics of the U.S. Department
of Energy [DE-AC02-05CH11231]
FX This work was supported in part by the Director, Office of Science,
Office of High Energy Physics of the U.S. Department of Energy under
contract DE-AC02-05CH11231.
NR 75
TC 0
Z9 0
U1 0
U2 0
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0003-3804
EI 1521-3889
J9 ANN PHYS-BERLIN
JI Ann. Phys.-Berlin
PD JAN
PY 2016
VL 528
IS 1-2
SI SI
BP 123
EP 130
DI 10.1002/andp.201500212
PG 8
WC Physics, Multidisciplinary
SC Physics
GA DJ2NI
UT WOS:000374041200015
ER
PT J
AU Venugopalan, R
AF Venugopalan, Raju
TI Why we need an electron-ion collider
SO ANNALEN DER PHYSIK
LA English
DT Article
AB We present a brief argument making the science case for an electron-ion collider.
C1 [Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Venugopalan, R (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
EM raju@bnl.gov
FU DOE [de-sc0012704]
FX This work was supported under DOE Contract No. de-sc0012704. I am
grateful to my BNL experimental colleagues Elke Aschenauer and Thomas
Ullrich, as well as Rolf Ent from Jlab, and Abhay Deshpande of Stony
Brook University, who have taught me some of the EIC lore. The support
of my BNL theory colleagues is always forthcoming and greatly
appreciated. I would also like to thank Marco Stratmann, Steve Vigdor
and Werner Vogelsang for their very useful comments on the manuscript.
NR 13
TC 1
Z9 1
U1 2
U2 2
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0003-3804
EI 1521-3889
J9 ANN PHYS-BERLIN
JI Ann. Phys.-Berlin
PD JAN
PY 2016
VL 528
IS 1-2
SI SI
BP 131
EP 137
DI 10.1002/andp.201500248
PG 7
WC Physics, Multidisciplinary
SC Physics
GA DJ2NI
UT WOS:000374041200016
ER
PT J
AU Cheng, YW
Choi, DW
Han, KS
Mueller, KT
Zhang, JG
Sprenkle, VL
Liu, J
Li, GS
AF Cheng, Yingwen
Choi, Daiwon
Han, Kee Sung
Mueller, Karl T.
Zhang, Ji-Guang
Sprenkle, Vincent L.
Liu, Jun
Li, Guosheng
TI Toward the design of high voltage magnesium-lithium hybrid batteries
using dual-salt electrolytes
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID RECHARGEABLE MG BATTERIES; ION BATTERY; STORAGE; INTERCALATION;
PERFORMANCE; CHALLENGE; CHEMISTRY; DENSITY
AB We report a design of high voltage magnesium-lithium (Mg-Li) hybrid batteries through rational control of the electrolyte chemistry, electrode materials and cell architecture. Prototype devices with a structure of Mg-Li/LiFePO4 (LFP) and Mg-Li/LiMn2O4 (LMO) have been investigated. A Mg-Li/LFP cell using a dual-salt electrolyte 0.2 M [Mg2Cl2(DME)(4)][AlCl4](2) and 1.0 M LiTFSI exhibits voltages higher than 2.5 V (vs. Mg) and a high specific energy density of 246 W h kg(-1) under conditions that are amenable for practical applications. The successful demonstrations reported here could be a significant step forward for practical hybrid batteries.
C1 [Cheng, Yingwen; Choi, Daiwon; Zhang, Ji-Guang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng] Pacific NW Natl Lab, Energy Proc & Mat Div, Energy & Environm Directorate, Richland, WA 99354 USA.
[Han, Kee Sung] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA.
[Mueller, Karl T.] Pacific NW Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99354 USA.
RP Liu, J; Li, GS (reprint author), Pacific NW Natl Lab, Energy Proc & Mat Div, Energy & Environm Directorate, Richland, WA 99354 USA.
EM jun.liu@pnnl.gov; guosheng.li@pnnl.gov
RI Choi, Daiwon/B-6593-2008; Cheng, Yingwen/B-2202-2012;
OI Cheng, Yingwen/0000-0002-0778-5504; Han, Kee Sung/0000-0002-3535-1818
FU U.S. Department of Energy (DOE) Office of Electricity Delivery and
Energy Reliability [57558]; DOE BER; DOE [DE-AC05-76RL01830]
FX This work was supported by the U.S. Department of Energy (DOE) Office of
Electricity Delivery and Energy Reliability under Contract No. 57558.
NMR experiments were performed at EMSL, a DOE Office of Science user
facility sponsored by the DOE BER and located at PNNL. PNNL is a
multiprogram laboratory operated by Battelle Memorial Institute for the
DOE under Contract DE-AC05-76RL01830.
NR 31
TC 5
Z9 5
U1 18
U2 65
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PY 2016
VL 52
IS 31
BP 5379
EP 5382
DI 10.1039/c6cc00986g
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DJ2KQ
UT WOS:000374033700004
PM 26959513
ER
PT J
AU Brown, JL
Gaunt, AJ
King, DM
Liddle, ST
Reilly, SD
Scott, BL
Wooles, AJ
AF Brown, Jessie L.
Gaunt, Andrew J.
King, David M.
Liddle, Stephen T.
Reilly, Sean D.
Scott, Brian L.
Wooles, Ashley J.
TI Neptunium and plutonium complexes with a sterically encumbered
triamidoamine (TREN) scaffold
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID LIGAND MULTIPLE BONDS; CARBON-MONOXIDE; URANYL-ION; URANIUM; CHEMISTRY;
SE; TE; REACTIVITY; ACTINIDE; NITRIDE
AB The syntheses and characterisation of isostructural neptunium(IV) and plutonium(IV) complexes [An(IV)(TRENTIPS)(Cl)] [An = Np, Pu; TRENTIPS = {N(CH2CH2NSiPr3i)(3)}(3-)] are reported, along with the demonstration that they are likely reduced to the corresponding neptunium(III) and plutonium(III) products [An(III)(TRENTIPS)]; this chemistry provides new platforms fromwhich to target a plethora of unprecedented molecular functionalities in transuranic chemistry and the neptunium(IV) molecule is the first structurally characterised neptunium(IV)-amide complex.
C1 [Brown, Jessie L.; Gaunt, Andrew J.; Reilly, Sean D.] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA.
[King, David M.; Liddle, Stephen T.; Wooles, Ashley J.] Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England.
[Scott, Brian L.] Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA.
RP Gaunt, AJ (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA.; Liddle, ST (reprint author), Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England.
EM gaunt@lanl.gov; steve.liddle@manchester.ac.uk
RI Scott, Brian/D-8995-2017;
OI Scott, Brian/0000-0003-0468-5396; Gaunt, Andrew/0000-0001-9679-6020
FU U. S. Department of Energy, Office of Science, Early Career Research
Program; U. S. Department of Energy, Office of Science, Basic Energy
Sciences, Heavy Element Chemistry Program; Royal Society; ERC; EPSRC;
University of Nottingham; University of Manchester
FX J. L. B., A. J. G., and S. D. R. thank the U. S. Department of Energy,
Office of Science, Early Career Research Program for funding the
neptunium chemistry and initial plutonium chemistry. A. J. G. also
thanks the U. S. Department of Energy, Office of Science, Basic Energy
Sciences, Heavy Element Chemistry Program for funding completion of the
plutonium chemistry and manuscript preparation. D. M. K., S. T. L., and
A. J. W. thank the Royal Society, ERC, EPSRC, University of Nottingham,
and University of Manchester for funding. We thank Mr Danil E. Smiles
for assistance with unwrapping of multiply contained transuranic samples
prior to transport to spectroscopic instrumentation and Dr Matthew S.
Winston for providing an auxiliary sample of
[(Li)3(TRENTIPS)] ligand.
NR 33
TC 4
Z9 4
U1 3
U2 19
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PY 2016
VL 52
IS 31
BP 5428
EP 5431
DI 10.1039/c6cc01656a
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DJ2KQ
UT WOS:000374033700017
PM 27009799
ER
PT J
AU Littlejohn, AJ
Lu, TM
Zhang, LH
Kisslinger, K
Wang, GC
AF Littlejohn, A. J.
Lu, T. -M.
Zhang, L. H.
Kisslinger, K.
Wang, G. -C.
TI Orientation epitaxy of Ge1-xSnx films grown on single crystal CaF2
substrates
SO CRYSTENGCOMM
LA English
DT Article
ID THREADING DISLOCATION DENSITIES; SURFACE ENERGIES; HOLE MOBILITY; GE;
SN; TEMPERATURE; GERMANIUM; SILICON; SEMICONDUCTORS; DIFFUSIVITY
AB Ge1-xSnx films were grown via physical vapor deposition below the crystallization temperature of Ge on single crystal (111) and (100) CaF2 substrates to assess the role of Sn alloying in Ge crystallization. By studying samples grown at several growth temperatures ranging from 250 degrees C to 400 degrees C we report temperature-dependent trends in several of the films' properties. X-ray diffraction theta vs. two-theta (theta/2 theta) scans indicate single orientation Ge1-xSnx(111) films are grown on CaF2(111) substrates at each temperature, while a temperature-dependent superposition of (111) and (100) orientations are exhibited in films grown on CaF2(100) above 250 degrees C. This is the first report of (111) oriented Ge1-xSnx grown on a (100) oriented CaF2 substrate, which is successfully predicted by a superlattice area matching model. These results are confirmed by X-ray diffraction pole figure analysis. theta/2 theta results indicate substitutional Sn alloying in each film of about 5%, corroborated by energy dispersive spectroscopy. Additionally, morphological and electrical properties are measured by scanning electron microscopy, atomic force microscopy and Hall mobility measurements and are also shown to be dependent upon growth temperature.
C1 [Littlejohn, A. J.; Lu, T. -M.; Wang, G. -C.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA.
[Littlejohn, A. J.; Lu, T. -M.; Wang, G. -C.] Rensselaer Polytech Inst, Ctr Mat Devices & Integrated Syst, 110 8th St, Troy, NY 12180 USA.
[Zhang, L. H.; Kisslinger, K.] Brookhaven Natl Lab, Ctr Funct Nanomat, Bldg 735,POB 5000, Upton, NY 11973 USA.
RP Littlejohn, AJ (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA.; Littlejohn, AJ (reprint author), Rensselaer Polytech Inst, Ctr Mat Devices & Integrated Syst, 110 8th St, Troy, NY 12180 USA.
EM littla4@rpi.edu
FU NSF [DMR-1305293]; New York State Foundation of Science, Technology and
Innovation (NYSTAR) through Focus Center-New York; Rensselaer; U.S. DOE
Office of Science Facility, at Brookhaven National Laboratory
[DE-SC0012704]
FX This work is supported by NSF DMR-1305293, New York State Foundation of
Science, Technology and Innovation (NYSTAR) through Focus Center-New
York, and Rensselaer. This research used JEOL2100F TEM and
Hitachi2700C-STEM of the Center for Functional Nanomaterials, which is a
U.S. DOE Office of Science Facility, at Brookhaven National Laboratory
under contract no. DE-SC0012704. We thank Robert Lord, Yu Xiang, Drs. J.
K. Dash, L. Chen and Y. Yang for discussions, and Dr. Chen for taking
the SEM image of the thick film for deposition rate calibration.
NR 48
TC 0
Z9 0
U1 2
U2 4
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1466-8033
J9 CRYSTENGCOMM
JI Crystengcomm
PY 2016
VL 18
IS 15
BP 2757
EP 2769
DI 10.1039/c5ce02579f
PG 13
WC Chemistry, Multidisciplinary; Crystallography
SC Chemistry; Crystallography
GA DJ2PJ
UT WOS:000374046800020
ER
PT J
AU Ramalho, TC
de Castro, AA
Silva, DR
Silva, MC
Franca, TCC
Bennion, BJ
Kuca, K
AF Ramalho, Teodorico C.
de Castro, Alexandre A.
Silva, Daniela R.
Silva, Maria Cristina
Franca, Tanos C. C.
Bennion, Brian J.
Kuca, Kamil
TI Computational Enzymology and Organophosphorus Degrading Enzymes:
Promising Approaches Toward Remediation Technologies of Warfare Agents
and Pesticides
SO CURRENT MEDICINAL CHEMISTRY
LA English
DT Article
DE Computational methods; bioremediation; organophosphates detoxification;
warfare agents; pesticides; molecular docking; molecular dynamics
simulations; quantum mechanics; QM/MM
ID MOLECULAR-DYNAMICS SIMULATIONS; ANHYDRIDE HYDROLASE ACTIVITY; SERUM
PARAOXONASE 1; DIISOPROPYL FLUOROPHOSPHATASE DFPASE;
AMINO-ACID-RESIDUES; HUMAN BUTYRYLCHOLINESTERASE; BACTERIAL
PHOSPHOTRIESTERASE; NERVE AGENTS; LOLIGO-VULGARIS; CHEMICAL WARFARE
AB The re-emergence of chemical weapons as a global threat in hands of terrorist groups, together with an increasing number of pesticides intoxications and environmental contaminations worldwide, has called the attention of the scientific community for the need of improvement in the technologies for detoxification of organophosphorus (OP) compounds. A compelling strategy is the use of bioremediation by enzymes that are able to hydrolyze these molecules to harmless chemical species. Several enzymes have been studied and engineered for this purpose. However, their mechanisms of action are not well understood. Theoretical investigations may help elucidate important aspects of these mechanisms and help in the development of more efficient bio-remediators. In this review, we point out the major contributions of computational methodologies applied to enzyme based detoxification of OPs. Furthermore, we highlight the use of PTE, PON, DFP, and BuChE as enzymes used in OP detoxification process and how computational tools such as molecular docking, molecular dynamics simulations and combined quantum mechanical/molecular mechanics have and will continue to contribute to this very important area of research.
C1 [Ramalho, Teodorico C.; de Castro, Alexandre A.; Silva, Daniela R.; Silva, Maria Cristina] Univ Fed Lavras, Dept Chem, BR-37200000 Lavras, Brazil.
[Ramalho, Teodorico C.; Franca, Tanos C. C.; Kuca, Kamil] Univ Hradec Kralove, Fac Informat & Management, Ctr Basic & Appl Res, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic.
[Silva, Maria Cristina] Univ Fed Minas Gerais, Dept Chem, BR-31270901 Belo Horizonte, MG, Brazil.
[Franca, Tanos C. C.; Kuca, Kamil] Mil Inst Engn, Lab Mol Modeling Appl Chem & Biol Def, Rio De Janeiro, Brazil.
[Franca, Tanos C. C.] Concordia Univ, Dept Chem & Biochem, 7141 Rue Sherbrooke W, Montreal, PQ H4B 1R6, Canada.
[Bennion, Brian J.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Kuca, Kamil] Univ Hosp Hradec Kralove, Biomed Res Ctr, Hradec Kralove, Czech Republic.
RP Ramalho, TC (reprint author), Univ Fed Lavras, Dept Chem, BR-37200000 Lavras, Brazil.; Kuca, K (reprint author), Univ Hosp Hradec Kralove, Biomed Res Ctr, Hradec Kralove, Czech Republic.
EM teodorico.ramalho@gmail.com; kamil.kuca@fnhk.cz
RI Franca, Tanos/I-9519-2012; Ramalho, Teodorico /H-3204-2012
OI Ramalho, Teodorico /0000-0002-7324-1353
FU Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
[304557/2012-9, 474757/2012-9]; Fundacao de Amparo ao Ensino e Pesquisa
do Estado do Rio de Janeiro (FAPERJ) [E-26/102.993/2012]; Fundacao de
Amparo ao Ensino e Pesquisa de Minas Gerais (FAPEMIG) [PPM-00499-13,
PPM-00434-13]; Coordenacao de Aperfeicoamento de Pessoal de Nivel
Superior/Ministerio da Defesa (CAPES/MD) [PD 1782/2008]; excellence
project FIM; UHHK; U.S. Department of Energy, National Nuclear Security
Administration [DE-AC52-07NA27344]
FX The authors wish to thank the Brazilian financial agencies Conselho
Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) (Grants
304557/2012-9 and 474757/2012-9), Fundacao de Amparo ao Ensino e
Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Grant E-26/102.993/2012),
Fundacao de Amparo ao Ensino e Pesquisa de Minas Gerais (FAPEMIG) (Grant
no PPM-00499-13, and PPM-00434-13) and Coordenacao de Aperfeicoamento de
Pessoal de Nivel Superior/Ministerio da Defesa (CAPES/MD) (Edital
PRODEFESA 2008, grant no PD 1782/2008) for financial support, and the
Military Institute of Engineering (IME) and Federal University of Lavras
(UFLA) for providing the physical infrastructure and working space. This
work was also supported by excellence project FIM and UHHK. Lawrence
Livermore National Laboratory is operated by Lawrence Livermore National
Security, LLC, for the U.S. Department of Energy, National Nuclear
Security Administration under Contract DE-AC52-07NA27344. Release Number
LLNL-JRNL-679655.
NR 156
TC 0
Z9 0
U1 8
U2 16
PU BENTHAM SCIENCE PUBL LTD
PI SHARJAH
PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB
EMIRATES
SN 0929-8673
EI 1875-533X
J9 CURR MED CHEM
JI Curr. Med. Chem.
PY 2016
VL 23
IS 10
BP 1041
EP 1061
DI 10.2174/0929867323666160222113504
PG 21
WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Pharmacology &
Pharmacy
SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy
GA DJ3QN
UT WOS:000374120800004
PM 26898655
ER
PT J
AU Hadi, P
Ning, C
Kubicki, JD
Mueller, K
Fagan, JW
Luo, ZT
Weng, LT
McKay, G
AF Hadi, Pejman
Ning, Chao
Kubicki, James D.
Mueller, Karl
Fagan, Jonathan W.
Luo, Zhengtang
Weng, Lutao
McKay, Gordon
TI Sustainable development of a surface-functionalized mesoporous
aluminosilicate with ultra-high ion exchange efficiency
SO INORGANIC CHEMISTRY FRONTIERS
LA English
DT Article
ID HEAVY-METAL IONS; COAL FLY-ASH; RAY PHOTOELECTRON-SPECTROSCOPY;
AB-INITIO; AQUEOUS-SOLUTION; MAS-NMR; SYNTHETIC RESIN; ALBITE GLASSES;
WASTE-WATER; SILICA-GEL
AB The present work employs a facile hydroxylation technique to efficiently functionalize the surface of a waste-derived aluminosilicate for ultra-high heavy metal uptake via ion exchange. The functionalization process leads to the transformation of a nonporous hydrophobic waste material to a mesoporous hydrophilic material with a high concentration of ion exchange sites. The modification of the surface and textural characteristics of the mesoporous aluminosilicate has been thoroughly elucidated. The functionalization brings about the partial depolymerization of the aluminosilicate network and the transformation of unreactive bridging oxygens (BO) into non-bridging oxygens (NBO) as active sites as evidenced by Si-29 NMR and FTIR. The positively-charged alkali metals bound to the NBO act as facile ion exchange sites. Ultra-high heavy metal uptake capacity of the functionalized material through a combination of ion exchange and physisorption mechanisms has revealed the great potential of this aluminosilicate material for treatment of heavy metal-laden wastewater in a sustainable manner for practical applications.
C1 [Hadi, Pejman; Ning, Chao; Luo, Zhengtang; Weng, Lutao; McKay, Gordon] Hong Kong Univ Sci & Technol, Chem & Biomol Engn Dept, Kowloon, Hong Kong, Peoples R China.
[Kubicki, James D.] Univ Texas El Paso, Dept Geol Sci, El Paso, TX 79968 USA.
[Mueller, Karl; Fagan, Jonathan W.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA.
[Mueller, Karl] Pacific NW Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA.
[Weng, Lutao] Hong Kong Univ Sci & Technol, Mat Characterizat & Preparat Facil, Kowloon, Hong Kong, Peoples R China.
[McKay, Gordon] Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci Engn & Technol, Div Sustainable Dev, Doha, Qatar.
RP McKay, G (reprint author), Hong Kong Univ Sci & Technol, Chem & Biomol Engn Dept, Kowloon, Hong Kong, Peoples R China.; McKay, G (reprint author), Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci Engn & Technol, Div Sustainable Dev, Doha, Qatar.
EM kemckayg@ust.hk
RI Kubicki, James/I-1843-2012
OI Kubicki, James/0000-0002-9277-9044
NR 77
TC 0
Z9 0
U1 2
U2 9
PU CHINESE CHEMICAL SOC
PI TAIPEI
PA PO BOX 1-18, NANKANG, TAIPEI 115, TAIWAN
SN 2052-1553
J9 INORG CHEM FRONT
JI Inorg. Chem. Front.
PY 2016
VL 3
IS 4
BP 502
EP 513
DI 10.1039/c5qi00182j
PG 12
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA DJ2CP
UT WOS:000374011600008
ER
PT J
AU Brabec, J
Yang, C
Epifanovsky, E
Krylov, AI
Ng, E
AF Brabec, Jiri
Yang, Chao
Epifanovsky, Evgeny
Krylov, Anna I.
Ng, Esmond
TI Reduced-cost sparsity-exploiting algorithm for solving coupled-cluster
equations
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE coupled-cluster methods; sparsity; sparse correction; quasi-Newton;
solvers
ID ELECTRONIC-STRUCTURE CALCULATIONS; SINGULAR-VALUE DECOMPOSITION; INEXACT
NEWTON METHODS; TRIPLES CORRECTION T; PERTURBATION-THEORY; CHOLESKY
DECOMPOSITIONS; QUANTUM-CHEMISTRY; BRILLOUIN-WIGNER; DOUBLES MODEL;
MULTIREFERENCE
AB We present an algorithm for reducing the computational work involved in coupled-cluster (CC) calculations by sparsifying the amplitude correction within a CC amplitude update procedure. We provide a theoretical justification for this approach, which is based on the convergence theory of inexact Newton iterations. We demonstrate by numerical examples that, in the simplest case of the CCD equations, we can sparsify the amplitude correction by setting, on average, roughly 90% nonzero elements to zeros without a major effect on the convergence of the inexact Newton iterations.
C1 [Brabec, Jiri; Yang, Chao; Ng, Esmond] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
[Epifanovsky, Evgeny; Krylov, Anna I.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA.
[Epifanovsky, Evgeny] Q Chem Inc, Suite 105, Pleasanton, CA 94588 USA.
RP Brabec, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
EM jiri.brabec@jh-inst.cas.cz
FU Scientific Discovery through Advanced Computing (SciDAC) program
FX Support for this work was provided through Scientific Discovery through
Advanced Computing (SciDAC) program.
NR 63
TC 1
Z9 1
U1 1
U2 4
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0192-8651
EI 1096-987X
J9 J COMPUT CHEM
JI J. Comput. Chem.
PY 2016
VL 37
IS 12
BP 1059
EP 1067
DI 10.1002/jcc.24293
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA DJ2HH
UT WOS:000374024200003
PM 26804120
ER
PT J
AU Aoun, B
AF Aoun, Bachir
TI Fullrmc, a rigid body reverse monte carlo modeling package enabled with
machine learning and artificial intelligence
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE reverse Monte Carlo; rigid body; machine learning; pair distribution
function; modeling
ID DISORDERED STRUCTURES; SIMULATION; RMC
AB A new Reverse Monte Carlo (RMC) package fullrmc for atomic or rigid body and molecular, amorphous, or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython, C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with a set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modeling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. In addition, fullrmc provides a unique way with almost no additional computational cost to recur a group's selection, allowing the system to go out of local minimas by refining a group's position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group. (c) 2016 Wiley Periodicals, Inc.
C1 [Aoun, Bachir] Argonne Natl Labs, Joint Ctr Energy Storage Res, 9700 South Cass Ave B109, Lemont, IL USA.
RP Aoun, B (reprint author), Argonne Natl Labs, Joint Ctr Energy Storage Res, 9700 South Cass Ave B109, Lemont, IL USA.
EM baoun@aps.anl.gov
FU DOE Office of Science by Argonne National Laboratory
[DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Basic
Energy Sciences
FX This research used resources of the Advanced Photon Source, a U.S.
Department of Energy (DOE) Office of Science User Facility operated for
the DOE Office of Science by Argonne National Laboratory under Contract
No. DE-AC02-06CH11357. The author would like to thank B. Reinhart (ANL),
P. Chupas (ANL) and K. Chapman (ANL) for the technical assistance and
scientific inputs. The Tetrahydrofuran example was provided by the Joint
Center for Energy Storage Research (JCESR) efforts an Energy Innovation
Hub funded by the U.S. Department of Energy, Office of Science, Basic
Energy Sciences.
NR 19
TC 1
Z9 1
U1 4
U2 12
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0192-8651
EI 1096-987X
J9 J COMPUT CHEM
JI J. Comput. Chem.
PY 2016
VL 37
IS 12
BP 1102
EP 1111
DI 10.1002/jcc.24304
PG 10
WC Chemistry, Multidisciplinary
SC Chemistry
GA DJ2HH
UT WOS:000374024200007
PM 26800289
ER
PT J
AU Mistri, GK
Aggarwal, SK
Longman, D
Agarwal, AK
AF Mistri, Gayatri K.
Aggarwal, Suresh K.
Longman, Douglas
Agarwal, Avinash K.
TI Performance and Emission Investigations of Jatropha and Karanja
Biodiesels in a Single-Cylinder Compression-Ignition Engine Using
Endoscopic Imaging
SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME
LA English
DT Article
ID DIESEL-ENGINE; COMBUSTION CHARACTERISTICS; BIO-DIESEL; N-HEPTANE; FUEL;
FLAMES; OXIDATION; PRESSURE; INJECTOR; OILS
AB Biofuels produced from nonedible sources that are cultivated on marginal lands represent a viable source of renewable and carbon-neutral energy. In this context, biodiesel obtained from Jatropha and Karanja oil seeds have received significant interest, especially in South Asian subcontinent. Both of these fuels are produced from nonedible plant seeds with high oil content, which can be grown on marginal lands. In this research, we have investigated the performance and emission characteristics of Jatropha and Karanja methyl esters (biodiesel) and their blends with diesel. Another objective is to examine the effect of long-term storage on biodiesel's oxidative stability. The biodiesels were produced at Indian Institute of Technology Kanpur, (IIT Kanpur), India, and the engine experiments were performed in a single cylinder, four-stroke, compression ignition engine at Argonne National Laboratory (ANL), Chicago. An endoscope was used to visualize in-cylinder combustion events and examine the soot distribution. The effects of fuel and start of injection (SOI) on engine performance and emissions were investigated. Results indicated that ignition delay was shorter with biodiesel. Consequently, the cylinder pressure and premixed heat release were higher for diesel compared to biodiesel. Engine performance data for biodiesel (J100, K100) and biodiesel blends (J30, K30) showed an increase in brake thermal efficiency (BTE) (10.9%, 7.6% for biodiesel and blend, respectively), brake specific fuel consumption (BSFC) (13.1% and 5.6%), and nitrogen oxides (NOx) emission (9.8% and 12.9%), and a reduction in brake specific hydrocarbon emission (BSHC) (8.64% and 12.9%), and brake specific CO emission (BSCO) (15.56% and 4.0%). The soot analysis from optical images qualitatively showed that biodiesel and blends produced less soot compared to diesel. The temperature profiles obtained from optical imaging further supported higher NOx in biodiesels and their blends compared to diesel. Additionally, the data indicated that retarding the injection timing leads to higher BSFC, but lower flame temperatures and NOx levels along with higher soot formation for all test fuels. The physicochemical properties such as fatty acid profile, cetane number, and oxygen content in biodiesels support the observed combustion and emission characteristics of the fuels tested in this study. Finally, the effect of long-term storage is found to increase the glycerol content, acid value, and cetane number of the two biodiesels, indicating some oxidation of unsaturated fatty acids in the fuels.
C1 [Mistri, Gayatri K.; Aggarwal, Suresh K.] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA.
[Longman, Douglas] Argonne Natl Lab, Engine Combust Res, Lemont, IL 60439 USA.
[Agarwal, Avinash K.] Indian Inst Technol, Dept Mech Engn, Kanpur 208016, Uttar Pradesh, India.
RP Aggarwal, SK (reprint author), Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA.
EM ska@uic.edu
FU U.S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]; USDOE Office of Energy Efficiency and Renewable
Energy, Office of Vehicle Technology
FX This manuscript has been created in collaboration with UChicago Argonne,
LLC, operator of ANL (Argonne). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract No.
DE-AC02-06CH11357. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government. We gratefully acknowledge
the USDOE Office of Energy Efficiency and Renewable Energy, Office of
Vehicle Technology for partially funding the reported work.
NR 39
TC 0
Z9 0
U1 0
U2 3
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0195-0738
J9 J ENERG RESOUR-ASME
JI J. Energy Resour. Technol.-Trans. ASME
PD JAN
PY 2016
VL 138
IS 1
AR 011202
DI 10.1115/1.4031317
PG 13
WC Energy & Fuels
SC Energy & Fuels
GA DI7UA
UT WOS:000373706300002
ER
PT J
AU Lawrie, BJ
Otterstrom, N
Pooser, RC
AF Lawrie, B. J.
Otterstrom, N.
Pooser, R. C.
TI Coherence area profiling in multi-spatial-mode squeezed states
SO JOURNAL OF MODERN OPTICS
LA English
DT Article
DE squeezed states; quantum optics; coherence areas
ID QUANTUM LIMITS; ENTANGLEMENT; IMAGES; LIGHT
AB The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. We also show that the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.
C1 [Lawrie, B. J.; Otterstrom, N.; Pooser, R. C.] Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN USA.
[Otterstrom, N.] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA.
RP Lawrie, BJ (reprint author), Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN USA.
EM lawriebj@ornl.gov
OI Lawrie, Ben/0000-0003-1431-066X; Pooser, Raphael/0000-0002-2922-453X
FU U.S. Department of Energy, Office of Science, Office of Workforce
Development for Teachers and Scientists (WDTS) under the SULI program;
Laboratory Directed Research and Development program
FX This work was supported in part by the U.S. Department of Energy, Office
of Science, Office of Workforce Development for Teachers and Scientists
(WDTS) under the SULI program. B.L. and R.C.P acknowledge support from
the Laboratory Directed Research and Development program.
NR 28
TC 1
Z9 1
U1 2
U2 3
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0950-0340
EI 1362-3044
J9 J MOD OPTIC
JI J. Mod. Opt.
PY 2016
VL 63
IS 10
BP 989
EP 994
DI 10.1080/09500340.2015.1080869
PG 6
WC Optics
SC Optics
GA DJ0QJ
UT WOS:000373909000011
ER
PT J
AU Leibowitz, SG
Comeleo, RL
Wigington, PJ
Weber, MH
Sproles, EA
Sawicz, KA
AF Leibowitz, Scott G.
Comeleo, Randy L.
Wigington, Parker J., Jr.
Weber, Marc H.
Sproles, Eric A.
Sawicz, Keith A.
TI Hydrologic Landscape Characterization for the Pacific Northwest, USA
SO JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION
LA English
DT Article
DE hydrologic classification; hydrologic cycle; watersheds; rivers;
streams; runoff; geospatial analysis; National Hydrography Dataset; NHD;
Pacific Northwest
ID CONTERMINOUS UNITED-STATES; CATCHMENT CLASSIFICATION; CLIMATE-CHANGE;
FLOW REGIMES; OREGON; FRAMEWORK; STREAMS; RIVER; PRECIPITATION;
TEMPERATURE
AB We update the Wigington etal. (2013) hydrologic landscape (HL) approach to make it more broadly applicable and apply the revised approach to the Pacific Northwest (PNW; i.e., Oregon, Washington, and Idaho). Specific changes incorporated are the use of assessment units based on National Hydrography Dataset Plus V2 catchments, a modified snowmelt model validated over a broader area, an aquifer permeability index that does not require preexisting aquifer permeability maps, and aquifer and soil permeability classes based on uniform criteria. Comparison of Oregon results for the revised and original approaches found fewer and larger assessment units, loss of summer seasonality, and changes in rankings and proportions of aquifer and soil permeability classes. Differences could be explained by three factors: an increased assessment unit size, a reduced number of permeability classes, and use of smaller cutoff values for the permeability classes. The distributions of the revised HLs in five groups of Oregon rivers were similar to the original HLs but less variable. The improvements reported here should allow the revised HL approach to be applied more often insituations requiring hydrologic classification and allow greater confidence in results. We also apply the map results to the development of hydrologic landscape regions.
C1 [Leibowitz, Scott G.; Comeleo, Randy L.; Wigington, Parker J., Jr.; Weber, Marc H.] US EPA, Natl Hlth & Environm Effects Res Lab, Western Ecol Div, 200 SW 35th St, Corvallis, OR 97333 USA.
[Sproles, Eric A.] Univ La Serena, Ctr Adv Studies Arid Zones, La Serena, Chile.
[Sawicz, Keith A.] US EPA, Oak Ridge Inst Sci & Educ, Natl Hlth & Environm Effects Res Lab, Western Ecol Div, Corvallis, OR 97333 USA.
RP Leibowitz, SG (reprint author), US EPA, Natl Hlth & Environm Effects Res Lab, Western Ecol Div, 200 SW 35th St, Corvallis, OR 97333 USA.
EM leibowitz.scott@epa.gov
OI Weber, Marc/0000-0002-9742-4744
FU U.S. Environmental Protection Agency
FX We thank James Wickham and Mohammad Safeeq for providing valuable
comments that improved this article. The information in this document
has been funded entirely by the U.S. Environmental Protection Agency, in
part through an appointment to the Internship/Research Participation
Program at the Office of Research and Development, U.S. Environmental
Protection Agency, administered by the Oak Ridge Institute for Science
and Education through an interagency agreement between the U.S.
Department of Energy and EPA. This article has been subjected to Agency
review and has been approved for publication. The views expressed in
this article are those of the authors and do not necessarily reflect the
views or policies of the U.S. Environmental Protection Agency. Mention
of trade names or commercial products does not constitute endorsement or
recommendation for use.
NR 49
TC 0
Z9 0
U1 7
U2 13
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1093-474X
EI 1752-1688
J9 J AM WATER RESOUR AS
JI J. Am. Water Resour. Assoc.
PY 2016
VL 52
IS 2
BP 473
EP 493
DI 10.1111/1752-1688.12402
PG 21
WC Engineering, Environmental; Geosciences, Multidisciplinary; Water
Resources
SC Engineering; Geology; Water Resources
GA DI9FZ
UT WOS:000373808800014
ER
PT J
AU Klett, M
Gilbert, JA
Trask, SE
Polzin, BJ
Jansen, AN
Dees, DW
Abraham, DP
AF Klett, Matilda
Gilbert, James A.
Trask, Stephen E.
Polzin, Bryant J.
Jansen, Andrew N.
Dees, Dennis W.
Abraham, Daniel P.
TI Electrode Behavior RE-Visited: Monitoring Potential Windows, Capacity
Loss, and Impedance Changes in
Li-1.03(Ni0.5Co0.2Mn0.3)(0.97)O-2/Silicon-Graphite Full Cells
SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY
LA English
DT Article
ID LITHIUM-ION CELLS; FLUOROETHYLENE CARBONATE; VINYLENE CARBONATE; SILICON
ANODES; NEGATIVE ELECTRODES; CATHODE MATERIALS; BATTERIES; PERFORMANCE;
SPECTROSCOPY; LINI0.8CO0.15AL0.05O2
AB The capacity and power performance of lithium-ion battery cells evolve over time. The mechanisms leading to these changes can often be identified through knowledge of electrode potentials, which contain information about electrochemical processes at the electrode-electrolyte interfaces. In this study we monitor electrode potentials within full cells containing a Li-1.03(Ni0.5Co0.2Mn0.3)(0.97)O-2-based (NCM523) positive electrode, a silicon-graphite negative electrode, and an LiPF6-bearing electrolyte, with and without fluoroethylene carbonate (FEC) or vinylene carbonate (VC) additives. The electrode potentials are monitored with a Li-metal reference electrode (RE) positioned besides the electrode stack; changes in these potentials are used to examine electrode state-of-charge (SOC) shifts, material utilization, and loss of electrochemically active material. Electrode impedances are obtained with a LixSn RE located within the stack; the data display the effect of cell voltage and electrode SOC changes on the measured values after formation cycling and after aging. Our measurements confirm the beneficial effect of FEC and VC electrolyte additives in reducing full cell capacity loss and impedance rise after cycling in a 3.0-4.2 V range. Comparisons with data from a full cell containing a graphite-based negative highlight the consequences of including silicon in the electrode. Our observations on electrode potentials, capacity, and impedance changes on cycling are crucial to designing long-lasting, silicon-bearing, lithium-ion cells. (C) The Author(s) 2016. Published by ECS.
C1 [Klett, Matilda; Gilbert, James A.; Trask, Stephen E.; Polzin, Bryant J.; Jansen, Andrew N.; Dees, Dennis W.; Abraham, Daniel P.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Klett, M; Abraham, DP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM mklett@kth.se; abraham@anl.gov
RI Jansen, Andrew/Q-5912-2016
OI Jansen, Andrew/0000-0003-3244-7790
FU Galo Foundation; Royal Swedish Academy of Engineering Sciences (IVA);
Office of Vehicle Technologies at U.S. Department of Energy within core
funding of the Applied Battery Research (ABR) for Transportation
Program; U.S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]
FX M.K. acknowledges the generous grants from The Galo Foundation and The
Royal Swedish Academy of Engineering Sciences (IVA) that enabled her
research at Argonne National Laboratory. The work was also supported by
the Office of Vehicle Technologies at the U.S. Department of Energy
within the core funding of the Applied Battery Research (ABR) for
Transportation Program. We are grateful to our many colleagues,
especially K. Pupek, B. Ingram, T. Burrell, and W. Lu for their help and
support during the course of this study. This manuscript has been
created by UChicago Argonne, LLC, Operator of Argonne National
Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its behalf,
a paid-up nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the
Government.
NR 48
TC 5
Z9 5
U1 11
U2 33
PU ELECTROCHEMICAL SOC INC
PI PENNINGTON
PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA
SN 0013-4651
EI 1945-7111
J9 J ELECTROCHEM SOC
JI J. Electrochem. Soc.
PY 2016
VL 163
IS 6
BP A875
EP A887
DI 10.1149/2.0271606jes
PG 13
WC Electrochemistry; Materials Science, Coatings & Films
SC Electrochemistry; Materials Science
GA DJ1SY
UT WOS:000373985300052
ER
PT J
AU Richey, FW
McCloskey, BD
Luntz, AC
AF Richey, Francis W.
McCloskey, Bryan D.
Luntz, Alan C.
TI Mg Anode Corrosion in Aqueous Electrolytes and Implications for Mg-Air
Batteries
SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY
LA English
DT Article
ID MAGNESIUM ALLOY AZ31; NONAQUEOUS LI-O-2 BATTERIES; SALINE SOLUTION; PURE
MAGNESIUM; PERFORMANCE; SURFACE; ELECTROCHEMISTRY; DISSOLUTION;
PROTECTION; PHOSPHATE
AB Aqueous Mg-air primary batteries possess many favorable attributes for energy storage because Mg is affordable, abundant, and lightweight. However, parasitic corrosion of Mg in aqueous electrolytes generates H-2 and surprisingly increases with increasing current density during battery discharge (Mg oxidation), limiting the faradaic efficiency of aqueous Mg batteries. In this study, differential electrochemical mass spectrometry and H-2 pressure rise measurements were used to characterize Mg corrosion in Mg-air batteries employing aqueous electrolytes with salts (NaCl, NaNO3, NaPO4, and a NaCl/NaPO4 mixture) that provide various degrees of Mg passivation. H-2 evolution rates were highest in NaCl electrolytes and lowest in NaNO3 electrolytes. However, NaNO3 salts reduced the H-2-evolving corrosion rate at the expense of introducing a nitrate to nitrite corrosion reaction into the battery. The combined Mg corrosion rate in the nitrate-based electrolyte was still lowest among those electrolytes studied. The nitrate to nitrite corrosion reaction also lowered the magnitude of the Mg anodic potential and therefore decreased the overall Mg-O-2 battery voltage compared to the NaCl electrolyte. Nevertheless, Mg-O-2 batteries utilizing a NaNO3 electrolyte allowed for 60% larger discharge capacity and 50% higher Mg oxidation faradaic efficiency compared to a NaCl electrolyte. (C) The Author(s) 2016. Published by ECS. All rights reserved.
C1 [Richey, Francis W.; McCloskey, Bryan D.; Luntz, Alan C.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Richey, Francis W.; Luntz, Alan C.] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA.
[Richey, Francis W.; Luntz, Alan C.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA.
[McCloskey, Bryan D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA.
RP McCloskey, BD (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.; McCloskey, BD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA.
EM bmcclosk@berkeley.edu
FU Danish Council for Strategic Research [11-116792]; US Department of
Energy [DE-AC02-05CH11231]
FX F.R. gratefully acknowledges the ReLiable project (#11-116792) funded by
the Danish Council for Strategic Research for financial support. The
work at University of California, Berkeley/Lawrence Berkeley National
Laboratory (LBNL) was supported in part by previous work performed
through the Laboratory Directed Research and Development Program of LBNL
under US Department of Energy Contract DE-AC02-05CH11231. The authors
are also grateful for suggestions and guidance on cell design from Tom
Adams of Adams & Chittenden Scientific Glassware.
NR 30
TC 2
Z9 2
U1 15
U2 36
PU ELECTROCHEMICAL SOC INC
PI PENNINGTON
PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA
SN 0013-4651
EI 1945-7111
J9 J ELECTROCHEM SOC
JI J. Electrochem. Soc.
PY 2016
VL 163
IS 6
BP A958
EP A963
DI 10.1149/2.0781606jes
PG 6
WC Electrochemistry; Materials Science, Coatings & Films
SC Electrochemistry; Materials Science
GA DJ1SY
UT WOS:000373985300083
ER
PT J
AU Siegal, MP
Yelton, WG
Perdue, BR
Sava Gallis, DF
Schwarz, HL
AF Siegal, Michael P.
Yelton, W. Graham
Perdue, Brian R.
Sava Gallis, Dorina F.
Schwarz, Haiqing L.
TI Nanoporous-Carbon as a Potential Host Material for Reversible Mg Ion
Intercalation
SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY
LA English
DT Article
ID NONAQUEOUS MAGNESIUM ELECTROCHEMISTRY; BATTERIES; ADSORPTION; GRAPHENE;
PROGRESS; SURFACE; FILMS
AB We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as an electrically conductive anode host material for Mg2+ intercalation. NPC has high surface area, and an open, accessible pore structure tunable via mass density that can improve diffusion. We fabricate 2032 coin cells using NPC coated stainless-steel disk anodes, metallic Mg cathodes, and a Grignard-based electrolyte. NPC mass density is controlled during growth, ranging from 0.06-1.3 g/cm(3). The specific surface area of NPC increases linearly from 1,000 to 1,700 m(2)/g as mass density decreases from 1.3 to 0.26 g/cm(3), however, the surface area falls off dramatically at lower mass densities, implying a lack of mechanical integrity in such nanostructures. These structural characterizations correlate directly with coin cell electrochemical measurements. In particular, cyclic voltammetry (CV) scans for NPC with density similar to 0.5 g/cm(3) and BET surface area similar to 1500 m(2)/g infer the possibility of reversible Mg-ion intercalation. Higher density NPC yields capacitive behavior, most likely resulting from the smaller interplanar spacings between graphene sheet fragments and tighter domain boundaries; lower density NPC results in asymmetrical CV scans, consistent with the likely structural degradation resulting from mass transport through soft, low-density carbon materials. (C) The Author(s) 2016. Published by ECS. All rights reserved.
C1 [Siegal, Michael P.; Yelton, W. Graham; Perdue, Brian R.; Sava Gallis, Dorina F.; Schwarz, Haiqing L.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
RP Siegal, MP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM mpsiega@sandia.gov
RI Sava Gallis, Dorina/D-2827-2015
FU U.S. Department of Energy [DE-AC04-94AL85000]; Laboratory Directed
Research and Development program at Sandia National Laboratories
FX The authors thank Lyle Brunke for growing the NPC films, Chris Apblett
for use of a glove box to fabricate the Mg coin cells, and Kevin Zavadil
for many useful discussions. This work is supported by the Laboratory
Directed Research and Development program at Sandia National
Laboratories. Sandia is a multiprogram laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Company, for the U.S. Department of Energy's National Nuclear Security
Administration under Contract DE-AC04-94AL85000.
NR 28
TC 0
Z9 0
U1 12
U2 37
PU ELECTROCHEMICAL SOC INC
PI PENNINGTON
PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA
SN 0013-4651
EI 1945-7111
J9 J ELECTROCHEM SOC
JI J. Electrochem. Soc.
PY 2016
VL 163
IS 6
BP A1030
EP A1035
DI 10.1149/2.0851606jes
PG 6
WC Electrochemistry; Materials Science, Coatings & Films
SC Electrochemistry; Materials Science
GA DJ1SY
UT WOS:000373985300090
ER
PT J
AU Snyder, C
Apblett, C
Grillet, A
Beechem, T
Duquette, D
AF Snyder, Chelsea
Apblett, Christopher
Grillet, Anne
Beechem, Thomas
Duquette, David
TI Measuring Li+ Inventory Losses in LiCoO2/Graphite Cells Using Raman
Microscopy
SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY
LA English
DT Article
ID LITHIUM-ION BATTERIES; LICOO2 ELECTRODES; CAPACITY FADE; CATHODE;
MECHANISMS
AB The contribution from loss of Li+ inventory to capacity fade is described for slow rates (C/10) and long-term cycling (up to 80 cycles). It was found through electrochemical testing and ex-situ Raman analysis that at these slow rates, the entirety of capacity loss up to 80 cycles can be explained by loss of Li+ inventory in the cell. The Raman spectrum of LiCoO2 is sensitive to the state of lithiation and can therefore be leveraged to quantify the state of lithiation for individual particles. With these Raman derived estimates, the lithiation state of the cathode in the discharged state is compared to electrochemical data as a function of cycle number. High correlation is found between Raman quantifications of cycleable lithium and the capacity fade. Additionally, the linear relationship between discharge capacity and cell overpotential suggests that the loss of capacity stems from an impedance rise of the electrodes, which based on Li inventory losses, is caused by SEI formation and repair. (C) The Author(s) 2016. Published by ECS. All rights reserved.
C1 [Snyder, Chelsea; Apblett, Christopher; Grillet, Anne; Beechem, Thomas] Sandia Natl Labs, Albuquerque, NM 87123 USA.
[Snyder, Chelsea; Duquette, David] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA.
RP Snyder, C (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA.; Snyder, C (reprint author), Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA.
EM ehlerc@rpi.edu
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX The authors thank Anthony McDonald for his assistance with Raman
measurements. Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract
DE-AC04-94AL85000.
NR 23
TC 2
Z9 2
U1 12
U2 20
PU ELECTROCHEMICAL SOC INC
PI PENNINGTON
PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA
SN 0013-4651
EI 1945-7111
J9 J ELECTROCHEM SOC
JI J. Electrochem. Soc.
PY 2016
VL 163
IS 6
BP A1036
EP A1041
DI 10.1149/2.1111606jes
PG 6
WC Electrochemistry; Materials Science, Coatings & Films
SC Electrochemistry; Materials Science
GA DJ1SY
UT WOS:000373985300091
ER
PT J
AU Papandrew, AB
St John, S
Elgammal, RA
Wilson, DL
Atkinson, RW
Lawton, JS
Arruda, TM
Zawodzinski, TA
AF Papandrew, Alexander B.
St John, Samuel
Elgammal, Ramez A.
Wilson, David L., III
Atkinson, Robert W., III
Lawton, Jamie S.
Arruda, Thomas M.
Zawodzinski, Thomas A., Jr.
TI Vapor-Deposited Pt and Pd-Pt Catalysts for Solid Acid Fuel Cells: Short
Range Structure and Interactions with the CsH2PO4 Electrolyte
SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY
LA English
DT Article
ID OXYGEN REDUCTION REACTION; ELECTROCATALYTIC PERFORMANCE; CONDUCTOR
CSH2PO4; OXIDE; OXIDATION; NANOPARTICLES; SPECTROSCOPY; MONOLAYER;
STABILITY; RUTHENIUM
AB State-of-the-art cathodes for solid acid fuel cells (SAFCs) based on the crystalline electrolyte CsH2PO4 (CDP) are comprised of a proton-conducting CDP network coated by a vapor-deposited nanostructured catalyst. Pd-rich (85 at%Pd) Pt-Pd oxygen reduction catalysts vapor-deposited on CDP display both extraordinary activity for oxygen reduction and poor stability in cathodes for SAFCs operating at 250 degrees C. Similar catalysts with lower Pd content (57 at%Pd) are less active and more stable. Using X-ray absorption spectroscopy (XAS), we find that these catalysts are structurally similar and that structural variations are insufficient to explain the observed differences in activity. XAS and solid-state and solution nuclear magnetic resonance (NMR) also show that additional water-soluble chemical species are present in the Pd-rich electrode after fuel cell operation. We attribute the presence of these species to the reactivity of the Pd-rich catalyst with CsH2PO4 and suggest that these products are the cause of the observed deactivation. (C) The Author(s) 2016. Published by ECS. All rights reserved.
C1 [Papandrew, Alexander B.; St John, Samuel; Elgammal, Ramez A.; Wilson, David L., III; Atkinson, Robert W., III; Lawton, Jamie S.; Zawodzinski, Thomas A., Jr.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.
[Arruda, Thomas M.] Salve Regina Univ, Dept Chem, Newport, RI 02840 USA.
[Zawodzinski, Thomas A., Jr.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Papandrew, AB (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.
EM apapandrew@utk.edu
FU National Science Foundation through TN-SCORE [NSF EPS-1004083]; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-98CH10886]
FX Financial support for this work was provided by the National Science
Foundation through TN-SCORE (NSF EPS-1004083). Use of the National
Synchrotron Light Source, Brookhaven National Laboratory, was supported
by the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors also
thank Carlos Steren for his assistance with NMR measurements.
NR 35
TC 0
Z9 0
U1 10
U2 26
PU ELECTROCHEMICAL SOC INC
PI PENNINGTON
PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA
SN 0013-4651
EI 1945-7111
J9 J ELECTROCHEM SOC
JI J. Electrochem. Soc.
PY 2016
VL 163
IS 6
BP F464
EP F469
DI 10.1149/2.0371606jes
PG 6
WC Electrochemistry; Materials Science, Coatings & Films
SC Electrochemistry; Materials Science
GA DJ1SY
UT WOS:000373985300074
ER
PT J
AU Zhao, BL
Huang, J
Fu, Q
Yang, L
Zhang, JY
Xiang, B
AF Zhao, Benliang
Huang, Jian
Fu, Qi
Yang, Lei
Zhang, Jingyu
Xiang, Bin
TI MoS2/NbSe2 Hybrid Nanobelts for Enhanced Hydrogen Evolution
SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY
LA English
DT Article
ID MOS2 NANOSHEETS; SOLAR-CELLS; EFFICIENT; GRAPHENE; CATALYST;
NANOPARTICLES; OXIDATION; H-2
AB Recently, MoS2 nanosheets have attracted extensive interest for the application in electrocatalytic hydrogen evolution reaction (HER) because of its highly active edge sites and chemical stability. However, the aggregation in nanosized MoS2 reduces the density of exposed surface edge sites, degrading its electrochemical catalytic activity. In this paper, we report a hybrid structure of MoS2/NbSe2 nanobelts with enhanced electrochemical catalytic performance. The hybrid structure feature and chemical composition were investigated by transmission electron microscopy and X-ray photoelectron spectroscopy. With the introduction of one dimensional metallic NbSe2, the MoS2 surface edge sites were highly exposed in MoS2/NbSe2 nanobelts, resulting in an enhanced electrocatalytic performance in HER. A Tafel slope of 79.5 eV/dec was obtained in MoS2/NbSe2, much lower than that of MoS2 (137.6 eV/dec). At the over potential of -0.65 V vs. RHE, the catalytic current density of MoS2/NbSe2 nanobelts is 205 mA/cm(2), five times larger than that of MoS2 nanosheets (43 mA/cm(2)). (C) 2016 The Electrochemical Society. All rights reserved.
C1 [Zhao, Benliang; Huang, Jian; Fu, Qi; Yang, Lei; Xiang, Bin] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat Quantum Phy, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China.
[Zhang, Jingyu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
RP Xiang, B (reprint author), Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat Quantum Phy, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China.
EM binxiang@ustc.edu.cn
FU National Natural Science Foundation of China [21373196, 11434009];
National Program for Thousand Young Talents of China; Fundamental
Research Funds for the Central Universities [WK2340000050, WK2060140014]
FX This work was supported by the National Natural Science Foundation of
China (21373196, 11434009), the National Program for Thousand Young
Talents of China and the Fundamental Research Funds for the Central
Universities (WK2340000050, WK2060140014).
NR 27
TC 0
Z9 0
U1 10
U2 25
PU ELECTROCHEMICAL SOC INC
PI PENNINGTON
PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA
SN 0013-4651
EI 1945-7111
J9 J ELECTROCHEM SOC
JI J. Electrochem. Soc.
PY 2016
VL 163
IS 6
BP H384
EP H387
DI 10.1149/2.0451606jes
PG 4
WC Electrochemistry; Materials Science, Coatings & Films
SC Electrochemistry; Materials Science
GA DJ1SY
UT WOS:000373985300114
ER
PT J
AU Franco, M
Panas, MW
Marino, ND
Lee, MCW
Buchholz, KR
Kelly, FD
Bednarski, JJ
Sleckman, BP
Pourmand, N
Boothroyd, JC
AF Franco, Magdalena
Panas, Michael W.
Marino, Nicole D.
Lee, Mei-Chong Wendy
Buchholz, Kerry R.
Kelly, Felice D.
Bednarski, Jeffrey J.
Sleckman, Barry P.
Pourmand, Nader
Boothroyd, John C.
TI A Novel Secreted Protein, MYR1, Is Central to Toxoplasma's Manipulation
of Host Cells
SO MBIO
LA English
DT Article
ID DENSE GRANULE PROTEIN; ONCOGENIC TRANSCRIPTION FACTOR; C-MYC;
PARASITOPHOROUS VACUOLE; MALARIA PARASITES; IMMUNE-RESPONSE;
GENE-EXPRESSION; IN-VIVO; GONDII; INFECTION
AB The intracellular protozoan Toxoplasma gondii dramatically reprograms the transcriptome of host cells it infects, including substantially up-regulating the host oncogene c-myc. By applying a flow cytometry-based selection to infected mouse cells expressing green fluorescent protein fused to c-Myc (c-Myc-GFP), we isolated mutant tachyzoites defective in this host c-Myc up-regulation. Whole-genome sequencing of three such mutants led to the identification of MYR1 (Myc regulation 1; TGGT1_254470) as essential for c-Myc induction. MYR1 is a secreted protein that requires TgASP5 to be cleaved into two stable portions, both of which are ultimately found within the parasitophorous vacuole and at the parasitophorous vacuole membrane. Deletion of MYR1 revealed that in addition to its requirement for c-Myc up-regulation, the MYR1 protein is needed for the ability of Toxoplasma tachyzoites to modulate several other important host pathways, including those mediated by the dense granule effectors GRA16 and GRA24. This result, combined with its location at the parasitophorous vacuole membrane, suggested that MYR1 might be a component of the machinery that translocates Toxoplasma effectors from the parasitophorous vacuole into the host cytosol. Support for this possibility was obtained by showing that transit of GRA24 to the host nucleus is indeed MYR1-dependent. As predicted by this pleiotropic phenotype, parasites deficient in MYR1 were found to be severely attenuated in a mouse model of infection. We conclude, therefore, that MYR1 is a novel protein that plays a critical role in how Toxoplasma delivers effector proteins to the infected host cell and that this is crucial to virulence.
IMPORTANCE Toxoplasma gondii is an important human pathogen and a model for the study of intracellular parasitism. Infection of the host cell with Toxoplasma tachyzoites involves the introduction of protein effectors, including many that are initially secreted into the parasitophorous vacuole but must ultimately translocate to the host cell cytosol to function. The work reported here identified a novel protein that is required for this translocation. These results give new insight into a very unusual cell biology process as well as providing a potential handle on a pathway that is necessary for virulence and, therefore, a new potential target for chemotherapy.
C1 [Franco, Magdalena; Panas, Michael W.; Marino, Nicole D.; Buchholz, Kerry R.; Kelly, Felice D.; Boothroyd, John C.] Stanford Univ, Sch Med, Dept Microbiol & Immunol, Stanford, CA 94305 USA.
[Franco, Magdalena] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA USA.
[Lee, Mei-Chong Wendy; Pourmand, Nader] Univ Calif Santa Cruz, Dept Biomol Engn, Santa Cruz, CA 95064 USA.
[Bednarski, Jeffrey J.] Washington Univ, Dept Pediat, St Louis, MO 63130 USA.
[Sleckman, Barry P.] Washington Univ, Dept Pathol & Immunol, St Louis, MO USA.
RP Boothroyd, JC (reprint author), Stanford Univ, Sch Med, Dept Microbiol & Immunol, Stanford, CA 94305 USA.
EM jboothr@stanford.edu
FU HHS \ National Institutes of Health (NIH) [R21-AI112962, RO1-AI73756,
T32-AI007328, P01-35HG000205, T32-AI007290, F31-AI120649,
K08AI102946-01, S10RR025518-01, P30-NS069375]; Alex's Lemonade Stand
Foundation for Childhood Cancer (ALSF); Stanford University
FX HHS vertical bar National Institutes of Health (NIH) provided funding to
John Boothroyd under grant numbers R21-AI112962 and RO1-AI73756. HHS
vertical bar National Institutes of Health (NIH) provided funding to
Magdalena Franco under grant number T32-AI007328. HHS vertical bar
National Institutes of Health (NIH) provided funding to Nader Pourmand
under grant number P01-35HG000205. HHS vertical bar National Institutes
of Health (NIH) provided funding to Michael William Panas under grant
number T32-AI007290. HHS vertical bar National Institutes of Health
(NIH) provided funding to Nicole D. Marino under grant number
F31-AI120649. HHS vertical bar National Institutes of Health (NIH)
provided funding to Jeffrey J. Bednarski under grant number
K08AI102946-01. HHS vertical bar National Institutes of Health (NIH)
provided funding to Magdalena Franco under grant number S10RR025518-01.
HHS vertical bar National Institutes of Health (NIH) provided funding to
Michael William Panas under grant number P30-NS069375. Alex's Lemonade
Stand Foundation for Childhood Cancer (ALSF) provided funding to Jeffrey
J. Bednarski.; Stanford University provided the Stanford Graduate
Fellowship to Nicole D. Marino.
NR 54
TC 7
Z9 7
U1 2
U2 8
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 2150-7511
J9 MBIO
JI mBio
PD JAN-FEB
PY 2016
VL 7
IS 1
AR e02231-15
DI 10.1128/mBio.02231-15
PG 16
WC Microbiology
SC Microbiology
GA DJ0ZO
UT WOS:000373933100025
PM 26838724
ER
PT J
AU Hu, P
Tom, L
Singh, A
Thomas, BC
Baker, BJ
Piceno, YM
Andersen, GL
Banfield, JF
AF Hu, Ping
Tom, Lauren
Singh, Andrea
Thomas, Brian C.
Baker, Brett J.
Piceno, Yvette M.
Andersen, Gary L.
Banfield, Jillian F.
TI Genome-Resolved Metagenomic Analysis Reveals Roles for Candidate Phyla
and Other Microbial Community Members in Biogeochemical Transformations
in Oil Reservoirs
SO MBIO
LA English
DT Article
ID CRUDE-OIL; NORTH-SEA; ARCHAEOGLOBUS-FULGIDUS; PETROLEUM RESERVOIRS; DEEP
SUBSURFACE; SP-NOV.; POLYSACCHARIDE HYDROLYSIS; NITROGEN-FIXATION;
ORGANIC-MATTER; FIELD WATERS
AB Oil reservoirs are major sites of methane production and carbon turnover, processes with significant impacts on energy resources and global biogeochemical cycles. We applied a cultivation-independent genomic approach to define microbial community membership and predict roles for specific organisms in biogeochemical transformations in Alaska North Slope oil fields. Produced water samples were collected from six locations between 1,128m(24 to 27 degrees C) and 2,743m(80 to 83 degrees C) below the surface. Microbial community complexity decreased with increasing temperature, and the potential to degrade hydrocarbon compounds was most prevalent in the lower-temperature reservoirs. Sulfate availability, rather than sulfate reduction potential, seems to be the limiting factor for sulfide production in some of the reservoirs under investigation. Most microorganisms in the intermediate-and higher-temperature samples were related to previously studied methanogenic and nonmethanogenic archaea and thermophilic bacteria, but one candidate phylum bacterium, a member of the Acetothermia (OP1), was present in Kuparuk sample K3. The greatest numbers of candidate phyla were recovered from the mesothermic reservoir samples SB1 and SB2. We reconstructed a nearly complete genome for an organism from the candidate phylum Parcubacteria (OD1) that was abundant in sample SB1. Consistent with prior findings for members of this lineage, the OD1 genome is small, and metabolic predictions support an obligately anaerobic, fermentation-based lifestyle. At moderate abundance in samples SB1 and SB2 were members of bacteria from other candidate phyla, including Microgenomates (OP11), Atribacteria (OP9), candidate phyla TA06 and WS6, and Marinimicrobia (SAR406). The results presented here elucidate potential roles of organisms in oil reservoir biological processes. IMPORTANCE The activities of microorganisms in oil reservoirs impact petroleum resource quality and the global carbon cycle. We show that bacteria belonging to candidate phyla are present in some oil reservoirs and provide the first insights into their potential roles in biogeochemical processes based on several nearly complete genomes.
C1 [Hu, Ping; Tom, Lauren; Piceno, Yvette M.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA.
[Singh, Andrea; Thomas, Brian C.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Baker, Brett J.] Univ Texas Austin, Inst Marine Sci, Dept Marine Sci, Port Aransas, TX 78712 USA.
RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
EM jbanfield@berkeley.edu
RI Baker, Brett/P-1783-2014; Tom, Lauren/E-9739-2015; Piceno,
Yvette/I-6738-2016; Andersen, Gary/G-2792-2015; Hu, Ping/G-2384-2015
OI Baker, Brett/0000-0002-5971-1021; Piceno, Yvette/0000-0002-7915-4699;
Andersen, Gary/0000-0002-1618-9827;
FU University of California at Berkeley, Energy Biosciences Institute under
U.S. Department of Energy [DE-AC02-05CH11231]; Department of Eenergy
[DE-SC0004918]
FX This work was supported by a subcontract from the University of
California at Berkeley, Energy Biosciences Institute to Lawrence
Berkeley National Laboratory under its U.S. Department of Energy
contract DE-AC02-05CH11231. The ggkbase is supported by grant
DE-SC0004918 (Systems Biology Knowledge Base Focus Area) from Department
of Eenergy.
NR 85
TC 6
Z9 6
U1 8
U2 18
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 2150-7511
J9 MBIO
JI mBio
PD JAN-FEB
PY 2016
VL 7
IS 1
AR e01669-15
DI 10.1128/mBio.01669-15
PG 12
WC Microbiology
SC Microbiology
GA DJ0ZO
UT WOS:000373933100035
PM 26787827
ER
PT B
AU Bravo, L
Xue, QL
Som, S
Powell, C
Kweon, CBM
AF Bravo, Luis
Xue, Qingluan
Som, Sibendu
Powell, Christopher
Kweon, Chol-Bum M.
GP ASME
TI FUEL EFFECTS ON NOZZLE FLOW AND SPRAY USING FULLY COUPLED EULERIAN
SIMULATIONS
SO PROCEEDINGS OF THE ASME POWER CONFERENCE, 2015
LA English
DT Proceedings Paper
CT ASME 2015 Power Conference, POWER2015
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Power Div
ID X-RAY RADIOGRAPHY; SURROGATE MIXTURES; COMBUSTION; MODEL; JP-8;
COMPONENTS
AB The objective of this study is to examine the impact of single and multi-component surrogate fuel mixtures on the atomization and mixing characteristics of non-reacting isothermal diesel engine sprays. An Eulerian modeling approach was adopted to simulate both the internal nozzle flow dynamics and the emerging turbulent spray in the near nozzle region in a fully-coupled manner. The Volume of Fluids (VoF) methodology was utilized to treat the two-phase flow dynamics including a Homogenous Relaxation approach to account for nozzle cavitation effects. To enable accurate simulations, the nozzle geometry and in-situ multi-dimensional needle lift and off-axis motion profiles have been characterized via the X-ray phase-contrast technique at Argonne National Laboratory. The flow turbulence is treated via the classical k - epsilon Reynolds Average Navier Stoke (RANS) model with in-nozzle and near field resolution of 30 mu m. Several multi-component surrogate mixtures were implemented using linear blending rules to examine the behavior of petroleum, and alternative fuels including: JP -8, JP-5, Hydro-treated Renewable Jet (HRJ), Iso-Paraffinic Kerosene (IPK) with comparison to single component n-dodecane fuel on ECN Spray A nozzle spray dynamics. The results were validated using transient rate-of injection measurements from the Army Research Laboratory at Spray A conditions as well as projected density fields obtained from the line-of-sight measurements from X-ray radiography measurements at The Advanced Photon Source at Argonne National Laboratory. The conditions correspond to injection pressure, nominal fuel temperature, and ambient density of 1500 bar, 363 K, and 22.8 kg/m(3), respectively. The simulation results provide a unique high-fidelity contribution to the effects of fuels on the spray mixing dynamics. The results can lead to improvements in fuel mixture distributions enhancing performance of military vehicles.
C1 [Bravo, Luis; Kweon, Chol-Bum M.] US Army Res Lab, Aberdeen Proving Ground, MD USA.
[Xue, Qingluan; Som, Sibendu; Powell, Christopher] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Bravo, L (reprint author), US Army Res Lab, Aberdeen Proving Ground, MD USA.
NR 21
TC 0
Z9 0
U1 1
U2 1
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5660-4
PY 2016
AR V001T03A012
PG 11
WC Energy & Fuels; Engineering, Mechanical
SC Energy & Fuels; Engineering
GA BE6DW
UT WOS:000373970600032
ER
PT B
AU DuPont, B
Azam, R
Proper, S
Cotilla-Sanchez, E
Hoyle, C
Piacenza, J
Oryshchyn, D
Zitney, S
Bossart, S
AF DuPont, Bryony
Azam, Ridwan
Proper, Scott
Cotilla-Sanchez, Eduardo
Hoyle, Christopher
Piacenza, Joseph
Oryshchyn, Danylo
Zitney, Steve
Bossart, Stephen
GP ASME
TI DECISION MAKING FOR THE COLLABORATIVE ENERGY SUPPLY SYSTEM OF OREGON AND
WASHINGTON
SO PROCEEDINGS OF THE ASME POWER CONFERENCE, 2015
LA English
DT Proceedings Paper
CT ASME 2015 Power Conference, POWER2015
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Power Div
AB As demand for electricity in the United States continues to increase, it is necessary to explore the means through which the modem power supply system can accommodate both increasing affluence (which is accompanied by increased per-capita consumption) and the continually growing global population. Though there has been a great deal of research into the theoretical optimization of large-scale power systems, research into the use of an existing power system as a foundation for this growth has yet to be fully explored. Current successful and robust power generation systems that have significant renewable energy penetration - despite not having been optimized a priori - can be used to inform the advancement of modem power systems to accommodate the increasing demand for electricity. Leveraging ongoing research projects at Oregon State University and the National Energy Technology Laboratory, this work explores how an accurate and state-of-the-art computational model of the Oregon/Washington (OR/WA) energy system can be employed as part of an overarching power systems optimization scheme that looks to inform the decision making process for next generation power supply systems. Research scenarios that explore an introductory multi-objective power flow analysis for the OR/WA grid will be shown, along with a discussion of future research directions.
C1 [DuPont, Bryony; Azam, Ridwan; Proper, Scott; Cotilla-Sanchez, Eduardo; Hoyle, Christopher] Oregon State Univ, Corvallis, OR 97331 USA.
[Piacenza, Joseph] Calif State Univ Fullerton, Fullerton, CA 92634 USA.
[Oryshchyn, Danylo; Zitney, Steve; Bossart, Stephen] Natl Energy Technol Lab, Morgantown, WV USA.
RP DuPont, B (reprint author), Oregon State Univ, Corvallis, OR 97331 USA.
NR 15
TC 0
Z9 0
U1 1
U2 1
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5660-4
PY 2016
AR V001T01A012
PG 10
WC Energy & Fuels; Engineering, Mechanical
SC Energy & Fuels; Engineering
GA BE6DW
UT WOS:000373970600012
ER
PT B
AU Li, GN
Li, SP
Kim, GH
AF Li, Genong
Li, Shaoping
Kim, Gi-Heon
GP ASME
TI TREATMENT OF ELECTRIC SHORT-CIRCUIT IN ELECTROCHEMICAL-THERMAL COUPLED
BATTERY SIMULATIONS
SO PROCEEDINGS OF THE ASME POWER CONFERENCE, 2015
LA English
DT Proceedings Paper
CT ASME 2015 Power Conference, POWER2015
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Power Div
ID LITHIUM-ION CELLS; MODEL
AB Lithium-ion batteries have been widely used in electric vehicles (EVs). Their performance, life and safety are of great engineering importance. Using simulation tools, electric performance and thermal behavior of a battery can be computed to provide useful information in battery design. Internal short-circuit is one of the important failure modes in battery's safety study. Internal short treatment is added to the framework of the multi scale multi-dimensional (MSMD) battery modeling methodology. The method is demonstrated in the present paper by simulating a single lithium-ion battery cell.
C1 [Li, Genong; Li, Shaoping] Ansys Inc, 10 Cavendish Court, Lebanon, NH 03766 USA.
[Kim, Gi-Heon] Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA.
RP Li, GN (reprint author), Ansys Inc, 10 Cavendish Court, Lebanon, NH 03766 USA.
NR 9
TC 0
Z9 0
U1 1
U2 5
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5660-4
PY 2016
AR V001T12A008
PG 7
WC Energy & Fuels; Engineering, Mechanical
SC Energy & Fuels; Engineering
GA BE6DW
UT WOS:000373970600094
ER
PT B
AU Smith, AD
Omitaomu, OA
Peck, JJ
AF Smith, Amanda D.
Omitaomu, Olufemi A.
Peck, Jaron J.
GP ASME
TI MODELING THE IMPACTS OF SOLAR DISTRIBUTED GENERATION ON US WATER
RESOURCES
SO PROCEEDINGS OF THE ASME POWER CONFERENCE, 2015
LA English
DT Proceedings Paper
CT ASME 2015 Power Conference, POWER2015
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Power Div
AB Distributed electric power generation technologies typically use little or no water per unit of electrical energy produced; in particular, renewable energy sources such as solar PV systems do not require cooling systems and present an opportunity to reduce water usage for power generation. Within the US, the fuel mix used for power generation varies regionally, and certain areas use more water for power generation than others. The need to reduce water usage for power generation is even more urgent in view of climate change uncertainties. In this paper, we present an example case within the state of Tennessee, one of the top four states in water consumption for power generation and one of the states with little or no potential for developing centralized renewable energy generations. The potential for developing PV generation within Knox County, Tennessee, is studied, along with the potential for reducing water withdrawal and consumption within the Tennessee Valley stream region. Electric power generation plants in the region are quantified for their electricity production and expected water withdrawal and consumption over one year, where electrical generation data is provided over one year and water usage is modeled based on the cooling system(s) in use. Potential solar PV electrical production is modeled based on LiDAR data and weather data for the same year. Our proposed methodology can be summarized as follows: First, the potential solar generation is compared against the local grid demand. Next, electrical generation reductions are specified that would result in a given reduction in water withdrawal and a given reduction in water consumption, and compared with the current water withdrawal and consumption rates for the existing fuel mix. The increase in solar PV development that would produce an equivalent amount of power, is determined. In this way, we consider how targeted local actions may affect the larger stream region through thoughtful energy development. This model can be applied to other regions, other types of distributed generation, and used as a framework for modeling alternative growth scenarios in power production capacity in addition to modeling adjustments to existing capacity.
C1 [Smith, Amanda D.; Peck, Jaron J.] Univ Utah, Salt Lake City, UT USA.
[Omitaomu, Olufemi A.] Oak Ridge Natl Lab, Oak Ridge, TN USA.
RP Smith, AD (reprint author), Univ Utah, Salt Lake City, UT USA.
NR 23
TC 0
Z9 0
U1 1
U2 1
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5660-4
PY 2016
AR V001T02A004
PG 10
WC Energy & Fuels; Engineering, Mechanical
SC Energy & Fuels; Engineering
GA BE6DW
UT WOS:000373970600020
ER
PT J
AU Yue, YF
Zhang, L
Chen, JH
Hensley, DK
Dai, S
Overbury, SH
AF Yue, Yanfeng
Zhang, Li
Chen, Jihua
Hensley, Dale K.
Dai, Sheng
Overbury, Steven H.
TI Mesoporous xEr(2)O(3)center dot CoTiO3 composite oxide catalysts for low
temperature dehydrogenation of ethylbenzene to styrene using CO2 as a
soft oxidant
SO RSC ADVANCES
LA English
DT Article
ID PROMOTED IRON-OXIDE; OXIDATIVE DEHYDROGENATION; CARBON-DIOXIDE; CERIA;
ALUMINA; NANOSHEETS; TIO2
AB A series of mesoporous xEr(2)O(3)center dot CoTiO3 composite oxide catalysts have been prepared using a template method and tested as a newtype of catalyst for the oxidative dehydrogenation of ethylbenzene to styrene by using CO2 as a soft oxidant. Among the catalysts tested, the 0.25Er(2)O(3)center dot CoTiO3 sample with a ratio of 1 : 4 : 4 content and calcined at 600 degrees C exhibited the highest ethylbenzene conversion (58%) and remarkable styrene selectivity (95%) at low temperature (450 degrees C).
C1 [Yue, Yanfeng; Zhang, Li; Dai, Sheng; Overbury, Steven H.] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA.
[Yue, Yanfeng] Sul Ross State Univ, Dept Biol Geol & Phys Sci, Alpine, TX 79832 USA.
[Chen, Jihua; Hensley, Dale K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
RP Dai, S; Overbury, SH (reprint author), Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA.; Dai, S (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
EM dais@ornl.gov; overburysh@ornl.gov
RI Chen, Jihua/F-1417-2011; Dai, Sheng/K-8411-2015
OI Chen, Jihua/0000-0001-6879-5936; Dai, Sheng/0000-0002-8046-3931
FU U.S. Department of Energy, Office of Science, Basic Energy Sciences,
Chemical Sciences, Geosciences, and Biosciences Division; U.S.
Department of Energy [DE-AC05-00OR22725]
FX This research was supported by the U.S. Department of Energy, Office of
Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and
Biosciences Division. TEM (J. C.) and SEM (D. K. H.) experiments were
conducted at the Center for Nanophase Materials Sciences, which is a DOE
Office of Science User Facility. This manuscript has been authored by
UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that
the United States Government retains a nonexclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States
Government purposes. The Department of Energy will provide public access
to these results of federally sponsored research in accordance with the
DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).
NR 26
TC 0
Z9 0
U1 7
U2 17
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2046-2069
J9 RSC ADV
JI RSC Adv.
PY 2016
VL 6
IS 39
BP 32989
EP 32993
DI 10.1039/c6ra04228g
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA DJ2PA
UT WOS:000374045900070
ER
PT J
AU Rafailovic, LD
Gammer, C
Srajer, J
Trisovic, T
Rahel, J
Karnthaler, HP
AF Rafailovic, L. D.
Gammer, C.
Srajer, J.
Trisovic, T.
Rahel, J.
Karnthaler, H. P.
TI Surface enhanced Raman scattering of dendritic Ag nanostructures grown
with anodic aluminium oxide
SO RSC ADVANCES
LA English
DT Article
ID GALVANIC REPLACEMENT SYNTHESIS; SILVER DENDRITES; SERS; DISPLACEMENT;
DEPOSITION; NANODENDRITES; SUBSTRATE; FOIL
AB We present the application of newly developed Ag nanodendrites (Ag-ND) grown together with anodic aluminium oxide for surface-enhanced Raman scattering (SERS). The Ag-ND yield very pronounced SERS using a self-assembled monolayer (SAM). This is confirmed by simulations showing hot spots in the electromagnetic field at the surfaces of the Ag-ND. SERS measurements reusing Ag-ND demonstrate its long-term stability even after one year.
C1 [Rafailovic, L. D.] CEST, Wr Neustadt, Austria.
[Gammer, C.; Karnthaler, H. P.] Univ Vienna, Phys Nanostruct Mat, Vienna, Austria.
[Gammer, C.] Lawrence Berkeley Natl Lab, NCEM, Mol Foundry, Berkeley, CA USA.
[Srajer, J.] AIT, Biosensor Technol, Vienna, Austria.
[Trisovic, T.] Serbian Acad Arts & Sci, Inst Tech Sci, Belgrade, Serbia.
[Rahel, J.] Masaryk Univ, Dept Phys Elect CEPLANT, Brno, Czech Republic.
RP Rafailovic, LD (reprint author), CEST, Wr Neustadt, Austria.; Trisovic, T (reprint author), Serbian Acad Arts & Sci, Inst Tech Sci, Belgrade, Serbia.
EM lidija.rafailovic@cest.at; trisa@tmf.bg.ac.rs
RI Trisovic, Tomislav/F-9994-2010;
OI Trisovic, Tomislav/0000-0003-2400-5984; Rahel,
Jozef/0000-0002-2850-8039; Gammer, Christoph/0000-0003-1917-4978
FU COMET program by the Austrian Research Promotion Agency (FFG);
government of Lower Austria; government of Upper Austria; Austrian
Science Fund (FWF) [J3397]; Molecular Foundry, Lawrence Berkeley
National Laboratory - U.S. Dept of Energy [DE-AC02-05CH11231]
FX We would like to thank Dr A. H. Whitehead for stimulating, very helpful
discussions. We are thankful to Prof. Dr C. Kleber for his scientific
support and to him and to Mag. A. Balatka for provision of lab
facilities. The work at CEST was supported within the COMET program by
the Austrian Research Promotion Agency (FFG) and the governments of
Lower Austria and Upper Austria. C. G. acknowledges support from the
Austrian Science Fund (FWF):[J3397] and the Molecular Foundry, Lawrence
Berkeley National Laboratory, which is supported by the U.S. Dept of
Energy under Contract # DE-AC02-05CH11231.
NR 25
TC 0
Z9 0
U1 9
U2 22
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2046-2069
J9 RSC ADV
JI RSC Adv.
PY 2016
VL 6
IS 40
BP 33348
EP 33352
DI 10.1039/c5ra26632g
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA DJ2OS
UT WOS:000374045000015
ER
PT J
AU Li, YY
Zhang, LH
Wu, YQ
AF Li, Yiyu
Zhang, Lihua
Wu, Yiquan
TI Synthesis and characterization of calcium lanthanum sulfide via a wet
chemistry route followed by thermal decomposition
SO RSC ADVANCES
LA English
DT Article
ID SINGLE-SOURCE PRECURSOR; METAL ALKOXIDES; CALA2S4 POWDERS;
SULFIDIZATION; DENSIFICATION; NANOPARTICLES; SULFURIZATION; CDS
AB Calcium lanthanum sulfide (CaLa2S4) has been extensively studied as a promising candidate for advanced infrared optical ceramics. In the present research, we report the successful synthesis of CaLa2S4 via a wet chemistry method followed by thermal decomposition. CaLa2S4 precursor material was first prepared by a facile ethanol-based wet chemical single-source precursor route. The precursor was then thermally decomposed in argon at high temperature to form CaLa2S4. The phase composition and morphology of the synthesized CaLa2S4 powder were confirmed and observed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), respectively. Surface area and pore size analyses showed that the CaLa2S4 powder had a high specific surface due to a combined effect of small particle size and the existence of mesopores. Optical characterization revealed that the synthesized CaLa2S4 powder exhibited quantum size confinement and near-band-edge photoluminescence.
C1 [Li, Yiyu; Wu, Yiquan] Alfred Univ, New York State Coll Ceram, Kazuo Inamori Sch Engn, 2 Pine St, Alfred, NY 14802 USA.
[Zhang, Lihua] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Wu, YQ (reprint author), Alfred Univ, New York State Coll Ceram, Kazuo Inamori Sch Engn, 2 Pine St, Alfred, NY 14802 USA.
EM wuy@alfred.edu
FU Office of Naval Research (ONR) [N00014-14-1-0546]; U.S. DOE Office of
Science Facility, at Brookhaven National Laboratory [DE-SC0012704]
FX We gratefully acknowledge the Office of Naval Research (ONR) (contract
N00014-14-1-0546) for funding and supporting this research. This
research used JEOL2100F TEM of the Center for Functional Nanomaterials,
which is a U.S. DOE Office of Science Facility, at Brookhaven National
Laboratory under Contract No. DE-SC0012704.
NR 31
TC 0
Z9 0
U1 8
U2 9
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2046-2069
J9 RSC ADV
JI RSC Adv.
PY 2016
VL 6
IS 41
BP 34935
EP 34939
DI 10.1039/c6ra05912k
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA DJ2QI
UT WOS:000374049700100
ER
PT J
AU Smith, C
Dagle, VL
Flake, M
Ramasamy, KK
Kovarik, L
Bowden, M
Onfroy, T
Dagle, RA
AF Smith, Colin
Dagle, Vanessa Lebarbier
Flake, Matthew
Ramasamy, Karthikeyan K.
Kovarik, Libor
Bowden, Mark
Onfroy, Thomas
Dagle, Robert A.
TI Conversion of syngas-derived C-2+ mixed oxygenates to C-3-C-5 olefins
over ZnxZryOz mixed oxide catalysts
SO CATALYSIS SCIENCE & TECHNOLOGY
LA English
DT Article
ID TRANSPORTATION FUELS; ACID CATALYSTS; ZINC-OXIDE; ETHANOL; ACETONE;
BIOMASS; CONDENSATION; ISOBUTENE; CHEMICALS; ACETALDEHYDE
AB In this study we report on a ZnxZryOz mixed oxide type catalyst capable of converting a syngas-derived C-2+ mixed oxygenate feedstock to isobutene-rich olefins. Aqueous model feed comprising of ethanol, acetaldehyde, acetic acid, ethyl acetate, methanol, and propanol was used as representative liquid product derived from a Rh-based mixed oxygenate synthesis catalyst. Greater than 50% carbon yield to C-3-C-5 mixed olefins was demonstrated when operating at 400-450 degrees C and 1 atm. In order to rationalize formation of the products observed feed components were individually evaluated. Major constituents of the feed mixture (ethanol, acetaldehyde, acetic acid, and ethyl acetate) were found to produce isobutene-rich olefins. C-C coupling was also demonstrated for propanol feedstock - a minor constituent of the mixed oxygenate feed - producing branched C-6 olefins, revealing scalability to alcohols higher than ethanol following an analogous reaction pathway. Using ethanol and propanol feed mixtures, cross-coupling reactions produced mixtures of C-4, C-5, and C-6 branched olefins. The presence of H-2 in the feed was found to facilitate hydrogenation of the ketone intermediates, thus producing straight chain olefins as byproducts. While activity loss from coking is observed complete catalyst regeneration is achieved by employing mild oxidation. For conversion of the mixed oxygenate feed a Zr/Zn ratio of 2.5 and a reaction temperature of 450 degrees C provides the best balance of stability, activity, and selectivity. X-ray diffraction and scanning transmission electron microscopy analysis reveals the presence of primarily cubic phase ZrO2 and a minor amount of the monoclinic phase, with ZnO being highly dispersed in the lattice. The presence of ZnO appears to stabilize the cubic phase resulting in less monoclinic phase as the ZnO concentration increases. Infrared spectroscopy shows the mixed oxide acid sites are characterized as primarily Lewis type acidity. The direct relationship between isobutene production and the ratio of basic/acidic sites was demonstrated. An optimized balance of active sites for isobutene production from acetone was obtained with a basic/acidic site ratio of similar to 2. This technology for the conversion of aqueous mixtures of C-2+ mixed oxygenates provides significant advantages over other presently studied catalysts in that its unique properties permit the utilization of a variety of feeds in a consistently selective manner.
C1 [Smith, Colin; Dagle, Vanessa Lebarbier; Flake, Matthew; Ramasamy, Karthikeyan K.; Dagle, Robert A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
[Kovarik, Libor; Bowden, Mark] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Onfroy, Thomas] Univ Paris 06, Sorbonne Univ, UMR 7197, Lab React Surface, F-75005 Paris, France.
[Onfroy, Thomas] CNRS, UMR 7197, Lab React Surface, F-75005 Paris, France.
RP Dagle, RA (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
EM Robert.Dagle@pnnl.gov
RI Kovarik, Libor/L-7139-2016
FU U.S. Department of Energy (DOE) Bioenergy Technologies Office; DOE's
Office of Biological and Environmental Research
FX This work was financially supported by the U.S. Department of Energy
(DOE) Bioenergy Technologies Office and was performed at Pacific
Northwest National Laboratory (PNNL). PNNL is a multi-program national
laboratory operated for DOE by Battelle Memorial Institute. Advanced
catalyst characterization use was granted by a user proposal at the
William R. Wiley Environmental Molecular Sciences Laboratory, which is a
national scientific user facility sponsored by DOE's Office of
Biological and Environmental Research and located at PNNL. The authors
would like to thank Theresa Lemmon and Marie Swita for analytical
support of this project. Finally, the authors would like to thank Cary
Counts of PNNL for help with technical editing of this manuscript.
NR 38
TC 1
Z9 1
U1 11
U2 28
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2044-4753
EI 2044-4761
J9 CATAL SCI TECHNOL
JI Catal. Sci. Technol.
PY 2016
VL 6
IS 7
BP 2325
EP 2336
DI 10.1039/c5cy01261a
PG 12
WC Chemistry, Physical
SC Chemistry
GA DI6KS
UT WOS:000373608400034
ER
PT J
AU Scofield, ME
Koenigsmann, C
Bobb-Semple, D
Tao, J
Tong, X
Wang, L
Lewis, CS
Vukmirovic, MB
Zhu, YM
Adzic, RR
Wong, SS
AF Scofield, Megan E.
Koenigsmann, Christopher
Bobb-Semple, Dara
Tao, Jing
Tong, Xiao
Wang, Lei
Lewis, Crystal S.
Vukmirovic, Miomir B.
Zhu, Yimei
Adzic, Radoslav R.
Wong, Stanislaus S.
TI Correlating the chemical composition and size of various metal oxide
substrates with the catalytic activity and stability of as-deposited Pt
nanoparticles for the methanol oxidation reaction
SO CATALYSIS SCIENCE & TECHNOLOGY
LA English
DT Article
ID FUEL-CELLS; ELECTROCATALYTIC OXIDATION; PLATINUM NANOPARTICLES;
SURFACE-PROPERTIES; SUPPORT MATERIALS; RUO2; ELECTROOXIDATION;
ELECTRODES; NANOSTRUCTURES; NANOTUBE
AB The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nano-particles (NPs). Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. Additionally, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.
C1 [Scofield, Megan E.; Koenigsmann, Christopher; Bobb-Semple, Dara; Wang, Lei; Lewis, Crystal S.; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Tao, Jing; Zhu, Yimei; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Bldg 480, Upton, NY 11973 USA.
[Tong, Xiao] Brookhaven Natl Lab, Ctr Funct Nanomat, Bldg 735, Upton, NY 11973 USA.
[Vukmirovic, Miomir B.; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Bldg 555, Upton, NY 11973 USA.
RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
EM stanislaus.wong@stonybrook.edu
FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and
Engineering Division; U.S. Department of Energy [DE-AC02-98CH10886,
DE-SC-00112704]
FX Research for all authors was supported by the U.S. Department of Energy,
Basic Energy Sciences, Materials Sciences and Engineering Division.
Experiments for this manuscript were performed in part at the Center for
Functional Nanomaterials located at Brookhaven National Laboratory,
which is supported by the U.S. Department of Energy under Contract No.
DE-AC02-98CH10886 and DE-SC-00112704.
NR 59
TC 1
Z9 1
U1 11
U2 31
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2044-4753
EI 2044-4761
J9 CATAL SCI TECHNOL
JI Catal. Sci. Technol.
PY 2016
VL 6
IS 7
BP 2435
EP 2450
DI 10.1039/c5cy01444a
PG 16
WC Chemistry, Physical
SC Chemistry
GA DI6KS
UT WOS:000373608400046
ER
PT J
AU Liu, R
Chen, S
Baker, ES
Smith, RD
Zeng, XC
Gong, B
AF Liu, Rui
Chen, Shuang
Baker, Erin S.
Smith, Richard D.
Zeng, Xiao Cheng
Gong, Bing
TI Surprising impact of remote groups on the folding-unfolding and
dimer-chain equilibria of bifunctional H-bonding unimers (vol 52, pg
3773, 2016)
SO CHEMICAL COMMUNICATIONS
LA English
DT Correction
C1 [Liu, Rui; Gong, Bing] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA.
[Liu, Rui; Gong, Bing] Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China.
[Chen, Shuang] Nanjing Univ, Kuang Yaming Honors Sch, Nanjing 210023, Jiangsu, Peoples R China.
[Baker, Erin S.; Smith, Richard D.] Pacific NW Natl Lab, Earth & Biol Sci Div, Richland, WA 99352 USA.
[Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA.
RP Gong, B (reprint author), SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA.; Gong, B (reprint author), Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China.
EM bgong@buffalo.edu
RI Smith, Richard/J-3664-2012
OI Smith, Richard/0000-0002-2381-2349
NR 1
TC 0
Z9 0
U1 2
U2 11
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PY 2016
VL 52
IS 29
BP 5205
EP 5205
DI 10.1039/c6cc90142e
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA DI6SG
UT WOS:000373629800030
PM 27003741
ER
PT J
AU Rui, Z
Zhang, WJ
AF Rui, Zhe
Zhang, Wenjun
TI Engineering Biosynthesis of Non-ribosomal Peptides and Polyketides by
Directed Evolution
SO CURRENT TOPICS IN MEDICINAL CHEMISTRY
LA English
DT Review
DE Biosynthesis; Directed evolution; High-throughput screening;
Mutasynthesis; Natural product; Non-ribosomal peptide synthetase;
Polyketide synthase
ID NATURAL-PRODUCTS; COMBINATORIAL BIOSYNTHESIS; THIOESTERASE DOMAIN;
ADENYLATION DOMAIN; CATALYTIC DOMAINS; ESCHERICHIA-COLI; SYNTHASE;
SYNTHETASE; SPECIFICITY; BIOSENSORS
AB Non-ribosomal peptides (NRPs) and polyketides (PKs) play key roles in pharmaceutical industry due to their promising biological activities. The structural complexity of NRPs and PKs, however, creates significant synthetic challenges for producing these natural products and their analogues by purely chemical means. Alternatively, difficult syntheses can be achieved by using biosynthetic enzymes with improved efficiency and altered selectivity that are acquired from directed evolution. Key to the successful directed evolution is the methodology of screening/selection. This review summarizes the screening/selection strategies that have been employed to improve or modify the functions of non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), in the hope of triggering the wide adoption of the directed evolution approaches in the engineered biosynthesis of NRPs and PKs for drug discovery.
C1 [Rui, Zhe; Zhang, Wenjun] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Zhang, Wenjun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Zhang, WJ (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.; Zhang, WJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
EM wjzhang@berkeley.edu
FU Pew Scholars Program
FX This work was financially supported by the Pew Scholars Program (to
W.Z.).
NR 57
TC 1
Z9 1
U1 14
U2 21
PU BENTHAM SCIENCE PUBL LTD
PI SHARJAH
PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB
EMIRATES
SN 1568-0266
EI 1873-5294
J9 CURR TOP MED CHEM
JI Curr. Top. Med. Chem.
PY 2016
VL 16
IS 15
BP 1755
EP 1762
DI 10.2174/1568026616666151012112045
PG 8
WC Chemistry, Medicinal
SC Pharmacology & Pharmacy
GA DI4VX
UT WOS:000373498600008
PM 26456467
ER
PT J
AU Whittemore, SM
Bowden, M
Karkamkar, A
Parab, K
Neiner, D
Autrey, T
Ishibashi, JSA
Chen, G
Liu, SY
Dixon, DA
AF Whittemore, Sean M.
Bowden, Mark
Karkamkar, Abhijeet
Parab, Kshitij
Neiner, Doinita
Autrey, Tom
Ishibashi, Jacob S. A.
Chen, Gang
Liu, Shih-Yuan
Dixon, David A.
TI Blending materials composed of boron, nitrogen and carbon to transform
approaches to liquid hydrogen stores
SO DALTON TRANSACTIONS
LA English
DT Article
ID AMMONIA-BORANE DEHYDROGENATION; FUEL-CELL APPLICATIONS; N-H COMPOUNDS;
STORAGE MATERIAL; THERMAL-DECOMPOSITION; CATALYZED DEHYDROGENATION;
REGENERATION; RELEASE; BORAZINE; CYCLOHEXANE
AB Mixtures of hydrogen storage materials containing the elements of boron, nitrogen, carbon, i.e., isomers of BN cyclopentanes are examined to find a 'fuel blend' that remains a liquid phase throughout hydrogen release, maximizes hydrogen storage density, minimizes impurities and remains thermally stable at ambient temperatures. We find that the mixture of ammonia borane dissolved in 3-methyl-1,2-dihydro1,2-azaborolidine (compound B) provide a balance of these properties and provides ca. 5.6 wt% hydrogen. The two hydrogen storage materials decompose at a faster rate than either individually and products formed are a mixture of molecular trimers. Digestion of the product mixture formed from the decomposition of the AB i B fuel blend with methanol leads to the two corresponding methanol adducts of the starting material and not a complex mixture of adducts. The work shows the utility of using blends of materials to reduce volatile impurities and preserve liquid phase.
C1 [Whittemore, Sean M.; Karkamkar, Abhijeet; Parab, Kshitij] Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA.
[Bowden, Mark; Autrey, Tom] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Neiner, Doinita] US Borax Inc, Rio Tinto, Greenwood Village, CO 80111 USA.
[Ishibashi, Jacob S. A.; Chen, Gang; Liu, Shih-Yuan] Boston Coll, Dept Chem, Chestnut Hill, MA 02467 USA.
[Dixon, David A.] Univ Alabama, Dept Chem, Box 870336, Tuscaloosa, AL 35487 USA.
RP Autrey, T (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
EM tom.autrey@pnnl.gov
RI Liu, Shih-Yuan/J-7813-2012
OI Liu, Shih-Yuan/0000-0003-3148-9147
FU U.S. Department of Energy, Office of Energy Efficiency and Renewable
Energy [DE-EE-0005658]; LaMattina Family Graduate Fellowship in Chemical
Synthesis; Camille Dreyfus Teacher-Scholar Awards Program; Robert Ramsay
Chair Fund of The University of Alabama
FX This research was funded by the U.S. Department of Energy, Office of
Energy Efficiency and Renewable Energy (DE-EE-0005658). The Pacific
Northwest National Laboratory is operated by Battelle for DOE. J. S. A.
I. thanks the LaMattina Family Graduate Fellowship in Chemical Synthesis
for support. S.-Y.L thanks the Camille Dreyfus Teacher-Scholar Awards
Program for a Teacher-Scholar award. D. A. D. thanks the Robert Ramsay
Chair Fund of The University of Alabama for support.
NR 56
TC 1
Z9 1
U1 4
U2 15
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1477-9226
EI 1477-9234
J9 DALTON T
JI Dalton Trans.
PY 2016
VL 45
IS 14
BP 6196
EP 6203
DI 10.1039/c5dt04276c
PG 8
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA DI6SP
UT WOS:000373630800039
PM 26629961
ER
PT J
AU Smith, AMS
Talhelm, AF
Kolden, CA
Newingham, BA
Adams, HD
Cohen, JD
Yedinak, KM
Kremens, RL
AF Smith, Alistair M. S.
Talhelm, Alan F.
Kolden, Crystal A.
Newingham, Beth A.
Adams, Henry D.
Cohen, Jack D.
Yedinak, Kara M.
Kremens, Robert L.
TI The ability of winter grazing to reduce wildfire size and fire-induced
plant mortality was not demonstrated: a comment on Davies et al. (2015)
SO INTERNATIONAL JOURNAL OF WILDLAND FIRE
LA English
DT Article
DE intensity; severity; thermocouples
ID BROMUS-TECTORUM; GREAT-BASIN; SAGEBRUSH STEPPE; ECOSYSTEMS; GRASSLANDS;
BUNCHGRASSES; RANGELANDS; DIVERSITY; DOMINANCE; BEHAVIOR
AB A recent study by Davies et al. sought to test whether winter grazing could reduce wildfire size, fire behaviour and intensity metrics, and fire-induced plant mortality in shrub-grasslands. The authors concluded that ungrazed rangelands may experience fire-induced mortality of native perennial bunchgrasses. The authors also presented several statements regarding the benefits of winter grazing on post-fire plant community responses. However, we contend that the study by Davies et al. has underlying methodological errors, lacks data necessary to support their conclusions, and does not provide a thorough discussion on the effect of grazing on rangeland ecosystems. Importantly, Davies et al. presented no data on the post-fire mortality of the perennial bunchgrasses or on the changes in plant community composition following their experimental fires. Rather, Davies et al. inferred these conclusions based on their observed fire behaviour metrics of maximum temperature and a term described as the heat load'. However, we contend that neither metric is appropriate for describing the heat flux impacts on plants. This lack of post-fire data, several methodological errors and the use of inappropriate thermal metrics limit the authors' ability to support their stated conclusions.
C1 [Smith, Alistair M. S.; Yedinak, Kara M.] Univ Idaho, Idaho Fire Initiat Res & Educ, 975 West 6th St, Moscow, ID 83844 USA.
[Smith, Alistair M. S.; Talhelm, Alan F.; Yedinak, Kara M.] Univ Idaho, Dept Forest Rangeland & Fire Sci, 975 West 6th St, Moscow, ID 83844 USA.
[Talhelm, Alan F.] US Environm Protect Agcy, Natl Ctr Environm Assessment, Oak Ridge Inst Sci Educ, Res Triangle Pk, NC USA.
[Kolden, Crystal A.] Univ Idaho, Dept Geog, 875 Perimeter Dr, Moscow, ID 83844 USA.
[Newingham, Beth A.] USDA ARS, Great Basin Rangelands Res Unit, 920 Valley Rd, Reno, NV 89512 USA.
[Adams, Henry D.] Oklahoma State Univ, Dept Bot, 104 Life Sci Bldg E, Stillwater, OK 74078 USA.
[Cohen, Jack D.] US Forest Serv, Missoula Fire Sci Lab, 7557 West Broadway St, Missoula, MT 59808 USA.
[Kremens, Robert L.] Rochester Inst Technol, Coll Sci, Gosnell Hall 84, Rochester, NY 14623 USA.
RP Smith, AMS (reprint author), Univ Idaho, Idaho Fire Initiat Res & Educ, 975 West 6th St, Moscow, ID 83844 USA.; Smith, AMS (reprint author), Univ Idaho, Dept Forest Rangeland & Fire Sci, 975 West 6th St, Moscow, ID 83844 USA.
EM alistair@uidaho.edu
NR 41
TC 2
Z9 2
U1 3
U2 7
PU CSIRO PUBLISHING
PI CLAYTON
PA UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC
3168, AUSTRALIA
SN 1049-8001
EI 1448-5516
J9 INT J WILDLAND FIRE
JI Int. J. Wildland Fire
PY 2016
VL 25
IS 4
BP 484
EP 488
DI 10.1071/WF15163
PG 5
WC Forestry
SC Forestry
GA DI7VF
UT WOS:000373709400012
ER
PT J
AU Maurice, S
Clegg, SM
Wiens, RC
Gasnault, O
Rapin, W
Forni, O
Cousin, A
Sautter, V
Mangold, N
Le Deit, L
Nachon, M
Anderson, RB
Lanza, NL
Fabre, C
Payre, V
Lasue, J
Meslin, PY
Leveille, RJ
Barraclough, L
Beck, P
Bender, SC
Berger, G
Bridges, JC
Bridges, NT
Dromart, G
Dyar, MD
Francis, R
Frydenvang, J
Gondet, B
Ehlmann, BL
Herkenhoff, KE
Johnson, JR
Langevin, Y
Madsen, MB
Melikechi, N
Lacour, JL
Le Mouelic, S
Lewin, E
Newsom, HE
Ollila, AM
Pinet, P
Schroder, S
Sirven, JB
Tokar, RL
Toplis, MJ
d'Uston, C
Vaniman, DT
Vasavada, AR
AF Maurice, S.
Clegg, S. M.
Wiens, R. C.
Gasnault, O.
Rapin, W.
Forni, O.
Cousin, A.
Sautter, V.
Mangold, N.
Le Deit, L.
Nachon, M.
Anderson, R. B.
Lanza, N. L.
Fabre, C.
Payre, V.
Lasue, J.
Meslin, P. -Y.
Leveille, R. J.
Barraclough, L.
Beck, P.
Bender, S. C.
Berger, G.
Bridges, J. C.
Bridges, N. T.
Dromart, G.
Dyar, M. D.
Francis, R.
Frydenvang, J.
Gondet, B.
Ehlmann, B. L.
Herkenhoff, K. E.
Johnson, J. R.
Langevin, Y.
Madsen, M. B.
Melikechi, N.
Lacour, J. -L.
Le Mouelic, S.
Lewin, E.
Newsom, H. E.
Ollila, A. M.
Pinet, P.
Schroeder, S.
Sirven, J. -B.
Tokar, R. L.
Toplis, M. J.
d'Uston, C.
Vaniman, D. T.
Vasavada, A. R.
TI ChemCam activities and discoveries during the nominal mission of the
Mars Science Laboratory in Gale crater, Mars
SO JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY
LA English
DT Article
ID INDUCED BREAKDOWN SPECTROSCOPY; CURIOSITY ROVER; OMEGA/MARS EXPRESS;
SPACE EXPLORATION; INSTRUMENT SUITE; YELLOWKNIFE BAY; CHEMISTRY; ORIGIN;
ROCKS; TARGETS
AB At Gale crater, Mars, ChemCam acquired its first laser-induced breakdown spectroscopy (LIBS) target on Sol 13 of the landed portion of the mission (a Sol is a Mars day). Up to Sol 800, more than 188 000 LIBS spectra were acquired on more than 5800 points distributed over about 650 individual targets. We present a comprehensive review of ChemCam scientific accomplishments during that period, together with a focus on the lessons learned from the first use of LIBS in space. For data processing, we describe new tools that had to be developed to account for the uniqueness of Mars data. With regard to chemistry, we present a summary of the composition range measured on Mars for major-element oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O) based on various multivariate models, with associated precisions. ChemCam also observed H, and the non-metallic elements C, O, P, and S, which are usually difficult to quantify with LIBS. F and Cl are observed through their molecular lines. We discuss the most relevant LIBS lines for detection of minor and trace elements (Li, Rb, Sr, Ba, Cr, Mn, Ni, and Zn). These results were obtained thanks to comprehensive ground reference datasets, which are set to mimic the expected mineralogy and chemistry on Mars. With regard to the first use of LIBS in space, we analyze and quantify, often for the first time, each of the advantages of using stand-off LIBS in space: no sample preparation, analysis within its petrological context, dust removal, sub-millimeter scale investigation, multi-point analysis, the ability to carry out statistical surveys and whole-rock analyses, and rapid data acquisition. We conclude with a discussion of ChemCam performance to survey the geochemistry of Mars, and its valuable support of decisions about selecting where and whether to make observations with more time and resource-intensive tools in the rover's instrument suite. In the end, we present a bird's-eye view of the many scientific results: discovery of felsic Noachian crust, first observation of hydrated soil, discovery of manganese-rich coatings and fracture fills indicating strong oxidation potential in Mars' early atmosphere, characterization of soils by grain size, and wide scale mapping of sedimentary strata, conglomerates, and diagenetic materials.
C1 [Maurice, S.; Gasnault, O.; Rapin, W.; Forni, O.; Cousin, A.; Lasue, J.; Meslin, P. -Y.; Berger, G.; Schroeder, S.; Toplis, M. J.; d'Uston, C.] Univ Toulouse 3, CNRS, IRAP, Obs Midi Pyrenees, 9 Av Colonel Roche, F-31400 Toulouse, France.
[Clegg, S. M.; Wiens, R. C.; Lanza, N. L.; Barraclough, L.; Frydenvang, J.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Sautter, V.; Anderson, R. B.] Museum Natl Hist Nat, IMPMC, F-75231 Paris, France.
[Mangold, N.; Le Deit, L.; Nachon, M.; Le Mouelic, S.] LPG Nantes, UMR CNRS 6112, Lab Planetol & Geodynam, Nantes, France.
[Herkenhoff, K. E.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA.
[Fabre, C.; Payre, V.] Univ Lorraine, GeoRessources, Vandoeuvre Les Nancy, France.
[Leveille, R. J.] Canadian Space Agcy, St Hubert, PQ, Canada.
[Leveille, R. J.] McGill Univ, Dept Nat Resource Sci, Montreal, PQ, Canada.
[Beck, P.] Univ Grenoble Alpes, Inst Planetol & Astrophys Grenoble, Grenoble, France.
[Bender, S. C.; Tokar, R. L.; Vaniman, D. T.] Planetary Sci Inst, Tucson, AZ USA.
[Bridges, J. C.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England.
[Bridges, N. T.; Johnson, J. R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA.
[Dromart, G.] Univ Lyon, ENS Lyon, Lab Geol Lyon, Lyon, France.
[Dyar, M. D.] Mt Holyoke Coll, Dept Astron, South Hadley, MA USA.
[Francis, R.] Univ Western Ontario, Ctr Planetary Sci & Explorat, London, ON, Canada.
[Francis, R.; Ehlmann, B. L.; Vasavada, A. R.] CALTECH, Jet Prop Lab, Pasadena, CA USA.
[Gondet, B.; Langevin, Y.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France.
[Madsen, M. B.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
[Melikechi, N.] Delaware State Univ, Opt Sci Ctr Appl Res, Dover, DE USA.
[Lacour, J. -L.; Sirven, J. -B.] Commissariat Energie Atom & Energies Alternat, DEN, Dept Phys Chem, Saclay, France.
[Lewin, E.] Univ Grenoble 1, CNRS, Inst Sci Terre, Grenoble, France.
[Newsom, H. E.; Ollila, A. M.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA.
[Newsom, H. E.; Ollila, A. M.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA.
RP Maurice, S (reprint author), Univ Toulouse 3, CNRS, IRAP, Obs Midi Pyrenees, 9 Av Colonel Roche, F-31400 Toulouse, France.
EM maurice@cesr.fr
RI Frydenvang, Jens/D-4781-2013; Beck, Pierre/F-3149-2011; Sirven,
Jean-Baptiste/H-5782-2013; LEWIN, Eric/F-1451-2017;
OI Frydenvang, Jens/0000-0001-9294-1227; Sirven,
Jean-Baptiste/0000-0002-5523-6809; Clegg, Sam/0000-0002-0338-0948
FU France by the French Space Agency (CNES); Centre National de la
Recherche Scientifique (CNRS); NASA's Mars Program Office
FX This work was supported in France by the French Space Agency (CNES), the
Centre National de la Recherche Scientifique (CNRS), and many institutes
and universities across the country. Collaboration with colleagues in
the US was funded by NASA's Mars Program Office.
NR 107
TC 7
Z9 7
U1 13
U2 37
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0267-9477
EI 1364-5544
J9 J ANAL ATOM SPECTROM
JI J. Anal. At. Spectrom.
PY 2016
VL 31
IS 4
BP 863
EP 889
DI 10.1039/c5ja00417a
PG 27
WC Chemistry, Analytical; Spectroscopy
SC Chemistry; Spectroscopy
GA DI4LC
UT WOS:000373470400003
ER
PT S
AU Keegan, KP
Glass, EM
Meyer, F
AF Keegan, Kevin P.
Glass, Elizabeth M.
Meyer, Folker
BE Martin, F
Uroz, S
TI MG-RAST, a Metagenomics Service for Analysis of Microbial Community
Structure and Function
SO MICROBIAL ENVIRONMENTAL GENOMICS (MEG)
SE Methods in Molecular Biology
LA English
DT Article; Book Chapter
DE Metagenomics; Comparative analysis; Sequence quality; Automated
pipeline; High-throughput; matR
ID SEQUENCING DATA; DATABASE; ALIGNMENT; RESOURCE; QUALITY; TOOL;
ANNOTATIONS; PROJECT; SEARCH; GENOME
AB Approaches in molecular biology, particularly those that deal with high-throughput sequencing of entire microbial communities (the field of metagenomics), are rapidly advancing our understanding of the composition and functional content of microbial communities involved in climate change, environmental pollution, human health, biotechnology, etc. Metagenomics provides researchers with the most complete picture of the taxonomic (i.e., what organisms are there) and functional (i.e., what are those organisms doing) composition of natively sampled microbial communities, making it possible to perform investigations that include organisms that were previously intractable to laboratory-controlled culturing; currently, these constitute the vast majority of all microbes on the planet. All organisms contained in environmental samples are sequenced in a culture-independent manner, most often with 16S ribosomal amplicon methods to investigate the taxonomic or whole-genome shotgun-based methods to investigate the functional content of sampled communities. Metagenomics allows researchers to characterize the community composition and functional content of microbial communities, but it cannot show which functional processes are active; however, near parallel developments in transcriptomics promise a dramatic increase in our knowledge in this area as well.
Since 2008, MG-RAST (Meyer et al., BMC Bioinformatics 9: 386, 2008) has served as a public resource for annotation and analysis of metagenomic sequence data, providing a repository that currently houses more than 150,000 data sets (containing 60+ tera-base-pairs) with more than 23,000 publically available. MG-RAST, or the metagenomics RAST (rapid annotation using subsystems technology) server makes it possible for users to upload raw metagenomic sequence data in (preferably) fastq or fasta format. Assessments of sequence quality, annotation with respect to multiple reference databases, are performed automatically with minimal input from the user (see Subheading 4 at the end of this chapter for more details). Post-annotation analysis and visualization are also possible, directly through the web interface, or with tools like matR (metagenomic analysis tools for R, covered later in this chapter) that utilize the MG-RAST API (http://api.metagenomics.anl.gov/api.html) to easily download data from any stage in the MG-RAST processing pipeline. Over the years, MG-RAST has undergone substantial revisions to keep pace with the dramatic growth in the number, size, and types of sequence data that accompany constantly evolving developments in metagenomics and related -omic sciences(e.g., metatranscriptomics).
C1 [Keegan, Kevin P.; Glass, Elizabeth M.; Meyer, Folker] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Keegan, Kevin P.; Meyer, Folker] Univ Chicago, Chicago, IL 60637 USA.
RP Keegan, KP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
NR 38
TC 8
Z9 8
U1 3
U2 12
PU HUMANA PRESS INC
PI TOTOWA
PA 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA
SN 1064-3745
BN 978-1-4939-3369-3; 978-1-4939-3367-9
J9 METHODS MOL BIOL
JI Methods Mol. Biol.
PY 2016
VL 1399
BP 207
EP 233
DI 10.1007/978-1-4939-3369-3_13
D2 10.1007/978-1-4939-3369-3
PG 27
WC Biochemical Research Methods; Biochemistry & Molecular Biology; Ecology;
Microbiology
SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology;
Microbiology
GA BE5TW
UT WOS:000373428100014
PM 26791506
ER
PT S
AU Aranson, IS
AF Aranson, Igor S.
BE Aranson, IS
TI Macroscopic Model of Substrate-Based Cell Motility
SO PHYSICAL MODELS OF CELL MOTILITY
SE Biological and Medical Physics Biomedical Engineering
LA English
DT Article; Book Chapter
ID ARBITRARY VISCOSITY CONTRAST; FISH EPIDERMAL KERATOCYTES; TRACTION FORCE
MICROSCOPY; PHASE-FIELD MODEL; ACTIVE POLAR GELS; HELE-SHAW FLOWS; FOCAL
ADHESIONS; RETROGRADE FLOW; CONTINUUM MODEL; MIGRATION SPEED
C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
NR 186
TC 0
Z9 0
U1 2
U2 4
PU SPRINGER INT PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 1618-7210
BN 978-3-319-24448-8; 978-3-319-24446-4
J9 BIOL MED PHYS BIOMED
JI Biol. Med. Phys. Biomed. Eng.
PY 2016
BP 1
EP 67
DI 10.1007/978-3-319-24448-8_1
D2 10.1007/978-3-319-24448-8
PG 67
WC Biophysics; Cell Biology; Mathematical & Computational Biology
SC Biophysics; Cell Biology; Mathematical & Computational Biology
GA BE5WQ
UT WOS:000373556800002
ER
PT S
AU Aranson, IS
AF Aranson, Igor S.
BE Aranson, IS
TI Physical Models of Cell Motility Preface
SO PHYSICAL MODELS OF CELL MOTILITY
SE Biological and Medical Physics Biomedical Engineering
LA English
DT Editorial Material; Book Chapter
C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
NR 0
TC 0
Z9 0
U1 1
U2 1
PU SPRINGER INT PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 1618-7210
BN 978-3-319-24448-8; 978-3-319-24446-4
J9 BIOL MED PHYS BIOMED
JI Biol. Med. Phys. Biomed. Eng.
PY 2016
BP V
EP VI
D2 10.1007/978-3-319-24448-8
PG 2
WC Biophysics; Cell Biology; Mathematical & Computational Biology
SC Biophysics; Cell Biology; Mathematical & Computational Biology
GA BE5WQ
UT WOS:000373556800001
ER
PT S
AU Aranson, IS
AF Aranson, Igor S.
BE Aranson, IS
TI Cell Crawling Driven by Spontaneous Actin Polymerization Waves
SO PHYSICAL MODELS OF CELL MOTILITY
SE Biological and Medical Physics Biomedical Engineering
LA English
DT Article; Book Chapter
ID REACTION-DIFFUSION WAVES; SELF-ORGANIZATION; LEADING-EDGE; MOTILE CELLS;
DYNAMICS; PATTERNS; MICROTUBULES; LOCOMOTION; FRAGMENTS; COMPLEX
C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
NR 74
TC 0
Z9 0
U1 2
U2 3
PU SPRINGER INT PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 1618-7210
BN 978-3-319-24448-8; 978-3-319-24446-4
J9 BIOL MED PHYS BIOMED
JI Biol. Med. Phys. Biomed. Eng.
PY 2016
BP 69
EP 93
DI 10.1007/978-3-319-24448-8_2
D2 10.1007/978-3-319-24448-8
PG 25
WC Biophysics; Cell Biology; Mathematical & Computational Biology
SC Biophysics; Cell Biology; Mathematical & Computational Biology
GA BE5WQ
UT WOS:000373556800003
ER
PT S
AU Aranson, IS
AF Aranson, Igor S.
BE Aranson, IS
TI A Modular View of the Signaling System Regulating Chemotaxis
SO PHYSICAL MODELS OF CELL MOTILITY
SE Biological and Medical Physics Biomedical Engineering
LA English
DT Article; Book Chapter
ID EUKARYOTIC CHEMOTAXIS; DICTYOSTELIUM-DISCOIDEUM; BACTERIAL CHEMOTAXIS;
CELL-MIGRATION; LEADING-EDGE; MOTILE CELLS; EXCITABLE NETWORKS; SENSORY
ADAPTATION; POSITIVE-FEEDBACK; SELF-ORGANIZATION
C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
NR 119
TC 0
Z9 0
U1 1
U2 1
PU SPRINGER INT PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 1618-7210
BN 978-3-319-24448-8; 978-3-319-24446-4
J9 BIOL MED PHYS BIOMED
JI Biol. Med. Phys. Biomed. Eng.
PY 2016
BP 95
EP 134
DI 10.1007/978-3-319-24448-8_3
D2 10.1007/978-3-319-24448-8
PG 40
WC Biophysics; Cell Biology; Mathematical & Computational Biology
SC Biophysics; Cell Biology; Mathematical & Computational Biology
GA BE5WQ
UT WOS:000373556800004
ER
PT S
AU Aranson, IS
AF Aranson, Igor S.
BE Aranson, IS
TI Cell Locomotion in One Dimension
SO PHYSICAL MODELS OF CELL MOTILITY
SE Biological and Medical Physics Biomedical Engineering
LA English
DT Article; Book Chapter
ID ACTIVE POLAR GELS; MOTILITY INITIATION; SELF-POLARIZATION; CORTICAL
TENSION; RETROGRADE FLOW; BROWNIAN-MOTION; CRAWLING CELLS; SOFT
MATERIALS; STRESS FIBER; MYOSIN-II
C1 [Aranson, Igor S.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
NR 170
TC 0
Z9 0
U1 2
U2 2
PU SPRINGER INT PUBLISHING AG
PI CHAM
PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
SN 1618-7210
BN 978-3-319-24448-8; 978-3-319-24446-4
J9 BIOL MED PHYS BIOMED
JI Biol. Med. Phys. Biomed. Eng.
PY 2016
BP 135
EP 197
DI 10.1007/978-3-319-24448-8_4
D2 10.1007/978-3-319-24448-8
PG 63
WC Biophysics; Cell Biology; Mathematical & Computational Biology
SC Biophysics; Cell Biology; Mathematical & Computational Biology
GA BE5WQ
UT WOS:000373556800005
ER
PT J
AU Pinera, ER
Stojanoff, V
AF Rudino Pinera, Enrique
Stojanoff, Vivian
TI Synchrotron Applications in Life Sciences
SO PROTEIN AND PEPTIDE LETTERS
LA English
DT Editorial Material
C1 [Rudino Pinera, Enrique] Univ Nacl Autonoma Mexico, Inst Biotecnol, Mexico City 04510, DF, Mexico.
[Stojanoff, Vivian] Brookhaven Natl Lab, Photon Sci Directorate, Bldg745, Upton, NY 11973 USA.
RP Pinera, ER (reprint author), Univ Nacl Autonoma Mexico, Inst Biotecnol, Mexico City 04510, DF, Mexico.; Stojanoff, V (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, Bldg745, Upton, NY 11973 USA.
EM rudino@ibt.unam.mx; vivian.stojanoff@gmail.com
NR 0
TC 0
Z9 0
U1 0
U2 0
PU BENTHAM SCIENCE PUBL LTD
PI SHARJAH
PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB
EMIRATES
SN 0929-8665
EI 1875-5305
J9 PROTEIN PEPTIDE LETT
JI Protein Pept. Lett.
PY 2016
VL 23
IS 3
BP 200
EP 200
DI 10.2174/092986652303160215154208
PG 1
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA DI7XA
UT WOS:000373714100001
PM 26795721
ER
PT J
AU Loutherback, K
Birarda, G
Chen, L
Holman, HYN
AF Loutherback, Kevin
Birarda, Giovanni
Chen, Liang
Holman, Hoi-Ying N.
TI Microfluidic Approaches to Synchrotron Radiation-Based Fourier Transform
Infrared (SR-FTIR) Spectral Microscopy of Living Biosystems
SO PROTEIN AND PEPTIDE LETTERS
LA English
DT Article
DE FTIR; live cells; microfabrication; microfluidics; synchrotron radiation
ID QUANTITATIVE IR SPECTROPHOTOMETRY; WATER H2O SOLUTIONS; FOCAL-PLANE
ARRAY; SINGLE-CELL TRANSCRIPTOMICS; LIVE CELLS; REAL-TIME; PEPTIDE
COMPOUNDS; SACCHAROMYCES-CEREVISIAE; FLUORESCENCE MICROSCOPY; PROTEIN
AGGREGATION
AB A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the water thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.
C1 [Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; Holman, Hoi-Ying N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Synchrotron Infrared Struct Biol Program, Berkeley, CA 94720 USA.
[Birarda, Giovanni] Elettra Synchrotron Light Lab, SS 14 Km 163-5, I-34149 Trieste, Italy.
RP Holman, HYN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Synchrotron Infrared Struct Biol Program, Berkeley, CA 94720 USA.
EM hyholman@lbl.gov
RI Chen, Liang/F-3496-2011; Holman, Hoi-Ying/N-8451-2014
OI Holman, Hoi-Ying/0000-0002-7534-2625
FU US Department of Energy, Office of Science, and Office of Biological and
Environmental Research; [DE-AC02-225 05CH11231]
FX This work was performed under the Berkeley Synchrotron Infrared
Structural Biology (BSISB) Program funded by the US Department of
Energy, Office of Science, and Office of Biological and Environmental
Research. The Advanced Light Source is supported by the Director, Office
of Science, and Office of Basic Energy Sciences. Both were supported
through Contract DE-AC02-225 05CH11231.
NR 119
TC 1
Z9 1
U1 6
U2 13
PU BENTHAM SCIENCE PUBL LTD
PI SHARJAH
PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB
EMIRATES
SN 0929-8665
EI 1875-5305
J9 PROTEIN PEPTIDE LETT
JI Protein Pept. Lett.
PY 2016
VL 23
IS 3
BP 273
EP 282
DI 10.2174/0929866523666160106154035
PG 10
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA DI7XA
UT WOS:000373714100008
PM 26732243
ER
PT J
AU Northrup, P
Leri, A
Tappero, R
AF Northrup, Paul
Leri, Alessandra
Tappero, Ryan
TI Applications of "Tender" Energy (1-5 keV) X-Ray Absorption Spectroscopy
in Life Sciences
SO PROTEIN AND PEPTIDE LETTERS
LA English
DT Article
DE Calcium; EXAFS; microbeam; natural organochlorine; sulfur;
tender-energy; XANES; X-ray absorption spectroscopy; X-ray
spectromicroscopy
ID WEATHERING PLANT-MATERIAL; OXALATE CRYSTAL-FORMATION;
MEDICAGO-TRUNCATULA; ORGANIC-MATTER; CALCIUM; SULFUR; XANES; SOIL;
SPECIATION; CHLORINE
AB The "tender" energy range of 1 to 5 keV, between the energy ranges of most "hard" (>5 keV) and "soft" (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. This brief review describes the technique, its experimental challenges, recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.
C1 [Northrup, Paul; Tappero, Ryan] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
[Northrup, Paul] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11974 USA.
[Leri, Alessandra] Marymount Manhattan Coll, Dept Nat Sci, 221 E 71st St, New York, NY 10021 USA.
RP Northrup, P (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
EM northrup@bnl.gov
FU DOE [DE-AC02-98CH10886 (NSLS), DE-FG02-12ER16342 (X15B)]; NSF
[EAR-1128957]; NASA [NNX13AD12G]
FX The authors are grateful to Vivian Stojanoff for providing the lysozyme
crystal measured, Cindy Lee of Stony Brook University for providing
sediment trap material and Tracy Punshon for the Medicago leaves.
Measurements at the NSLS were supported by DOE contracts
DE-AC02-98CH10886 (NSLS) and DE-FG02-12ER16342 (X15B, PN), NSF Grant
EAR-1128957 (PN) and NASA NNX13AD12G (PN). Two reviewers contributed
valuable advice on the manuscript.
NR 29
TC 1
Z9 1
U1 4
U2 8
PU BENTHAM SCIENCE PUBL LTD
PI SHARJAH
PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB
EMIRATES
SN 0929-8665
EI 1875-5305
J9 PROTEIN PEPTIDE LETT
JI Protein Pept. Lett.
PY 2016
VL 23
IS 3
BP 300
EP 308
DI 10.2174/0929866523666160107114505
PG 9
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA DI7XA
UT WOS:000373714100011
PM 26740327
ER
PT J
AU Gupta, S
Feng, J
Chance, M
Ralston, C
AF Gupta, Sayan
Feng, Jun
Chance, Mark
Ralston, Corie
TI Recent Advances and Applications in Synchrotron X-Ray Protein
Footprinting for Protein Structure and Dynamics Elucidation
SO PROTEIN AND PEPTIDE LETTERS
LA English
DT Article
DE Hydroxyl radical labeling; mass spectrometry; protein conformation;
protein modification bound water
ID ORANGE CAROTENOID PROTEIN; BURIED WATER-MOLECULES; ZINC TRANSPORTER
YIIP; HEART CYTOCHROME-C; MASS-SPECTROMETRY; MEMBRANE-PROTEINS;
NEUTRON-SCATTERING; CRYSTAL-STRUCTURE; CROSS-LINKING; ELECTRON
CRYSTALLOGRAPHY
AB Synchrotron X-ray Footprinting is a powerful in situ hydroxyl radical labeling method for analysis of protein structure, interactions, folding and conformation change in solution. In this method, water is ionized by high flux density broad band synchrotron X-rays to produce a steady-state concentration of hydroxyl radicals, which then react with solvent accessible side-chains. The resulting stable modification products are analyzed by liquid chromatography coupled to mass spectrometry. A comparative reactivity rate between known and unknown states of a protein provides local as well as global information on structural changes, which is then used to develop structural models for protein function and dynamics. In this review we describe the XF-MS method, its unique capabilities and its recent technical advances at the Advanced Light Source. We provide a comparison of other hydroxyl radical and mass spectrometry based methods with XF-MS. We also discuss some of the latest developments in its usage for studying bound water, transmembrane proteins and photosynthetic protein components, and the synergy of the method with other synchrotron based structural biology methods.
C1 [Gupta, Sayan; Ralston, Corie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA.
[Feng, Jun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Expt Syst, Berkeley, CA 94720 USA.
[Chance, Mark] Case Western Reserve Univ, Ctr Prote & Bioinformat, Cleveland, OH 44106 USA.
RP Ralston, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA.
EM cyralston@lbl.gov
FU Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886];
NIBIB [P30-EB0966]
FX The Advanced Light Source is supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231. The National Synchrotron
Light Source, Brookhaven National Laboratory, was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-98CH10886. The Center for
Synchrotron Biosciences at the National Synchrotron Light Sources is
supported by NIBIB under P30-EB0966.
NR 112
TC 0
Z9 0
U1 0
U2 2
PU BENTHAM SCIENCE PUBL LTD
PI SHARJAH
PA EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB
EMIRATES
SN 0929-8665
EI 1875-5305
J9 PROTEIN PEPTIDE LETT
JI Protein Pept. Lett.
PY 2016
VL 23
IS 3
BP 309
EP 322
DI 10.2174/0929866523666160201150057
PG 14
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA DI7XA
UT WOS:000373714100012
PM 26833224
ER
PT J
AU Di, ZC
Leyffer, S
Wild, SM
AF Di, Zichao (Wendy)
Leyffer, Sven
Wild, Stefan M.
TI Optimization-Based Approach for Joint X-Ray Fluorescence and
Transmission Tomographic Inversion
SO SIAM JOURNAL ON IMAGING SCIENCES
LA English
DT Article
DE tomographic reconstruction; X-ray fluorescence; X-ray transmission;
joint inversion; nonlinear optimization; truncated-Newton method
ID LIKELIHOOD IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY; ALGORITHM;
REGULARIZATION; CONSTRAINTS; MICROSCOPY
AB Fluorescence tomographic reconstruction, based on the detection of photons coming from fluorescent emission, can be used for revealing the internal elemental composition of a sample. On the other hand, conventional X-ray transmission tomography can be used for reconstructing the spatial distribution of the absorption coefficient inside a sample. In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities and formulate a nonlinear optimization-based approach for reconstruction of the elemental composition of a given object. This model provides a simultaneous reconstruction of both the quantitative spatial distribution of all elements and the absorption effect in the sample. Mathematically speaking, we show that compared with the single-modality inversion (i.e., the X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem, which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography arising mainly from the effects of self-absorption in the sample are partially mitigated. The use of this technique is demonstrated on the reconstruction of several synthetic samples.
C1 [Di, Zichao (Wendy); Leyffer, Sven; Wild, Stefan M.] Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Di, ZC; Leyffer, S; Wild, SM (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM wendydi@anl.gov; leyffer@anl.gov; wild@anl.gov
RI Wild, Stefan/P-4907-2016
OI Wild, Stefan/0000-0002-6099-2772
FU U.S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]
FX The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
contract DE-AC02-06CH11357. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government. Copyright is owned by SIAM
to the extent not limited by these rights.
NR 48
TC 0
Z9 0
U1 1
U2 2
PU SIAM PUBLICATIONS
PI PHILADELPHIA
PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA
SN 1936-4954
J9 SIAM J IMAGING SCI
JI SIAM J. Imaging Sci.
PY 2016
VL 9
IS 1
BP 1
EP 23
DI 10.1137/15M1021404
PG 23
WC Computer Science, Artificial Intelligence; Computer Science, Software
Engineering; Mathematics, Applied; Imaging Science & Photographic
Technology
SC Computer Science; Mathematics; Imaging Science & Photographic Technology
GA DI6SD
UT WOS:000373629500001
ER
PT J
AU Xi, YZ
Li, RP
Saad, Y
AF Xi, Yuanzhe
Li, Ruipeng
Saad, Yousef
TI AN ALGEBRAIC MULTILEVEL PRECONDITIONER WITH LOW-RANK CORRECTIONS FOR
SPARSE SYMMETRIC MATRICES
SO SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS
LA English
DT Article
DE low-rank approximation; Schur complements; multilevel preconditioner;
domain decomposition; incomplete factorization; Krylov subspace methods;
Nested Dissection ordering
ID NONSYMMETRIC LINEAR-SYSTEMS; DEGREE ORDERING ALGORITHM; DIRECT SOLVER;
INTEGRAL-EQUATIONS; ILU PRECONDITIONER; H-MATRICES; FACTORIZATION;
DIMENSIONS; CONVECTION; SUPERFAST
AB This paper describes a multilevel preconditioning technique for solving sparse symmetric linear systems of equations. This "Multilevel Schur Low-Rank" (MSLR) preconditioner first builds a tree structure T based on a hierarchical decomposition of the matrix and then computes an approximate inverse of the original matrix level by level. Unlike classical direct solvers, the construction of the MSLR preconditioner follows a top-down traversal of T and exploits a low-rank property that is satisfied by the difference between the inverses of the local Schur complements and specific blocks of the original matrix. A few steps of the generalized Lanczos tridiagonalization procedure are applied to capture most of this difference. Numerical results are reported to illustrate the efficiency and robustness of the MSLR preconditioner with both two-and three-dimensional discretized PDE problems and with publicly available test problems.
C1 [Xi, Yuanzhe; Saad, Yousef] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA.
[Li, Ruipeng] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA.
RP Xi, YZ; Saad, Y (reprint author), Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA.; Li, RP (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA.
EM yxi@cs.umn.edu; li50@llnl.gov; saad@cs.umn.edu
FU NSF [DMS-1216366, DMS-1521573]; Minnesota Supercomputing Institute; U.S.
Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344 (LLNL-JRNL-680317)]
FX This work was supported by the NSF under grants DMS-1216366 and
DMS-1521573 and by the Minnesota Supercomputing Institute. The U.S.
Government retains a nonexclusive, royalty-free license to publish or
reproduce the published form of this contribution, or allow others to do
so, for U.S. Government purposes. Copyright is owned by SIAM to the
extent not limited by these rights.; This author's work was performed
under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract DE-AC52-07NA27344
(LLNL-JRNL-680317).
NR 47
TC 1
Z9 1
U1 2
U2 3
PU SIAM PUBLICATIONS
PI PHILADELPHIA
PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA
SN 0895-4798
EI 1095-7162
J9 SIAM J MATRIX ANAL A
JI SIAM J. Matrix Anal. Appl.
PY 2016
VL 37
IS 1
BP 235
EP 259
DI 10.1137/15M1021830
PG 25
WC Mathematics, Applied
SC Mathematics
GA DI6TP
UT WOS:000373633400011
ER
PT J
AU Kouri, DP
Surowiec, TM
AF Kouri, D. P.
Surowiec, T. M.
TI RISK-AVERSE PDE-CONSTRAINED OPTIMIZATION USING THE CONDITIONAL
VALUE-AT-RISK
SO SIAM JOURNAL ON OPTIMIZATION
LA English
DT Article
DE PDE optimization; conditional value-at-risk; uncertainty quantification
ID PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; RANDOM
INPUT DATA; MINIMIZATION; UNCERTAINTY; INTEGRATION
AB Uncertainty is inevitable when solving science and engineering application problems. In the face of uncertainty, it is essential to determine robust and risk-averse solutions. In this work, we consider a class of PDE-constrained optimization problems in which the PDE coefficients and inputs may be uncertain. We introduce two approximations for minimizing the conditional value-at-risk (CVaR) for such PDE-constrained optimization problems. These approximations are based on the primal and dual formulations of CVaR. For the primal problem, we introduce a smooth approximation of CVaR in order to utilize derivative-based optimization algorithms and to take advantage of the convergence properties of quadrature-based discretizations. For this smoothed CVaR, we prove differentiability as well as consistency of our approximation. For the dual problem, we regularize the inner maximization problem, rigorously derive optimality conditions, and demonstrate the consistency of our approximation. Furthermore, we propose a fixed-point iteration that takes advantage of the structure of the regularized optimality conditions and provides a means of calculating worst-case probability distributions based on the given probability level. We conclude with numerical results.
C1 [Kouri, D. P.] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, MS 1320, Albuquerque, NM 87185 USA.
[Kouri, D. P.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Surowiec, T. M.] Humboldt Univ, Dept Math, Unter Linden 6, D-10099 Berlin, Germany.
RP Kouri, DP (reprint author), Sandia Natl Labs, Optimizat & Uncertainty Quantificat, MS 1320, Albuquerque, NM 87185 USA.; Surowiec, TM (reprint author), Humboldt Univ, Dept Math, Unter Linden 6, D-10099 Berlin, Germany.
EM dpkouri@sandia.gov; surowiec@math.hu-berlin.de
FU NNSA-ASC program; J. H. Wilkinson Fellowship; U.S. Department of
Energy's National Nuclear Security Administration [DE-AC04-94AL85000];
DUG Research Center MATHEON Project [C28]
FX This author's research was sponsored in part by the NNSA-ASC program.
This research was partially performed at Argonne National Laboratory and
was sponsored by the J. H. Wilkinson Fellowship. Sandia National
Laboratories is a multiprogram laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000.; The author gratefully
acknowledges the support by the DUG Research Center MATHEON Project C28.
NR 45
TC 1
Z9 1
U1 1
U2 1
PU SIAM PUBLICATIONS
PI PHILADELPHIA
PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA
SN 1052-6234
EI 1095-7189
J9 SIAM J OPTIMIZ
JI SIAM J. Optim.
PY 2016
VL 26
IS 1
BP 365
EP 396
DI 10.1137/140954556
PG 32
WC Mathematics, Applied
SC Mathematics
GA DI6SW
UT WOS:000373631500014
ER
PT S
AU Morozovska, AN
Eliseev, EA
Kalinin, SV
AF Morozovska, Anna N.
Eliseev, Eugene A.
Kalinin, Sergei V.
BE Seidel, J
TI Topological Defects in Ferroic Materials
SO TOPOLOGICAL STRUCTURES IN FERROIC MATERIALS: DOMAIN WALLS, VORTICES AND
SKYRMIONS
SE Springer Series in Materials Science
LA English
DT Article; Book Chapter
ID SOLID-SOLUTION SYSTEM; DOMAIN-WALLS; THIN-FILMS; FLEXOELECTRIC
POLARIZATION; ELECTRIC POLARIZATION; DIELECTRIC-PROPERTIES;
THERMODYNAMIC THEORY; FERROELECTRICS; CRYSTALS; TITANATE
AB Using Landau-Ginzburg-Devonshire theory we explore unusual electronic, structural and polar properties of the topological defects inherent in ferroics, such as ferroelectric and ferroelastic domain walls, which can have rich and tunable internal structure. Also we underline that the existence of 2D defects in ferroelectrics is similar to the cross-tie defects in the ferromagnetic Bloch domain walls. The seeding for the modulated phase can be a topological defect, such as a structural domain wall.
C1 [Morozovska, Anna N.] Natl Acad Sci Ukraine, Inst Phys, 46 Pr Nauki, UA-03028 Kiev, Ukraine.
[Eliseev, Eugene A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, 3 Krjijanovskogo, UA-03142 Kiev, Ukraine.
[Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, Inst Phys, 46 Pr Nauki, UA-03028 Kiev, Ukraine.
EM anna.n.morozovska@gmail.com; eugene.a.eliseev@gmail.com;
sergei2@ornl.gov
NR 94
TC 0
Z9 0
U1 1
U2 3
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0933-033X
BN 978-3-319-25301-5; 978-3-319-25299-5
J9 SPRINGER SER MATER S
PY 2016
VL 228
BP 181
EP 197
DI 10.1007/978-3-319-25301-5_8
D2 10.1007/978-3-319-25301-5
PG 17
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA BE4BP
UT WOS:000371484800009
ER
PT S
AU Banerjee, P
Qian, YZ
Heger, A
Haxton, W
AF Banerjee, Projjwal
Qian, Yong-Zhong
Heger, Alexander
Haxton, Wick
BE Liu, WP
Li, ZH
Wang, YB
Guo, B
Shen, YP
TI Neutrino-Induced Nucleosynthesis in Helium Shells of Early Core-Collapse
Supernovae
SO 13TH INTERNATIONAL SYMPOSIUM ON ORIGIN OF MATTER AND EVOLUTION OF
GALAXIES (OMEG2015)
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 13th International Symposium on Origin of Matter and Evolution of
Galaxies (OMEG)
CY JUN 24-27, 2015
CL Beijing, PEOPLES R CHINA
ID METAL-POOR STARS; BERYLLIUM ABUNDANCES; MASSIVE STARS; EARLY GALAXY;
R-PROCESS; EVOLUTION; ELEMENTS
AB We summarize our studies on neutrino-driven nucleosynthesis in He shells of early core-collapse supernovae with metallicities of Z less than or similar to 10(-3) Z(circle dot). We find that for progenitors of similar to 11-15M(circle dot), the neutrons released by He-4((nu) over bar (e), e(+)n)H-3 in He shells can be captured to produce nuclei with mass numbers up to A similar to 200. This mechanism is sensitive to neutrino emission spectra and flavor oscillations. In addition, we find two new primary mechanisms for neutrino-induced production of Be-9 in He shells. The first mechanism produces Be-9 via Li-7(n,gamma) Li-8(n,gamma)Li-9(e(-)(nu) over bar (e))Be-9 and relies on a low explosion energy for its survival. The second mechanism operates in progenitors of similar to 8M(circle dot), where Be-9 can be produced directly via Li-7(H-3,n(0))Be-9 during the rapid expansion of the shocked He-shell material. The light nuclei Li-7 and H-3 involved in these mechanisms are produced by neutrino interactions with He-4. We discuss the implications of neutrino-induced nucleosynthesis in He shells for interpreting the elemental abundances in metal-poor stars.
C1 [Banerjee, Projjwal; Qian, Yong-Zhong] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Heger, Alexander] Monash Univ, Sch Phys & Astron, Monash Ctr Astrophys, Clayton, Vic 3800, Australia.
[Haxton, Wick] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94620 USA.
[Haxton, Wick] Lawrence Berkeley Natl Lab, Berkeley, CA 94620 USA.
[Qian, Yong-Zhong; Heger, Alexander] Shanghai Jiao Tong Univ, Dept Phys & Astron, INPAC, Ctr Nucl Astrophys, Shanghai 200240, Peoples R China.
RP Banerjee, P (reprint author), Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
EM banerjee@physics.umn.edu
NR 19
TC 0
Z9 0
U1 5
U2 5
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
J9 EPJ WEB CONF
PY 2016
VL 109
AR 06001
DI 10.1051/epjconf/201610906001
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA BE5FS
UT WOS:000372789800022
ER
PT S
AU Rehm, KE
AF Rehm, K. E.
BE Liu, WP
Li, ZH
Wang, YB
Guo, B
Shen, YP
TI Reactions on the surface and inside of neutron stars
SO 13TH INTERNATIONAL SYMPOSIUM ON ORIGIN OF MATTER AND EVOLUTION OF
GALAXIES (OMEG2015)
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 13th International Symposium on Origin of Matter and Evolution of
Galaxies (OMEG)
CY JUN 24-27, 2015
CL Beijing, PEOPLES R CHINA
ID IONIZATION-CHAMBER MUSIC; RELATIVISTIC HEAVY-IONS; RAY BURSTS; BEAMS;
DISCOVERY; FUSION
AB Measurements from orbiting X-ray satellites during the last decades have provided us with a wealth of information about nuclear reactions thought to occur in the extreme, high-density environment of neutron stars. With radioactive ion beams from first-generation facilities we have begun to study some of these processes in the laboratory. In this contribution I report on experiments performed with radioactive beams from the ATLAS accelerator at Argonne. I will discuss the nuclear physics of X-ray bursts and super-bursts, the production of in-flight radioactive beams, as well as novel detectors which are used in these experiments.
C1 [Rehm, K. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RP Rehm, KE (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
EM rehm@anl.gov
NR 25
TC 0
Z9 0
U1 0
U2 0
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
J9 EPJ WEB CONF
PY 2016
VL 109
AR 04001
DI 10.1051/epjconf/201610904001
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA BE5FS
UT WOS:000372789800005
ER
PT S
AU Tang, XD
Bucher, B
Fang, X
Heger, A
Almaraz-Calderon, S
Alongi, A
Ayangeakaa, AD
Beard, M
Best, A
Browne, J
Cahillane, C
Couder, M
deBoer, RJ
Kontos, A
Lamm, L
Li, YJ
Long, A
Lu, W
Lyons, S
Notani, M
Patel, D
Paul, N
Pignatari, M
Roberts, A
Robertson, D
Smith, K
Stech, E
Talwar, R
Tan, WP
Wiescher, M
Woosley, SE
AF Tang, X. D.
Bucher, B.
Fang, X.
Heger, A.
Almaraz-Calderon, S.
Alongi, A.
Ayangeakaa, A. D.
Beard, M.
Best, A.
Browne, J.
Cahillane, C.
Couder, M.
deBoer, R. J.
Kontos, A.
Lamm, L.
Li, Y. J.
Long, A.
Lu, W.
Lyons, S.
Notani, M.
Patel, D.
Paul, N.
Pignatari, M.
Roberts, A.
Robertson, D.
Smith, K.
Stech, E.
Talwar, R.
Tan, W. P.
Wiescher, M.
Woosley, S. E.
BE Liu, WP
Li, ZH
Wang, YB
Guo, B
Shen, YP
TI First direct measurement of C-12(C-12,n)Mg-23 at stellar energies
SO 13TH INTERNATIONAL SYMPOSIUM ON ORIGIN OF MATTER AND EVOLUTION OF
GALAXIES (OMEG2015)
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 13th International Symposium on Origin of Matter and Evolution of
Galaxies (OMEG)
CY JUN 24-27, 2015
CL Beijing, PEOPLES R CHINA
ID MASSIVE STARS; NUCLEOSYNTHESIS; SIGNATURE; EVOLUTION; NUCLEAR
AB Neutrons produced by the carbon fusion reaction C-12(C-12,n)Mg-23 play an important role in stellar nucleosynthesis. Past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement which extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction C-12(C-12,p)Na-23. The new reaction rate has been determined with a well-defined uncertainty which exceeds the precision required by astrophysics models. Using our constrained rate, we find that C-12(C-12,n)Mg-23 is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae.
C1 [Tang, X. D.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China.
[Bucher, B.; Fang, X.; Almaraz-Calderon, S.; Alongi, A.; Ayangeakaa, A. D.; Beard, M.; Best, A.; Browne, J.; Cahillane, C.; Couder, M.; deBoer, R. J.; Kontos, A.; Lamm, L.; Long, A.; Lu, W.; Lyons, S.; Notani, M.; Patel, D.; Paul, N.; Roberts, A.; Robertson, D.; Smith, K.; Stech, E.; Talwar, R.; Tan, W. P.; Wiescher, M.] Univ Notre Dame, Joint Inst Nucl Astrophys, Inst Struct & Nucl Astrophys, Notre Dame, IN 46556 USA.
[Bucher, B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Heger, A.] Monash Univ, Sch Phys & Astron, Monash Ctr Astrophys, Clayton, Vic 3800, Australia.
[Heger, A.] Shanghai Jiao Tong Univ, Ctr Nucl Astrophys, Dept Phys & Astron, Shanghai 200240, Peoples R China.
[Heger, A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Li, Y. J.] China Inst Atom Energy, Beijing 102413, Peoples R China.
[Pignatari, M.] Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Konkoly Observ, Konkoly Thege Miklosut 15-17, H-1121 Budapest, Hungary.
[Pignatari, M.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland.
[Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
RP Tang, XD (reprint author), Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China.; Bucher, B (reprint author), Univ Notre Dame, Joint Inst Nucl Astrophys, Inst Struct & Nucl Astrophys, Notre Dame, IN 46556 USA.; Bucher, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM xtang@impcas.ac.cn; bucher3@llnl.gov
RI Tang, Xiaodong /F-4891-2016; Couder, Manoel/B-1439-2009; Tan,
Wanpeng/A-4687-2008
OI Couder, Manoel/0000-0002-0636-744X; Tan, Wanpeng/0000-0002-5930-1823
NR 21
TC 0
Z9 0
U1 2
U2 9
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
J9 EPJ WEB CONF
PY 2016
VL 109
AR 04009
DI 10.1051/epjconf/201610904009
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA BE5FS
UT WOS:000372789800013
ER
PT S
AU Avakian, H
AF Avakian, H.
BE Marquet, C
Pire, B
Sabatie, F
TI Studies of the nucleon structure in back-to-back SIDIS
SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION
COLLIDER
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 6th International Conference on Physics Opportunities at an Electron-Ion
Collider
CY SEP 07-11, 2015
CL Ecole Polytechnique, FRANCE
SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab
HO Ecole Polytechnique
ID DEEP-INELASTIC SCATTERING; PROTON SPIN PUZZLE; PION ELECTROPRODUCTION;
FRAGMENTATION FUNCTIONS; TRANSVERSE-MOMENTUM; ASYMMETRIES; TARGET
AB The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong interactions, which was a major focus in last decades. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first studies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides access to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue to study the complex nucleon structure. Large acceptance of the Electron Ion Collider, allowing detection of two hadrons, produced back-to-back in the current and target fragmentation regions, combined with clear separation of two regions, would provide a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions.
C1 [Avakian, H.] Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave Suite 5, Newport News, VA 23606 USA.
RP Avakian, H (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave Suite 5, Newport News, VA 23606 USA.
EM avakian@jlab.org
NR 53
TC 0
Z9 0
U1 7
U2 7
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
J9 EPJ WEB CONF
PY 2016
VL 112
AR 01003
DI 10.1051/epjconf/201611201003
PG 8
WC Physics, Multidisciplinary; Physics, Particles & Fields
SC Physics
GA BE5FU
UT WOS:000372792100003
ER
PT S
AU Balitsky, I
AF Balitsky, Ian
BE Marquet, C
Pire, B
Sabatie, F
TI Rapidity evolution of gluon TMD from low to moderate x
SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION
COLLIDER
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 6th International Conference on Physics Opportunities at an Electron-Ion
Collider
CY SEP 07-11, 2015
CL Ecole Polytechnique, FRANCE
SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab
HO Ecole Polytechnique
AB I discuss how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at small x << 1 to linear evolution at moderate x similar to 1.
C1 [Balitsky, Ian] JLab, 12000 Jefferson Ave, Newport News, VA 23606 USA.
[Balitsky, Ian] Old Dominion Univ, Dept Phys, 1600 Elkhorn Ave, Norfolk, VA 23529 USA.
RP Balitsky, I (reprint author), JLab, 12000 Jefferson Ave, Newport News, VA 23606 USA.; Balitsky, I (reprint author), Old Dominion Univ, Dept Phys, 1600 Elkhorn Ave, Norfolk, VA 23529 USA.
EM balitsky@jlab.org
NR 18
TC 0
Z9 0
U1 1
U2 1
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
J9 EPJ WEB CONF
PY 2016
VL 112
AR 02002
DI 10.1051/epjconf/201611202002
PG 7
WC Physics, Multidisciplinary; Physics, Particles & Fields
SC Physics
GA BE5FU
UT WOS:000372792100025
ER
PT S
AU Boer, M
AF Boer, Marie
BE Marquet, C
Pire, B
Sabatie, F
TI Timelike Compton Scattering off the nucleon: observables and
experimental perspectives for JLab at 12 GeV
SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION
COLLIDER
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 6th International Conference on Physics Opportunities at an Electron-Ion
Collider
CY SEP 07-11, 2015
CL Ecole Polytechnique, FRANCE
SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab
HO Ecole Polytechnique
ID GENERALIZED PARTON DISTRIBUTIONS; ELECTROPRODUCTION; PHOTONS; MESONS
AB Hard exclusive processes such as photoproduction or electroproduction of photon or meson off the nucleon provide access to the Generalized Parton Distributions (GPDs), in the regime where the scattering amplitude is factorized into a hard and a soft part. GPDs contain the correlation between the longitudinal momentum fraction and the transverse spatial densities of quarks and gluons in the nucleon. Timelike Compton Scattering (TCS) correspond to the reaction gamma N -> gamma*N -> e(+) e(-) N, where the photon is scattered off a quark. It is measured through its interference with the associated Bethe-Heitler process, which has the same final state. TCS allows to access the GPDs and test their universality by comparison to the results obtained with the DVCS process (eN -> e gamma N). Also, results obtained with TCS provide additional independent constrains to the GPDs parameterization.
We will present the physical motivations for TCS, with our theoretical predictions for TCS observables and their dependencies. We calculated for JLab 12 GeV energies all the single and double beam and/or target polarization observables off the proton and off the neutron. We will also present the experimental perspectives for the next years at JLab. Two proposals were already accepted at JLab: in Hall B, with the CLAS12 spectrometer, in order to measure the unpolarized cross section and in Hall A, with the SoLID spectrometer, in order to measure the unpolarized cross section and the beam spin asymmetry at high intensity. A Letter Of Intent was also submitted in order to measure the transverse target spin asymmetries in Hall C. We will discuss the merits of this different experiments and present some of the expected results.
C1 [Boer, Marie] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Boer, Marie] Univ Paris Saclay, Univ Paris 11, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France.
[Boer, Marie] Univ Paris Saclay, Univ Paris 11, CNRS IN2P3, Phys Theor Lab, F-91406 Orsay, France.
RP Boer, M (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.; Boer, M (reprint author), Univ Paris Saclay, Univ Paris 11, CNRS IN2P3, Inst Phys Nucl, F-91406 Orsay, France.; Boer, M (reprint author), Univ Paris Saclay, Univ Paris 11, CNRS IN2P3, Phys Theor Lab, F-91406 Orsay, France.
EM mboer@jlab.org
NR 17
TC 0
Z9 0
U1 0
U2 0
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
J9 EPJ WEB CONF
PY 2016
VL 112
AR 01005
DI 10.1051/epjconf/201611201005
PG 7
WC Physics, Multidisciplinary; Physics, Particles & Fields
SC Physics
GA BE5FU
UT WOS:000372792100005
ER
PT S
AU Camsonne, A
AF Camsonne, Alexandre
BE Marquet, C
Pire, B
Sabatie, F
TI The low Q(2) chicane and Compton polarimeter at the JLab EIC
SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION
COLLIDER
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 6th International Conference on Physics Opportunities at an Electron-Ion
Collider
CY SEP 07-11, 2015
CL Ecole Polytechnique, FRANCE
SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab
HO Ecole Polytechnique
AB The JLAB EIC (JLEIC) design includes a chicane after the interaction point to detect electron associated with production of quasi-real photon at the interaction. This chicane layout can also be used for Compton polarimetry to measure the electron beam polarization. This proceeding will present the layout of the low Q(2) chicane and the implementation and current R&D of a Compton polarimeter which would be located in the middle of this chicane.
C1 [Camsonne, Alexandre] Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA.
RP Camsonne, A (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA.
EM camsonne@jlab.org
NR 4
TC 0
Z9 0
U1 0
U2 0
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
J9 EPJ WEB CONF
PY 2016
VL 112
AR 01007
DI 10.1051/epjconf/201611201007
PG 10
WC Physics, Multidisciplinary; Physics, Particles & Fields
SC Physics
GA BE5FU
UT WOS:000372792100007
ER
PT S
AU Cosyn, W
Guzey, V
Sargsian, M
Strikman, M
Weiss, C
AF Cosyn, W.
Guzey, V.
Sargsian, M.
Strikman, M.
Weiss, C.
BE Marquet, C
Pire, B
Sabatie, F
TI Electron-deuteron DIS with spectator tagging at EIC: Development of
theoretical framework
SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION
COLLIDER
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 6th International Conference on Physics Opportunities at an Electron-Ion
Collider
CY SEP 07-11, 2015
CL Ecole Polytechnique, FRANCE
SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab
HO Ecole Polytechnique
ID HARD PROCESSES; NUCLEI
AB An Electron-Ion Collider (EIC) would enable next-generation measurements of deep-inelastic scattering (DIS) on the deuteron with detection of a forward-moving nucleon (p, n) and measurement of its recoil momentum ("spectator tagging"). Such experiments offer full control of the nuclear configuration during the high-energy process and can be used for precision studies of the neutron's partonic structure and its spin dependence, nuclear modifications of partonic structure, and nuclear shadowing at small x. We review the theoretical description of spectator tagging at EIC energies (light-front nuclear structure, on-shell extrapolation in the recoil nucleon momentum, final-state interactions, diffractive effects at small x) and report about on-going developments.
C1 [Cosyn, W.] Univ Ghent, B-9000 Ghent, Belgium.
[Guzey, V.] Petersburg Nucl Phys Inst, Gatchina 188300, Russia.
[Sargsian, M.] Florida Int Univ, Miami, FL 33199 USA.
[Strikman, M.] Penn State Univ, University Pk, PA 16802 USA.
[Weiss, C.] Jefferson Lab, Newport News, VA 23606 USA.
RP Cosyn, W (reprint author), Univ Ghent, B-9000 Ghent, Belgium.
NR 23
TC 0
Z9 0
U1 0
U2 0
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
J9 EPJ WEB CONF
PY 2016
VL 112
AR 01022
DI 10.1051/epjconf/201611201022
PG 7
WC Physics, Multidisciplinary; Physics, Particles & Fields
SC Physics
GA BE5FU
UT WOS:000372792100022
ER
PT S
AU Engelhardt, M
Musch, B
Bhattacharya, T
Green, JR
Gupta, R
Hagler, P
Krieg, S
Negele, J
Pochinsky, A
Schafer, A
Syritsyn, S
Yoon, B
AF Engelhardt, M.
Musch, B.
Bhattacharya, T.
Green, J. R.
Gupta, R.
Haegler, P.
Krieg, S.
Negele, J.
Pochinsky, A.
Schaefer, A.
Syritsyn, S.
Yoon, B.
BE Marquet, C
Pire, B
Sabatie, F
TI Lattice QCD calculations of transverse momentum-dependent parton
distributions (TMDs)
SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION
COLLIDER
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 6th International Conference on Physics Opportunities at an Electron-Ion
Collider
CY SEP 07-11, 2015
CL Ecole Polytechnique, FRANCE
SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab
HO Ecole Polytechnique
AB An ongoing program of evaluating TMD observables within Lattice QCD is reviewed, summarizing recent progress with respect to several challenges faced by such calculations. These lattice calculations are based on a definition of TMDs through hadronic matrix elements of quark bilocal operators containing staple-shaped gauge connections. A parametrization of the matrix elements in terms of invariant amplitudes serves to cast them in the Lorentz frame preferred for a lattice calculation. Data on the naively T-odd Sivers and Boer-Mulders effects as well as the transversity TMD are presented.
C1 [Engelhardt, M.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA.
[Musch, B.; Haegler, P.; Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany.
[Bhattacharya, T.; Gupta, R.; Yoon, B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Green, J. R.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
[Krieg, S.] Berg Univ Wuppertal, Fachbereich 9, D-42119 Wuppertal, Germany.
[Krieg, S.] Forschungszentrum Julich, Julich Supercomp Ctr, IAS, D-52425 Julich, Germany.
[Negele, J.; Pochinsky, A.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA.
[Syritsyn, S.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA.
RP Engelhardt, M (reprint author), New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA.
EM engel@nmsu.edu
OI Krieg, Stefan/0000-0002-8417-9823; Gupta, Rajan/0000-0003-1784-3058
NR 13
TC 1
Z9 1
U1 1
U2 2
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
J9 EPJ WEB CONF
PY 2016
VL 112
AR 01008
DI 10.1051/epjconf/201611201008
PG 7
WC Physics, Multidisciplinary; Physics, Particles & Fields
SC Physics
GA BE5FU
UT WOS:000372792100008
ER
PT S
AU Kumar, KS
Deshpande, A
Huang, J
Riordan, S
Zhao, YX
AF Kumar, K. S.
Deshpande, A.
Huang, J.
Riordan, S.
Zhao, Y. X.
BE Marquet, C
Pire, B
Sabatie, F
TI Electroweak and BSM Physics at the EIC
SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION
COLLIDER
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 6th International Conference on Physics Opportunities at an Electron-Ion
Collider
CY SEP 07-11, 2015
CL Ecole Polytechnique, FRANCE
SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab
HO Ecole Polytechnique
ID SCATTERING; VIOLATION
AB We discuss the QCD and electroweak physics that becomes accessible by the analysis of semi-leptonic neutral weak amplitudes in polarized electron-light ion collisions at an EIC. Specifically, we discuss the reach for precise weak mixing angle measurements at much higher Q(2) than fixed target measurements, new neutral current spin-independent and -dependent interference structure functions, and searches for e-tau charged lepton flavor violation.
C1 [Kumar, K. S.; Deshpande, A.; Riordan, S.; Zhao, Y. X.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Huang, J.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Kumar, KS (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
EM krishna.kumar@stonybrook.edu
NR 20
TC 0
Z9 0
U1 0
U2 0
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
J9 EPJ WEB CONF
PY 2016
VL 112
AR 03004
DI 10.1051/epjconf/201611203004
PG 7
WC Physics, Multidisciplinary; Physics, Particles & Fields
SC Physics
GA BE5FU
UT WOS:000372792100043
ER
PT S
AU Petti, R
AF Petti, R.
BE Marquet, C
Pire, B
Sabatie, F
TI Interaction region design and auxiliary detector systems for an EIC
SO 6TH INTERNATIONAL CONFERENCE ON PHYSICS OPPORTUNITIES AT AN ELECTRON-ION
COLLIDER
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 6th International Conference on Physics Opportunities at an Electron-Ion
Collider
CY SEP 07-11, 2015
CL Ecole Polytechnique, FRANCE
SP Ecole Polytechnique, Ctr Physique Theorique, Commissariat Energie Atomique, Serv Physique Nucleaore, CNRS, P2IO labex, Brookhaven Natl Lab, Jefferson Lab
HO Ecole Polytechnique
AB There are a number of exciting physics opportunities at a future electron-ion collider facility. One possible design for such a facility is eRHIC, where the current RHIC facility located at Brookhaven National Lab would be transformed into an electron-ion collider. It is imperative for a seamless integration of auxiliary detector systems into the interaction region design to have a machine that meets the needs for the planned physics analyses, as well as take into account the space constraints due to the tunnel geometry and the necessary beam line elements. In this talk, we describe the current ideas for integrating a luminosity detector, electron polarimeter, roman pots, and a low Q(2)-tagger into the interaction region for eRHIC.
C1 [Petti, R.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11793 USA.
RP Petti, R (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11793 USA.
EM rpetti@bnl.gov
NR 5
TC 0
Z9 0
U1 0
U2 0
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
J9 EPJ WEB CONF
PY 2016
VL 112
AR 02011
DI 10.1051/epjconf/201611202011
PG 6
WC Physics, Multidisciplinary; Physics, Particles & Fields
SC Physics
GA BE5FU
UT WOS:000372792100034
ER
PT J
AU Guryn, W
AF Guryn, Wlodek
TI CENTRAL EXCLUSIVE PARTICLE PRODUCTION IN DPE PROCESS: SEARCH FOR
GLUEBALLS ETC
SO ACTA PHYSICA POLONICA B
LA English
DT Article; Proceedings Paper
CT 55th Cracow-School-of-Theoretical-Physics on Particles and Resonances of
the Standard Model and Beyond
CY JUN 20-28, 2015
CL Zakopane, POLAND
SP Jagiellonian Univ, M Smoluchowski Inst Phys, Polish Acad Arts & Sci, PAN, H Niewodniczanski Inst Nucl Phys, AGH Univ Sci & Technol, Polish Acad Sci, Comm Phys, Polish Minist Sci & Higher Educ
ID REACTION POMERON-POMERON; 450 GEV/C
AB We shall discuss resonance production in the process of Central Exclusive Production (CEP) at hadron colliders. The corresponding program of glueball search in Double Pomeron Exchange (DPE) process shall also be discussed. As an exercise, we shall "construct" an experiment to measure CEP using the STAR experiment at the Relativistic Heavy Ion Collider (RHIC), where this program is currently under way. Preliminary pi(+)pi(-) mass spectra (dN/dM(X)) from the Central Exclusive Production (CEP) measured in the STAR detector shall be presented. For this measurement, one proton on each side of STAR was detected in the Roman Pots and the charged particle recoil system was measured in the Time Projection Chamber (TPC) of STAR.
C1 [Guryn, Wlodek] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Guryn, W (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
NR 18
TC 0
Z9 0
U1 0
U2 0
PU JAGIELLONIAN UNIV PRESS
PI KRAKOW
PA UL MICHALOWSKIEGO 9-2, KRAKOW, 31126, POLAND
SN 0587-4254
EI 1509-5770
J9 ACTA PHYS POL B
JI Acta Phys. Pol. B
PD JAN
PY 2016
VL 47
IS 1
BP 53
EP 58
DI 10.5506/APhysPolB.47.53
PG 6
WC Physics, Multidisciplinary
SC Physics
GA DH4OS
UT WOS:000372765900002
ER
PT J
AU Wang, YF
AF Wang, Yifeng
TI Untitled
SO AIMS ENVIRONMENTAL SCIENCE
LA English
DT Editorial Material
C1 [Wang, Yifeng] Sandia Natl Labs, POB 5800,Mail Stop 0779, Albuquerque, NM 87185 USA.
RP Wang, YF (reprint author), Sandia Natl Labs, POB 5800,Mail Stop 0779, Albuquerque, NM 87185 USA.
EM ywang@sandia.gov
NR 0
TC 0
Z9 0
U1 2
U2 2
PU AMER INST MATHEMATICAL SCIENCES-AIMS
PI SPRINGFIELD
PA PO BOX 2604, SPRINGFIELD, MO 65801-2604 USA
SN 2372-0344
EI 2372-0352
J9 AIMS ENVIRON SCI
JI AIMS Environ. Sci.
PY 2016
VL 3
IS 1
BP 140
EP 140
DI 10.3934/environsci.2016.1.140
PG 1
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA DG5NT
UT WOS:000372125800009
ER
PT J
AU Kipling, Z
Stier, P
Johnson, CE
Mann, GW
Bellouin, N
Bauer, SE
Bergman, T
Chin, M
Diehl, T
Ghan, SJ
Iversen, T
Kirkevag, A
Kokkola, H
Liu, XH
Luo, G
van Noije, T
Pringle, KJ
von Salzen, K
Schulz, M
Seland, O
Skeie, RB
Takemura, T
Tsigaridis, K
Zhang, K
AF Kipling, Zak
Stier, Philip
Johnson, Colin E.
Mann, Graham W.
Bellouin, Nicolas
Bauer, Susanne E.
Bergman, Tommi
Chin, Mian
Diehl, Thomas
Ghan, Steven J.
Iversen, Trond
Kirkevag, Alf
Kokkola, Harri
Liu, Xiaohong
Luo, Gan
van Noije, Twan
Pringle, Kirsty J.
von Salzen, Knut
Schulz, Michael
Seland, Oyvind
Skeie, Ragnhild B.
Takemura, Toshihiko
Tsigaridis, Kostas
Zhang, Kai
TI What controls the vertical distribution of aerosol? Relationships
between process sensitivity in HadGEM3-UKCA and inter-model variation
from AeroCom Phase II
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID LOG-NORMAL APPROXIMATION; CHEMISTRY-CLIMATE MODEL; BLACK CARBON;
AIRCRAFT OBSERVATIONS; SIZE DISTRIBUTIONS; ABSORBING AEROSOLS; SULFUR
EMISSIONS; UNIFIED MODEL; MINERAL DUST; GLOMAP-MODE
AB The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment.
In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models.
In HadGEM3-UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only.
In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN > 3 nm), while the profiles of larger particles (e.g. CN > 100 nm) are controlled by the same processes as the component mass profiles, plus the size distribution of primary emissions.
We also show that the processes that affect the AOD-normalised radiative forcing in the model are predominantly those that affect the vertical mass distribution, in particular convective transport, in-cloud scavenging, aqueous oxidation, ageing and the vertical extent of biomass-burning emissions.
C1 [Kipling, Zak; Stier, Philip] Univ Oxford, Dept Phys, Oxford, England.
[Johnson, Colin E.] Met Off Hadley Ctr, Exeter, Devon, England.
[Mann, Graham W.] Univ Leeds, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England.
[Mann, Graham W.; Pringle, Kirsty J.] Univ Leeds, Inst Climate & Atmospher Sci, Sch Earth & Environm, Leeds, W Yorkshire, England.
[Bellouin, Nicolas] Univ Reading, Dept Meteorol, Reading, Berks, England.
[Bauer, Susanne E.; Tsigaridis, Kostas] Columbia Univ, Ctr Climate Syst Res, New York, NY USA.
[Bauer, Susanne E.; Tsigaridis, Kostas] NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Bergman, Tommi; Kokkola, Harri] Atmospher Res Ctr Eastern Finland, Finnish Meteorol Inst, Kuopio, Finland.
[Chin, Mian] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Diehl, Thomas] European Commiss, Joint Res Ctr, Inst Environm & Sustainabil, Climate Risk Management Unit, Ispra, Italy.
[Ghan, Steven J.; Zhang, Kai] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Iversen, Trond; Kirkevag, Alf; Schulz, Michael; Seland, Oyvind] Norwegian Meteorol Inst, Oslo, Norway.
[Iversen, Trond] Univ Oslo, Dept Geosci, Oslo, Norway.
[Liu, Xiaohong] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA.
[Luo, Gan] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA.
[van Noije, Twan] Royal Netherlands Meteorol Inst, POB 201, NL-3730 AE De Bilt, Netherlands.
[von Salzen, Knut] Environm Canada, Canadian Ctr Climate Modelling & Anal, Victoria, BC, Canada.
[Skeie, Ragnhild B.] Ctr Int Climate & Environm Res Oslo, Oslo, Norway.
[Takemura, Toshihiko] Kyushu Univ, Appl Mech Res Inst, Fukuoka 812, Japan.
[Zhang, Kai] Max Planck Inst Meteorol, Bundesstr 55, D-20146 Hamburg, Germany.
RP Kipling, Z (reprint author), Univ Oxford, Dept Phys, Oxford, England.
EM zak.kipling@physics.ox.ac.uk
RI Ghan, Steven/H-4301-2011; Takemura, Toshihiko/C-2822-2009; Kyushu,
RIAM/F-4018-2015; Stier, Philip/B-2258-2008; Zhang, Kai/F-8415-2010;
Skeie, Ragnhild/K-1173-2015; Bergman, Tommi/C-2445-2009; Chin,
Mian/J-8354-2012; Liu, Xiaohong/E-9304-2011; Kokkola, Harri/J-5993-2014
OI Bellouin, Nicolas/0000-0003-2109-9559; Ghan, Steven/0000-0001-8355-8699;
Takemura, Toshihiko/0000-0002-2859-6067; Stier,
Philip/0000-0002-1191-0128; Zhang, Kai/0000-0003-0457-6368; Skeie,
Ragnhild/0000-0003-1246-4446; Bergman, Tommi/0000-0002-6133-2231; Liu,
Xiaohong/0000-0002-3994-5955;
FU Natural Environment Research Council [NE/J022624/1]; Met Office;
European Research Council under the European Union/ERC [FP7-280025];
Natural Environment Research Council (NERC) through the National Centre
for Atmospheric Science (NCAS); Academy of Finland Centre of Excellence
[272041]; US Department of Energy Office of Science Decadal and Regional
Climate Prediction using Earth System Models (EaSM) programme; DOE
[DE-AC06-76RLO 1830]; Research Council of Norway through the EarthClim
[207711/E10]; EVA [229771]; NOTUR/NorStore projects, by the Norwegian
Space Centre through PM-VRAE; EU; Canadian Foundation for Climate and
Atmospheric Sciences (CFCAS); Environment Canada; Research Council of
Norway; supercomputer system of the National Institute for Environmental
Studies, Japan; Ministry of the Environment, Japan [S-12-3]; JSPS
KAKENHI [15H01728, 15K12190]; NASA-MAP (NASA) [NNX09AK32G]; Max Planck
Society
FX This work was supported by the Natural Environment Research Council
project GASSP (grant number NE/J022624/1) and the Met Office. P. Stier
would like to acknowledge funding from the European Research Council
under the European Union's Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement no. FP7-280025. G. W. Mann was
supported by the Natural Environment Research Council (NERC) through the
National Centre for Atmospheric Science (NCAS). T. Bergman and H.
Kokkola were supported by the Academy of Finland Centre of Excellence
(project no. 272041). S. Ghan and X. Liu were supported by the US
Department of Energy Office of Science Decadal and Regional Climate
Prediction using Earth System Models (EaSM) programme. The Pacific
Northwest National Laboratory (PNNL) is operated for the DOE by Battelle
Memorial Institute under contract DE-AC06-76RLO 1830. A. Kirkevag, T.
Iversen and O. Seland (CAM4-Oslo) were supported by the Research Council
of Norway through the EarthClim (207711/E10), EVA (229771) and
NOTUR/NorStore projects, by the Norwegian Space Centre through PM-VRAE,
and through the EU projects PEGASOS and ACCESS. K. von Salzen was
supported by the Canadian Foundation for Climate and Atmospheric
Sciences (CFCAS) and Environment Canada. R. B. Skeie (OsloCTM2) was
supported by the Research Council of Norway, through the grants SLAC,
AEROCOM-P3 and ClimSense. T. Takemura was supported by the supercomputer
system of the National Institute for Environmental Studies, Japan, the
Environment Research and Technology Development Fund (S-12-3) of the
Ministry of the Environment, Japan, and JSPS KAKENHI (grant numbers
15H01728 and 15K12190). K. Tsigaridis and S. E. Bauer were supported by
NASA-MAP (NASA award number: NNX09AK32G). Resources supporting this work
were provided by the NASA High-End Computing (HEC) Program through the
NASA Center for Climate Simulation (NCCS) at Goddard Space Flight
Center. K. Zhang was supported by funding from the Max Planck Society.
Simulations with ECHAM5-HAM2 were performed at the German Climate
Computing Center (Deutsches Klimarechenzentrum GmbH, DKRZ).
NR 90
TC 4
Z9 4
U1 3
U2 15
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2016
VL 16
IS 4
BP 2221
EP 2241
DI 10.5194/acp-16-2221-2016
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DH7KC
UT WOS:000372971500023
ER
PT J
AU Bingol, K
Bruschweiler-Li, L
Li, DW
Zhang, B
Xie, MZ
Bruschweiler, R
AF Bingol, Kerem
Bruschweiler-Li, Lei
Li, Dawei
Zhang, Bo
Xie, Mouzhe
Brueschweiler, Rafael
TI Emerging new strategies for successful metabolite identification in
metabolomics
SO BIOANALYSIS
LA English
DT Review
DE complex mixture analysis; metabolite databases; metabolomics; MS of
metabolite mixtures; nanoparticle; assisted metabolomics; NMR of
metabolite mixtures; paramagnetic relaxation enhancement
ID NUCLEAR-MAGNETIC-RESONANCE; NMR-BASED METABOLOMICS; MASS-SPECTROMETRY;
C-13 NMR; COMPLEX-MIXTURES; HUMAN URINE; STATISTICAL HETEROSPECTROSCOPY;
CORRELATION SPECTROSCOPY; QUANTITATIVE-ANALYSIS; NATURAL-ABUNDANCE
AB This review discusses strategies for the identification of metabolites in complex biological mixtures, as encountered in metabolomics, which have emerged in the recent past. These include NMR database-assisted approaches for the identification of commonly known metabolites as well as novel combinations of NMR and MS analysis methods for the identification of unknown metabolites. The use of certain chemical additives to the NMR tube can permit identification of metabolites with specific physical chemical properties.
C1 [Bingol, Kerem] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Bruschweiler-Li, Lei; Li, Dawei; Brueschweiler, Rafael] Ohio State Univ, Campus Chem Instrument Ctr, Columbus, OH 43210 USA.
[Zhang, Bo; Xie, Mouzhe; Brueschweiler, Rafael] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA.
[Brueschweiler, Rafael] Ohio State Univ, Dept Biol Chem & Pharmacol, Columbus, OH 43210 USA.
RP Bruschweiler, R (reprint author), Ohio State Univ, Campus Chem Instrument Ctr, Columbus, OH 43210 USA.; Bruschweiler, R (reprint author), Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA.; Bruschweiler, R (reprint author), Ohio State Univ, Dept Biol Chem & Pharmacol, Columbus, OH 43210 USA.
EM bruschweiler.1@osu.edu
RI Li, Da-Wei/F-7233-2010
OI Li, Da-Wei/0000-0002-3266-5272
FU NIH [R01 GM 066041]; NIH (SECIM grant) [U24 DK097209-01A1]
FX This work was supported by the NIH ( grant R01 GM 066041 and SECIM grant
U24 DK097209-01A1). The authors have no other relevant affiliations or
financial involvement with any organization or entity with a financial
interest in or financial conflict with the subject matter or materials
discussed in the manuscript apart from those disclosed.
NR 81
TC 7
Z9 7
U1 12
U2 36
PU FUTURE SCI LTD
PI LONDON
PA UNITED HOUSE, 2 ALBERT PL, LONDON, N3 1QB, ENGLAND
SN 1757-6180
EI 1757-6199
J9 BIOANALYSIS
JI Bioanalysis
PY 2016
VL 8
IS 6
BP 557
EP 573
DI 10.4155/bio-2015-0004
PG 17
WC Biochemical Research Methods; Chemistry, Analytical
SC Biochemistry & Molecular Biology; Chemistry
GA DI1CZ
UT WOS:000373234900008
PM 26915807
ER
PT J
AU Baylon, RAL
Sun, JM
Martin, KJ
Venkitasubramanian, P
Wang, Y
AF Baylon, Rebecca A. L.
Sun, Junming
Martin, Kevin J.
Venkitasubramanian, Padmesh
Wang, Yong
TI Beyond ketonization: selective conversion of carboxylic acids to olefins
over balanced Lewis acid-base pairs
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID CATALYTIC CONVERSION; HZSM-5 ZEOLITE; MIXED OXIDES; ACETIC-ACID;
BIO-ETHANOL; ACETONE; ISOBUTENE; BIOMASS; CHEMISTRY; ZNXZRYOZ
AB We report the direct conversion of mixed carboxylic acids to C-3(=)-C-6(=) olefins with up to 60 mol% carbon yield through cascade (cross) ketonization, (cross) aldolization and self-deoxygenation reactions. Co-feeding hydrogen provides an additional ketone hydrogenation/dehydration pathway to a wider range of olefins.
C1 [Baylon, Rebecca A. L.; Sun, Junming; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.
[Martin, Kevin J.; Venkitasubramanian, Padmesh] Archer Daniels Midland Co, 1001 N Brush Coll Rd, Decatur, IL 62521 USA.
[Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
RP Sun, JM; Wang, Y (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA.; Wang, Y (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
EM junming.sun@wsu.edu; yong.wang@pnnl.gov
RI Sun, Junming/B-3019-2011
OI Sun, Junming/0000-0002-0071-9635
FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division
of Chemical Sciences, Geosciences, and Biosciences [DE-AC05-RL01830,
FWP-47319]; Archer Daniels Midland Company (ADM)
FX We acknowledge the financial support from the US Department of Energy
(DOE), Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences (DE-AC05-RL01830, FWP-47319) and Archer
Daniels Midland Company (ADM).
NR 25
TC 2
Z9 2
U1 16
U2 37
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PY 2016
VL 52
IS 28
BP 4975
EP 4978
DI 10.1039/c5cc10528e
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DH9EL
UT WOS:000373099100003
PM 26898532
ER
PT J
AU Zhang, RH
Cho, S
Lim, DG
Hu, XY
Stach, EA
Handwerker, CA
Agrawal, R
AF Zhang, Ruihong
Cho, Seonghyuk
Lim, Daw Gen
Hu, Xianyi
Stach, Eric A.
Handwerker, Carol A.
Agrawal, Rakesh
TI Metal-metal chalcogenide molecular precursors to binary, ternary, and
quaternary metal chalcogenide thin films for electronic devices
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID CU2ZNSN(S,SE)(4) SOLAR-CELLS; LIGHT-EMITTING-DIODES; CU2ZNSNS4
NANOCRYSTALS; SOLVENT MIXTURE; RAMAN-SPECTRA; QUANTUM DOTS; EFFICIENCY;
SEMICONDUCTORS; SNS; DISSOLUTION
AB Bulk metals and metal chalcogenides are found to dissolve in primary amine-dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu2Sn(S-x, Se1-x)(3), and Cu2ZnSn(SxSe1-x)(4) (0 <= x <= 1) were deposited using the as-dissolved solutions. Cu2ZnSn(SxSe1-x)(4) solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.
C1 [Zhang, Ruihong; Lim, Daw Gen; Hu, Xianyi; Handwerker, Carol A.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA.
[Cho, Seonghyuk; Agrawal, Rakesh] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA.
[Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Agrawal, R (reprint author), Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA.
EM ruihong.zhang.1@purdue.edu; estachbnl@gmail.com; handwerker@purdue.edu;
agrawalr@purdue.edu
RI Stach, Eric/D-8545-2011
OI Stach, Eric/0000-0002-3366-2153
FU NSF Solar Economy IGERT program [0903670-DGE]; Center for Functional
Nanomaterials, U.S. DOE Office of Science Facility, at Brookhaven
National Laboratory [DE-SC0012704]
FX The authors acknowledge C. K. Miskin, R. Boyne, P. Murria, L. Cain and
Professor H. Kenttamaa, for assisting in the solution analysis. The
authors also want to thank M. Koeper for performing quantum efficiency
measurement, K. Brew and B. Graeser for preparing Mo-coated soda lime
glass. This research was funded by NSF Solar Economy IGERT program
(0903670-DGE). This research used resources of the Center for Functional
Nanomaterials, which is a U.S. DOE Office of Science Facility, at
Brookhaven National Laboratory under Contract No. DE-SC0012704.
NR 36
TC 4
Z9 4
U1 17
U2 46
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PY 2016
VL 52
IS 28
BP 5007
EP 5010
DI 10.1039/c5cc09915c
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DH9EL
UT WOS:000373099100011
PM 26981781
ER
PT J
AU Jorda, J
Leibly, DJ
Thompson, MC
Yeates, TO
AF Jorda, J.
Leibly, D. J.
Thompson, M. C.
Yeates, T. O.
TI Structure of a novel 13 nm dodecahedral nanocage assembled from a
redesigned bacterial microcompartment shell protein
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID PDU MICROCOMPARTMENT; DESIGN; ORGANELLES; CAGE; NANOMATERIALS;
EVOLUTION; SYMMETRY; INSIGHTS
AB We report the crystal structure of a novel 60-subunit dodecahedral cage that results from self-assembly of a re-engineered version of a natural protein (PduA) from the Pdu microcompartment shell. Biophysical data illustrate the dependence of assembly on solution conditions, opening up new applications in microcompartment studies and nanotechnology.
C1 [Jorda, J.; Leibly, D. J.; Yeates, T. O.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.
[Leibly, D. J.; Thompson, M. C.; Yeates, T. O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.
RP Yeates, TO (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.; Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.
EM yeates@mbi.ucla.edu
OI Yeates, Todd/0000-0001-5709-9839
FU NSF [CHE-1332907]; NIH [AI081146, RR-15301]; Ruth L. Kirschstein
National Research Service Award [T32GM007185]; DOE [DE-FC03-02ER63421];
DOE, Office of Basic Energy Sciences [DE-AC02 06CH11357]
FX This work was supported by NSF grant CHE-1332907 and NIH grant AI081146.
D. J. L. was supported by Ruth L. Kirschstein National Research Service
Award T32GM007185. The authors thank Michael R. Sawaya, Duilio Cascio,
and Dan McNamara for X-ray data collection at APS beamline 24-ID-C, and
Joshuah Laniado for helpful suggestions. X-ray core facilities at UCLA
are supported by DOE Grant DE-FC03-02ER63421. The NECAT beamlines of the
Advanced Photon Source are supported by NIH Grant RR-15301 (NCRR). Use
of the Advanced Photon Source is supported by the DOE, Office of Basic
Energy Sciences, under Contract DE-AC02 06CH11357.
NR 29
TC 0
Z9 0
U1 11
U2 18
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PY 2016
VL 52
IS 28
BP 5041
EP 5044
DI 10.1039/c6cc00851h
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DH9EL
UT WOS:000373099100020
PM 26988700
ER
PT J
AU Luo, YQ
Ahlstrom, A
Allison, SD
Batjes, NH
Brovkin, V
Carvalhais, N
Chappell, A
Ciais, P
Davidson, EA
Finzi, AC
Georgiou, K
Guenet, B
Hararuk, O
Harden, JW
He, YJ
Hopkins, F
Jiang, LF
Koven, C
Jackson, RB
Jones, CD
Lara, MJ
Liang, JY
McGuire, AD
Parton, W
Peng, CH
Randerson, JT
Salazar, A
Sierra, CA
Smith, MJ
Tian, HQ
Todd-Brown, KEO
Torn, M
van Groenigen, KJ
Wang, YP
West, TO
Wei, YX
Wieder, WR
Xia, JY
Xu, X
Xu, XF
Zhou, T
AF Luo, Yiqi
Ahlstrom, Anders
Allison, Steven D.
Batjes, Niels H.
Brovkin, Victor
Carvalhais, Nuno
Chappell, Adrian
Ciais, Philippe
Davidson, Eric A.
Finzi, Adrien C.
Georgiou, Katerina
Guenet, Bertrand
Hararuk, Oleksandra
Harden, Jennifer W.
He, Yujie
Hopkins, Francesca
Jiang, Lifen
Koven, Charlie
Jackson, Robert B.
Jones, Chris D.
Lara, Mark J.
Liang, Junyi
McGuire, A. David
Parton, William
Peng, Changhui
Randerson, James T.
Salazar, Alejandro
Sierra, Carlos A.
Smith, Matthew J.
Tian, Hanqin
Todd-Brown, Katherine E. O.
Torn, Margaret
van Groenigen, Kees Jan
Wang, Ying Ping
West, Tristram O.
Wei, Yaxing
Wieder, William R.
Xia, Jianyang
Xu, Xia
Xu, Xiaofeng
Zhou, Tao
TI Toward more realistic projections of soil carbon dynamics by Earth
system models
SO GLOBAL BIOGEOCHEMICAL CYCLES
LA English
DT Article
ID NET PRIMARY PRODUCTION; ORGANIC-MATTER MODELS; GLOBAL CLIMATE-CHANGE;
DATA-ASSIMILATION; TERRESTRIAL ECOSYSTEMS; INCUBATION DATA;
UNITED-STATES; LAND MODEL; HETEROTROPHIC RESPIRATION; TEMPERATURE
SENSITIVITY
AB Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool-and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.
C1 [Luo, Yiqi; Jiang, Lifen; Liang, Junyi] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.
[Luo, Yiqi] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China.
[Ahlstrom, Anders; Jackson, Robert B.] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA.
[Ahlstrom, Anders] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden.
[Allison, Steven D.] Univ Calif Irvine, Dept Ecol & Evolut Biol, Irvine, CA USA.
[Allison, Steven D.; He, Yujie; Hopkins, Francesca; Randerson, James T.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92717 USA.
[Batjes, Niels H.] ISRIC World Soil Informat, Wageningen, Netherlands.
[Brovkin, Victor] Max Planck Inst Meteorol, Hamburg, Germany.
[Carvalhais, Nuno; Sierra, Carlos A.] Max Planck Inst Biogeochem, Jena, Germany.
[Carvalhais, Nuno] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Ciencias & Engn Ambiente, CENSE, Caparica, Portugal.
[Chappell, Adrian] CSIRO Land & Water Natl Res Flagship, Canberra, ACT, Australia.
[Ciais, Philippe; Guenet, Bertrand] CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France.
[Davidson, Eric A.] Univ Maryland, Ctr Environm Sci, Appalachian Lab, Frostburg, MD USA.
[Finzi, Adrien C.] Boston Univ, Dept Biol, Boston, MA 02215 USA.
[Georgiou, Katerina] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Georgiou, Katerina; Koven, Charlie; Torn, Margaret] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Hararuk, Oleksandra] Canadian Forest Serv, Pacific Forestry Ctr, Victoria, BC, Canada.
[Harden, Jennifer W.] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA.
[Jones, Chris D.] Hadley Ctr, Met Off, Exeter, Devon, England.
[Lara, Mark J.; McGuire, A. David] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA.
[McGuire, A. David] US Geol Survey, Alaska Cooperat Fish & Wildlife Res Unit, Fairbanks, AK USA.
[Parton, William] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA.
[Peng, Changhui] Univ Quebec, Inst Environm Sci, Montreal, PQ H3C 3P8, Canada.
[Salazar, Alejandro] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA.
[Smith, Matthew J.] Microsoft Res, Sci Computat Lab, Cambridge, England.
[Tian, Hanqin] Auburn Univ, Sch Forestry & Wildlife Sci, Int Ctr Climate & Global Change Res, Auburn, AL 36849 USA.
[Todd-Brown, Katherine E. O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[van Groenigen, Kees Jan] No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA.
[Wang, Ying Ping] CSIRO Ocean & Atmosphere Flagship, Aspendale, Vic, Australia.
[West, Tristram O.] Joint Global Change Res Inst, College Pk, MD USA.
[Wei, Yaxing] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
[Wieder, William R.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA.
[Xia, Jianyang] E China Normal Univ, Sch Ecol & Environm Sci, Shanghai 200062, Peoples R China.
[Xu, Xia] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA USA.
[Xu, Xiaofeng] Univ Texas El Paso, Dept Biol Sci, El Paso, TX 79968 USA.
[Zhou, Tao] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China.
RP Luo, YQ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.; Luo, YQ (reprint author), Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China.
EM yluo@ou.edu
RI Torn, Margaret/D-2305-2015; He, Yujie/E-2514-2017; Ahlstrom,
Anders/F-3215-2017; Liang, Junyi/H-3203-2016; Davidson,
Eric/K-4984-2013; Koven, Charles/N-8888-2014; Brovkin,
Victor/C-2803-2016; Batjes, Niels/F-7195-2010; Allison,
Steven/E-2978-2010; Xu, Xiaofeng/B-2391-2008; Smith,
Melinda/J-8987-2014; Jones, Chris/I-2983-2014; wang, yp/A-9765-2011
OI van groenigen, kees jan/0000-0002-9165-3925; WIEDER,
WILLIAM/0000-0001-7116-1985; He, Yujie/0000-0001-8261-5399; Ahlstrom,
Anders/0000-0003-1642-0037; Liang, Junyi/0000-0001-8252-5502; Davidson,
Eric/0000-0002-8525-8697; Koven, Charles/0000-0002-3367-0065; Brovkin,
Victor/0000-0001-6420-3198; Batjes, Niels/0000-0003-2367-3067; Allison,
Steven/0000-0003-4629-7842; Xu, Xiaofeng/0000-0002-6553-6514;
FU United States National Science Foundation Research Coordination (RCN)
grant [DEB 0840964]; Department of Energy [DE SC0008270]; U.S.
Department of Energy [DE-SC0006982, DE-SC0008270, DE-SC0014062,
DE-SC0004601, DE-SC0010715]; U.S. National Science Foundation (NSF) [DEB
0840964, DBI 0850290, EPS 0919466, EF 1137293]; Joint DECC/Defra Met
Office Hadley Centre Climate Program [GA01101]; [UID/AMB/04085/2013]
FX The paper stemmed from a workshop "Representing soil carbon dynamics in
global land models to improve future IPCC assessments" held at
Breckenridge, CO, USA on 12-14 June 2014. The workshop was financially
supported by the United States National Science Foundation Research
Coordination (RCN) grant DEB 0840964 and Department of Energy DE
SC0008270. Y.L. was financially supported by U.S. Department of Energy
grants DE-SC0006982, DE-SC0008270, DE-SC0014062, DE-SC0004601, and
DE-SC0010715 and U.S. National Science Foundation (NSF) grants DBI
0850290, EPS 0919466, DEB 0840964, and EF 1137293; N.C. by Project
UID/AMB/04085/2013; CDJ by the Joint DECC/Defra Met Office Hadley Centre
Climate Program (GA01101). Any use of trade, firm, or product names is
for descriptive purposes only and does not imply endorsement by the U.S.
Government. Please contact the corresponding author at yluo@ou.edu for
details of the data used in this work.
NR 149
TC 15
Z9 15
U1 38
U2 77
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0886-6236
EI 1944-9224
J9 GLOBAL BIOGEOCHEM CY
JI Glob. Biogeochem. Cycle
PD JAN
PY 2016
VL 30
IS 1
BP 40
EP 56
DI 10.1002/2015GB005239
PG 17
WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric
Sciences
GA DH7HR
UT WOS:000372964300003
ER
PT J
AU Dagle, VL
Smith, C
Flake, M
Albrecht, KO
Gray, MJ
Ramasamy, KK
Dagle, RA
AF Dagle, Vanessa Lebarbier
Smith, Colin
Flake, Matthew
Albrecht, Karl O.
Gray, Michel J.
Ramasamy, Karthikeyan K.
Dagle, Robert A.
TI Integrated process for the catalytic conversion of biomass-derived
syngas into transportation fuels
SO GREEN CHEMISTRY
LA English
DT Article
ID ZNXZRYOZ MIXED OXIDES; ACID CATALYSTS; ISOBUTENE; ETHANOL;
OLIGOMERIZATION; ACETONE; CHEMISTRY; ALCOHOLS; SITES
AB Efficient synthesis of renewable fuels that will enable cost competitiveness with petroleum-derived fuels remains a grand challenge. In this paper, we report on an integrated catalytic approach for producing transportation fuels from biomass-derived syngas. This novel process represents an alternative to conventional fuel synthesis routes (e.g., Fischer-Tropsch, Methanol-to-Gasoline) that have drawbacks, particularly at the scale of biomass. Composition of the resulting hydrocarbon fuel can be modulated to produce predominantly middle distillates, which is constantly increasing in demand compared to gasoline fraction. In this process biomass-derived syngas is first converted over an Rh-based catalyst into a complex aqueous mixture of condensable C-2(+) oxygenated compounds (predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate). This multi-component aqueous mixture then is fed to a second reactor loaded with a ZnxZryOz mixed oxide catalyst, which has tailored acid-base sites, to produce an olefin mixture rich in isobutene. The olefins then are oligomerized using a solid acid catalyst (e.g., Amberlyst-36) to form condensable olefins with molecular weights that can be targeted for gasoline, jet, and/or diesel fuel applications. The product rich in long-chain olefins (C-7(+)) is finally sent to a fourth reactor required for hydrogenation of the olefins into paraffin fuels. Simulated distillation of the hydrotreated oligomerized liquid product indicates that similar to 75% of the hydrocarbons (iso-paraffins and cyclic compounds) are in the jet-fuel range. Process optimization for the oligomerization step could further improve yield to the jet-fuel range. All of these catalytic steps have been demonstrated in sequence, thus providing proof-of-concept for a new integrated process for the production of drop-in biofuels. Overall, we demonstrate approximately 41% carbon efficiency for converting syngas into jet-range hydrocarbons. This unique and flexible process does not require external hydrogen and also could be applied to non-syngas derived feedstock, such as fermentation products (e.g., ethanol, acetic acid, etc.), other oxygenates, and mixtures thereof containing alcohols, acids, aldehydes and/or esters.
C1 [Dagle, Vanessa Lebarbier; Smith, Colin; Flake, Matthew; Albrecht, Karl O.; Gray, Michel J.; Ramasamy, Karthikeyan K.; Dagle, Robert A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Energy & Environm Directorate, Richland, WA 99352 USA.
RP Dagle, RA (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Energy & Environm Directorate, Richland, WA 99352 USA.
EM Robert.Dagle@pnnl.gov
FU U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO);
DOE's Office of Biological and Environmental Research
FX This work was financially supported by the U.S. Department of Energy
(DOE) Bioenergy Technologies Office (BETO) and performed at Pacific
Northwest National Laboratory (PNNL). PNNL is a multi-program national
laboratory operated for DOE by Battelle Memorial Institute. Advanced
catalyst characterization use was granted by a user proposal at the
William R. Wiley Environmental Molecular Sciences Laboratory (EMSL).
EMSL is a national scientific user facility sponsored by DOE's Office of
Biological and Environmental Research and located at PNNL. The authors
would like to thank Teresa Lemmon and Marie Swita for analytical support
of this project. Finally, the authors would also like to thank Cary
Counts for help with technical editing of this manuscript.
NR 42
TC 2
Z9 2
U1 11
U2 32
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9262
EI 1463-9270
J9 GREEN CHEM
JI Green Chem.
PY 2016
VL 18
IS 7
BP 1880
EP 1891
DI 10.1039/c5gc02298c
PG 12
WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
SC Chemistry; Science & Technology - Other Topics
GA DH7NR
UT WOS:000372981400008
ER
PT J
AU Wang, YH
Comes, RB
Wolf, SA
Lu, JW
AF Wang, Yuhan
Comes, Ryan B.
Wolf, Stuart A.
Lu, Jiwei
TI Threshold Switching Characteristics of Nb/NbO2/TiN Vertical Devices
SO IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY
LA English
DT Article
DE Niobium dioxide; threshold switching; metal-insulator transition
ID NIOBIUM DIOXIDE; NBO2
AB We have observed threshold switching (TS) with minimal hysteresis and a small threshold electric field (60-90 kV/cm) in Nb/NbO2/TiN structures. The TS was unipolar with certain repeatability. A less sharp but still sizable change in the device resistance can be observed up to 150 degrees C. The TS without Nb capping layer exhibited hysteretic characteristics. It was proposed that the surface Nb2O5 layer on NbO2 could significantly modify the TS in this vertical device. This understanding of the surface effect will allow further control of the non-linear IV characteristics for NbO2-based switches or selector devices.
C1 [Wang, Yuhan; Wolf, Stuart A.; Lu, Jiwei] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA.
[Comes, Ryan B.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
[Wolf, Stuart A.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA.
RP Wang, YH (reprint author), Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA.
EM yw9ep@virginia.edu
NR 23
TC 3
Z9 3
U1 7
U2 14
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2168-6734
J9 IEEE J ELECTRON DEVI
JI IEEE J. Electron Devices Soc.
PD JAN
PY 2016
VL 4
IS 1
BP 11
EP 14
DI 10.1109/JEDS.2015.2503922
PG 4
WC Engineering, Electrical & Electronic
SC Engineering
GA DH8PC
UT WOS:000373055600003
ER
PT J
AU Davis, SJ
Edwards, SB
Teper, GE
Bassett, DG
McCarthy, MJ
Johnson, SC
Lawton, CR
Hoffman, MJ
Shelton, L
Henry, SM
Melander, DJ
Muldoon, FM
Alford, BD
Rice, RE
AF Davis, Scott J.
Edwards, Shatiel B.
Teper, Gerald E.
Bassett, David G.
McCarthy, Michael J.
Johnson, Scott C.
Lawton, Craig R.
Hoffman, Matthew J.
Shelton, Liliana
Henry, Stephen M.
Melander, Darryl J.
Muldoon, Frank M.
Alford, Brian D.
Rice, Roy E.
TI Maximizing the US Army's Future Contribution to Global Security Using
the Capability Portfolio Analysis Tool (CPAT)
SO INTERFACES
LA English
DT Article
DE US Army; ground combat systems; portfolio optimization; fleet
scheduling; decision support; mixed-integer linear programming
AB Recent budget reductions have posed tremendous challenges to the U.S. Army in managing its portfolio of ground combat systems (tanks and other fighting vehicles), thus placing many important programs at risk. To address these challenges, the Army and a supporting team developed and applied the Capability Portfolio Analysis Tool (CPAT) to optimally invest in ground combat modernization over the next 25-35 years. CPAT provides the Army with the analytical rigor needed to help senior Army decision makers allocate scarce modernization dollars to protect soldiers and maintain capability overmatch. CPAT delivers unparalleled insight into multiple-decade modernization planning using a novel multiphase mixed-integer linear programming technique and illustrates a cultural shift toward analytics in the Army's acquisition thinking and processes. CPAT analysis helped shape decisions to continue modernization of the $10 billion Stryker family of vehicles (originally slated for cancellation) and to strategically reallocate over $20 billion to existing modernization programs by not pursuing the Ground Combat Vehicle program as originally envisioned. More than 40 studies have been completed using CPAT, applying operations research methods to optimally prioritize billions of taxpayer dollars and allowing Army acquisition executives to base investment decisions on analytically rigorous evaluations of portfolio trade-offs.
C1 [Davis, Scott J.; Edwards, Shatiel B.; Teper, Gerald E.; Bassett, David G.; McCarthy, Michael J.; Johnson, Scott C.] United States Army, Warren, MI 48397 USA.
[Lawton, Craig R.; Hoffman, Matthew J.; Shelton, Liliana; Henry, Stephen M.; Melander, Darryl J.; Muldoon, Frank M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Alford, Brian D.] Booz Allen Hamilton, Huntsville, AL 35806 USA.
[Rice, Roy E.] Teledyne Brown Engn Inc, Huntsville, AL 35805 USA.
RP Davis, SJ; Edwards, SB; Teper, GE; Bassett, DG; McCarthy, MJ; Johnson, SC (reprint author), United States Army, Warren, MI 48397 USA.; Lawton, CR; Hoffman, MJ; Shelton, L; Henry, SM; Melander, DJ; Muldoon, FM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.; Alford, BD (reprint author), Booz Allen Hamilton, Huntsville, AL 35806 USA.; Rice, RE (reprint author), Teledyne Brown Engn Inc, Huntsville, AL 35805 USA.
EM scott.j.davis.civ@mail.mil; shatiel.b.edwards.civ@mail.mil;
gerald.e.teper.civ@mail.mil; david.g.bassett.mil@mail.mil;
michael.j.mccarthy.civ@mail.mil; scott.c.johnson98.civ@mail.mil;
crlawto@sandia.gov; mjhoffm@sandia.gov; lshelto@sandia.gov;
smhenry@sandia.gov; djmelan@sandia.gov; fmmuldo@sandia.gov;
alford_brian@bah.com; roy.rice@teledyne.com
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX The authors thank the Edelman selection committee, their coaches Randy
Robinson and Greg Parlier, John Milne and Alice Mack for their valuable
editorial feedback, Brent Peterson for his outstanding video production
work, and David Cunnington and Daniel Thompson for their graphics and
presentation expertise. The authors especially thank the Honorable Ms.
Heidi Shyu and Lt. Gen. Michael Williamson for their video remarks
supporting the impacts of the CPAT project. Sandia National Laboratories
is a multiprogram laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National Nuclear Security Administration
[Contract DE-AC04-94AL85000].
NR 12
TC 0
Z9 0
U1 2
U2 5
PU INFORMS
PI CATONSVILLE
PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA
SN 0092-2102
EI 1526-551X
J9 INTERFACES
JI Interfaces
PD JAN-FEB
PY 2016
VL 46
IS 1
SI SI
BP 91
EP 108
DI 10.1287/inte.2015.0824
PG 18
WC Management; Operations Research & Management Science
SC Business & Economics; Operations Research & Management Science
GA DH9QN
UT WOS:000373130900007
ER
PT S
AU Kocheva, D
Stegmann, R
Rainovski, G
Jolie, J
Pietralla, N
Stahl, C
Petkov, P
Blazhev, A
Hennig, A
Bauer, C
Braunroth, T
Carpenter, MP
Cortes, L
Dewald, A
Djongolov, M
Fransen, C
Gladnishki, K
Janssens, RVF
Karayonchev, V
Lettmann, M
Lister, CJ
Litzinger, J
Moller, T
Muller-Gatermann, C
Scheck, M
Scholz, P
Schramm, C
Thoele, P
Werner, V
Woelk, D
Zhu, S
Van Isacker, P
AF Kocheva, D.
Stegmann, R.
Rainovski, G.
Jolie, J.
Pietralla, N.
Stahl, C.
Petkov, P.
Blazhev, A.
Hennig, A.
Bauer, C.
Braunroth, Th.
Carpenter, M. P.
Cortes, L.
Dewald, A.
Djongolov, M.
Fransen, C.
Gladnishki, K.
Janssens, R. V. F.
Karayonchev, V.
Lettmann, M.
Lister, C. J.
Litzinger, J.
Moeller, Th.
Mueller-Gatermann, C.
Scheck, M.
Scholz, Ph.
Schramm, C.
Thoele, P.
Werner, V.
Woelk, D.
Zhu, S.
Van Isacker, P.
BE Andreev, A
Arsenyev, N
Ershov, S
Sargsyan, V
Vdovin, A
TI Search formixed-symmetry states of nuclei in the vicinity of the
double-magic nucleus Pb-208
SO INTERNATIONAL CONFERENCE ON NUCLEAR STRUCTURE AND RELATED TOPICS
(NSRT15)
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 7th International Conference on Nuclear Structure and Related Topics
(NSRT)
CY JUL 14-18, 2015
CL Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna, RUSSIA
HO Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys
ID COLLECTIVE MODES; SPECTROSCOPY; EXCITATIONS; PO-212; SCATTERING; BEAM
AB In this work we present the results from two experiments dedicated to search for quadrupole-collective isovector valence-shell excitation, the states with so-called mixed proton-neutron symmetry (MSS), in nuclei around the doubly magic nucleus Pb-208. Po-212 was studied in an alpha-transfer reaction. Hg-204 was studied in an inverse kinematics Coulomb excitation reaction on a carbon target. Both experiments provide indications for existence of one-phonon MSSs. Those are the first experimentally identified MSSs in the mass A approximate to 208 region.
C1 [Kocheva, D.; Rainovski, G.; Djongolov, M.; Gladnishki, K.] Sofia Univ St Kliment Ohridski, Fac Phys, Sofia 1164, Bulgaria.
[Stegmann, R.; Pietralla, N.; Stahl, C.; Bauer, C.; Cortes, L.; Lettmann, M.; Moeller, Th.; Scheck, M.; Schramm, C.; Werner, V.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
[Jolie, J.; Blazhev, A.; Hennig, A.; Braunroth, Th.; Dewald, A.; Fransen, C.; Karayonchev, V.; Litzinger, J.; Mueller-Gatermann, C.; Scholz, Ph.; Thoele, P.; Woelk, D.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany.
[Petkov, P.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria.
[Janssens, R. V. F.; Zhu, S.] Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Van Isacker, P.] CEA, CNRS, IN2P3, Grand Accelerateur Natl Lons Lourds,DSM, BP 55027, F-14076 Caen 5, France.
[Scheck, M.] Univ West Scotland, Paisley PA1 2BE, Renfrew, Scotland.
[Scheck, M.] Scottish Univ Phys Alliance, Glasgow G12 8QQ, Lanark, Scotland.
RP Rainovski, G (reprint author), Sofia Univ St Kliment Ohridski, Fac Phys, Sofia 1164, Bulgaria.
EM rig@phys.uni-sofia.bg
RI Kocheva, Diana/K-1388-2016; Rainovski, Georgi/A-3450-2008
OI Rainovski, Georgi/0000-0002-1729-0249
NR 42
TC 1
Z9 1
U1 0
U2 1
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
J9 EPJ WEB CONF
PY 2016
VL 107
AR 03004
DI 10.1051/epjconf/201610703004
PG 6
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA BE5FQ
UT WOS:000372781500011
ER
PT S
AU Somov, A
Somov, S
Tolstukhin, I
AF Somov, A.
Somov, S.
Tolstukhin, I.
GP IOP
TI Performance of the pair spectrometer of the GlueX experiment
SO INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS
(ICPPA-2015), PTS 1-4
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT International Conference on Particle Physics and Astrophysics (ICPPA)
CY OCT 05-10, 2015
CL Moscow, RUSSIA
SP Natl Res Nucl Univ MEPhI, Ctr Fundamental Res & Particle Phys
AB The description of the pair spectrometer of the GlueX detector at Jefferson Lab and its performance during the first beam commissioning runs are presented. We measured the amount of light collected from each channel of the pair spectrometer hodoscopes and the time resolution of the pair spectrometer counters.
C1 [Somov, A.] Thomas Jefferson Natl Accelerator Facil, Jefferson Ave 12000, Newport News, VA 23606 USA.
[Somov, S.; Tolstukhin, I.] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Kashirskoe Highway 31, Moscow 115409, Russia.
RP Tolstukhin, I (reprint author), Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Kashirskoe Highway 31, Moscow 115409, Russia.
EM somov@jlab.org; s.v.somov@mail.ru; ivantol@jlab.org
NR 2
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2016
VL 675
AR 042022
DI 10.1088/1742-6596/675/4/042022
PG 3
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA BE5AH
UT WOS:000372460100131
ER
PT S
AU Amiri, BW
Foster, JP
Greenwood, LR
AF Amiri, Benjamin W.
Foster, John P.
Greenwood, Larry R.
BE Lyoussi, A
TI Dosimetry Evaluation of In-Core and Above-Core Zirconium Alloy Samples
in a PWR
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
AB A description of the neutron fluence analysis of activated zirconium alloys samples at a Westinghouse 3-loop reactor is presented. These samples were irradiated in the core and in the fuel plenum region, where dosimetry measurements are relatively rare compared with regions radially outward of the core. Dosimetry measurements performed by Batelle/PNNL are compared to the calculational models. Good agreement is shown with the in-core measurements when using analysis conditions expected to best represent this region, such as an assembly-specific axial power distribution. However, the use of these conditions to evaluate dosimetry in the fuel plenum region can lead to significant underestimation of the fluence. The use of a flat axial power distribution, however, does not underestimate the fluence in the fuel plenum region.
C1 [Amiri, Benjamin W.] Westinghouse Elect Co LLC, Radiat Engn & Anal, Cranberry Township, PA 16066 USA.
[Foster, John P.] Westinghouse Elect Co LLC, Nucl Fuel, Hopkins, SC 29061 USA.
[Greenwood, Larry R.] Battelle Pacific Northwest Natl Lab, Richland, WA 99352 USA.
RP Amiri, BW (reprint author), Westinghouse Elect Co LLC, Radiat Engn & Anal, Cranberry Township, PA 16066 USA.
RI Greenwood, Lawrence/H-9539-2016
OI Greenwood, Lawrence/0000-0001-6563-0650
NR 8
TC 0
Z9 0
U1 0
U2 0
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 02005
DI 10.1051/epjconf/201610602005
PG 6
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700014
ER
PT S
AU Carlson, AD
Pronyaev, VG
Capote, R
Hale, GM
Hambsch, FJ
Kawano, T
Kunieda, S
Mannhart, W
Nelson, RO
Neudecker, D
Schillebeeckx, P
Simakov, S
Smith, DL
Talou, P
Tao, X
Wallner, A
Wang, W
AF Carlson, A. D.
Pronyaev, V. G.
Capote, R.
Hale, G. M.
Hambsch, F. -J.
Kawano, T.
Kunieda, S.
Mannhart, W.
Nelson, R. O.
Neudecker, D.
Schillebeeckx, P.
Simakov, S.
Smith, D. L.
Talou, P.
Tao, X.
Wallner, A.
Wang, W.
BE Lyoussi, A
TI Toward a New Evaluation of Neutron Standards
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
ID CAPTURE CROSS-SECTION; UNCERTAINTY QUANTIFICATION; N-TOF; SPECTRA;
FACILITY; ENERGY; GELINA; CERN
AB Measurements related to neutron cross section standards and certain prompt neutron fission spectra are being evaluated. In addition to the standard cross sections, investigations of reference data that are not as well known as the standards are being considered. Procedures and codes for performing this work are discussed. A number of libraries will use the results of this standards evaluation for new versions of their libraries. Most of these data have applications in neutron dosimetry.
C1 [Carlson, A. D.] NIST, 100 Bur Dr,Stop 8463, Gaithersburg, MD 20899 USA.
[Pronyaev, V. G.] IPPE, Bondarenko Sq 1, Obninsk 249033, Kaluga Region, Russia.
[Capote, R.; Simakov, S.] IAEA, NAPC, Nucl Data Sect, A-1400 Vienna, Austria.
[Hale, G. M.; Kawano, T.; Nelson, R. O.; Neudecker, D.; Talou, P.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
[Hambsch, F. -J.; Schillebeeckx, P.] EC, JRC, IRMM, Retieseweg 111, B-2440 Geel, Belgium.
[Kunieda, S.] Japan Atom Energy Agcy, Nucl Data Ctr, 2-4 Shirane Shirakata, Tokai, Ibaraki 3191195, Japan.
[Mannhart, W.] Phys Tech Bundesanstalt, Org 6 4, Bundesallee 100, D-38116 Braunschweig, Germany.
[Smith, D. L.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Tao, X.; Wang, W.] CNDC, China Inst Atom Energy, POB 275 41, Beijing 102413, Peoples R China.
[Wallner, A.] Australian Natl Univ, Res Sch Phys & Engn, Nucl Phys, Bldg 57, Canberra, ACT 0200, Australia.
RP Carlson, AD (reprint author), NIST, 100 Bur Dr,Stop 8463, Gaithersburg, MD 20899 USA.
EM carlson@nist.gov
RI Capote Noy, Roberto/M-1245-2014
OI Capote Noy, Roberto/0000-0002-1799-3438
NR 47
TC 0
Z9 0
U1 1
U2 5
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 04002
DI 10.1051/epjconf/201610604002
PG 9
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700038
ER
PT S
AU Coburn, J
Luker, SM
Parma, EJ
DePriest, KR
AF Coburn, Jonathan
Luker, S. Michael
Parma, Edward J.
DePriest, K. Russell
BE Lyoussi, A
TI Modeling, Calibration, and Verification of a Fission Chamber for ACRR
Experimenters
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
AB When performing research at a reactor facility, experimenters often need to determine the neutron fluence achieved during an operation. Facilities typically provide guidance in the form of neutron fluence per megajoule (MJ) or through passive dosimetry results. After experiment completion, there is sometimes a delay of several days (or weeks) before the passive dosimetry results are available. In the interim, an experimenter does not have confirmation that the desired irradiation levels were reached. Active dosimetry may provide an estimate of neutron fluxes, but few active detectors are available that have been calibrated to measure neutron fluxes obtained inside the Annular Core Research Reactor (ACRR) central cavity environment. For past experiments at the ACRR, the neutron fluence was calculated by integrating the response of a fission chamber rate detection signal and then normalizing this integral to fluence determined from passive dosimetry. An alternative method of directly measuring neutron flux is desired; the new methodology described provides a complete neutron flux profile after a reactor pulse, utilizing fission chamber physics in combination with a compensating ion chamber to extract and convert a current signal to neutron flux as a function of time.
C1 [Coburn, Jonathan] N Carolina State Univ, Appl Nucl Technol, Sandia Natl Labs, Albuquerque, NM USA.
[Luker, S. Michael; Parma, Edward J.; DePriest, K. Russell] Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA.
RP Luker, SM (reprint author), Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA.
EM smluker@sandia.gov
NR 6
TC 0
Z9 0
U1 0
U2 0
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 05001
DI 10.1051/epjconf/201610605001
PG 10
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700053
ER
PT S
AU Greenwood, LR
Johnson, CD
AF Greenwood, L. R.
Johnson, C. D.
BE Lyoussi, A
TI Least-Squares Neutron Spectral Adjustment with STAYSL PNNL
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
AB The STAYSL PNNL computer code, a descendant of the STAY'SL code [1], performs neutron spectral adjustment of a starting neutron spectrum, applying a least squares method to determine adjustments based on saturated activation rates, neutron cross sections from evaluated nuclear data libraries, and all associated covariances. STAYSL PNNL is provided as part of a comprehensive suite of programs [2], where additional tools in the suite are used for assembling a set of nuclear data libraries and determining all required corrections to the measured data to determine saturated activation rates. Neutron cross section and covariance data are taken from the International Reactor Dosimetry File (IRDF-2002) [3], which was sponsored by the International Atomic Energy Agency (IAEA), though work is planned to update to data from the IAEA's International Reactor Dosimetry and Fusion File (IRDFF) [4]. The nuclear data and associated covariances are extracted from IRDF-2002 using the third-party NJOY99 computer code [5]. The NJpp translation code converts the extracted data into a library data array format suitable for use as input to STAYSL PNNL. The software suite also includes three utilities to calculate corrections to measured activation rates. Neutron self-shielding corrections are calculated as a function of neutron energy with the SHIELD code and are applied to the group cross sections prior to spectral adjustment, thus making the corrections independent of the neutron spectrum. The SigPhi Calculator is a Microsoft Excel spreadsheet used for calculating saturated activation rates from raw gamma activities by applying corrections for gamma self-absorption, neutron burn-up, and the irradiation history. Gamma self-absorption and neutron burn-up corrections are calculated (iteratively in the case of the burn-up) within the SigPhi Calculator spreadsheet. The irradiation history corrections are calculated using the BCF computer code and are inserted into the SigPhi Calculator workbook for use in correcting the measured activities. Output from the SigPhi Calculator is automatically produced, and consists of a portion of the STAYSL PNNL input file data that is required to run the spectral adjustment calculations. Within STAYSL PNNL, the least-squares process is performed in one step, without iteration, and provides rapid results on PC platforms. STAYSL PNNL creates multiple output files with tabulated results, data suitable for plotting, and data formatted for use in subsequent radiation damage calculations using the SPECTER computer code (which is not included in the STAYSL PNNL suite). All components of the software suite have undergone extensive testing and validation prior to release and test cases are provided with the package.
[GRAPHICS]
.
C1 [Greenwood, L. R.; Johnson, C. D.] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
RP Greenwood, LR (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM larry.greenwood@pnnl.gov
RI Greenwood, Lawrence/H-9539-2016
OI Greenwood, Lawrence/0000-0001-6563-0650
NR 9
TC 0
Z9 0
U1 2
U2 2
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 07001
DI 10.1051/epjconf/201610607001
PG 9
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700071
ER
PT S
AU Griffin, P
AF Griffin, Patrick
BE Lyoussi, A
TI Use of Neutron Benchmark Fields for the Validation of Dosimetry Cross
Sections
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
AB The evolution of validation metrics for dosimetry cross sections in neutron benchmark fields is explored. The strength of some of the metrics in providing validation evidence is examined by applying them to the Cf-252 spontaneous fission standard neutron benchmark field, the U-235 thermal neutron fission reference benchmark field, the ACRR pool-type reactor central cavity reference benchmark fields, and the SPR-III fast burst reactor central cavity. The IRDFF dosimetry cross section library is used in the validation study and observations are made on the amount of coverage provided to the library contents by validation data available in these benchmark fields.
C1 [Griffin, Patrick] Sandia Natl Labs, Radiat Effects Sci & Applicat Dept, POB 5800, Albuquerque, NM 87185 USA.
RP Griffin, P (reprint author), Sandia Natl Labs, Radiat Effects Sci & Applicat Dept, POB 5800, Albuquerque, NM 87185 USA.
EM pjgriff@sandia.gov
NR 9
TC 0
Z9 0
U1 1
U2 1
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 04001
DI 10.1051/epjconf/201610604001
PG 9
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700037
ER
PT S
AU Hehr, BD
Parma, EJ
Peters, CD
Naranjo, GE
Luker, SM
AF Hehr, Brian D.
Parma, Edward J.
Peters, Curtis D.
Naranjo, Gerald E.
Luker, S. Michael
BE Lyoussi, A
TI Characterization of Novel Calorimeters in the Annular Core Research
Reactor
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
AB A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n, gamma) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n, gamma) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response.
C1 [Hehr, Brian D.; Parma, Edward J.; Luker, S. Michael] Sandia Natl Labs, Appl Nucl Technol Dept, POB 5800, Albuquerque, NM 87185 USA.
[Peters, Curtis D.; Naranjo, Gerald E.] Sandia Natl Labs, Adv Nucl Concepts Dept, POB 5800, Albuquerque, NM 87185 USA.
RP Hehr, BD (reprint author), Sandia Natl Labs, Appl Nucl Technol Dept, POB 5800, Albuquerque, NM 87185 USA.
EM bdhehr@sandia.gov
NR 4
TC 0
Z9 0
U1 0
U2 0
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 01001
DI 10.1051/epjconf/201610601001
PG 8
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700001
ER
PT S
AU Holden, NE
AF Holden, N. E.
BE Lyoussi, A
TI 2013 Review of Neutron and Non-Neutron Nuclear Data
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
AB The results of a review and evaluation of neutron and non-neutron nuclear data published in the scientific literature over the past three years since the ISRD-14 Symposium has been performed and the highlights are presented. Included in the data review are the status of new chemical elements, new measurements of the isotopic composition for many chemical elements and the resulting change in the atomic weight values. New half-life measurements for both short-lived and long-lived nuclides, some alpha decay and double beta decay measurements for quasi-stable nuclides are discussed. The latest evaluation of atomic masses has been published. Data from new measurements on the very heavy (transmeitnerium) elements are discussed and tabulated. Data on various recent neutron cross section and resonance integral measurements are discussed and tabulated.
C1 [Holden, N. E.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA.
RP Holden, NE (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA.
NR 20
TC 0
Z9 0
U1 0
U2 0
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 04003
DI 10.1051/epjconf/201610604003
PG 8
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700039
ER
PT S
AU Hu, JP
Holden, NE
Reciniello, RN
AF Hu, J. -P.
Holden, N. E.
Reciniello, R. N.
BE Lyoussi, A
TI Dosimetry in Thermal Neutron Irradiation Facility at BMRR
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
AB Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than the statistical mean derived from the Monte-Carlo modeling (5% uncertainty). The dose rate measured by ion chambers was 6-10% lower than the output tallies (7% uncertainty). The detailed dosimetry that was performed at the TNIF for the NCT will be described.
C1 [Hu, J. -P.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
[Holden, N. E.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA.
[Reciniello, R. N.] Brookhaven Natl Lab, Radiol Control Div, Upton, NY 11973 USA.
RP Hu, JP (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
NR 12
TC 0
Z9 0
U1 1
U2 3
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 01002
DI 10.1051/epjconf/201610601002
PG 10
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700002
ER
PT S
AU Kahler, AC
MacInnes, M
Chadwick, MB
AF Kahler, A. C.
MacInnes, M.
Chadwick, M. B.
BE Lyoussi, A
TI A Re-Analysis of Historical Los Alamos Critical Assembly Reaction Rate
Measurements
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
AB Starting in the 1950s and continuing into the early 1970s, a number of foil irradiations and fission chamber measurements were made in a variety of Fast critical assemblies at Los Alamos National Laboratory. These include (i) Godiva, a bare HEU spherical assembly; (ii) Flattop-25, a spherical assembly consisting of an HEU core and a natural uranium reflector; (iii) Jezebel, a bare Pu-239 assembly; and (iv) Flattop-Pu, a spherical assembly consisting of a Pu-239 core and a natural uranium reflector. In most instances the irradiations occur at or near the center of the assembly, but in selected instances data were obtained for a radial traverse extending into the Flattop reflector region. Measurements were made for a number of threshold reactions, including Sc-45(n, 2n) (44)mSc, V-51(n, alpha) 48Sc, As-75(n, 2n) As-74, Y-89(n, 2n) Y-88, Zr-90(n, 2n) Zr-89, Rh-103(n, 2n) (102)gRh, Ag-107(n, 2n) (106)mAg, Tm-169(n, 2n) Tm-168, Lu-175(n, 2n) Lu-174, Ir-191(n, 2n) Ir-190, Au-197(n, 2n) Au-196, Tl-203(n, 2n) Tl-202, Pb-204(n, 2n) Pb-203 and U-238(n, 2n) U-237. Fission ratio data for U-238(n, f)/U-235(n, f) and Pu-239(n, f)/U-235(n, f) were also obtained. We report C/E values from MCNP6 calculations using ENDF/B-VII. 1 and IRDFF-v1.03 cross section data.
C1 [Kahler, A. C.; MacInnes, M.; Chadwick, M. B.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RP Kahler, AC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM akahler@lanl.gov
NR 6
TC 0
Z9 0
U1 1
U2 1
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 04007
DI 10.1051/epjconf/201610604007
PG 7
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700043
ER
PT S
AU Kaiser, K
Nowlen, KC
DePriest, KR
AF Kaiser, Krista
Nowlen, K. Chantel
DePriest, K. Russell
BE Lyoussi, A
TI Characterization of the Annular Core Research Reactor (ACRR) Neutron
Radiography System Imaging Plane
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
AB The Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1) available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.
C1 [Kaiser, Krista] Sandia Natl Labs, Nucl Facil Operat, POB 5800,MS1142, Albuquerque, NM 87185 USA.
[Nowlen, K. Chantel] Sandia Natl Labs, Nucl Engn & Maintenance, POB 5800,MS1142, Albuquerque, NM 87185 USA.
[DePriest, K. Russell] Sandia Natl Labs, Appl Nucl Technol, POB 5800,MS1146, Albuquerque, NM 87185 USA.
RP Kaiser, K (reprint author), Sandia Natl Labs, Nucl Facil Operat, POB 5800,MS1142, Albuquerque, NM 87185 USA.
NR 6
TC 0
Z9 0
U1 0
U2 0
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 01005
DI 10.1051/epjconf/201610601005
PG 9
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700005
ER
PT S
AU Kulesza, JA
Franceschini, F
Evans, TM
Gehin, JC
AF Kulesza, Joel A.
Franceschini, Fausto
Evans, Thomas M.
Gehin, Jess C.
BE Lyoussi, A
TI Overview of the Consortium for the Advanced Simulation of Light Water
Reactors (CASL)
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
AB The Consortium for Advanced Simulation of Light Water Reactors (CASL) was established in July 2010 for the purpose of providing advanced modeling and simulation solutions for commercial nuclear reactors. The primary goal is to provide coupled, higher-fidelity, usable modeling and simulation capabilities than are currently available. These are needed to address light water reactor (LWR) operational and safety performance-defining phenomena that are not yet able to be fully modeled taking a first-principles approach. In order to pursue these goals, CASL has participation from laboratory, academic, and industry partners. These partners are pursuing the solution of ten major "Challenge Problems" in order to advance the state-of-the-art in reactor design and analysis to permit power uprates, higher burnup, life extension, and increased safety. At present, the problems being addressed by CASL are primarily reactor physics-oriented; however, this paper is intended to introduce CASL to the reactor dosimetry community because of the importance of reactor physics modelling and nuclear data to define the source term for that community and the applicability and extensibility of the transport methods being developed.
C1 [Kulesza, Joel A.; Franceschini, Fausto] Westinghouse Elect Co LLC, 1000 Westinghouse Dr, Cranberry Township, PA 16066 USA.
[Evans, Thomas M.; Gehin, Jess C.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA.
RP Kulesza, JA (reprint author), Westinghouse Elect Co LLC, 1000 Westinghouse Dr, Cranberry Township, PA 16066 USA.
EM kuleszj@westinghouse.com
NR 5
TC 0
Z9 0
U1 1
U2 1
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 03002
DI 10.1051/epjconf/201610603002
PG 7
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700027
ER
PT S
AU Parma, EJ
Naranjo, GE
Lippert, LL
Vehar, DW
AF Parma, Edward J.
Naranjo, Gerald E.
Lippert, Lance L.
Vehar, David W.
BE Lyoussi, A
TI Neutron Environment Characterization of the Central Cavity in the
Annular Core Research Reactor
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
AB Characterization of the neutron environment in the central cavity of the Sandia National Laboratories' Annular Core Research Reactor (ACRR) is important in order to provide experimenters with the most accurate spectral information and maintain a high degree of fidelity in performing reactor experiments. Characterization includes both modeling and experimental efforts. Building accurate neutronic models of the ACRR and the central cavity "bucket" environments that can be used by experimenters is important in planning and designing experiments, as well as assessing the experimental results and quantifying uncertainties. Neutron fluence characterizations of two bucket environments, LB44 and PLG, are presented. These two environments are used frequently and represent two extremes in the neutron spectrum. The LB44 bucket is designed to remove the thermal component of the neutron spectrum and significantly attenuate the gamma-ray fluence. The PLG bucket is designed to enhance the thermal component of the neutron spectrum and attenuate the gamma-ray fluence. The neutron characterization for each bucket was performed by irradiating 20 different activation foil types, some of which were cadmium covered, resulting in 37 different reactions at the peak axial flux location in each bucket. The dosimetry results were used in the LSL-M2 spectrum adjustment code with a 640-energy group MCNP-generated trial spectrum, self-shielding correction factors, the SNLRML or IRDFF dosimetry cross-section library, trial spectrum uncertainty, and trial covariance matrix, to generate a least-squares adjusted neutron spectrum, spectrum uncertainty, and covariance matrix. Both environment character-izations are well documented and the environments are available for use by experimenters.
C1 [Parma, Edward J.; Vehar, David W.] Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA.
[Naranjo, Gerald E.] Sandia Natl Labs, Adv Nucl Concepts, POB 5800, Albuquerque, NM 87185 USA.
[Lippert, Lance L.] Sandia Natl Labs, Nucl Facil Operat, POB 5800, Albuquerque, NM 87185 USA.
RP Parma, EJ (reprint author), Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA.
EM ejparma@sandia.gov
NR 9
TC 0
Z9 0
U1 0
U2 0
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 01003
DI 10.1051/epjconf/201610601003
PG 9
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700003
ER
PT S
AU Remec, I
Rosseel, TM
Field, KG
Le Pape, Y
AF Remec, Igor
Rosseel, Thomas M.
Field, Kevin G.
Le Pape, Yann
BE Lyoussi, A
TI Characterization of Radiation Fields in Biological Shields of Nuclear
Power Plants for Assessing Concrete Degradationa
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
AB Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants.
C1 [Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Le Pape, Yann] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA.
RP Remec, I (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA.
EM remeci@ornl.gov
RI Rosseel, Thomas/J-4086-2016
OI Rosseel, Thomas/0000-0001-9917-7073
NR 14
TC 1
Z9 1
U1 1
U2 3
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 02002
DI 10.1051/epjconf/201610602002
PG 9
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700011
ER
PT S
AU Risner, JM
Blakeman, ED
AF Risner, J. M.
Blakeman, E. D.
BE Lyoussi, A
TI Analysis of dpa Rates in the HFIR Reactor Vessel using a Hybrid Monte
Carlo/Deterministic Method
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
ID VARIANCE REDUCTION
AB The Oak Ridge High Flux Isotope Reactor (HFIR), which began full-power operation in 1966, provides one of the highest steady-state neutron flux levels of any research reactor in the world. An ongoing vessel integrity analysis program to assess radiation-induced embrittlement of the HFIR reactor vessel requires the calculation of neutron and gamma displacements per atom (dpa), particularly at locations near the beam tube nozzles, where radiation streaming effects are most pronounced. In this study we apply the Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) technique in the ADVANTG code to develop variance reduction parameters for use in the MCNP radiation transport code. We initially evaluated dpa rates for dosimetry capsule locations, regions in the vicinity of the HB-2 beamline, and the vessel beltline region. We then extended the study to provide dpa rate maps using three-dimensional cylindrical mesh tallies that extend from approximately 12 in. below to approximately 12 in. above the height of the core. The mesh tally structures contain over 15,000 mesh cells, providing a detailed spatial map of neutron and photon dpa rates at all locations of interest. Relative errors in the mesh tally cells are typically less than 1%.
C1 [Risner, J. M.; Blakeman, E. D.] Oak Ridge Natl Lab, POB 2008,MS 6170, Oak Ridge, TN 37831 USA.
RP Risner, JM (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6170, Oak Ridge, TN 37831 USA.
EM risnerjm@ornl.gov
NR 13
TC 0
Z9 0
U1 2
U2 2
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 03003
DI 10.1051/epjconf/201610603003
PG 9
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700028
ER
PT S
AU Simakov, S
Capote, R
Greenwood, L
Griffin, P
Kahler, A
Pronyaev, V
Trkov, A
Zolotarev, K
AF Simakov, Stanislav
Capote, Roberto
Greenwood, Lawrence
Griffin, Patrick
Kahler, Albert
Pronyaev, Vladimir
Trkov, Andrej
Zolotarev, Konstantin
BE Lyoussi, A
TI Validation of IRDFF in Cf-252 Standard and IRDF-2002 Reference Neutron
Fields
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
ID CROSS-SECTIONS; FISSION; SPECTRUM
AB The results of validation of the latest release of International Reactor Dosimetry and Fusion File, IRDFF-1.03, in the standard Cf-252(s. f.) and reference U-235(nth, f) neutron benchmark fields are presented. The spectrum-averaged cross sections were shown to confirm IRDFF-1.03 in the Cf-252 standard spontaneous fission spectrum; that was not the case for the current recommended spectra for U-235(nth, f). IRDFF was also validated in the spectra of the research reactor facilities ISNF, Sigma-Sigma and YAYOI, which are available in the IRDF-2002 collection. The ISNF facility was re-simulated to remove unphysical oscillations in the spectrum. IRDFF-1.03 was shown to reproduce reasonably well the spectrum-averaged data measured in these fields except for the case of YAYOI.
C1 [Simakov, Stanislav; Capote, Roberto; Trkov, Andrej] IAEA, POB 100, A-1400 Vienna, Austria.
[Greenwood, Lawrence] Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA.
[Griffin, Patrick] Sandia Natl Labs, Org 1340,MS 1146,POB 5800, Albuquerque, NM USA.
[Kahler, Albert] Los Alamos Natl Lab, Bikini Atoll Blvd,POB 1663, Los Alamos, NM USA.
[Pronyaev, Vladimir; Zolotarev, Konstantin] Obninsk Phys & Power Engn Inst, Obninsk 249020, Russia.
RP Simakov, S (reprint author), IAEA, POB 100, A-1400 Vienna, Austria.
EM s.simakov@iaea.org
RI Capote Noy, Roberto/M-1245-2014
OI Capote Noy, Roberto/0000-0002-1799-3438
NR 22
TC 0
Z9 0
U1 0
U2 1
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 04011
DI 10.1051/epjconf/201610604011
PG 9
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700047
ER
PT S
AU Vargas, D
Kurwitz, RC
Carron, I
DePriest, KR
AF Vargas, Danilo
Kurwitz, R. Cable
Carron, Igor
DePriest, K. Russell
BE Lyoussi, A
TI Development of a Neutron Spectroscopic System Utilizing Compressed
Sensing Measurements
SO ISRD 15 - INTERNATIONAL SYMPOSIUM ON REACTOR DOSIMETRY
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 15th International Symposium on Reactor Dosimetry (ISRD)
CY MAY 18-23, 2014
CL Aix en Provence, FRANCE
SP CEA Cadarache, European Working Grp Reactor Dosimetry, Amer Soc Testing & Mat, Comm E10 Nucl Technol & Applicat, AREVA, EDF, Aix Marseille Univ, Fac Sci, Filiere Instrumentat, European Nucl Soc, Amer Nucl Soc, Nucl Energy Agcy, Westinghouse
AB A new approach to neutron detection capable of gathering spectroscopic information has been demonstrated. The approach relies on an asymmetrical arrangement of materials, geometry, and an ability to change the orientation of the detector with respect to the neutron field. Measurements are used to unfold the energy characteristics of the neutron field using a new theoretical framework of compressed sensing. Recent theoretical results show that the number of multiplexed samples can be lower than the full number of traditional samples while providing the ability to have some super-resolution. Furthermore, the solution approach does not require a priori information or inclusion of physics models. Utilizing the MCNP code, a number of candidate detector geometries and materials were modeled. Simulations were carried out for a number of neutron energies and distributions with preselected orientations for the detector. The resulting matrix (A) consists of n rows associated with orientation and m columns associated with energy and distribution where n < m. The library of known responses is used for new measurements Y (n x 1) and the solver is able to determine the system, Y = Ax where x is a sparse vector. Therefore, energy spectrum measurements are a combination of the energy distribution information of the identified elements of A. This approach allows for determination of neutron spectroscopic information using a single detector system with analog multiplexing. The analog multiplexing allows the use of a compressed sensing solution similar to approaches used in other areas of imaging. A single detector assembly provides improved flexibility and is expected to reduce uncertainty associated with current neutron spectroscopy measurement.
C1 [Vargas, Danilo] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA.
[Kurwitz, R. Cable] Texas A&M Univ, Dept Nucl Engn, Syst Engn Initiat, College Stn, TX 77843 USA.
[Carron, Igor] Nuit Blanche, Paris, France.
[DePriest, K. Russell] Sandia Natl Labs, Appl Nucl Technol, POB 5800, Albuquerque, NM 87185 USA.
RP Kurwitz, RC (reprint author), Texas A&M Univ, Dept Nucl Engn, Syst Engn Initiat, College Stn, TX 77843 USA.
EM kurwitz@tamu.edu
NR 12
TC 0
Z9 0
U1 1
U2 3
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1929-4
J9 EPJ WEB CONF
PY 2016
VL 106
AR 07002
DI 10.1051/epjconf/201610607002
PG 8
WC Physics, Applied
SC Physics
GA BE5CT
UT WOS:000372590700072
ER
PT J
AU Agnoli, S
Favaro, M
AF Agnoli, Stefano
Favaro, Marco
TI Doping graphene with boron: a review of synthesis methods,
physicochemical characterization, and emerging applications
SO JOURNAL OF MATERIALS CHEMISTRY A
LA English
DT Review
ID OXYGEN REDUCTION REACTION; CHEMICAL-VAPOR-DEPOSITION; NITROGEN-DOPED
GRAPHENE; LITHIUM ION BATTERIES; METAL-FREE CATALYST; FUEL-CELL CATHODE;
QUANTUM DOTS; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION;
ELECTROCATALYTIC ACTIVITY
AB Graphene based materials can be effectively modified by doping in order to specifically tailor their properties toward specific applications. So far the most used and widely investigated dopant heteroatom is probably nitrogen. However, boron is also an equally important element that can induce novel and complementary properties leading to specific implementation in alternative devices and technologies. In this paper, we survey the most recent preparation methods of boron doped graphene, including materials with specific morphology such as nanoribbons, quantum dots and 3D interconnected systems. We illustrate the results of theoretical and experimental studies dealing with the description and understanding of the main structural, electronic and chemical properties of this material. The emerging applications of boron doped graphene in several technological fields such as electrochemistry, sensors, photovoltaics, catalysis and biology are extensively reviewed.
C1 [Agnoli, Stefano] Univ Padua, Dept Chem Sci, Via F Marzolo 1, I-35131 Padua, Italy.
[Favaro, Marco] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
RP Agnoli, S (reprint author), Univ Padua, Dept Chem Sci, Via F Marzolo 1, I-35131 Padua, Italy.
EM stefano.agnoli@unipd.it
OI Favaro, Marco/0000-0002-3502-8332
FU Italian MIUR through the national grant Futuro in Ricerca "Beyond
graphene: tailored C-layers for novel catalytic materials and green
chemistry" [RBFR128BEC]; University of Padova [CPDA128318/12]; Office of
Science, Office of Basic Energy Science (BES) of the U.S. Department of
Energy (DOE) [DE-SC0004993]
FX This work was partially supported by the Italian MIUR through the
national grant Futuro in Ricerca 2012 RBFR128BEC "Beyond graphene:
tailored C-layers for novel catalytic materials and green chemistry" and
by the University of Padova funded project CPDA128318/12, "Study of the
catalytic activity of complex graphene nanoarchitectures from ideal to
real conditions". MF thanks the support from the Office of Science,
Office of Basic Energy Science (BES) of the U.S. Department of Energy
(DOE) under award no. DE-SC0004993 to the Joint Center for Artificial
Photosynthesis (JCAP).
NR 132
TC 10
Z9 10
U1 84
U2 185
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2050-7488
EI 2050-7496
J9 J MATER CHEM A
JI J. Mater. Chem. A
PY 2016
VL 4
IS 14
BP 5002
EP 5025
DI 10.1039/c5ta10599d
PG 24
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary
SC Chemistry; Energy & Fuels; Materials Science
GA DH9MF
UT WOS:000373119500002
ER
PT J
AU Maiti, D
Daza, YA
Yung, MM
Kuhn, JN
Bhethanabotla, VR
AF Maiti, Debtanu
Daza, Yolanda A.
Yung, Matthew M.
Kuhn, John N.
Bhethanabotla, Venkat R.
TI Oxygen vacancy formation characteristics in the bulk and across
different surface terminations of La(1-x)SrxFe(1-y)CoyO(3-delta)
perovskite oxides for CO2 conversion
SO JOURNAL OF MATERIALS CHEMISTRY A
LA English
DT Article
ID THERMOCHEMICAL FUEL PRODUCTION; STRONTIUM SEGREGATION; FORMATION
ENERGETICS; CARBON-DIOXIDE; CERIA SURFACES; ELECTRON-GAS; THIN-FILMS;
ENERGY; DESCRIPTORS; TEMPERATURE
AB Density functional theory (DFT) based investigation of two parameters of prime interest - oxygen vacancy and surface terminations along (100) and (110) planes - has been conducted for La(1-x)SrxFe(1-y)CoyO(3-delta) perovskite oxides in view of their application towards thermochemical carbon dioxide conversion reactions. The bulk oxygen vacancy formation energies for these mixed perovskite oxides are found to increase with increasing lanthanum and iron contents in the 'A' site and 'B' site, respectively. Surface terminations along (100) and (110) crystal planes are studied to probe their stability and their capabilities to accommodate surface oxygen vacancies. Amongst the various terminations, the oxygen-rich (110) surface and strontium-rich (100) surface are the most stable, while transition metal-rich terminations along (100) revealed preference towards the production of oxygen vacancies. The carbon dioxide adsorption strength, a key descriptor for CO2 conversion reactions, is found to increase on oxygen vacant surfaces thus establishing the importance of oxygen vacancies in CO2 conversion reactions. Amongst all the surface terminations, the lanthanum-oxygen terminated surface exhibited the strongest CO2 adsorption strength. The theoretical prediction of the oxygen vacancy trends and the stability of the samples were corroborated by the temperature-programmed reduction and oxidation reactions and in situ XRD crystallography.
C1 [Maiti, Debtanu; Daza, Yolanda A.; Kuhn, John N.; Bhethanabotla, Venkat R.] Univ S Florida, Tampa, FL 33620 USA.
[Yung, Matthew M.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Bhethanabotla, VR (reprint author), Univ S Florida, Tampa, FL 33620 USA.
EM bhethana@usf.edu
FU NSF [CBET-1335817, CHE-1531590]; Office of Graduate Studies, USF; USF
School of Graduate Studies; Florida Education Fund; NASA Florida Space
Grant Consortium
FX The authors acknowledge NSF award CBET-1335817 and CHE-1531590 for
financial support and USF Research Computing. DM acknowledges the Office
of Graduate Studies, USF for the USF Graduate Fellowship. YAD
acknowledges the USF School of Graduate Studies for the Graduate Student
Success Fellowship, the Florida Education Fund for the McKnight
Dissertation Fellowship and the NASA Florida Space Grant Consortium for
the Dissertation Improvement Fellowship. The authors thank Ryan A. Kent
for his help with synthesis of the samples.
NR 68
TC 1
Z9 1
U1 6
U2 25
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2050-7488
EI 2050-7496
J9 J MATER CHEM A
JI J. Mater. Chem. A
PY 2016
VL 4
IS 14
BP 5137
EP 5148
DI 10.1039/c5ta10284g
PG 12
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary
SC Chemistry; Energy & Fuels; Materials Science
GA DH9MF
UT WOS:000373119500018
ER
PT J
AU Yang, X
Tang, Y
Cai, D
Zhang, L
Du, Y
Zhou, S
AF Yang, X.
Tang, Y.
Cai, D.
Zhang, L.
Du, Y.
Zhou, S.
TI COMPARATIVE ANALYSIS OF DIFFERENT NUMERICAL SCHEMES IN SOLUTE TRAPPING
SIMULATIONS BY USING THE PHASE-FIELD MODEL WITH FINITE INTERFACE
DISSIPATION
SO JOURNAL OF MINING AND METALLURGY SECTION B-METALLURGY
LA English
DT Article
DE Phase-field modeling; Solute trapping; Rapid solidification; Numerical
scheme
ID RAPID SOLIDIFICATION; LOCAL-NONEQUILIBRIUM; BINARY-ALLOYS; DIFFUSION;
GROWTH; MOTION
AB Two different numerical schemes, the standard explicit scheme and the time-elimination relaxation one, in the framework of phase-field model with finite interface dissipation were employed to investigate the solute trapping effect in a Si-4.5 at.% As alloy during rapid solidification. With the equivalent input, a unique solute distribution under the steady state can be obtained by using the two schemes without restriction to numerical length scale and interface velocity. By adjusting interface width and interface permeability, the experimental solute segregation coefficients can be well reproduced. The comparative analysis of advantages and disadvantages in the two numerical schemes indicates that the time-elimination relaxation scheme is preferable in one-dimensional phase-field simulation, while the standard explicit scheme seems to be the only choice for two- or three dimensional phase-field simulation. Furthermore, the kinetic phase diagrams in the Si-As system were predicted by using the phase-field simulation with the time-elimination relaxation scheme.
C1 [Yang, X.; Tang, Y.; Cai, D.; Zhang, L.; Du, Y.] Cent S Univ, State Key Lab Powder Met, Changsha, Hunan, Peoples R China.
[Zhou, S.] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA.
RP Zhang, L (reprint author), Cent S Univ, State Key Lab Powder Met, Changsha, Hunan, Peoples R China.
EM lijun.zhang@csu.edu.cn
FU National Natural Science Foundation for Youth of China [51301208];
National Natural Science Foundation of China [51474239]; Hunan
Provincial Natural Science Foundation for Youth of China [2015JJ3146];
Innovation Foundation For Postgraduate of Central South University,
Changsha, People's Republic of China; Fundamental Research Funds of
Central South University, Changsha, People's Republic of China
[2015zzts030]; China Scholarship Council [201506370114]; Central South
University, Changsha, P.R. China
FX The authors would like to acknowledge financial support from National
Natural Science Foundation for Youth of China under Grant No. 51301208,
National Natural Science Foundation of China under Grant No. 51474239,
Hunan Provincial Natural Science Foundation for Youth of China under
Grant No. 2015JJ3146, Innovation Foundation For Postgraduate and
Fundamental Research Funds of Central South University (Grant No.
2015zzts030),Changsha, People's Republic of China and the State
Scholarship Fund from China Scholarship Council (No.201506370114). Lijun
Zhang acknowledges support from Shenghua Scholar Program of Central
South University, Changsha, P.R. China.
NR 32
TC 2
Z9 2
U1 0
U2 2
PU TECHNICAL FACULTY, BOR-SERBIA
PI BOR
PA UNIV BELGRADE, VOJSKE JUGOSLAVIJE 12, BOR, 19210, SERBIA
SN 1450-5339
J9 J MIN METALL B
JI J. Min. Metall. Sect. B-Metall.
PY 2016
VL 52
IS 1
BP 77
EP 85
DI 10.2298/JMMB150716010Y
PG 9
WC Metallurgy & Metallurgical Engineering
SC Metallurgy & Metallurgical Engineering
GA DH4QW
UT WOS:000372771500011
ER
PT J
AU Chen, AP
Chu, YH
Li, RW
Fix, T
Hu, JM
AF Chen, Aiping
Chu, Ying-Hao
Li, Run-Wei
Fix, Thomas
Hu, Jia-Mian
TI Functional Oxide Thin Films and Nanostructures: Growth, Interface, and
Applications
SO JOURNAL OF NANOMATERIALS
LA English
DT Editorial Material
ID NANOCOMPOSITE
C1 [Chen, Aiping] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA.
[Chu, Ying-Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan.
[Li, Run-Wei] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Magnet Mat & Devices, Ningbo 315201, Zhejiang, Peoples R China.
[Fix, Thomas] Univ Strasbourg, CNRS, Lab ICube, F-67037 Strasbourg, France.
[Hu, Jia-Mian] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
RP Chen, AP (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA.
EM apchen@lanl.gov
RI Ying-Hao, Chu/A-4204-2008; Chen, Aiping/F-3212-2011; Xia,
YuQing/C-9724-2017
OI Ying-Hao, Chu/0000-0002-3435-9084; Chen, Aiping/0000-0003-2639-2797;
NR 9
TC 0
Z9 0
U1 7
U2 14
PU HINDAWI PUBLISHING CORP
PI NEW YORK
PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA
SN 1687-4110
EI 1687-4129
J9 J NANOMATER
JI J. Nanomater.
PY 2016
AR 7198726
DI 10.1155/2016/7198726
PG 2
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA DI4UE
UT WOS:000373494100001
ER
PT J
AU Ha, J
Chae, S
Chou, KW
Tyliszczak, T
Monteiro, PJM
AF Ha, J.
Chae, S.
Chou, K. W.
Tyliszczak, T.
Monteiro, P. J. M.
TI Characterization of Class F Fly Ash Using STXM: Identifying
Intraparticle Heterogeneity at Nanometer Scale
SO JOURNAL OF NANOMATERIALS
LA English
DT Article
ID BURNING POWER-PLANTS; POZZOLANIC REACTIVITY; MAS NMR; SEM-EDS; ZEOLITES;
ALUMINUM; CONCRETE; CEMENT; MICROSTRUCTURE; GEOPOLYMERS
AB Chemical and physical characterization of fly ash particles were conducted using scanning transmission X-ray microscopy (STXM). Compositional and spatial investigation and correlation among the main elemental constituents of fly ash (Al, Si, and Fe) were conducted based on microscopic and NEXAFS spectral analysis. Homogeneous oxidation and coordination state of Al and Fe were observed whereas Si shows spatial variation in its chemical state. We also identified that Si and Al are spatially correlated at nanometer scale in which high concentration of Si and Al was concurrently and consistently observed within the 30 nm resolution whereas Fe distribution did not show any specific correlation to Al and Si. Results of this study indicate that fly ash chemical composition has heterogeneous distribution depending on the elements which would determine and result in the differences in the reactivity.
C1 [Ha, J.] Kean Univ, Sch Environm & Sustainabil Sci, Union, NJ 07083 USA.
[Chae, S.; Monteiro, P. J. M.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA.
[Chou, K. W.; Tyliszczak, T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Chou, K. W.] Henkel Iberica SA, Edificio Eureka,Campus UAB, Barcelona 08193, Spain.
RP Ha, J (reprint author), Kean Univ, Sch Environm & Sustainabil Sci, Union, NJ 07083 USA.
EM haj@kean.edu
FU Republic of Singapore's National Research Foundation; Office of Science,
Office of Basic Energy Sciences, of the US Department of Energy
[DE-AC02-05CH11231]
FX This research is funded by the Republic of Singapore's National Research
Foundation through a grant to the Berkeley Education Alliance for
Research in Singapore (BEARS) for the Singapore-Berkeley Building
Efficiency and Sustainability in the Tropics (SinBerBEST) Program. The
authors also wish to acknowledge Professor Wenk at University of
California at Berkeley who helped them prepare STXM samples and Timothy
Teague at University of California at Berkeley with his help on sample
preparation. The Advanced Light Source is supported by the Director,
Office of Science, Office of Basic Energy Sciences, of the US Department
of Energy under Contract no. DE-AC02-05CH11231.
NR 44
TC 0
Z9 0
U1 2
U2 4
PU HINDAWI PUBLISHING CORP
PI NEW YORK
PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA
SN 1687-4110
EI 1687-4129
J9 J NANOMATER
JI J. Nanomater.
PY 2016
AR 8072518
DI 10.1155/2016/8072518
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA DH7XP
UT WOS:000373007700001
ER
PT J
AU Lu, XJ
Xia, BY
Liu, CM
Yang, YF
Tang, H
AF Lu, Xujie
Xia, Baoyu
Liu, Cunming
Yang, Yefeng
Tang, Hao
TI TiO2-Based Nanomaterials for Advanced Environmental and Energy-Related
Applications
SO JOURNAL OF NANOMATERIALS
LA English
DT Editorial Material
ID PEROVSKITE SOLAR-CELLS; PHOTOCATALYTIC ACTIVITY; TIO2 FILMS; EFFICIENCY;
STRATEGY; SPHERES
C1 [Lu, Xujie] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA.
[Xia, Baoyu] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore.
[Liu, Cunming] Univ S Florida, Dept Phys, 4202 East Fowler Ave, Tampa, FL 33620 USA.
[Yang, Yefeng] Zhejiang Sci Tech Univ, Dept Mat Engn, Coll Mat & Text, Hangzhou 310018, Zhejiang, Peoples R China.
[Tang, Hao] Rutgers State Univ, Dept Chem, 73 Warren St, Newark, NJ 07102 USA.
RP Lu, XJ (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA.
EM xujie@lanl.gov
RI Liu, Cunming/K-2976-2014; Tang, Hao/D-6482-2013; Lu, Xujie/L-9672-2014
OI Tang, Hao/0000-0003-1063-881X; Lu, Xujie/0000-0001-8402-7160
NR 18
TC 0
Z9 0
U1 6
U2 19
PU HINDAWI PUBLISHING CORP
PI NEW YORK
PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA
SN 1687-4110
EI 1687-4129
J9 J NANOMATER
JI J. Nanomater.
PY 2016
AR 8735620
DI 10.1155/2016/8735620
PG 3
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA DH7YB
UT WOS:000373008900001
ER
PT S
AU De, K
Klimentov, A
Maeno, T
Mashinistov, R
Nilsson, P
Oleynik, D
Panitkin, S
Ryabinkin, E
Wenaus, T
AF De, K.
Klimentov, A.
Maeno, T.
Mashinistov, R.
Nilsson, P.
Oleynik, D.
Panitkin, S.
Ryabinkin, E.
Wenaus, T.
BE Adam, GH
Busa, J
Hnatic, M
TI Accelerating Science Impact through Big Data Workflow Management and
Supercomputing
SO MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS (MMCP 2015)
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT Conference on Mathematical Modeling and Computational Physics (MMCP)
CY JUL 13-17, 2015
CL Acad Congress Ctr, Stara Lesna, SLOVAKIA
SP Joint Inst Nucl Res, Inst Experimental Phys SAS, Slovak Phys Soc, Univ Pavol Jozef Safarik, Tech Univ, IFIN HH
HO Acad Congress Ctr
AB The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. ATLAS, one of the largest collaborations ever assembled in the the history of science, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. To manage the workflow for all data processing on hundreds of data centers the PanDA (Production and Distributed Analysis) Workload Management System is used. An ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF), is realizing within BigPanDA and megaPanDA projects. These projects are now exploring how PanDA might be used for managing computing jobs that run on supercomputers including OLCF's Titan and NRC-KI HPC2. The main idea is to reuse, as much as possible, existing components of the PanDA system that are already deployed on the LHC Grid for analysis of physics data. The next generation of PanDA will allow many data-intensive sciences employing a variety of computing platforms to benefit from ATLAS experience and proven tools in highly scalable processing.
C1 [De, K.; Oleynik, D.] Univ Texas Arlington, Phys Dept, 502 Yates St, Arlington, TX 76019 USA.
[Klimentov, A.; Maeno, T.; Nilsson, P.; Panitkin, S.; Wenaus, T.] Brookhaven Natl Lab, Phys Dept, Long Isl City, NY 11973 USA.
[Klimentov, A.; Mashinistov, R.; Ryabinkin, E.] IV Kurchatov Atom Energy Inst, Natl Res Ctr, Kurchatov Complex NBIC Technol, 1 Akad Kurchatova Pl, Moscow 123182, Russia.
[Oleynik, D.] Joint Inst Nucl Res, Lab Informat Technol, Dubna 141980, Moscow Region, Russia.
RP Mashinistov, R (reprint author), IV Kurchatov Atom Energy Inst, Natl Res Ctr, Kurchatov Complex NBIC Technol, 1 Akad Kurchatova Pl, Moscow 123182, Russia.
EM Ruslan.Mashinistov@cern.ch
RI Mashinistov, Ruslan/M-8356-2015
OI Mashinistov, Ruslan/0000-0001-7925-4676
NR 12
TC 0
Z9 0
U1 0
U2 7
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1944-7
J9 EPJ WEB CONF
PY 2016
VL 108
AR 01003
DI 10.1051/epjconf/201610801003
PG 9
WC Physics, Mathematical
SC Physics
GA BE5FR
UT WOS:000372783700003
ER
PT S
AU Megino, FB
Bejar, JC
De, K
Hover, J
Klimentov, A
Maeno, T
Nilsson, P
Oleynik, D
Padolski, S
Panitkin, S
Petrosyan, A
Wenaus, T
AF Megino, Fernando Barreiro
Bejar, Jose Caballero
De, Kaushik
Hover, John
Klimentov, Alexei
Maeno, Tadashi
Nilsson, Paul
Oleynik, Danila
Padolski, Siarhei
Panitkin, Sergey
Petrosyan, Artem
Wenaus, Torre
CA ATLAS Collaboration
BE Adam, GH
Busa, J
Hnatic, M
TI PanDA: Exascale Federation of Resources for the ATLAS Experiment at the
LHC
SO MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS (MMCP 2015)
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT Conference on Mathematical Modeling and Computational Physics (MMCP)
CY JUL 13-17, 2015
CL Acad Congress Ctr, Stara Lesna, SLOVAKIA
SP Joint Inst Nucl Res, Inst Experimental Phys SAS, Slovak Phys Soc, Univ Pavol Jozef Safarik, Tech Univ, IFIN HH
HO Acad Congress Ctr
AB After a scheduled maintenance and upgrade period, the world's largest and most powerful machine - the Large Hadron Collider(LHC) - is about to enter its second run at unprecedented energies. In order to exploit the scientific potential of the machine, the experiments at the LHC face computational challenges with enormous data volumes that need to be analysed by thousand of physics users and compared to simulated data. Given diverse funding constraints, the computational resources for the LHC have been deployed in a worldwide mesh of data centres, connected to each other through Grid technologies.
The PanDA (Production and Distributed Analysis) system was developed in 2005 for the ATLAS experiment on top of this heterogeneous infrastructure to seamlessly integrate the computational resources and give the users the feeling of a unique system. Since its origins, PanDA has evolved together with upcoming computing paradigms in and outside HEP, such as changes in the networking model, Cloud Computing and HPC. It is currently running steadily up to 200 thousand simultaneous cores (limited by the available resources for ATLAS), up to two million aggregated jobs per day and processes over an exabyte of data per year. The success of PanDA in ATLAS is triggering the widespread adoption and testing by other experiments. In this contribution we will give an overview of the PanDA components and focus on the new features and upcoming challenges that are relevant to the next decade of distributed computing workload management using PanDA.
C1 [Megino, Fernando Barreiro; De, Kaushik; Oleynik, Danila] Univ Texas Arlington, 502 Yates St, Arlington, TX 76019 USA.
[Bejar, Jose Caballero; Hover, John; Klimentov, Alexei; Maeno, Tadashi; Nilsson, Paul; Padolski, Siarhei; Panitkin, Sergey; Wenaus, Torre] Brookhaven Natl Lab, Long Isl City, NY 11973 USA.
[Oleynik, Danila; Petrosyan, Artem] Joint Inst Nucl Res, Joliot Curie 6, Dubna 141980, Russia.
RP Megino, FB (reprint author), Univ Texas Arlington, 502 Yates St, Arlington, TX 76019 USA.
EM barreiro@uta.edu
NR 19
TC 0
Z9 0
U1 2
U2 2
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1944-7
J9 EPJ WEB CONF
PY 2016
VL 108
AR 01001
DI 10.1051/epjconf/201610801001
PG 12
WC Physics, Mathematical
SC Physics
GA BE5FR
UT WOS:000372783700001
ER
PT J
AU Choi, JJ
Billinge, SJL
AF Choi, Joshua J.
Billinge, Simon J. L.
TI Perovskites at the nanoscale: from fundamentals to applications
SO NANOSCALE
LA English
DT Editorial Material
ID HIGH-PERFORMANCE; SOLAR-CELLS; HALIDE PEROVSKITES; SINGLE-CRYSTALS;
CH3NH3PBI3; DIFFUSION; LENGTHS
C1 [Choi, Joshua J.] Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA.
[Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
[Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RP Choi, JJ (reprint author), Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA.; Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.; Billinge, SJL (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
EM jjc6z@virginia.edu; sb2896@columbia.edu
NR 17
TC 2
Z9 2
U1 4
U2 18
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2040-3364
EI 2040-3372
J9 NANOSCALE
JI Nanoscale
PY 2016
VL 8
IS 12
BP 6206
EP 6208
DI 10.1039/c6nr90040b
PG 3
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DH5SG
UT WOS:000372851500001
PM 26949130
ER
PT J
AU Zhou, YY
Yang, MJ
Kwun, J
Game, OS
Zhao, YX
Pang, SP
Padture, NP
Zhu, K
AF Zhou, Yuanyuan
Yang, Mengjin
Kwun, Joonsuh
Game, Onkar S.
Zhao, Yixin
Pang, Shuping
Padture, Nitin P.
Zhu, Kai
TI Intercalation crystallization of phase-pure alpha-HC-(NH2)(2)PbI3 upon
microstructurally engineered PbI2 thin films for planar perovskite solar
cells
SO NANOSCALE
LA English
DT Article
ID FORMAMIDINIUM LEAD TRIHALIDE; HOLE-CONDUCTOR-FREE; PERFORMANCE; IODIDE;
LIGHT
AB The microstructure of the solid-PbI2 precursor thin film plays an important role in the intercalation crystallization of the formamidinium lead triiodide perovskite (alpha-HC(NH2)(2)PbI3). It is shown that microstructurally engineered PbI2 thin films with porosity and low crystallinity are the most favorable for conversion into uniform-coverage, phase-pure alpha-HC(NH2)(2)PbI3 perovskite thin films. Planar perovskite solar cells fabricated using these thin films deliver power conversion efficiency (PCE) up to 13.8%.
C1 [Zhou, Yuanyuan; Kwun, Joonsuh; Game, Onkar S.; Padture, Nitin P.] Brown Univ, Sch Engn, Providence, RI 02912 USA.
[Yang, Mengjin; Zhu, Kai] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA.
[Zhao, Yixin] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, Shanghai 200240, Peoples R China.
[Pang, Shuping] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China.
RP Padture, NP (reprint author), Brown Univ, Sch Engn, Providence, RI 02912 USA.; Zhu, K (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA.
EM nitin_padture@brown.edu; kai.zhu@nrel.gov
RI Zhao, Yixin/D-2949-2012; Zhou, Yuanyuan/G-2173-2011; Padture,
Nitin/A-9746-2009
OI Zhou, Yuanyuan/0000-0002-8364-4295; Padture, Nitin/0000-0001-6622-8559
FU National Science Foundation [DMR-1305913, OIA-1538893]; U.S. Department
of Energy SunShot Initiative under Next Generation Photovoltaics 3
program [DE-FOA-0000990, DE-AC36-08-GO28308]
FX Y. Z., J. K., O. S. G. and N. P. P acknowledge the support from the
National Science Foundation (award nos. DMR-1305913 and OIA-1538893). M.
Y. and K. Z. acknowledge the support from the U.S. Department of Energy
SunShot Initiative under the Next Generation Photovoltaics 3 program
(DE-FOA-0000990) for the work performed at the National Renewable Energy
Laboratory (contract no. DE-AC36-08-GO28308).
NR 32
TC 10
Z9 11
U1 10
U2 46
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2040-3364
EI 2040-3372
J9 NANOSCALE
JI Nanoscale
PY 2016
VL 8
IS 12
BP 6265
EP 6270
DI 10.1039/c5nr06189j
PG 6
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DH5SG
UT WOS:000372851500007
PM 26549434
ER
PT J
AU Zhou, M
Qian, HF
Sfeir, MY
Nobusada, K
Jin, RC
AF Zhou, Meng
Qian, Huifeng
Sfeir, Matthew Y.
Nobusada, Katsuyuki
Jin, Rongchao
TI Effects of single atom doping on the ultrafast electron dynamics of
M1Au24(SR)(18) (M = Pd, Pt) nanoclusters
SO NANOSCALE
LA English
DT Article
ID RELAXATION DYNAMICS; OPTICAL-PROPERTIES; GOLD NANOCLUSTERS; AU-25
NANOCLUSTERS; CRYSTAL-STRUCTURE; AU NANOCLUSTERS; CLUSTERS;
SPECTROSCOPY; LIGHT; NANOSTRUCTURES
AB Atomically precise, doped metal clusters are receiving wide research interest due to their synergistic properties dependent on the metal composition. To understand the electronic properties of doped clusters, it is highly desirable to probe the excited state behavior. Here, we report the ultrafast relaxation dynamics of doped M-1@Au-24(SR)(18) (M = Pd, Pt; R = CH2CH2Ph) clusters using femtosecond visible and near infrared transient absorption spectroscopy. Three relaxation components are identified for both mono-doped clusters: (1) sub-picosecond relaxation within the M1Au12 core states; (2) core to shell relaxation in a few picoseconds; and (3) relaxation back to the ground state in more than one nanosecond. Despite similar relaxation pathways for the two doped nanoclusters, the coupling between the metal core and surface ligands is accelerated by over 30% in the case of the Pt dopant compared with the Pd dopant. Compared to Pd doping, the case of Pt doping leads to much more drastic changes in the steady state and transient absorption of the clusters, which indicates that the 5d orbitals of the Pt atom are more strongly mixed with Au 5d and 6s orbitals than the 4d orbitals of the Pd dopant. These results demonstrate that a single foreign atom can lead to entirely different excited state spectral features of the whole cluster compared to the parent Au-25(SR)(18) cluster. The detailed excited state dynamics of atomically precise Pd/Pt doped gold clusters help further understand their properties and benefit the development of energy-related applications.
C1 [Zhou, Meng; Qian, Huifeng; Jin, Rongchao] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA.
[Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Nobusada, Katsuyuki] Inst Mol Sci, Dept Theoret & Computat Mol Sci, Okazaki, Aichi 4448585, Japan.
[Nobusada, Katsuyuki] Kyoto Univ, Elements Strategy Initiat Catalysts & Batteries, Katsura, Kyoto 6158520, Japan.
RP Jin, RC (reprint author), Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA.
EM rongchao@andrew.cmu.edu
FU Air Force Office of Scientific Research under AFOSR Award
[FA9550-15-1-9999 (FA9550-15-1-0154)]; JSPS KAKENHI [25288012]; Elements
Strategy Initiative for Catalysts & Batteries (ESICB); Strategic
Programs for Innovative Research (SPIRE), MEXT Japan; U.S. DOE Office of
Science Facility, at Brookhaven National Laboratory [DE-SC0012704]
FX R. J. acknowledges financial support from the Air Force Office of
Scientific Research under AFOSR Award no. FA9550-15-1-9999
(FA9550-15-1-0154). K. N. acknowledges financial support by JSPS KAKENHI
Grant Number 25288012, Elements Strategy Initiative for Catalysts &
Batteries (ESICB), the Strategic Programs for Innovative Research
(SPIRE), MEXT Japan. The femtosecond experiments used resources of the
Center for Functional Nanomaterials, which is a U.S. DOE Office of
Science Facility, at Brookhaven National Laboratory under Contract No.
DE-SC0012704.
NR 52
TC 6
Z9 6
U1 12
U2 32
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2040-3364
EI 2040-3372
J9 NANOSCALE
JI Nanoscale
PY 2016
VL 8
IS 13
BP 7163
EP 7171
DI 10.1039/c6nr01008c
PG 9
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DH8QO
UT WOS:000373060600028
PM 26967673
ER
PT J
AU Zhong, CY
Chen, YP
Xie, YE
Yang, SYA
Cohen, ML
Zhang, SB
AF Zhong, Chengyong
Chen, Yuanping
Xie, Yuee
Yang, Shengyuan A.
Cohen, Marvin L.
Zhang, S. B.
TI Towards three-dimensional Weyl-surface semimetals in graphene networks
SO NANOSCALE
LA English
DT Article
ID CARBON ALLOTROPES; FERMI ARCS; PHASE; DISCOVERY; POINTS; TAAS
AB Graphene as a two-dimensional topological semimetal has attracted much attention for its outstanding properties. In contrast, three-dimensional (3D) topological semimetals of carbon are still rare. Searching for such materials with salient physics has become a new direction in carbon research. Here, using first-principles calculations and tight-binding modeling, we propose a new class of Weyl semimetals based on three types of 3D graphene networks. In the band structures of these materials, two flat Weyl surfaces appear in the Brillouin zone, which straddle the Fermi level and are robust against external strain. Their unique atomic and electronic structures enable applications in correlated electronics, as well as in energy storage, molecular sieves, and catalysis. When the networks are cut, the resulting slabs and nanowires remain semimetallic with Weyl lines and points at the Fermi surfaces, respectively. Between the Weyl lines, flat surface bands emerge with possible strong magnetism. The robustness of these structures can be traced back to a bulk topological invariant, ensured by the sublattice symmetry, and to the one-dimensional Weyl semimetal behavior of the zigzag carbon chain.
C1 [Zhong, Chengyong; Chen, Yuanping; Xie, Yuee] Xiangtan Univ, Sch Phys & Optoelect, Xiangtan 411105, Hunan, Peoples R China.
[Yang, Shengyuan A.] Singapore Univ Technol & Design, Res Lab Quantum Mat, Singapore 487372, Singapore.
[Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Cohen, Marvin L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Zhang, S. B.] Rensselaer Polytech Inst, Dept Phys, Appl Phys & Astron, Troy, NY 12180 USA.
RP Chen, YP; Xie, YE (reprint author), Xiangtan Univ, Sch Phys & Optoelect, Xiangtan 411105, Hunan, Peoples R China.; Zhang, SB (reprint author), Rensselaer Polytech Inst, Dept Phys, Appl Phys & Astron, Troy, NY 12180 USA.
EM chenyp@xtu.edu.cn; xieyech@xtu.edu.cn; zhangs9@rpi.edu
RI Yang, Shengyuan/L-2848-2014
OI Yang, Shengyuan/0000-0001-6003-1501
FU National Natural Science Foundation of China [51176161, 51376005,
11474243]; Hunan Provincial Innovation Foundation for Post-graduate
[CX2015B211]; Lawrence Berkeley National Lab through the Office of Basic
Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; National
Science Foundation [DMR15-1508412]; US DOE [DE-SC0002623];
[SUTD-SRG-EPD2013062]; [SUTD-T1-2015004]
FX This work was supported by the National Natural Science Foundation of
China (No. 51176161, 51376005 and, 11474243) and the Hunan Provincial
Innovation Foundation for Post-graduate (No. CX2015B211). SAY was
supported by SUTD-SRG-EPD2013062 and SUTD-T1-2015004. MLC was supported
by the sp2 bonded materials program at the Lawrence Berkeley
National Lab through the Office of Basic Energy Sciences, U.S.
Department of Energy under Contract No. DE-AC02-05CH11231, and by the
National Science Foundation under Grant No. DMR15-1508412. SBZ
acknowledges support by US DOE under Grant No. DE-SC0002623.
NR 48
TC 4
Z9 4
U1 11
U2 36
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2040-3364
EI 2040-3372
J9 NANOSCALE
JI Nanoscale
PY 2016
VL 8
IS 13
BP 7232
EP 7239
DI 10.1039/c6nr00882h
PG 8
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DH8QO
UT WOS:000373060600037
PM 26971563
ER
PT J
AU Hedrick, PW
Hellsten, U
Grattapaglia, D
AF Hedrick, Philip W.
Hellsten, Uffe
Grattapaglia, Dario
TI Examining the cause of high inbreeding depression: analysis of
whole-genome sequence data in 28 selfed progeny of Eucalyptus grandis
SO NEW PHYTOLOGIST
LA English
DT Article
DE Eucalyptus grandis; heterozygosity; heterozygote advantage; linkage
disequilibrium; pseudo-overdominance; tree; viability
ID GLOBULUS; GROWTH
AB The genome-wide heterozygosity at 9590 genes, all heterozygous in a single Eucalyptus grandis parent tree, was examined in a group of 28 S-1 offspring. Heterozygosity ranged from 52-79%, averaging 65.5%, much higher than the 50% expected under random segregation, supporting the occurrence of strong (47%) selection against homozygosity.
The expected pattern of heterozygosity from theoretical calculations and simulations for recessive detrimentals (pseudo-overdominance) and intrinsic heterozygote advantage was examined and compared with that observed. The observed patterns are consistent with at least several detrimental loci with large effects on both parental chromosomes of the 11 pairs. It is likely that 100 or more genes, many with substantial effects on viability, are contributing to this inbreeding depression.
Although our genome-wide analysis of nearly 10 000 genes strongly suggested that pseudo-overdominance was responsible for the observed high inbreeding depression, heterozygote advantage could not be excluded.
Finding inconvertible evidence of the cause of inbreeding depression still presents a difficult challenge. This study is the first theoretical examination of the genomic effect of inbreeding in a forest tree and provides an approach to analyze these data to determine the extent and cause of inbreeding depression across other plant genomes.
C1 [Hedrick, Philip W.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA.
[Hellsten, Uffe] US Dept Energy Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA.
[Grattapaglia, Dario] PqEB, EMBRAPA Recursos Genet & Biotecnol, Lab Genet Vegetal, BR-70770970 Brasilia, DF, Brazil.
[Grattapaglia, Dario] Univ Catolica Brasilia, Programa Ciencias Genom & Biotecnol, SGAN 916, BR-70790160 Brasilia, DF, Brazil.
RP Hedrick, PW (reprint author), Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA.
EM philip.hedrick@asu.edu
FU University of California, Lawrence Berkeley National Laboratory
[DE-AC02-05CH11231]; Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; US Department of Energy's Office of Science,
Biological and Environmental Research Program; Los Alamos National
Laboratory [DE-AC02-06NA25396]; Brazilian Ministry of Science,
Technology and Innovation through its agency CNPq; Brazilian Federal
District Research Foundation (FAP-DF)
FX P.W.H. thanks the Ullman Professorship for partial support. Sequencing
and sequence analysis were performed under the auspices of the US
Department of Energy's Office of Science, Biological and Environmental
Research Program, and by the University of California, Lawrence Berkeley
National Laboratory under contract no. DE-AC02-05CH11231, Lawrence
Livermore National Laboratory under contract no. DE-AC52-07NA27344, and
Los Alamos National Laboratory under contract no. DE-AC02-06NA25396. DG
thanks the Brazilian Ministry of Science, Technology and Innovation
through its agency CNPq and the Brazilian Federal District Research
Foundation (FAP-DF) for support. We appreciate the comments of M.
Bruford, D. Charlesworth, A. Garcia-Dorado, D. Hedgecock, O. Savolainen,
J. Wang and several anonymous reviewers on earlier versions of the
manuscript and the effort by D. Hedgecock to identify vQTLs.
NR 22
TC 8
Z9 8
U1 5
U2 13
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0028-646X
EI 1469-8137
J9 NEW PHYTOL
JI New Phytol.
PD JAN
PY 2016
VL 209
IS 2
BP 600
EP 611
DI 10.1111/nph.13639
PG 12
WC Plant Sciences
SC Plant Sciences
GA DI3CT
UT WOS:000373376500018
PM 26356869
ER
PT J
AU Coleman-Derr, D
Desgarennes, D
Fonseca-Garcia, C
Gross, S
Clingenpeel, S
Woyke, T
North, G
Visel, A
Partida-Martinez, LP
Tringe, SG
AF Coleman-Derr, Devin
Desgarennes, Damaris
Fonseca-Garcia, Citlali
Gross, Stephen
Clingenpeel, Scott
Woyke, Tanja
North, Gretchen
Visel, Axel
Partida-Martinez, Laila P.
Tringe, Susannah G.
TI Plant compartment and biogeography affect microbiome composition in
cultivated and native Agave species
SO NEW PHYTOLOGIST
LA English
DT Article
DE Agave; biogeography; cultivation; desert; iTags; microbial diversity;
plant microbiome; plant-microbe interactions
ID CRASSULACEAN ACID METABOLISM; BACTERIAL ROOT MICROBIOTA; FUNGAL
COMMUNITY ANALYSIS; RHIZOSPHERE MICROBIOME; BIOFUEL FEEDSTOCK;
DIVERSITY; SEQUENCES; MICROORGANISMS; EFFICIENCY; CONVERSION
AB Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood.
Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing.
Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere.
Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions.
C1 [Coleman-Derr, Devin; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; Visel, Axel; Tringe, Susannah G.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.
[Coleman-Derr, Devin; Gross, Stephen; Clingenpeel, Scott; Woyke, Tanja; Visel, Axel; Tringe, Susannah G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA.
[Coleman-Derr, Devin] USDA ARS, Ctr Plant Gene Express, Albany, CA 94710 USA.
[Desgarennes, Damaris; Fonseca-Garcia, Citlali; Partida-Martinez, Laila P.] Ctr Invest & Estudios Avanzados, Dept Ingn Genet, Irapuato 36821, Mexico.
[North, Gretchen] Occidental Coll, Dept Biol, Los Angeles, CA 90041 USA.
[Visel, Axel] Univ Calif Merced, Sch Nat Sci, Merced, CA 95343 USA.
RP Visel, A; Tringe, SG (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.; Visel, A; Tringe, SG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA.; Partida-Martinez, LP (reprint author), Ctr Invest & Estudios Avanzados, Dept Ingn Genet, Irapuato 36821, Mexico.; Visel, A (reprint author), Univ Calif Merced, Sch Nat Sci, Merced, CA 95343 USA.
EM avisel@lbl.gov; laila.partida@ira.cinvestav.mx; sgtringe@lbl.gov
RI Partida-Martinez, Laila/A-5935-2009; Visel, Axel/A-9398-2009;
OI Partida-Martinez, Laila/0000-0001-8037-2856; Visel,
Axel/0000-0002-4130-7784; Gross, Stephen/0000-0003-0711-787X
FU JGI Community Science Program (CSP); US Department of Energy Joint
Genome Institute, a DOE Office of Science User Facility
[DE-AC02-05CH11231]; Consejo Nacional de Ciencia y Tecnologia in Mexico
(CONACyT) [CB-2010-01-151007, INFR-2012-01-197799]
FX We thank Kanwar Singh (Joint Genome Institute) for technical assistance
during library construction, Derek Lundberg (Department of Biology, UNC)
for support with the PNA protocol for 16S amplification, Edward Kirton
(Joint Genome Institute) for bioinformatic and analytical support,
Susanna Theroux (Joint Genome Institute) for editorial support in the
preparation of the manuscript, and Carly Phillips and Walter Woodside
for assistance in the harvesting of A. deserti samples from the Boyd
Deep Canyon Desert Reserve. This project was supported by the JGI
Community Science Program (CSP); the work conducted by the US Department
of Energy Joint Genome Institute, a DOE Office of Science User Facility,
is supported under contract no. DE-AC02-05CH11231. L.P.P-M. acknowledges
also Consejo Nacional de Ciencia y Tecnologia in Mexico (CONACyT), which
supported this project with two grants: CB-2010-01-151007 and
INFR-2012-01-197799. The authors declare no conflict of interest.
NR 66
TC 23
Z9 24
U1 21
U2 55
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0028-646X
EI 1469-8137
J9 NEW PHYTOL
JI New Phytol.
PD JAN
PY 2016
VL 209
IS 2
BP 798
EP 811
DI 10.1111/nph.13697
PG 14
WC Plant Sciences
SC Plant Sciences
GA DI3CT
UT WOS:000373376500033
PM 26467257
ER
PT J
AU Hunke, EC
AF Hunke, E. C.
TI Weighing the importance of surface forcing on sea ice: a September 2007
modelling study
SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY
LA English
DT Article
DE sea ice model; Arctic; September 2007; melt ponds; CICE
ID MELT PONDS; RADIATION; CICE
AB The sea ice minimum of September 2007 is represented in a 50-year simulation using the Los Alamos Sea Ice Model, CICE, in spite of the fact that only four atmospheric forcing fields vary interannually in the model simulation; all other atmospheric and oceanic forcing data are monthly mean climatologies. Simulation results support prior conclusions that an anomalous pressure pattern, ice-ocean albedo feedback effects on sea surface temperature, and the long-term sea ice thinning trend are primarily responsible for the sea ice minimum of 2007. In addition, the simulation indicates that cloudiness, precipitation, and other forcing quantities were of secondary importance. Here we explore the importance of applied atmospheric and oceanic surface forcing for the 2007 sea ice minimum event, along with a group of model parameterizations that control the surface radiation budget in sea ice (melt ponds). Of the oceanic forcing fields acting on sea ice, only the sea surface temperature varied interannually for simulating the 2007 event. Interannual variations of temperature and humidity play a role in the radiation balance applied at the snow and ice surface, and they both have the potential to significantly affect the ice edge. However, humidity (exclusive of clouds) is far less influential on ice volume than is air temperature. The inclusion of albedo changes due to melt ponding is also crucial for determining the radiation forcing experienced by the ice. We compare the effects of four different pond parameterizations now available in CICE for the September 2007 case, and find that while details may differ, they all are able to represent the 2007 event. The impact of feedbacks associated with the radiation balance differs among the pond simulations, presenting a key topic for future study.
C1 [Hunke, E. C.] Los Alamos Natl Lab, MS-B216, Los Alamos, NM 87545 USA.
RP Hunke, EC (reprint author), Los Alamos Natl Lab, MS-B216, Los Alamos, NM 87545 USA.
EM eclare@lanl.gov
FU Biological and Environmental Research division of the US Department of
Energy Office of Science; [DE-AC52-06NA25396]
FX This work was performed within the Climate, Ocean and Sea Ice Modeling
(COSIM) program at Los Alamos National Laboratory, whose funding from
the Biological and Environmental Research division of the US Department
of Energy Office of Science is gratefully acknowledged. Los Alamos
National Laboratory is operated by the National Nuclear Security
Administration of the US Department of Energy under contract no.
DE-AC52-06NA25396. I have no conflict of interest to declare with regard
to the research presented in this article.
NR 29
TC 2
Z9 2
U1 1
U2 2
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0035-9009
EI 1477-870X
J9 Q J ROY METEOR SOC
JI Q. J. R. Meteorol. Soc.
PD JAN
PY 2016
VL 142
IS 695
BP 539
EP 545
DI 10.1002/qj.2353
PN B
PG 7
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DH7DJ
UT WOS:000372951300002
ER
PT J
AU Jeevanjee, N
Romps, DM
AF Jeevanjee, Nadir
Romps, David M.
TI Effective buoyancy at the surface and aloft
SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY
LA English
DT Article
DE buoyancy; convection; Archimedean bouyancy; effective buoyancy;
large-eddy simulations
ID CUMULUS CONVECTION; PARAMETERIZATION
AB It is shown here that a wide, buoyant parcel of air at the surface accelerates far less rapidly than it does aloft. In particular, analytical formulae are derived for the effective buoyancy (i.e. the net vertical acceleration due to parcel buoyancy and environmental response) of idealized cylinders of diameter D and height H, located in free space and at the surface. These formulae quantify the decrease of effective buoyancy with increasing aspect ratio D/H, and show that this effect is more pronounced for surface cylinders, especially when D/H > 1. We gain intuition for these results by considering the pressure fields generated by these buoyant parcels, and we test our results with large-eddy simulations. Our formulae can inform parametrizations of the vertical velocity equation for clouds, and also provide a quantitative map of the grey zone' in numerical modelling between hydrostatic and non-hydrostatic regimes.
C1 [Jeevanjee, Nadir] Univ Calif Berkeley, Dept Phys, 366 LeConte Hall MC 7300, Berkeley, CA 94720 USA.
[Jeevanjee, Nadir; Romps, David M.] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA USA.
[Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
RP Jeevanjee, N (reprint author), Univ Calif Berkeley, Dept Phys, 366 LeConte Hall MC 7300, Berkeley, CA 94720 USA.
EM jeevanje@berkeley.edu
FU Scientific Discovery through Advanced Computing (SciDAC) program - US
Department of Energy Office of Advanced Scientific Computing Research
and Office of Biological and Environmental Research [DE-AC02-05CH11231];
Office of Science of the US Department of Energy; National Science
Foundation [ACI-1053575]
FX This work was supported by the Scientific Discovery through Advanced
Computing (SciDAC) program funded by the US Department of Energy Office
of Advanced Scientific Computing Research and Office of Biological and
Environmental Research under contract No. DE-AC02-05CH11231. This
research used resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility supported by the
Office of Science of the US Department of Energy, and resources of the
Extreme Science and Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number ACI-1053575. We
thank two anonymous referees for detailed and constructive reviews, and
NJ thanks Wolfgang Langhans for discussions.
NR 26
TC 2
Z9 2
U1 3
U2 4
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0035-9009
EI 1477-870X
J9 Q J ROY METEOR SOC
JI Q. J. R. Meteorol. Soc.
PD JAN
PY 2016
VL 142
IS 695
BP 811
EP 820
DI 10.1002/qj.2683
PN B
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DH7DJ
UT WOS:000372951300024
ER
PT J
AU Liu, J
Krishna, KS
Kumara, C
Chattopadhyay, S
Shibata, T
Dass, A
Kumar, CSSR
AF Liu, Jing
Krishna, Katla Sai
Kumara, Chanaka
Chattopadhyay, Soma
Shibata, Tomohiro
Dass, Amala
Kumar, Challa S. S. R.
TI Understanding Au similar to 98Ag similar to 46(SR)(60) nanoclusters
through investigation of their electronic and local structure by X-ray
absorption fine structure
SO RSC ADVANCES
LA English
DT Article
ID PROTECTED AU-25 NANOCLUSTERS; GOLD CLUSTERS; CHARGE REDISTRIBUTION;
ALLOY NANOMOLECULES; CRYSTAL-STRUCTURE; AG ALLOYS; NANOPARTICLES;
SPECTROSCOPY; PERSPECTIVE; STABILITY
AB Here we report the electronic and local atomic structure of thiol-stabilized Au similar to 98Ag similar to 46(SR)(60) nanoclusters investigated by synchrotron radiation-based X-ray absorption fine structure (XAFS). Au L-3-edge X-ray absorption near edge fine structure (XANES) was used to examine the d band character of Au, which is highly related to the electronic, magnetic and catalytic activities of Au. It was observed that the d band hole population of Au in Au similar to 98Ag similar to 46(SR)(60) was higher than that of bulk Au. The formation of the AuAg alloy was confirmed by extended X-ray absorption fine structure (EXAFS). The EXAFS results also suggested that Au atoms in Au similar to 98Ag similar to 46(SR)(60) nanoclusters preferred to occupy the metal core sites, while the Ag atoms were mainly on the surface.
C1 [Liu, Jing; Krishna, Katla Sai; Kumar, Challa S. S. R.] Louisiana State Univ, Ctr Adv Microstruct & Devices, Baton Rouge, LA 70806 USA.
[Liu, Jing; Krishna, Katla Sai; Kumar, Challa S. S. R.] Louisiana State Univ, Cain Dept Chem Engn, Ctr Atom Level Catalyst Design, Chem Engn 110, 324,South Stadium Rd, Baton Rouge, LA 70803 USA.
[Kumara, Chanaka; Dass, Amala] Univ Mississippi, Dept Chem & Biochem, Oxford, MS 38677 USA.
[Chattopadhyay, Soma] CSRRI IIT, Sect 10 ID, Adv Photon Source, 9700 S Cass Ave, Lemont, IL 60439 USA.
[Shibata, Tomohiro] Kennametal Inc, Mat Sci, 1600 Technol Way, Latrobe, PA 15650 USA.
[Kumar, Challa S. S. R.] Rowland Inst Harvard, 100 Edwin H Land Blvd, Cambridge, MA 02142 USA.
[Krishna, Katla Sai] Univ Texas El Paso, Dept Chem, El Paso, TX 79902 USA.
[Chattopadhyay, Soma] Elgin Community Coll, Dept Phys Sci, 1700 Spartan Dr, Elgin, IL 60123 USA.
RP Kumar, CSSR (reprint author), Louisiana State Univ, Ctr Adv Microstruct & Devices, Baton Rouge, LA 70806 USA.; Kumar, CSSR (reprint author), Louisiana State Univ, Cain Dept Chem Engn, Ctr Atom Level Catalyst Design, Chem Engn 110, 324,South Stadium Rd, Baton Rouge, LA 70803 USA.; Kumar, CSSR (reprint author), Rowland Inst Harvard, 100 Edwin H Land Blvd, Cambridge, MA 02142 USA.
EM challa@fas.harvard.edu
FU Center for Atomic Level Catalyst Design, an Energy Frontier Research
Center - U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences [DE-SC0001058]; U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
FX This material is based upon work supported as part of the Center for
Atomic Level Catalyst Design, an Energy Frontier Research Center funded
by the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences under Award Number DE-SC0001058. MRCAT operations are
supported by the Department of Energy and the MRCAT member institutions.
The use of the Advanced Photon Source at ANL was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract no. DE-AC02-06CH11357. We are grateful to Dr
Tianpin Wu of CSE division of Argonne National Laboratory for her help
during EXAFS measurements of Au L3-edge.
NR 39
TC 0
Z9 0
U1 4
U2 9
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2046-2069
J9 RSC ADV
JI RSC Adv.
PY 2016
VL 6
IS 30
BP 25368
EP 25374
DI 10.1039/c5ra27396j
PG 7
WC Chemistry, Multidisciplinary
SC Chemistry
GA DG7GL
UT WOS:000372252700065
ER
PT J
AU Zhang, W
Sathitsuksanoh, N
Simmons, BA
Frazier, CE
Barone, JR
Renneckar, S
AF Zhang, Wei
Sathitsuksanoh, Noppadon
Simmons, Blake A.
Frazier, Charles E.
Barone, Justin R.
Renneckar, Scott
TI Revealing the thermal sensitivity of lignin during glycerol thermal
processing through structural analysis
SO RSC ADVANCES
LA English
DT Article
ID THERMOGRAVIMETRY MASS-SPECTROMETRY; DIFFERENTIAL SCANNING CALORIMETRY;
NUCLEAR-MAGNETIC-RESONANCE; EUCALYPTUS-GLOBULUS WOOD; P-31
NMR-SPECTROSCOPY; CHAIN HYDROXYL-GROUPS; MULTIPHASE MATERIALS; PYROLYTIC
CLEAVAGE; STEAM EXPLOSION; MODEL COMPOUNDS
AB Woody biomass was treated in glycerol between 200 and 240 degrees C in an anhydrous environment to denature the biomass for biopolymer fractionation. After glycerol thermal processing (GTP), up to 41% of the initial Klason lignin of the starting biomass was recovered in a powdered form through a room temperature dioxane extraction followed by precipitation. P-31-nuclear magnetic resonance (NMR) of the GTP lignin revealed the syringyl phenolic functionality increased linearly with the log of the severity parameter establishing the impact of the thermal processing on structure. Further structural analysis via thioacidolysis and two-dimensional (2D) C-13-H-1 heteronuclear single quantum coherence (HSQC) NMR of the isolated lignin indicated GTP caused extensive beta-O-4 bond decomposition and the liberated phenolic OH did not undergo further coupling. At the same time, condensation occurred on the aromatic C-5 position of the phenylpropane units to yield GTP lignin with a relatively high molecular weight, comparable to that of enzymatic mild acidolysis lignin from non-thermally treated fibers. The recovered GTP lignin was more thermally stable compared to nearly all other lignin found in the literature. Additionally, the glass transition temperature was invariant to the processing severity parameters. These structural changes indicate lignin is highly sensitive to moderately high temperatures common to thermoplastic polymer processing conditions.
C1 [Zhang, Wei; Frazier, Charles E.; Renneckar, Scott] Virginia Polytech Inst & State Univ, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA.
[Zhang, Wei; Frazier, Charles E.; Renneckar, Scott] Virginia Polytech Inst & State Univ, Dept Sustainable Biomat, Blacksburg, VA 24061 USA.
[Sathitsuksanoh, Noppadon] Univ Louisville, Dept Chem Engn, Louisville, KY 40292 USA.
[Sathitsuksanoh, Noppadon] Univ Louisville, Conn Ctr Renewable Energy Res, Louisville, KY 40292 USA.
[Sathitsuksanoh, Noppadon; Simmons, Blake A.] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA.
[Simmons, Blake A.] Sandia Natl Labs, Biol & Engn Sci Ctr, Livermore, CA 94551 USA.
[Barone, Justin R.] Virginia Polytech Inst & State Univ, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA.
[Barone, Justin R.] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA.
[Renneckar, Scott] Univ British Columbia, Forest Sci Ctr 4034, Dept Wood Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
RP Renneckar, S (reprint author), Virginia Polytech Inst & State Univ, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA.; Renneckar, S (reprint author), Virginia Polytech Inst & State Univ, Dept Sustainable Biomat, Blacksburg, VA 24061 USA.; Renneckar, S (reprint author), Univ British Columbia, Forest Sci Ctr 4034, Dept Wood Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
EM scott.renneckar@ubc.ca
FU USDA NIFA [2010-65504-20429]; Institute for Critical Technology and
Science at Virginia Tech; Virginia Tech Graduate School; Office of
Science, Office of Biological and Environmental Research, of the U.S.
DOE [DE-AC02-05CH11231]; National Science Foundation [1355438]; Canada
Research Chairs program
FX The authors greatly acknowledge financial support from USDA NIFA
2010-65504-20429 for the work along with support from the Institute for
Critical Technology and Science at Virginia Tech and the Virginia Tech
Graduate School. Additionally, a portion of the work conducted by the
Joint BioEnergy Institute was supported by the Office of Science, Office
of Biological and Environmental Research, of the U.S. DOE under contract
no. DE-AC02-05CH11231. NS was supported by the National Science
Foundation under Cooperative Agreement No. 1355438. This research was
undertaken, in part, thanks to funding from the Canada Research Chairs
program.
NR 84
TC 1
Z9 1
U1 5
U2 9
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2046-2069
J9 RSC ADV
JI RSC Adv.
PY 2016
VL 6
IS 36
BP 30234
EP 30246
DI 10.1039/c6ra00745g
PG 13
WC Chemistry, Multidisciplinary
SC Chemistry
GA DH8QU
UT WOS:000373061600044
ER
PT J
AU Ling, Y
Li, WZ
Wang, BY
Gan, WJ
Zhu, CH
Brady, MA
Wang, C
AF Ling, Yang
Li, Weizhen
Wang, Baoyu
Gan, Wenjun
Zhu, Chenhui
Brady, Michael A.
Wang, Cheng
TI Epoxy resin reinforced with nanothin polydopamine-coated carbon
nanotubes: a study of the interfacial polymer layer thickness
SO RSC ADVANCES
LA English
DT Article
ID SURFACE-INITIATED POLYMERIZATION; GRAPHENE OXIDE NANOSHEETS;
DOPAMINE-MODIFIED CLAY; MECHANICAL-PROPERTIES; MULTIFUNCTIONAL COATINGS;
CROSS-LINKING; STEM-CELLS; FUNCTIONALIZATION; COMPOSITES;
DIFFERENTIATION
AB Carbon nanotubes (CNTs) functionalized by a nanothin poly(dopamine) (PDA) layer were produced by a one-pot, nondestructive approach, with direct polymerization of dopamine on the CNT surface. The thickness of the PDA layer can be well-controlled by the reaction time and the proportion of dopamine, and this thickness is found to be the key factor in controlling the dispersion of CNTs and the extent of the interfacial interactions between the CNT@PDA and epoxy resin. SEM results indicated that the dispersion of CNTs in epoxy was improved significantly by coating a nanothin PDA layer onto the CNT surface. In agreement with this finding, the CNTs functionalized with the thinnest PDA layer provided the best mechanical and thermal properties. This result confirmed that a thinner PDA layer could provide optimized interfacial interactions between the CNT@PDA and epoxy matrix and weaken the self-agglomeration of CNTs, which led to an improved effective stress and heat transfer between the CNTs and the polymer matrix.
C1 [Ling, Yang; Li, Weizhen; Wang, Baoyu; Gan, Wenjun] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China.
[Li, Weizhen] Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China.
[Zhu, Chenhui; Brady, Michael A.; Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
RP Li, WZ; Gan, WJ (reprint author), Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China.; Li, WZ (reprint author), Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China.; Wang, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM liweizhen@sues.edu.cn; wjgan@sues.edu.cn; cwang2@lbl.gov
RI Wang, Cheng/A-9815-2014
FU Shanghai Municipal Education Commission [20120407]; Shanghai Young
Teachers' Training [ZZGJD13018]; Shanghai University of Engineering
Science Developing funding [2011XZ04]; Interdisciplinary Subject
Construction funding [2012SCX005]; Office of Science, Office of Basic
Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
FX The authors wish to thank the Shanghai Municipal Education Commission
(Overseas Visiting Scholar Project 20120407); Shanghai Young Teachers'
Training-funded Projects (ZZGJD13018); Shanghai University of
Engineering Science Developing funding (grant 2011XZ04) and
Interdisciplinary Subject Construction funding (grant 2012SCX005). The
Advanced Light Source is supported by the Director, Office of Science,
Office of Basic Energy Sciences, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.
NR 47
TC 0
Z9 0
U1 15
U2 43
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2046-2069
J9 RSC ADV
JI RSC Adv.
PY 2016
VL 6
IS 37
BP 31037
EP 31045
DI 10.1039/c5ra26539h
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA DH9LS
UT WOS:000373118200033
ER
PT J
AU Wang, Z
Ren, Y
Ma, TY
Zhuang, WD
Lu, SG
Xu, GL
Abouimrane, A
Amine, K
Chen, ZH
AF Wang, Zhong
Ren, Yang
Ma, Tianyuan
Zhuang, Weidong
Lu, Shigang
Xu, Guiliang
Abouimrane, Ali
Amine, Khalil
Chen, Zonghai
TI Probing cation intermixing in Li2SnO3
SO RSC ADVANCES
LA English
DT Article
ID LITHIUM-ION BATTERIES; SOLID-STATE NMR; CATHODE MATERIALS; VOLTAGE-FADE;
STRUCTURAL-CHANGES; OXIDE ELECTRODES; MANGANESE OXIDES; ENERGY-DENSITY;
1ST PRINCIPLES; LI2MNO3
AB Li2MnO3 holds great promise as a key component for lithium-manganese-rich oxides as high-capacity and high-energy-density cathode materials for lithium-ion batteries. However, its structural complexity remains an unresolved puzzle, hindering the further development of this class of cathode materials. In this work, the structure of Li2SnO3 was investigated as a model of Li2MnO3. Specifically, the structural evolution of materials during the solid-state synthesis of Li2SnO3 was studied using in situ high-energy X-ray diffraction. It was confirmed that Li2SnO3 with a C2/c structure was formed using the solid-state process. However, the severe intralayer intermixing between Li and Sn was found to lead to several weakening or vanishing reflection peaks.
C1 [Wang, Zhong; Zhuang, Weidong; Lu, Shigang] Gen Res Inst Nonferrous Met, 2 Xinjiekou Wai St, Beijing 100088, Peoples R China.
[Wang, Zhong; Zhuang, Weidong; Lu, Shigang] China Automot Battery Res Inst Co Ltd, Beijing 101407, Peoples R China.
[Ren, Yang] Argonne Natl Lab, Adv Photon Sources, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Ma, Tianyuan; Xu, Guiliang; Abouimrane, Ali; Amine, Khalil; Chen, Zonghai] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Abouimrane, Ali] Qatar Environm & Energy Res Inst, Qatar Fdn, POB 5825, Doha, Qatar.
RP Wang, Z (reprint author), Gen Res Inst Nonferrous Met, 2 Xinjiekou Wai St, Beijing 100088, Peoples R China.; Wang, Z (reprint author), China Automot Battery Res Inst Co Ltd, Beijing 101407, Peoples R China.; Chen, ZH (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM wangzhong@glabat.com; Zonghai.Chen@anl.gov
RI XU, GUILIANG/F-3804-2017
FU National Nature Science Foundation of China [51302017]; Science and
Technology Commission of Beijing, U.S. Department of Energy (DOE),
Vehicle Technologies Office [Z121100006712002]; US Department of Energy
by U Chicago Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]
FX Research was funded by the National Nature Science Foundation of China
(No. 51302017), and the Science and Technology Commission of Beijing
(No. Z121100006712002), U.S. Department of Energy (DOE), Vehicle
Technologies Office. Support from Tien Duong and Peter Faguy of the U.S.
DOE's Office of Vehicle Technologies Program, is gratefully
acknowledged. Argonne National Laboratory operates for the US Department
of Energy by U Chicago Argonne, LLC, under contract DE-AC02-06CH11357.
Use of the Advanced Photon Source (APS) was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
NR 37
TC 1
Z9 1
U1 6
U2 25
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2046-2069
J9 RSC ADV
JI RSC Adv.
PY 2016
VL 6
IS 37
BP 31559
EP 31564
DI 10.1039/c6ra00977h
PG 6
WC Chemistry, Multidisciplinary
SC Chemistry
GA DH9LS
UT WOS:000373118200098
ER
PT J
AU Chowdhary, K
Najm, HN
AF Chowdhary, K.
Najm, H. N.
TI Data free inference with processed data products
SO STATISTICS AND COMPUTING
LA English
DT Article
DE Uncertainty quantification; Bayesian inference; Markov Chain Monte
Carlo; Approximate Bayesian computation; Maximum entropy; Missing
information
ID PARAMETERS
AB We consider the context of probabilistic inference of model parameters given error bars or confidence intervals on model output values, when the data is unavailable. We introduce a class of algorithms in a Bayesian framework, relying on maximum entropy arguments and approximate Bayesian computation methods, to generate consistent data with the given summary statistics. Once we obtain consistent data sets, we pool the respective posteriors, to arrive at a single, averaged density on the parameters. This approach allows us to perform accurate forward uncertainty propagation consistent with the reported statistics.
C1 [Chowdhary, K.; Najm, H. N.] Sandia Natl Labs, Livermore, CA USA.
RP Chowdhary, K (reprint author), Sandia Natl Labs, Livermore, CA USA.
EM kennychowdhary@gmail.com
FU Scientific Discovery through Advanced Computing (SciDAC) program by the
U.S. Department of Energy, Office of Science, Advanced Scientific
Computing Research; U.S. Department of Energy's National Nuclear
Security Administration [DE-AC04-94-AL85000]
FX Support for this work was provided through the Scientific Discovery
through Advanced Computing (SciDAC) program funded by the U.S.
Department of Energy, Office of Science, Advanced Scientific Computing
Research. Sandia National Laboratories is a multiprogram laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract
DE-AC04-94-AL85000
NR 18
TC 1
Z9 1
U1 0
U2 1
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0960-3174
EI 1573-1375
J9 STAT COMPUT
JI Stat. Comput.
PD JAN
PY 2016
VL 26
IS 1-2
BP 149
EP 169
DI 10.1007/s11222-014-9484-y
PG 21
WC Computer Science, Theory & Methods; Statistics & Probability
SC Computer Science; Mathematics
GA DI2RX
UT WOS:000373347100011
ER
PT J
AU Dib, G
Udpa, L
AF Dib, Gerges
Udpa, Lalita
TI Design and performance of optimal detectors for guided wave structural
health monitoring
SO STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL
LA English
DT Review
DE Ultrasonic guided waves; structural health monitoring; theory of
detection; maximum likelihood; diversity
ID PIEZOELECTRIC SENSOR/ACTUATOR NETWORK; LAMB WAVES; DIAGNOSTICS
AB Ultrasonic guided wave measurements in structural health monitoring systems are affected over a long term by measurement noise, environmental conditions, transducer aging, and malfunction. This results in measurement variability which affects detection performance, especially in complex structures where baseline data comparison is required. This article derives the optimal detector structure, within the framework of detection theory, based on reducing a guided wave signal at the sensor into a single feature value that can be used for comparison with a threshold. Three different types of detectors are derived depending on the underlying structure's complexity: (a) simple structures where defect reflections can be identified without the need for baseline data; (b) simple structures that require baseline data due to overlap of defect scatter with scatter from structural features; and (c) complex structure with dense structural features that require baseline data. The detectors are derived by modeling the effects of variabilities and uncertainties as random processes. Analytical solutions for the performance of detectors in terms of the probability of detection and false alarm are derived. A finite element model that simulates guided wave inspection is used in a Monte-Carlo procedure to quantify the effects of environmental variability in terms of defect probability of detection. Results demonstrate that the problems of structural complexity and environmental variability introduce temporal diversity in the signals, which can be exploited to improve detection performance.
C1 [Dib, Gerges] Pacific NW Natl Lab, 2400 Stevens Dr, Richland, WA 99354 USA.
[Udpa, Lalita] Michigan State Univ, E Lansing, MI 48824 USA.
RP Dib, G (reprint author), Pacific NW Natl Lab, 2400 Stevens Dr, Richland, WA 99354 USA.
EM gerges.dib@pnnl.gov
NR 23
TC 0
Z9 0
U1 4
U2 7
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1475-9217
EI 1741-3168
J9 STRUCT HEALTH MONIT
JI Struct. Health Monit.
PD JAN
PY 2016
VL 15
IS 1
BP 21
EP 37
DI 10.1177/1475921715620003
PG 17
WC Engineering, Multidisciplinary; Instruments & Instrumentation
SC Engineering; Instruments & Instrumentation
GA DH6MU
UT WOS:000372905600002
ER
PT J
AU Wainwright, HM
Orozco, AF
Bucker, M
Dafflon, B
Chen, J
Hubbard, SS
Williams, KH
AF Wainwright, Haruko M.
Orozco, Adrian Flores
Buecker, Matthias
Dafflon, Baptiste
Chen, Jinsong
Hubbard, Susan S.
Williams, Kenneth H.
TI Hierarchical Bayesian method for mapping biogeochemical hot spots using
induced polarization imaging
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID SPECTRAL INDUCED POLARIZATION; URANIUM-CONTAMINATED AQUIFER; DISSOLVED
ORGANIC-CARBON; BACTERIAL TRANSPORT SITE; GEOPHYSICAL-DATA; ZONE;
DENITRIFICATION; BIOREMEDIATION; INVERSION; STREAM
AB In floodplain environments, a naturally reduced zone (NRZ) is considered to be a common biogeochemical hot spot, having distinct microbial and geochemical characteristics. Although important for understanding their role in mediating floodplain biogeochemical processes, mapping the subsurface distribution of NRZs over the dimensions of a floodplain is challenging, as conventional wellbore data are typically spatially limited and the distribution of NRZs is heterogeneous. In this study, we present an innovative methodology for the probabilistic mapping of NRZs within a three-dimensional (3-D) subsurface domain using induced polarization imaging, which is a noninvasive geophysical technique. Measurements consist of surface geophysical surveys and drilling-recovered sediments at the U.S. Department of Energy field site near Rifle, CO (USA). Inversion of surface time domain-induced polarization (TDIP) data yielded 3-D images of the complex electrical resistivity, in terms of magnitude and phase, which are associated with mineral precipitation and other lithological properties. By extracting the TDIP data values colocated with wellbore lithological logs, we found that the NRZs have a different distribution of resistivity and polarization from the other aquifer sediments. To estimate the spatial distribution of NRZs, we developed a Bayesian hierarchical model to integrate the geophysical and wellbore data. In addition, the resistivity images were used to estimate hydrostratigraphic interfaces under the floodplain. Validation results showed that the integration of electrical imaging and wellbore data using a Bayesian hierarchical model was capable of mapping spatially heterogeneous interfaces and NRZ distributions thereby providing a minimally invasive means to parameterize a hydrobiogeochemical model of the floodplain.
C1 [Wainwright, Haruko M.; Dafflon, Baptiste; Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Orozco, Adrian Flores; Buecker, Matthias] Vienna Univ Technol, Dept Geodesy & Geoinformat, A-1040 Vienna, Austria.
[Buecker, Matthias] Univ Bonn, Dept Geophys, Steinmann Inst, Bonn, Germany.
RP Wainwright, HM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
EM hmwainwright@lbl.gov
RI Chen, Jinsong/A-1374-2009; Hubbard, Susan/E-9508-2010; Williams,
Kenneth/O-5181-2014; Wainwright, Haruko/A-5670-2015; Dafflon,
Baptiste/G-2441-2015;
OI Williams, Kenneth/0000-0002-3568-1155; Wainwright,
Haruko/0000-0002-2140-6072; Bucker, Matthias/0000-0003-4367-5131
FU Lawrence Berkeley National Laboratory's Sustainable Systems Scientific
Focus Area (SFA); U.S. Department of Energy (DOE), Office of Science,
and Office of Biological and Environmental Research [DE-AC02-05CH11231]
FX This material is partially based upon work supported through the
Lawrence Berkeley National Laboratory's Sustainable Systems Scientific
Focus Area (SFA). The U.S. Department of Energy (DOE), Office of
Science, and Office of Biological and Environmental Research funded the
work under contract DE-AC02-05CH11231 (Lawrence Berkeley National
Laboratory; operated by the University of California). We would like to
thank Joel Rowland at Los Alamos National Laboratory for providing
advice that helped to strengthen the conceptual model of
floodplain-related hot spots. Data sets are available upon request by
contacting the corresponding author (Haruko M. Wainwright,
hmwainwright@lbl.gov).
NR 85
TC 6
Z9 6
U1 6
U2 12
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD JAN
PY 2016
VL 52
IS 1
BP 533
EP 551
DI 10.1002/2015WR017763
PG 19
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA DH9LO
UT WOS:000373117800031
ER
PT J
AU Martinez, MJ
Hesse, MA
AF Martinez, M. J.
Hesse, M. A.
TI Two-phase convective CO2 dissolution in saline aquifers
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID CAPILLARY TRANSITION ZONE; DIFFUSIVE BOUNDARY-LAYER; LONG-TERM STORAGE;
POROUS-MEDIUM; MULTIPHASE FLOW; CARBON-DIOXIDE; STABILITY;
SEQUESTRATION; PERFORMANCE; MEDIA
AB Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. This removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.
C1 [Martinez, M. J.] Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA.
[Hesse, M. A.] Univ Texas Austin, Dept Geol Sci, Austin, TX USA.
RP Martinez, MJ (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA.
EM mjmarti@sandia.gov
RI Hesse, Marc/B-4914-2011
OI Hesse, Marc/0000-0002-2532-3274
FU Center for Frontiers of Subsurface Energy Security an Energy Frontier
Research Center - U.S. Department of Energy, Office of Science, Office
of Basic Energy Sciences [DE-SC0001114]; United States Department of
Energy's National Nuclear Security Administration [DE-AC04-94AL85000]
FX This material is based upon work supported as part of the Center for
Frontiers of Subsurface Energy Security, an Energy Frontier Research
Center funded by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences under award DE-SC0001114. Sandia is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy's National
Nuclear Security Administration under contract DE-AC04-94AL85000. Data
used in line plots are available on contact of the corresponding author.
NR 46
TC 0
Z9 0
U1 3
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD JAN
PY 2016
VL 52
IS 1
BP 585
EP 599
DI 10.1002/2015WR017085
PG 15
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA DH9LO
UT WOS:000373117800034
ER
PT S
AU Denis-Petit, D
Roig, O
Meot, V
Jandel, M
Vieira, DJ
Bond, EM
Bredeweg, TA
Couture, AJ
Haight, RC
Keksis, AL
Rundberg, RS
Ullmann, JL
AF Denis-Petit, D.
Roig, O.
Meot, V.
Jandel, M.
Vieira, D. J.
Bond, E. M.
Bredeweg, T. A.
Couture, A. J.
Haight, R. C.
Keksis, A. L.
Rundberg, R. S.
Ullmann, J. L.
BE Serot, O
TI Isomeric ratio measurements for the radiative neutron capture
Lu-176(n,gamma) at DANCE
SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR
REACTOR APPLICATIONS
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 4th International Workshop On Nuclear Data Evaluation for Reactor
Applications(WONDER)
CY OCT 05-08, 2015
CL Aix en Provence, FRANCE
ID CROSS-SECTION; STELLAR INTERIORS; COSMIC CLOCK; LU-176; ABUNDANCES;
DETECTOR; SOLAR; DECAY
AB The isomeric ratio for the neutron capture reaction Lu-176(n,gamma) on the J(pi) = 5/2(-), 761.7 keV, T-1/2 = 32.8 ns level of Lu-177m, has been determined in the neutron energy range 8.5 eV-100 keV for the first time using the DANCE array at the Los Alamos National Laboratory.
C1 [Denis-Petit, D.; Roig, O.; Meot, V.] CEA, DAM, DIF, F-91297 Arpajon, France.
[Jandel, M.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RP Denis-Petit, D (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France.
EM david.denis-petit@cea.fr
NR 28
TC 0
Z9 0
U1 2
U2 2
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1970-6
J9 EPJ WEB CONF
PY 2016
VL 111
AR 02004
DI 10.1051/epjconf/201611102004
PG 6
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA BE5FX
UT WOS:000372797000006
ER
PT S
AU Diakaki, M
Audouin, L
Berthoumieux, E
Calviani, M
Colonna, N
Dupont, E
Duran, I
Gunsing, F
Leal-Cidoncha, E
Le Naour, C
Leong, LS
Mastromarco, M
Paradela, C
Tarrio, D
Tassan-Got, L
Aerts, G
Altstadt, S
Alvarez, H
Alvarez-Velarde, F
Andriamonje, S
Andrzejewski, J
Badurek, G
Barbagallo, M
Baumann, P
Becares, V
Becvar, F
Belloni, F
Berthier, B
Billowes, J
Boccone, V
Bosnar, D
Brugger, M
Calvino, F
Cano-Ott, D
Capote, R
Carrapio, C
Cennini, P
Cerutti, F
Chiaveri, E
Chin, M
Cortes, G
Cortes-Giraldo, MA
Cosentino, L
Couture, A
Cox, J
David, S
Dillmann, I
Domingo-Pardo, C
Dressler, R
Dridi, W
Eleftheriadis, C
Embid-Segura, M
Ferrant, L
Ferrari, A
Finocchiaro, P
Fraval, K
Fujii, K
Furman, W
Ganesan, S
Garcia, AR
Giubrone, G
Gomez-Hornillos, MB
Goncalves, IF
Gonzalez-Romero, E
Goverdovski, A
Gramegna, F
Griesmayer, E
Guerrero, C
Gurusamy, P
Haight, R
Heil, M
Heinitz, S
Igashira, M
Isaev, S
Jenkins, DG
Jericha, E
Kadi, Y
Kaeppeler, F
Karadimos, D
Karamanis, D
Kerveno, M
Ketlerov, V
Kivel, N
Kokkoris, M
Konovalov, V
Krticka, M
Kroll, J
Lampoudis, C
Langer, C
Lederer, C
Leeb, H
Lo Meo, S
Losito, R
Lozano, M
Manousos, A
Marganiec, J
Martinez, T
Marrone, S
Massimi, C
Mastinu, P
Mendoza, E
Mengoni, A
Milazzo, PM
Mingrone, F
Mirea, M
Mondelaers, W
Moreau, C
Mosconi, M
Musumarra, A
O'Brien, S
Pancin, J
Patronis, N
Pavlik, A
Pavlopoulos, P
Perkowski, J
Perrot, L
Pigni, MT
Plag, R
Plompen, A
Plukis, L
Poch, A
Pretel, C
Praena, J
Quesada, J
Rauscher, T
Reifarth, R
Riego, A
Roman, F
Rudolf, G
Rubbia, C
Rullhusen, P
Salgado, J
Santos, C
Sarchiapone, L
Sarmento, R
Saxena, A
Schillebeeckx, P
Schmidt, S
Schumann, D
Stephan, C
Tagliente, G
Tain, JL
Tavora, L
Terlizzi, R
Tsinganis, A
Valenta, S
Vannini, G
Variale, V
Vaz, P
Ventura, A
Versaci, R
Vermeulen, MJ
Villamarin, D
Vincente, MC
Vlachoudis, V
Vlastou, R
Voss, F
Wallner, A
Walter, S
Ware, T
Weigand, M
Weiss, C
Wiesher, M
Wisshak, K
Wright, T
Zugec, P
AF Diakaki, M.
Audouin, L.
Berthoumieux, E.
Calviani, M.
Colonna, N.
Dupont, E.
Duran, I.
Gunsing, F.
Leal-Cidoncha, E.
Le Naour, C.
Leong, L. S.
Mastromarco, M.
Paradela, C.
Tarrio, D.
Tassan-Got, L.
Aerts, G.
Altstadt, S.
Alvarez, H.
Alvarez-Velarde, F.
Andriamonje, S.
Andrzejewski, J.
Badurek, G.
Barbagallo, M.
Baumann, P.
Becares, V.
Becvar, F.
Belloni, F.
Berthier, B.
Billowes, J.
Boccone, V.
Bosnar, D.
Brugger, M.
Calvino, F.
Cano-Ott, D.
Capote, R.
Carrapio, C.
Cennini, P.
Cerutti, F.
Chiaveri, E.
Chin, M.
Cortes, G.
Cortes-Giraldo, M. A.
Cosentino, L.
Couture, A.
Cox, J.
David, S.
Dillmann, I.
Domingo-Pardo, C.
Dressler, R.
Dridi, W.
Eleftheriadis, C.
Embid-Segura, M.
Ferrant, L.
Ferrari, A.
Finocchiaro, P.
Fraval, K.
Fujii, K.
Furman, W.
Ganesan, S.
Garcia, A. R.
Giubrone, G.
Gomez-Hornillos, M. B.
Goncalves, I. F.
Gonzalez-Romero, E.
Goverdovski, A.
Gramegna, F.
Griesmayer, E.
Guerrero, C.
Gurusamy, P.
Haight, R.
Heil, M.
Heinitz, S.
Igashira, M.
Isaev, S.
Jenkins, D. G.
Jericha, E.
Kadi, Y.
Kaeppeler, F.
Karadimos, D.
Karamanis, D.
Kerveno, M.
Ketlerov, V.
Kivel, N.
Kokkoris, M.
Konovalov, V.
Krticka, M.
Kroll, J.
Lampoudis, C.
Langer, C.
Lederer, C.
Leeb, H.
Lo Meo, S.
Losito, R.
Lozano, M.
Manousos, A.
Marganiec, J.
Martinez, T.
Marrone, S.
Massimi, C.
Mastinu, P.
Mendoza, E.
Mengoni, A.
Milazzo, P. M.
Mingrone, F.
Mirea, M.
Mondelaers, W.
Moreau, C.
Mosconi, M.
Musumarra, A.
O'Brien, S.
Pancin, J.
Patronis, N.
Pavlik, A.
Pavlopoulos, P.
Perkowski, J.
Perrot, L.
Pigni, M. T.
Plag, R.
Plompen, A.
Plukis, L.
Poch, A.
Pretel, C.
Praena, J.
Quesada, J.
Rauscher, T.
Reifarth, R.
Riego, A.
Roman, F.
Rudolf, G.
Rubbia, C.
Rullhusen, P.
Salgado, J.
Santos, C.
Sarchiapone, L.
Sarmento, R.
Saxena, A.
Schillebeeckx, P.
Schmidt, S.
Schumann, D.
Stephan, C.
Tagliente, G.
Tain, J. L.
Tavora, L.
Terlizzi, R.
Tsinganis, A.
Valenta, S.
Vannini, G.
Variale, V.
Vaz, P.
Ventura, A.
Versaci, R.
Vermeulen, M. J.
Villamarin, D.
Vincente, M. C.
Vlachoudis, V.
Vlastou, R.
Voss, F.
Wallner, A.
Walter, S.
Ware, T.
Weigand, M.
Weiss, C.
Wiesher, M.
Wisshak, K.
Wright, T.
Zugec, P.
BE Serot, O
TI Towards the high-accuracy determination of the U-238 fission cross
section at the threshold region at CERN - n_TOF
SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR
REACTOR APPLICATIONS
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 4th International Workshop On Nuclear Data Evaluation for Reactor
Applications(WONDER)
CY OCT 05-08, 2015
CL Aix en Provence, FRANCE
ID ANGULAR-DISTRIBUTION; FACILITY; PERFORMANCE
AB The U-238 fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The U-238 fission cross section has been measured relative to the U-235 fission cross section at CERN - n_TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards.
C1 [Diakaki, M.; Berthoumieux, E.; Dupont, E.; Gunsing, F.; Aerts, G.; Andriamonje, S.; Dridi, W.; Fraval, K.; Pancin, J.; Perrot, L.; Plukis, L.] CEA Saclay, Irfu SPhN, F-91191 Gif Sur Yvette, France.
[Audouin, L.; Le Naour, C.; Leong, L. S.; Tassan-Got, L.; Berthier, B.; David, S.; Ferrant, L.; Isaev, S.; Stephan, C.] CNRS, IN2P3, IPN, F-91405 Orsay, France.
[Calviani, M.; Gunsing, F.; Boccone, V.; Brugger, M.; Cennini, P.; Cerutti, F.; Chiaveri, E.; Chin, M.; Ferrari, A.; Guerrero, C.; Kadi, Y.; Losito, R.; Pavlopoulos, P.; Roman, F.; Rubbia, C.; Sarchiapone, L.; Tsinganis, A.; Versaci, R.; Vlachoudis, V.; Weiss, C.] CERN, Geneva, Switzerland.
[Colonna, N.; Mastromarco, M.; Barbagallo, M.; Marrone, S.; Tagliente, G.; Terlizzi, R.; Variale, V.] Ist Nazl Fis Nucl, I-70126 Bari, Italy.
[Duran, I.; Leal-Cidoncha, E.; Paradela, C.; Tarrio, D.; Alvarez, H.] Univ Santiago de Compostela, Santiago De Compostela, Spain.
[Leong, L. S.] JAEA, Tokyo, Japan.
[Paradela, C.; Belloni, F.; Mondelaers, W.; Plompen, A.; Rullhusen, P.; Schillebeeckx, P.] EC JRC, IRMM, Geel, Belgium.
[Tarrio, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Altstadt, S.; Langer, C.; Lederer, C.; Reifarth, R.; Schmidt, S.; Weigand, M.] Goethe Univ Frankfurt, D-60054 Frankfurt, Germany.
[Alvarez-Velarde, F.; Becares, V.; Cano-Ott, D.; Embid-Segura, M.; Garcia, A. R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E.; Villamarin, D.; Vincente, M. C.] CIEMAT, E-28040 Madrid, Spain.
[Andrzejewski, J.; Marganiec, J.; Perkowski, J.] Univ Lodz, PL-90131 Lodz, Poland.
[Badurek, G.; Griesmayer, E.; Jericha, E.; Leeb, H.; Pigni, M. T.] Vienna Univ Technol, Atominst Osterreich Univ, Sydney, NSW, Australia.
[Baumann, P.; Kerveno, M.; Rudolf, G.] CNRS, IN2P3, IPHC, Strasbourg, France.
[Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S.] Charles Univ Prague, Prague, Czech Republic.
[Billowes, J.; Ware, T.; Wright, T.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Bosnar, D.; Zugec, P.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia.
[Calvino, F.; Poch, A.; Pretel, C.] Univ Politecn Madrid, E-28040 Madrid, Spain.
[Capote, R.] IAEA, Nucl Data Sect, A-1400 Vienna, Austria.
[Carrapio, C.; Goncalves, I. F.; Salgado, J.; Santos, C.; Sarmento, R.; Tavora, L.; Vaz, P.] Univ Lisbon, Inst Super Tecn, CTN, P-1699 Lisbon, Portugal.
[Cortes, G.; Gomez-Hornillos, M. B.; Riego, A.] Univ Politecn Cataluna, Barcelona, Spain.
[Cortes-Giraldo, M. A.; Lozano, M.; Praena, J.; Quesada, J.] Univ Seville, Seville, Spain.
[Cosentino, L.; Finocchiaro, P.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95129 Catania, Italy.
[Couture, A.; Cox, J.; O'Brien, S.; Wiesher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] KIT, Karlsruhe, Germany.
[Domingo-Pardo, C.; Giubrone, G.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain.
[Dressler, R.; Heinitz, S.; Kivel, N.; Schumann, D.] PSI, Villigen, Switzerland.
[Eleftheriadis, C.; Lampoudis, C.; Manousos, A.] Aristotle Univ Thessaloniki, Thessaloniki, Greece.
[Fujii, K.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy.
[Furman, W.] JINR, Dubna, Russia.
[Ganesan, S.; Gurusamy, P.; Saxena, A.] BARC, Bombay, Maharashtra, India.
[Goverdovski, A.; Ketlerov, V.; Konovalov, V.] IPPE, Obninsk, Russia.
[Gramegna, F.; Mastinu, P.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy.
[Haight, R.] LANL, Los Alamos, NM USA.
[Igashira, M.] Tokyo Inst Technol, Tokyo, Japan.
[Jenkins, D. G.; Vermeulen, M. J.] Univ York, York YO10 5DD, N Yorkshire, England.
[Karadimos, D.; Karamanis, D.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece.
[Kokkoris, M.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece.
[Lo Meo, S.; Mengoni, A.] ENEA, Bologna, Italy.
[Massimi, C.; Mingrone, F.; Vannini, G.; Ventura, A.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy.
[Massimi, C.; Mingrone, F.; Vannini, G.; Ventura, A.] Sez INFN Bologna, Bologna, Italy.
[Mirea, M.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Musumarra, A.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy.
[Musumarra, A.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95129 Catania, Italy.
[Pavlik, A.] Univ Vienna, Fac Phys, A-1010 Vienna, Austria.
[Rauscher, T.] Univ Hertfordshire, Ctr Astrophys Res, Sch Phys Astron Math, Hatfield AL10 9AB, Herts, England.
[Rauscher, T.] Univ Basel, Dept Phys, CH-4003 Basel, Switzerland.
[Wallner, A.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia.
RP Diakaki, M (reprint author), CEA Saclay, Irfu SPhN, F-91191 Gif Sur Yvette, France.
EM maria.diakaki@cea.fr
RI Vaz, Pedro/K-2464-2013; Mirea, Mihail/C-2297-2011; Rauscher,
Thomas/D-2086-2009; Mendoza Cembranos, Emilio/K-5789-2014; Chin, Mary
Pik Wai/B-6644-2012; Calvino, Francisco/K-5743-2014; Capote Noy,
Roberto/M-1245-2014; Massimi, Cristian/K-2008-2015; Martinez,
Trinitario/K-6785-2014;
OI Vaz, Pedro/0000-0002-7186-2359; Mirea, Mihail/0000-0002-9333-6595;
Rauscher, Thomas/0000-0002-1266-0642; Mendoza Cembranos,
Emilio/0000-0002-2843-1801; Chin, Mary Pik Wai/0000-0001-5176-9723;
Calvino, Francisco/0000-0002-7198-4639; Capote Noy,
Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0003-2499-5586;
Martinez, Trinitario/0000-0002-0683-5506; Tarrio,
Diego/0000-0002-9858-3341; Garcia Rios, Aczel Regino/0000-0002-7955-1475
NR 20
TC 1
Z9 1
U1 13
U2 25
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1970-6
J9 EPJ WEB CONF
PY 2016
VL 111
AR 02002
DI 10.1051/epjconf/201611102002
PG 6
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA BE5FX
UT WOS:000372797000004
ER
PT S
AU Diez, CJ
Michel-Sendis, F
Cabellos, O
Wiarda, D
Dunn, ME
AF Diez, C. J.
Michel-Sendis, F.
Cabellos, O.
Wiarda, D.
Dunn, M. E.
BE Serot, O
TI On the processing of JEFF-3.2 neutron data library with AMPX 6.2 for its
use with the SCALE tool suite
SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR
REACTOR APPLICATIONS
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 4th International Workshop On Nuclear Data Evaluation for Reactor
Applications(WONDER)
CY OCT 05-08, 2015
CL Aix en Provence, FRANCE
AB New processing capabilities are under development at the NEA Data Bank (DB) that aim to provide enlarged and enhanced nuclear data services to member countries in the framework of processing, verification and benchmarking of evaluated nuclear data. Within the context of the Joint Evaluated Fission and Fusion Nuclear Data Library Project (JEFF), we undertake to generate, with the latest version of AMPX processing code, a JEFF-3.2 incident-neutron nuclear data application library for the SCALE tool suite. In this paper we describe the requirements, in terms of nuclear data content, for new data to be considered and used in the SCALE tool suite. An overview of how to process and prepare JEFF-3.2 incident-neutron data with AMPX for its application in SCALE neutron transport codes is given. The resulting library is verified and tested at differential and integral level by comparing the performance of JEFF-3.2 in AMPX format with other processing and transport codes.
C1 [Diez, C. J.; Michel-Sendis, F.; Cabellos, O.] OECD Nucl Energy Agcy NEA, Data Bank, F-92130 Issy Les Moulineaux, France.
[Wiarda, D.; Dunn, M. E.] Oak Ridge Natl Lab, Reactor & Nucl Syst Div, Oak Ridge, TN 37831 USA.
RP Diez, CJ (reprint author), OECD Nucl Energy Agcy NEA, Data Bank, F-92130 Issy Les Moulineaux, France.
EM carlosjavier.diez@oecd.org
NR 8
TC 0
Z9 0
U1 0
U2 0
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1970-6
J9 EPJ WEB CONF
PY 2016
VL 111
AR 06003
DI 10.1051/epjconf/201611106003
PG 6
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA BE5FX
UT WOS:000372797000019
ER
PT S
AU Neudecker, D
Talou, P
Kawano, T
Kahler, AC
Rising, ME
White, MC
AF Neudecker, D.
Talou, P.
Kawano, T.
Kahler, A. C.
Rising, M. E.
White, M. C.
BE Serot, O
TI Evaluating the Pu-239 Prompt Fission Neutron Spectrum Induced by Thermal
to 30 MeV Neutrons
SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR
REACTOR APPLICATIONS
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 4th International Workshop On Nuclear Data Evaluation for Reactor
Applications(WONDER)
CY OCT 05-08, 2015
CL Aix en Provence, FRANCE
ID COVARIANCES; PLUTONIUM; URANIUM
AB We present a new evaluation of the Pu-239 prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.
C1 [Neudecker, D.; Talou, P.; Kawano, T.; Kahler, A. C.; Rising, M. E.; White, M. C.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RP Neudecker, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM dneudecker@lanl.gov
NR 25
TC 0
Z9 0
U1 3
U2 3
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1970-6
J9 EPJ WEB CONF
PY 2016
VL 111
AR 05004
DI 10.1051/epjconf/201611105004
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA BE5FX
UT WOS:000372797000016
ER
PT S
AU Nobre, GPA
Herman, M
Brown, D
Capote, R
Trkov, A
Leal, L
Plompen, A
Danon, Y
Qian, J
Ge, ZG
Liu, TJ
Lu, HL
Ruan, XC
AF Nobre, G. P. A.
Herman, M.
Brown, D.
Capote, R.
Trkov, A.
Leal, L.
Plompen, A.
Danon, Y.
Qian, Jing
Ge, Zhigang
Liu, Tingjin
Lu, Hnalin
Ruan, Xichao
BE Serot, O
TI New Fe-56 Evaluation for the CIELO project
SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR
REACTOR APPLICATIONS
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 4th International Workshop On Nuclear Data Evaluation for Reactor
Applications(WONDER)
CY OCT 05-08, 2015
CL Aix en Provence, FRANCE
ID LIBRARY
AB The Collaborative International Evaluated Library Organisation (CIELO) aims to provide revised and updated evaluations for Pu-239, U-238,U-235, Fe-56, O-16, and H-1 through international collaboration. This work, which is part of the CIELO project, presents the initial results for the evaluation of the Fe-56 isotope, with neutron-incident energy ranging from 0 to 20 MeV. The Fe-56(n,p) cross sections were fitted to reproduce the ones from IRDFF dosimetry file. Our preliminary file provides good cross-section agreements for the main angle-integrated reactions, as well as a reasonable overall agreement for angular distributions and double-differential spectra, when compared to previous evaluations.
C1 [Nobre, G. P. A.; Herman, M.; Brown, D.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Capote, R.; Trkov, A.] IAEA, POB 100, A-1400 Vienna, Austria.
[Leal, L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Plompen, A.] EC JRC IRMM, Geel, Belgium.
[Danon, Y.] Rensselaer Polytech Inst, Troy, NY USA.
[Qian, Jing; Ge, Zhigang; Liu, Tingjin] CNDC, POB 275-41, Beijing 102413, Peoples R China.
[Lu, Hnalin; Ruan, Xichao] CIAE, POB 275-41, Beijing 102413, Peoples R China.
RP Nobre, GPA (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM gnobre@bnl.gov
RI Capote Noy, Roberto/M-1245-2014
OI Capote Noy, Roberto/0000-0002-1799-3438
NR 11
TC 0
Z9 0
U1 1
U2 2
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1970-6
J9 EPJ WEB CONF
PY 2016
VL 111
AR 03001
DI 10.1051/epjconf/201611103001
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA BE5FX
UT WOS:000372797000008
ER
PT S
AU Paradela, C
Duran, I
Tassan-Got, L
Audouin, L
Berthier, B
Isaev, S
Le Naour, C
Stephan, C
Tarrio, D
Abbondanno, U
Aerts, G
Alvarez-Pol, H
Alvarez-Velarde, F
Andriamonje, S
Andrzejewski, J
Badurek, G
Baumann, P
Becvar, F
Berthoumieux, E
Calvino, F
Calviani, M
Cano-Ott, D
Capote, R
Carrapio, C
Cennini, P
Chepel, V
Chiaveri, E
Colonna, N
Cortes, G
Couture, A
Cox, J
Dahlfors, M
David, S
Dillmann, I
Domingo-Pardo, C
Dridi, W
Eleftheriadis, C
Embid-Segura, M
Ferrant, L
Ferrari, A
Ferreira-Marques, R
Fujii, K
Furman, W
Goncalves, IF
Gonzalez-Romero, E
Goverdovski, A
Gramegna, F
Guerrero, C
Gunsing, F
Haight, R
Heil, M
Igashira, M
Jericha, E
Kadi, Y
Kaeppeler, F
Karadimos, D
Kerveno, M
Ketlerov, V
Koehler, P
Konovalov, V
Krticka, M
Lampoudis, C
Lederer, C
Leeb, H
Lindote, A
Lukic, S
Marganiec, J
Martinez, T
Marrone, S
Massimi, C
Mastinu, P
Mengoni, A
Milazzo, PM
Moreau, C
Mosconi, M
Pancin, SJ
Pavlik, A
Pavlopoulos, P
Perrot, L
Plag, R
Plompen, A
Plukis, A
Poch, A
Pretel, C
Praena, J
Quesada, J
Rauscher, T
Reifarth, R
Rubbia, C
Rudolf, G
Rullhusen, P
Salgado, J
Santos, C
Sarchiapone, L
Savvidis, I
Tagliente, G
Tain, JL
Tavora, L
Terlizzi, R
Vaz, P
Ventura, A
Villamarin, D
Vincente, MC
Vlachoudis, V
Vlastou, R
Voss, F
Walter, S
Weiss, C
Wiesher, M
Wisshak, K
AF Paradela, C.
Duran, I.
Tassan-Got, L.
Audouin, L.
Berthier, B.
Isaev, S.
Le Naour, C.
Stephan, C.
Tarrio, D.
Abbondanno, U.
Aerts, G.
Alvarez-Pol, H.
Alvarez-Velarde, F.
Andriamonje, S.
Andrzejewski, J.
Badurek, G.
Baumann, P.
Becvar, F.
Berthoumieux, E.
Calvino, F.
Calviani, M.
Cano-Ott, D.
Capote, R.
Carrapio, C.
Cennini, P.
Chepel, V.
Chiaveri, E.
Colonna, N.
Cortes, G.
Couture, A.
Cox, J.
Dahlfors, M.
David, S.
Dillmann, I.
Domingo-Pardo, C.
Dridi, W.
Eleftheriadis, C.
Embid-Segura, M.
Ferrant, L.
Ferrari, A.
Ferreira-Marques, R.
Fujii, K.
Furman, W.
Goncalves, I. F.
Gonzalez-Romero, E.
Goverdovski, A.
Gramegna, F.
Guerrero, C.
Gunsing, F.
Haight, R.
Heil, M.
Igashira, M.
Jericha, E.
Kadi, Y.
Kaeppeler, F.
Karadimos, D.
Kerveno, M.
Ketlerov, V.
Koehler, P.
Konovalov, V.
Krticka, M.
Lampoudis, C.
Lederer, C.
Leeb, H.
Lindote, A.
Lukic, S.
Marganiec, J.
Martinez, T.
Marrone, S.
Massimi, C.
Mastinu, P.
Mengoni, A.
Milazzo, P. M.
Moreau, C.
Mosconi, M.
Pancin, S. J.
Pavlik, A.
Pavlopoulos, P.
Perrot, L.
Plag, R.
Plompen, A.
Plukis, A.
Poch, A.
Pretel, C.
Praena, J.
Quesada, J.
Rauscher, T.
Reifarth, R.
Rubbia, C.
Rudolf, G.
Rullhusen, P.
Salgado, J.
Santos, C.
Sarchiapone, L.
Savvidis, I.
Tagliente, G.
Tain, J. L.
Tavora, L.
Terlizzi, R.
Vaz, P.
Ventura, A.
Villamarin, D.
Vincente, M. C.
Vlachoudis, V.
Vlastou, R.
Voss, F.
Walter, S.
Weiss, C.
Wiesher, M.
Wisshak, K.
CA N TOF Collaboration
BE Serot, O
TI High accuracy U-235(n,f) data in the resonance energy region
SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR
REACTOR APPLICATIONS
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 4th International Workshop On Nuclear Data Evaluation for Reactor
Applications(WONDER)
CY OCT 05-08, 2015
CL Aix en Provence, FRANCE
AB The U-235 neutron-induced cross section is widely used as reference cross section for measuring other fission cross sections, but in the resonance region it is not considered as an IAEA standard because of the scarce experimental data covering the full region. In this work, we deal with a new analysis of the experimental data obtained with a detection setup based on parallel plate ionization chambers (PPACs) at the CERN n_TOF facility in the range from 1 eV to 10 keV. The relative cross section has been normalised to the IAEA value in the region between 7.8 and 11 eV, which is claimed as well-known. Comparison with the ENDF/B-VII evaluation and the IAEA reference file from 100 eV to 10 keV are provided.
C1 [Paradela, C.; Plompen, A.; Rullhusen, P.] EC JRC IRMM, Retieseweg 111, B-2440 Geel, Belgium.
[Paradela, C.; Duran, I.; Tarrio, D.; Alvarez-Pol, H.; Mengoni, A.] Univ Santiago de Compostela, Santiago De Compostela, Spain.
[Tassan-Got, L.; Audouin, L.; Berthier, B.; Isaev, S.; Le Naour, C.; Stephan, C.; David, S.; Ferrant, L.] CNRS, IN2P3, IPN, F-91405 Orsay, France.
[Abbondanno, U.; Tagliente, G.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy.
[Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, S. J.; Perrot, L.; Plukis, A.] CEA Saclay, Irfu, SPhN, F-91191 Gif Sur Yvette, France.
[Alvarez-Velarde, F.; Cano-Ott, D.; Gonzalez-Romero, E.; Martinez, T.; Villamarin, D.] CIEMAT, E-28040 Madrid, Spain.
[Andrzejewski, J.; Marganiec, J.] Univ Lodz, PL-90131 Lodz, Poland.
[Badurek, G.; Jericha, E.; Lederer, C.; Leeb, H.] Vienna Univ Technol, Atominst Osterreich Univ, Vienna, Austria.
[Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.] CNRS, IN2P3, IPHC, Strasbourg, France.
[Becvar, F.; Embid-Segura, M.; Krticka, M.; Vincente, M. C.] Charles Univ Prague, Prague, Czech Republic.
[Calvino, F.; Cortes, G.; Poch, A.; Pretel, C.] Univ Politecn Cataluna, Barcelona, Spain.
[Calviani, M.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Guerrero, C.; Kadi, Y.; Mengoni, A.; Rubbia, C.; Sarchiapone, L.; Vlachoudis, V.; Weiss, C.] CERN, Geneva, Switzerland.
[Capote, R.; Guerrero, C.; Quesada, J.] Univ Seville, Seville, Spain.
[Carrapio, C.; Goncalves, I. F.; Salgado, J.; Santos, C.; Tavora, L.; Vaz, P.] Univ Lisbon, Inst Super Tecn, CTN, P-1699 Lisbon, Portugal.
[Chepel, V.; Ferreira-Marques, R.; Lindote, A.] LIP Coimbra, Coimbra, Portugal.
[Colonna, N.; Marrone, S.] Ist Nazl Fis Nucl, I-70126 Bari, Italy.
[Tarrio, D.; Couture, A.; Cox, J.; Wiesher, M.] Uppsala Univ, Dept Phys & Astron, S-75105 Uppsala, Sweden.
[Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] Karlsruhe Inst Technol, Inst Kernphys, Campus North, D-76021 Karlsruhe, Germany.
[Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain.
[Eleftheriadis, C.; Lampoudis, C.; Savvidis, I.] Aristotle Univ Thessaloniki, Thessaloniki, Greece.
[Fujii, K.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy.
[Furman, W.; Konovalov, V.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia.
[Goverdovski, A.; Ketlerov, V.] IPPE, Obninsk, Russia.
[Gramegna, F.; Mastinu, P.; Praena, J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy.
[Haight, R.; Koehler, P.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Igashira, M.] Tokyo Inst Technol, Tokyo 152, Japan.
[Karadimos, D.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece.
[Massimi, C.; Pavlopoulos, P.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy.
[Ventura, A.] ENEA, Bologna, Italy.
[Rauscher, T.] Univ Basel, Dept Phys & Astron, CH-4003 Basel, Switzerland.
RP Paradela, C (reprint author), EC JRC IRMM, Retieseweg 111, B-2440 Geel, Belgium.; Paradela, C (reprint author), Univ Santiago de Compostela, Santiago De Compostela, Spain.
EM carlos.PARADELA-DOBARRO@ec.europa.eu
RI Vaz, Pedro/K-2464-2013; Rauscher, Thomas/D-2086-2009; Calvino,
Francisco/K-5743-2014; Capote Noy, Roberto/M-1245-2014; Massimi,
Cristian/K-2008-2015; Alvarez Pol, Hector/F-1930-2011; Martinez,
Trinitario/K-6785-2014;
OI Vaz, Pedro/0000-0002-7186-2359; Rauscher, Thomas/0000-0002-1266-0642;
Calvino, Francisco/0000-0002-7198-4639; Capote Noy,
Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0003-2499-5586;
Alvarez Pol, Hector/0000-0001-9643-6252; Martinez,
Trinitario/0000-0002-0683-5506; Tarrio, Diego/0000-0002-9858-3341
NR 7
TC 1
Z9 1
U1 11
U2 20
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1970-6
J9 EPJ WEB CONF
PY 2016
VL 111
AR 02003
DI 10.1051/epjconf/201611102003
PG 6
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA BE5FX
UT WOS:000372797000005
ER
PT S
AU Porta, A
Zakari-Issoufou, AA
Fallot, M
Algora, A
Tain, JL
Valencia, E
Rice, S
Bui, VM
Cormon, S
Estienne, M
Agramunt, J
Aysto, J
Bowry, M
Briz, JA
Caballero-Folch, R
Cano-Ott, D
Cucouanes, A
Elomaa, VV
Eronen, T
Estevez, E
Farrelly, GF
Garcia, AR
Gelletly, W
Gomez-Hornillos, MB
Gorlychev, V
Hakala, J
Jokinen, A
Jordan, MD
Kankainen, A
Karvonen, P
Kolhinen, VS
Kondev, FG
Martinez, T
Mendoza, E
Molina, F
Moore, I
Perez-Cerdan, AB
Podolyak, Z
Penttila, H
Regan, PH
Reponen, M
Rissanen, J
Rubio, B
Shiba, T
Sonzogni, AA
Weber, C
AF Porta, A.
Zakari-Issoufou, A. -A.
Fallot, M.
Algora, A.
Tain, J. L.
Valencia, E.
Rice, S.
Bui, V. M.
Cormon, S.
Estienne, M.
Agramunt, J.
Aysto, J.
Bowry, M.
Briz, J. A.
Caballero-Folch, R.
Cano-Ott, D.
Cucouanes, A.
Elomaa, V. -V.
Eronen, T.
Estevez, E.
Farrelly, G. F.
Garcia, A. R.
Gelletly, W.
Gomez-Hornillos, M. B.
Gorlychev, V.
Hakala, J.
Jokinen, A.
Jordan, M. D.
Kankainen, A.
Karvonen, P.
Kolhinen, V. S.
Kondev, F. G.
Martinez, T.
Mendoza, E.
Molina, F.
Moore, I.
Perez-Cerdan, A. B.
Podolyak, Zs.
Penttila, H.
Regan, P. H.
Reponen, M.
Rissanen, J.
Rubio, B.
Shiba, T.
Sonzogni, A. A.
Weber, C.
CA IGISOL Collaboration
BE Serot, O
TI Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor
Antineutrino Spectra and Decay Heat Calculations
SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR
REACTOR APPLICATIONS
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 4th International Workshop On Nuclear Data Evaluation for Reactor
Applications(WONDER)
CY OCT 05-08, 2015
CL Aix en Provence, FRANCE
AB Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. Rb-92,Rb-93 are two fission products of importance in reactor antineutrino spectra and decay heat, but their beta-decay properties are not well known. New measurements of Rb-92,Rb-93 beta-decay properties have been performed at the IGISOL facility (Jyvaskyla, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for Rb-93, our measured beta feedings for Rb-92 and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.
C1 [Porta, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Bui, V. M.; Cormon, S.; Estienne, M.; Briz, J. A.; Cucouanes, A.; Shiba, T.] Univ Nantes, Ecole Mines Nantes, CNRS, SUBATECH,IN2P3, F-44307 Nantes, France.
[Algora, A.; Tain, J. L.; Valencia, E.; Agramunt, J.; Estevez, E.; Gelletly, W.; Jordan, M. D.; Molina, F.; Perez-Cerdan, A. B.; Rubio, B.] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain.
[Algora, A.] MTA ATOMKI, Inst Nucl Res, H-4026 Debrecen, Hungary.
[Rice, S.; Bowry, M.; Farrelly, G. F.; Gelletly, W.; Podolyak, Zs.; Regan, P. H.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England.
[Aysto, J.] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland.
[Caballero-Folch, R.; Gomez-Hornillos, M. B.; Gorlychev, V.] Univ Politecn Cataluna, ES-08034 Barcelona, Spain.
[Cano-Ott, D.; Garcia, A. R.; Martinez, T.; Mendoza, E.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain.
[Elomaa, V. -V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Moore, I.; Penttila, H.; Reponen, M.; Rissanen, J.; Weber, C.; IGISOL Collaboration] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland.
[Kondev, F. G.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Molina, F.] Comis Chilena Energia Nucl, POB 188, Santiago, Chile.
[Regan, P. H.] Natl Phys Lab, Teddington TW11 0LW, Middx, England.
[Reponen, M.] RIKEN, 2-1 Hirosawa, Wako, Saitama 3510198, Japan.
[Sonzogni, A. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA.
[Weber, C.] Univ Munich, Fac Phys, Coulombwall 1, D-85748 Garching, Germany.
RP Porta, A (reprint author), Univ Nantes, Ecole Mines Nantes, CNRS, SUBATECH,IN2P3, F-44307 Nantes, France.
EM porta@subatech.in2p3.fr
RI Martinez, Trinitario/K-6785-2014; Mendoza Cembranos, Emilio/K-5789-2014;
Moore, Iain/D-7255-2014
OI Martinez, Trinitario/0000-0002-0683-5506; Jokinen,
Ari/0000-0002-0451-125X; Garcia Rios, Aczel Regino/0000-0002-7955-1475;
Mendoza Cembranos, Emilio/0000-0002-2843-1801; Moore,
Iain/0000-0003-0934-8727
NR 21
TC 0
Z9 0
U1 3
U2 9
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1970-6
J9 EPJ WEB CONF
PY 2016
VL 111
AR 08006
DI 10.1051/epjconf/201611108006
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA BE5FX
UT WOS:000372797000031
ER
PT S
AU Regnier, D
Dubray, N
Schunck, N
Verriere, M
AF Regnier, D.
Dubray, N.
Schunck, N.
Verriere, M.
BE Serot, O
TI Microscopic predictions of fission yields based on the time dependent
GCM formalism
SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR
REACTOR APPLICATIONS
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 4th International Workshop On Nuclear Data Evaluation for Reactor
Applications(WONDER)
CY OCT 05-08, 2015
CL Aix en Provence, FRANCE
AB Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+Pu-239 low energy induced fission. This work is the result of a collaboration between CEA, DAM, DIF and LLNL on nuclear fission theory.
C1 [Regnier, D.; Dubray, N.; Verriere, M.] CEA, DAM, DIF, F-91297 Arpajon, France.
[Schunck, N.] LLNL, Nucl & Chem Sci Div, Livermore, CA 94551 USA.
RP Regnier, D; Dubray, N (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France.
EM david.regnier@cea.fr; noel.dubray@cea.fr
NR 10
TC 0
Z9 0
U1 1
U2 3
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1970-6
J9 EPJ WEB CONF
PY 2016
VL 111
AR 08005
DI 10.1051/epjconf/201611108005
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA BE5FX
UT WOS:000372797000030
ER
PT S
AU Walsh, JA
Forget, B
Smith, KS
Brown, FB
AF Walsh, Jonathan A.
Forget, Benoit
Smith, Kord S.
Brown, Forrest B.
BE Serot, O
TI Neutron Cross Section Processing Methods for Improved Integral
Benchmarking of Unresolved Resonance Region Evaluations
SO WONDER-2015 - 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR
REACTOR APPLICATIONS
SE EPJ Web of Conferences
LA English
DT Proceedings Paper
CT 4th International Workshop On Nuclear Data Evaluation for Reactor
Applications(WONDER)
CY OCT 05-08, 2015
CL Aix en Provence, FRANCE
AB In this work we describe the development and application of computational methods for processing neutron cross section data in the unresolved resonance region (URR). These methods are integrated with a continuous-energy Monte Carlo neutron transport code, thereby enabling their use in high-fidelity analyses. Enhanced understanding of the effects of URR evaluation representations on calculated results is then obtained through utilization of the methods in Monte Carlo integral benchmark simulations of fast spectrum critical assemblies. First, we present a so-called on-the-fly (OTF) method for calculating and Doppler broadening URR cross sections. This method proceeds directly from ENDF-6 average unresolved resonance parameters and, thus, eliminates any need for a probability table generation pre-processing step in which tables are constructed at several energies for all desired temperatures. Significant memory reduction may be realized with the OTF method relative to a probability table treatment if many temperatures are needed. Next, we examine the effects of using a multi-level resonance formalism for resonance reconstruction in the URR. A comparison of results obtained by using the same stochastically-generated realization of resonance parameters in both the single-level Breit-Wigner (SLBW) and multi-level Breit-Wigner (MLBW) formalisms allows for the quantification of level-level interference effects on integrated tallies such as k(eff) and energy group reaction rates. Though, as is well-known, cross section values at any given incident energy may differ significantly between single-level and multi-level formulations, the observed effects on integral results are minimal in this investigation. Finally, we demonstrate the calculation of true expected values, and the statistical spread of those values, through independent Monte Carlo simulations, each using an independent realization of URR cross section structure throughout. It is observed that both probability table and OTF treatments reproduce the true expected values, calculated by averaging the results of many independent simulations, quite well. However, the spread of independent calculation results is shown to be relatively significant. The k(eff) eigenvalues for fast spectrum systems can differ by more than 250 pcm from one simulation to the next.
C1 [Walsh, Jonathan A.; Forget, Benoit; Smith, Kord S.] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave,24-107, Cambridge, MA 02139 USA.
[Walsh, Jonathan A.; Brown, Forrest B.] Los Alamos Natl Lab, XCP 3, Monte Carlo Methods Codes & Appl, POB 1663, Los Alamos, NM 87545 USA.
RP Walsh, JA (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave,24-107, Cambridge, MA 02139 USA.; Walsh, JA (reprint author), Los Alamos Natl Lab, XCP 3, Monte Carlo Methods Codes & Appl, POB 1663, Los Alamos, NM 87545 USA.
EM walshjon@mit.edu
NR 12
TC 0
Z9 0
U1 2
U2 2
PU E D P SCIENCES
PI CEDEX A
PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A,
FRANCE
SN 2100-014X
BN 978-2-7598-1970-6
J9 EPJ WEB CONF
PY 2016
VL 111
AR 06001
DI 10.1051/epjconf/201611106001
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA BE5FX
UT WOS:000372797000017
ER
PT J
AU Kotwal, AV
Jayatilaka, B
AF Kotwal, Ashutosh V.
Jayatilaka, Bodhitha
TI Comparison of horace and photos Algorithms for Multiphoton Emission in
the Context of W Boson Mass Measurement
SO ADVANCES IN HIGH ENERGY PHYSICS
LA English
DT Article
AB W boson mass measurement is sensitive to QED radiative corrections due to virtual photon loops and real photon emission. The largest shift in the measured mass, which depends on the transverse momentum spectrum of the charged lepton from the boson decay, is caused by the emission of real photons from the final-state lepton. There are a number of calculations and codes available to model the final-state photon emission. We perform a detailed study, comparing the results from horace and photos implementations of the final-state multiphoton emission in the context of a direct measurement of W boson mass at Tevatron. Mass fits are performed using a simulation of the CDF II detector.
C1 [Kotwal, Ashutosh V.] Duke Univ, Dept Phys, Durham, NC 27708 USA.
[Jayatilaka, Bodhitha] Fermilab Natl Accelerator Lab, Sci Comp Div, POB 500, Batavia, IL 60510 USA.
RP Kotwal, AV (reprint author), Duke Univ, Dept Phys, Durham, NC 27708 USA.
EM ashutosh.kotwal@duke.edu
FU U.S. Department of Energy, Office of High Energy Physics; Fermi National
Accelerator Laboratory (Fermilab); United States Department of Energy
[DE-AC02-07CH11359]
FX The authors wish to thank Ilija Bizjak for his assistance with the
HORACE program and Zbigniew Was for providing the interface to the
photos program. The authors wish to thank William Ashmanskas, Franco
Bedeschi, Daniel Beecher, Ilija Bizjak, Kenichi Hatakeyama, Christopher
Hays, Mark Lancaster, Sarah Malik, Larry Nodulman, Peter Renton, Tom
Riddick, Ravi Shekhar, Melvyn Shochet, Oliver Stelzer-Chilton, Siyuan
Sun, David Waters, Yu Zeng, and other colleagues in the CDF
Collaboration for helpful discussions. They also thank Carlo Carloni
Calame, Guido Montagna, Alessandro Vicini, Doreen Wackeroth, and
Zbigniew Was for discussions regarding electroweak radiative
corrections. They acknowledge the support of the U.S. Department of
Energy, Office of High Energy Physics, and the Fermi National
Accelerator Laboratory (Fermilab). The computational resources used in
this study were provided by Fermilab. Fermilab is operated by Fermi
Research Alliance, LLC, under Contract no. DE-AC02-07CH11359 with the
United States Department of Energy.
NR 15
TC 0
Z9 0
U1 1
U2 1
PU HINDAWI PUBLISHING CORP
PI NEW YORK
PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA
SN 1687-7357
EI 1687-7365
J9 ADV HIGH ENERGY PHYS
JI Adv. High. Energy Phys.
PY 2016
AR 1615081
DI 10.1155/2016/1615081
PG 9
WC Physics, Particles & Fields
SC Physics
GA DH2RM
UT WOS:000372633800001
ER
PT J
AU Polisetti, S
Bible, AN
Morrell-Falvey, JL
Bohn, PW
AF Polisetti, Sneha
Bible, Amber N.
Morrell-Falvey, Jennifer L.
Bohn, Paul W.
TI Raman chemical imaging of the rhizosphere bacterium Pantoea sp YR343 and
its co-culture with Arabidopsis thaliana
SO ANALYST
LA English
DT Article
ID SURFACE-ENHANCED RAMAN; GROWTH-PROMOTING RHIZOBACTERIA; RESONANCE RAMAN;
PLANT-GROWTH; MASS-SPECTROMETRY; SCATTERING SERS; SPECTROSCOPY; SILVER;
MICROSCOPY; NANOPARTICLES
AB Chemical imaging of plant-bacteria co-cultures makes it possible to characterize bacterial populations and behaviors and their interactions with proximal organisms, under conditions closest to the environment in the rhizosphere. Here Raman micro-spectroscopy and confocal Raman imaging are used as minimally invasive probes to study the rhizosphere bacterial isolate, Pantoea sp. YR343, and its co-culture with model plant Arabidopsis thaliana by combining enhanced Raman spectroscopies with electron microscopy and principal component analysis (PCA). The presence of carotenoid pigments in the wild type Pantoea sp. YR343 was characterized using resonance Raman scattering, which was also used to confirm successful disruption of the crtB gene in an engineered carotenoid mutant strain. Other components of the Pantoea sp. YR343 cells were imaged in the presence of resonantly enhanced pigments using a combination of surface enhanced Raman imaging and PCA. Pantoea sp. YR343 cells decorated with Ag colloid synthesized ex situ gave spectra dominated by carotenoid scattering, whereas colloids synthesized in situ produced spectral signatures characteristic of flavins in the cell membrane. Scanning electron microscopy (SEM) of whole cells and transmission electron microscopy (TEM) images of thinly sliced cross-sections were used to assess structural integrity of the coated cells and to establish the origin of spectral signatures based on the position of Ag nanoparticles in the cells. Raman imaging was also used to characterize senescent green Arabidopsis thaliana plant roots inoculated with Pantoea sp. YR343, and PCA was used to distinguish spectral contributions from plant and bacterial cells, thereby establishing the potential of Raman imaging to visualize the distribution of rhizobacteria on plant roots.
C1 [Polisetti, Sneha; Bohn, Paul W.] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA.
[Bible, Amber N.; Morrell-Falvey, Jennifer L.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Bohn, Paul W.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA.
RP Bohn, PW (reprint author), Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA.; Bohn, PW (reprint author), Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA.
EM pbohn@nd.edu
RI Morrell-Falvey, Jennifer/A-6615-2011
OI Morrell-Falvey, Jennifer/0000-0002-9362-7528
FU Department of Energy through Oak Ridge National Laboratory
(PTX-UT-Battelle) [ORNL-4000132808]; Genomic Science Program, U.S.
Department of Energy, Office of Science, Biological and Environmental
Research, as part of the Plant Microbe Interfaces Scientific Focus Area;
U.S. Department of Energy [DE-AC05-00OR22725]
FX This research was supported by Department of Energy through a
subcontract from Oak Ridge National Laboratory (PTX-UT-Battelle), grant
ORNL-4000132808. (SP). Work at ORNL was sponsored by the Genomic Science
Program, U.S. Department of Energy, Office of Science, Biological and
Environmental Research, as part of the Plant Microbe Interfaces
Scientific Focus Area (http://pmi.ornl.gov). Oak Ridge National
Laboratory is managed by UT-Battelle LLC, for the U.S. Department of
Energy under contract DE-AC05-00OR22725. The authors acknowledge W.
Archer and T. Orlova (University of Notre Dame, Notre Dame) for
experimental advice and assistance with TEM and SEM sample preparation
and image acquisition. We also acknowledge R. Masyuko for her
preliminary work in characterizing the bacterial strains and D. A.
Wheatcraft who developed the PCA codes.
NR 53
TC 0
Z9 0
U1 10
U2 23
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0003-2654
EI 1364-5528
J9 ANALYST
JI Analyst
PY 2016
VL 141
IS 7
BP 2175
EP 2182
DI 10.1039/c6an00080k
PG 8
WC Chemistry, Analytical
SC Chemistry
GA DH3AB
UT WOS:000372657900007
PM 26948490
ER
PT J
AU Wang, SQ
Thomas, A
Lee, E
Yang, S
Cheng, XH
Liu, YL
AF Wang, Shunqiang
Thomas, Antony
Lee, Elaine
Yang, Shu
Cheng, Xuanhong
Liu, Yaling
TI Highly efficient and selective isolation of rare tumor cells using a
microfluidic chip with wavy-herringbone micro-patterned surfaces
SO ANALYST
LA English
DT Article
ID CANCER-CELLS; PROSTATE-CANCER; CAPTURE; MICROMIXERS; DEVICES; RELEASE;
MICROVORTEX; LITHOGRAPHY; ENRICHMENT; PARTICLES
AB Circulating tumor cells (CTCs) in peripheral blood have been recognized as a general biomarker for diagnosing cancer and providing guidance for personalized treatments. Yet due to their rarity, the challenge for their clinical utility lies in the efficient isolation while avoiding the capture of other non-targeted white blood cells (WBCs). In this paper, a wavy-herringbone (HB) microfluidic chip coated with antibody directly against epithelial cell adhesion molecule (anti-EpCAM) was developed for highly efficient and selective isolation of tumor cells from tumor cell-spiked whole blood samples. By extending the concept of the hallmark HB-Chip in the literature, the wavy-HB chip not only achieves high capture efficiency (up to 85.0%) by micro-vortexes induced by HB structures, but also achieves high purity (up to 39.4%) due to the smooth wavy microstructures. These smooth wavy-HB structures eliminate the ultra-low shear rate regions in the traditional grooved-HB structures that lead to non-specific trapping of cells. Compared with the grooved-HB chip with sharp corners, the wavy-HB chip shows significantly higher purity while maintaining similarly high capture efficiency. Furthermore, the wavy-HB chip has up to 11% higher captured cell viability over the grooved-HB chip. The distributions of tumor cells and WBCs along the grooves and waves are investigated to help understand the mechanisms behind the better performance of the wavy-HB chip. The wavy-HB chip may serve as a promising platform for CTC capture and cancer diagnosis.
C1 [Wang, Shunqiang; Liu, Yaling] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA.
[Thomas, Antony; Cheng, Xuanhong; Liu, Yaling] Lehigh Univ, Bioengn Program, Bethlehem, PA 18015 USA.
[Lee, Elaine] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Lee, Elaine; Yang, Shu] Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA.
[Cheng, Xuanhong] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA.
RP Liu, YL (reprint author), Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA.; Liu, YL (reprint author), Lehigh Univ, Bioengn Program, Bethlehem, PA 18015 USA.
EM yal310@lehigh.edu
RI Wang, Shunqiang/L-1622-2016; Yang, Shu/D-9758-2011
OI Wang, Shunqiang/0000-0003-2339-8130;
FU National Science Foundation (NSF) [CBET-1264808, DMS-1516236]; National
Institute of Health (NIH) [EB015105]; NSF [CBET-1263940]
FX This work was supported in part by National Science Foundation (NSF)
grant CBET-1264808 (to Y. Liu and X. Cheng), DMS-1516236 (to Y. Liu),
and National Institute of Health (NIH) grant EB015105 (to Y. Liu), NSF
grant CBET-1263940 (to S. Yang). The authors thank Dr. Younghyun Cho in
the University of Pennsylvania for helpful discussions and suggestions,
Dr. Susan Perry in Lehigh University for sharing lab facilities and Dr.
Lynne Cassimeris in Lehigh University for sharing the HCT-116 cell line.
NR 54
TC 6
Z9 6
U1 8
U2 31
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0003-2654
EI 1364-5528
J9 ANALYST
JI Analyst
PY 2016
VL 141
IS 7
BP 2228
EP 2237
DI 10.1039/c6an00236f
PG 10
WC Chemistry, Analytical
SC Chemistry
GA DH3AB
UT WOS:000372657900013
PM 26907962
ER
PT J
AU Tang, YT
Rosenberg, JN
Bohutskyi, P
Yu, G
Betenbaugh, MJ
Wang, F
AF Tang, Yuting
Rosenberg, Julian N.
Bohutskyi, Pavlo
Yu, Geng
Betenbaugh, Michael J.
Wang, Fei
TI Microalgae as a Feedstock for Biofuel Precursors and Value-Added
Products: Green Fuels and Golden Opportunities
SO BIORESOURCES
LA English
DT Review
DE Microalgae; Biofuels; Biochemicals; Lipid Profiles; Algal Strain
Development
ID IN-SITU TRANSESTERIFICATION; FATTY-ACID-COMPOSITION; ELEVATED CO2
CONCENTRATION; ALGA SCENEDESMUS-QUADRICAUDA; CELL-WALL POLYSACCHARIDES;
WASTE-WATER TREATMENT; CHLORELLA-VULGARIS; BIODIESEL PRODUCTION;
LIGHT-INTENSITY; CHLAMYDOMONAS-REINHARDTII
AB The prospects of biofuel production from microalgal carbohydrates and lipids coupled with greenhouse gas mitigation due to photosynthetic assimilation of CO2 have ushered in a renewed interest in algal feedstock. Furthermore, microalgae (including cyanobacteria) have become established as commercial sources of value-added biochemicals such as polyunsaturated fatty acids and carotenoid pigments used as antioxidants in nutritional supplements and cosmetics. This article presents a comprehensive synopsis of the metabolic basis for accumulating lipids as well as applicable methods of lipid and cellulose bioconversion and final applications of these natural or refined products from microalgal biomass. For lipids, one-step in situ transesterification offers a new and more accurate approach to quantify oil content. As a complement to microalgal oil fractions, the utilization of cellulosic biomass from microalgae to produce bioethanol by fermentation, biogas by anaerobic digestion, and bio-oil by hydrothermal liquefaction are discussed. Collectively, a compendium of information spanning green renewable fuels and value-added nutritional compounds is provided.
C1 [Tang, Yuting; Wang, Fei] Nanjing Forestry Univ, Jiangsu Key Lab Biomass Based Green Fuels & Chem, Coll Chem Engn, 159 Longpan St, Nanjing 210037, JS, Peoples R China.
[Rosenberg, Julian N.; Bohutskyi, Pavlo; Yu, Geng; Betenbaugh, Michael J.] Johns Hopkins Univ, Dept Chem & Biomol Engn, 3400 N Charles St, Baltimore, MD 21218 USA.
[Bohutskyi, Pavlo] Pacific NW Natl Lab, Div Biol Sci, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
RP Wang, F (reprint author), Nanjing Forestry Univ, Jiangsu Key Lab Biomass Based Green Fuels & Chem, Coll Chem Engn, 159 Longpan St, Nanjing 210037, JS, Peoples R China.
EM hgwf@njfu.edu.cn
FU Natural Science Foundation of Jiangsu Universities [11KJA480001];
national Natural Science Foundation of China [31170537]; Priority
Academic Program Development of Jiangsu Higher Education Institutions
(PAPD); National Science Foundation [NSF-EFRI-1332344]; DOE DE
[SC0012658]; Johns Hopkins Environment, Energy, Sustainability & Health
Institute (E2SHI)
FX The authors gratefully acknowledge the financial support from the
Natural Science Foundation of Jiangsu Universities (11KJA480001), the
national Natural Science Foundation of China (31170537) and the Priority
Academic Program Development of Jiangsu Higher Education Institutions
(PAPD). Partial support was also provided by grant number
NSF-EFRI-1332344 from the National Science Foundation (MJB), DOE DE
SC0012658 grant (MJB) and a fellowship to JNR from the Johns Hopkins
Environment, Energy, Sustainability & Health Institute
(E2SHI).
NR 203
TC 2
Z9 2
U1 9
U2 16
PU NORTH CAROLINA STATE UNIV DEPT WOOD & PAPER SCI
PI RALEIGH
PA CAMPUS BOX 8005, RALEIGH, NC 27695-8005 USA
SN 1930-2126
J9 BIORESOURCES
JI BioResources
PY 2016
VL 11
IS 1
BP 2850
EP 2885
PG 36
WC Materials Science, Paper & Wood
SC Materials Science
GA DG8GO
UT WOS:000372321200075
ER
PT J
AU Flood, D
Proulx, C
Robertson, EJ
Battigelli, A
Wang, S
Schwartzberg, AM
Zuckermann, RN
AF Flood, Dillon
Proulx, Caroline
Robertson, Ellen J.
Battigelli, Alessia
Wang, Shuo
Schwartzberg, Adam M.
Zuckermann, Ronald N.
TI Improved chemical and mechanical stability of peptoid nanosheets by
photo-crosslinking the hydrophobic core
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID ARYL HALIDES; NONBIOLOGICAL POLYMER; SECONDARY-STRUCTURE; UNACTIVATED
ARENES; SIDE-CHAINS; ARYLATION; BENZENE
AB Peptoid nanosheets can be broadly functionalized for a variety of applications. However, they are susceptible to degradation when exposed to chemical or mechanical stress. To improve their strength, photolabile monomers were introduced in order to crosslink the nanosheet interior. Photo-crosslinking produced a more robust material that can survive sonication, lyophilization, and other biochemical manipulations.
C1 [Flood, Dillon; Proulx, Caroline; Robertson, Ellen J.; Battigelli, Alessia; Wang, Shuo; Schwartzberg, Adam M.; Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
RP Zuckermann, RN (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM rnzuckermann@lbl.gov
FU Defense Threat Reduction Agency [DTRA10027-15875]; DARPA Fold F(x)
program; Office of Science, Office of Basic Energy Sciences, U. S.
Department of Energy [DEAC02-05CH11231]; Natural Sciences and
Engineering Council of Canada (NSERC); Advanced Light Source, at
Lawrence Berkeley National Laboratory
FX This project was funded by the Defense Threat Reduction Agency under
Contract No. DTRA10027-15875 and the DARPA Fold F(x) program. The work
was conducted at the Molecular Foundry with support from the Advanced
Light Source, at Lawrence Berkeley National Laboratory, both of which
are supported by the Office of Science, Office of Basic Energy Sciences,
U. S. Department of Energy under Contract No. DEAC02-05CH11231. We also
thank R. Garcia, M. Connolly and B. Rad for their insightful discussions
and inspiration. C. P. is grateful for a postdoctoral fellowship from
the Natural Sciences and Engineering Council of Canada (NSERC).
NR 31
TC 1
Z9 1
U1 6
U2 24
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PY 2016
VL 52
IS 26
BP 4753
EP 4756
DI 10.1039/c6cc00588h
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DH3BN
UT WOS:000372662100003
PM 26864502
ER
PT J
AU Leggett, CJ
Parker, BF
Teat, SJ
Zhang, Z
Dau, PD
Lukens, WW
Peterson, SM
Cardenas, AJP
Warner, MG
Gibson, JK
Arnold, J
Rao, L
AF Leggett, C. J.
Parker, B. F.
Teat, S. J.
Zhang, Z.
Dau, P. D.
Lukens, W. W.
Peterson, S. M.
Cardenas, A. J. P.
Warner, M. G.
Gibson, J. K.
Arnold, J.
Rao, L.
TI Structural and spectroscopic studies of a rare non-oxido V(v) complex
crystallized from aqueous solution
SO CHEMICAL SCIENCE
LA English
DT Article
ID VANADIUM(V) COMPLEXES; SEA WATER; X-RAY; URANIUM; SEAWATER; AMAVADIN;
EXTRACTION; AMIDOXIME; RECOVERY; STEREOCHEMISTRY
AB A non-oxido V(V) complex with glutaroimide-dioxime (H3L), a ligand for recovering uranium from seawater, was synthesized from aqueous solution as Na[V(L)(2)]center dot 2H(2)O, and the structure determined by X-ray diffraction. It is the first non-oxido V(V) complex that has been directly synthesized in and crystallized from aqueous solution. The distorted octahedral structure contains two fully deprotonated ligands (L3-) coordinating to V5+, each in a tridentate mode via the imide N (RV-N = 1.96 angstrom) and oxime O atoms (RV-O = 1.87-1.90 angstrom). Using O-17-labelled vanadate as the starting material, concurrent O-17/V-51/H-1/C-13 NMR, in conjunction with ESI-MS, unprecedentedly demonstrated the stepwise displacement of the oxido V=O bonds by glutaroimide-dioxime and verified the existence of the "bare" V5+/glutaroimide-dioxime complex, [V(L)(2)](-), in aqueous solution. In addition, the crystal structure of an intermediate 1 : 1 V(V)/glutaroimide-dioxime complex, [VO2(HL)](-), in which the oxido bonds of vanadate are only partially displaced, corroborates the observations by NMR and ESI-MS. Results from this work provide important insights into the strong sorption of vanadium on poly(amidoxime) sorbents in the recovery of uranium from seawater. Also, because vanadium plays important roles in biological systems, the syntheses of the oxido and non-oxido V5+ complexes and the unprecedented demonstration of the displacement of the oxido V=O bonds help with the on-going efforts to develop new vanadium compounds that could be of importance in biological applications.
C1 [Leggett, C. J.; Parker, B. F.; Zhang, Z.; Dau, P. D.; Lukens, W. W.; Gibson, J. K.; Arnold, J.; Rao, L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Parker, B. F.; Arnold, J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Teat, S. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Peterson, S. M.; Warner, M. G.] Pacific NW Natl Lab, Natl Secur Directorate, 902 Battelle Blvd, Richland, WA 99352 USA.
[Cardenas, A. J. P.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, 902 Battelle Blvd, Richland, WA 99352 USA.
RP Rao, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Teat, SJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM SJTeat@lbl.gov; LRao@lbl.gov
RI Arnold, John/F-3963-2012
OI Arnold, John/0000-0001-9671-227X
FU Fuel Cycle Research and Development Campaign (FCRD)/Fuel Resources
Program, Office of Nuclear Energy, the U.S. Department of Energy
(USDOE), at Lawrence Berkeley National Laboratory (LBNL); Nuclear Energy
University Program (NEUP) at University of California, Berkeley (UCB);
USDOE, Office of Science, Office of Basic Energy Sciences; USDOE, Office
of Science, Office of Basic Energy Sciences, Chemical Sciences,
Biosciences, and Geosciences Division (CSGB), Heavy Element Chemistry
Program at LBNL [DE-AC02-05CH11231]; FCRD/Fuel Resources Program, Office
of Nuclear Energy, USDOE, at Pacific Northwest National Laboratory
(PNNL)
FX C. J. Leggett and L. Rao were supported by the Fuel Cycle Research and
Development Campaign (FCRD)/Fuel Resources Program, Office of Nuclear
Energy, the U.S. Department of Energy (USDOE), at Lawrence Berkeley
National Laboratory (LBNL). B. F. Parker and J. Arnold were supported by
the Nuclear Energy University Program (NEUP) at University of
California, Berkeley (UCB). Collection and analysis of the
single-crystal X-ray diffraction data for Na[V(L)2]center dot
2H2O(cr) were performed by S. J. Teat at the Advanced Light
Source (ALS) and supported by USDOE, Office of Science, Office of Basic
Energy Sciences. Z. Zhang's work on 17O-labelled NMR and
ESI-MS, W. W. Lukens' work on EPR, and P. D. Dau/J. K. Gibson's work on
ethanol-spray ESI-MS were supported by USDOE, Office of Science, Office
of Basic Energy Sciences, Chemical Sciences, Biosciences, and
Geosciences Division (CSGB), Heavy Element Chemistry Program under
Contract No. DE-AC02-05CH11231 at LBNL. S. Peterson, A. J. P. Cardenas
and M. Warner were supported by the FCRD/Fuel Resources Program, Office
of Nuclear Energy, USDOE, at Pacific Northwest National Laboratory
(PNNL). The authors thank Dr R. Nichiporuk and Dr Z. Zhou at the
QB3/Mass Spectrometry Facility (UCB) for collecting the ESI-MS spectra
(methanol spray).
NR 44
TC 11
Z9 11
U1 12
U2 24
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2041-6520
EI 2041-6539
J9 CHEM SCI
JI Chem. Sci.
PY 2016
VL 7
IS 4
BP 2775
EP 2786
DI 10.1039/c5sc03958d
PG 12
WC Chemistry, Multidisciplinary
SC Chemistry
GA DH2KQ
UT WOS:000372614800042
ER
PT J
AU Diaz-Torres, R
Menelaou, M
Roubeau, O
Sorrenti, A
Brandariz-de-Pedro, G
Sanudo, EC
Teat, SJ
Fraxedas, J
Ruiz, E
Aliaga-Alcalde, N
AF Diaz-Torres, Raul
Menelaou, Melita
Roubeau, Olivier
Sorrenti, Alessandro
Brandariz-de-Pedro, Guillem
Carolina Sanudo, E.
Teat, Simon J.
Fraxedas, Jordi
Ruiz, Eliseo
Aliaga-Alcalde, Nuria
TI Multiscale study of mononuclear Co-II SMMs based on curcuminoid ligands
SO CHEMICAL SCIENCE
LA English
DT Article
ID SINGLE-MOLECULE MAGNET; POSITIVE ANISOTROPY; COBALT(II) COMPLEX;
ZERO-FIELD; RELAXATION; TRANSITION; ION; MANGANESE(II); FLUORESCENCE;
NANOSCIENCE
AB This work introduces a novel family of Co-II species having a curcuminoid (CCMoid) ligand, 9Accm, attached, namely [Co(9Accm)(2)(py)(2)] (1) and [Co(9Accm)(2)(2,2'-bpy)] (2), achieved in high yields by the use of a microwave reactor, and exhibiting two different arrangements for the 9Accm ligands, described as "cis"(2) and "trans"(1). The study of the similarities/differences of the magnetic, luminescent and surface behaviors of the two new species, 1 and 2, is the main objective of the present work. The determined single-crystal structures of both compounds are the only Co-II-CCMoid structures described in the literature so far. Both compounds exhibit large positive D values, that of 1 (D = +74 cm(-1)) being three times larger than that of 2 (D = +24 cm(-1)), and behave as mononuclear Single-Molecule Magnets (SMMs) in the presence of an external magnetic field. Their similar structures but different anisotropy and SMM characteristics provide, for the first time, deep insight on the spin-orbital effects thanks to the use of CASSCF/NEVPT2 calculations implementing such contributions. Further magnetic studies were performed in solution by means of paramagnetic H-1 NMR, where both compounds (1 and 2) are stable in CDCl3 and display high symmetry. Paramagnetic NMR appears to be a useful diagnostic tool for the identification of such molecules in solution, where the resonance values found for the methine group (-CH-) of 9Accm vary significantly depending on the cis or trans disposition of the ligands. Fluorescence studies show that both systems display chelation enhancement of quenching (CHEQ) with regard to the free ligand, while 1 and 2 display similar quantum yields. Deposition of 1-2 on HOPG and Si(100) surfaces using spin-coating was studied using AFM; UV photoemission experiments under the same conditions display 2 as the most robust system. The measured occupied density of states of 2 with UV photoemission is in excellent agreement with theoretical DFT calculations.
C1 [Diaz-Torres, Raul; Menelaou, Melita; Brandariz-de-Pedro, Guillem; Carolina Sanudo, E.; Ruiz, Eliseo] Univ Barcelona, Dept Quim Inorgan, Diagonal 645, Barcelona 08028, Spain.
[Roubeau, Olivier] CSIC, ICMA, Plaza San Francisco S-N, E-50009 Zaragoza, Spain.
[Roubeau, Olivier] Univ Zaragoza, Plaza San Francisco S-N, E-50009 Zaragoza, Spain.
[Sorrenti, Alessandro] ICMAB Inst Ciencia Mat Barcelona, CSIC, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain.
[Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Fraxedas, Jordi] CSIC, ICN2, Campus UAB, Barcelona 08193, Spain.
[Fraxedas, Jordi] Barcelona Inst Sci & Technol, Campus UAB, Barcelona 08193, Spain.
[Ruiz, Eliseo] Univ Barcelona, Inst Quim Teor & Computac, Diagonal 645, E-08028 Barcelona, Spain.
[Aliaga-Alcalde, Nuria] ICMAB Inst Ciencia Mat Barcelona, CSIC, ICREA, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain.
[Carolina Sanudo, E.] Univ Barcelona, Inst Nanociencia & Nanotecnol, Diagonal 645, E-08028 Barcelona, Spain.
RP Aliaga-Alcalde, N (reprint author), ICMAB Inst Ciencia Mat Barcelona, CSIC, ICREA, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain.
EM nuria.aliaga@icrea.cat
RI Aliaga-Alcalde, Nuria/H-5886-2011; Menelaou, Melita/J-9511-2014;
Roubeau, Olivier/A-6839-2010; Ruiz, Eliseo/A-6268-2011; Sanudo, E.
Carolina/A-8384-2014
OI Aliaga-Alcalde, Nuria/0000-0003-1080-3862; Menelaou,
Melita/0000-0001-7845-8802; Roubeau, Olivier/0000-0003-2095-5843; Ruiz,
Eliseo/0000-0001-9097-8499; Sanudo, E. Carolina/0000-0001-9647-6406
FU MICINN (Spain) [CTQ2012-32247, CTQ2011-23862-C02-01, MAT2012-38319-C02,
MAT2013-47869-C4-2-P]; Severo Ochoa Program (MINECO) [SEV-2013-0295];
Office of Science, Office of Basic Energy Sciences of the U.S.
Department of Energy [DE-AC0205CH11231]
FX The authors thank Dr N. Clos and Dr G. Oncins from the UB for their
great assistance. This work was supported by the MICINN (Spain)
(Projects CTQ2012-32247, CTQ2011-23862-C02-01, MAT2012-38319-C02 and
MAT2013-47869-C4-2-P). ICN2 acknowledges support from the Severo Ochoa
Program (MINECO, Grant SEV-2013-0295). ER thanks Generalitat de
Catalunya (ICREA Academia). The Advanced Light Source (S. J. T.) is
supported by the Director, Office of Science, Office of Basic Energy
Sciences of the U.S. Department of Energy under Contract
DE-AC0205CH11231.
NR 68
TC 10
Z9 10
U1 10
U2 19
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2041-6520
EI 2041-6539
J9 CHEM SCI
JI Chem. Sci.
PY 2016
VL 7
IS 4
BP 2793
EP 2803
DI 10.1039/c5sc03298a
PG 11
WC Chemistry, Multidisciplinary
SC Chemistry
GA DH2KQ
UT WOS:000372614800044
ER
PT J
AU Aromi, G
Beavers, CM
Costa, JS
Craig, GA
Espallargas, GM
Orera, A
Roubeau, O
AF Aromi, G.
Beavers, C. M.
Sanchez Costa, J.
Craig, G. A.
Minguez Espallargas, G.
Orera, A.
Roubeau, O.
TI Snapshots of a solid-state transformation: coexistence of three phases
trapped in one crystal
SO CHEMICAL SCIENCE
LA English
DT Article
ID POROUS COORDINATION POLYMER; METAL-ORGANIC FRAMEWORK; X-RAY-ANALYSIS;
SINGLE-CRYSTAL; SPIN-CROSSOVER; MOLECULAR MATERIAL; NETWORK; COMPLEX
AB Crystal-to-crystal transformations have been crucial in the understanding of solid-state processes, since these may be studied in detail by means of single crystal X-ray diffraction (SCXRD) techniques. The description of the mechanisms and potential intermediates of those processes remains very challenging. In fact, solid-state transient states have rarely been observed, at least to a sufficient level of detail. We have investigated the process of guest extrusion from the non-porous molecular material [Fe(bpp)(H2L)](ClO4)(2)center dot 1.5C(3)H(6)O (bpp = 2,6-bis(pyrazol-3-yl) pyridine; H2L = 2,6-bis(5-(2-methoxyphenyl)- pyrazol-3-yl) pyridine; C3H6O = acetone), which occurs through ordered diffusion of acetone in a crystal-to-crystal manner, leading to dramatic structural changes. The slow kinetics of the transition allows thermal trapping of the system at various intermediate stages. The transiting single crystal can be then examined at these points through synchrotron SCXRD, offering a window upon the mechanism of the transformation at the molecular scale. These experiments have unveiled the development of an ordered intermediate phase, distinct from the initial and the final states, coexisting as the process advances with either of these two phases or, at a certain moment with both of them. The new intermediate phase has been structurally characterized in full detail by SCXRD, providing insights into the mechanism of this diffusion triggered solid-state phenomenon. The process has been also followed by calorimetry, optical microscopy, local Raman spectroscopy and powder X-ray diffraction. The discovery and description of an intermediate ordered state in a molecular solid-state transformation is of great interest and will help to understand the mechanistic details and reaction pathways underlying these transformations.
C1 [Aromi, G.; Sanchez Costa, J.; Craig, G. A.] Univ Barcelona, Dept Quim Inorgan, Diagonal 645, Barcelona 08028, Spain.
[Beavers, C. M.] Berkeley Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
[Minguez Espallargas, G.] Univ Valencia, Inst Ciencia Mol ICMol, C Catedratico Jose Beltran 2, Paterna 46980, Spain.
[Orera, A.; Roubeau, O.] CSIC, ICMA, Plaza San Francisco S-N, E-50009 Zaragoza, Spain.
[Orera, A.; Roubeau, O.] Univ Zaragoza, Plaza San Francisco S-N, E-50009 Zaragoza, Spain.
RP Aromi, G (reprint author), Univ Barcelona, Dept Quim Inorgan, Diagonal 645, Barcelona 08028, Spain.; Beavers, CM (reprint author), Berkeley Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Roubeau, O (reprint author), CSIC, ICMA, Plaza San Francisco S-N, E-50009 Zaragoza, Spain.; Roubeau, O (reprint author), Univ Zaragoza, Plaza San Francisco S-N, E-50009 Zaragoza, Spain.
EM guillem.aromi@qi.ub.es; cmbeavers@lbl.gov; roubeau@unizar.es
RI Aromi, Guillem/I-2483-2015; Roubeau, Olivier/A-6839-2010; Beavers,
Christine/C-3539-2009; Orera, Alodia/B-9524-2009; Minguez Espallargas,
Guillermo/D-3164-2013; Sanchez Costa, Jose/N-9085-2014
OI Aromi, Guillem/0000-0002-0997-9484; Roubeau,
Olivier/0000-0003-2095-5843; Beavers, Christine/0000-0001-8653-5513;
Minguez Espallargas, Guillermo/0000-0001-7855-1003; Sanchez Costa,
Jose/0000-0001-5426-7956
FU ERC [258060]; Spanish MICINN [MAT2011-24284, CTQ2012-32247,
CTQ-2014-59209-P]; Office of Science, Office of Basic Energy Sciences of
the U.S. Department of Energy [DE-AC02-05CH11231]; Juan de la Cierva;
Ramon y Cajal
FX GA thanks the Generalitat de Catalunya for the prize ICREA Academia 2008
and 2013, for excellence in research and the ERC for a Starting Grant
(258060 FuncMolQIP). The authors thank the Spanish MICINN for funding
through MAT2011-24284 (OR), CTQ2012-32247 (GA, GAC and JSC),
CTQ-2014-59209-P (GME), a "Juan de la Cierva" (JSC) and "Ramon y Cajal"
(GME) fellowship. The Advanced Light Source is supported by the
Director, Office of Science, Office of Basic Energy Sciences of the U.S.
Department of Energy under contract no. DE-AC02-05CH11231.
NR 42
TC 8
Z9 8
U1 6
U2 28
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2041-6520
EI 2041-6539
J9 CHEM SCI
JI Chem. Sci.
PY 2016
VL 7
IS 4
BP 2907
EP 2915
DI 10.1039/c5sc04287a
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA DH2KQ
UT WOS:000372614800057
ER
PT J
AU Dion, M
AF Dion, Michael
TI Improving Alpha Spectrometry Energy Resolution by Ion Implantation with
ICP-MS Reply
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Letter
C1 [Dion, Michael] Pacific Northwest Natl Lab, Richland, WA USA.
RP Dion, M (reprint author), Pacific Northwest Natl Lab, Richland, WA USA.
EM michael.dion@pnnl.gov
OI Dion, Michael/0000-0002-3030-0050
NR 0
TC 0
Z9 0
U1 1
U2 3
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
EI 1588-2780
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD JAN
PY 2016
VL 307
IS 1
BP 7
EP 7
DI 10.1007/s10967-015-4167-5
PG 1
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA DG7LD
UT WOS:000372264900004
ER
PT J
AU Steeb, JL
Mertz, CJ
Finck, MR
Engelstad, G
Carney, KP
Chamberlain, DB
AF Steeb, Jennifer L.
Mertz, Carol J.
Finck, Martha R.
Engelstad, Gary
Carney, Kevin P.
Chamberlain, David B.
TI Impact of an external radiation field on handheld XRF measurements for
nuclear forensics applications
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Handheld XRF; Portable; Nuclear forensics; RDD; Dead-time
ID X-RAY-FLUORESCENCE; PORTABLE XRF; SAMPLES; RAMAN
AB X-ray fluorescence (XRF) is an attractive technique for nuclear forensics applications. We evaluated a handheld XRF device by applying an external radiation field (10 mR/h-17 R/h) using two types of radiography sources: a Co-60 radiography camera for high-energy gamma emissions and an 192 Ir radiography camera for several low-energy gamma (0.604, 0.468, and 0.317 MeV) and decay daughter X-ray emissions. External radiation tests proved that radiation, in general, has a significant effect on the dead time or background at dose rates over 1 R/h for both the Ir-192 and Co-60 sources.
C1 [Steeb, Jennifer L.; Mertz, Carol J.; Chamberlain, David B.] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA.
[Finck, Martha R.; Engelstad, Gary; Carney, Kevin P.] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA.
RP Steeb, JL (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA.
EM steeb@anl.gov
FU U.S. Department of Energy, Nuclear Energy Research and Development
Program [W-31-109-ENG-38]; UChicago Argonne, LLC; Battelle Energy
Alliance, LLC [DE-AC07-05ID14517, DE-AC02-06CH11357]; U.S. Department of
Energy
FX The authors acknowledge the U.S. Department of Energy, Nuclear Energy
Research and Development Program under Contract no. W-31-109-ENG-38 for
funding. This manuscript has been authored by UChicago Argonne, LLC, and
Battelle Energy Alliance, LLC, under Contracts no. DE-AC07-05ID14517 and
DE-AC02-06CH11357 with the U.S. Department of Energy. The United States
Government retains a nonexclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript,
or allow others to do so, for United States Government purposes.
NR 16
TC 0
Z9 0
U1 5
U2 7
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
EI 1588-2780
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD JAN
PY 2016
VL 307
IS 1
BP 751
EP 760
DI 10.1007/s10967-015-4105-6
PG 10
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA DG7LD
UT WOS:000372264900092
ER
PT J
AU Zhang, F
Nemeth, K
Bareno, J
Dogan, F
Bloom, ID
Shaw, LL
AF Zhang, Fan
Nemeth, Karoly
Bareno, Javier
Dogan, Fulya
Bloom, Ira D.
Shaw, Leon L.
TI Experimental and theoretical investigations of functionalized boron
nitride as electrode materials for Li-ion batteries
SO RSC ADVANCES
LA English
DT Article
ID EXFOLIATION PROCESS; GRAPHENE OXIDE; NANOSHEETS; STORAGE; CHALLENGES;
STABILITY; NANOTUBES; ENERGY; ANODE
AB The feasibility of synthesizing functionalized h-BN (FBN) via the reaction between molten LiOH and solid h-BN is studied for the first time and its first ever application as an electrode material in Li-ion batteries is evaluated. Density functional theory (DFT) calculations are performed to provide mechanistic understanding of the possible electrochemical reactions derived from the FBN. Various materials characterizations reveal that the melt-solid reaction can lead to exfoliation and functionalization of h-BN simultaneously, while electrochemical analysis proves that the FBN can reversibly store charges through surface redox reactions with good cycle stability and coulombic efficiency. DFT calculations have provided physical insights into the observed electrochemical properties derived from the FBN.
C1 [Zhang, Fan; Shaw, Leon L.] IIT, Mech Mat & Aerosp Engn Dept, Chicago, IL 60616 USA.
[Nemeth, Karoly] IIT, Dept Phys, Chicago, IL 60616 USA.
[Bareno, Javier; Dogan, Fulya; Bloom, Ira D.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Shaw, LL (reprint author), IIT, Mech Mat & Aerosp Engn Dept, Chicago, IL 60616 USA.; Nemeth, K (reprint author), IIT, Dept Phys, Chicago, IL 60616 USA.
EM nemeth@agni.phys.iit.edu; lshaw2@iit.edu
NR 41
TC 1
Z9 1
U1 19
U2 38
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2046-2069
J9 RSC ADV
JI RSC Adv.
PY 2016
VL 6
IS 33
BP 27901
EP 27914
DI 10.1039/c6ra03141b
PG 14
WC Chemistry, Multidisciplinary
SC Chemistry
GA DH2VD
UT WOS:000372644100073
ER
PT J
AU Balestra, P
Giannetti, F
Caruso, G
Alfonsi, A
AF Balestra, P.
Giannetti, F.
Caruso, G.
Alfonsi, A.
TI New RELAP5-3D Lead and LBE Thermophysical Properties Implementation for
Safety Analysis of Gen IV Reactors
SO SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS
LA English
DT Article
ID SOFT-SPHERE EQUATION; STATE
AB The latest versions of RELAP5-3D(C) code allow the simulation of thermodynamic system, using different type of working fluids, that is, liquid metals, molten salt, diathermic oil, and so forth, thanks to the ATHENA code integration. The RELAP5-3D(C) water thermophysical properties are largely verified and validated; however there are not so many experiments to generate the liquid metals ones in particular for the Lead and the Lead Bismuth Eutectic. Recently, new and more accurate experimental data are available for liquid metals. The comparison between these state-of-the-art data and the RELAP5-3D(C) default thermophysical properties shows some discrepancy; therefore a tool for the generation of new properties binary files has been developed. All the available data came from experiments performed at atmospheric pressure. Therefore, to extend the pressure domain below and above this pressure, the tool fits a semiempirical model (soft sphere model with inverse-power-law potential), specific for the liquid metals. New binary files of thermophysical properties, with a detailed mesh grid of point to reduce the code mass error (especially for the Lead), were generated with this tool. Finally, calculations using a simple natural circulation loop were performed to understand the differences between the default and the new properties.
C1 [Balestra, P.; Giannetti, F.; Caruso, G.] Univ Roma La Sapienza, Dept Astronaut Elect & Energy Engn, Corso Vittorio Emanuele II 244, I-00186 Rome, Italy.
[Alfonsi, A.] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83402 USA.
RP Balestra, P (reprint author), Univ Roma La Sapienza, Dept Astronaut Elect & Energy Engn, Corso Vittorio Emanuele II 244, I-00186 Rome, Italy.
EM paolo.balestra@uniroma1.it
RI Caruso, Gianfranco/D-9598-2011; Giannetti, Fabio/E-6727-2012
OI Caruso, Gianfranco/0000-0001-6137-9235; Giannetti,
Fabio/0000-0003-1005-7492
NR 12
TC 0
Z9 0
U1 2
U2 8
PU HINDAWI PUBLISHING CORP
PI NEW YORK
PA 315 MADISON AVE 3RD FLR, STE 3070, NEW YORK, NY 10017 USA
SN 1687-6075
EI 1687-6083
J9 SCI TECHNOL NUCL INS
JI Sci. Technol. Nucl. Install.
PY 2016
AR 1687946
DI 10.1155/2016/1687946
PG 15
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA DH2LK
UT WOS:000372617100001
ER
PT S
AU Bazilevsky, A
AF Bazilevsky, A.
CA RHIC Spin Collaboration
GP IOP
TI The RHIC Spin Program Overview
SO XVI WORKSHOP ON HIGH ENERGY SPIN PHYSICS (D-SPIN2015)
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 16th Workshop on High Energy Spin Physics (D-SPIN)
CY SEP 08-12, 2015
CL Dubna, RUSSIA
ID DEEP-INELASTIC-SCATTERING; ASYMMETRIES; PROTON
AB After more than a decade of RHIC running as a polarized proton collider, we summarize recent achievements of the RHIC spin program and their impact on our understanding of the nucleon's spin structure, i.e. the individual parton (quarks and gluons) contributions to the helicity structure of the nucleon, and to understand the origin of the transverse spin phenomena. Open questions are identified and a suite of future measurements with polarized beams at RHIC to address them is laid out.
C1 [Bazilevsky, A.; RHIC Spin Collaboration] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Bazilevsky, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM shura@bnl.gov
NR 38
TC 0
Z9 0
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2016
VL 678
AR 012059
DI 10.1088/1742-6596/678/1/012059
PG 8
WC Physics, Particles & Fields
SC Physics
GA BE4ZK
UT WOS:000372400500059
ER
PT S
AU Filatov, Y
Kondratenko, AM
Kondratenko, MA
Kovalenko, A
Derbenev, YS
Lin, F
Morozov, VS
Zhang, Y
AF Filatov, Yu
Kondratenko, A. M.
Kondratenko, M. A.
Kovalenko, A.
Derbenev, Ya S.
Lin, F.
Morozov, V. S.
Zhang, Y.
GP IOP
TI Superconducting racetrack booster for the ion complex of MEIC
SO XVI WORKSHOP ON HIGH ENERGY SPIN PHYSICS (D-SPIN2015)
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 16th Workshop on High Energy Spin Physics (D-SPIN)
CY SEP 08-12, 2015
CL Dubna, RUSSIA
AB The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c. The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex.
C1 [Kondratenko, A. M.; Kondratenko, M. A.] Sci & Tech Lab Zaryad, Novosibirsk 630090, Russia.
[Filatov, Yu; Kovalenko, A.] Joint Inst Nucl Res, Dubna 141980, Russia.
[Filatov, Yu] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia.
[Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.] Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA.
RP Kondratenko, AM (reprint author), Sci & Tech Lab Zaryad, Novosibirsk 630090, Russia.
EM kondratenkom@mail.ru
RI Filatov, Yury/D-8894-2016
OI Filatov, Yury/0000-0002-4783-9079
NR 12
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2016
VL 678
AR 012015
DI 10.1088/1742-6596/678/1/012015
PG 4
WC Physics, Particles & Fields
SC Physics
GA BE4ZK
UT WOS:000372400500015
ER
PT S
AU Abdelrahman, M
ElBatanouny, M
Serrato, M
Dixon, K
Larosche, C
Ziehl, P
AF Abdelrahman, Marwa
ElBatanouny, Mohamed
Serrato, Michael
Dixon, Kenneth
Larosche, Carl
Ziehl, Paul
BE Chimenti, DE
Bond, LJ
TI Classification of Alkali-Silica Reaction and Corrosion Distress Using
Acoustic Emission
SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON
RELIABILITY OF NDE
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 26-31, 2015
CL Minneapolis, MN
SP Ctr Nondestruct Evaluat, QNDE Programs
AB The Nuclear Regulatory Commission regulates approximately 100 commercial nuclear power reactor facilities that contribute about 20% of the total electric energy produced in the United States. Half of these reactor facilities are over 30 years old and are approaching their original design service life. Due to economic and durability considerations, significant portions of many of the facilities were constructed with reinforced concrete, including the containment facilities, cooling towers, and foundations. While most of these concrete facilities have performed exceptionally well throughout their initial expected service life, some are beginning to exhibit different forms of concrete deterioration. In this study, acoustic emission (AE) is used to monitor two main concrete deterioration mechanisms; alkali-silica reaction (ASR) distress and corrosion of reinforcing steel. An accelerated ASR test was conducted where specimens were continuously monitored with AE. The results show that AE can detect and classify damage due to ASR distress in the specimens. AE was also used to remotely monitor active corrosion regions in a reactor facility. AE monitoring of accelerated corrosion testing was also conducted on a concrete block specimen cut from a similar reactor building. Electrochemical measurements were conducted to correlate AE activity to quantifiable corrosion measurements and to enhance capabilities for service life prediction.
C1 [Abdelrahman, Marwa; Ziehl, Paul] Univ S Carolina, Dept Civil & Environm Engn, 300 Main St, Columbia, SC 29208 USA.
[ElBatanouny, Mohamed] Wiss Janney Elstner & Associates Inc, 330 Pfingsten Rd, Northbrook, IL 60062 USA.
[Serrato, Michael; Dixon, Kenneth] Savannah River Natl Lab, Environm Restorat Technol Sect, Aiken, SC 29808 USA.
[Larosche, Carl] Wiss Janney Eviler Associates Inc, 9511 N Lake Creek Pkwy, Austin, TX 78717 USA.
RP Ziehl, P (reprint author), Univ S Carolina, Dept Civil & Environm Engn, 300 Main St, Columbia, SC 29208 USA.
EM abdelram@email.sc.edu; melbatanouny@wje.com;
michael.serrato@srnl.doe.gov; kenneth.dixon@srnl.doe.gov;
clarosche@wje.com; ziehl@cec.sc.edu
NR 15
TC 0
Z9 0
U1 1
U2 2
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1353-5
J9 AIP CONF PROC
PY 2016
VL 1706
AR 140001
DI 10.1063/1.4940610
PG 10
WC Physics, Applied
SC Physics
GA BE4LT
UT WOS:000371907800164
ER
PT S
AU Almansouri, H
Clayton, D
Kisner, R
Polsky, Y
Bouman, C
Santos-Villalobos, H
AF Almansouri, Hani
Clayton, Dwight
Kisner, Roger
Polsky, Yarom
Bouman, Charles
Santos-Villalobos, Hector
BE Chimenti, DE
Bond, LJ
TI Development of Acoustic Model-Based Iterative Reconstruction Technique
for Thick-Concrete Imaging
SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON
RELIABILITY OF NDE
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 26-31, 2015
CL Minneapolis, MN
SP Ctr Nondestruct Evaluat, QNDE Programs
ID CT
AB Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.
C1 [Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Santos-Villalobos, Hector] Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA.
[Almansouri, Hani; Bouman, Charles] Purdue Univ, 610 Purdue Mall, W Lafayette, IN 47907 USA.
RP Santos-Villalobos, H (reprint author), Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM halmanso@purdue.edu; claytonda@ornl.gov; kisnerra@ornl.gov;
polskyy@ornl.gov; bouman@purdue.edu; hsantos@ornl.gov
NR 19
TC 0
Z9 0
U1 2
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1353-5
J9 AIP CONF PROC
PY 2016
VL 1706
AR 020013
DI 10.1063/1.4940459
PG 9
WC Physics, Applied
SC Physics
GA BE4LT
UT WOS:000371907800013
ER
PT S
AU Clayton, D
Barker, A
Albright, A
Santos-Villalobos, H
AF Clayton, Dwight
Barker, Alan
Albright, Austin
Santos-Villalobos, Hector
BE Chimenti, DE
Bond, LJ
TI Improved Synthetic Aperture Focusing Technique Results of Thick Concrete
Specimens through Frequency Banding
SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON
RELIABILITY OF NDE
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 26-31, 2015
CL Minneapolis, MN
SP Ctr Nondestruct Evaluat, QNDE Programs
AB A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on ultrasonic data collected from thick, complex concrete structures such as in NPPs. Towards these goals, we apply the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular NDE technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To minimize artifacts caused by boundary effects, the dimensions of the specimens should not be too compact. In this paper, we apply this enhanced SAFT technique to a 2.134 m x 2.134 m x 1.016 m concrete test specimen with twenty deliberately embedded defects(1).
C1 [Clayton, Dwight; Barker, Alan; Albright, Austin; Santos-Villalobos, Hector] Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA.
RP Clayton, D; Barker, A; Albright, A; Santos-Villalobos, H (reprint author), Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM claytonda@ornl.gov; barkeram@ornl.gov; albrightap@ornl.gov;
hsantos@ornl.gov
NR 3
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1353-5
J9 AIP CONF PROC
PY 2016
VL 1706
AR 020012
DI 10.1063/1.4940458
PG 10
WC Physics, Applied
SC Physics
GA BE4LT
UT WOS:000371907800012
ER
PT S
AU Dib, G
Larche, M
Diaz, AA
Crawford, SL
Prowant, MS
Anderson, MT
AF Dib, Gerges
Larche, Michael
Diaz, Aaron A.
Crawford, Susan L.
Prowant, Matthew S.
Anderson, Michael T.
BE Chimenti, DE
Bond, LJ
TI Experimental Validation of Ultrasonic NDE Simulation Software
SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON
RELIABILITY OF NDE
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 26-31, 2015
CL Minneapolis, MN
SP Ctr Nondestruct Evaluat, QNDE Programs
AB Computer modeling and simulation is becoming an essential tool for transducer design and insight into ultrasonic nondestructive evaluation (UT-NDE). As the popularity of simulation tools for UT-NDE increases, it becomes important to assess their reliability to model acoustic responses from defects in operating components and provide information that is consistent with in-field inspection data. This includes information about the detectability of different defect types for a given UT probe. Recently, a cooperative program between the Electrical Power Research Institute and the U.S. Nuclear Regulatory Commission was established to validate numerical modeling software commonly used for simulating UT-NDE of nuclear power plant components. In the first phase of this cooperative, extensive experimental UT measurements were conducted on machined notches with varying depth, length, and orientation in stainless steel plates. Then, the notches were modeled in CIVA, a semi-analytical NDE simulation platform developed by the French Commissariat a l'Energie Atomique, and their responses compared with the experimental measurements. Discrepancies between experimental and simulation results are due to either improper inputs to the simulation model, or to incorrect approximations and assumptions in the numerical models. To address the former, a variation study was conducted on the different parameters that are required as inputs for the model, specifically the specimen and transducer properties. Then, the ability of simulations to give accurate predictions regarding the detectability of the different defects was demonstrated. This includes the results in terms of the variations in defect amplitude indications, and the ratios between tip diffracted and specular signal amplitudes.
C1 [Dib, Gerges; Larche, Michael; Diaz, Aaron A.; Crawford, Susan L.; Prowant, Matthew S.; Anderson, Michael T.] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Dib, G (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA.
EM gerges.dib@pnnl.gov
NR 6
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1353-5
J9 AIP CONF PROC
PY 2016
VL 1706
AR 170004
DI 10.1063/1.4940627
PG 10
WC Physics, Applied
SC Physics
GA BE4LT
UT WOS:000371907800181
ER
PT S
AU Eisenmann, D
Margetan, FJ
Koester, L
Clayton, D
AF Eisenmann, David
Margetan, Frank J.
Koester, Lucas
Clayton, Dwight
BE Chimenti, DE
Bond, LJ
TI Inspection of a Large Concrete Block Containing Embedded Defects Using
Ground Penetrating Radar
SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON
RELIABILITY OF NDE
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 26-31, 2015
CL Minneapolis, MN
SP Ctr Nondestruct Evaluat, QNDE Programs
AB Ground penetrating radar (GPR), also known as impulse response radar, was used to examine a thick concrete block containing reinforcing steel bars (rebar) and embedded defects. The block was located at the University of Minnesota, measured approximately 7 feet tall by 7 feet wide by 40 inches deep, and was intended to simulate certain aspects of a concrete containment wall at a nuclear power plant. This paper describes the measurements that were made and various analyses of the data. We begin with a description of the block itself and the GPR equipment and methods used in our inspections. The methods include the application of synthetic aperture focusing techniques (SAFT). We then present and discuss GPR images of the block's interior made using 1600-MHz, 900-MHz, and 400-MHz antennas operating in pulse/echo mode. A number of the embedded defects can be seen, and we discuss how their relative detectability can be quantified by comparison to the response from nearby rebar. We next discuss through-transmission measurements made using pairs of 1600-MHz and 900-MHz antennas, and the analysis of that data to deduce the average electromagnetic (EM) wave speed and attenuation of the concrete. Through the 40-inch thickness, attenuation rises approximately linearly with frequency at a rate near 0.7 dB/inch/GHz. However, there is evidence that EM properties vary with depth in the block. We conclude with a brief summary and a discussion of possible future work.
C1 [Eisenmann, David; Margetan, Frank J.; Koester, Lucas] Iowa State Univ, Ctr Nondestruct Evaluat, 1915 Scholl Rd, Ames, IA 50011 USA.
[Clayton, Dwight] Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA.
RP Eisenmann, D (reprint author), Iowa State Univ, Ctr Nondestruct Evaluat, 1915 Scholl Rd, Ames, IA 50011 USA.
EM djeisen@iastate.edu
NR 5
TC 0
Z9 0
U1 3
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1353-5
J9 AIP CONF PROC
PY 2016
VL 1706
AR 020014
DI 10.1063/1.4940460
PG 10
WC Physics, Applied
SC Physics
GA BE4LT
UT WOS:000371907800014
ER
PT S
AU Glass, SW
Ramuhalli, P
Fifield, LS
Prowant, MS
Dib, G
Tedeschi, JR
Suter, JD
Jones, AM
Good, MS
Pardini, AF
Hartman, TS
AF Glass, S. W.
Ramuhalli, P.
Fifield, L. S.
Prowant, M. S.
Dib, G.
Tedeschi, J. R.
Suter, J. D.
Jones, A. M.
Good, M. S.
Pardini, A. F.
Hartman, T. S.
BE Chimenti, DE
Bond, LJ
TI Assessment of NDE for Key Indicators of Aging Cables in Nuclear Power
Plants - Interim Status
SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON
RELIABILITY OF NDE
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 26-31, 2015
CL Minneapolis, MN
SP Ctr Nondestruct Evaluat, QNDE Programs
AB Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. System tests verify cable function under normal loads; however, the concern is over cable performance under exceptional loads associated with design-basis events (DBEs). The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program to justify cable performance under normal operation as well as accident conditions. Currently the gold standard for determining cable insulation degradation is the elongation-at-break (EAB). This, however, is an ex-situ measurement and requires removal of a sample for laboratory investigation. A reliable nondestructive examination (NDE) in-situ approach is desirable to objectively determine the suitability of the cable for service. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none of these tests are suitable for all cable configurations nor does any single test confirm all features of interest. Nevertheless, the complete collection of test possibilities offers a powerful range of tools to assure the integrity of critical cables. Licensees and regulators have settled on a practical program to justify continued operation based on condition monitoring of a lead sample set of cables where test data is tracked in a database and the required test data are continually adjusted based on plant and fleet-wide experience. As part of the Light Water Reactor Sustainability program sponsored by the U.S. Nuclear Regulatory Commission, the U.S. Department of Energy, and industry (represented by the Electric Power Research Institute), an assessment of cable NDE methods was commissioned. delta time domain reflectometry, frequency domain reflectometry (FDR), partial discharge, and other techniques) and local insulation measurement (indenter, dynamic mechanical analysis interdigital capacitance, infrared spectral measurement, etc.). This aging cable NDE program update reviews the full range of techniques but focuses on the most interesting test approaches that have a chance to be deployed in-situ, particularly including delta that have been reviewed most completely in this progress period.
C1 [Glass, S. W.; Ramuhalli, P.; Fifield, L. S.; Prowant, M. S.; Dib, G.; Tedeschi, J. R.; Suter, J. D.; Jones, A. M.; Good, M. S.; Pardini, A. F.; Hartman, T. S.] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
RP Glass, SW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM Bill.Glass@pnnl.gov
NR 14
TC 0
Z9 0
U1 3
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1353-5
J9 AIP CONF PROC
PY 2016
VL 1706
AR UNSP 170006
DI 10.1063/1.4940629
PG 14
WC Physics, Applied
SC Physics
GA BE4LT
UT WOS:000371907800183
ER
PT S
AU Hughes, MS
McCarthy, JE
Bruillard, PJ
Marsh, JN
Wickline, SA
AF Hughes, Michael S.
McCarthy, John E.
Bruillard, Paul J.
Marsh, Jon N.
Wickline, Samuel A.
BE Chimenti, DE
Bond, LJ
TI High Contrast Ultrasonic Imaging of Resin-Rich Regions in Graphite/Epoxy
Composites Using Entropy
SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON
RELIABILITY OF NDE
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 26-31, 2015
CL Minneapolis, MN
SP Ctr Nondestruct Evaluat, QNDE Programs
ID WAVE-FORMS; STEROID TREATMENT; SHANNON ENTROPY; DYSTROPHIC MICE; SIGNAL
RECEIVER; RENYI ENTROPY
AB This study compares different approaches for imaging a near-surface resin-rich defect in a thin graphite/epoxy plate using backscattered ultrasound. The specimen was created by cutting a circular hole in the second ply; this region filled with excess resin from the graphite/epoxy sheets during the curing process. Backscattered waveforms were acquired using a 4 in. focal length, 5MHz center frequency broadband transducer, scanned on a 100x100 grid of points that were 0.03x0.03 in. apart. The specimen was scanned with the defect side closest to the transducer. Consequently, the reflection from the resin-rich region cannot be gated from the large front-wall echo. At each point in the grid 256 waveforms were averaged together and subsequently used to produce peak-to-peak, Signal Energy (sum of squared digitized waveform values), as well as entropy images of two different types (a Renyi entropy, and a joint entropy). As the figure shows, all of the entropy images exhibit better border delineation and defect contrast than the either the peak-to-peak or Signal Energy. The best results are obtained using the joint entropy of the backscattered waveforms with a reference function. Two different references are examined. The first is a reflection of the insonifying pulse from a stainless steel reflector. The second is an approximate optimum obtained from an iterative parametric search. The joint entropy images produced using this reference exhibit three times the contrast obtained in previous studies.
C1 [Hughes, Michael S.; Bruillard, Paul J.] Pacific NW Natl Lab, Richland, WA 99354 USA.
[McCarthy, John E.] Washington Univ, Depart Math, St Louis, MO USA.
[Marsh, Jon N.; Wickline, Samuel A.] Washington Univ, Sch Med, St Louis, MO USA.
RP Hughes, MS (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA.
EM michael.s.hughes@pnnl.gov
NR 19
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1353-5
J9 AIP CONF PROC
PY 2016
VL 1706
AR 120002
DI 10.1063/1.4940587
PG 7
WC Physics, Applied
SC Physics
GA BE4LT
UT WOS:000371907800141
ER
PT S
AU Larche, MR
Baldwin, DL
Edwards, MK
Mathews, RA
Prowant, MS
Diaz, AA
AF Larche, M. R.
Baldwin, D. L.
Edwards, M. K.
Mathews, R. A.
Prowant, M. S.
Diaz, A. A.
BE Chimenti, DE
Bond, LJ
TI Progress in the Development and Demonstration of a 2D-Matrix Phased
Array Ultrasonic Probe for Under-Sodium Viewing
SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON
RELIABILITY OF NDE
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 26-31, 2015
CL Minneapolis, MN
SP Ctr Nondestruct Evaluat, QNDE Programs
AB Optically opaque liquid sodium used in liquid metal fast reactors poses a unique set of challenges for nondestructive evaluation. The opaque nature of the sodium prevents visual examinations of components within this medium, but ultrasonic waves are able to propagate through sodium so an ultrasonic testing (UT) technique can be applied for imaging objects in sodium. A UT sensor used in liquid sodium during a refueling outage must be capable of withstanding the 260 degrees C corrosive environment and must also be able to wet (couple the ultrasonic waves) so that sound can propagate into the sodium. A multi-year iterative design effort, based on earlier work in the 1970s, has set out to improve the design and fabrication processes needed for a UT sensor technology capable of overcoming the temperature and wetting issues associated with this environment. Robust materials and improved fabrication processes have resulted in single-element sensors and two different linear-array sensors that have functioned in liquid sodium. More recent efforts have been focused on improving signal-to-noise ratio and image resolution in the highly attenuating liquid sodium. In order to accomplish this, modeling and simulation tools were used to design a 60-element 2D phased-array sensor operating at 2 MHz that features a separate transmitter and receiver. This design consists of 30 transmit elements and another 30 receive elements, each arranged in a rectangular matrix pattern that is 10 rows tall and 3 wide. The fabrication of this 2D array is currently underway and will be followed by a series of performance tests in water, hot oil, and finally in liquid sodium at 260 degrees C. The performance testing cycle will evaluate multiple characteristics of the sensor that are crucial to performance including: transmit-uniformity, element sensitivity variations, element-to-element energy leakage, sound field dimensions, and spatial resolution. This paper will present a summary of results from the previous UT sensors as well as the results to date on the 2D phased-array sensor fabrication and evaluation.
C1 [Larche, M. R.; Baldwin, D. L.; Edwards, M. K.; Mathews, R. A.; Prowant, M. S.; Diaz, A. A.] Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA.
RP Larche, MR (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA.
EM Michael.Larche@pnnl.gov
NR 4
TC 0
Z9 0
U1 2
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1353-5
J9 AIP CONF PROC
PY 2016
VL 1706
AR 170005
DI 10.1063/1.4940628
PG 8
WC Physics, Applied
SC Physics
GA BE4LT
UT WOS:000371907800182
ER
PT S
AU Lau, SJ
Moore, DG
Stair, SL
Nelson, CL
AF Lau, Sarah J.
Moore, David G.
Stair, Sarah L.
Nelson, Ciji L.
BE Chimenti, DE
Bond, LJ
TI Application of Temporal Moments and Other Signal Processing Algorithms
to Analysis of Ultrasonic Signals through Melting Wax
SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON
RELIABILITY OF NDE
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 26-31, 2015
CL Minneapolis, MN
SP Ctr Nondestruct Evaluat, QNDE Programs
ID MEDIA
AB Ultrasonic analysis is being explored as a way to capture events during melting of highly dispersive wax. Typical events include temperature changes in the material, phase transition of the material, surface flows and reformations, and void filling as the material melts. Melt tests are performed with wax to evaluate the usefulness of different signal processing algorithms in capturing event data. Several algorithm paths are being pursued. The first looks at changes in the velocity of the signal through the material. This is only appropriate when the changes from one ultrasonic signal to the next can be represented by a linear relationship, which is not always the case. The second tracks changes in the frequency content of the signal. The third algorithm tracks changes in the temporal moments of a signal over a full test. This method does not require that the changes in the signal be represented by a linear relationship, but attaching changes in the temporal moments to physical events can be difficult. This paper describes the algorithm paths applied to experimental data from ultrasonic signals as wax melts and explores different ways to display the results.
C1 [Lau, Sarah J.; Moore, David G.; Nelson, Ciji L.] Sandia Natl Labs, Albuquerque, NM 87123 USA.
[Stair, Sarah L.] Baylor Univ, Dept Mech Engn, Waco, TX 76798 USA.
RP Lau, SJ; Moore, DG; Nelson, CL (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA.; Stair, SL (reprint author), Baylor Univ, Dept Mech Engn, Waco, TX 76798 USA.
EM slau@sandia.gov; dgmoore@sandia.gov; Sarah_Stair@baylor.edu;
cijnels@sandia.gov
NR 6
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1353-5
J9 AIP CONF PROC
PY 2016
VL 1706
AR 180006
DI 10.1063/1.4940636
PG 9
WC Physics, Applied
SC Physics
GA BE4LT
UT WOS:000371907800190
ER
PT S
AU Meyer, RM
Komura, I
Kim, KC
Zetterwall, T
Cumblidge, SE
Prokofiev, I
AF Meyer, Ryan M.
Komura, Ichiro
Kim, Kyung-cho
Zetterwall, Tommy
Cumblidge, Stephen E.
Prokofiev, Iouri
BE Chimenti, DE
Bond, LJ
TI Overview of the Program to Assess the Reliability of Emerging
Nondestructive Techniques Open Testing and Study of Flaw Type Effect on
NDE Response
SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON
RELIABILITY OF NDE
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 26-31, 2015
CL Minneapolis, MN
SP Ctr Nondestruct Evaluat, QNDE Programs
AB In February 2012, the U.S. Nuclear Regulatory Commission (NRC) executed agreements with VTT Technical Research Centre of Finland, Nuclear Regulatory Authority of Japan (NRA, former JNES), Korea Institute of Nuclear Safety (KINS), Swedish Radiation Safety Authority (SSM), and Swiss Federal Nuclear Safety Inspectorate (ENSI) to establish the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT). The goal of PARENT is to investigate the effectiveness of current emerging and perspective novel nondestructive examination procedures and techniques to find flaws in nickel-alloy welds and base materials. This is done by conducting a series of open and blind international round-robin tests on a set of large-bore dissimilar metal welds (LBDMW), small-bore dissimilar metal welds (SBDMW), and bottom-mounted instrumentation (BMI) penetration weld test blocks. The purpose of blind testing is to study the reliability of more established techniques and included only qualified teams and procedures. The purpose of open testing is aimed at a more basic capability assessment of emerging and novel technologies. The range of techniques applied in open testing varied with respect to maturity and performance uncertainty and were applied to a variety of simulated flaws. This paper will include a brief overview of the PARENT blind and open testing techniques and test blocks and present some of the blind testing results.
C1 [Meyer, Ryan M.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Komura, Ichiro] Japan Power Engn & Inspect Corp, Yokohama, Kanagawa, Japan.
[Kim, Kyung-cho] Korea Inst Nucl Safety, Daejeon, South Korea.
[Zetterwall, Tommy] Swedish Qualificat Ctr, Taby, Sweden.
[Cumblidge, Stephen E.; Prokofiev, Iouri] US Nucl Regulatory Commiss, Washington, DC 20555 USA.
RP Meyer, RM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM Ryan.Meyer@pnnl.gov
NR 3
TC 0
Z9 0
U1 2
U2 2
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1353-5
J9 AIP CONF PROC
PY 2016
VL 1706
AR 200010
DI 10.1063/1.4940654
PG 11
WC Physics, Applied
SC Physics
GA BE4LT
UT WOS:000371907800208
ER
PT S
AU Smith, JA
Lacy, JM
Levesque, D
Monchalin, JP
Lord, M
AF Smith, James A.
Lacy, Jeffrey M.
Levesque, Daniel
Monchalin, Jean-Pierre
Lord, Martin
BE Chimenti, DE
Bond, LJ
TI Use of the Hugoniot Elastic Limit in Laser Shockwave Experiments to
Relate Velocity Measurements
SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON
RELIABILITY OF NDE
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 26-31, 2015
CL Minneapolis, MN
SP Ctr Nondestruct Evaluat, QNDE Programs
ID INTERFACE STRENGTH; SPALLATION TECHNIQUE; WAVES; PULSE
AB The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. This fuel-cladding interface qualification will ensure the survivability of the fuel plates in the harsh reactor environment even under abnormal operating conditions. One of the concerns of the project is the difficulty of calibrating and standardizing the laser shock technique. An analytical study under development and experimental testing supports the hypothesis that the Hugoniot Elastic Limit (HEL) in materials can be a robust and simple benchmark to compare stresses generated by different laser shock systems.
C1 [Smith, James A.; Lacy, Jeffrey M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Levesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin] Natl Res Council Canada, Boucherville, PQ, Canada.
RP Smith, JA (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
EM James.Smith@INL.gov
NR 24
TC 0
Z9 0
U1 0
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1353-5
J9 AIP CONF PROC
PY 2016
VL 1706
AR 080005
DI 10.1063/1.4940537
PG 10
WC Physics, Applied
SC Physics
GA BE4LT
UT WOS:000371907800091
ER
PT S
AU Sun, JG
Tao, N
AF Sun, J. G.
Tao, N.
BE Chimenti, DE
Bond, LJ
TI Thermal Property Measurement for Thermal Barrier Coatings Using Pulsed
Thermal Imaging - Multilayer Analysis Method
SO 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE
EVALUATION: INCORPORATING THE 6TH EUROPEAN-AMERICAN WORKSHOP ON
RELIABILITY OF NDE
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation
(QNDE)
CY JUL 26-31, 2015
CL Minneapolis, MN
SP Ctr Nondestruct Evaluat, QNDE Programs
ID DIFFUSIVITY MEASUREMENTS
AB Thermal barrier coatings (TBCs) are extensively used on hot gas-path components in gas turbines to improve engine performance and extend component life. TBC thermal properties, specifically the thermal conductivity and heat capacity (the product of density and specific heat), are important parameters in these applications. These TBC properties are usually measured by destructive methods with specially prepared TBC samples. Nondestructive evaluation (NDE) methods have been developed in recently years that can measure TBC properties on natural TBC samples. However, many have limitations when examining TBCs on engine components. One exception is the pulsed thermal imaging multilayer analysis (PTI-MLA) method, which can be applied to essentially any TBC samples with one or more coating layers and can determine TBC property distributions over the entire TBC surface. This paper describes its basic theories and implementations and discusses its potential applications to all areas of TBC studies.
C1 [Sun, J. G.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Tao, N.] Capital Normal Univ, Beijing, Peoples R China.
RP Sun, JG (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM sun@anl.gov
NR 17
TC 0
Z9 0
U1 2
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1353-5
J9 AIP CONF PROC
PY 2016
VL 1706
AR 100004
DI 10.1063/1.4940564
PG 6
WC Physics, Applied
SC Physics
GA BE4LT
UT WOS:000371907800118
ER
PT J
AU Pyatina, T
Sugama, T
AF Pyatina, Tatiana
Sugama, Toshifumi
TI Resistance of fly ash-Portland cement blends to thermal shock
SO ADVANCES IN CEMENT RESEARCH
LA English
DT Article
ID INFRARED-SPECTROSCOPY; TEMPERATURE; HYDRATION; GEOPOLYMERS; RAMAN;
REFLECTANCE; ACTIVATION; CONCRETE; MORTARS; RATIO
AB Thermal-shock resistance of high-content fly ash-Portland cement blends was tested in the following ways. Activated and non-activated blends with 80-90% fly ash F (FAF) were left to set at room temperature, then hydrated for 24 h at 85 degrees C and then for an additional 24 h at 300 degrees C, and tested in five thermal-shock cycles (600 degrees C heat - 25 degrees C water quenching). X-ray diffraction (XRD) and thermal gravimetric analyses, along with calorimetric measurements and scanning electron microscope-energy-dispersive X-ray tests demonstrated that the activated blends form more hydrates after 24 h at 300 degrees C, and achieve a higher short-term compressive strength than do non-activated ones. Sodium meta-silicate and soda-ash engendered the concomitant hydration of ordinary Portland cement (OPC) and class F fly ash (FAF), with the formation of mixed crystalline FAF-OPC hydrates and FAF hydrates, such as garranite, analcime and wairakite, along with the amorphous FAF hydration products. In sodium sulfate-activated and non-activated blends separate OPC (tobermorite) and FAF (amorphous gel) hydrates with no mixed crystalline products formed. The compressive strength of all tested blends decreased by nearly 50% after five thermal-shock test cycles. These changes in the compressive strength were accompanied by a marked decrease in the intensities of XRD patterns of the crystalline hydrates after the thermal shock. There was no significant difference in the performance of the blends with different activators.
C1 [Pyatina, Tatiana; Sugama, Toshifumi] Brookhaven Natl Lab, Sustainable Energy Technol, Upton, NY 11973 USA.
RP Pyatina, T (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol, Upton, NY 11973 USA.
FU Geothermal Technologies Office in the US Department of Energy (DOE)
Office of Energy Efficiency and Renewable Energy (EERE), under the
auspices of the US DOE, Washington, DC [DE-AC02-98CH 10886-98CH10886];
US Department of Energy, Office of Basic Energy Sciences [DE-SC0012704]
FX This publication was based on the work supported by the Geothermal
Technologies Office in the US Department of Energy (DOE) Office of
Energy Efficiency and Renewable Energy (EERE), under the auspices of the
US DOE, Washington, DC, under Contract No. DE-AC02-98CH 10886
-98CH10886. Research was carried out in part at the Center for
Functional Nanomaterials, Brookhaven National Laboratory, which is
supported by the US Department of Energy, Office of Basic Energy
Sciences, under Contract No. DE-SC0012704.
NR 43
TC 2
Z9 2
U1 2
U2 4
PU ICE PUBLISHING
PI WESTMINISTER
PA INST CIVIL ENGINEERS, 1 GREAT GEORGE ST, WESTMINISTER SW 1P 3AA, ENGLAND
SN 0951-7197
EI 1751-7605
J9 ADV CEM RES
JI Adv. Cem. Res.
PY 2016
VL 28
IS 2
BP 121
EP 131
DI 10.1680/adcr.15.00030
PG 11
WC Construction & Building Technology; Materials Science, Multidisciplinary
SC Construction & Building Technology; Materials Science
GA DG3ON
UT WOS:000371979400007
ER
PT J
AU Wang, YP
Jiang, J
Chen-Charpentier, B
Agusto, FB
Hastings, A
Hoffman, F
Rasmussen, M
Smith, MJ
Todd-Brown, K
Wang, Y
Xu, X
Luo, YQ
AF Wang, Y. P.
Jiang, J.
Chen-Charpentier, B.
Agusto, F. B.
Hastings, A.
Hoffman, F.
Rasmussen, M.
Smith, M. J.
Todd-Brown, K.
Wang, Y.
Xu, X.
Luo, Y. Q.
TI Responses of two nonlinear microbial models to warming and increased
carbon input
SO BIOGEOSCIENCES
LA English
DT Article
ID SOIL ORGANIC-MATTER; MICHAELIS-MENTEN KINETICS; TROPICAL FOREST;
DECOMPOSITION; NITROGEN; TEMPERATURE; RESPIRATION; LITTERFALL;
EFFICIENCY; CO2
AB A number of nonlinear microbial models of soil carbon decomposition have been developed. Some of them have been applied globally but have yet to be shown to realistically represent soil carbon dynamics in the field. A thorough analysis of their key differences is needed to inform future model developments. Here we compare two nonlinear microbial models of soil carbon decomposition: one based on reverse Michaelis-Menten kinetics (model A) and the other on regular Michaelis-Menten kinetics (model B). Using analytic approximations and numerical solutions, we find that the oscillatory responses of carbon pools to a small perturbation in their initial pool sizes dampen faster in model A than in model B. Soil warming always decreases carbon storage in model A, but in model B it predominantly decreases carbon storage in cool regions and increases carbon storage in warm regions. For both models, the CO2 efflux from soil carbon decomposition reaches a maximum value some time after increased carbon input (as in priming experiments). This maximum CO2 efflux (F-max) decreases with an increase in soil temperature in both models. However, the sensitivity of F-max to the increased amount of carbon input increases with soil temperature in model A but decreases monotonically with an increase in soil temperature in model B. These differences in the responses to soil warming and carbon input between the two nonlinear models can be used to discern which model is more realistic when compared to results from field or laboratory experiments. These insights will contribute to an improved understanding of the significance of soil microbial processes in soil carbon responses to future climate change.
C1 [Wang, Y. P.] CSIRO Ocean & Atmosphere, PMB 1, Aspendale, Vic 3195, Australia.
[Jiang, J.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA.
[Chen-Charpentier, B.] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA.
[Agusto, F. B.] Austin Peay State Univ, Dept Math & Stat, Clarksville, TN 37044 USA.
[Hastings, A.] Univ Calif Davis, Dept Environm Sci & Policy, One Shields Ave, Davis, CA 95616 USA.
[Hoffman, F.] Oak Ridge Natl Lab, Computat Earth Sci Grp, POB 2008, Oak Ridge, TN 37831 USA.
[Rasmussen, M.] Univ London Imperial Coll Sci Technol & Med, Dept Math, Huxley Bldg, London, England.
[Smith, M. J.] Microsoft Res, Computat Sci Lab, Cambridge, England.
[Todd-Brown, K.; Xu, X.; Luo, Y. Q.] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.
[Wang, Y.] Univ Oklahoma, Dept Math, Norman, OK 73019 USA.
[Todd-Brown, K.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Wang, YP (reprint author), CSIRO Ocean & Atmosphere, PMB 1, Aspendale, Vic 3195, Australia.
EM yingping.wang@csiro.au
RI Hoffman, Forrest/B-8667-2012; wang, yp/A-9765-2011;
OI Hoffman, Forrest/0000-0001-5802-4134; Todd-Brown,
Katherine/0000-0002-3109-8130
FU National Science Foundation; US Department of Homeland Security; US
Department of Agriculture through NSF [EF-0832858]; University of
Tennessee, Knoxville
FX This work was assisted through participation of the authors in the
working group Nonautonomous Systems and Terrestrial Carbon Cycle, at the
National Institute for Mathematical and Biological Synthesis, an
institute sponsored by the National Science Foundation, the US
Department of Homeland Security, and the US Department of Agriculture
through NSF award no. EF-0832858, with additional support from the
University of Tennessee, Knoxville. We are grateful for the constructive
comments from the associate editor and three reviewers. Source code and
data used in this study are available on request by email
(yingping.wang@csiro.au).
NR 50
TC 1
Z9 1
U1 7
U2 18
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1726-4170
EI 1726-4189
J9 BIOGEOSCIENCES
JI Biogeosciences
PY 2016
VL 13
IS 4
BP 887
EP 902
DI 10.5194/bg-13-887-2016
PG 16
WC Ecology; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA DG4ZR
UT WOS:000372082200001
ER
PT J
AU dos Santos, LT
Marra, DM
Trumbore, S
de Camargo, PB
Negron-Juarez, RI
Lima, AJN
Ribeiro, GHPM
dos Santos, J
Higuchi, N
AF dos Santos, Leandro T.
Marra, Daniel Magnabosco
Trumbore, Susan
de Camargo, Plinio B.
Negron-Juarez, Robinson I.
Lima, Adriano J. N.
Ribeiro, Gabriel H. P. M.
dos Santos, Joaquim
Higuchi, Niro
TI Windthrows increase soil carbon stocks in a central Amazon forest
SO BIOGEOSCIENCES
LA English
DT Article
ID NORTHEASTERN COSTA-RICA; BARRO-COLORADO ISLAND; TROPICAL PASTURES;
BRAZILIAN AMAZON; LARGE BLOWDOWNS; ORGANIC-MATTER; TREEFALL PITS;
RAIN-FOREST; DISTURBANCE; DYNAMICS
AB Windthrows change forest structure and species composition in central Amazon forests. However, the effects of widespread tree mortality associated with wind disturbances on soil properties have not yet been described in this vast region. We investigated short-term effects (7 years after disturbance) of widespread tree mortality caused by a squall line event from mid-January of 2005 on soil carbon stocks and concentrations in a central Amazon terra firme forest. The soil carbon stock (averaged over a 0-30 cm depth profile) in disturbed plots (61.4 +/- 8.2 Mg ha(-1), mean +/- 95% confidence interval) was marginally higher (p = 0.09) than that from undisturbed plots (47.7 +/- 13.6 Mg ha(-1)). The soil organic carbon concentration in disturbed plots (2.0 +/- 0.17 %) was significantly higher (p < 0.001) than that from undisturbed plots (1.36 +/- 0.24 %). Moreover, soil carbon stocks were positively correlated with soil clay content (r(2) = 0.332, r = 0.575 and p = 0.019) and with tree mortality intensity (r(2) = 0.257, r = 0.506 and p = 0.045). Our results indicate that large inputs of plant litter associated with large windthrow events cause a short-term increase in soil carbon content, and the degree of increase is related to soil clay content and tree mortality intensity. The higher carbon content and potentially higher nutrient availability in soils from areas recovering from windthrows may favor forest re-growth and increase vegetation resilience.
C1 [dos Santos, Leandro T.; Marra, Daniel Magnabosco; Lima, Adriano J. N.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Higuchi, Niro] Inst Nacl de Pesquisas da Amazonia, Lab Manejo Florestal, Manaus, Amazonas, Brazil.
[Marra, Daniel Magnabosco; Trumbore, Susan] Max Planck Inst Biochem, Biogeochem Proc Dept, Jena, Germany.
[Marra, Daniel Magnabosco] Univ Leipzig, AG Spezielle Bot & Funktionelle Biodiversitat, D-04109 Leipzig, Germany.
[de Camargo, Plinio B.] Ctr Energia Nucl Agr, Piracicaba, Brazil.
[Negron-Juarez, Robinson I.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate Sci Dept, Berkeley, CA 94720 USA.
RP Marra, DM (reprint author), Inst Nacl de Pesquisas da Amazonia, Lab Manejo Florestal, Manaus, Amazonas, Brazil.; Marra, DM (reprint author), Max Planck Inst Biochem, Biogeochem Proc Dept, Jena, Germany.; Marra, DM (reprint author), Univ Leipzig, AG Spezielle Bot & Funktionelle Biodiversitat, D-04109 Leipzig, Germany.
EM dmarra@bgc-jena.mpg.de
RI Negron-Juarez, Robinson/I-6289-2016; Camargo, Plinio/D-6635-2012
FU Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
[MCTI/N14/2012, 473357/2012-7]; INCT - Madeiras da Amazonia;
Biogeochemistry Processes Department of the Max Planck Institute for
Biogeochemistry; Laboratorio de Manejo Florestal (LMF/INPA); Office of
Science, Office of Biological and Environmental Research of the US
Department of Energy [DE-AC02-05CH11231]
FX We gratefully acknowledge the workers from the EEST/INPA for giving
support with the fieldwork, and the lab team of the CENA-USP and the
Laboratorio Tematico de Solos e Plantas (LTSP/INPA) for giving support
with the soil analyses. We also acknowledge the SUFRAMA for allowing us
to access part of the study area. At last, we acknowledge Edzo Velkamp,
an anonymous referee, and Hermann F. Jungkunst for providing valuable
comments during the revision of this article. This study was financed by
the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
within the project SAWI (Chamada Universal MCTI/N14/2012, Proc.
473357/2012-7) and the INCT - Madeiras da Amazonia. It has also been
supported by the Tree Assimilation and Carbon Allocation Physiology
Experiment (TACAPE), a joint project between the Biogeochemistry
Processes Department of the Max Planck Institute for Biogeochemistry and
the Laboratorio de Manejo Florestal (LMF/INPA). Robinson I.
Negron-Juarez was supported by the Office of Science, Office of
Biological and Environmental Research of the US Department of Energy
under contract no. DE-AC02-05CH11231 as part of Next-Generation
Ecosystems Experiments (NGEE Tropics) and the Regional and Global
Climate Modeling (RGCM) Program.
NR 65
TC 0
Z9 0
U1 10
U2 22
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1726-4170
EI 1726-4189
J9 BIOGEOSCIENCES
JI Biogeosciences
PY 2016
VL 13
IS 4
BP 1299
EP 1308
DI 10.5194/bg-13-1299-2016
PG 10
WC Ecology; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA DG4ZR
UT WOS:000372082200028
ER
PT J
AU Marra, DM
Higuchi, N
Trumbore, SE
Ribeiro, GHPM
dos Santos, J
Carneiro, VMC
Lima, AJN
Chambers, JQ
Negron-Juarez, RI
Holzwarth, F
Reu, B
Wirth, C
AF Marra, Daniel Magnabosco
Higuchi, Niro
Trumbore, Susan E.
Ribeiro, Gabriel H. P. M.
dos Santos, Joaquim
Carneiro, Vilany M. C.
Lima, Adriano J. N.
Chambers, Jeffrey Q.
Negron-Juarez, Robinson I.
Holzwarth, Frederic
Reu, Bjoern
Wirth, Christian
TI Predicting biomass of hyperdiverse and structurally complex central
Amazonian forests - a virtual approach using extensive field data
SO BIOGEOSCIENCES
LA English
DT Article
ID TROPICAL RAIN-FORESTS; WOOD DENSITY; ABOVEGROUND BIOMASS; CARBON STOCKS;
ALLOMETRIC MODELS; SECONDARY FOREST; CENTRAL-EUROPE; LIFE-HISTORY; TREE
HEIGHT; DISTURBANCE
AB Old-growth forests are subject to substantial changes in structure and species composition due to the intensification of human activities, gradual climate change and extreme weather events. Trees store ca. 90% of the total aboveground biomass (AGB) in tropical forests and precise tree biomass estimation models are crucial for management and conservation. In the central Amazon, predicting AGB at large spatial scales is a challenging task due to the heterogeneity of successional stages, high tree species diversity and inherent variations in tree allometry and architecture. We parameterized generic AGB estimation models applicable across species and a wide range of structural and compositional variation related to species sorting into height layers as well as frequent natural disturbances. We used 727 trees (diameter at breast height >= 5 cm) from 101 genera and at least 135 species harvested in a contiguous forest near Manaus, Brazil. Sampling from this data set we assembled six scenarios designed to span existing gradients in floristic composition and size distribution in order to select models that best predict AGB at the landscape level across successional gradients. We found that good individual tree model fits do not necessarily translate into reliable predictions of AGB at the landscape level. When predicting AGB (dry mass) over scenarios using our different mod-els and an available pantropical model, we observed systematic biases ranging from -31% (pantropical) to +39 %, with root-mean-square error (RMSE) values of up to 130 Mg ha(-1) (pantropical). Our first and second best models had both low mean biases (0.8 and 3.9 %, respectively) and RMSE (9.4 and 18.6 Mg ha(-1)) when applied over scenarios. Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex tropical forests, especially allowing good performance at the margins of data availability for model construction/calibration, requires the inclusion of predictors that express inherent variations in species architecture. The model of interest should comprise the floristic composition and size-distribution variability of the target forest, implying that even generic global or pantropical biomass estimation models can lead to strong biases. Reliable biomass assessments for the Amazon basin (i. e., secondary forests) still depend on the collection of allometric data at the local/regional scale and forest inventories including speciesspecific attributes, which are often unavailable or estimated imprecisely in most regions.
C1 [Marra, Daniel Magnabosco; Holzwarth, Frederic; Reu, Bjoern; Wirth, Christian] Univ Leipzig, AG Spezielle Bot & Funkt Biodiversitat, Leipzig, Germany.
[Marra, Daniel Magnabosco; Trumbore, Susan E.] Max Planck Inst Biogeochem, Biogeochem Proc Dept, D-07745 Jena, Germany.
[Marra, Daniel Magnabosco; Higuchi, Niro; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Carneiro, Vilany M. C.; Lima, Adriano J. N.] Inst Nacl de Pesquisas da Amazonia, Lab Manejo Florestal, Manaus, Amazonas, Brazil.
[Chambers, Jeffrey Q.] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA.
[Negron-Juarez, Robinson I.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate Sci Dept, Berkeley, CA 94720 USA.
[Reu, Bjoern] Univ Ind Santander, Escuela Biol, Bucaramanga, Colombia.
[Wirth, Christian] German Ctr Integrat Biodivers Res iDiv, Leipzig, Germany.
[Wirth, Christian] Max Planck Inst Biogeochem, Funct Biogeog Fellow Grp, D-07745 Jena, Germany.
RP Marra, DM (reprint author), Univ Leipzig, AG Spezielle Bot & Funkt Biodiversitat, Leipzig, Germany.; Marra, DM (reprint author), Max Planck Inst Biogeochem, Biogeochem Proc Dept, D-07745 Jena, Germany.; Marra, DM (reprint author), Inst Nacl de Pesquisas da Amazonia, Lab Manejo Florestal, Manaus, Amazonas, Brazil.
EM dmarra@bgc-jena.mpg.de
RI Chambers, Jeffrey/J-9021-2014; Negron-Juarez, Robinson/I-6289-2016
OI Chambers, Jeffrey/0000-0003-3983-7847;
FU Brazilian Council for Scientific and Technological Development (CNPq)
[473357/2012-7, 14/2012]; Max Planck Institute for Biogeochemistry
within the Tree Assimilation and Carbon Allocation Physiology Experiment
(TACAPE); Office of Science, Office of Biological and Environmental
Research, of the US Department of Energy [DE-AC02-05CH11231]
FX This study has been possible thanks to the extensive fieldwork carried
by members of the Laboratorio de Manejo Florestal (LMF) from the
Instituto Nacional de Pesquisas da Amazonia (INPA). We gratefully
acknowledge: Antonio F. da Silva, Armando N. Colares, Bertran A. da
Silva (in memoriam), Geraldo A. da Mota, Geraldo E. da Silva,
Francinilton R. de Araujo, Francisco H. M. dos Santos, Francisco Q.
Reis, Jose M. de Souza, Jose M. B. da Paz, Jose M. G. Quintanilha
Junior, Manoel F. J. de Souza, Manoel N. Taveira, Paulo J. Q. de Lacerda
(in memoriam), Pedro L. de Figueiredo (in memoriam), Romeu D. de Paiva,
Sebastiao M. do Nascimento, Sergio L. Leite, Valdecira M. J. Azevedo and
Wanderley de L. Reis. This study was financed by the Brazilian Council
for Scientific and Technological Development (CNPq) within the projects
Piculus, INCT Madeiras da Amazonia and Succession After Windthrows
(SAWI) (Chamada Universal MCTI/No 14/2012, Proc. 473357/2012-7), and
supported by the Max Planck Institute for Biogeochemistry within the
Tree Assimilation and Carbon Allocation Physiology Experiment (TACAPE).
Robinson I. Negron-Juarez was supported by the Office of Science, Office
of Biological and Environmental Research, of the US Department of Energy
under contract no. DE-AC02-05CH11231 as part of Next-Generation
Ecosystems Experiments (NGEE Tropics) and the Regional and Global
Climate Modeling (RGCM) Program.
NR 100
TC 1
Z9 1
U1 7
U2 15
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1726-4170
EI 1726-4189
J9 BIOGEOSCIENCES
JI Biogeosciences
PY 2016
VL 13
IS 5
BP 1553
EP 1570
DI 10.5194/bg-13-1553-2016
PG 18
WC Ecology; Geosciences, Multidisciplinary
SC Environmental Sciences & Ecology; Geology
GA DG4ZU
UT WOS:000372082500011
ER
PT J
AU Claure, MT
Morrill, MR
Goh, JW
Chai, SH
Dai, S
Agrawal, PK
Jones, CW
AF Claure, Micaela Taborga
Morrill, Michael R.
Goh, Jin Wai
Chai, Song-Hai
Dai, Sheng
Agrawal, Pradeep K.
Jones, Christopher W.
TI Insight into reaction pathways in CO hydrogenation reactions over K/MoS2
supported catalysts via alcohol/olefin co-feed experiments
SO CATALYSIS SCIENCE & TECHNOLOGY
LA English
DT Article
ID RAY-ABSORPTION SPECTROSCOPY; MOLYBDENUM-BASED CATALYSTS; SYNTHESIS GAS
CONVERSION; WALLED CARBON NANOTUBES; MG-AL HYDROTALCITE; HIGHER
ALCOHOLS; SULFIDE CATALYSTS; SYNGAS; ETHANOL; POTASSIUM
AB Reaction pathways for higher alcohol synthesis from syngas are studied over K/MoS2 domains supported on mesoporous carbon (C) and mixed MgAl oxide (MMO) via addition of methanol, ethanol, and ethylene co-feeds. A methanol co-feed results in an increase in ethanol and methane production for the catalysts studied. Ethanol or ethylene co-feeds yield increased C3+OH and C2+HC over the supported catalysts. No change is observed in the product distribution over K/bulk-MoS2 with an ethanol co-feed, but 1-propanol production significantly increases in the presence of ethylene, suggesting the formation of ethyl species from ethanol and/or the adsorption of ethanol are rate-controlling for 1-propanol formation when ethanol is co-fed. Ethylene and ethanol co-feeds yield similar production rates of C3+OH over the MMO catalyst, indicating that alcohol formation likely proceeds primarily via the same acyl intermediate as olefin carbonylation. Supports do seem to have an important influence on the reaction pathways. Specifically, acidic carbon support seems to facilitate alcohol dehydration/hydrogenation to produce alkanes, while MMO influences methanol plus 1-propanol coupling to form isobutyl alcohol. However, Mo-K-MMO sites are key for superior normalized C3+OH productivity with ethanol and ethylene co-feeds over the MMO catalyst.
C1 [Claure, Micaela Taborga; Morrill, Michael R.; Goh, Jin Wai; Agrawal, Pradeep K.; Jones, Christopher W.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.
[Chai, Song-Hai; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Agrawal, PK; Jones, CW (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.
EM pradeep.agrawal@chbe.gatech.edu; cjones@chbe.gatech.edu
RI Dai, Sheng/K-8411-2015
OI Dai, Sheng/0000-0002-8046-3931
FU U.S. DOE Office of Science, Center for Understanding and Control of Acid
Gas Evolution of Materials for Energy; Energy Frontier Research Center -
US Department of Energy, Office of Science, Basic Energy Sciences
[DE-SC0012577]
FX The authors would like to thank Dr. Liwei Li for fruitful discussions.
CWJ, MTC, SHC, and SD thank the U.S. DOE Office of Science for
particular support of this work (travel, coordination, and partial
support for MTC and SHC) as part of the Center for Understanding and
Control of Acid Gas Evolution of Materials for Energy, and Energy
Frontier Research Center, funded by the US Department of Energy, Office
of Science, Basic Energy Sciences under Award # DE-SC0012577.
NR 55
TC 2
Z9 2
U1 14
U2 28
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2044-4753
EI 2044-4761
J9 CATAL SCI TECHNOL
JI Catal. Sci. Technol.
PY 2016
VL 6
IS 6
BP 1957
EP 1966
DI 10.1039/c5cy01587a
PG 10
WC Chemistry, Physical
SC Chemistry
GA DG6DQ
UT WOS:000372172800042
ER
PT J
AU Huang, JP
Poyraz, AS
Takeuchi, KJ
Takeuchi, ES
Marschilok, AC
AF Huang, Jianping
Poyraz, Altug S.
Takeuchi, Kenneth J.
Takeuchi, Esther S.
Marschilok, Amy C.
TI MxMn8O16 (M = Ag or K) as promising cathode materials for secondary Mg
based batteries: the role of the cation M
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID OCTAHEDRAL MOLECULAR-SIEVES; MANGANESE OXIDE; ENERGY-STORAGE;
ELECTROCHEMICAL INSERTION; SILVER HOLLANDITE; HIGH-CAPACITY; MAGNESIUM;
ION; ALPHA-MNO2; ELECTRODES
AB AgxMn8O16 (Ag-OMS-2) and KxMn8O16 (K-OMS-2) were investigated as high voltage cathode materials for Mg based batteries. Both MxMn8O16 materials delivered high initial capacities (>180 mA h g(-1)), and KxMn8O16 showed high cycle stability with a reversible capacity of >170 mA h g(-1) after 20 cycles.
C1 [Huang, Jianping; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Marschilok, Amy C.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Poyraz, Altug S.; Takeuchi, Esther S.] Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA.
[Takeuchi, Kenneth J.; Takeuchi, Esther S.; Marschilok, Amy C.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA.
RP Takeuchi, KJ; Takeuchi, ES; Marschilok, AC (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Takeuchi, ES (reprint author), Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA.; Takeuchi, KJ; Takeuchi, ES; Marschilok, AC (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA.
EM kenneth.takeuchi.1@stonybrook.edu; esther.takeuchi@stonybrook.edu;
amy.marschilok@stonybrook.edu
RI Huang, Jianping/C-9379-2014
OI Huang, Jianping/0000-0002-8391-1381
FU Center for Mesoscale Transport Properties, an Energy Frontier Research
Center - U.S. Department of Energy, Office of Science, Basic Energy
Sciences [DE-SC0012673]; Department of Energy, Office of Electricity;
Department of Energy, Office of Basic Energy Sciences
[DE-AC02-98CH10886]
FX Materials synthesis and characterization was supported as part of the
Center for Mesoscale Transport Properties, an Energy Frontier Research
Center supported by the U.S. Department of Energy, Office of Science,
Basic Energy Sciences, under award #DE-SC0012673. Electrochemistry in
magnesium electrolyte was supported by the Department of Energy, Office
of Electricity, administered through Sandia National Laboratories,
Purchase Order #1275961. XPS experiments were carried out at the Center
for Functional Nanomaterials at Brookhaven National Laboratory, which is
supported by the Department of Energy, Office of Basic Energy Sciences
(DE-AC02-98CH10886).
NR 29
TC 2
Z9 2
U1 13
U2 50
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PY 2016
VL 52
IS 21
BP 4088
EP 4091
DI 10.1039/c6cc00025h
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DG3ZV
UT WOS:000372010600024
PM 26899919
ER
PT J
AU Xu, J
Lin, F
Nordlund, D
Crumlin, EJ
Wang, F
Bai, JM
Doeff, MM
Tong, W
AF Xu, Jing
Lin, Feng
Nordlund, Dennis
Crumlin, Ethan J.
Wang, Feng
Bai, Jianming
Doeff, Marca M.
Tong, Wei
TI Elucidation of the surface characteristics and electrochemistry of
high-performance LiNiO2
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID LITHIUM-ION BATTERIES; LAYERED CATHODE MATERIALS; ELECTRODE MATERIALS;
OXIDE; CHEMISTRY; BEHAVIOR; LI; MN
AB Phase pure LiNiO2 was prepared using a solid-state method and the optimal synthesis conditions led to a remarkably high capacity of 200 mA h g(-1) with excellent retention. The combination of bulk and surface characterization elucidated an essential role of the excess Li in phase formation during synthesis and the subsequent electrochemical performance.
C1 [Xu, Jing; Lin, Feng; Doeff, Marca M.; Tong, Wei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA.
[Nordlund, Dennis] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Crumlin, Ethan J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Wang, Feng] Brookhaven Natl Lab, Dept Sustainable Energy Technol, Upton, NY 11973 USA.
[Bai, Jianming] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
RP Tong, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA.
EM weitong@lbl.gov
RI Nordlund, Dennis/A-8902-2008
OI Nordlund, Dennis/0000-0001-9524-6908
FU Energy Efficiency and Renewable Energy (EERE), Office of Vehicle
Technologies of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231];
U.S. DOE, Office of Science, Office of Basic Energy Sciences
[DE-AC02-76SF00515]; U.S. DOE Office of EERE under the Advanced Battery
Materials Research program [DE-SC0012704]; Office of Science, Office of
Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231]
FX This work was supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy (EERE), Office of Vehicle Technologies of the U.S.
Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Soft
XAS experiments were carried out at the Stanford Synchrotron Radiation
Lightsource (SSRL), a Directorate of SLAC National Accelerator
Laboratory and an Office of Science User Facility operated for the U.S.
DOE Office of Science by Stanford University. The use of the SSRL, SLAC
National Accelerator Laboratory, was supported by the U.S. DOE, Office
of Science, Office of Basic Energy Sciences under Contract No.
DE-AC02-76SF00515. J. Bai and F. Wang thank the support by the U.S. DOE
Office of EERE under the Advanced Battery Materials Research program,
Contract No. DE-SC0012704. Use of the National Synchrotron Light Source
II, Brookhaven National Laboratory, was supported by the U.S. DOE,
Office of Science, Office of Basic Energy Sciences, under Contract No.
DE-SC0012704. Synchrotron XPS was carried out at beamline 9.3.2 at the
Advanced Light Source in Lawrence Berkeley National Laboratory (LBNL),
which is supported by the Director, Office of Science, Office of Basic
Energy Sciences, of the U.S. DOE under Contract No. DE-AC02-05CH11231.
The authors are grateful for the support for Raman characterization from
Dr. Robert Kostecki and Dr. Jarry Angelique in LBNL.
NR 20
TC 4
Z9 4
U1 7
U2 27
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PY 2016
VL 52
IS 22
BP 4239
EP 4242
DI 10.1039/c5cc09434h
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DG6ER
UT WOS:000372175700030
PM 26911422
ER
PT J
AU Jin, T
Xiong, Y
Zhu, X
Tian, ZQ
Tao, DJ
Hu, J
Jiang, DE
Wang, HL
Liu, HL
Dai, S
AF Jin, Tian
Xiong, Yan
Zhu, Xiang
Tian, Ziqi
Tao, Duan-Jian
Hu, Jun
Jiang, De-en
Wang, Hualin
Liu, Honglai
Dai, Sheng
TI Rational design and synthesis of a porous, task-specific polycarbazole
for efficient CO2 capture
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID CARBON-DIOXIDE CAPTURE; BENZIMIDAZOLE-LINKED POLYMERS; COVALENT ORGANIC
FRAMEWORKS; GAS-STORAGE; ADSORPTION; NETWORKS; DENSITY;
FUNCTIONALIZATION; SEPARATION; CONVERSION
AB We present a rational design and synthesis of a novel porous pyridine-functionalized polycarbazole for efficient CO2 capture based on the density functional theory calculations. The task-specific polymer, generated through a one-step FeCl3-catalyzed oxidative coupling reaction, exhibits a superior CO2 uptake at 1.0 bar and 273 K (5.57 mmol g(-1)).
C1 [Jin, Tian; Xiong, Yan; Hu, Jun; Liu, Honglai] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China.
[Jin, Tian; Xiong, Yan; Hu, Jun; Liu, Honglai] E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China.
[Zhu, Xiang; Tao, Duan-Jian; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Tian, Ziqi; Jiang, De-en] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA.
[Wang, Hualin] E China Univ Sci & Technol, State Environm Protect Key Lab Environm Risk Asse, Shanghai 200237, Peoples R China.
[Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Liu, HL (reprint author), E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China.; Liu, HL (reprint author), E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China.; Zhu, X; Dai, S (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.; Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM hlliu@ecust.edu.cn; xiang@utk.edu; zhuxiang.ecust@gmail.com;
hlliu@ecust.edu.cn; dais@ornl.gov
RI Zhu, Xiang/P-6867-2014; Dai, Sheng/K-8411-2015; Jiang, De-en/D-9529-2011
OI Zhu, Xiang/0000-0002-3973-4998; Dai, Sheng/0000-0002-8046-3931; Jiang,
De-en/0000-0001-5167-0731
FU National Key Technology Support Program of China [2015BAC04B01];
National Natural Science Foundation of China [91334203, 21376074,
21321064]; 111 Project of Ministry of Education of China [B08021]; U.S.
Department of Energy, Office of Science, Basic Energy Sciences, Chemical
Sciences, Geosciences, and Biosciences Division
FX TJ, YX and HLL were supported by the National Key Technology Support
Program of China (2015BAC04B01), the National Natural Science Foundation
of China (No. 91334203, 21376074 and 21321064) and the 111 Project of
Ministry of Education of China (No. B08021). XZ, ZT, DJ and SD were
supported by the U.S. Department of Energy, Office of Science, Basic
Energy Sciences, Chemical Sciences, Geosciences, and Biosciences
Division.
NR 37
TC 10
Z9 10
U1 20
U2 88
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PY 2016
VL 52
IS 24
BP 4454
EP 4457
DI 10.1039/c6cc00573j
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DG6EI
UT WOS:000372174700005
PM 26864392
ER
PT J
AU Pan, FX
Xu, CQ
Li, LJ
Min, X
Wang, JQ
Li, J
Zhai, HJ
Sun, ZM
AF Pan, Fu-Xing
Xu, Cong-Qiao
Li, Lei-Jiao
Min, Xue
Wang, Jian-Qiang
Li, Jun
Zhai, Hua-Jin
Sun, Zhong-Ming
TI A niobium-necked cluster [As3Nb(As3Sn3)](3-) with aromatic Sn-3(2-)
SO DALTON TRANSACTIONS
LA English
DT Article
ID METAL-MEDIATED ACTIVATION; DELTAHEDRAL ZINTL IONS; INTERMETALLOID
CLUSTERS; PHOTOELECTRON-SPECTROSCOPY; DIRECT EXTRACTION; SANDWICH
COMPLEX; COVALENT RADII; GAS-PHASE; AB-INITIO; TRANSITION
AB We describe here the synthesis and characterization of a ternary cluster compound [As3Nb(As3Sn3)](3)- (1), in which a niobium(v) atom is coordinated by an As-3(3-) triangle and a bowl -type As3Sn35- ligand. Cluster 1 was synthesized by dissolving K8NbSnAs5 (2) in the presence of [2.2.21crypt in ethylenediamine solution, filtered and layered with toluene, then crystallized in the form of [K([2.2.21crypt)](3)[As3Nb(As3Sn3)]center dot en.tol center dot The flower-vase shaped compound 1 features a new structure type, rather different from the known Zintl phases. The stability and bonding of 1 are elucidated via extensive bonding analyses. The Sn-3 ring is found to have n-aromaticity featuring a delocalized Sn-Sn-Sn sigma bond. Electronic structure calculations confirm the Nb(v) oxidation state and weak Nb-Sn and Sn-Sn bonding, in addition to the normal Nb-As and As-As bonds.
C1 [Pan, Fu-Xing; Li, Lei-Jiao; Min, Xue; Sun, Zhong-Ming] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Jilin, Peoples R China.
[Pan, Fu-Xing; Min, Xue] Univ Chinese Acad Sci, Beijing 100049, Peoples R China.
[Xu, Cong-Qiao; Li, Jun] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China.
[Xu, Cong-Qiao; Li, Jun] Tsinghua Univ, Key Lab Organ Optoelect & Mol Engn, Minist Educ, Beijing 100084, Peoples R China.
[Wang, Jian-Qiang] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
[Li, Jun] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
[Zhai, Hua-Jin] Shanxi Univ, Inst Mol Sci, Nanocluster Lab, Taiyuan 030006, Peoples R China.
RP Sun, ZM (reprint author), Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Jilin, Peoples R China.; Li, J (reprint author), Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China.; Li, J (reprint author), Tsinghua Univ, Key Lab Organ Optoelect & Mol Engn, Minist Educ, Beijing 100084, Peoples R China.; Li, J (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
EM junli@tsinghua.edu.cn; szm@ciac.ac.cn
OI Xu, Cong-Qiao/0000-0003-4593-3288
FU NSF of China [21171162, 21221062, 21573138]; Jilin Province Youth
Foundation [20130522132JH]; SRF for ROCS (Chinese Ministry of
Education); State Key Laboratory of Quantum Optics and Quantum Optics
Devices [KF201402]; Shanxi University
FX This work was supported by the NSF of China (21171162, 21221062,
21573138), Jilin Province Youth Foundation (20130522132JH), SRF for ROCS
(Chinese Ministry of Education), and the State Key Laboratory of Quantum
Optics and Quantum Optics Devices (KF201402). H. J. Z. gratefully
acknowledges the start-up fund from Shanxi University for support. The
calculations were performed at the Tsinghua National Laboratory for
Information Science and Technology. We thank Prof. Yong Pei for valuable
discussions.
NR 84
TC 1
Z9 1
U1 5
U2 23
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1477-9226
EI 1477-9234
J9 DALTON T
JI Dalton Trans.
PY 2016
VL 45
IS 9
BP 3874
EP 3879
DI 10.1039/c6dt00028b
PG 6
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA DF2AG
UT WOS:000371140900028
PM 26905226
ER
PT J
AU Guo, XF
Tiferet, E
Qi, L
Solomon, JM
Lanzirotti, A
Newville, M
Engelhard, MH
Kukkadapu, RK
Wu, D
Ilton, ES
Asta, M
Sutton, SR
Xu, HW
Navrotsky, A
AF Guo, Xiaofeng
Tiferet, Eitan
Qi, Liang
Solomon, Jonathan M.
Lanzirotti, Antonio
Newville, Matthew
Engelhard, Mark H.
Kukkadapu, Ravi K.
Wu, Di
Ilton, Eugene S.
Asta, Mark
Sutton, Stephen R.
Xu, Hongwu
Navrotsky, Alexandra
TI U(V) in metal uranates: a combined experimental and theoretical study of
MgUO4, CrUO4, and FeUO4
SO DALTON TRANSACTIONS
LA English
DT Article
ID HIGH-TEMPERATURE CALORIMETRY; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET;
URANIUM-COMPOUNDS; FORMATION ENTHALPIES; STANDARD ENTHALPIES;
MAGNETIC-STRUCTURES; OXIDATION-STATE; ENERGETICS; SYSTEM
AB Although pentavalent uranium can exist in aqueous solution, its presence in the solid state is uncommon. Metal monouranates, MgUO4, CrUO4 and FeUO4 were synthesized for detailed structural and energetic investigations. Structural characteristics of these uranates used powder X-ray diffraction, synchrotron X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and Fe-57-Mossbauer spectroscopy. Enthalpies of formation were measured by high temperature oxide melt solution calorimetry. Density functional theory (DFT) calculations provided both structural and energetic information. The measured structural and thermodynamic properties show good consistency with those predicted from DFT. The presence of U5+ has been solidly confirmed in CrUO4 and FeUO4, which are thermodynamically stable compounds, and the origin and stability of U5+ in the system was elaborated by DFT. The structural and thermodynamic behaviour of U5+ elucidated in this work is relevant to fundamental actinide redox chemistry and to applications in the nuclear industry and radioactive waste disposal.
C1 [Guo, Xiaofeng; Xu, Hongwu] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
[Guo, Xiaofeng; Tiferet, Eitan; Wu, Di; Navrotsky, Alexandra] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA.
[Guo, Xiaofeng; Tiferet, Eitan; Wu, Di; Navrotsky, Alexandra] Univ Calif Davis, Nanomat Environm Agr & Technol Organized Res Unit, Davis, CA 95616 USA.
[Tiferet, Eitan] Nucl Res Ctr Negev, Israel Inst, POB 9001, IL-84190 Beer Sheva, Israel.
[Qi, Liang; Solomon, Jonathan M.; Asta, Mark] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Qi, Liang] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.
[Lanzirotti, Antonio; Newville, Matthew; Sutton, Stephen R.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA.
[Engelhard, Mark H.; Kukkadapu, Ravi K.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA.
[Ilton, Eugene S.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Sutton, Stephen R.] Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA.
RP Navrotsky, A (reprint author), Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA.; Navrotsky, A (reprint author), Univ Calif Davis, Nanomat Environm Agr & Technol Organized Res Unit, Davis, CA 95616 USA.
EM anavrotsky@ucdavis.edu
RI Wu, Di/A-3039-2014; Qi, Liang/A-3851-2010;
OI Wu, Di/0000-0001-6879-321X; Qi, Liang/0000-0002-0201-9333; Engelhard,
Mark/0000-0002-5543-0812; Xu, Hongwu/0000-0002-0793-6923; Guo,
Xiaofeng/0000-0003-3129-493X
FU Materials Science of Actinides, an Energy Frontier Research Center -
U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DESC0001089]; Office of Biological and Environmental Research;
U.S. DOE [DE-AC06-76RLO1930]; National Science Foundation - Earth
Sciences [EAR-1128799]; Department of Energy - GeoSciences
[DE-FG02-94ER14466]; U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences [DE-AC02-06CH11357]; laboratory-directed
research and development (LDRD) program, through the G. T. Seaborg
Institute, of Los Alamos National Laboratory (LANL); DOE
[DE-AC52-06NA25396]
FX This study, including synthesis, characterization, DFT calculations and
calorimetric measurements, was supported as part of the Materials
Science of Actinides, an Energy Frontier Research Center, funded by the
U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences under Award Number DESC0001089. The Mossbauer and XPS analyses
were performed using EMSL, a DOE Office of Science User Facility
sponsored by the Office of Biological and Environmental Research and
located at Pacific Northwest National Laboratory. PNNL is operated by
Battelle for the U.S. DOE under contract DE-AC06-76RLO1930. The XAS work
was performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source
(APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by
the National Science Foundation - Earth Sciences (EAR-1128799) and
Department of Energy - GeoSciences (DE-FG02-94ER14466). Use of the
Advanced Photon Source was supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. The last stage of this work was also supported by the
laboratory-directed research and development (LDRD) program, through the
G. T. Seaborg Institute, of Los Alamos National Laboratory (LANL), which
is operated by Los Alamos National Security LLC, under DOE Contract
DE-AC52-06NA25396, in that X.G. is now pursuing a Seaborg postdoctoral
fellowship at LANL.
NR 75
TC 6
Z9 6
U1 11
U2 34
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1477-9226
EI 1477-9234
J9 DALTON T
JI Dalton Trans.
PY 2016
VL 45
IS 11
BP 4622
EP 4632
DI 10.1039/c6dt00066e
PG 11
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA DG6JW
UT WOS:000372191500023
PM 26854913
ER
PT J
AU Lampert, DJ
Cai, H
Elgowainy, A
AF Lampert, David J.
Cai, Hao
Elgowainy, Amgad
TI Wells to wheels: water consumption for transportation fuels in the
United States
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Article
ID NATURAL-GAS; ENERGY; INTENSITY; OIL
AB The sustainability of energy resources such as transportation fuels is increasingly connected to the consumption of water resources. Water is required for irrigation in the development of bioenergy, reservoir creation in hydroelectric power generation, drilling and resource displacement in petroleum and gas production, mineral extraction in mining operations, and cooling and processing in thermoelectric power generation. Vehicles powered by petroleum, electricity, natural gas, ethanol, biodiesel, and hydrogen fuel cells consume water resources indirectly through fuel production cycles, and it is important to understand the impacts of these technologies on water resources. Previous investigations of water consumption for transportation fuels have focused primarily on key processes and pathways, ignoring the impacts of many intermediate, inter-related processes used in fuel production cycles. Herein, the results of a life cycle analysis of water consumption for transportation fuels in the United States using an extensive system boundary that includes the water embedded in intermediate processing and transportation fuels are presented. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation ( GREET) model provides a comprehensive framework and system boundary for transportation fuel analysis in the United States. GREET was expanded to include water consumption and used to compare the water consumed per unit energy and per km traveled in light-duty vehicles. Many alternative fuels were found to consume larger quantities of water on a per km basis than traditional petroleum pathways, and it is therefore important to consider the implications of transportation and energy policy changes on water resources in the future.
C1 [Lampert, David J.; Cai, Hao; Elgowainy, Amgad] Argonne Natl Lab, Div Energy Syst, 9700 South Cass Ave,Bldg 362, Lemont, IL 60439 USA.
RP Lampert, DJ (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 South Cass Ave,Bldg 362, Lemont, IL 60439 USA.
EM david.lampert@okstate.edu
RI Lampert, David/G-2826-2016
OI Lampert, David/0000-0001-7357-1873
FU Bioenergy Technologies Office; Fuel Cell Technologies Office; Vehicle
Technologies Office of the U.S. Department of Energy's Office of Energy
Efficiency and Renewable Energy [DE-AC02-06CH11357]
FX This research effort was supported by the Bioenergy Technologies Office,
Fuel Cell Technologies Office, and the Vehicle Technologies Office of
the U.S. Department of Energy's Office of Energy Efficiency and
Renewable Energy under contract number DE-AC02-06CH11357.
NR 42
TC 4
Z9 4
U1 6
U2 13
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
EI 1754-5706
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PY 2016
VL 9
IS 3
BP 787
EP 802
DI 10.1039/c5ee03254g
PG 16
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA DG7CY
UT WOS:000372243600005
ER
PT J
AU Sathre, R
Greenblatt, JB
Walczak, K
Sharp, ID
Stevens, JC
Ager, JW
Houle, FA
AF Sathre, Roger
Greenblatt, Jeffery B.
Walczak, Karl
Sharp, Ian D.
Stevens, John C.
Ager, Joel W., III
Houle, Frances A.
TI Opportunities to improve the net energy performance of
photoelectrochemical water-splitting technology
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Article
ID SOLAR HYDROGEN-PRODUCTION; INTEGRATED PHOTOELECTROLYSIS SYSTEM;
LIFE-CYCLE ASSESSMENT; PEROVSKITE PHOTOVOLTAICS; VAPOR-DEPOSITION; FILM;
ELECTROCATALYSTS; EVOLUTION; PAYBACK; FUTURE
AB The hydrogen energy provided by solar-driven photoelectrochemical (PEC) water splitting must be greater than the energy used to produce and operate the technology, as a fundamental system requirement to enable energetic benefits to society. PEC H-2 production will require significant advances from both basic scientific research and applied technology development, prior to manufacturing and field deployment. To identify opportunities and priorities, here we use prospective life cycle system modeling to investigate the net-energy significance of six characteristics describing the PEC life cycle: (1) embodied energy of active cell materials, (2) embodied energy of inactive module materials, (3) energy intensity of active cell fabrication, (4) energy intensity of PEC module assembly, (5) initial energy use for production of balance-of-system (BOS), and (6) ongoing energy use for operation and end-of-life of BOS. We develop and apply a system model describing material and energy flows during the full life cycle of louvered thin-film PEC cells and their associated modules and BOS components. We find that fabrication processes for the PEC cells, especially the thin-film deposition of active cell materials, are important drivers of net energy performance. Nevertheless, high solar-to-hydrogen (STH) conversion efficiency and long cell life span are primary design requirements for PEC systems, even if such performance requires additional energy and material inputs for production and operation. We discuss these and other system dynamics, and highlight pathways to improve net energy performance.
C1 [Sathre, Roger; Greenblatt, Jeffery B.; Walczak, Karl; Sharp, Ian D.; Stevens, John C.; Ager, Joel W., III; Houle, Frances A.] Joint Ctr Artificial Photosynth, Berkeley, CA USA.
[Sathre, Roger; Greenblatt, Jeffery B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA.
[Walczak, Karl; Stevens, John C.; Ager, Joel W., III] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Sharp, Ian D.; Houle, Frances A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Sathre, R; Greenblatt, JB (reprint author), Joint Ctr Artificial Photosynth, Berkeley, CA USA.; Sathre, R; Greenblatt, JB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA.
EM roger@transformativetechnologies.org; jbgreenblatt@lbl.gov
FU Office of Science of the US Department of Energy [DE-SC0004993]
FX This material is based upon work performed by the Joint Center for
Artificial Photosynthesis, a DOE Energy Innovation Hub, supported
through the Office of Science of the US Department of Energy under Award
Number DE-SC0004993.
NR 62
TC 4
Z9 4
U1 18
U2 56
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
EI 1754-5706
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PY 2016
VL 9
IS 3
BP 803
EP 819
DI 10.1039/c5ee03040d
PG 17
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA DG7CY
UT WOS:000372243600006
ER
PT J
AU Su, NC
Sun, DT
Beavers, CM
Britt, DK
Queen, WL
Urban, JJ
AF Su, Norman C.
Sun, Daniel T.
Beavers, Christine M.
Britt, David K.
Queen, Wendy L.
Urban, Jeffrey J.
TI Enhanced permeation arising from dual transport pathways in hybrid
polymer-MOF membranes
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Article
ID MIXED-MATRIX MEMBRANES; METAL-ORGANIC FRAMEWORK; MICROWAVE-ASSISTED
SYNTHESIS; GAS SEPARATION MEMBRANES; NANOCOMPOSITE MEMBRANES;
FACILITATED TRANSPORT; CARBON-DIOXIDE; PERMEABILITY; COMPOSITES; UIO-66
AB The rise of anthropogenic global warming has sparked new interest in developing strategies to mitigate carbon dioxide emissions. Conventional carbon capture processes are not economically viable at scale due to their enormous energy cost. Membrane-based separation is a promising alternative, but its separation performance has traditionally been limited by a well-known trade-off between permeability and selectivity. Here, we report a hybrid polymer/inorganic membrane with dual transport pathways, which allows us to overcome this traditional limitation. The inorganic phase consists of a metal-organic framework (MOF), which is an ideal inorganic dispersant to construct dual transport pathways as the crystalline porous structure of MOFs is more amenable to molecular diffusion than polymers. Previous hybrid membrane research has failed to achieve sufficiently high loadings to establish a percolative network necessary for dual transport, often due to mechanical failure of the membrane at high loading. Using polysulfone and UiO-66-NH2 MOF as a model system, we achieve high MOF loadings (50 wt%) and observe the evolution from single mode to dual transport regimes. The newly formed percolative pathway through the MOF, which has not previously been observed, acts as a molecular highway for gases. As the MOF loading increases to 30 wt%, CO2 permeability increases linearly from 5.6 barrers in polysulfone homopolymer to 18 barrers. Crucially, between 30 and 40 wt%, a percolative MOF network arises and the CO2 permeability dramatically rises from 18 to 46 barrers; an eight-fold increase over pure polysulfone, while maintaining selectivity over methane and nitrogen near the pure polymer at 24 and 26, respectively. A similar phenomenon is observed in the measurement of the diffusion coefficient and is consistent with the formation of dual transport pathways. The findings in this study enable new approaches towards designing hybrid membranes with dual transport pathways. This is an important step towards a competitive membrane-based carbon capture process.
C1 [Su, Norman C.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Su, Norman C.; Sun, Daniel T.; Britt, David K.; Queen, Wendy L.; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Sun, Daniel T.; Queen, Wendy L.] EPFL, Inst Sci & Ingn Chim, CH-1051 Sion, Switzerland.
[Beavers, Christine M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Urban, JJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
EM jjurban@lbl.gov
RI Beavers, Christine/C-3539-2009; Britt, David/D-4675-2009
OI Beavers, Christine/0000-0001-8653-5513;
FU Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy [DE-ACO2-05CH11231]; Department of Defense (DoD)
through the National Defense Science & Engineering Graduate Fellowship
Program; Lawrence Berkeley National Laboratory Laboratory-Directed
Research and Development Program; U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Chemical Sciences, Geosciences and
Biosciences [DE-FG02-12ER16362]
FX X-ray diffraction measurements were collected at the Advanced Light
Source, Beamline 12.2.2. Work at the Molecular Foundry and the Advanced
Light Source was supported by the Office of Science, Office of Basic
Energy Sciences, of the U.S. Department of Energy under Contract No.
DE-ACO2-05CH11231. N.S. was supported by the Department of Defense (DoD)
through the National Defense Science & Engineering Graduate Fellowship
Program. D.S. was supported by Lawrence Berkeley National Laboratory
Laboratory-Directed Research and Development Program. W.Q. was supported
by U.S. Department of Energy, Office of Basic Energy Sciences, Division
of Chemical Sciences, Geosciences and Biosciences under Award
DE-FG02-12ER16362.
NR 53
TC 8
Z9 9
U1 36
U2 100
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
EI 1754-5706
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PY 2016
VL 9
IS 3
BP 922
EP 931
DI 10.1039/c5ee02660a
PG 10
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA DG7CY
UT WOS:000372243600021
ER
PT J
AU Martinez, AD
Warren, EL
Gorai, P
Borup, KA
Kuciauskas, D
Dippo, PC
Ortiz, BR
Macaluso, RT
Nguyen, SD
Greenaway, AL
Boettcher, SW
Norman, AG
Stevanovic, V
Toberer, ES
Tamboli, AC
AF Martinez, Aaron D.
Warren, Emily L.
Gorai, Prashun
Borup, Kasper A.
Kuciauskas, Darius
Dippo, Patricia C.
Ortiz, Brenden R.
Macaluso, Robin T.
Nguyen, Sau D.
Greenaway, Ann L.
Boettcher, Shannon W.
Norman, Andrew G.
Stevanovic, Vladan
Toberer, Eric S.
Tamboli, Adele C.
TI Solar energy conversion properties and defect physics of ZnSiP2
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Article
ID SINGLE-CRYSTALS; THIN-FILMS; N-TYPE; SEMICONDUCTORS; SILICON; ZNGEP2;
GROWTH; PHOTOLUMINESCENCE; RECOMBINATION; ABSORPTION
AB Implementation of an optically active material on silicon has been a persistent technological challenge. For tandem photovoltaics using a Si bottom cell, as well as for other optoelectronic applications, there has been a longstanding need for optically active, wide band gap materials that can be integrated with Si. ZnSiP2 is a stable, wide band gap (2.1 eV) material that is lattice matched with silicon and comprised of inexpensive elements. As we show in this paper, it is also a defect-tolerant material. Here, we report the first ZnSiP2 photovoltaic device. We show that ZnSiP2 has excellent photoresponse and high open circuit voltage of 1.3 V, as measured in a photoelectrochemical configuration. The high voltage and low band gap-voltage offset are on par with much more mature wide band gap III-V materials. Photoluminescence data combined with theoretical defect calculations illuminate the defect physics underlying this high voltage, showing that the intrinsic defects in ZnSiP2 are shallow and the minority carrier lifetime is 7 ns. These favorable results encourage the development of ZnSiP2 and related materials as photovoltaic absorber materials.
C1 [Martinez, Aaron D.; Gorai, Prashun; Ortiz, Brenden R.; Stevanovic, Vladan; Toberer, Eric S.; Tamboli, Adele C.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA.
[Warren, Emily L.; Gorai, Prashun; Borup, Kasper A.; Kuciauskas, Darius; Dippo, Patricia C.; Norman, Andrew G.; Stevanovic, Vladan; Toberer, Eric S.; Tamboli, Adele C.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Borup, Kasper A.] Aarhus Univ, Dept Chem, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
[Macaluso, Robin T.] Univ Texas Arlington, Dept Chem & Biochem, Arlington, TX 76019 USA.
[Macaluso, Robin T.; Nguyen, Sau D.] Univ No Colorado, Dept Chem, Greeley, CO 80639 USA.
[Greenaway, Ann L.; Boettcher, Shannon W.] Univ Oregon, Inst Mat Sci, Dept Chem & Biochem, Eugene, OR 97403 USA.
RP Tamboli, AC (reprint author), Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA.; Tamboli, AC (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM adele.tamboli@nrel.gov
RI Norman, Andrew/F-1859-2010;
OI Norman, Andrew/0000-0001-6368-521X; Warren, Emily/0000-0001-8568-7881;
Greenaway, Ann/0000-0001-6681-9965
FU National Renewable Energy Laboratory through the Laboratory-Directed
Research and Development program; National Science Foundation through
the Renewable Energy Materials Research and Engineering Center at the
Colorado School of Mines under NSF [DMR-0820518]; NSF CAREER Award
[1541230]; Danish Council for Independent Research (DFF) [4090-00071];
DFF Sapere Aude program
FX The authors thank Anna Duda for depositing electrical contacts. Funding
for this work was provided by the National Renewable Energy Laboratory
through the Laboratory-Directed Research and Development program and by
the National Science Foundation through the Renewable Energy Materials
Research and Engineering Center at the Colorado School of Mines under
NSF grant number DMR-0820518. RTM acknowledges NSF CAREER Award 1541230
for support of this work. KAB is thankful for funding from the Danish
Council for Independent Research (DFF), grant no. 4090-00071, and the
DFF Sapere Aude program. The U.S. Government retains and the publisher,
by accepting the article for publication, acknowledges that the U.S.
Government retains a nonexclusive, paid up, irrevocable, worldwide
license to publish or reproduce the published form of this work, or
allow others to do so, for U.S. Government purposes.
NR 94
TC 2
Z9 2
U1 9
U2 24
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
EI 1754-5706
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PY 2016
VL 9
IS 3
BP 1031
EP 1041
DI 10.1039/c5ee02884a
PG 11
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA DG7CY
UT WOS:000372243600033
ER
PT J
AU Xu, F
Sun, J
Konda, NVSNM
Shi, J
Dutta, T
Scown, CD
Simmons, BA
Singh, S
AF Xu, Feng
Sun, Jian
Konda, N. V. S. N. Murthy
Shi, Jian
Dutta, Tanmoy
Scown, Corinne D.
Simmons, Blake A.
Singh, Seema
TI Transforming biomass conversion with ionic liquids: process
intensification and the development of a high-gravity, one-pot process
for the production of cellulosic ethanol
SO ENERGY & ENVIRONMENTAL SCIENCE
LA English
DT Article
ID SUBSEQUENT ENZYMATIC-HYDROLYSIS; SACCHAROMYCES-CEREVISIAE; BIOETHANOL
PRODUCTION; WHEAT-STRAW; RICE STRAW; PRETREATMENT; SACCHARIFICATION;
FERMENTATION; SUGARCANE; CHOLINIUM
AB Producing concentrated sugars and minimizing water usage are key elements in the economics and environmental sustainability of advanced biofuels. Conventional pretreatment processes that require a water-wash step can result in losses of fermentable sugars and generate large volumes of wastewater or solid waste. To address these problems, we have developed high gravity biomass processing with a one-pot conversion technology that includes ionic liquid pretreatment, enzymatic saccharification, and yeast fermentation for the production of concentrated fermentable sugars and high-titer cellulosic ethanol. The use of dilute bio-derived ionic liquids (a.k.a. bionic liquids) enables one-pot, high-gravity bioethanol production due to their low toxicity to the hydrolytic enzyme mixtures and microbes used. We increased biomass digestibility at 430 wt% loading by understanding the relationship between ionic liquid and biomass loading, yielding 41.1 g L-1 of ethanol (equivalent to an overall yield of 74.8% on glucose basis) using an integrated one-pot fed-batch system. Our technoeconomic analysis indicates that the optimized one-pot configuration provides significant economic and environmental benefits for cellulosic biorefineries by reducing the amount of ionic liquid required by similar to 90% and pretreatment-related water inputs and wastewater generation by B85%. In turn, these improvements can reduce net electricity use, greenhouse gas-intensive chemical inputs for wastewater treatment, and waste generation. The result is an overall 40% reduction in the cost of cellulosic ethanol produced and a reduction in local burdens on water resources and waste management infrastructure.
C1 [Xu, Feng; Sun, Jian; Konda, N. V. S. N. Murthy; Shi, Jian; Dutta, Tanmoy; Scown, Corinne D.; Simmons, Blake A.; Singh, Seema] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA.
[Xu, Feng; Sun, Jian; Shi, Jian; Dutta, Tanmoy; Simmons, Blake A.; Singh, Seema] Sandia Natl Labs, Biol & Engn Sci Ctr, Livermore, CA USA.
[Konda, N. V. S. N. Murthy] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Scown, Corinne D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA.
RP Singh, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA.; Singh, S (reprint author), Sandia Natl Labs, Biol & Engn Sci Ctr, Livermore, CA USA.
EM seesing@sandia.gov
RI Scown, Corinne/D-1253-2013;
OI Dutta, Tanmoy/0000-0002-7597-9028
FU U.S. Department of Energy, Office of Science, Office of Biological and
Environmental Research [DE-AC02-05CH11231]
FX The enzyme mixtures used in this study were obtained as a gift from
Novozymes. This work was part of the DOE Joint BioEnergy Institute
(http://www.jbei.org) supported by the U.S. Department of Energy, Office
of Science, Office of Biological and Environmental Research, through
contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory
and the U.S. Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United
States Government purposes.
NR 31
TC 8
Z9 8
U1 32
U2 63
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1754-5692
EI 1754-5706
J9 ENERG ENVIRON SCI
JI Energy Environ. Sci.
PY 2016
VL 9
IS 3
BP 1042
EP 1049
DI 10.1039/c5ee02940f
PG 8
WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical;
Environmental Sciences
SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA DG7CY
UT WOS:000372243600034
ER
PT J
AU Moses, EI
Lindl, JD
Spaeth, ML
Patterson, RW
Sawicki, RH
Atherton, LJ
Baisden, PA
Lagin, LJ
Larson, DW
MacGowan, BJ
Miller, GH
Rardin, DC
Roberts, VS
Van Wonterghem, BM
Wegner, PJ
AF Moses, E. I.
Lindl, J. D.
Spaeth, M. L.
Patterson, R. W.
Sawicki, R. H.
Atherton, L. J.
Baisden, P. A.
Lagin, L. J.
Larson, D. W.
MacGowan, B. J.
Miller, G. H.
Rardin, D. C.
Roberts, V. S.
Van Wonterghem, B. M.
Wegner, P. J.
TI Overview: Development of the National Ignition Facility and the
Transition to a User Facility for the Ignition Campaign and High Energy
Density Scientific Research
SO FUSION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE National Ignition Facility; National Ignition Campaign; high energy
density science
ID INERTIAL FUSION ENERGY; CONFINEMENT FUSION; TARGET PHYSICS; LASER
SYSTEM; PERFORMANCE; LIFE; NIF; IMPLOSION; MATTER; POWER
AB The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3 omega light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besides the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This paper provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. They are covered in more detail in the papers that follow.
C1 [Moses, E. I.; Lindl, J. D.; Spaeth, M. L.; Patterson, R. W.; Sawicki, R. H.; Atherton, L. J.; Baisden, P. A.; Lagin, L. J.; Larson, D. W.; MacGowan, B. J.; Miller, G. H.; Rardin, D. C.; Roberts, V. S.; Van Wonterghem, B. M.; Wegner, P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94450 USA.
RP Lindl, JD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94450 USA.
EM lindl1@llnl.gov
FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by LLNL under contract DE-AC52-07NA27344.
NR 63
TC 4
Z9 4
U1 5
U2 13
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 1536-1055
EI 1943-7641
J9 FUSION SCI TECHNOL
JI Fusion Sci. Technol.
PD JAN-FEB
PY 2016
VL 69
IS 1
BP 1
EP 24
PG 24
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA DG4LV
UT WOS:000372044600001
ER
PT J
AU Spaeth, ML
Manes, KR
Kalantar, DH
Miller, PE
Heebner, JE
Bliss, ES
Speck, DR
Parham, TG
Whitman, PK
Wegner, PJ
Baisden, PA
Menapace, JA
Bowers, MW
Cohen, SJ
Suratwala, TI
Di Nicola, JM
Newton, MA
Adams, JJ
Trenholme, JB
Finucane, RG
Bonanno, RE
Rardin, DC
Arnold, PA
Dixit, SN
Erbert, GV
Erlandson, AC
Fair, JE
Feigenbaum, E
Gourdin, WH
Hawley, RA
Honig, J
House, RK
Jancaitis, KS
LaFortune, KN
Larson, DW
Le Galloudec, BJ
Lindl, JD
MacGowan, BJ
Marshall, CD
McCandless, KP
McCracken, RW
Montesanti, RC
Moses, EI
Nostrand, MC
Pryatel, JA
Roberts, VS
Rodriguez, SB
Rowe, AW
Sacks, RA
Salmon, JT
Shaw, MJ
Sommer, S
Stolz, CJ
Tietbohl, GL
Widmayer, CC
Zacharias, R
AF Spaeth, M. L.
Manes, K. R.
Kalantar, D. H.
Miller, P. E.
Heebner, J. E.
Bliss, E. S.
Speck, D. R.
Parham, T. G.
Whitman, P. K.
Wegner, P. J.
Baisden, P. A.
Menapace, J. A.
Bowers, M. W.
Cohen, S. J.
Suratwala, T. I.
Di Nicola, J. M.
Newton, M. A.
Adams, J. J.
Trenholme, J. B.
Finucane, R. G.
Bonanno, R. E.
Rardin, D. C.
Arnold, P. A.
Dixit, S. N.
Erbert, G. V.
Erlandson, A. C.
Fair, J. E.
Feigenbaum, E.
Gourdin, W. H.
Hawley, R. A.
Honig, J.
House, R. K.
Jancaitis, K. S.
LaFortune, K. N.
Larson, D. W.
Le Galloudec, B. J.
Lindl, J. D.
MacGowan, B. J.
Marshall, C. D.
McCandless, K. P.
McCracken, R. W.
Montesanti, R. C.
Moses, E. I.
Nostrand, M. C.
Pryatel, J. A.
Roberts, V. S.
Rodriguez, S. B.
Rowe, A. W.
Sacks, R. A.
Salmon, J. T.
Shaw, M. J.
Sommer, S.
Stolz, C. J.
Tietbohl, G. L.
Widmayer, C. C.
Zacharias, R.
TI Description of the NIF Laser
SO FUSION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE ICF; fusion driver; NIF laser
ID NATIONAL-IGNITION-FACILITY; PERFORMANCE OPERATIONS MODEL;
INERTIAL-CONFINEMENT FUSION; SUBCRITICAL CRACK-GROWTH; WAVE-FRONT
CONTROL; PHOSPHATE-GLASSES; PLASMA ELECTRODES; FORCE MICROSCOPY; OPTICAL
SWITCHES; POROUS SILICA
AB The possibility of imploding small capsules to produce mini-fusion explosions was explored soon after the first thermonuclear explosions in the early 1950s. Various technologies have been pursued to achieve the focused power and energy required for laboratory-scale fusion. Each technology has its own challenges. For example, electron and ion beams can deliver the large amounts of energy but must contend with Coulomb repulsion forces that make focusing these beams a daunting challenge. The demonstration of the first laser in 1960 provided a new option. Energy from laser beams can be focused and deposited within a small volume; the challenge became whether a practical laser system can be constructed that delivers the power and energy required while meeting all other demands for achieving a high-density, symmetric implosion. The National Ignition Facility (NIF) is the laser designed and built to meet the challenges for study of high-energy-density physics and inertial confinement fusion (ICF) implosions. This paper describes the architecture, systems, and subsystems of NIF. It describes how they partner with each other to meet these new, complex demands and describes how laser science and technology were woven together to bring NIF into reality.
C1 [Spaeth, M. L.; Manes, K. R.; Kalantar, D. H.; Miller, P. E.; Heebner, J. E.; Bliss, E. S.; Speck, D. R.; Parham, T. G.; Whitman, P. K.; Wegner, P. J.; Baisden, P. A.; Menapace, J. A.; Bowers, M. W.; Cohen, S. J.; Suratwala, T. I.; Di Nicola, J. M.; Newton, M. A.; Adams, J. J.; Trenholme, J. B.; Finucane, R. G.; Bonanno, R. E.; Rardin, D. C.; Arnold, P. A.; Dixit, S. N.; Erbert, G. V.; Erlandson, A. C.; Fair, J. E.; Feigenbaum, E.; Gourdin, W. H.; Hawley, R. A.; Honig, J.; House, R. K.; Jancaitis, K. S.; LaFortune, K. N.; Larson, D. W.; Le Galloudec, B. J.; Lindl, J. D.; MacGowan, B. J.; Marshall, C. D.; McCandless, K. P.; McCracken, R. W.; Montesanti, R. C.; Moses, E. I.; Nostrand, M. C.; Pryatel, J. A.; Roberts, V. S.; Rodriguez, S. B.; Rowe, A. W.; Sacks, R. A.; Salmon, J. T.; Shaw, M. J.; Sommer, S.; Stolz, C. J.; Tietbohl, G. L.; Widmayer, C. C.; Zacharias, R.] Lawrence Livermore Natl Lab, POB 808,L-462, Livermore, CA 94550 USA.
RP Spaeth, ML (reprint author), Lawrence Livermore Natl Lab, POB 808,L-462, Livermore, CA 94550 USA.
EM spaeth2@llnl.gov
RI Trenholme, John/M-4805-2016
OI Trenholme, John/0000-0003-3673-6653
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344.
NR 184
TC 5
Z9 6
U1 4
U2 12
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 1536-1055
EI 1943-7641
J9 FUSION SCI TECHNOL
JI Fusion Sci. Technol.
PD JAN-FEB
PY 2016
VL 69
IS 1
BP 25
EP 145
PG 121
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA DG4LV
UT WOS:000372044600002
ER
PT J
AU Manes, KR
Spaeth, ML
Adams, JJ
Bowers, MW
Bude, JD
Carr, CW
Conder, AD
Cross, DA
Demos, SG
Di Nicola, JMG
Dixit, SN
Feigenbaum, E
Finucane, RG
Guss, GM
Henesian, MA
Honig, J
Kalantar, DH
Kegelmeyer, LM
Liao, ZM
MacGowan, BJ
Matthews, MJ
McCandless, KP
Mehta, NC
Miller, PE
Negres, RA
Norton, MA
Nostrand, MC
Orth, CD
Sacks, RA
Shaw, MJ
Siegel, LR
Stolz, CJ
Suratwala, TI
Trenholme, JB
Wegner, PJ
Whitman, PK
Widmayer, CC
Yang, ST
AF Manes, K. R.
Spaeth, M. L.
Adams, J. J.
Bowers, M. W.
Bude, J. D.
Carr, C. W.
Conder, A. D.
Cross, D. A.
Demos, S. G.
Di Nicola, J. M. G.
Dixit, S. N.
Feigenbaum, E.
Finucane, R. G.
Guss, G. M.
Henesian, M. A.
Honig, J.
Kalantar, D. H.
Kegelmeyer, L. M.
Liao, Z. M.
MacGowan, B. J.
Matthews, M. J.
McCandless, K. P.
Mehta, N. C.
Miller, P. E.
Negres, R. A.
Norton, M. A.
Nostrand, M. C.
Orth, C. D.
Sacks, R. A.
Shaw, M. J.
Siegel, L. R.
Stolz, C. J.
Suratwala, T. I.
Trenholme, J. B.
Wegner, P. J.
Whitman, P. K.
Widmayer, C. C.
Yang, S. T.
TI Damage Mechanisms Avoided or Managed for NIF Large Optics
SO FUSION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE ICF lasers; pseudoscopic imaging; parasitic loss mechanisms for lasers
ID LASER-INDUCED DAMAGE; STIMULATED BRILLOUIN-SCATTERING; NATIONAL IGNITION
FACILITY; SPATIAL FILTER PINHOLE; FUSED-SILICA OPTICS; RAMAN-SCATTERING;
WATER-VAPOR; WAVELENGTH IRRADIATION; REFRACTIVE-INDEX; INITIATED DAMAGE
AB After every other failure mode has been considered, in the end, the high-performance limit of all lasers is set by optical damage. The demands of inertial confinement fusion (ICF) pushed lasers designed as ICF drivers into this limit from their very earliest days. The first ICF lasers were small, and their pulses were short. Their goal was to provide as much power to the target as possible. Typically, they faced damage due to high intensity on their optics. As requests for higher laser energy, longer pulse lengths, and better symmetry appeared, new kinds of damage also emerged, some of them anticipated and others unexpected. This paper will discuss the various types of damage to large optics that had to be considered, avoided to the extent possible, or otherwise managed as the National Ignition Facility (NIF) laser was designed, fabricated, and brought into operation. It has been possible for NIF to meet its requirements because of the experience gained in previous ICF systems and because NIF designers have continued to be able to avoid or manage new damage situations as they have appeared.
C1 [Manes, K. R.; Spaeth, M. L.; Adams, J. J.; Bowers, M. W.; Bude, J. D.; Carr, C. W.; Conder, A. D.; Cross, D. A.; Demos, S. G.; Di Nicola, J. M. G.; Dixit, S. N.; Feigenbaum, E.; Finucane, R. G.; Guss, G. M.; Henesian, M. A.; Honig, J.; Kalantar, D. H.; Kegelmeyer, L. M.; Liao, Z. M.; MacGowan, B. J.; Matthews, M. J.; McCandless, K. P.; Mehta, N. C.; Miller, P. E.; Negres, R. A.; Norton, M. A.; Nostrand, M. C.; Orth, C. D.; Sacks, R. A.; Shaw, M. J.; Siegel, L. R.; Stolz, C. J.; Suratwala, T. I.; Trenholme, J. B.; Wegner, P. J.; Whitman, P. K.; Widmayer, C. C.; Yang, S. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Manes, KR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM manes1@llnl.gov
RI Trenholme, John/M-4805-2016
OI Trenholme, John/0000-0003-3673-6653
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344.
NR 201
TC 4
Z9 5
U1 11
U2 22
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 1536-1055
EI 1943-7641
J9 FUSION SCI TECHNOL
JI Fusion Sci. Technol.
PD JAN-FEB
PY 2016
VL 69
IS 1
BP 146
EP 249
PG 104
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA DG4LV
UT WOS:000372044600003
ER
PT J
AU Spaeth, ML
Manes, KR
Honig, J
AF Spaeth, M. L.
Manes, K. R.
Honig, J.
TI Cleanliness for the NIF 1 omega Laser Amplifiers
SO FUSION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Flashlamp-induced aerosols; laser amplifier environment; laser slab
damage
ID CONTAMINATION PARTICLES; PROPAGATION
AB During the years before the National Ignition Facility (NIF) laser system, a set of generally accepted cleaning procedures had been developed for the large 1 omega amplers of an inertial confinement fusion laser, and up until 1999 similar procedures were planned for NIF. Several parallel sets of test results were obtained from 1992 to 1999 for large amplifiers using these accepted cleaning procedures in the Beamlet physics test bed and in the Amplifier Module Prototype Laboratory (AMPLAB), a four-slab -high prototype large amplifier structure. Both of these showed damage to their slab surfaces that, if projected to operating conditions for NIF, would lead to higher than acceptable slab-refurbishment rates. This paper tracks the search for the smoking gun origin of this damage and describes the solution employed in NIF for avoiding flashlamp-induced aerosol damage to its 1 omega amplifier slabs.
C1 [Spaeth, M. L.; Manes, K. R.; Honig, J.] Lawrence Livermore Natl Lab, POB 808,L-466, Livermore, CA 94550 USA.
RP Spaeth, ML (reprint author), Lawrence Livermore Natl Lab, POB 808,L-466, Livermore, CA 94550 USA.
EM Spaeth2@llnl.gov
FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by LLNL under contract DE-AC52-07NA27344.
NR 21
TC 0
Z9 1
U1 2
U2 4
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 1536-1055
EI 1943-7641
J9 FUSION SCI TECHNOL
JI Fusion Sci. Technol.
PD JAN-FEB
PY 2016
VL 69
IS 1
BP 250
EP 264
PG 15
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA DG4LV
UT WOS:000372044600004
ER
PT J
AU Spaeth, ML
Wegner, PJ
Suratwala, TI
Nostrand, MC
Bude, JD
Conder, AD
Folta, JA
Heebner, JE
Kegelmeyer, LM
MacGowan, BJ
Mason, DC
Matthews, MJ
Whitman, PK
AF Spaeth, M. L.
Wegner, P. J.
Suratwala, T. I.
Nostrand, M. C.
Bude, J. D.
Conder, A. D.
Folta, J. A.
Heebner, J. E.
Kegelmeyer, L. M.
MacGowan, B. J.
Mason, D. C.
Matthews, M. J.
Whitman, P. K.
TI Optics Recycle Loop Strategy for NIF Operations Above UV Laser-Induced
Damage Threshold
SO FUSION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Lasers and laser optics; laser damage; UV lasers
ID FUSED-SILICA SURFACES; GALVANOMETER SCANNED CO2-LASER; CRYSTAL LIGHT
VALVE; MATERIAL REMOVAL; 351 NM; GROWTH; MITIGATION; PRECURSORS;
RELAXATION; MICROSCOPY
AB The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world's largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm(2), more than twice the (3 omega only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics. Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, 4 J/cm(2), thus keeping the energy delivered to the target significantly below 1 MI. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MI on target, an increase in operational capability of more than 100%. In this review, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.
C1 [Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.; Nostrand, M. C.; Bude, J. D.; Conder, A. D.; Folta, J. A.; Heebner, J. E.; Kegelmeyer, L. M.; MacGowan, B. J.; Mason, D. C.; Matthews, M. J.; Whitman, P. K.] Lawrence Livermore Natl Lab, 7000 East Ave,L-580, Livermore, CA 94550 USA.
RP Wegner, PJ (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-580, Livermore, CA 94550 USA.
EM wegner1@llnl.gov
FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344]; Laboratory
Directed Research and Development Program
FX This work was performed under the auspices of the U.S. Department of
Energy by LLNL under contract DE-AC52-07NA27344. Much of the fundamental
science enabling the loop technologies was supported by the Laboratory
Directed Research and Development Program.
NR 88
TC 2
Z9 2
U1 4
U2 9
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 1536-1055
EI 1943-7641
J9 FUSION SCI TECHNOL
JI Fusion Sci. Technol.
PD JAN-FEB
PY 2016
VL 69
IS 1
BP 265
EP 294
PG 30
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA DG4LV
UT WOS:000372044600005
ER
PT J
AU Baisden, PA
Atherton, LJ
Hawley, RA
Land, TA
Menapace, JA
Miller, PE
Runkel, MJ
Spaeth, ML
Stolz, CJ
Suratwala, TI
Wegner, PJ
Wong, LL
AF Baisden, P. A.
Atherton, L. J.
Hawley, R. A.
Land, T. A.
Menapace, J. A.
Miller, P. E.
Runkel, M. J.
Spaeth, M. L.
Stolz, C. J.
Suratwala, T. I.
Wegner, P. J.
Wong, L. L.
TI Large Optics for the National Ignition Facility
SO FUSION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE National Ignition Facility; optics fabrication for high-fluence lasers;
large-aperture optical metrology tools
ID PHOSPHATE LASER GLASSES; PLANE IRRADIANCE PROFILES; SUBCRITICAL
CRACK-GROWTH; ATOMIC-FORCE MICROSCOPY; CONTINUOUS-PHASE-PLATE;
ASTERISK-P CRYSTALS; SOL-GEL COATINGS; FUSED-SILICA; RAPID-GROWTH;
DAMAGE PRECURSORS
AB The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world's largest laser but also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF's high output energies and precision beam quality. This paper describes the multiyear, multisupplier development effort that was undertaken to develop the advanced optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused-silica lenses, windows, and phase plates; mirrors and polarizers with multilayer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3 omega) is provided.
C1 [Baisden, P. A.; Atherton, L. J.; Hawley, R. A.; Land, T. A.; Menapace, J. A.; Miller, P. E.; Runkel, M. J.; Spaeth, M. L.; Stolz, C. J.; Suratwala, T. I.; Wegner, P. J.; Wong, L. L.] Lawrence Livermore Natl Lab, Livermore, CA 94450 USA.
RP Baisden, PA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94450 USA.
EM baisden1@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344.
NR 179
TC 2
Z9 7
U1 4
U2 8
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 1536-1055
EI 1943-7641
J9 FUSION SCI TECHNOL
JI Fusion Sci. Technol.
PD JAN-FEB
PY 2016
VL 69
IS 1
BP 295
EP 351
PG 57
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA DG4LV
UT WOS:000372044600006
ER
PT J
AU Brunton, G
Casey, A
Christensen, M
Demaret, R
Fedorov, M
Flegel, M
Folta, P
Frazier, T
Hutton, M
Kegelmeyer, L
Lagin, L
Ludwigsen, P
Reed, R
Speck, D
Wilhelmsen, K
AF Brunton, G.
Casey, A.
Christensen, M.
Demaret, R.
Fedorov, M.
Flegel, M.
Folta, P.
Frazier, T.
Hutton, M.
Kegelmeyer, L.
Lagin, L.
Ludwigsen, P.
Reed, R.
Speck, D.
Wilhelmsen, K.
TI Control and Information Systems for the National Ignition Facility
SO FUSION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Control systems; information systems; software tools
AB Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF's laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 mu m root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second. NIF's automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. This paper is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.
C1 [Brunton, G.; Casey, A.; Christensen, M.; Demaret, R.; Fedorov, M.; Flegel, M.; Folta, P.; Frazier, T.; Hutton, M.; Kegelmeyer, L.; Lagin, L.; Ludwigsen, P.; Reed, R.; Speck, D.; Wilhelmsen, K.] Lawrence Livermore Natl Lab, POB 808,L-488, Livermore, CA 94550 USA.
RP Brunton, G (reprint author), Lawrence Livermore Natl Lab, POB 808,L-488, Livermore, CA 94550 USA.
EM Brunton2@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work is performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344.
NR 16
TC 0
Z9 0
U1 2
U2 2
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 1536-1055
EI 1943-7641
J9 FUSION SCI TECHNOL
JI Fusion Sci. Technol.
PD JAN-FEB
PY 2016
VL 69
IS 1
BP 352
EP 365
PG 14
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA DG4LV
UT WOS:000372044600007
ER
PT J
AU Spaeth, ML
Manes, KR
Bowers, M
Celliers, P
Di Nicola, JM
Di Nicola, P
Dixit, S
Erbert, G
Heebner, J
Kalantar, D
Landen, O
MacGowan, B
Van Wonterghem, B
Wegner, P
Widmayer, C
Yang, S
AF Spaeth, Mary L.
Manes, Kenneth R.
Bowers, M.
Celliers, P.
Di Nicola, J. -M.
Di Nicola, P.
Dixit, S.
Erbert, G.
Heebner, J.
Kalantar, D.
Landen, O.
MacGowan, B.
Van Wonterghem, B.
Wegner, P.
Widmayer, C.
Yang, S.
TI National Ignition Facility Laser System Performance
SO FUSION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE ICF targets; thermal analysis; laser inertial fusion energy (LIFE)
ID STIMULATED BRILLOUIN-SCATTERING; LIGHT
AB The National Ignition Facility (NIF) laser is the culmination of more than 40 years of work at Lawrence Livermore National Laboratory dedicated to the delivery of laser systems capable of driving experiments for the study of high-energy-density physics. Although NIF was designed to support a number of missions, it was clear from the beginning that its biggest challenge was to meet the requirements for pursuit of inertial confinement fusion. Meeting the Project Completion Criteria for NIF in 2009 and for the National Ignition Campaign (NIC) in 2012 included meeting the NIF Functional Requirements and Primary Criteria that were established for the project in 1994. During NIC and as NIF transitioned to a user facility, its goals were expanded to include requirements defined by the broader user community as well as by laser system designers and operators.
C1 [Spaeth, Mary L.; Manes, Kenneth R.; Bowers, M.; Celliers, P.; Di Nicola, J. -M.; Di Nicola, P.; Dixit, S.; Erbert, G.; Heebner, J.; Kalantar, D.; Landen, O.; MacGowan, B.; Van Wonterghem, B.; Wegner, P.; Widmayer, C.; Yang, S.] Lawrence Livermore Natl Lab, 7000 East Ave,L-466, Livermore, CA 94550 USA.
RP Spaeth, ML (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-466, Livermore, CA 94550 USA.
EM spaeth2@llnl.gov
FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344]
FX This work is performed under the auspices of the U.S. Department of
Energy by LLNL under contract DE-AC52-07NA27344.
NR 40
TC 5
Z9 5
U1 3
U2 9
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 1536-1055
EI 1943-7641
J9 FUSION SCI TECHNOL
JI Fusion Sci. Technol.
PD JAN-FEB
PY 2016
VL 69
IS 1
BP 366
EP 394
PG 29
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA DG4LV
UT WOS:000372044600008
ER
PT J
AU Hamza, AV
Nikroo, A
Alger, E
Antipa, N
Atherton, LJ
Barker, D
Baxamusa, S
Bhandarkar, S
Biesiada, T
Buice, E
Carr, E
Castro, C
Choate, C
Conder, A
Crippen, J
Dylla-Spears, R
Dzenitis, E
Eddinger, S
Emerich, M
Fair, J
Farrell, M
Felker, S
Florio, J
Forsman, A
Giraldez, E
Hein, N
Hoover, D
Horner, J
Huang, H
Kozioziemski, B
Kroll, J
Lawson, B
Letts, SA
Lord, D
Mapoles, E
Mauldin, M
Miller, P
Montesanti, R
Moreno, K
Parham, T
Nathan, B
Reynolds, J
Sater, J
Segraves, K
Seugling, R
Stadermann, M
Strauser, R
Stephens, R
Suratwala, TI
Swisher, M
Taylor, JS
Wallace, R
Wegner, P
Wilkens, H
Yoxall, B
AF Hamza, A. V.
Nikroo, A.
Alger, E.
Antipa, N.
Atherton, L. J.
Barker, D.
Baxamusa, S.
Bhandarkar, S.
Biesiada, T.
Buice, E.
Carr, E.
Castro, C.
Choate, C.
Conder, A.
Crippen, J.
Dylla-Spears, R.
Dzenitis, E.
Eddinger, S.
Emerich, M.
Fair, J.
Farrell, M.
Felker, S.
Florio, J.
Forsman, A.
Giraldez, E.
Hein, N.
Hoover, D.
Horner, J.
Huang, H.
Kozioziemski, B.
Kroll, J.
Lawson, B.
Letts, S. A.
Lord, D.
Mapoles, E.
Mauldin, M.
Miller, P.
Montesanti, R.
Moreno, K.
Parham, T.
Nathan, B.
Reynolds, J.
Sater, J.
Segraves, K.
Seugling, R.
Stadermann, M.
Strauser, R.
Stephens, R.
Suratwala, T. I.
Swisher, M.
Taylor, J. S.
Wallace, R.
Wegner, P.
Wilkens, H.
Yoxall, B.
TI Target Development for the National Ignition Campaign
SO FUSION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE National Ignition Campaign; inertial confinement fusion; target
development
ID XRADIA MICROXCT MICROSCOPE; ICF SHELLS; QUANTITATIVE RADIOGRAPHY; NIF
TARGETS; CALIBRATION; CAPSULES; DOPANT
AB Complex and precise research targets are required for the inertial confinement fusion (ICF) experiments conducted at the National Ignition Facility. During the National Ignition Campaign (NIC) the target development team embarked on and completed a science and technology campaign to provide the capability to produce the required targets at the rate needed by the NIC. An engineering design for precision, manufacturing, and fielding was developed. This required new processes, new tooling, and equipment to metrologize and assemble components. In addition, development of new processing technology was also required.
Since the NIC had to respond to new results from ICF experiments, the target development team had to respond as well. This required target designs that allowed for flexibility in accommodating changes in the targets for capsule dimensions and doping levels, hohlraztm dimensions and materials, and various new platforms to investigate new physics. A continuous improvement of processes was also required to meet stringent specifications and fielding requirements.
C1 [Hamza, A. V.; Antipa, N.; Atherton, L. J.; Barker, D.; Baxamusa, S.; Bhandarkar, S.; Biesiada, T.; Buice, E.; Carr, E.; Castro, C.; Choate, C.; Conder, A.; Dylla-Spears, R.; Dzenitis, E.; Fair, J.; Felker, S.; Horner, J.; Kozioziemski, B.; Kroll, J.; Lawson, B.; Letts, S. A.; Lord, D.; Mapoles, E.; Miller, P.; Montesanti, R.; Parham, T.; Nathan, B.; Reynolds, J.; Sater, J.; Segraves, K.; Seugling, R.; Stadermann, M.; Suratwala, T. I.; Swisher, M.; Taylor, J. S.; Wallace, R.; Wegner, P.; Yoxall, B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Nikroo, A.; Alger, E.; Crippen, J.; Eddinger, S.; Emerich, M.; Farrell, M.; Florio, J.; Forsman, A.; Giraldez, E.; Hein, N.; Hoover, D.; Huang, H.; Mauldin, M.; Moreno, K.; Strauser, R.; Stephens, R.; Wilkens, H.] Gen Atom Co, La Jolla, CA 92121 USA.
RP Hamza, AV (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM hamza1@llnl.gov
OI Stephens, Richard/0000-0002-7034-6141
FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by LLNL under contract DE-AC52-07NA27344.
NR 33
TC 1
Z9 1
U1 4
U2 9
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 1536-1055
EI 1943-7641
J9 FUSION SCI TECHNOL
JI Fusion Sci. Technol.
PD JAN-FEB
PY 2016
VL 69
IS 1
BP 395
EP 406
PG 12
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA DG4LV
UT WOS:000372044600009
ER
PT J
AU Parham, T
Kozioziemski, B
Atkinson, D
Baisden, P
Bertolini, L
Boehm, K
Chernov, A
Coffee, K
Coffield, F
Dylla-Spears, R
Edwards, O
Fair, J
Fedorov, M
Fry, J
Gibson, C
Haid, B
Holunga, D
Kohut, T
Lewis, T
Malsbury, T
Mapoles, E
Sater, J
Skulina, K
Trummer, D
Walters, C
AF Parham, T.
Kozioziemski, B.
Atkinson, D.
Baisden, P.
Bertolini, L.
Boehm, K.
Chernov, A.
Coffee, K.
Coffield, F.
Dylla-Spears, R.
Edwards, O.
Fair, J.
Fedorov, M.
Fry, J.
Gibson, C.
Haid, B.
Holunga, D.
Kohut, T.
Lewis, T.
Malsbury, T.
Mapoles, E.
Sater, J.
Skulina, K.
Trummer, D.
Walters, C.
TI Cryogenic Target System for Hydrogen Layering
SO FUSION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE National Ignition Facility; cryogenic target; target positioner
ID NATIONAL IGNITION FACILITY; TRITIUM
AB A cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highly constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.
The team developed processes, procedures, software, and metrology techniques to form and qualify solid layers of hydrogen isotopes at a quality level and yield needed to support the National Ignition Campaign experimental program. The team has grown over 220 layers in NIF, and 52 have been shot to date.
C1 [Parham, T.; Kozioziemski, B.; Atkinson, D.; Baisden, P.; Bertolini, L.; Chernov, A.; Coffee, K.; Coffield, F.; Dylla-Spears, R.; Edwards, O.; Fair, J.; Fedorov, M.; Fry, J.; Haid, B.; Holunga, D.; Kohut, T.; Malsbury, T.; Mapoles, E.; Sater, J.; Skulina, K.; Trummer, D.; Walters, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Boehm, K.; Gibson, C.] Gen Atom Co, San Diego, CA 92121 USA.
[Lewis, T.] AKIMA Infrastruct Serv LLC, Livermore, CA 94550 USA.
RP Kozioziemski, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM Kozioziemski1@llnl.gov
FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by LLNL under contract DE-AC52-07NA27344.
NR 25
TC 1
Z9 1
U1 4
U2 16
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 1536-1055
EI 1943-7641
J9 FUSION SCI TECHNOL
JI Fusion Sci. Technol.
PD JAN-FEB
PY 2016
VL 69
IS 1
BP 407
EP 419
PG 13
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA DG4LV
UT WOS:000372044600010
ER
PT J
AU Kilkenny, JD
Bell, PM
Bradley, DK
Bleuel, DL
Caggiano, JA
Dewald, EL
Hsing, WW
Kalantar, DH
Kauffman, RL
Larson, DJ
Moody, JD
Schneider, DH
Schneider, MB
Shaughnessy, DA
Shelton, RT
Stoeffl, W
Widmann, K
Yeamans, CB
Batha, SH
Grim, GP
Herrmann, HW
Merrill, FE
Leeper, RJ
Oertel, JA
Sangster, TC
Edgell, DH
Hohenberger, M
Glebov, VY
Regan, SP
Frenje, JA
Gatu-Johnson, M
Petrasso, RD
Rinderknecht, HG
Zylstra, AB
Cooper, GW
Ruiz, C
AF Kilkenny, J. D.
Bell, P. M.
Bradley, D. K.
Bleuel, D. L.
Caggiano, J. A.
Dewald, E. L.
Hsing, W. W.
Kalantar, D. H.
Kauffman, R. L.
Larson, D. J.
Moody, J. D.
Schneider, D. H.
Schneider, M. B.
Shaughnessy, D. A.
Shelton, R. T.
Stoeffl, W.
Widmann, K.
Yeamans, C. B.
Batha, S. H.
Grim, G. P.
Herrmann, H. W.
Merrill, F. E.
Leeper, R. J.
Oertel, J. A.
Sangster, T. C.
Edgell, D. H.
Hohenberger, M.
Glebov, V. Yu.
Regan, S. P.
Frenje, J. A.
Gatu-Johnson, M.
Petrasso, R. D.
Rinderknecht, H. G.
Zylstra, A. B.
Cooper, G. W.
Ruiz, C.
TI The National Ignition Facility Diagnostic Set at the Completion of the
National Ignition Campaign, September 2012
SO FUSION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Target drive diagnostics; target response diagnostics; target assembly
diagnostics
ID FLIGHT; NOVA
AB At the completion of the National Ignition Campaign (NIC), the National Ignition Facility (NIF) had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole U.S. inertial confinement fusion community. In 1994, the Joint Central Diagnostic Team documented a plan for a limited set of NIF diagnostics in the NIF Conceptual Design Report. Two decades later, these diagnostics, and many others, were installed workhorse tools for all users of NIF. We give a short description of each of the 36 different types of NIC diagnostics grouped by the function of the diagnostics, namely, target drive, target response and target assembly, stagnation, and burn. A comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova in 1999. Although NIF diagnostics have a much greater degree of automation and rigor than Nova's, new diagnostics are limited such as the higher-speed X-ray imager. Recommendations for future diagnostics on the NIF are discussed.
C1 [Kilkenny, J. D.] Gen Atom, La Jolla, CA 92121 USA.
[Bell, P. M.; Bradley, D. K.; Bleuel, D. L.; Caggiano, J. A.; Dewald, E. L.; Hsing, W. W.; Kalantar, D. H.; Kauffman, R. L.; Larson, D. J.; Moody, J. D.; Schneider, D. H.; Schneider, M. B.; Shaughnessy, D. A.; Shelton, R. T.; Stoeffl, W.; Widmann, K.; Yeamans, C. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Batha, S. H.; Grim, G. P.; Herrmann, H. W.; Merrill, F. E.; Leeper, R. J.; Oertel, J. A.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
[Sangster, T. C.; Edgell, D. H.; Hohenberger, M.; Glebov, V. Yu.; Regan, S. P.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA.
[Kilkenny, J. D.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Rinderknecht, H. G.; Zylstra, A. B.] MIT, Cambridge, MA 02139 USA.
[Cooper, G. W.; Ruiz, C.] Sandia Natl Labs, Albuquerque, NM 87123 USA.
RP Kilkenny, JD (reprint author), Gen Atom, La Jolla, CA 92121 USA.
EM kilkenny1@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344.
NR 64
TC 5
Z9 5
U1 7
U2 13
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 1536-1055
EI 1943-7641
J9 FUSION SCI TECHNOL
JI Fusion Sci. Technol.
PD JAN-FEB
PY 2016
VL 69
IS 1
BP 420
EP 451
PG 32
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA DG4LV
UT WOS:000372044600011
ER
PT J
AU Van Wonterghem, BM
Brereton, SJ
Burr, RF
Folta, P
Hardy, DL
Jize, NN
Kohut, TR
Land, TA
Merritt, BT
AF Van Wonterghem, Bruno M.
Brereton, Sandra J.
Burr, Robert F.
Folta, Peg
Hardy, Diane L.
Jize, Nicholas N.
Kohut, Thomas R.
Land, Terry A.
Merritt, Bernard T.
TI Operations on the National Ignition Facility
SO FUSION SCIENCE AND TECHNOLOGY
LA English
DT Article
DE NIF operations; user facility; laser facility
ID MANAGEMENT; EQUIPMENT; PROGRAM
AB The National Ignition Facility (NIF) is a high-energy-density physics, experimental user facility that focuses up to 1.8 MJ of UV light in 192 laser beams onto a mm-sized target at the center of a target chamber. This paper describes how we conduct experimental shots on the NIF. We review processes and tools used to facilitate experiment planning and operations. Safety and radiological aspects of NIF's operations are discussed. We also describe efforts to continuously improve operational efficiency and further increase shot rate.
C1 [Van Wonterghem, Bruno M.; Brereton, Sandra J.; Burr, Robert F.; Folta, Peg; Hardy, Diane L.; Jize, Nicholas N.; Kohut, Thomas R.; Land, Terry A.; Merritt, Bernard T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Van Wonterghem, BM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM VanWonterghem1@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344.
NR 15
TC 3
Z9 3
U1 1
U2 2
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 1536-1055
EI 1943-7641
J9 FUSION SCI TECHNOL
JI Fusion Sci. Technol.
PD JAN-FEB
PY 2016
VL 69
IS 1
BP 452
EP 469
PG 18
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA DG4LV
UT WOS:000372044600012
ER
PT J
AU Li, M
Pu, YQ
Yoo, CG
Ragauskas, AJ
AF Li, Mi
Pu, Yunqiao
Yoo, Chang Geun
Ragauskas, Arthur J.
TI The occurrence of tricin and its derivatives in plants
SO GREEN CHEMISTRY
LA English
DT Review
ID ORYZA-SATIVA L.; ANTIOXIDANT FLAVONE GLYCOSIDES; BRAN CONSTITUENT
TRICIN; STRAW LIGNIN STRUCTURE; SASA-ALBO-MARGINATA; NJAVARA RICE BRAN;
CELLS IN-VITRO; HPLC-UV-MS; AERIAL PARTS; MASS-SPECTROMETRY
AB Our understanding of the structure and biosynthetic pathway of lignin, a phenylpropanoid heteropolymer, continues to evolve, especially with the discovery of new lignin monomers/structural moieties such as monolignol acetate, hydroxycinnamyl aldehyde/alcohol, and p-hydroxybenzoate in the past decades. Recently, tricin has been reported as a component incorporated into monocot lignin. As a flavonoid compound widely distributed in herbaceous plants, tricin has been extensively studied due to its biological significance in plant growth as well as its potential for pharmaceutical importance. Tricin is biosynthesized as a constituent of plant secondary metabolites through a combination of phenylpropanoid and polyketide pathways. Tricin occurs in plants in either free or conjugated forms such as tricin-glycosides, tricinlignans, and tricin-lignan-glycosides. The emergence of tricin covalently incorporated with lignin biopolymer implies the possible association of lignification and tricin biosynthesis. This review summarizes the occurrence of tricin and its derivatives in plants. In addition, synthesis, potential application, and characterization of tricin are discussed.
C1 [Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; Ragauskas, Arthur J.] Oak Ridge Natl Lab, Biosci Div, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA.
[Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; Ragauskas, Arthur J.] Joint Inst Biol Sci, Oak Ridge, TN 37831 USA.
[Ragauskas, Arthur J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.
RP Ragauskas, AJ (reprint author), Oak Ridge Natl Lab, Biosci Div, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA.; Ragauskas, AJ (reprint author), Joint Inst Biol Sci, Oak Ridge, TN 37831 USA.; Ragauskas, AJ (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.
EM aragausk@utk.edu
RI Pu, Yunqiao/H-3206-2016; LI, Mi/Q-4261-2016;
OI Pu, Yunqiao/0000-0003-2554-1447; LI, Mi/0000-0001-7523-1266; Ragauskas,
Arthur/0000-0002-3536-554X; Yoo, Chang Geun/0000-0002-6179-2414
FU U.S. Department of Energy [DE-AC05-00OR22725]; BioEnergy Science Center
(BESC); Office of Biological and Environmental Research in DOE Office of
Science
FX This manuscript has been authored by UT-Battelle, LLC under Contract no.
DE-AC05-00OR22725 with the U.S. Department of Energy. The work was
supported and performed as part of the BioEnergy Science Center (BESC).
The BioEnergy Science Center is a U.S. Department of Energy Bioenergy
Research Center supported by the Office of Biological and Environmental
Research in the DOE Office of Science.
NR 185
TC 8
Z9 9
U1 6
U2 26
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9262
EI 1463-9270
J9 GREEN CHEM
JI Green Chem.
PY 2016
VL 18
IS 6
BP 1439
EP 1454
DI 10.1039/c5gc03062e
PG 16
WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
SC Chemistry; Science & Technology - Other Topics
GA DG7GH
UT WOS:000372252300001
ER
PT J
AU Nguyen, TY
Cai, CM
Osman, O
Kumar, R
Wyman, CE
AF Thanh Yen Nguyen
Cai, Charles M.
Osman, Omar
Kumar, Rajeev
Wyman, Charles E.
TI CELF pretreatment of corn stover boosts ethanol titers and yields from
high solids SSF with low enzyme loadings
SO GREEN CHEMISTRY
LA English
DT Article
ID SIMULTANEOUS SACCHARIFICATION; TECHNOECONOMIC EVALUATION;
LIGNOCELLULOSIC BIOFUELS; BIOETHANOL PRODUCTION; WHEAT-STRAW;
FERMENTATION; CELLULOSE; BIOMASS; HYDROLYSIS; LIGNIN
AB A major challenge to economically produce ethanol from lignocellulosic biomass is to achieve industrially relevant ethanol titers (>50 g L-1) to control operating and capital costs for downstream ethanol operations while maintaining high ethanol yields. However, due to reduced fermentation effectiveness at high biomass solids loadings, excessive amounts of enzymes are typically required to obtain reasonable ethanol titers, thereby trading off reduced operating and capital costs with high enzyme costs. In this study, we applied our newly developed Co-Solvent Enhanced Lignocellulosic Fractionation (CELF) pretreatment to produce highly digestible glucan-rich solids from corn stover. Simultaneous saccharification and fermentation (SSF) was then applied to pretreated solids from CELF at 15.5 wt% solids loadings (corresponding to 11 wt% glucan loadings) in modified shake flasks to achieve an ethanol titer of 58.8 g L-1 at 89.2% yield with an enzyme loading of 15 mg-protein per g-glucan-in-raw-corn-stover (-RCS) in only 5 days. By comparison, SSF of corn stover solids from dilute acid pretreatment at 18.3 wt% solids loading (or 10 wt% glucan loading) only achieved an ethanol titer and a yield of 47.8 g L-1 and 73.0%, respectively, despite needing longer fermentation times (similar to 20 days) and an additional 18 h of prehydrolysis at 50 degrees C. Remarkably, although longer fermentation times were required at more economical enzyme loadings of 5 and 2 mg-protein per g-glucan-in-RCS, high solids SSF of CELF pretreated corn stover realized final ethanol titers consistently above 50 g L-1 and yields over 80%.
C1 [Thanh Yen Nguyen; Cai, Charles M.; Osman, Omar; Kumar, Rajeev; Wyman, Charles E.] UC Riverside, Ctr Environm Res & Technol CE CERT, 1084 Columbia Ave, Riverside, CA 92507 USA.
[Thanh Yen Nguyen; Osman, Omar; Wyman, Charles E.] UC Riverside, Dept Bioengn, 217 Mat Sci & Engn,900 Univ Ave, Riverside, CA 92507 USA.
[Wyman, Charles E.] UC Riverside, Dept Chem & Environm Engn, 446 Winston Chung Hall,900 Univ Ave, Riverside, CA 92507 USA.
[Cai, Charles M.; Kumar, Rajeev; Wyman, Charles E.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN USA.
RP Wyman, CE (reprint author), UC Riverside, Ctr Environm Res & Technol CE CERT, 1084 Columbia Ave, Riverside, CA 92507 USA.; Wyman, CE (reprint author), UC Riverside, Dept Bioengn, 217 Mat Sci & Engn,900 Univ Ave, Riverside, CA 92507 USA.; Wyman, CE (reprint author), UC Riverside, Dept Chem & Environm Engn, 446 Winston Chung Hall,900 Univ Ave, Riverside, CA 92507 USA.; Wyman, CE (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN USA.
EM cewyman@engr.ucr.edu
RI Cai, Charles/E-4986-2012
OI Cai, Charles/0000-0002-5047-0815
FU Office of Biological and Environmental Research in the Department of
Energy (DOE) Office of Science through the BioEnergy Science Center
(BESC) at Oak Ridge National Laboratory [DE-PS02-06ER64304]; National
Science Foundation [2013142496]; Ford Motor Company
FX We are grateful for funding by the Office of Biological and
Environmental Research in the Department of Energy (DOE) Office of
Science through the BioEnergy Science Center (BESC) at Oak Ridge
National Laboratory (Contract DE-PS02-06ER64304) for supporting this
study. The award of a fellowship to the lead author by the National
Science Foundation (Grant #2013142496) made her participation in this
project possible. We also acknowledge the Center for Environmental
Research and Technology (CE-CERT) of the Bourns College of Engineering
for providing the facilities and the Ford Motor Company for funding the
Chair in Environmental Engineering that facilitates projects such as
this one.
NR 51
TC 4
Z9 4
U1 10
U2 20
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9262
EI 1463-9270
J9 GREEN CHEM
JI Green Chem.
PY 2016
VL 18
IS 6
BP 1581
EP 1589
DI 10.1039/c5gc01977j
PG 9
WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
SC Chemistry; Science & Technology - Other Topics
GA DG7GH
UT WOS:000372252300018
ER
PT J
AU Choi, YS
Singh, R
Zhang, J
Balasubramanian, G
Sturgeon, MR
Katahira, R
Chupka, G
Beckham, GT
Shanks, BH
AF Choi, Yong S.
Singh, Rahul
Zhang, Jing
Balasubramanian, Ganesh
Sturgeon, Matthew R.
Katahira, Rui
Chupka, Gina
Beckham, Gregg T.
Shanks, Brent H.
TI Pyrolysis reaction networks for lignin model compounds: unraveling
thermal deconstruction of beta-O-4 and alpha-O-4 compounds
SO GREEN CHEMISTRY
LA English
DT Article
ID PHENETHYL PHENYL ETHER; FLAME IONIZATION DETECTION; COAL-LIQUEFACTION
MODEL; ALPHA/BETA-SELECTIVITIES; COMPUTATIONAL PREDICTION;
LIGNOCELLULOSIC BIOMASS; DIBENZYL ETHER; BIO-OIL; CHEMISTRY; DENSITY
AB Although lignin is one of the main components of biomass, its pyrolysis chemistry is not well understood due to complex heterogeneity. To gain insights into this chemistry, the pyrolysis of seven lignin model compounds (five beta-O-4 and two alpha-O-4 linked molecules) was investigated in a micropyrolyzer connected to GC-MS/FID. According to quantitative product mole balance for the reaction networks, concerted retro-ene fragmentation and homolytic dissociation were strongly suggested as the initial reaction step for beta-O-4 compounds and alpha-O-4 compounds, respectively. The difference in reaction pathway between compounds with different linkages was believed to result from thermodynamics of the radical initiation. The rate constants for the different reaction pathways were predicted from ab initio density functional theory calculations and pre-exponential literature values. The computational findings were consistent with the experiment results, further supporting the different pyrolysis mechanisms for the beta-ether linked and alpha-ether linked compounds. A combination of the two pathways from the dimeric model compounds was able to describe qualitatively the pyrolysis of a trimeric lignin model compound containing both beta-O-4 and alpha-O-4 linkages.
C1 [Choi, Yong S.; Zhang, Jing; Shanks, Brent H.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA.
[Singh, Rahul; Balasubramanian, Ganesh] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA.
[Sturgeon, Matthew R.; Katahira, Rui; Chupka, Gina; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
RP Shanks, BH (reprint author), Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA.
EM bshanks@iastate.edu
FU U.S. Department of Energy through National Advanced Biofuels Consortium
[DEEE0003044]
FX The authors would like to acknowledge funding support from the U.S.
Department of Energy through National Advanced Biofuels Consortium,
grant number DEEE0003044.
NR 52
TC 5
Z9 5
U1 3
U2 15
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9262
EI 1463-9270
J9 GREEN CHEM
JI Green Chem.
PY 2016
VL 18
IS 6
BP 1762
EP 1773
DI 10.1039/c5gc02268a
PG 12
WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
SC Chemistry; Science & Technology - Other Topics
GA DG7GH
UT WOS:000372252300036
ER
PT J
AU Keahey, K
Raicu, I
Chard, K
Nicolae, B
AF Keahey, Kate
Raicu, Ioan
Chard, Kyle
Nicolae, Bogdan
TI Guest Editors Introduction: Special Issue on Scientific Cloud Computing
SO IEEE TRANSACTIONS ON CLOUD COMPUTING
LA English
DT Editorial Material
C1 [Keahey, Kate] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
[Raicu, Ioan] IIT, Dept Comp Sci, Chicago, IL 60616 USA.
[Chard, Kyle] Univ Chicago, Computat Inst, Chicago, IL 60637 USA.
[Chard, Kyle] Argonne Natl Lab, Argonne, IL 60439 USA.
[Nicolae, Bogdan] IBM Res, Dublin, Ireland.
RP Keahey, K (reprint author), Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.; Raicu, I (reprint author), IIT, Dept Comp Sci, Chicago, IL 60616 USA.; Chard, K (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA.; Chard, K (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA.; Nicolae, B (reprint author), IBM Res, Dublin, Ireland.
EM keahey@mcs.anl.gov; iraicu@cs.iit.edu; chard@uchicago.edu;
bogdan.nicolae@acm.org
NR 0
TC 0
Z9 0
U1 1
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 2168-7161
J9 IEEE TRANS CLOUD COM
JI IEEE Trans. Cloud Comput.
PD JAN-MAR
PY 2016
VL 4
IS 1
BP 4
EP 5
DI 10.1109/TCC.2015.2505022
PG 2
WC Computer Science, Software Engineering
SC Computer Science
GA DG2KC
UT WOS:000371894800003
ER
PT J
AU Brink, AR
Quinn, DD
AF Brink, Adam R.
Quinn, D. Dane
TI Shear Effects on Energy Dissipation From an Elastic Beam on a Rigid
Foundation
SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME
LA English
DT Article
ID BOLTED JOINTS; MICRO-SLIP; DYNAMICS; MODEL
AB This work describes the energy dissipation arising from microslip for an elastic shell incorporating shear and longitudinal deformation resting on a rough-rigid foundation. This phenomenon is investigated using finite element (FE) analysis and nonlinear geometrically exact shell theory. Both approaches illustrate the effect of shear within the shell and observe a reduction in the energy dissipated from microslip as compared to a similar system neglecting shear deformation. In particular, it is found that the shear deformation allows for load to be transmitted beyond the region of slip so that the entire interface contributes to the load carrying capability of the shell. The energy dissipation resulting from the shell model is shown to agree well with that arising from the FE model, and this representation can be used as a basis for reduced order models that capture the microslip phenomenon.
C1 [Brink, Adam R.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Quinn, D. Dane] Univ Akron, Dept Mech Engn, Akron, OH 44325 USA.
RP Quinn, DD (reprint author), Univ Akron, Dept Mech Engn, Akron, OH 44325 USA.
EM arbrink@sandia.gov; quinn@uakron.edu
FU U.S. Department of Energy [DE-AC04-94AL85000]
FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the U.S. Department of Energy under
Contract No. DE-AC04-94AL85000.
NR 24
TC 0
Z9 0
U1 0
U2 0
PU ASME
PI NEW YORK
PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0021-8936
EI 1528-9036
J9 J APPL MECH-T ASME
JI J. Appl. Mech.-Trans. ASME
PD JAN
PY 2016
VL 83
IS 1
AR 011004
DI 10.1115/1.4031764
PG 7
WC Mechanics
SC Mechanics
GA DG5XZ
UT WOS:000372156100004
ER
PT J
AU Fu, L
Wang, ZG
Batista, VS
Yan, ECY
AF Fu, Li
Wang, Zhuguang
Batista, Victor S.
Yan, Elsa C. Y.
TI New Insights from Sum Frequency Generation Vibrational Spectroscopy into
the Interactions of Islet Amyloid Polypeptides with Lipid Membranes
SO JOURNAL OF DIABETES RESEARCH
LA English
DT Article
ID SOLID-STATE NMR; TYPE-2 DIABETES-MELLITUS; NONLINEAR OPTICS; IN-SITU;
INFRARED-SPECTROSCOPY; MOLECULAR CHIRALITY; AQUEOUS INTERFACE; UNIFIED
TREATMENT; IR SPECTROSCOPY; SFG-VS
AB Studies of amyloid polypeptides on membrane surfaces have gained increasing attention in recent years. Several studies have revealed that membranes can catalyze protein aggregation and that the early products of amyloid aggregation can disrupt membrane integrity, increasing water permeability and inducing ion cytotoxicity. Nonetheless, probing aggregation of amyloid proteins on membrane surfaces is challenging. Surface-specific methods are required to discriminate contributions of aggregates at the membrane interface from those in the bulk phase and to characterize protein secondary structures in situ and in real time without the use of perturbing spectroscopic labels. Here, we review the most recent applications of sum frequency generation (SFG) vibrational spectroscopy applied in conjunction with computational modeling techniques, a joint experimental and computational methodology that has provided valuable insights into the aggregation of islet amyloid polypeptide (IAPP) on membrane surfaces. These applications show that SFG can provide detailed information about structures, kinetics, and orientation of IAPP during interfacial aggregation, relevant to the molecular mechanisms of type II diabetes. These recent advances demonstrate the promise of SFG as a new approach for studying amyloid diseases at the molecular level and for the rational drug design targeting early aggregation products on membrane surfaces.
C1 [Fu, Li] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA.
[Wang, Zhuguang; Batista, Victor S.; Yan, Elsa C. Y.] Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA.
RP Yan, ECY (reprint author), Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA.
EM elsa.yan@yale.edu
OI Fu, Li/0000-0003-0994-7789
FU National Science Foundation Grant [CHE 1213362]; National Institutes of
Health Grant [1R56DK105381-01]; NSF Grant [CHE-1213742]; Starter Grant
Award, Spectroscopy Society of Pittsburgh
FX Elsa C. Y. Yan is the recipient of the Starter Grant Award, Spectroscopy
Society of Pittsburgh, the National Science Foundation Grant (CHE
1213362), and the National Institutes of Health Grant (1R56DK105381-01).
Victor S. Batista acknowledges high performance computing time from
NERSC and support from the NSF Grant CHE-1213742.
NR 112
TC 0
Z9 0
U1 5
U2 18
PU HINDAWI PUBLISHING CORP
PI NEW YORK
PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA
SN 2314-6745
EI 2314-6753
J9 J DIABETES RES
JI J. Diabetes Res.
PY 2016
AR 7293063
DI 10.1155/2016/7293063
PG 17
WC Endocrinology & Metabolism; Medicine, Research & Experimental
SC Endocrinology & Metabolism; Research & Experimental Medicine
GA DG7EP
UT WOS:000372247900001
ER
PT J
AU Tu, TN
Phan, NQ
Vu, TT
Nguyen, HL
Cordova, KE
Furukawa, H
AF Tu, Thach N.
Phan, Nghi Q.
Vu, Thanh T.
Nguyen, Ha L.
Cordova, Kyle E.
Hiroyasu Furukawa
TI High proton conductivity at low relative humidity in an anionic Fe-based
metal-organic framework
SO JOURNAL OF MATERIALS CHEMISTRY A
LA English
DT Article
ID SUPERPROTONIC CONDUCTIVITY; COORDINATION POLYMER; MEMBRANE;
NANOCHANNELS; CRYSTAL
AB A metal-organic framework, termed VNU-15 (VNU = Vietnam National University), was synthesized and subsequent detailed structural analysis revealed that the crystalline structure adopted the fob topology. Due to integrated sulphate ligands accompanied by hydrogen-bonded dimethylammonium ions that lined the pore channels of VNU-15, the proton conductivity of this material reached 2.90 x 10(-2) S cm(-1) at 95 degrees C and 60% relative humidity. Remarkably, the high proton conductivity of VNU-15 was maintained under these conditions, without any appreciable loss, for 40 h.
C1 [Tu, Thach N.; Phan, Nghi Q.; Vu, Thanh T.; Nguyen, Ha L.; Cordova, Kyle E.; Hiroyasu Furukawa] Vietnam Natl Univ Ho Chi Minh VNU HCM, Ctr Mol & NanoArchitecture MANAR, Ho Chi Minh City 721337, Vietnam.
[Cordova, Kyle E.; Hiroyasu Furukawa] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Mat Sci Div,Berkeley Global Sci Inst, Berkeley, CA 94720 USA.
[Hiroyasu Furukawa] King Fahd Univ Petr & Minerals, Ctr Res Excellence Nanotechnol CENT, Dhahran 31261, Saudi Arabia.
RP Cordova, KE; Furukawa, H (reprint author), Vietnam Natl Univ Ho Chi Minh VNU HCM, Ctr Mol & NanoArchitecture MANAR, Ho Chi Minh City 721337, Vietnam.; Cordova, KE; Furukawa, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Mat Sci Div,Berkeley Global Sci Inst, Berkeley, CA 94720 USA.; Furukawa, H (reprint author), King Fahd Univ Petr & Minerals, Ctr Res Excellence Nanotechnol CENT, Dhahran 31261, Saudi Arabia.
EM kcordova@berkeley.edu; furukawa@berkeley.edu
RI Furukawa, Hiroyasu/C-5910-2008;
OI Furukawa, Hiroyasu/0000-0002-6082-1738; Cordova,
Kyle/0000-0002-4988-0497
FU VNU-HCM [A2015-50-01-HD-KHCN]; United States Office of Naval Research
Global: Naval International Cooperative Opportunities in Science and
Technology Program [N62909-15-1N056]; MANAR
FX This work was financially supported by VNU-HCM (A2015-50-01-HD-KHCN) and
the United States Office of Naval Research Global: Naval International
Cooperative Opportunities in Science and Technology Program (No.
N62909-15-1N056). We are grateful to Prof. O. M. Yaghi (UC Berkeley) for
his continued support of MANAR. We acknowledge Mr T. L. H. Doan and Mr
N. T. Hoang at MANAR for their valuable discussion and assistance on
this work. We are grateful to Prof. D. Prosperio (University of Milan)
for his assistance on the topological analysis of VNU-15. We thank Mr J.
Yang (UC Berkeley) for performing the elemental microanalysis
measurements. Finally, we appreciate the inputs provided by Profs. P. T.
S. Nam (University of Technology, VNU-HCM) and H. T. Nguyen (University
of Science, VNU-HCM).
NR 37
TC 8
Z9 8
U1 12
U2 30
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2050-7488
EI 2050-7496
J9 J MATER CHEM A
JI J. Mater. Chem. A
PY 2016
VL 4
IS 10
BP 3638
EP 3641
DI 10.1039/c5ta10467j
PG 4
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary
SC Chemistry; Energy & Fuels; Materials Science
GA DG3KB
UT WOS:000371967000003
ER
PT J
AU Li, SX
Yan, JL
Li, CZ
Liu, F
Shi, MM
Chen, HZ
Russell, TP
AF Li, Shuixing
Yan, Jielin
Li, Chang-Zhi
Liu, Feng
Shi, Minmin
Chen, Hongzheng
Russell, Thomas P.
TI A non-fullerene electron acceptor modified by thiophene-2-carbonitrile
for solution-processed organic solar cells
SO JOURNAL OF MATERIALS CHEMISTRY A
LA English
DT Article
ID OPEN-CIRCUIT VOLTAGE; SMALL-MOLECULE; BUILDING-BLOCKS;
DIKETOPYRROLOPYRROLE; EFFICIENT; PHOTOVOLTAICS; DESIGN; DERIVATIVES;
DONOR
AB Effective electron acceptor materials usually have a deep lowest unoccupied molecular orbital (LUMO) energy level that can split excitons and generate current. A non-fullerene electron acceptor (F8-DPPTCN) was developed, using fluorene as the core with arms of diketopyrrolopyrrole (DPP) having thiophene-2-carbonitrile as the terminal units. The new molecule had a LUMO of similar to 3.65 eV and a narrow bandgap (E-g) of 1.66 eV, owing to the electronegativity of the thiophene-2-carbonitrile group and its conjugation with DPP units. Organic solar cells (OSCs) with F8-DPPTCN as the acceptor and poly(3-hexylthiophene) (P3HT) as the donor were fabricated. A power conversion efficiency (PCE) of 2.37% was obtained with an open-circuit voltage (Voc) of 0.97 V, a short-circuit current (J(sc)) of 6.25 mA cm(-2), and a fill factor (FF) of 0.39. Structural characterization showed that P3HT and F8-DPPTCN were kinetically trapped in a weakly separated state whereas thermal annealing led to the crystallization of P3HT and the formation of a network structure with a mesh-size of several hundred nanometers. When a solvent additive, diiodooctane, was used and the mixture was thermally annealed, both P3HT and F8-DPPTCN crystallized and a multi-length scale network was formed. Though the PCEs were low, the changes in the PCE could be correlated with the morphological changes, opening pathways to increase performance further.
C1 [Li, Shuixing; Yan, Jielin; Li, Chang-Zhi; Shi, Minmin; Chen, Hongzheng] Zhejiang Univ, Dept Polymer Sci & Engn, State Key Lab Silicon Mat, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Zhejiang, Peoples R China.
[Liu, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA.
[Liu, Feng] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China.
[Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA.
RP Shi, MM; Chen, HZ (reprint author), Zhejiang Univ, Dept Polymer Sci & Engn, State Key Lab Silicon Mat, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Zhejiang, Peoples R China.; Liu, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA.; Liu, F (reprint author), Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China.
EM iamfengliu@gmail.com; minminshi@zju.edu.cn; hzchen@zju.edu.cn
RI Liu, Feng/J-4361-2014
OI Liu, Feng/0000-0002-5572-8512
FU National Natural Science Foundation of China [21474088, 51261130582,
91233114, 51561145001]; Zhejiang Province Natural Science Foundation
[LR13E030001]; 973 program [2014CB643503]; U.S. Office of Naval Research
[N00014-15-1-2244]; DOE, Office of Science, and Office of Basic Energy
Sciences
FX M. Shi and H. Chen would like to gratefully acknowledge financial
support from the National Natural Science Foundation of China (No.
21474088, 51261130582, 91233114, and 51561145001) and Zhejiang Province
Natural Science Foundation (No. LR13E030001). The work was also partly
supported by 973 program (No. 2014CB643503). FL and TPR were supported
by the U.S. Office of Naval Research under contract N00014-15-1-2244.
Portions of this research were carried out at beamline 7.3.3 and
11.0.1.2 at the Advanced Light Source, and Molecular Foundry, Lawrence
Berkeley National Laboratory, which was supported by the DOE, Office of
Science, and Office of Basic Energy Sciences.
NR 38
TC 16
Z9 16
U1 23
U2 56
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2050-7488
EI 2050-7496
J9 J MATER CHEM A
JI J. Mater. Chem. A
PY 2016
VL 4
IS 10
BP 3777
EP 3783
DI 10.1039/c6ta00056h
PG 7
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary
SC Chemistry; Energy & Fuels; Materials Science
GA DG3KB
UT WOS:000371967000022
ER
PT J
AU Xia, YX
Musumeci, C
Bergqvist, J
Ma, W
Gao, F
Tang, Z
Bai, S
Jin, YZ
Zhu, CH
Kroon, R
Wang, C
Andersson, MR
Hou, LT
Inganas, O
Wang, EG
AF Xia, Yuxin
Musumeci, Chiara
Bergqvist, Jonas
Ma, Wei
Gao, Feng
Tang, Zheng
Bai, Sai
Jin, Yizheng
Zhu, Chenhui
Kroon, Renee
Wang, Cheng
Andersson, Mats R.
Hou, Lintao
Inganas, Olle
Wang, Ergang
TI Inverted all-polymer solar cells based on a
quinoxaline-thiophene/naphthalene-diimide polymer blend improved by
annealing
SO JOURNAL OF MATERIALS CHEMISTRY A
LA English
DT Article
ID OPEN-CIRCUIT VOLTAGE; HIGH-MOBILITY; CONJUGATED POLYMERS; PERFORMANCE;
MORPHOLOGY; EFFICIENCY; ACCEPTOR; CRYSTALLINITY; PHOTOVOLTAICS;
AGGREGATION
AB We have investigated the effect of thermal annealing on the photovoltaic parameters of all-polymer solar cells based on a quinoxaline-thiophene donor polymer (TQ1) and a naphthalene diimide acceptor polymer (N2200). The annealed devices show a doubled power conversion efficiency compared to nonannealed devices, due to the higher short-circuit current (J(sc)) and fill factor (FF), but with a lower open circuit voltage (V-oc). On the basis of the morphology-mobility examination by several scanning force microscopy techniques, and by grazing-incidence wide-angle X-ray scattering, we conclude that better charge transport is achieved by higher order and better interconnected networks of the bulk heterojunction in the annealed active layers. The annealing improves charge transport and extends the conjugation length of the polymers, which do help in charge generation and meanwhile reduce recombination. Photoluminescence, electroluminescence, and light intensity dependence measurements reveal how this morphological change affects charge generation and recombination. As a result, the J(sc) and FF are significantly improved. However, the smaller band gap and the higher HOMO level of TQ1 upon annealing causes a lower V-oc. The blend of an amorphous polymer TQ1, and a semi-crystalline polymer N2200, can thus be modified by thermal annealing to double the power conversion efficiency.
C1 [Xia, Yuxin; Musumeci, Chiara; Bergqvist, Jonas; Gao, Feng; Tang, Zheng; Bai, Sai; Inganas, Olle] Linkoping Univ, Biomol & Organ Elect, IFM, SE-58183 Linkoping, Sweden.
[Ma, Wei] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China.
[Jin, Yizheng; Kroon, Renee] Zhejiang Univ, State Key Lab Silicon Mat, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China.
[Zhu, Chenhui; Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Andersson, Mats R.] Univ S Australia, Future Ind Inst, Mawson Lakes, SA 5095, Australia.
[Xia, Yuxin; Hou, Lintao] Jinan Univ, Siyuan Lab, Dept Phys, Guangzhou 510632, Guangdong, Peoples R China.
[Wang, Ergang] Chalmers, Dept Chem & Chem Engn, SE-41296 Gothenburg, Sweden.
RP Inganas, O (reprint author), Linkoping Univ, Biomol & Organ Elect, IFM, SE-58183 Linkoping, Sweden.; Wang, EG (reprint author), Chalmers, Dept Chem & Chem Engn, SE-41296 Gothenburg, Sweden.
EM oling@ifm.liu.se; ergang@chalmers.se
RI Musumeci, Chiara/K-6827-2015; Gao, Feng/C-8797-2014; Tang,
Zheng/D-7780-2013; Wang, Ergang/F-8157-2010; Wang, Cheng/A-9815-2014;
MA, Wei/E-1254-2013; Bai, Sai/E-3032-2015;
OI Musumeci, Chiara/0000-0001-7923-8086; Gao, Feng/0000-0002-2582-1740;
Tang, Zheng/0000-0003-0036-2362; Wang, Ergang/0000-0002-4942-3771; MA,
Wei/0000-0001-6926-1960; Bai, Sai/0000-0001-7623-686X; Kroon,
Renee/0000-0001-8053-4288; Ma, Wei/0000-0002-7239-2010
FU Swedish Energy Agency; Swedish Research council, NSFC [21504006,
21534003]; Knut and Alice Wallenberg Foundation through a Wallenberg
scholar grant; China Scholarship Council (CSC); graduate student
short-term abroad research project of Jinan University; program for the
Excellent Doctoral Dissertations of Guangdong Province [ybzzxm201114];
U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the Swedish Energy Agency, the Swedish
Research council, NSFC (21504006, 21534003), the Knut and Alice
Wallenberg Foundation through a Wallenberg scholar grant to Olle Inganas
and also supported by the China Scholarship Council (CSC) and graduate
student short-term abroad research project of Jinan University. EW
acknowledges the program for the Excellent Doctoral Dissertations of
Guangdong Province (ybzzxm201114). FG acknowledges the Open Fund of the
State Key Laboratory of Luminescent Materials and Devices (South China
University of Technology) (2015-skllmd-02). X-ray data were acquired at
beamlines 7.3.3 at the Advanced Light Source, which is supported by the
Director, Office of Science, Office of Basic Energy Sciences, of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 52
TC 6
Z9 6
U1 22
U2 46
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2050-7488
EI 2050-7496
J9 J MATER CHEM A
JI J. Mater. Chem. A
PY 2016
VL 4
IS 10
BP 3835
EP 3843
DI 10.1039/c6ta00531d
PG 9
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary
SC Chemistry; Energy & Fuels; Materials Science
GA DG3KB
UT WOS:000371967000030
ER
PT J
AU Ye, JC
An, YH
Montalvo, E
Campbell, PG
Worsley, MA
Tran, IC
Liu, YY
Wood, BC
Biener, J
Jiang, HQ
Tang, M
Wang, YM
AF Ye, Jianchao
An, Yonghao
Montalvo, Elizabeth
Campbell, Patrick G.
Worsley, Marcus A.
Tran, Ich C.
Liu, Yuanyue
Wood, Brandon C.
Biener, Juergen
Jiang, Hanqing
Tang, Ming
Wang, Y. Morris
TI Solvent-directed sol-gel assembly of 3-dimensional graphene-tented metal
oxides and strong synergistic disparities in lithium storage
SO JOURNAL OF MATERIALS CHEMISTRY A
LA English
DT Article
ID ENHANCED ELECTROCHEMICAL PERFORMANCE; ION BATTERY ANODES;
HIGH-SURFACE-AREA; ENERGY-STORAGE; REVERSIBLE CAPACITY; ELECTRODE
MATERIALS; FACILE SYNTHESIS; LI BATTERIES; COMPOSITE; NANOCOMPOSITES
AB Graphene/metal oxide (GMO) nanocomposites promise a broad range of utilities for lithium ion batteries (LIBs), pseudocapacitors, catalysts, and sensors. When applied as anodes for LIBs, GMOs often exhibit high capacity, improved rate capability and cycling performance. Numerous studies have attributed these favorable properties to a passive role played by the exceptional electronic and mechanical properties of graphene in enabling metal oxides (MOs) to achieve near-theoretical capacities. In contrast, the effects of MOs on the active lithium storage mechanisms of graphene remain enigmatic. Via a unique two-step solvent-directed sol-gel process, we have synthesized and directly compared the electrochemical performance of several representative GMOs, namely Fe2O3/graphene, SnO2/graphene, and TiO2/graphene. We observe that MOs can play an equally important role in empowering graphene to achieve large reversible lithium storage capacity. The magnitude of capacity improvement is found to scale roughly with the surface coverage of MOs, and depend sensitively on the type of MOs. We define a synergistic factor based on the capacity contributions. Our quantitative assessments indicate that the synergistic effect is most achievable in conversion-reaction GMOs (Fe2O3/graphene and SnO2/graphene) but not in intercalation-based TiO2/graphene. However, a long cycle stability up to 2000 cycles was observed in TiO2/graphene nanocomposites. We propose a surface coverage model to qualitatively rationalize the beneficial roles of MOs to graphene. Our first-principles calculations further suggest that the extra lithium storage sites could result from the formation of Li2O at the interface with graphene during the conversion-reaction. These results suggest an effective pathway for reversible lithium storage in graphene and shift design paradigms for graphene-based electrodes.
C1 [Ye, Jianchao; An, Yonghao; Montalvo, Elizabeth; Campbell, Patrick G.; Worsley, Marcus A.; Tran, Ich C.; Liu, Yuanyue; Wood, Brandon C.; Biener, Juergen; Wang, Y. Morris] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[An, Yonghao; Wang, Y. Morris] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85286 USA.
[Liu, Yuanyue; Jiang, Hanqing] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Tang, Ming] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA.
RP Wang, YM (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.; Wang, YM (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85286 USA.
EM ymwang@llnl.gov
RI Jiang, Hanqing/B-1810-2008; Wang, Yinmin (Morris)/F-2249-2010;
OI Jiang, Hanqing/0000-0002-1947-4420; Worsley, Marcus/0000-0002-8012-7727;
Campbell, Patrick/0000-0003-0167-4624; Liu, Yuanyue/0000-0002-5880-8649
FU US Department of Energy by LLNL [DE-AC52-07NA27344]; Laboratory Directed
Research and Development (LDRD) programs of LLNL [12-ERD-053]; US
Department of Energy [DE-AC36-08GO28308]; NSF [CMMI-1067947,
CMMI-1162619]; DOE Office of Basic Energy Sciences Physical Behavior of
Materials Program [DE-SC0014435]
FX Discussion with J. Lee, T. van Buuren, A. Wittstock, M. D. Merrill, and
B. Sadigh is acknowledged. The work was performed under the auspices of
the US Department of Energy by LLNL under contract No.
DE-AC52-07NA27344. The project is supported by the Laboratory Directed
Research and Development (LDRD) programs of LLNL (12-ERD-053). Y. L.
acknowledges the support by US Department of Energy under Contract No.
DE-AC36-08GO28308. The first-principles calculations were performed by
using NREL Peregrine supercomputer, as well as LLNL CAB supercomputer.
H. J. acknowledges the support from NSF CMMI-1067947 and CMMI-1162619.
M.T. acknowledges support from DOE Office of Basic Energy Sciences
Physical Behavior of Materials Program under grant number DE-SC0014435.
NR 74
TC 6
Z9 6
U1 26
U2 59
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2050-7488
EI 2050-7496
J9 J MATER CHEM A
JI J. Mater. Chem. A
PY 2016
VL 4
IS 11
BP 4032
EP 4043
DI 10.1039/c5ta10730j
PG 12
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary
SC Chemistry; Energy & Fuels; Materials Science
GA DG6IZ
UT WOS:000372189100008
ER
PT J
AU Pasta, M
Wang, RY
Ruffo, R
Qiao, RM
Lee, HW
Shyam, B
Guo, MH
Wang, YY
Wray, LA
Yang, WL
Toney, MF
Cui, Y
AF Pasta, Mauro
Wang, Richard Y.
Ruffo, Riccardo
Qiao, Ruimin
Lee, Hyun-Wook
Shyam, Badri
Guo, Minghua
Wang, Yayu
Wray, L. Andrew
Yang, Wanli
Toney, Michael F.
Cui, Yi
TI Manganese-cobalt hexacyanoferrate cathodes for sodium-ion batteries
SO JOURNAL OF MATERIALS CHEMISTRY A
LA English
DT Article
ID SOFT-X-RAY; PRUSSIAN BLUE ANALOGS; SCALE ENERGY-STORAGE; LONG CYCLE
LIFE; NICKEL HEXACYANOFERRATE; NEUTRON-DIFFRACTION; SPIN STATES;
ELECTRODES; SPECTROSCOPY; TEMPERATURE
AB Prussian Blue analogues (PBAs) have shown promise as electrode materials for grid-scale batteries because of their high cycle life and rapid kinetics in aqueous-based electrolytes. However, these materials suffer from relatively low specific capacity, which may limit their practical applications. Here, we investigate strategies to improve the specific capacity of these materials while maintaining their cycling stability and elucidate mechanisms that enhance their electrochemical properties. In particular, we have studied the electrochemical and structural properties of manganese hexacyanoferrate (MnHCFe) and cobalt hexacyanoferrate (CoHCFe) in an aqueous, sodium-ion electrolyte. We also studied manganese-cobalt hexacyanoferrate (Mn-CoHCFe) solid solutions with different Mn/Co ratios that combine properties of both MnHCFe and CoHCFe. The materials have the characteristic open-framework crystal structure of PBAs, and their specific capacities can be significantly improved by electrochemically cycling (oxidizing and reducing) both the carbon-coordinated Fe and the nitrogen-coordinated Co or Mn ions. In situ synchrotron X-ray diffraction studies and ex situ soft X-ray absorption spectroscopy combined with an in-depth electrochemical characterization provide insight into the different electrochemical properties associated with the Fe, Co, and Mn redox couples. We show that cycling the C-coordinated Fe preserves the crystal structure and enables the outstanding kinetics and cycle life previously displayed by PBAs in aqueous electrolytes. On the other hand, the N-coordinated Co and Mn ions exhibit a slower kinetic regime due to structural distortions resulting from the weak N-coordinated crystal field, but they still contribute significantly towards increasing the specific capacity of the materials. These results provide the understanding needed to drive future development of PBAs for grid-scale applications that require extremely high cycle life and kinetics.
C1 [Pasta, Mauro; Wang, Richard Y.; Lee, Hyun-Wook; Cui, Yi] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.
[Pasta, Mauro] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England.
[Ruffo, Riccardo] Univ Milano Bicocca, Dipartimento Sci Mat, Via Cozzi 53, I-20125 Milan, Italy.
[Qiao, Ruimin; Guo, Minghua; Yang, Wanli] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Shyam, Badri; Toney, Michael F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Guo, Minghua; Wang, Yayu] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China.
[Wray, L. Andrew] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA.
[Cui, Yi] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
RP Cui, Y (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.; Cui, Y (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
EM yicui@stanford.edu
RI Yang, Wanli/D-7183-2011; Ruffo, Riccardo/C-1508-2009; Lee,
Hyun-Wook/Q-9222-2016; Qiao, Ruimin/E-9023-2013;
OI Yang, Wanli/0000-0003-0666-8063; Ruffo, Riccardo/0000-0001-7509-7052;
Lee, Hyun-Wook/0000-0001-9074-1619; Wang, Richard/0000-0003-0581-6917
FU Global Climate and Energy Project (GCEP) at Stanford; U.S. Department of
Energy (DOE), Office of Electricity Delivery & Energy Reliability;
Pacific Northwest National Laboratory; DOE [DEA C05-76RL01830]; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-76SF00515]; Office of Science, Office of Basic Energy Sciences,
of the U.S. Department of Energy [DE-AC02-05CH11231]; Oronzio and
Niccolo De Nora Foundation; National Science Foundation; National
Defense Science & Engineering Graduate Fellowship; Basic Science
Research Program through the National Research Foundation of Korea (NRF)
- Ministry of Education, Science and Technology [2012038593];
Laboratory-Directed Research and Development (LDRD) program at the
Lawrence Berkeley National Laboratory; China Scholarship Council;
Fondazione Cariplo [2011-0312]
FX The authors would like to acknowledge support from the Global Climate
and Energy Project (GCEP) at Stanford as well as the U.S. Department of
Energy (DOE), Office of Electricity Delivery & Energy Reliability for
this research through collaboration with the Pacific Northwest National
Laboratory. Pacific Northwest National Laboratory is a multiprogram
national laboratory operated for DOE by Battelle under Contract DEA
C05-76RL01830. Use of the Stanford Synchrotron Radiation Light-source,
SLAC National Accelerator Laboratory, is supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
under Contract No. DE-AC02-76SF00515. Use of the Advanced Light Source,
Lawrence Berkeley National Laboratory, is supported by the Director,
Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. M.P.
acknowledges the support of the Oronzio and Niccolo De Nora Foundation.
R.Y.W acknowledges support from the National Science Foundation Graduate
Research Fellowship and the National Defense Science & Engineering
Graduate Fellowship. H.W.L. acknowledges support from the Basic Science
Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology under
Contract No. 2012038593. Ruimin Qiao acknowledges support from the
Laboratory-Directed Research and Development (LDRD) program at the
Lawrence Berkeley National Laboratory. M.G. is supported by China
Scholarship Council Fellowship. R.R. acknowledges support from
Fondazione Cariplo (contract 2011-0312).
NR 45
TC 5
Z9 5
U1 44
U2 101
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2050-7488
EI 2050-7496
J9 J MATER CHEM A
JI J. Mater. Chem. A
PY 2016
VL 4
IS 11
BP 4211
EP 4223
DI 10.1039/c5ta10571d
PG 13
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary
SC Chemistry; Energy & Fuels; Materials Science
GA DG6IZ
UT WOS:000372189100027
ER
PT J
AU Gindt, BP
Abebe, DG
Tang, ZJ
Lindsey, MB
Chen, J
Elgammal, RA
Zawodzinski, TA
Fujiwara, T
AF Gindt, B. P.
Abebe, D. G.
Tang, Z. J.
Lindsey, M. B.
Chen, J.
Elgammal, R. A.
Zawodzinski, T. A.
Fujiwara, T.
TI Nanoporous polysulfone membranes via a degradable block copolymer
precursor for redox flow batteries
SO JOURNAL OF MATERIALS CHEMISTRY A
LA English
DT Article
ID NAFION PERFLUOROSULFONIC MEMBRANES; SULFURIC-ACID; POROUS MEMBRANES;
PERFORMANCE; TRANSPORT; POLYMERIZATION; CONDUCTIVITY; NANOCHANNELS;
MONOLITHS; POLYMERS
AB Nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA-PSU-PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.
C1 [Gindt, B. P.; Abebe, D. G.; Fujiwara, T.] Univ Memphis, Dept Chem, 213 Smith Chem Bldg, Memphis, TN 38152 USA.
[Tang, Z. J.; Zawodzinski, T. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Lindsey, M. B.; Elgammal, R. A.; Zawodzinski, T. A.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.
[Chen, J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Fujiwara, T (reprint author), Univ Memphis, Dept Chem, 213 Smith Chem Bldg, Memphis, TN 38152 USA.
EM tfjiwara@memphis.edu
RI Chen, Jihua/F-1417-2011
OI Chen, Jihua/0000-0001-6879-5936
FU NSF [EPS-1004083]; U.S. Department of Energy, Office of Electricity
Delivery and Energy Reliability
FX This work was supported by the NSF-funded TN-SCORE program, NSF
EPS-1004083, under Thrust 2 and by the U.S. Department of Energy, Office
of Electricity Delivery and Energy Reliability (Dr Imre Gyuk).
NR 34
TC 3
Z9 3
U1 24
U2 51
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2050-7488
EI 2050-7496
J9 J MATER CHEM A
JI J. Mater. Chem. A
PY 2016
VL 4
IS 11
BP 4288
EP 4295
DI 10.1039/c6ta00698a
PG 8
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary
SC Chemistry; Energy & Fuels; Materials Science
GA DG6IZ
UT WOS:000372189100035
ER
PT J
AU Gan, YY
Zhao, HJ
Hoelzer, DT
Yun, D
AF Gan, Yingye
Zhao, Huijuan
Hoelzer, David T.
Yun, Di
TI Energetic Study of Helium Cluster Nucleation and Growth in 14YWT through
First Principles
SO MATERIALS
LA English
DT Article
DE helium bubbles; nanostructured ferritic alloys; first principles theory;
formation criteria
ID NANOSTRUCTURED FERRITIC ALLOY; REACTOR STRUCTURAL-MATERIALS; ATOM-PROBE
TOMOGRAPHY; AUGMENTED-WAVE METHOD; MECHANICAL-PROPERTIES;
HIGH-TEMPERATURES; STAINLESS-STEEL; ION-IRRADIATION; POWER-SYSTEMS;
BASIS-SET
AB First principles calculations have been performed to energetically investigate the helium cluster nucleation, formation and growth behavior in the nano-structured ferritic alloy 14YWT. The helium displays strong affinity to the oxygen: vacancy (O:Vac) pair. By investigating various local environments of the vacancy, we find that the energy cost for He cluster growth increases with the appearance of solutes in the reference unit. He atom tends to join the He cluster in the directions away from the solute atoms. Meanwhile, the He cluster tends to expand in the directions away from the solute atoms. A growth criterion is proposed based on the elastic instability strain of the perfect iron lattice in order to determine the maximum number of He atoms at the vacancy site. We find that up to seven He atoms can be trapped at a single vacancy. However, it is reduced to five if the vacancy is pre-occupied by an oxygen atom. Furthermore, the solute atoms within nanoclusters, such as Ti and Y, will greatly limit the growth of the He cluster. A migration energy barrier study is performed to discuss the reduced mobility of the He atom/He cluster in 14YWT.
C1 [Gan, Yingye; Zhao, Huijuan] Clemson Univ, Dept Mech Engn, Clemson, SC 29631 USA.
[Hoelzer, David T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA.
[Yun, Di] Xi An Jiao Tong Univ, Sch Nucl Sci & Technol, 28 Xian Ning West Rd, Xian 710049, Peoples R China.
RP Zhao, HJ (reprint author), Clemson Univ, Dept Mech Engn, Clemson, SC 29631 USA.
EM ygan@clemson.edu; hzhao2@clemson.edu; hoelzerd@ornl.gov;
diyun1979@xjtu.edu.cn
RI Hoelzer, David/L-1558-2016; Yun, Di/K-6441-2013
OI Yun, Di/0000-0002-9767-3214
FU Nuclear Energy University Program (NEUP) program under Department of
Energy [13-5408]
FX We gratefully acknowledge support from the Nuclear Energy University
Program (NEUP) program under Award Number 13-5408 by the Department of
Energy.
NR 53
TC 0
Z9 0
U1 1
U2 7
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 1996-1944
J9 MATERIALS
JI Materials
PD JAN
PY 2016
VL 9
IS 1
AR 17
DI 10.3390/ma9010017
PG 12
WC Materials Science, Multidisciplinary
SC Materials Science
GA DG5DS
UT WOS:000372095300003
ER
PT J
AU Mo, K
Yun, D
Miao, YB
Liu, X
Pellin, M
Almer, J
Park, JS
Stubbins, JF
Zhu, SF
Yacout, AM
AF Mo, Kun
Yun, Di
Miao, Yinbin
Liu, Xiang
Pellin, Michael
Almer, Jonathan
Park, Jun-Sang
Stubbins, James F.
Zhu, Shaofei
Yacout, Abdellatif M.
TI Investigation of High-Energy Ion-Irradiated MA957 Using Synchrotron
Radiation under In-Situ Tension
SO MATERIALS
LA English
DT Article
DE synchrotron radiation; oxide dispersion-strengthened (ODS); ion
irradiation; in situ tensile test
ID X-RAY-DIFFRACTION; FERRITIC ALLOY MA957; DISPERSION-STRENGTHENED
MATERIAL; ATOM-PROBE TOMOGRAPHY; F/M ODS STEEL; ELECTRON-MICROSCOPY;
NEUTRON-IRRADIATION; HIGH-TEMPERATURES; STAINLESS-STEEL; LATTICE STRAIN
AB In this study, an MA957 oxide dispersion-strengthened (ODS) alloy was irradiated with high-energy ions in the Argonne Tandem Linac Accelerator System. Fe ions at an energy of 84 MeV bombarded MA957 tensile specimens, creating a damage region similar to 7.5 mu m in depth; the peak damage (similar to 40 dpa) was estimated to be at similar to 7 mu m from the surface. Following the irradiation, in-situ high-energy X-ray diffraction measurements were performed at the Advanced Photon Source in order to study the dynamic deformation behavior of the specimens after ion irradiation damage. In-situ X-ray measurements taken during tensile testing of the ion-irradiated MA957 revealed a difference in loading behavior between the irradiated and un-irradiated regions of the specimen. At equivalent applied stresses, lower lattice strains were found in the radiation-damaged region than those in the un-irradiated region. This might be associated with a higher level of Type II stresses as a result of radiation hardening. The study has demonstrated the feasibility of combining high-energy ion radiation and high-energy synchrotron X-ray diffraction to study materials' radiation damage in a dynamic manner.
C1 [Mo, Kun; Yun, Di; Miao, Yinbin; Pellin, Michael; Yacout, Abdellatif M.] Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60439 USA.
[Yun, Di] Xi An Jiao Tong Univ, Dept Nucl Engn, Xian 710049, Shaanxi, Peoples R China.
[Liu, Xiang; Stubbins, James F.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA.
[Almer, Jonathan; Park, Jun-Sang] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA.
[Stubbins, James F.] Kyushu Univ, Int Inst Carbon Neutral Energy Res, Fukuoka 8190395, Japan.
[Zhu, Shaofei] Argonne Natl Lab, Div Phys, Lemont, IL 60439 USA.
RP Mo, K (reprint author), Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60439 USA.
EM kunmo@anl.gov; diyun1979@mail.xjtu.edu.cn; ymiao@anl.gov;
xliu128@illinois.edu; pellin@anl.gov; almer@aps.anl.gov;
parkjs@aps.anl.gov; jstubbin@illinois.edu; zhu@anl.gov; yacout@anl.gov
RI Pellin, Michael/B-5897-2008; Liu, Xiang/D-2005-2017;
OI Pellin, Michael/0000-0002-8149-9768; Liu, Xiang/0000-0002-2634-1888;
Miao, Yinbin/0000-0002-3128-4275
FU U.S. Department of Energy [DE-AC-02-06CH11357]; International Institute
for Carbon Neutral Energy Research (WPI-I2CNER) - World Premier
International Research Center Initiative (WPI), Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan; DOE Office of
Science by Argonne National Laboratory [DE-AC02-06CH11357]
FX This work was supported by the U.S. Department of Energy under Contract
No. DE-AC-02-06CH11357 between UChicago Argonne, LLC and the Department
of Energy. The authors gratefully acknowledge the support of the
International Institute for Carbon Neutral Energy Research (WPI-I2CNER),
sponsored by the World Premier International Research Center Initiative
(WPI), Ministry of Education, Culture, Sports, Science and Technology
(MEXT), Japan. The authors would like to thank Carolyn Tomchik for
editing the manuscript. This research used resources of the Advanced
Photon Source, a U.S. Department of Energy (DOE) Office of Science User
Facility operated for the DOE Office of Science by Argonne National
Laboratory under Contract No. DE-AC02-06CH11357.
NR 51
TC 3
Z9 3
U1 1
U2 10
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 1996-1944
J9 MATERIALS
JI Materials
PD JAN
PY 2016
VL 9
IS 1
AR 15
DI 10.3390/ma9010015
PG 11
WC Materials Science, Multidisciplinary
SC Materials Science
GA DG5DS
UT WOS:000372095300001
ER
PT J
AU Shu, SP
Zhang, X
Bellon, P
Averback, RS
AF Shu, Shipeng
Zhang, Xuan
Bellon, Pascal
Averback, Robert S.
TI Non-equilibrium Grain Boundary Wetting in Cu-Ag Alloys Containing W
Nanoparticles
SO MATERIALS RESEARCH LETTERS
LA English
DT Article
DE Grain-Boundary Wetting; Nanoparticles; Coarsening Resistance;
Non-equilibrium Nanostructuring
ID PHASE-SEPARATION; BINARY-MIXTURES; SOLID-PHASE; IN SYSTEM; IRRADIATION;
PARTICLES; TEMPERATURE; MODEL
AB Adding nanoparticles to soft matter and liquids is known to provide remarkable control in the processing of novel materials. Here, we demonstrate a similar potential in crystalline solids. Specifically, we show that the addition of a high density of W nanoparticles dramatically alters the coarsening behavior of precipitate-hardened Cu-Ag alloys. First, the nanoparticles suppress precipitate growth, but far more surprisingly, they induce non-equilibrium Ag wetting layers on grain boundaries. This observation is explained using kinetic Monte Carlo simulations, which show that caging of Ag precipitates by the W nanoparticles suppresses their growth and drives the formation of wetting layers.
C1 [Shu, Shipeng; Zhang, Xuan; Bellon, Pascal; Averback, Robert S.] Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA.
[Zhang, Xuan] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Shu, SP (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA.
EM shu13@illinois.edu
OI Shu, Shipeng/0000-0003-3859-5014
FU US National Science Foundation [DMR-1306475]
FX This research was supported by US National Science Foundation under
Grant Number DMR-1306475. The work was carried out in part in the
Frederick-Seitz Materials Research Laboratory Central Facilities,
University of Illinois at Urbana-Champaign.
NR 18
TC 1
Z9 1
U1 4
U2 11
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 2166-3831
J9 MATER RES LETT
JI Mater. Res. Lett.
PY 2016
VL 4
IS 1
BP 22
EP 26
DI 10.1080/21663831.2015.1090496
PG 5
WC Materials Science, Multidisciplinary
SC Materials Science
GA DG6UV
UT WOS:000372222500002
ER
PT J
AU Hoang, S
Ashraf, A
Eisaman, MD
Nykypanchuk, D
Nam, CY
AF Hoang, Son
Ashraf, Ahsan
Eisaman, Matthew D.
Nykypanchuk, Dmytro
Nam, Chang-Yong
TI Enhanced photovoltaic performance of ultrathin Si solar cells via
semiconductor nanocrystal sensitization: energy transfer vs. optical
coupling effects
SO NANOSCALE
LA English
DT Article
ID QUANTUM DOTS; LIGHT; EFFICIENCY; NANOMEMBRANES; DYNAMICS; SYSTEMS;
LAYERS
AB Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.
C1 [Hoang, Son; Nykypanchuk, Dmytro; Nam, Chang-Yong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Ashraf, Ahsan; Eisaman, Matthew D.] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA.
[Ashraf, Ahsan; Eisaman, Matthew D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Eisaman, Matthew D.] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA.
RP Nykypanchuk, D; Nam, CY (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
EM dnykypan@bnl.gov; cynam@bnl.gov
RI Hoang, Son/F-2795-2013; Nam, Chang-Yong/D-4193-2009
OI Hoang, Son/0000-0002-1225-6121; Nam, Chang-Yong/0000-0002-9093-4063
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-SC0012704]
FX This research was carried out at the Center for Functional Nanomaterials
(S. H., D. N., C.-Y. N.) and Sustainable Energy Technologies Department
(A. A. and M. D. E.), and Brookhaven National Laboratory (BNL), which is
supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, under Contract no. DE-SC0012704.
NR 31
TC 2
Z9 2
U1 2
U2 7
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2040-3364
EI 2040-3372
J9 NANOSCALE
JI Nanoscale
PY 2016
VL 8
IS 11
BP 5873
EP 5883
DI 10.1039/c5nr07932b
PG 11
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DG7DV
UT WOS:000372245900011
PM 26677967
ER
PT J
AU Battistoni, M
Xue, QL
Som, S
AF Battistoni, Michele
Xue, Qingluan
Som, Sibendu
TI Large-Eddy Simulation (LES) of Spray Transients: Start and End of
Injection Phenomena
SO OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES
LA English
DT Article; Proceedings Paper
CT IFP Energies Nouvelles International Conference for Internal Combustion
Engine Flows
CY DEC 04-05, 2014
CL Rueil Malmaison, FRANCE
ID X-RAY RADIOGRAPHY; RELAXATION MODEL; TURBULENT FLOWS; 2-PHASE FLOW;
ATOMIZATION; COMBUSTION; RESOLUTION; JETS
AB This work reports investigations on Diesel spray transients, accounting for internal nozzle flow and needle motion, and demonstrates how seamless calculations of internal flow and external jet can be accomplished in a Large-Eddy Simulation (LES) framework using an Eulerian mixture model. Sub-grid stresses are modeled with the Dynamic Structure (DS) model, a non-viscosity based one-equation LES model. Two problems are studied with high level of spatial and temporal resolution. The first one concerns an End-Of-Injection (EOI) case where gas ingestion, cavitation, and dribble formation are resolved. The second case is a Start-Of-Injection (SOI) simulation that aims at analyzing the effect of residual gas trapped inside the injector sac on spray penetration and rate of fuel injection. Simulation results are compared against experiments carried out at Argonne National Laboratory (ANL) using synchrotron X-ray. A mesh sensitivity analysis is conducted to assess the quality of the LES approach by evaluating the resolved turbulent kinetic energy budget and comparing the outcomes with a length-scale resolution index. LES of both EOI and SOI processes have been carried out on a single hole Diesel injector, providing insights in to the physics of the processes, with internal and external flow details, and linking the phenomena at the end of an injection event to those at the start of a new injection. Concerning the EOI, the model predicts ligament formation and gas ingestion, as observed experimentally, and the amount of residual gas in the nozzle sac matches with the available data. The fast dynamics of the process is described in detail. The simulation provides unique insights into the physics at the EOI. Similarly, the SOI simulation shows how gas is ejected first, and liquid fuel starts being injected with a delay. The simulation starts from a very low needle lift and is able to predict the actual Rate-Of-Injection (ROI) and jet penetration, based only on the prescribed needle motion. Finally, guidelines and future improvements of the model are discussed concerning the simulation of the transient injection phases.
C1 [Battistoni, Michele; Xue, Qingluan; Som, Sibendu] Argonne Natl Lab, Chicago, IL USA.
[Battistoni, Michele] Univ Perugia, 67 Via G Duranti, I-06125 Perugia, Italy.
RP Battistoni, M (reprint author), Argonne Natl Lab, Chicago, IL USA.; Battistoni, M (reprint author), Univ Perugia, 67 Via G Duranti, I-06125 Perugia, Italy.
EM michele.battistoni@unipg.it
RI Battistoni, Michele/M-9194-2014
OI Battistoni, Michele/0000-0001-6807-9657
FU Argonne, a US Department of Energy Office of Science laboratory
[DE-AC02- 06CH11357]; DOE's Office of Vehicle Technologies, Office of
Energy Efficiency and Renewable Energy [DE-AC02-06CH11357]
FX The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (Argonne). Argonne, a US
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02- 06CH11357. The US Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government. This research was funded by
DOE's Office of Vehicle Technologies, Office of Energy Efficiency and
Renewable Energy, under Contract No. DE-AC02-06CH11357. The authors wish
to thank Gurpreet Singh and Leo Breton, program managers at DOE, for
their support.
NR 54
TC 3
Z9 3
U1 2
U2 7
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 1294-4475
EI 1953-8189
J9 OIL GAS SCI TECHNOL
JI Oil Gas Sci. Technol.
PD JAN-FEB
PY 2016
VL 71
IS 1
AR 4
DI 10.2516/ogst/2015024
PG 24
WC Energy & Fuels; Engineering, Chemical; Engineering, Petroleum
SC Energy & Fuels; Engineering
GA DG6GF
UT WOS:000372180800005
ER
PT S
AU Balasubramanian, S
Weber, AZ
AF Balasubramanian, Sivagaminathan
Weber, Adam Z.
BE Franco, AA
Doublet, ML
Bessler, WG
TI Continuum, Macroscopic Modeling of Polymer-Electrolyte Fuel Cells
SO PHYSICAL MULTISCALE MODELING AND NUMERICAL SIMULATION OF ELECTROCHEMICAL
DEVICES FOR ENERGY CONVERSION AND STORAGE: FROM THEORY TO ENGINEERING TO
PRACTICE
SE Green Energy and Technology
LA English
DT Article; Book Chapter
ID GAS-DIFFUSION LAYERS; ANGLE X-RAY; PERFLUORINATED IONOMER MEMBRANES;
EFFECTIVE TRANSPORT-PROPERTIES; PROTON-EXCHANGE MEMBRANES; OXYGEN
REDUCTION REACTION; ATOMIC-FORCE MICROSCOPY; PERFLUOROSULFONIC ACID
MEMBRANES; MICROELECTRODE NAFION INTERFACE; ION-CONTAINING POLYMERS
AB In this chapter, the modeling equations and approaches for continuum modeling of phenomena in polymer-electrolyte fuel cells are introduced and discussed. Specific focus is made on the underlying transport, thermodynamic, and kinetic equations, and how these can be applied towards more complex fuel-cell issues such as multiphase flow. In addition, porous-media models including impact of droplets and pore-network modeling are introduced, as well methodologies towards modeling reaction rates in fuel-cell catalyst layers including physics-based impedance modeling. Finally, future directions for fuel-cell modeling are discussed.
C1 [Balasubramanian, Sivagaminathan; Weber, Adam Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Weber, AZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
EM azweber@lbl.gov
NR 208
TC 0
Z9 0
U1 2
U2 2
PU SPRINGER
PI NEW YORK
PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES
SN 1865-3529
BN 978-1-4471-5677-2; 978-1-4471-5676-5
J9 GREEN ENERGY TECHNOL
PY 2016
BP 91
EP 149
DI 10.1007/978-1-4471-5677-2_4
D2 10.1007/978-1-4471-5677-2
PG 59
WC Electrochemistry; Energy & Fuels
SC Electrochemistry; Energy & Fuels
GA BE2MC
UT WOS:000369631400005
ER
PT J
AU Li, A
Li, WZ
Ling, Y
Gan, WJ
Brady, MA
Wang, C
AF Li, Ao
Li, Weizhen
Ling, Yang
Gan, Wenjun
Brady, Michael A.
Wang, Cheng
TI Effects of silica-coated carbon nanotubes on the curing behavior and
properties of epoxy composites
SO RSC ADVANCES
LA English
DT Article
ID MECHANICAL-PROPERTIES; CURE BEHAVIOR; ELECTRICAL-CONDUCTIVITY;
THERMAL-CONDUCTIVITY; FRACTURE-TOUGHNESS; RAMAN-SPECTROSCOPY;
NANOCOMPOSITES; FUNCTIONALIZATION; RESIN; DISPERSION
AB Multi-walled carbon nanotubes (MWCNTs) were coated with silica by a sol-gel method to improve interfacial bonding and dispersion of nanotubes in the diglycidyl ether of bisphenol A (DGEBA) matrix. TEM and FE-SEM measurements showed that the silica shell was successfully coated on the surface of r-MWCNTs (as-received MWCNTs), and that the dispersion of MWCNT@SiO2 in the epoxy matrix and interfacial adhesion between MWCNTs and epoxy were improved through the silica shell formation. The effects of silica-coated multi-walled carbon nanotube (MWCNT@SiO2) addition on the curing behavior of epoxy resin, and on the physical and thermomechanical properties of epoxy composites, were studied. FT-IR measurements of different blends at different curing times indicated that the curing reaction was accelerated with the presence of MWCNTs and increased with the content of MWCNT@SiO2. DSC results confirmed that the value of activation energy decreased with the introduction of MWCNTs in the order of MWCNT@SiO2 < r-MWCNTs < epoxy. It was found that the thermal conductivity of epoxy composites were significantly enhanced by incorporation of MWCNT@SiO2, relative to composites with r-MWCNTs, while the values of the glass transition temperature slightly increased, and the high electrical resistivity of these composites was retained overall.
C1 [Li, Ao; Li, Weizhen; Ling, Yang; Gan, Wenjun] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, 333 Longteng Rd, Shanghai 201620, Peoples R China.
[Gan, Wenjun; Brady, Michael A.; Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
RP Li, WZ; Gan, WJ (reprint author), Shanghai Univ Engn Sci, Coll Chem & Chem Engn, 333 Longteng Rd, Shanghai 201620, Peoples R China.; Gan, WJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM liweizhen@sues.edu.cn; wjgan@sues.edu.cn
RI Wang, Cheng/A-9815-2014
FU Shanghai Municipal Education Commission [20120407]; Shanghai Young
Teachers' Training-funded Projects [ZZGJD13018]; Shanghai University of
Engineering Science [2011XZ04, 0501-13-018, 2012SCX005]
FX The authors wish to thank the Shanghai Municipal Education Commission
(Overseas Visiting Scholar Project 20120407); Shanghai Young Teachers'
Training-funded Projects (ZZGJD13018); Shanghai University of
Engineering Science Developing funding (grant 2011XZ04), start-up
project funding (grant 0501-13-018) and Interdisciplinary Subject
Construction funding (grant 2012SCX005).
NR 43
TC 1
Z9 1
U1 7
U2 28
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2046-2069
J9 RSC ADV
JI RSC Adv.
PY 2016
VL 6
IS 28
BP 23318
EP 23326
DI 10.1039/c5ra25182f
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA DG7GQ
UT WOS:000372253200023
ER
PT J
AU Datskos, P
Polizos, G
Bhandari, M
Cullen, DA
Sharma, J
AF Datskos, P.
Polizos, G.
Bhandari, M.
Cullen, D. A.
Sharma, J.
TI Colloidosome like structures: self-assembly of silica microrods
SO RSC ADVANCES
LA English
DT Article
ID PICKERING EMULSIONS; GOLD NANOPARTICLES; PARTICLES; MICROCAPSULES;
NANORODS
AB Self-assembly of one-dimensional structures is attracting a great deal of interest because assembled structures can provide better properties compared to individual building blocks. In the present work, silica microrod self-assembly has been demonstrated by exploiting Pickering emulsion based strategy. Micron-sized silica rods were synthesized employing previously reported methods based on polyvinylpyrrolidone/pentanol emulsion droplets. Rods self-assembled to make structures in the range of approximate to 10-40 mm. Smooth rods assembled better than segmented rods. The assembled structures were bonded by weak van der Waals forces.
C1 [Datskos, P.; Polizos, G.; Sharma, J.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Nanosyst Separat & Mat Res Grp, One Bethel Valley Rd, Oak Ridge, TN 37831 USA.
[Bhandari, M.] Oak Ridge Natl Lab, Bldg Technol Res & Integrat Ctr, One Bethel Valley Rd, Oak Ridge, TN 37831 USA.
[Cullen, D. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, One Bethel Valley Rd, Oak Ridge, TN 37831 USA.
RP Sharma, J (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Nanosyst Separat & Mat Res Grp, One Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM sharmajk@ornl.gov
RI Cullen, David/A-2918-2015
OI Cullen, David/0000-0002-2593-7866
FU U.S. Department of Energy [DE-AC05-00OR22725]; DOE's Building Technology
office [1027-1605]
FX J. Sharma is a Staff Scientist at the Oak Ridge National Laboratory
managed by UT-Battelle, LLC, for the U.S. Department of Energy under
Contract DE-AC05-00OR22725. This work is supported by DOE's Building
Technology office award# 1027-1605 to J. S. A portion of this research
was conducted at the Center for Nanophase Materials Sciences, which is a
DOE Office of Science User Facility.
NR 27
TC 1
Z9 1
U1 10
U2 32
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2046-2069
J9 RSC ADV
JI RSC Adv.
PY 2016
VL 6
IS 32
BP 26734
EP 26737
DI 10.1039/c5ra25817k
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DG7GV
UT WOS:000372253700029
ER
PT S
AU Pathak, S
AF Pathak, Siddhartha
BE Paris, O
TI Collective Behaviour of Vertically Aligned Carbon Nanotubes: from a
Single Tube towards Complex Networks
SO STRUCTURE AND MULTISCALE MECHANICS OF CARBON NANOMATERIALS
SE CISM Courses and Lectures
LA English
DT Article; Book Chapter
ID STRESS-STRAIN CURVES; MECHANICAL-PROPERTIES; UNIAXIAL COMPRESSION;
CELLULAR SOLIDS; SILICON-CARBIDE; METALLIC FOAMS; IN-SITU; ARRAYS;
NANOINDENTATION; INDENTATION
C1 [Pathak, Siddhartha] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA.
RP Pathak, S (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA.
NR 63
TC 0
Z9 0
U1 1
U2 1
PU SPRINGER-VERLAG WIEN
PI VIENNA
PA SACHSENPLATZ 4-6, A-1201 VIENNA, AUSTRIA
SN 0254-1971
BN 978-3-7091-1887-0; 978-3-7091-1885-6
J9 CISM COURSES LECT
PY 2016
VL 563
BP 191
EP 226
DI 10.1007/978-3-7091-1887-0_8
D2 10.1007/ 978-3-7091-1887-0
PG 36
WC Engineering, Mechanical; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Mechanics
SC Engineering; Science & Technology - Other Topics; Materials Science;
Mechanics
GA BE2NB
UT WOS:000369652200009
ER
PT S
AU Wong, CY
AF Wong, Cheuk-Yin
BE AlvarezCastillo, D
Blaschke, D
Kekelidze, V
Matveev, V
Sorin, A
TI Analytical Expressions for the Hard-Scattering Production of Massive
Partons
SO 15TH INTERNATIONAL CONFERENCE ON STRANGENESS IN QUARK MATTER (SQM2015)
SE Journal of Physics Conference Series
LA English
DT Proceedings Paper
CT 15th International Conference on Strangeness in Quark Matter (SQM)
CY JUL 06-11, 2015
CL Dubna, RUSSIA
SP Joint Inst Nucl Res, Veksler & Baldin Lab High Energy Phys
ID PP
AB We obtain explicit expressions for the two-particle differential cross section E(c)E(kappa)d sigma-(AB -> c kappa X)/dcd kappa and the two-particle angular correlation function d sigma(AB -> c kappa X)/d Delta phi d Delta y in the hard-scattering production of massive partons in order to exhibit the "ridge" structure on the away side in the hard-scattering process. The single-particle production cross section d sigma(AB -> cX)/dy(c)c(T)dc(T) is also obtained and compared with the ALICE experimental data for charm production in pp collisions at 7 TeV at LHC.
C1 [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
RP Wong, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
NR 12
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-6588
J9 J PHYS CONF SER
PY 2016
VL 668
AR 012097
DI 10.1088/1742-6596/668/1/012097
PG 4
WC Physics, Particles & Fields
SC Physics
GA BE4GK
UT WOS:000371691300097
ER
PT J
AU Martin, JL
Read, RJ
Wakatsuki, S
AF Martin, Jennifer L.
Read, Randy J.
Wakatsuki, Soichi
TI Expanding beyond biological crystallography
SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY
LA English
DT Editorial Material
DE editorial; structural biology
C1 [Martin, Jennifer L.] Univ Queensland, Inst Mol Biosci, Queensland Biosci Precinct, Brisbane, Qld 4072, Australia.
[Read, Randy J.] Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Wellcome Trust MRC Bldg,Hills Rd, Cambridge CB2 0XY, England.
[Wakatsuki, Soichi] Stanford Univ, Sch Med, SLAC, Photon Sci, 2575 Sand Hill Rd,MS 69, Menlo Pk, CA 94025 USA.
[Wakatsuki, Soichi] Stanford Univ, Sch Med, Struct Biol, 2575 Sand Hill Rd,MS 69, Menlo Pk, CA 94025 USA.
RP Martin, JL (reprint author), Univ Queensland, Inst Mol Biosci, Queensland Biosci Precinct, Brisbane, Qld 4072, Australia.; Read, RJ (reprint author), Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Wellcome Trust MRC Bldg,Hills Rd, Cambridge CB2 0XY, England.; Wakatsuki, S (reprint author), Stanford Univ, Sch Med, SLAC, Photon Sci, 2575 Sand Hill Rd,MS 69, Menlo Pk, CA 94025 USA.; Wakatsuki, S (reprint author), Stanford Univ, Sch Med, Struct Biol, 2575 Sand Hill Rd,MS 69, Menlo Pk, CA 94025 USA.
EM j.martin@imb.uq.edu.au; rjr27@cam.ac.uk; soichi.wakatsuki@stanford.edu
RI Read, Randy/L-1418-2013
OI Read, Randy/0000-0001-8273-0047
NR 0
TC 0
Z9 0
U1 0
U2 1
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
EI 2059-7983
J9 ACTA CRYSTALLOGR D
JI Acta Crystallogr. Sect. D-Struct. Biol.
PD JAN
PY 2016
VL 72
BP 1
EP 1
DI 10.1107/S2059798315023761
PN 1
PG 1
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA DF9UO
UT WOS:000371707300001
PM 26894528
ER
PT J
AU Baxter, EL
Aguila, L
Alonso-Mori, R
Barnes, CO
Bonagura, CA
Brehmer, W
Brunger, AT
Calero, G
Caradoc-Davies, TT
Chatterjee, R
Degrado, WF
Fraser, JS
Ibrahim, M
Kern, J
Kobilka, BK
Kruse, AC
Larsson, KM
Lemke, HT
Lyubimov, AY
Manglik, A
McPhillips, SE
Norgren, E
Pang, SS
Soltis, SM
Song, JH
Thomaston, J
Tsai, Y
Weis, WI
Woldeyes, RA
Yachandra, V
Yano, J
Zouni, A
Cohen, AE
AF Baxter, Elizabeth L.
Aguila, Laura
Alonso-Mori, Roberto
Barnes, Christopher O.
Bonagura, Christopher A.
Brehmer, Winnie
Brunger, Axel T.
Calero, Guillermo
Caradoc-Davies, Tom T.
Chatterjee, Ruchira
Degrado, William F.
Fraser, James S.
Ibrahim, Mohamed
Kern, Jan
Kobilka, Brian K.
Kruse, Andrew C.
Larsson, Karl M.
Lemke, Heinrik T.
Lyubimov, Artem Y.
Manglik, Aashish
McPhillips, Scott E.
Norgren, Erik
Pang, Siew S.
Soltis, S. M.
Song, Jinhu
Thomaston, Jessica
Tsai, Yingssu
Weis, William I.
Woldeyes, Rahel A.
Yachandra, Vittal
Yano, Junko
Zouni, Athina
Cohen, Aina E.
TI High-density grids for efficient data collection from multiple crystals
SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY
LA English
DT Article
DE XFELs; high-throughput crystallography; serial crystallography; sample
delivery; automation for sample-exchange robots
ID X-RAY-DIFFRACTION; SERIAL FEMTOSECOND CRYSTALLOGRAPHY; LIPIDIC CUBIC
PHASE; MACROMOLECULAR CRYSTALLOGRAPHY; PHOTOSYSTEM-II; PROTEIN CRYSTALS;
ROOM-TEMPERATURE; BIOLOGICAL CRYSTALLOGRAPHY; SYNCHROTRON-RADIATION;
ANGSTROM RESOLUTION
AB Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into theBlu-Ice Blu-Ice/DCSS DCSS experimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.
C1 [Baxter, Elizabeth L.; Aguila, Laura; Brehmer, Winnie; McPhillips, Scott E.; Soltis, S. M.; Song, Jinhu; Tsai, Yingssu; Cohen, Aina E.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Alonso-Mori, Roberto; Kern, Jan; Lemke, Heinrik T.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA.
[Barnes, Christopher O.; Calero, Guillermo] Univ Pittsburgh, Sch Med, Dept Struct Biol, Pittsburgh, PA 15261 USA.
[Bonagura, Christopher A.; Norgren, Erik] Art Robbins Instruments, Sunnyvale, CA 94089 USA.
[Brunger, Axel T.; Kobilka, Brian K.; Kruse, Andrew C.; Lyubimov, Artem Y.; Manglik, Aashish; Weis, William I.] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA.
[Brunger, Axel T.; Lyubimov, Artem Y.] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA.
[Caradoc-Davies, Tom T.; Pang, Siew S.] Monash Univ, ARC Ctr Excellence Adv Mol Imaging, Melbourne, Vic 3800, Australia.
[Caradoc-Davies, Tom T.] Australian Synchrotron, 800 Blackburn Rd, Melbourne, Vic 3168, Australia.
[Chatterjee, Ruchira; Kern, Jan; Yachandra, Vittal; Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Bioscences Div, Berkeley, CA 94720 USA.
[Degrado, William F.; Thomaston, Jessica] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA.
[Fraser, James S.; Woldeyes, Rahel A.] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA.
[Ibrahim, Mohamed; Zouni, Athina] Humboldt Univ, Inst Biol, D-10099 Berlin, Germany.
[Larsson, Karl M.] Stanford Univ, Sch Med, Stanford, CA 94305 USA.
[Weis, William I.] Stanford Univ, Dept Struct Biol, Stanford, CA 94305 USA.
RP Cohen, AE (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
EM acohen@slac.stanford.edu
RI Lemke, Henrik Till/N-7419-2016;
OI Lemke, Henrik Till/0000-0003-1577-8643; Fraser,
James/0000-0002-5080-2859
FU US Department of Energy, Office of Basic Energy Sciences
[DE-AC02-76SF00515]; LCLS Ultrafast Science Instruments project - US
Department of Energy, Office of Basic Energy Sciences; US Department of
Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-76SF00515]; US Department of Energy Office of Biological and
Environmental Research; National Institutes of Health (NIH), National
Institute of General Medical Sciences [P41GM103393]; NSF Graduate
Research Fellowship; NIH [GM110580]; NSF [STC-1231306]; Office of
Science, OBES, Chemical Sciences, Geosciences and Biosciences CSGB of
the DOE [DE-AC02-05CH11231]; National Institutes of Health (NIH)
[GM055302, GM110501]; DFG-Cluster of Excellence 'UniCat' coordinated by
Technische Universitat at Berlin [Sfb1078, TPA5]; Human Frontiers
Science Project [RGP0063/2013 310]
FX Portions of this research were carried out at the Linac Coherent Light
Source (LCLS), a National User Facility operated by Stanford University
on behalf of the US Department of Energy, Office of Basic Energy
Sciences under Contract No. DE-AC02-76SF00515. The XPP instruments were
funded through the LCLS Ultrafast Science Instruments project funded by
the US Department of Energy, Office of Basic Energy Sciences. Use of the
Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National
Accelerator Laboratory is supported by the US Department of Energy,
Office of Science, Office of Basic Energy Sciences under Contract
DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is
supported by the US Department of Energy Office of Biological and
Environmental Research and by the National Institutes of Health (NIH),
National Institute of General Medical Sciences (including P41GM103393).
RAW is supported by an NSF Graduate Research Fellowship. JSF is
supported by NIH GM110580 and NSF STC-1231306. JY and VKY are supported
by Office of Science, OBES, Chemical Sciences, Geosciences and
Biosciences CSGB of the DOE under Contract No. DE-AC02-05CH11231 for
X-ray methodology and instrumentation. The LCLS is acknowledged for
beamtime access under experiment No. XPPG7814. This work is supported by
National Institutes of Health (NIH) grants GM055302 (VKY) and GM110501
(JY), the DFG-Cluster of Excellence 'UniCat' coordinated by the
Technische Universitat at Berlin and Sfb1078, TPA5 (AZ and MI) and the
Human Frontiers Science Project Award No. RGP0063/2013 310 (JY and AZ).
NR 52
TC 8
Z9 8
U1 5
U2 20
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
SN 2059-7983
J9 ACTA CRYSTALLOGR D
JI Acta Crystallogr. Sect. D-Struct. Biol.
PD JAN
PY 2016
VL 72
BP 2
EP 11
DI 10.1107/S2059798315020847
PN 1
PG 10
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA DF9UO
UT WOS:000371707300002
PM 26894529
ER
PT J
AU Moriarty, NW
Tronrud, DE
Adams, PD
Karplus, PA
AF Moriarty, Nigel W.
Tronrud, Dale E.
Adams, Paul D.
Karplus, P. Andrew
TI A new default restraint library for the protein backbone inPhenix
Phenix: a conformation-dependent geometry goes mainstream
SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY
LA English
DT Editorial Material
DE covalent geometry restraints; crystallographic refinement; protein
structure; validation; Phenix
ID IMPROVES CRYSTALLOGRAPHIC REFINEMENT; RESOLUTION; ABINITIO
AB Chemical restraints are a fundamental part of crystallographic protein structure refinement. In response to mounting evidence that conventional restraints have shortcomings, it has previously been documented that using backbone restraints that depend on the protein backbone conformation helps to address these shortcomings and improves the performance of refinements [Moriartyet al. et al. (2014),FEBS J. FEBS J.281 281, 4061-4071]. It is important that these improvements be made available to all in the protein crystallography community. Toward this end, a change in the default geometry library used byPhenix Phenix is described here. Tests are presented showing that this change will not generate increased numbers of outliers during validation, or deposition in the Protein Data Bank, during the transition period in which some validation tools still use the conventional restraint libraries.
C1 [Moriarty, Nigel W.; Adams, Paul D.] Lawrence Berkeley Natl Lab, Phys Biosci, Berkeley, CA 94720 USA.
[Tronrud, Dale E.; Karplus, P. Andrew] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97377 USA.
[Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
RP Moriarty, NW (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci, Berkeley, CA 94720 USA.
EM nwmoriarty@lbl.gov
RI Adams, Paul/A-1977-2013
OI Adams, Paul/0000-0001-9333-8219
FU NIGMS NIH HHS [R01 GM083136, 1P01 GM063210, P01 GM063210, R01-GM083136]
NR 19
TC 6
Z9 6
U1 0
U2 5
PU INT UNION CRYSTALLOGRAPHY
PI CHESTER
PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND
EI 2059-7983
J9 ACTA CRYSTALLOGR D
JI Acta Crystallogr. Sect. D-Struct. Biol.
PD JAN
PY 2016
VL 72
BP 176
EP 179
DI 10.1107/S2059798315022408
PN 1
PG 4
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA DF9UO
UT WOS:000371707300018
PM 26894545
ER
PT J
AU Hu, GZ
Gracia-Espino, E
Sandstrom, R
Sharifi, T
Cheng, SD
Shen, HJ
Wang, CY
Guo, SJ
Yang, G
Wagberg, T
AF Hu, Guangzhi
Gracia-Espino, Eduardo
Sandstrom, Robin
Sharifi, Tiva
Cheng, Shaodong
Shen, Hangjia
Wang, Chuanyi
Guo, Shaojun
Yang, Guang
Wagberg, Thomas
TI Atomistic understanding of the origin of high oxygen reduction
electrocatalytic activity of cuboctahedral Pt3Co-Pt core-shell
nanoparticles
SO CATALYSIS SCIENCE & TECHNOLOGY
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; METHANOL OXIDATION REACTION; ALLOY
NANOPARTICLES; SURFACE-COMPOSITION; CATALYSTS; NI; PERFORMANCE;
ALKALINE; METALS; PTCU3
AB PtM-based core-shell nanoparticles are a new class of active and stable nanocatalysts for promoting oxygen reduction reaction (ORR); however, the understanding of their high electrocatalytic performance for ORR at the atomistic level is still a great challenge. Herein, we report the synthesis of highly ordered and homogeneous truncated cuboctahedral Pt3Co-Pt core-shell nanoparticles (cs-Pt3Co). By combining atomic resolution electron microscopy, X-ray photoelectron spectroscopy, extensive first-principles calculations, and many other characterization techniques, we conclude that the cs-Pt3Co nanoparticles are composed of a complete or nearly complete Pt monolayer skin, followed by a secondary shell containing 5-6 layers with similar to 78 at% of Pt, in a Pt3Co configuration, and finally a Co-rich core with 64 at% of Pt. Only this particular structure is consistent with the very high electrocatalytic activity of cs-Pt3Co nanoparticles for ORR, which is about 6 times higher than commercial 30%-Pt/Vulcan and 5 times more active than non-faceted (spherical) alloy Pt3Co nanoparticles. Our study gives an important insight into the atomistic design and understanding of advanced bimetallic nanoparticles for ORR catalysis and other important industrial catalytic applications.
C1 [Hu, Guangzhi; Gracia-Espino, Eduardo; Sandstrom, Robin; Sharifi, Tiva; Wagberg, Thomas] Umea Univ, Dept Phys, S-90187 Umea, Sweden.
[Cheng, Shaodong; Yang, Guang] Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China.
[Cheng, Shaodong; Yang, Guang] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China.
[Shen, Hangjia; Wang, Chuanyi] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Lab Environm Sci & Technol, Urumqi 830011, Peoples R China.
[Guo, Shaojun] Los Alamos Natl Lab, Phys Chem & Appl Spect, POB 1663, Los Alamos, NM 87545 USA.
RP Gracia-Espino, E; Wagberg, T (reprint author), Umea Univ, Dept Phys, S-90187 Umea, Sweden.; Yang, G (reprint author), Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China.; Yang, G (reprint author), Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China.
EM Eduardo.gracia@physics.umu.se; g.yang@mail.xjtu.edu.cn;
Thomas.wagberg@physics.umu.se
RI Yang, Guang/C-9022-2011; Cheng, Shaodong/P-6440-2014
OI Yang, Guang/0000-0003-1117-1238;
FU Artificial Leaf Project Umea (K&A Wallenberg Foundation); Swedish
Research Council [2013-5252]; 1000-Talent Program (Recruitment Program
of Global Expert, in Chinese); Special Talent Foundation of Xinjiang
Technical Institute of Physics & Chemistry, Chinese Academy of Sciences;
National Natural Science Foundation of China [21505154, 51202180];
Angpanneforeningen's Foundation [14-541]; Fundamental Research Funds for
the Central Universities in China; Scientific Research Foundation for
the Returned Overseas Chinese Scholars, State Education Ministry
FX This work was supported by the Artificial Leaf Project Umea (K&A
Wallenberg Foundation) and by the Swedish Research Council (Grant dnr
2013-5252). G.H. acknowledges support from the 1000-Talent Program
(Recruitment Program of Global Expert, in Chinese: Qian-Ren-Ji-Hua) and
the Special Talent Foundation of Director of Xinjiang Technical
Institute of Physics & Chemistry, Chinese Academy of Sciences and
National Natural Science Foundation of China (21505154). E.G.E.
acknowledges support from Angpanneforeningen's Foundation (14-541). G.Y.
acknowledges the funding from the National Natural Science Foundation of
China (Grant No. 51202180), the Fundamental Research Funds for the
Central Universities in China and the Scientific Research Foundation for
the Returned Overseas Chinese Scholars, State Education Ministry. The
theoretical simulations were performed on resources provided by the
Swedish National Infrastructure for Computing at the High Performance
Computing Center North (HPC2N). We wish to thank Qingxue Lai and Prof.
Yanyu Liang of the Nanjing University of Aeronautics and Astronautics
for assistance with electrochemical measurements.
NR 36
TC 2
Z9 2
U1 12
U2 36
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2044-4753
EI 2044-4761
J9 CATAL SCI TECHNOL
JI Catal. Sci. Technol.
PY 2016
VL 6
IS 5
BP 1393
EP 1401
DI 10.1039/c5cy01128k
PG 9
WC Chemistry, Physical
SC Chemistry
GA DF8KW
UT WOS:000371607600014
ER
PT J
AU Kim, J
Kim, KH
Oang, KY
Lee, JH
Hong, K
Cho, H
Huse, N
Schoenlein, RW
Kim, TK
Ihee, H
AF Kim, Jeongho
Kim, Kyung Hwan
Oang, Key Young
Lee, Jae Hyuk
Hong, Kiryong
Cho, Hana
Huse, Nils
Schoenlein, Robert W.
Kim, Tae Kyu
Ihee, Hyotcherl
TI Tracking reaction dynamics in solution by pump-probe X-ray absorption
spectroscopy and X-ray liquidography (solution scattering)
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID ULTRAFAST ELECTRON-DIFFRACTION; TRANSIENT MOLECULAR-STRUCTURES; PROTEIN
STRUCTURAL DYNAMICS; PHOTOACTIVE YELLOW PROTEIN; TIME-RESOLVED
DIFFRACTION; 2-DIMENSIONAL INFRARED-SPECTROSCOPY; FEMTOSECOND-STIMULATED
RAMAN; CU(I) PHENANTHROLINE COMPLEX; SPIN-CROSSOVER DYNAMICS;
EXCITED-STATE STRUCTURE
AB Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump-probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive to changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions.
C1 [Kim, Jeongho] Inha Univ, Dept Chem, Inchon 402751, South Korea.
[Kim, Kyung Hwan; Oang, Key Young; Ihee, Hyotcherl] Ctr Nanomat & Chem React, Inst Basic Sci, Taejon 305701, South Korea.
[Kim, Kyung Hwan; Oang, Key Young; Ihee, Hyotcherl] Korea Adv Inst Sci & Technol, Dept Chem, Taejon 305701, South Korea.
[Lee, Jae Hyuk; Cho, Hana; Schoenlein, Robert W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA.
[Hong, Kiryong; Cho, Hana; Kim, Tae Kyu] Pusan Natl Univ, Dept Chem, Busan 609735, South Korea.
[Hong, Kiryong; Cho, Hana; Kim, Tae Kyu] Pusan Natl Univ, Chem Inst Funct Mat, Busan 609735, South Korea.
[Cho, Hana] Korea Res Inst Standard & Sci, Div Metrol Qual Life, Ctr Inorgan Anal, Daejeon 305340, South Korea.
[Huse, Nils] Univ Hamburg, Max Planck Res Dept Struct Dynam, D-22607 Hamburg, Germany.
[Huse, Nils] Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany.
RP Kim, J (reprint author), Inha Univ, Dept Chem, Inchon 402751, South Korea.; Ihee, H (reprint author), Ctr Nanomat & Chem React, Inst Basic Sci, Taejon 305701, South Korea.; Ihee, H (reprint author), Korea Adv Inst Sci & Technol, Dept Chem, Taejon 305701, South Korea.; Kim, TK (reprint author), Pusan Natl Univ, Dept Chem, Busan 609735, South Korea.; Kim, TK (reprint author), Pusan Natl Univ, Chem Inst Funct Mat, Busan 609735, South Korea.
EM jkim5@inha.ac.kr; tkkim@pusan.ac.kr; hyotcherl.ihee@kaist.ac.kr
RI Ihee, Hyotcherl/C-1614-2011; KIM, TAE KYU/A-8737-2016; Huse,
Nils/A-5712-2017;
OI KIM, TAE KYU/0000-0002-9578-5722; Huse, Nils/0000-0002-3281-7600; Kim,
Jeongho/0000-0003-4085-293X
FU Basic Science Research Program through the National Research Foundation
of Korea (NRF) - Ministry of Science, ICT & Future Planning
[NRF-2014R1A1A1002511, 2013R1A1A2009575, 2014R1A4A1001690,
2011-0031558]; TJ Park Science Fellowship of POSCO TJ Park Foundation;
[IBS-R004-G2]
FX We greatly appreciate our co-workers listed in many references of this
article. We acknowledge other research groups who have made significant
contributions to the advance of TRXL and TRXAS as well as other related
X-ray techniques. This work was supported by IBS-R004-G2. This work was
supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science,
ICT & Future Planning (NRF-2014R1A1A1002511, 2013R1A1A2009575,
2014R1A4A1001690, and 2011-0031558). This research has been supported by
the TJ Park Science Fellowship of POSCO TJ Park Foundation.
NR 228
TC 4
Z9 4
U1 8
U2 45
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PY 2016
VL 52
IS 19
BP 3734
EP 3749
DI 10.1039/c5cc08949b
PG 16
WC Chemistry, Multidisciplinary
SC Chemistry
GA DF6PG
UT WOS:000371477100001
PM 26785280
ER
PT J
AU Liu, R
Cheng, S
Baker, ES
Smith, RD
Zeng, XC
Gong, B
AF Liu, Rui
Cheng, Shuang
Baker, Erin S.
Smith, Richard D.
Zeng, Xiao Cheng
Gong, Bing
TI Surprising impact of remote groups on the folding-unfolding and
dimer-chain equilibria of bifunctional H-bonding unimers
SO CHEMICAL COMMUNICATIONS
LA English
DT Article
ID BONDED MOLECULAR DUPLEXES; SUPRAMOLECULAR POLYMERS; HYDROGEN-BONDS;
AQUEOUS-MEDIA; DNA COMPLEX; FOLDAMERS; ARRAYS; ASSOCIATION; WATER;
MACROCYCLES
AB Oligoamide 1, consisting of two H-bonding units linked by a trimethylene linker, was previously found to form a very stable, folded dimer. In this work, replacing the side chains and end groups of 1 led to derivatives that show the surprising impact of end groups on the folding and dimer-chain equilibria of the resultant molecules.
C1 [Liu, Rui; Gong, Bing] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA.
[Liu, Rui; Gong, Bing] Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China.
[Cheng, Shuang] Nanjing Univ, Kuang Yaming Honors Sch, Nanjing 210023, Jiangsu, Peoples R China.
[Baker, Erin S.; Smith, Richard D.] Pacific NW Natl Lab, Earth & Biol Sci Div, Richland, WA 99352 USA.
[Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA.
RP Gong, B (reprint author), SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA.; Gong, B (reprint author), Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China.
EM bgong@buffalo.edu
RI Smith, Richard/J-3664-2012
OI Smith, Richard/0000-0002-2381-2349
FU US National Science Foundation [CHE-1306326, CBET-1512164]; National
Natural Science Foundation of China [NSFC-91227109]; NIGMS [P41
GM103493]; NIEHS [R01ES022190]; DOE [DE-AC05-76RLO-1830]
FX This work was supported by the US National Science Foundation
(CHE-1306326 and CBET-1512164), and the National Natural Science
Foundation of China (NSFC-91227109). The mass spectrometric measurements
were supported by grants from the NIGMS (P41 GM103493) and NIEHS
(R01ES022190). This work was performed in the Environmental Molecular
Science Laboratory, a DOE/BER national scientific user facility at
Pacific Northwest National Laboratory (PNNL). PNNL is operated for the
DOE by Battelle under contract no. DE-AC05-76RLO-1830.
NR 53
TC 2
Z9 2
U1 3
U2 12
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1359-7345
EI 1364-548X
J9 CHEM COMMUN
JI Chem. Commun.
PY 2016
VL 52
IS 19
BP 3773
EP 3776
DI 10.1039/c6cc00224b
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DF6PG
UT WOS:000371477100007
PM 26830456
ER
PT J
AU Zhou, M
Wang, HL
Guo, SJ
AF Zhou, Ming
Wang, Hsing-Lin
Guo, Shaojun
TI Towards high-efficiency nanoelectrocatalysts for oxygen reduction
through engineering advanced carbon nanomaterials
SO CHEMICAL SOCIETY REVIEWS
LA English
DT Review
ID METAL-FREE ELECTROCATALYSTS; NITROGEN-DOPED GRAPHENE; PEM FUEL-CELL;
ELECTROCHEMICAL ENERGY APPLICATIONS; NANOTUBE-MODIFIED ELECTRODES;
CATALYST-FREE SYNTHESIS; LITHIUM ION BATTERIES; POROUS CARBON;
MESOPOROUS CARBON; CATHODE CATALYST
AB One of the critical issues in the industrial development of fuel cells (e.g., proton exchange membrane fuel cells, direct methanol fuel cells and biofuel cells) is the high cost, serious intermediate tolerance, anode crossover, sluggish kinetics, and poor stability of the platinum (Pt) as the preferred electrocatalysts for the oxygen reduction reaction (ORR) at the cathode. The development of novel noble-metal-free electrocatalysts with low cost, high activity and practical durability for ORR has been considered as one of the most active and competitive fields in chemistry and materials science. In this critical review, we will summarize recent advances on engineering advanced carbon nanomaterials with different dimensions for the rational design and synthesis of noble-metal-free oxygen reduction electrocatalysts including heteroatom-doped carbon nanomaterials, transition metal-based nanoparticle (NP)-carbon nanomaterial composites and especially the stable iron carbide (Fe3C)-based NP-carbon nanomaterial composites. Introducing advanced carbon nanomaterials with high specific surface area and stable structure into the noble-metal-free ORR field has not only led to a maximized electrocatalyst surface area for the electron transfer but also resulted in enhanced electrocatalyst stability for long-term operation. Therefore, the rational design and synthesis of noble-metal-free electrocatalysts based on heteroatoms, transition metal-based NPs and Fe3C-based NP functionalized carbon nanomaterials are of special relevance for their ORR applications, and represents a rapidly growing branch of research. The demonstrated examples in this review will open new directions on designing and optimizing advanced carbon nanomaterials for the development of extremely active and durable earth-abundant cathodic catalysts for fuel cell applications.
C1 [Zhou, Ming] NE Normal Univ, Key Lab Polyoxometalate Sci, Minist Educ, Fac Chem, Changchun 130024, Jilin Province, Peoples R China.
[Zhou, Ming] NE Normal Univ, Natl & Local United Engn Lab Power Batteries, Changchun 130024, Jilin Province, Peoples R China.
[Wang, Hsing-Lin] Los Alamos Natl Lab, Phys Chem & Appl Spect, Div Chem, POB 1663, Los Alamos, NM 87545 USA.
[Guo, Shaojun] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China.
[Guo, Shaojun] Peking Univ, Coll Engn, Dept Energy & Resources Engn, Beijing 100871, Peoples R China.
RP Zhou, M (reprint author), NE Normal Univ, Key Lab Polyoxometalate Sci, Minist Educ, Fac Chem, Changchun 130024, Jilin Province, Peoples R China.; Zhou, M (reprint author), NE Normal Univ, Natl & Local United Engn Lab Power Batteries, Changchun 130024, Jilin Province, Peoples R China.; Wang, HL (reprint author), Los Alamos Natl Lab, Phys Chem & Appl Spect, Div Chem, POB 1663, Los Alamos, NM 87545 USA.; Guo, SJ (reprint author), Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China.; Guo, SJ (reprint author), Peking Univ, Coll Engn, Dept Energy & Resources Engn, Beijing 100871, Peoples R China.
EM zhoum739@nenu.edu.cn; hwang@lanl.gov; guosj@pku.edu.cn
RI Guo, Shaojun/A-8449-2011; Zhou, Ming/B-7451-2009
OI Guo, Shaojun/0000-0002-5941-414X; Zhou, Ming/0000-0003-2239-9342
FU Northeast Normal University startup funds; Recruitment Program of Global
Youth Experts; Laboratory Directed Research and Development program
under the U.S. Department of Energy; Peking University
FX M. Z. is grateful to financial support from Northeast Normal University
startup funds and the Recruitment Program of Global Youth Experts. H. L.
W. would like to acknowledge financial support by the Laboratory
Directed Research and Development program under the auspices of the U.S.
Department of Energy. S. G. acknowledges the support by Peking
University start up funds and Recruitment Program of Global Youth
Experts.
NR 291
TC 58
Z9 58
U1 249
U2 535
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0306-0012
EI 1460-4744
J9 CHEM SOC REV
JI Chem. Soc. Rev.
PY 2016
VL 45
IS 5
BP 1273
EP 1307
DI 10.1039/c5cs00414d
PG 35
WC Chemistry, Multidisciplinary
SC Chemistry
GA DF8JV
UT WOS:000371604800007
PM 26647087
ER
PT J
AU Leu, BM
Sturza, MI
Hong, JW
Alatas, A
Baran, V
Fassler, TF
AF Leu, Bogdan M.
Sturza, Mihai I.
Hong, Jiawang
Alatas, Ahmet
Baran, Volodymyr
Faessler, Thomas F.
TI Elastic properties of type-I clathrate K8Zn4Sn42 determined by inelastic
X-ray scattering
SO EPL
LA English
DT Article
ID HIGH-PRESSURE; TRANSITION; SPECTROSCOPY; TEMPERATURE; EXCITATIONS;
DYNAMICS; STATES; MODES
AB We measured the phonon dispersion at ambient conditions in single-crystal type-I clathrate K8Zn4Sn42, a material with promising thermoelectric properties that has only recently been synthesized, using the high-energy resolution inelastic X-ray scattering (IXS) technique. From the sound velocities along high-symmetry directions, we extracted the elastic constants (C-11, C-12, C-44 = 63.2, 19.1, 21.9GPa, respectively). Experimental results agree with the predictions from first-principles calculations on the hypothetical, "guest-free", type-I clathrate Sn-46. The size of the crystal investigated was several orders of magnitude smaller than what is required for neutron and ultrasonic measurements. Due to this essential property, together with the high-energy resolution, high-momentum-transfer resolution, and the access to the strongest Bragg reflections, IXS is the technique of choice for measuring the full elastic constant tensor for microcrystals. Copyright (C) EPLA, 2016
C1 [Leu, Bogdan M.; Alatas, Ahmet] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Sturza, Mihai I.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Hong, Jiawang] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA.
[Baran, Volodymyr; Faessler, Thomas F.] Tech Univ Munich, Dept Chem, Garching, Germany.
RP Leu, BM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RI Hong, Jiawang/B-2864-2009
OI Hong, Jiawang/0000-0002-9915-8072
FU U.S. DOE [DE-AC02-06CH11357]; Center for Accelerating Materials Modeling
- U.S. Department of Energy, Basic Energy Sciences, Materials Sciences
and Engineering Division
FX The use of the Advanced Photon Source, an Office of Science User
Facility operated for the U.S. Department of Energy (DOE) Office of
Science by Argonne National Laboratory, was supported by the U.S. DOE
under Contract No. DE-AC02-06CH11357. JH was supported by the Center for
Accelerating Materials Modeling, funded by the U.S. Department of
Energy, Basic Energy Sciences, Materials Sciences and Engineering
Division.
NR 57
TC 0
Z9 0
U1 4
U2 13
PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY
PI MULHOUSE
PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE
SN 0295-5075
EI 1286-4854
J9 EPL-EUROPHYS LETT
JI EPL
PD JAN
PY 2016
VL 113
IS 1
AR 16001
DI 10.1209/0295-5075/113/16001
PG 6
WC Physics, Multidisciplinary
SC Physics
GA DF6QB
UT WOS:000371479500015
ER
PT J
AU Tinkham, WT
Hoffman, CM
Canfield, JM
Vakili, E
Reich, RM
AF Tinkham, Wade T.
Hoffman, Chad M.
Canfield, Jesse M.
Vakili, Emma
Reich, Robin M.
TI Using the photoload technique with double sampling to improve surface
fuel loading estimates
SO INTERNATIONAL JOURNAL OF WILDLAND FIRE
LA English
DT Article
DE fuels; ratio estimation; regression estimation
ID FOREST; BIOMASS
AB Accurate surface fuel load estimates based on the planar intercept method require a considerable amount of time and cost. Recently the photoload method has been proposed as an alternative for sampling of fine woody surface fuels. To evaluate the use of photoload fuel sampling, six simulated fuel beds of 100 photoload visual estimates and destructively sampled fuel loads were generated at three levels of fuel loading (0.016, 0.060, and 0.120 kg m(-2)) and two levels of variability (coefficients of variation of similar to 42 and 85%). We assessed the accuracy and precision of simple random sampling with and without double sampling on surface fuel load estimation. Direct visual estimates often overestimated fuel loads where actual fuel loading was low and underestimated fuel loads where fuel loads were large. We found that double sampling with a classical regression estimation approach provided the most accurate and precise fuel load estimates, substantially improving the accuracy and precision achieved over standard photoload estimation when 20 and double sampling rate 20%. These results indicate that fine woody fuel loading estimation with the photoload technique can be improved by incorporating a double sampling approach.
C1 [Tinkham, Wade T.; Hoffman, Chad M.; Vakili, Emma; Reich, Robin M.] Colorado State Univ, Dept Forest & Rangeland Stewardship, 1472 Campus Delivery, Ft Collins, CO 80523 USA.
[Canfield, Jesse M.] Los Alamos Natl Lab, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87545 USA.
RP Tinkham, WT (reprint author), Colorado State Univ, Dept Forest & Rangeland Stewardship, 1472 Campus Delivery, Ft Collins, CO 80523 USA.
EM Wade.Tinkham@colostate.edu
OI Hoffman, Chad/0000-0001-8715-937X
FU Joint Fire Sciences grant [13-1-04-53]; McIntire-Stennis Program
FX The collection and analysis of this dataset would not have been possible
without support from Joint Fire Sciences grant 13-1-04-53 and the
McIntire-Stennis Program.
NR 20
TC 2
Z9 2
U1 0
U2 0
PU CSIRO PUBLISHING
PI CLAYTON
PA UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC
3168, AUSTRALIA
SN 1049-8001
EI 1448-5516
J9 INT J WILDLAND FIRE
JI Int. J. Wildland Fire
PY 2016
VL 25
IS 2
BP 224
EP 228
DI 10.1071/WF15027
PG 5
WC Forestry
SC Forestry
GA DF8EV
UT WOS:000371591000010
ER
PT S
AU Tak, T
Choe, J
Jeong, Y
Lee, D
Kim, TK
AF Tak, Taewoo
Choe, Jiwon
Jeong, Yongjin
Lee, Deokjung
Kim, T. K.
BE Mohamed, AA
Idris, FM
Hasan, AB
Hamzah, Z
TI Study for Requirement of Advanced Long Life Small Modular Fast Reactor
SO INTERNATIONAL NUCLEAR SCIENCE, TECHNOLOGY AND ENGINEERING CONFERENCE
2015 (INUSTEC2015)
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT International Nuclear Science, Technology and Engineering Conference
(iNuSTEC)
CY AUG 17-19, 2015
CL Univ Sains Islam Malaysia, Nilai, MALAYSIA
SP Minist Sci Technol & Innovat Malaysia, Minist Educ Malaysia, Malaysian Nucl Agcy, Int Atom Energy Agcy, Hitachi GE, Japan Atom Energy Agcy, Tokyo Inst Technol, Seoul Natl Univ, ASME Sect Malaysia, Reactor Interest Grp, NGO, Malaysian Nucl Soc, Univ Tenaga Nas, Univ Teknologi MARA, Univ Teknologi Malaysia, Univ Islam Antarabangsa Malaysia, Univ Kebangsaan Malaysia, Univ Malaya, Univ Tun Hussien Malaysia
HO Univ Sains Islam Malaysia
AB To develop an advanced long-life SMR core concept, the feasibility of the long-life breed-and-burn core concept has been assessed and the preliminary selection on the reactor design requirement such as fuel form, coolant material has been performed. With the simplified cigar-type geometry of 8m-tall CANDLE reactor concept, it has demonstrated the strengths of breed-and-burn strategy. There is a saturation region in the graph for the multiplication factors, which means that a steady breeding is being proceeded along the axial direction. The propagation behavior of the CANDLE core can be also confirmed through the evolution of the axial power profile. Coolant material is expected to have low melting point, density, viscosity and absorption cross section and a high boiling point, specific heat, and thermal conductivity. In this respect, sodium is preferable material for a coolant of this nuclear power plant system. The metallic fuel has harder spectrum compared to the oxide and carbide fuel, which is favorable to increase the breeding and extend the cycle length.
C1 [Tak, Taewoo; Choe, Jiwon; Jeong, Yongjin; Lee, Deokjung] Ulsan Natl Inst Sci & Technol, 50 UNIST Gil, Ulsan 689798, South Korea.
[Kim, T. K.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60564 USA.
RP Lee, D (reprint author), Ulsan Natl Inst Sci & Technol, 50 UNIST Gil, Ulsan 689798, South Korea.
EM ttwispy@unist.ac.kr; chi91023@unist.ac.kr; yjjeong09@unist.ac.kr;
deokjung@unist.ac.kr; tkkim@anl.gov
NR 17
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1351-1
J9 AIP CONF PROC
PY 2016
VL 1704
AR 020001
DI 10.1063/1.4940059
PG 6
WC Nuclear Science & Technology; Physics, Nuclear
SC Nuclear Science & Technology; Physics
GA BE3ZH
UT WOS:000371423800001
ER
PT J
AU Voss, JD
Kugblenu, R
Salter, K
Johnson, L
Reeves, WK
AF Voss, Jameson D.
Kugblenu, Richard
Salter, Khabira
Johnson, Lucas
Reeves, Will K.
TI Case series of 23 deaths from Hymenoptera stings among United States Air
Force populations
SO JOURNAL OF HYMENOPTERA RESEARCH
LA English
DT Article
DE Hymenoptera; bees; wasps; stings; mortality; military; Air Force
Mortality Registry
ID SERVICE MEMBERS
AB Medical conditions arising from hymenopteran sting allergy or mass envenomation are a serious health concern, particularly in austere environments. Both practicing allergists and entomological pest control personnel should consider the relevance of stinging insects when responding to problems with Hymenoptera. Recent occupational reviews of civilian deaths from insect bites and stings prompted our review of the US Air Force Mortality Registry to determine the relevance of insect stings and bites as a cause of death in the US Air Force. After reviewing over 40 years of death records we identified 23 death records, among US Air Force Active duty, guard, or retirees that arose directly from hymenopteran stings.
C1 [Voss, Jameson D.; Reeves, Will K.] US Air Force Sch Aerosp Med, PHR, 2510 5th St, Wright Patterson AFB, OH 45433 USA.
[Kugblenu, Richard] Oak Ridge Inst Sci & Educ, Wright Patterson AFB, OH 45433 USA.
[Salter, Khabira] Decypher, Wright Patterson AFB, OH 45433 USA.
[Johnson, Lucas] Uniformed Serv Univ Hlth Sci, Dept Prevent Med & Biometr, Washington, DC USA.
[Reeves, Will K.] 2510 Fifth St,Bldg 840, Wright Patterson AFB, OH 45433 USA.
RP Reeves, WK (reprint author), US Air Force Sch Aerosp Med, PHR, 2510 5th St, Wright Patterson AFB, OH 45433 USA.; Reeves, WK (reprint author), 2510 Fifth St,Bldg 840, Wright Patterson AFB, OH 45433 USA.
EM will.reeves@us.af.mil
NR 8
TC 0
Z9 0
U1 3
U2 3
PU PENSOFT PUBL
PI SOFIA
PA 12 PROF GEORGI ZLATARSKI ST, SOFIA, 1700, BULGARIA
SN 1070-9428
EI 1314-2607
J9 J HYMENOPT RES
JI J. Hymenopt. Res.
PY 2016
VL 48
BP 95
EP 99
DI 10.3897/JHR.48.7905
PG 5
WC Entomology
SC Entomology
GA DG0HU
UT WOS:000371746700006
ER
PT J
AU Aab, A
Abreu, P
Aglietta, M
Ahn, EJ
Al Samarai, I
Albuquerque, IFM
Allekotte, I
Allison, P
Almela, A
Castillo, JA
Alvarez-Muniz, J
Batista, RA
Ambrosio, M
Aminaei, A
Anastasi, GA
Anchordoqui, L
Andringa, S
Aramo, C
Arqueros, F
Arsene, N
Asorey, H
Assis, P
Aublin, J
Avila, G
Awal, N
Badescu, AM
Baus, C
Beatty, JJ
Becker, KH
Bellido, JA
Berat, C
Bertaina, ME
Bertou, X
Biermann, PL
Billoir, P
Blaess, SG
Blanco, A
Blanco, M
Blazek, J
Bleve, C
Bluemer, H
Bohacova, M
Boncioli, D
Bonifazi, C
Borodai, N
Brack, J
Brancus, I
Bretz, T
Bridgeman, A
Brogueira, P
Buchholz, P
Bueno, A
Buitink, S
Buscemi, M
Caballero-Mora, KS
Caccianiga, B
Caccianiga, L
Candusso, M
Caramete, L
Caruso, R
Castellina, A
Cataldi, G
Cazon, L
Cester, R
Chavez, AG
Chiavassa, A
Chinellato, JA
Chudoba, J
Cilmo, M
Clay, RW
Cocciolo, G
Colalillo, R
Coleman, A
Collica, L
Coluccia, MR
Conceicao, R
Contreras, F
Cooper, MJ
Cordier, A
Coutu, S
Covault, CE
Cronin, J
Dallier, R
Daniel, B
Dasso, S
Daumiller, K
Dawson, BR
de Almeida, RM
de Jong, SJ
De Mauro, G
Neto, JRTD
De Mitri, I
de Oliveira, J
de Souza, V
del Pera, L
Deligny, O
Dhita, N
Di Giulio, C
Di Matteot, A
Diaz, JC
Castro, MLD
Diogo, F
Dobrigkeit, C
Docters, W
D'Olivo, JC
Dorofeev, A
Hasankiadeh, QD
dos Anjos, RC
Dova, MT
Ebr, J
Enge, R
Erdmann, M
Erfani, M
Escobar, CO
Eser, J
Espadanal, J
Etchegoyeng, A
Falcke, H
Fang, K
Farrar, G
Fauth, AC
Fazzini, N
Ferguson, AP
Fick, B
Figueira, JM
Filevich, A
Filipcic, A
Fratu, O
Freire, MM
Fujii, T
Garcia, B
Garcia-Gamez, D
Garcia-Pinto, D
Gate, F
Gemmeke, H
Gherghel-Lascu, A
Ghia, PL
Giaccari, U
Giammarchi, M
Giller, M
Glas, D
Glaser, C
Glass, H
Golup, G
Berisso, MG
Vitale, PFG
Gonzalez, N
Gookin, B
Gordon, J
Gorgi, A
Gorham, P
Gouffon, P
Griffith, N
Grillo, AF
Grubb, TD
Guarino, F
Guedes, GP
Hampel, MR
Hansen, P
Harari, D
Harrison, TA
Hartmann, S
Harton, JL
Haungs, A
Hebbeker, T
Heck, D
Heimann, P
Herve, AE
Hill, GC
Hojvat, C
Hohon, N
Holt, E
Homola, P
Horandel, JR
Horvath, P
Hrabovsky, M
Huber, D
Huege, T
Insolia, A
Isar, PG
Jandt, I
Jansen, S
Jarne, C
Johnsen, JA
Josebachuili, M
Kaapa, A
Kambeitz, O
Kampert, KH
Kasper, P
Katkov, I
Keilhauer, B
Kemp, E
Kieckhafer, RM
Klages, HO
Kleifges, M
Kleinfeller, J
Krause, R
Krohm, N
Kuempe, D
Mezek, GK
Kunka, N
Awad, AWK
LaHurd, D
Lang, A
Latronico, L
Lauer, R
Lauscher, M
Lautridou, P
Le Coz, S
Lebrun, D
Lebrun, P
de Oliveira, MAL
Letessier-Selvon, A
Lhenry-Yvon, I
Link, K
Lopes, L
Lopez, R
Casado, AL
Louedec, K
Lucero, A
Malacari, M
Mallamaci, M
Maller, J
Mandat, D
Mantsch, P
Mariazzi, AG
Marin, V
Maris, IC
Marsella, G
Martello, D
Martinez, H
Bravo, OM
Martraire, D
Meza, JJM
Mathes, HJ
Mathys, S
Matthews, J
Matthews, JAJ
Matthiae, G
Maurizio, D
Mayotte, E
Mazur, PO
Medina, C
Medina-Tanco, G
Meissner, R
Meo, VBB
Melo, D
Menshikov, A
Messina, S
Micheletti, MI
Middendorf, L
Minaya, IA
Miramonti, L
Mitrica, B
Molina-Bueno, L
Mollerach, S
Montanet, F
Morello, C
Mostafa, M
Moura, CA
Muller, G
Muller, MA
Muller, S
Navas, S
Necesa, P
Nellen, L
Nelles, A
Neuser, J
Nguyen, PH
Niculescu-Oglinzanu, M
Niechcio, M
Niemietz, L
Niggemann, T
Nitz, D
Nosek, D
Novotny, V
Nozka, L
Nunez, LA
Ochilo, L
Oikonomou, F
Olinto, A
Pacheco, N
Selmi-Dei, DP
Palatka, M
Pallotta, J
Papenbreer, P
Parente, G
Parra, A
Paul, T
Pech, M
Pekala, J
Pelayo, R
Pepe, IM
Perrone, L
Petermann, E
Peters, C
Petrera, S
Petrov, Y
Phuntsok, J
Piegaia, R
Pierog, T
Pieroni, P
Pimenta, M
Pirrone, V
Platino, M
Plum, M
Porcelli, A
Porowski, C
Prado, RR
Privitera, R
Prouza, M
Quel, EJ
Querchfeld, S
Quinn, S
Rautenberg, J
Rave, O
Ravignani, D
Reinert, D
Revenu, B
Ridky, J
Risse, M
Ristori, P
Rizi, V
de Carvalho, WR
Rojo, JR
Rodriguez-Frias, MD
Rogozin, D
Rosado, J
Roth, M
Roulet, E
Rovero, AC
Saffi, SJ
Saftoiu, A
Salazar, H
Saleh, A
Greus, FS
Salina, G
Gomez, JDS
Sanchez, F
Sanchez-Lucas, P
Santos, EM
Santos, E
Sarazin, F
Sarkar, B
Sarmento, R
Sarmiento-Cano, C
Sato, R
Scarso, C
Schauer, M
Scherini, V
Schieler, H
Schmidt, D
Scholten, O
Schoorlemmer, H
Schovanek, P
Schroder, FG
Schulz, A
Schulz, J
Schumacher, J
Sciutto, SJ
Segreto, A
Settimo, M
Shadkam, A
Shellard, RC
Sig, G
Sima, O
Smialkowski, A
Smida, R
Snow, GR
Sommers, P
Sonntag, S
Sorokin, J
Squartini, R
Srivastava, YN
Stanca, D
Stanic, S
Stapleton, J
Stasielak, J
Stephan, M
Stutz, A
Suarez, F
Duran, MS
Suomijarvi, T
Supanitsky, AD
Sutherland, MS
Swain, J
Szadkowski, Z
Taborda, OA
Tapia, A
Tepe, A
Theodoro, VM
Timmermans, C
Peixoto, CJT
Toma, G
Tomankova, L
Tome, B
Tonachini, A
Elipe, GT
Machado, DT
Travnicek, P
Trini, M
Ulrich, R
Unger, M
Urban, M
Galicia, JFV
Valino, I
Valore, L
van Aar, G
van Bodegom, P
van den Berg, AM
van Velzen, S
van Vliet, A
Varela, E
Cardenas, BV
Varner, G
Vasquez, R
Vazquez, JR
Vazquez, RA
Veberie, D
Verzi, V
Vicha, J
Videla, M
Villasenor, L
Vlcek, B
Vorobiov, S
Wahlberg, H
Wainberg, O
Walz, D
Watson, AA
Weber, M
Weidenhaupt, K
Weindl, A
Werner, F
Widom, A
Wiencke, L
Wilczynski, H
Winchen, T
Wittkowski, D
Wundheiler, B
Wykes, S
Yang, L
Yapici, T
Yushkov, A
Zas, E
Zavrtanik, D
Zavrtanik, M
Zepeda, A
Zimmermann, B
Ziolkowski, M
Zuccarello, F
AF Aab, A.
Abreu, P.
Aglietta, M.
Ahn, E. J.
Al Samarai, I.
Albuquerque, I. F. M.
Allekotte, I.
Allison, P.
Almela, A.
Alvarez Castillo, J.
Alvarez-Muniz, J.
Batista, R. Alves
Ambrosio, M.
Aminaei, A.
Anastasi, G. A.
Anchordoqui, L.
Andringa, S.
Aramo, C.
Arqueros, F.
Arsene, N.
Asorey, H.
Assis, P.
Aublin, J.
Avila, G.
Awal, N.
Badescu, A. M.
Baus, C.
Beatty, J. J.
Becker, K. H.
Bellido, J. A.
Berat, C.
Bertaina, M. E.
Bertou, X.
Biermann, P. L.
Billoir, P.
Blaess, S. G.
Blanco, A.
Blanco, M.
Blazek, J.
Bleve, C.
Bluemer, H.
Bohacova, M.
Boncioli, D.
Bonifazi, C.
Borodai, N.
Brack, J.
Brancus, I.
Bretz, T.
Bridgeman, A.
Brogueira, P.
Buchholz, P.
Bueno, A.
Buitink, S.
Buscemi, M.
Caballero-Mora, K. S.
Caccianiga, B.
Caccianiga, L.
Candusso, M.
Caramete, L.
Caruso, R.
Castellina, A.
Cataldi, G.
Cazon, L.
Cester, R.
Chavez, A. G.
Chiavassa, A.
Chinellato, J. A.
Chudoba, J.
Cilmo, M.
Clay, R. W.
Cocciolo, G.
Colalillo, R.
Coleman, A.
Collica, L.
Coluccia, M. R.
Conceicao, R.
Contreras, F.
Cooper, M. J.
Cordier, A.
Coutu, S.
Covault, C. E.
Cronin, J.
Dallier, R.
Daniel, B.
Dasso, S.
Daumiller, K.
Dawson, B. R.
de Almeida, R. M.
de Jong, S. J.
De Mauro, G.
de Mello Neto, J. R. T.
De Mitri, I.
de Oliveira, J.
de Souza, V.
del Pera, L.
Deligny, O.
Dhita, N.
Di Giulio, C.
Di Matteot, A.
Diaz, J. C.
Diaz Castro, M. L.
Diogo, F.
Dobrigkeit, C.
Docters, W.
D'Olivo, J. C.
Dorofeev, A.
Hasankiadeh, Q. Dorosti
dos Anjos, R. C.
Dova, M. T.
Ebr, J.
Enge, R.
Erdmann, M.
Erfani, M.
Escobar, C. O.
Eser, J.
Espadanal, J.
Etchegoyeng, A.
Falcke, H.
Fang, K.
Farrar, G.
Fauth, A. C.
Fazzini, N.
Ferguson, A. P.
Fick, B.
Figueira, J. M.
Filevich, A.
Filipcic, A.
Fratu, O.
Freire, M. M.
Fujii, T.
Garcia, B.
Garcia-Gamez, D.
Garcia-Pinto, D.
Gate, F.
Gemmeke, H.
Gherghel-Lascu, A.
Ghia, P. L.
Giaccari, U.
Giammarchi, M.
Giller, M.
Glas, D.
Glaser, C.
Glass, H.
Golup, G.
Gomez Berisso, M.
Gomez Vitale, P. F.
Gonzalez, N.
Gookin, B.
Gordon, J.
Gorgi, A.
Gorham, P.
Gouffon, P.
Griffith, N.
Grillo, A. F.
Grubb, T. D.
Guarino, F.
Guedes, G. P.
Hampel, M. R.
Hansen, P.
Harari, D.
Harrison, T. A.
Hartmann, S.
Harton, J. L.
Haungs, A.
Hebbeker, T.
Heck, D.
Heimann, P.
Herve, A. E.
Hill, G. C.
Hojvat, C.
Hohon, N.
Holt, E.
Homola, P.
Horandel, J. R.
Horvath, P.
Hrabovsky, M.
Huber, D.
Huege, T.
Insolia, A.
Isar, P. G.
Jandt, I.
Jansen, S.
Jarne, C.
Johnsen, J. A.
Josebachuili, M.
Kaeaepae, A.
Kambeitz, O.
Kampert, K. H.
Kasper, P.
Katkov, I.
Keilhauer, B.
Kemp, E.
Kieckhafer, R. M.
Klages, H. O.
Kleifges, M.
Kleinfeller, J.
Krause, R.
Krohm, N.
Kuempe, D.
Mezek, G. Kukec
Kunka, N.
Awad, A. W. Kuotb
LaHurd, D.
Lang, A.
Latronico, L.
Lauer, R.
Lauscher, M.
Lautridou, P.
Le Coz, S.
Lebrun, D.
Lebrun, P.
Leigui de Oliveira, M. A.
Letessier-Selvon, A.
Lhenry-Yvon, I.
Link, K.
Lopes, L.
Lopez, R.
Lopez Casado, A.
Louedec, K.
Lucero, A.
Malacari, M.
Mallamaci, M.
Maller, J.
Mandat, D.
Mantsch, P.
Mariazzi, A. G.
Marin, V.
Maris, I. C.
Marsella, G.
Martello, D.
Martinez, H.
Martinez Bravo, O.
Martraire, D.
Masias Meza, J. J.
Mathes, H. J.
Mathys, S.
Matthews, J.
Matthews, J. A. J.
Matthiae, G.
Maurizio, D.
Mayotte, E.
Mazur, P. O.
Medina, C.
Medina-Tanco, G.
Meissner, R.
Meo, V. B. B.
Melo, D.
Menshikov, A.
Messina, S.
Micheletti, M. I.
Middendorf, L.
Minaya, I. A.
Miramonti, L.
Mitrica, B.
Molina-Bueno, L.
Mollerach, S.
Montanet, F.
Morello, C.
Mostafa, M.
Moura, C. A.
Mueller, G.
Muller, M. A.
Mueller, S.
Navas, S.
Necesa, P.
Nellen, L.
Nelles, A.
Neuser, J.
Nguyen, P. H.
Niculescu-Oglinzanu, M.
Niechcio, M.
Niemietz, L.
Niggemann, T.
Nitz, D.
Nosek, D.
Novotny, V.
Nozka, L.
Nunez, L. A.
Ochilo, L.
Oikonomou, F.
Olinto, A.
Pacheco, N.
Pakk Selmi-Dei, D.
Palatka, M.
Pallotta, J.
Papenbreer, P.
Parente, G.
Parra, A.
Paul, T.
Pech, M.
Pekala, J.
Pelayo, R.
Pepe, I. M.
Perrone, L.
Petermann, E.
Peters, C.
Petrera, S.
Petrov, Y.
Phuntsok, J.
Piegaia, R.
Pierog, T.
Pieroni, P.
Pimenta, M.
Pirrone, V.
Platino, M.
Plum, M.
Porcelli, A.
Porowski, C.
Prado, R. R.
Privitera, R.
Prouza, M.
Quel, E. J.
Querchfeld, S.
Quinn, S.
Rautenberg, J.
Rave, O.
Ravignani, D.
Reinert, D.
Revenu, B.
Ridky, J.
Risse, M.
Ristori, P.
Rizi, V.
Rodrigues de Carvalho, W.
Rodriguez Rojo, J.
Rodriguez-Frias, M. D.
Rogozin, D.
Rosado, J.
Roth, M.
Roulet, E.
Rovero, A. C.
Saffi, S. J.
Saftoiu, A.
Salazar, H.
Saleh, A.
Greus, F. Salesa
Salina, G.
Sanabria Gomez, J. D.
Sanchez, F.
Sanchez-Lucas, P.
Santos, E. M.
Santos, E.
Sarazin, F.
Sarkar, B.
Sarmento, R.
Sarmiento-Cano, C.
Sato, R.
Scarso, C.
Schauer, M.
Scherini, V.
Schieler, H.
Schmidt, D.
Scholten, O.
Schoorlemmer, H.
Schovanek, P.
Schroeder, F. G.
Schulz, A.
Schulz, J.
Schumacher, J.
Sciutto, S. J.
Segreto, A.
Settimo, M.
Shadkam, A.
Shellard, R. C.
Sig, G.
Sima, O.
Smialkowski, A.
Smida, R.
Snow, G. R.
Sommers, P.
Sonntag, S.
Sorokin, J.
Squartini, R.
Srivastava, Y. N.
Stanca, D.
Stanic, S.
Stapleton, J.
Stasielak, J.
Stephan, M.
Stutz, A.
Suarez, F.
Suarez Duran, M.
Suomijaervi, T.
Supanitsky, A. D.
Sutherland, M. S.
Swain, J.
Szadkowski, Z.
Taborda, O. A.
Tapia, A.
Tepe, A.
Theodoro, V. M.
Timmermans, C.
Todero Peixoto, C. J.
Toma, G.
Tomankova, L.
Tome, B.
Tonachini, A.
Torralba Elipe, G.
Torres Machado, D.
Travnicek, P.
Trini, M.
Ulrich, R.
Unger, M.
Urban, M.
Valdes Galicia, J. F.
Valino, I.
Valore, L.
van Aar, G.
van Bodegom, P.
van den Berg, A. M.
van Velzen, S.
van Vliet, A.
Varela, E.
Vargas Cardenas, B.
Varner, G.
Vasquez, R.
Vazquez, J. R.
Vazquez, R. A.
Veberie, D.
Verzi, V.
Vicha, J.
Videla, M.
Villasenor, L.
Vlcek, B.
Vorobiov, S.
Wahlberg, H.
Wainberg, O.
Walz, D.
Watson, A. A.
Weber, M.
Weidenhaupt, K.
Weindl, A.
Werner, F.
Widom, A.
Wiencke, L.
Wilczynski, H.
Winchen, T.
Wittkowski, D.
Wundheiler, B.
Wykes, S.
Yang, L.
Yapici, T.
Yushkov, A.
Zas, E.
Zavrtanik, D.
Zavrtanik, M.
Zepeda, A.
Zimmermann, B.
Ziolkowski, M.
Zuccarello, F.
CA Pierre Auger Collaboration
TI Nanosecond-level time synchronization of autonomous radio detector
stations for extensive air showers
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
DE Pattern recognition, cluster finding, calibration and fitting methods;
Timing detectors; Detector alignment and calibration methods (lasers,
sources, particle-beams)
AB To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a "beacon transmitter" which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.
C1 [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Roulet, E.; Taborda, O. A.] CNEA UNCuyo CONICET, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina.
[Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Roulet, E.; Taborda, O. A.] CNEA UNCuyo CONICET, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina.
[Pallotta, J.; Quel, E. J.; Ristori, P.] CITEDEF, Ctr Invest Laseres & Aplicac, Villa Martelli, Argentina.
[Pallotta, J.; Quel, E. J.; Ristori, P.] Consejo Nacl Invest Cient & Tecn, Villa Martelli, Argentina.
[Dasso, S.; Masias Meza, J. J.; Piegaia, R.; Pieroni, P.] Univ Buenos Aires, Dept Fis, FCEyN, Buenos Aires, DF, Argentina.
[Dasso, S.; Masias Meza, J. J.; Piegaia, R.; Pieroni, P.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina.
[Dova, M. T.; Hansen, P.; Jarne, C.; Sciutto, S. J.; Wahlberg, H.] Univ Nacl La Plata, IFLP, RA-1900 La Plata, Buenos Aires, Argentina.
[Dova, M. T.; Hansen, P.; Jarne, C.; Sciutto, S. J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina.
[Dasso, S.; Rovero, A. C.; Supanitsky, A. D.] CONICET UBA, Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina.
[Freire, M. M.; Micheletti, M. I.] CONICET UNR, Inst Fis Rosario IFIR, Rosario, Santa Fe, Argentina.
[Freire, M. M.; Micheletti, M. I.] UNR, Fac Ciencias Bioquim & Farmaceut, Rosario, Santa Fe, Argentina.
[Garcia, B.] UNSAM, CONICET, CNEA, Inst Tecnol Detecc Astroparticulas, Mendoza, Argentina.
[Garcia, B.] CONICET CNEA, Univ Tecnol Nacl, Fac Reg Mendoza, Mendoza, Argentina.
[Almela, A.; Etchegoyeng, A.; Figueira, J. M.; Filevich, A.; Gonzalez, N.; Hampel, M. R.; Josebachuili, M.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchez, F.; Suarez, F.; Tapia, A.; Videla, M.; Wainberg, O.; Wundheiler, B.] UNSAM, CONICET, CNEA, Inst Tecnol Detecc & Astroparticulas, Buenos Aires, DF, Argentina.
[Avila, G.; Contreras, F.; Gomez Vitale, P. F.; Kleinfeller, J.; Rodriguez Rojo, J.; Sato, R.; Scarso, C.; Squartini, R.] Observ Pierre Auger, Malargue, Argentina.
[Avila, G.; Gomez Vitale, P. F.] Comis Nacl Energia Atom, Malargue, Argentina.
[Almela, A.; Etchegoyeng, A.; Suarez, F.; Wainberg, O.] Univ Tecnol Nacl, Fac Reg Buenos Aires, Buenos Aires, DF, Argentina.
[Bellido, J. A.; Blaess, S. G.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Grubb, T. D.; Harrison, T. A.; Hill, G. C.; Malacari, M.; Nguyen, P. H.; Saffi, S. J.; Sorokin, J.; van Bodegom, P.] Univ Adelaide, Adelaide, SA, Australia.
[Maurizio, D.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, RJ, Brazil.
[Todero Peixoto, C. J.] Univ Sao Paulo, Escola Engn Lorena, Lorena, SP, Brazil.
[de Souza, V.; dos Anjos, R. C.; Prado, R. R.] Univ Sao Paulo, Inst Fis Sao Carlos, Sao Carlos, SP, Brazil.
[Albuquerque, I. F. M.; Gouffon, P.; Santos, E. M.] Univ Sao Paulo, Inst Fis, CP 20516, BR-01498 Sao Paulo, SP, Brazil.
[Chinellato, J. A.; Daniel, B.; Diaz Castro, M. L.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Pakk Selmi-Dei, D.; Santos, E.; Theodoro, V. M.] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil.
[Guedes, G. P.] Univ Estadual Feira de Santana, Feira De Santana, Brazil.
[Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil.
[Muller, M. A.] Univ Fed Pelotas, Pelotas, RS, Brazil.
[Leigui de Oliveira, M. A.; Moura, C. A.] Univ Fed ABC, Santo Andre, SP, Brazil.
[Bonifazi, C.; de Mello Neto, J. R. T.; Giaccari, U.; Melo, D.; Torres Machado, D.; Vasquez, R.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, RJ, Brazil.
[de Almeida, R. M.; de Oliveira, J.] Univ Fed Fluminense, EEIMVR, Volta Redonda, RJ, Brazil.
[Asorey, H.; Nunez, L. A.; Sanabria Gomez, J. D.; Sarmiento-Cano, C.; Suarez Duran, M.] Univ Ind Santander, Bucaramanga, Colombia.
[Nosek, D.; Novotny, V.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic.
[Blazek, J.; Bohacova, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Mandat, D.; Necesa, P.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovanek, P.; Travnicek, P.; Vicha, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Horvath, P.; Hrabovsky, M.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic.
[Al Samarai, I.; Deligny, O.; Lhenry-Yvon, I.; Martraire, D.; Suomijaervi, T.] Univ Paris 11, CNRS, IN2P3, Inst Phys Nucl Orsay, F-91405 Orsay, France.
[Cordier, A.; Garcia-Gamez, D.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France.
[Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Ghia, P. L.; Letessier-Selvon, A.; Settimo, M.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, Paris, France.
[Aublin, J.; Billoir, P.; Blanco, M.; Caccianiga, L.; Ghia, P. L.; Letessier-Selvon, A.; Settimo, M.] Univ Paris 07, CNRS, IN2P3, Paris, France.
[Berat, C.; Le Coz, S.; Lebrun, D.; Louedec, K.; Montanet, F.; Stutz, A.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France.
[Dallier, R.] Observ Paris, CNRS, INSU, Stn Radioastron Nancay, Nancay, France.
[Dallier, R.; Gate, F.; Lautridou, P.; Maller, J.; Marin, V.; Rave, O.; Revenu, B.] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, Nantes, France.
[Becker, K. H.; Homola, P.; Jandt, I.; Kaeaepae, A.; Kampert, K. H.; Krohm, N.; Mathys, S.; Neuser, J.; Niemietz, L.; Papenbreer, P.; Querchfeld, S.; Rautenberg, J.; Sarkar, B.; Schauer, M.; Winchen, T.; Wittkowski, D.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany.
[Baus, C.; Bluemer, H.; Eser, J.; Huber, D.; Kambeitz, O.; Katkov, I.; Lang, A.; Link, K.; Werner, F.] Karlsruhe Inst Technol, Inst Expt Kernphys IEKP, Campus South, D-76021 Karlsruhe, Germany.
[Bluemer, H.; Bridgeman, A.; Daumiller, K.; Hasankiadeh, Q. Dorosti; Enge, R.; Haungs, A.; Heck, D.; Herve, A. E.; Holt, E.; Huege, T.; Keilhauer, B.; Klages, H. O.; Awad, A. W. Kuotb; Mathes, H. J.; Mueller, S.; Pierog, T.; Porcelli, A.; Rogozin, D.; Roth, M.; Schieler, H.; Schmidt, D.; Schroeder, F. G.; Schulz, A.; Smida, R.; Tomankova, L.; Ulrich, R.; Unger, M.; Veberie, D.; Weindl, A.] Karlsruhe Inst Technol, Inst Kernphys IKP, Campus North, D-76021 Karlsruhe, Germany.
[Gemmeke, H.; Kleifges, M.; Kunka, N.; Menshikov, A.; Weber, M.; Zimmermann, B.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elekt IEKP, Campus North, D-76021 Karlsruhe, Germany.
[Biermann, P. L.] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany.
[Bretz, T.; Erdmann, M.; Glaser, C.; Hartmann, S.; Hebbeker, T.; Krause, R.; Kuempe, D.; Lauscher, M.; Meissner, R.; Middendorf, L.; Mueller, G.; Niggemann, T.; Peters, C.; Plum, M.; Reinert, D.; Schumacher, J.; Stephan, M.; Urban, M.; Walz, D.; Weidenhaupt, K.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Batista, R. Alves; Sig, G.; van Vliet, A.] Univ Hamburg, Inst Theoret Phys 2, Luruper Chaussee 149, Hamburg, Germany.
[Aab, A.; Buchholz, P.; Erfani, M.; Heimann, P.; Niechcio, M.; Ochilo, L.; Risse, M.; Sonntag, S.; Tepe, A.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys Expt Teilchenphys 7, D-57068 Siegen, Germany.
[Caccianiga, B.; Giammarchi, M.; Mallamaci, M.; Miramonti, L.] Univ Milan, Milan, Italy.
[Caccianiga, B.; Giammarchi, M.; Mallamaci, M.; Miramonti, L.] Sezione Ist Nazl Fis Nucl, Milan, Italy.
[Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Univ Naples Federico II, Naples, Italy.
[Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; Guarino, F.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy.
[Candusso, M.; Di Giulio, C.; Matthiae, G.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy.
[Candusso, M.; Di Giulio, C.; Matthiae, G.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy.
[Anastasi, G. A.; Caruso, R.; Insolia, A.; Pirrone, V.; Zuccarello, F.] Univ Catania, Catania, Italy.
[Anastasi, G. A.; Caruso, R.; Insolia, A.; Pirrone, V.; Zuccarello, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy.
[Cester, R.; Tonachini, A.] Univ Turin, Turin, Italy.
[Cester, R.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy.
[Bleve, C.; Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Lecce, Italy.
[Bleve, C.; Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Lecce, Italy.
[Di Matteot, A.; Petrera, S.; Rizi, V.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy.
[Di Matteot, A.; Petrera, S.; Rizi, V.] Sezione Ist Nazl Fis Nucl, Laquila, Italy.
[Petrera, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Laquila, Italy.
[Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy.
[Bonifazi, C.; Grillo, A. F.] Ist Nazl Fis Nucl, Lab Naz Gran Sasso, Assergi, Laquila, Italy.
[Aglietta, M.; Castellina, A.; Gorgi, A.; Morello, C.] Osservatorio Astrofis Torino, INAF, Turin, Italy.
[Aglietta, M.; Bertaina, M. E.; Castellina, A.; Chiavassa, A.; Collica, L.; Gorgi, A.; Latronico, L.; Morello, C.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy.
[Bertaina, M. E.; Chiavassa, A.] Univ Turin, Turin, Italy.
[Lopez, R.; Martinez Bravo, O.; Parra, A.; Salazar, H.; Varela, E.] Benemerita Univ Autonoma Puebla, Puebla, Mexico.
[Martinez, H.; Zepeda, A.] CINVESTAV, IPN, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico.
[Pelayo, R.] Inst Politecn Nacl, Unidad Profes Interdisciplinaria Ingn & Tecnol Av, Mexico City, DF, Mexico.
[Caballero-Mora, K. S.] Univ Autonoma Chiapas, Tuxtla Gutierrez, Chiapas, Mexico.
[Chavez, A. G.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico.
[Alvarez Castillo, J.; D'Olivo, J. C.; Medina-Tanco, G.; Nellen, L.; Valdes Galicia, J. F.; Vargas Cardenas, B.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico.
[Aminaei, A.; Buitink, S.; de Jong, S. J.; De Mauro, G.; Falcke, H.; Horandel, J. R.; Jansen, S.; Nelles, A.; Schulz, J.; Timmermans, C.; van Aar, G.; van Velzen, S.; Wykes, S.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands.
[Docters, W.; Messina, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, KVI Ctr Adv Radiat Technol, Groningen, Netherlands.
[de Jong, S. J.; Falcke, H.; Horandel, J. R.; Jansen, S.; Nelles, A.; Timmermans, C.] Nikhef, Sci Pk, Amsterdam, Netherlands.
[Falcke, H.] ASTRON, Dwingeloo, Netherlands.
[Borodai, N.; Pekala, J.; Porowski, C.; Stasielak, J.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland.
[Giller, M.; Glas, D.; Smialkowski, A.; Szadkowski, Z.] Univ Lodz, PL-90131 Lodz, Poland.
[Abreu, P.; Andringa, S.; Assis, P.; Blanco, A.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Lopes, L.; Pimenta, M.; Sarmento, R.; Tome, B.] Univ Lisbon, Lab Instrumentacao & Fis Expt Particulas LIP, P-1699 Lisbon, Portugal.
[Abreu, P.; Andringa, S.; Assis, P.; Blanco, A.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Lopes, L.; Pimenta, M.; Sarmento, R.; Tome, B.] Univ Lisbon, Inst Super Tecn, P-1699 Lisbon, Portugal.
[Brancus, I.; Gherghel-Lascu, A.; Mitrica, B.; Niculescu-Oglinzanu, M.; Saftoiu, A.; Stanca, D.; Toma, G.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania.
[Caramete, L.; Isar, P. G.] Inst Space Sci, Bucharest, Romania.
[Arsene, N.; Sima, O.] Univ Bucharest, Dept Phys, Bucharest, Romania.
[Badescu, A. M.; Fratu, O.] Univ Politehn Bucuresti, Bucharest, Romania.
[Filipcic, A.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Expt Particle Phys Dept, Ljubljana, Slovenia.
[Filipcic, A.; Mezek, G. Kukec; Saleh, A.; Stanic, S.; Trini, M.; Vorobiov, S.; Yang, L.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia.
[Arqueros, F.; Garcia-Pinto, D.; Minaya, I. A.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain.
[del Pera, L.; Pacheco, N.; Rodriguez-Frias, M. D.; Vlcek, B.] Univ Alcala de Henares, Madrid, Spain.
[Bueno, A.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.] Univ Granada, Granada, Spain.
[Bueno, A.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.] CAFPE, Granada, Spain.
[Alvarez-Muniz, J.; Lopez Casado, A.; Parente, G.; Rodrigues de Carvalho, W.; Torralba Elipe, G.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain.
[Covault, C. E.; Ferguson, A. P.; LaHurd, D.; Quinn, S.] Case Western Reserve Univ, Cleveland, OH 44106 USA.
[Johnsen, J. A.; Medina, C.; Sarazin, F.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA.
[Brack, J.; Dorofeev, A.; Gookin, B.; Harton, J. L.; Petrov, Y.] Colorado State Univ, Ft Collins, CO 80523 USA.
[Anchordoqui, L.; Paul, T.] CUNY Herbert H Lehman Coll, Dept Phys & Astron, Bronx, NY 10468 USA.
[Ahn, E. J.; Escobar, C. O.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.] Fermilab Natl Accelerator Lab, Batavia, IL USA.
[Matthews, J.; Shadkam, A.] Louisiana State Univ, Baton Rouge, LA 70803 USA.
[Dhita, N.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.; Yapici, T.] Michigan Technol Univ, Houghton, MI 49931 USA.
[Awal, N.; Farrar, G.; Unger, M.] NYU, New York, NY USA.
[Paul, T.; Srivastava, Y. N.; Swain, J.; Widom, A.] Northeastern Univ, Boston, MA 02115 USA.
[Allison, P.; Beatty, J. J.; Gordon, J.; Griffith, N.; Stapleton, J.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA.
[Coleman, A.; Coutu, S.; Mostafa, M.; Oikonomou, F.; Phuntsok, J.; Greus, F. Salesa; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA.
[Cronin, J.; Fang, K.; Fujii, T.; Olinto, A.; Privitera, R.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.
[Gorham, P.; Schoorlemmer, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA.
[Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA.
[Lauer, R.; Matthews, J. A. J.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds, W Yorkshire, England.
[Scholten, O.] Vrije Univ Brussels, Brussels, Belgium.
RP Aab, A (reprint author), Univ Siegen, Fachbereich Phys Expt Teilchenphys 7, D-57068 Siegen, Germany.
EM auger_spokespersons@fnal.gov
RI Fauth, Anderson/F-9570-2012; Abreu, Pedro/L-2220-2014; Assis,
Pedro/D-9062-2013; Navas, Sergio/N-4649-2014; Arqueros,
Fernando/K-9460-2014; Cazon, Lorenzo/G-6921-2014; Conceicao,
Ruben/L-2971-2014; Bueno, Antonio/F-3875-2015; Beatty,
James/D-9310-2011; Sao Carlos Institute of Physics,
IFSC/USP/M-2664-2016; de Mello Neto, Joao/C-5822-2013; Gouffon,
Philippe/I-4549-2012; Badescu, Alina/B-6087-2012; Rosado,
Jaime/K-9109-2014; zas, enrique/I-5556-2015; Chinellato, Jose
Augusto/I-7972-2012; Caramete, Laurentiu/C-2328-2011; Chinellato, Carola
Dobrigkeit /F-2540-2011; Brogueira, Pedro/K-3868-2012; Moura Santos,
Edivaldo/K-5313-2016; Tome, Bernardo/J-4410-2013; Alvarez-Muniz,
Jaime/H-1857-2015; Ridky, Jan/H-6184-2014; Pimenta, Mario/M-1741-2013;
de souza, Vitor/D-1381-2012; Guarino, Fausto/I-3166-2012; Zuccarello,
Francesca/R-1834-2016; Colalillo, Roberta/R-5088-2016; Buscemi,
Mario/R-5071-2016; Valino, Ines/J-8324-2012; Horvath, Pavel/G-6334-2014;
De Mitri, Ivan/C-1728-2017; Mitrica, Bogdan/D-5201-2009; Alves Batista,
Rafael/K-6642-2012; Nosek, Dalibor/F-1129-2017
OI Del Peral, Luis/0000-0003-2580-5668; Coutu,
Stephane/0000-0003-2923-2246; Fauth, Anderson/0000-0001-7239-0288;
Abreu, Pedro/0000-0002-9973-7314; Assis, Pedro/0000-0001-7765-3606;
Navas, Sergio/0000-0003-1688-5758; Arqueros,
Fernando/0000-0002-4930-9282; Cazon, Lorenzo/0000-0001-6748-8395;
Conceicao, Ruben/0000-0003-4945-5340; Bueno,
Antonio/0000-0002-7439-4247; Beatty, James/0000-0003-0481-4952; de Mello
Neto, Joao/0000-0002-3234-6634; Gouffon, Philippe/0000-0001-7511-4115;
Rosado, Jaime/0000-0001-8208-9480; zas, enrique/0000-0002-4430-8117;
Chinellato, Jose Augusto/0000-0002-3240-6270; Chinellato, Carola
Dobrigkeit /0000-0002-1236-0789; Brogueira, Pedro/0000-0001-6069-4073;
Moura Santos, Edivaldo/0000-0002-2818-8813; Tome,
Bernardo/0000-0002-7564-8392; Alvarez-Muniz, Jaime/0000-0002-2367-0803;
Novotny, Vladimir/0000-0002-4319-4541; Garcia,
Beatriz/0000-0003-0919-2734; Nunez, Luis/0000-0003-4575-5899; Ridky,
Jan/0000-0001-6697-1393; Pimenta, Mario/0000-0002-2590-0908; Rizi,
Vincenzo/0000-0002-5277-6527; Garcia Pinto, Diego/0000-0003-1348-6735;
Guarino, Fausto/0000-0003-1427-9885; Zuccarello,
Francesca/0000-0003-1853-2550; Colalillo, Roberta/0000-0002-4179-9352;
Buscemi, Mario/0000-0003-2123-5434; Valino, Ines/0000-0001-7823-0154;
Horvath, Pavel/0000-0002-6710-5339; De Mitri, Ivan/0000-0002-8665-1730;
Alves Batista, Rafael/0000-0003-2656-064X; Nosek,
Dalibor/0000-0001-6219-200X
FU Comision Nacional de Energia Atomica, Argentina; Agencia Nacional de
Promocion Cientifica y Tecnologica (ANPCyT), Argentina; Consejo Nacional
de Investigaciones Cientificas y Tecnicas (CONICET), Argentina; Gobierno
de la Provincia de Mendoza, Argentina; Municipalidad de Malargue,
Argentina; NDM Holdings, Argentina; Valle Las Lenas, Argentina;
Australian Research Council [DP150101622]; Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil; Financiadora de
Estudos e Projetos (FINEP), Brazil; Fundacao de Amparo a Pesquisa do
Estado de Rio de Janeiro (FAPERJ), Brazil; Sao Paulo Research Foundation
(FAPESP), Brazil [2010/07359-6, 1999/05404-3]; Ministerio de Ciencia e
Tecnologia (MCT), Brazil; Czech Science Foundation, Czech Republic
[14-17501S]; Centre de Calcul IN2P3/CNRS, France; Centre National de la
Recherche Scientifique (CNRS), France; Conseil Regional Ile-de-France,
France; Departement Physique Nucleaire et Corpusculaire
(PNC-IN2P3/CNRS), France; Departement Sciences de l'Univers
(SDU-INSU/CNRS), France; Institut Lagrange de Paris (ILP) within the
Investissements d'Avenir Programme, France [LABEX ANR-10-LABX-63,
ANR-11-IDEX-0004-02]; Bundesministerium fur Bildung und Forschung
(BMBF), Germany; Deutsche Forschungsgemeinschaft (DFG), Germany;
Finanzministerium Baden-Wurttemberg, Germany; Helmholtz Alliance for
Astroparticle Physics (HAP), Germany; Helmholtz-Gemeinschaft Deutscher
Forschungszentren (HGF), Germany; Ministerium fur Wissenschaft und
Forschung, Nordrhein Westfalen, Germany; Ministerium fur Wissenschaft,
Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di
Fisica Nucleare (INFN), Italy; Istituto Nazionale di Astrofisica (INAF),
Italy; Ministero dell'Istruzione, dell'Universita e della Ricerca
(MIUR), Italy; Gran Sasso Center for Astroparticle Physics (CFA), Italy;
CETEMPS Center of Excellence, Ministero degli Affari Esteri (MAE),
Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico;
Ministerie van Onderwijs, Cultuur en Wetenschap, Netherlands;
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO),
Netherlands; Stichting voor Fundamenteel Onderzoek der Materie (FOM),
Netherlands; National Centre for Research and Development, Poland
[ERA-NET-ASPERA/01/11, ERA-NET-ASPERA/02/11]; National Science Centre,
Poland [2013/08/M/ST9/00322, 2013/08/M/ST9/00728, HARMONIA 5 -
2013/10/M/ST9/00062]; Portuguese national funds, Portugal; FEDER funds
within Programa Operacional Factores de Competitividade through Fundacao
para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority
for Scientific Research ANCS, CNDI-UEFISCDI partnership projects,
Romania [20/2012, 194/2012, 1/ASPERA2/2012 ERA-NET,
PN-II-RU-PD-2011-3-0145-17, PN-II-RU-PD-2011-3-0062]; Minister of
National Education, Programme Space Technology and Advanced Research
(STAR), Romania [83/2013]; Slovenian Research Agency, Slovenia;
Comunidad de Madrid, Spain; FEDER funds, Spain; Ministerio de Educacion
y Ciencia, Spain; Xunta de Galicia, Spain; European Community 7th
Framework Program, Spain [FP7-PEOPLE-2012-IEF-328826]; Science and
Technology Facilities Council, United Kingdom; Department of Energy,
U.S.A. [DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107,
DE-SC0011689]; National Science Foundation, U.S.A. [0450696]; Grainger
Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET,
European Particle Physics Latin American Network, European Union 7th
Framework Program [PIRSES-2009-GA-246806]; UNESCO; [MSMT-CR LG13007];
[7AMB14AR005]
FX The successful installation, commissioning, and operation of the Pierre
Auger Observatory would not have been possible without the strong
commitment and effort from the technical and administrative staff in
Malargue. We are very grateful to the following agencies and
organizations for financial support:; Comision Nacional de Energia
Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica
(ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas
(CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de
Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their
continuing cooperation over land access, Argentina; the Australian
Research Council (DP150101622); Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos
(FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro
(FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6
and No. 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil;
Grant No. MSMT-CR LG13007, No. 7AMB14AR005, and the Czech Science
Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul
IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil
Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire
(PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS),
Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63, within
the Investissements d'Avenir Programme Grant No. ANR-11-IDEX-0004-02,
France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche
Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg,
Helmholtz Alliance for Astroparticle Physics (HAP),
Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium
fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur
Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto
Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica
(INAF), Ministero dell'Istruzione, dell'Universita e della Ricerca
(MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS
Center of Excellence, Ministero degli Affari Esteri (MAE), Italy;
Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie
van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek
der Materie (FOM), Netherlands; National Centre for Research and
Development, Grants No. ERA-NET-ASPERA/01/11 and No.
ERA-NET-ASPERA/02/11, National Science Centre, Grants No.
2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5 -
2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds
within Programa Operacional Factores de Competitividade through Fundacao
para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority
for Scientific Research ANCS, CNDI-UEFISCDI partnership projects Grants
No. 20/2012 and No. 194/2012, Grants No. 1/ASPERA2/2012 ERA-NET, No.
PN-II-RU-PD-2011-3-0145-17 and No. PN-II-RU-PD-2011-3-0062, the Minister
of National Education, Programme Space Technology and Advanced Research
(STAR), Grant No. 83/2013, Romania; Slovenian Research Agency, Slovenia;
Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia,
Xunta de Galicia, European Community 7th Framework Program, Grant No.
FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities
Council, United Kingdom; Department of Energy, Contracts No.
DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No.
DE-SC0011689, National Science Foundation, Grant No. 0450696, The
Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie
Curie-IRSES/EPLANET, European Particle Physics Latin American Network,
European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806;
and UNESCO.
NR 21
TC 2
Z9 2
U1 12
U2 28
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD JAN
PY 2016
VL 11
AR P01018
DI 10.1088/1748-0221/11/01/P01018
PG 31
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA DF6MM
UT WOS:000371469800106
ER
PT J
AU Abir, MI
Islam, FF
Craft, A
Williams, WJ
Wachs, DM
Chichester, DL
Meyer, MK
Lee, HK
AF Abir, M. I.
Islam, F. F.
Craft, A.
Williams, W. J.
Wachs, D. M.
Chichester, D. L.
Meyer, M. K.
Lee, H. K.
TI Determination of optimal imaging parameters for the reconstruction of a
nuclear fuel assembly using limited angle neutron tomography
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT International Workshop on Imaging
CY SEP 07-10, 2015
CL Varenna, ITALY
DE Image reconstruction in medical imaging; Inspection with neutrons;
Neutron radiography
ID TOMOSYNTHESIS; REMOVAL; CT
AB The core components of nuclear reactors (e.g., fuel assemblies, spacer grids, control rods) encounter harsh environments due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of nuclear power plants; post-irradiation examination (PIE) can reveal information about the integrity of these components. Neutron computed tomography (CT) is one important PIE measurement tool for nondestructively evaluating the structural integrity of these items. CT typically requires many projections to be acquired from different view angles, after which a mathematical algorithm is used for image reconstruction. However, when working with heavily irradiated materials and irradiated nuclear fuel, obtaining many projections is laborious and expensive. Image reconstruction from a smaller number of projections has been explored to achieve faster and more cost-efficient PIE. Classical reconstruction methods (e.g., filtered backprojection), unfortunately, do not typically offer stable reconstructions from a highly asymmetric, few-projection data set and often create severe streaking artifacts. We propose an iterative reconstruction technique to reconstruct curved, plate-type nuclear fuel assemblies using limited-angle CT. The performance of the proposed method is assessed using simulated data and validated through real projections. We also discuss the systematic strategy for establishing the conditions of reconstructions and finding the optimal imaging parameters for reconstructions of the fuel assemblies from few projections using limited-angle CT. Results show that a fuel assembly can be reconstructed using limited-angle CT if 36 or more projections are taken from a particular direction with 1 degrees angular increment.
C1 [Abir, M. I.; Craft, A.; Williams, W. J.; Wachs, D. M.; Chichester, D. L.; Meyer, M. K.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA.
[Islam, F. F.; Lee, H. K.] Missouri Univ Sci & Technol, Dept Min & Nucl Engn, 301 W 14th St, Rolla, MO 65409 USA.
RP Abir, MI (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA.
EM muhammad.abir@inl.gov
RI Craft, Aaron/B-7579-2017
OI Craft, Aaron/0000-0002-7092-3826
NR 17
TC 0
Z9 0
U1 2
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD JAN
PY 2016
VL 11
AR C01016
DI 10.1088/1748-0221/11/01/C01016
PG 17
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA DF6MM
UT WOS:000371469800016
ER
PT J
AU Anderson, J
Borga, A
Boterenbrood, H
Chen, H
Chen, K
Drake, G
Donszelmann, M
Francis, D
Gorini, B
Lanni, F
Miotto, GL
Levinson, L
Narevicius, J
Roich, A
Ryu, S
Schreuder, F
Schumacher, J
Vandelli, W
Vermeulen, J
Wu, W
Zhang, J
AF Anderson, J.
Borga, A.
Boterenbrood, H.
Chen, H.
Chen, K.
Drake, G.
Donszelmann, M.
Francis, D.
Gorini, B.
Lanni, F.
Miotto, G. Lehmann
Levinson, L.
Narevicius, J.
Roich, A.
Ryu, S.
Schreuder, F.
Schumacher, J.
Vandelli, W.
Vermeulen, J.
Wu, W.
Zhang, J.
TI A new approach to front-end electronics interfacing in the ATLAS
experiment
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT Topical Workshop on Electronics for Particle Physics
CY SEP 28-OCT 02, 2015
CL Lisbon, PORTUGAL
DE Data acquisition circuits; Data acquisition concepts
AB For new detector and trigger systems to be installed in the ATLAS experiment after LHC Run 2, a new approach will be followed for Front-End electronics interfacing. The FELIX (Front-End LInk eXchange) system will function as gateway connecting: on one side to detector and trigger electronics links, as well as providing timing and trigger information; and on the other side a commodity switched network built using standard technology (either Ethernet or Infiniband). The new approach is described in this paper, and results achieved so far are presented.
C1 [Anderson, J.; Drake, G.; Ryu, S.; Zhang, J.] Argonne Natl Lab, 9700 South Cass Ave B109, Lemont, IL 60439 USA.
[Chen, H.; Chen, K.; Lanni, F.; Wu, W.] Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA.
[Francis, D.; Gorini, B.; Miotto, G. Lehmann; Schumacher, J.; Vandelli, W.] CERN, CH-1211 Geneva 23, Switzerland.
[Borga, A.; Boterenbrood, H.; Schreuder, F.; Vermeulen, J.] Univ Amsterdam, Nikhef Natl Inst Subatom Phys, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands.
[Schumacher, J.] Univ Paderborn, Dept Comp Sci, Pohlweg 47, D-33098 Paderborn, Germany.
[Levinson, L.; Narevicius, J.; Roich, A.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel.
[Donszelmann, M.] Radboud Univ Nijmegen, Comeniuslaan 4, NL-6525 HP Nijmegen, Netherlands.
RP Borga, A (reprint author), Univ Amsterdam, Nikhef Natl Inst Subatom Phys, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands.
EM andrea.borga@nikhef.nl
NR 2
TC 3
Z9 3
U1 1
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD JAN
PY 2016
VL 11
AR C01055
DI 10.1088/1748-0221/11/01/C01055
PG 10
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA DF6MM
UT WOS:000371469800055
ER
PT J
AU Bartoldus, R
Claus, R
Garelli, N
Herbst, RT
Huffer, M
Lakovidis, G
Iordanidou, K
Kwan, K
Kocian, M
Lankford, AJ
Moschovakos, P
Nelson, A
Ntekas, K
Ruckman, L
Russell, J
Schernau, M
Schlenker, S
Su, D
Valderanis, C
Wittgen, M
Yildiz, SC
AF Bartoldus, R.
Claus, R.
Garelli, N.
Herbst, R. T.
Huffer, M.
Lakovidis, G.
Iordanidou, K.
Kwan, K.
Kocian, M.
Lankford, A. J.
Moschovakos, P.
Nelson, A.
Ntekas, K.
Ruckman, L.
Russell, J.
Schernau, M.
Schlenker, S.
Su, D.
Valderanis, C.
Wittgen, M.
Yildiz, S. C.
TI A new ATLAS muon CSC readout system with system on chip technology on
ATCA platform
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT Topical Workshop on Electronics for Particle Physics
CY SEP 28-OCT 02, 2015
CL Lisbon, PORTUGAL
DE Electronic detector readout concepts (gas, liquid); Modular electronics;
Data acquisition concepts
AB The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.
C1 [Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Kocian, M.; Ruckman, L.; Russell, J.; Su, D.; Wittgen, M.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA.
[Lakovidis, G.; Iordanidou, K.; Moschovakos, P.; Ntekas, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Iordanidou, K.] Univ Athens, GR-10679 Athens, Greece.
[Kwan, K.] Chinese Univ Hong Kong, Hong Kong, Peoples R China.
[Lankford, A. J.; Nelson, A.; Schernau, M.; Yildiz, S. C.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Moschovakos, P.; Ntekas, K.] Natl Tech Univ Athens, Athens 15973, Greece.
[Schlenker, S.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland.
[Valderanis, C.] Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany.
[Iordanidou, K.] Columbia Univ, Nevis Lab, Irvington, NY USA.
RP Yildiz, SC (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA.
EM cenk.yildiz@cern.ch
NR 6
TC 0
Z9 0
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD JAN
PY 2016
VL 11
AR C01059
DI 10.1088/1748-0221/11/01/C01059
PG 10
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA DF6MM
UT WOS:000371469800059
ER
PT J
AU Fernandez-Martinez, P
Ullan, M
Flores, D
Hidalgo, S
Quirion, D
Lynn, D
AF Fernandez-Martinez, P.
Ullan, M.
Flores, D.
Hidalgo, S.
Quirion, D.
Lynn, D.
TI Rad-hard vertical JFET switch for the HV-MUX system of the ATLAS upgrade
Inner Tracker
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT Topical Workshop on Electronics for Particle Physics
CY SEP 28-OCT 02, 2015
CL Lisbon, PORTUGAL
DE Radiation-hard electronics; Voltage distributions; Large detector
systems for particle and astroparticle physics
ID SIMULATION; DETECTORS
AB This work presents a new silicon vertical JFET (V-JFET) device, based on the trenched 3D-detector technology developed at IMB-CNM, to be used as a switch for the High-Voltage powering scheme of the ATLAS upgrade Inner Tracker. The optimization of the device characteristics is performed by 2D and 3D TCAD simulations. Special attention has been paid to the on-resistance and the switch-off and breakdown voltages to meet the specific requirements of the system. In addition, a set of parameter values has been extracted from the simulated curves to implement a SPICE model of the proposed V-JFET transistor. As these devices are expected to operate under very high radiation conditions during the whole experiment life-time, a study of the radiation damage effects and the expected degradation of the device performance is also presented at the end of the paper.
C1 [Fernandez-Martinez, P.; Ullan, M.; Flores, D.; Hidalgo, S.; Quirion, D.] CSIC, IMB CNM, Inst Microelect Barcelona, Campus UAB, E-08193 Bellaterra, Barcelona, Spain.
[Lynn, D.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Fernandez-Martinez, P (reprint author), CSIC, IMB CNM, Inst Microelect Barcelona, Campus UAB, E-08193 Bellaterra, Barcelona, Spain.
EM pablo.fernandez@csic.es
RI Hidalgo, Salvador/B-2649-2012;
OI Hidalgo, Salvador/0000-0002-8070-3499; Quirion,
David/0000-0002-5309-0535
NR 9
TC 1
Z9 1
U1 2
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD JAN
PY 2016
VL 11
AR C01043
DI 10.1088/1748-0221/11/01/C01043
PG 11
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA DF6MM
UT WOS:000371469800043
ER
PT J
AU Khachatryan, V
Sirunyan, AM
Tumasyan, A
Adam, W
Asilar, E
Bergauer, T
Brandstetter, J
Brondolin, E
Dragicevic, M
Ero, J
Flechl, M
Friedl, M
Fruhwirth, R
Ghete, VM
Hartl, C
Hormann, N
Hrubec, J
Jeitler, M
Knunz, V
Konig, A
Krammer, M
Kratschmer, I
Liko, D
Matsushita, T
Mikulec, I
Rabady, D
Rahbaran, B
Rohringer, H
Schieckl, J
Schofbeck, R
Strauss, J
Treberer-Treberspurg, W
Waltenberger, W
Wulz, CE
Mossolov, V
Shumeiko, N
Gonzalez, JS
Alderweireldt, S
Cornelis, T
De Wolf, EA
Janssen, X
Knutsson, A
Lauwers, J
Luyckx, S
Ochesanu, S
Rougny, R
Van de Klundert, M
Van Haevermaet, H
Van Mechelen, P
Van Remortel, N
Van Spilbeeck, A
Abu Zeid, S
Blekman, F
D'Hondt, J
Daci, N
De Bruyn, I
Deroover, K
Heracleous, N
Keaveney, J
Lowette, S
Moreels, L
Olbrechts, A
Python, Q
Strom, D
Tavernier, S
Van Doninck, W
Van Mulders, P
Van Onsem, GP
Van Parijs, I
Barria, P
Brun, H
Caillol, C
Clerbaux, B
De Lentdecker, G
Delannoy, H
Fasanella, G
Favart, L
Gay, APR
Grebenyuk, A
Karapostoli, G
Lenzi, T
Leonard, A
Maerschalk, T
Marinov, A
Pernie, L
Randle-Conde, A
Reis, T
Seva, T
Velde, CV
Vanlaer, P
Yonamine, R
Zenoni, F
Zhang, F
Beernaert, K
Benucci, L
Cimmino, A
Crucy, S
Dobur, D
Fagot, A
Garcia, G
Gul, M
Mccartin, J
Rios, AAO
Poyraz, D
Ryckbosch, D
Salva, S
Sigamani, M
Strobbe, N
Tytgat, M
Van Driessche, W
Yazgan, E
Zaganidis, N
Basegmez, S
Beluffi, C
Bondu, O
Brochet, S
Bruno, G
Castello, R
Caudron, A
Ceard, L
Da Silveira, GG
Delaere, C
Favart, D
Forthomme, L
Giammanco, A
Hollar, J
Jafari, A
Jez, P
Komm, M
Lemaitre, V
Mertens, A
Nuttens, C
Perrini, L
Pin, A
Piotrzkowski, K
Popov, A
Quertenmont, L
Selvaggi, M
Marono, MV
Belly, N
Hammad, GH
Alda, WL
Alves, GA
Brito, L
Martins, MC
Hamer, M
Hensel, C
Herrera, CM
Moraes, A
Pol, ME
Teles, PR
Das Chagas, EBB
Carvalho, W
Chinellato, J
Custodio, A
Da Costa, EM
Damiao, DD
Martins, CD
De Souza, SF
Guativa, LMH
Malbouisson, H
Figueiredo, DM
Mundim, L
Nogima, H
Da Silva, WLP
Santoro, A
Sznajder, A
Manganote, EJT
Pereira, AV
Ahuja, S
Bernardes, CA
Santos, AD
Dogra, S
Tomei, TRFP
Gregores, EM
Mercadante, PG
Moon, CS
Novaes, SF
Padula, SS
Abad, DR
Vargas, JCR
Aleksandrov, A
Hadjiiska, R
Iaydjiev, P
Rodozov, M
Stoykova, S
Sultanov, G
Vutova, M
Dimitrov, A
Glushkov, I
Litov, L
Pavlov, B
Petkov, P
Ahmad, M
Bian, JG
Chen, GM
Chen, HS
Chen, M
Cheng, T
Du, R
Jiang, CH
Plestina, R
Romeo, F
Shaheen, SM
Tao, J
Wang, C
Wang, Z
Zhang, H
Asawatangtrakuldee, C
Ban, Y
Li, Q
Liu, S
Mao, Y
Qian, SJ
Wang, D
Xu, Z
Zou, W
Avila, C
Cabrera, A
Sierra, LFC
Florez, C
Gomez, JP
Moreno, BG
Sanabria, JC
Godinovic, N
Lelas, D
Puljak, I
Cipriano, PMR
Antunovic, Z
Kovac, M
Brigljevic, V
Kadija, K
Luetic, J
Micanovic, S
Sudic, L
Attikis, A
Mavromanolakis, G
Mousa, J
Nicolaou, C
Ptochos, F
Razis, PA
Rykaczewski, H
Bodlak, M
Finger, M
Finger, M
Abdelalim, AA
Awad, A
El Sawy, M
Mahrous, A
Mohammed, Y
Radi, A
Calpas, B
Kadastik, M
Murumaa, M
Raidal, M
Tiko, A
Veelken, C
Eerola, P
Pekkanen, J
Voutilainen, M
Harkonen, J
Karimaki, V
Kinnunen, R
Lampen, T
Lassila-Perini, K
Lehti, S
Linden, T
Luukka, P
Maenpaa, T
Peltola, T
Tuominen, E
Tuominiemi, J
Tuovinen, E
Wendland, L
Talvitie, J
Tuuva, T
Besancon, M
Couderc, F
Dejardin, M
Denegri, D
Fabbro, B
Faure, JL
Favaro, C
Ferri, F
Ganjour, S
Givernaud, A
Gras, P
de Monchenault, GH
Jarry, P
Locci, E
Machet, M
Malcles, J
Rander, J
Rosowsky, A
Titov, M
Zghiche, A
Antropov, I
Baffioni, S
Beaudette, F
Busson, P
Cadamuro, L
Chapon, E
Charlot, C
Dahms, T
Davignon, O
Filipovic, N
Florent, A
de Cassagnac, RG
Lisniak, S
Mastrolorenzo, L
Mine, P
Naranjo, IN
Nguyen, M
Ochando, C
Ortona, G
Paganini, P
Pigard, P
Regnard, S
Salerno, R
Sauvan, JB
Sirois, Y
Strebler, T
Yilmaz, Y
Zabi, A
Agram, JL
Andrea, J
Aubin, A
Bloch, D
Brom, JM
Buttignol, M
Chabert, EC
Chanon, N
Collard, C
Conte, E
Coubez, X
Fontaine, JC
Gele, D
Goerlach, U
Goetzmann, C
Le Bihan, AC
Merlin, JA
Skovpen, K
Van Hove, P
Gadrat, S
Beauceron, S
Bernet, C
Boudoul, G
Bouvier, E
Montoya, CAC
Chierici, R
Contardo, D
Courbon, B
Depasse, P
El Mamouni, H
Fan, J
Fay, J
Gascon, S
Gouzevitch, M
Ille, B
Lagarde, F
Laktineh, IB
Lethuillier, M
Mirabito, L
Pequegnot, AL
Perries, S
Alvarez, JDR
Sabes, D
Sgandurra, L
Sordini, V
Donckt, MV
Verdier, P
Viret, S
Xiao, H
Tsamalaidze, Z
Autermann, C
Beranek, S
Edelhoff, M
Feld, L
Heister, A
Kiesel, MK
Klein, K
Lipinski, M
Ostapchuk, A
Preuten, M
Raupach, F
Schael, S
Schulte, JF
Verlage, T
Weber, H
Wittmer, B
Zhukov, V
Ata, M
Brodski, M
Dietz-Laursonn, E
Duchardt, D
Endres, M
Erdmann, M
Erdweg, S
Esch, T
Fischer, R
Guth, A
Hebbeker, T
Heidemann, C
Hoepfner, K
Klingebiel, D
Knutzen, S
Kreuzer, P
Merschmeyer, M
Meyer, A
Millet, P
Olschewski, M
Padeken, K
Papacz, P
Pook, T
Radziej, M
Reithler, H
Rieger, M
Scheuch, F
Sonnenschein, L
Teyssier, D
Thuer, S
Cherepanov, V
Erdogan, Y
Flugge, G
Geenen, H
Geisler, M
Hoehle, F
Kargoll, B
Kress, T
Kuessel, Y
Khunsken, A
Lingemann, J
Nehrkorn, A
Nowack, A
Nugent, IM
Pistone, C
Pooth, O
Stahl, A
Martin, MA
Asin, I
Bartosik, N
Behnke, O
Behrens, U
Bell, AJ
Borras, K
Burgmeier, A
Cakir, A
Calligaris, L
Campbell, A
Choudhury, S
Costanza, F
Pardos, CD
Dolinska, G
Dooling, S
Dorland, T
Eckerlin, G
Eckstein, D
Eichhorn, T
Flucke, G
Gallo, E
Garcia, JG
Geiser, A
Gizhko, A
Gunnellini, P
Hauk, J
Hempel, M
Jung, H
Kalogeropoulos, A
Karacheban, O
Kasemann, M
Katsas, P
Kieseler, J
Kleinwort, C
Korol, I
Lange, W
Leonard, J
Lipka, K
Lobanov, A
Lohmann, W
Mankel, R
Marfin, I
Melzer-Pellmann, IA
Meyer, AB
Mittag, G
Mnich, J
Mussgiller, A
Naumann-Emme, S
Nayak, A
Ntomari, E
Perrey, H
Pitzl, D
Placakyte, R
Raspereza, A
Roland, B
Sahin, MO
Saxena, P
Schoerner-Sadenius, T
Schroder, M
Seitz, C
Spannagel, S
Trippkewitz, KD
Walsh, R
Wissing, C
Blobel, V
Vignali, MC
Draeger, AR
Erfle, J
Garutti, E
Goebel, K
Gonzalez, D
Gorner, M
Haller, J
Hoffmann, M
Hoing, RS
Junkes, A
Klanner, R
Kogler, R
Lapsien, T
Lenz, T
Marchesini, I
Marconi, D
Meyer, M
Nowatschin, D
Ott, J
Pantaleo, F
Peiffer, T
Perieanu, A
Pietsch, N
Poehlsen, J
Rathjens, D
Sander, C
Schettler, H
Schleper, P
Schlieckau, E
Schmidt, A
Schwandt, J
Seidel, M
Sola, V
Stadie, H
Steinbruck, G
Tholen, H
Troendle, D
Usai, E
Vanelderen, L
Vanhoefer, A
Vormwald, B
Akbiyik, M
Barth, C
Baus, C
Berger, J
Boser, C
Butz, E
Chwalek, T
Colombo, F
De Boer, W
Descroix, A
Dierlamm, A
Fink, S
Frensch, F
Giffels, M
Gilbert, A
Hartmann, F
Heindl, SM
Husemann, U
Katkov, I
Kornmayer, A
Pardo, PL
Maier, B
Mildner, H
Mozer, MU
Muller, T
Muller, T
Plagge, M
Quast, G
Rabbertz, K
Rocker, S
Roscher, F
Simonis, HJ
Stober, FM
Ulrich, R
Wagner-Kuhr, J
Wayand, S
Weber, M
Weiler, T
Wohrmann, C
Wolf, R
Anagnostou, G
Daskalakis, G
Geralis, T
Giakoumopoulou, VA
Kyriakis, A
Loukas, D
Psallidas, A
Topsis-Giotis, I
Agapitos, A
Kesisoglou, S
Panagiotou, A
Saoulidou, N
Tziaferi, E
Evangelou, I
Flouris, G
Foudas, C
Kokkas, P
Loukas, N
Manthos, N
Papadopoulos, I
Paradas, E
Strologas, J
Bencze, G
Hajdu, C
Hazi, A
Hidas, P
Horvath, D
Sikler, F
Veszpremi, V
Vesztergombi, G
Zsigmond, AJ
Beni, N
Czellar, S
Karancsi, J
Molnar, J
Szillasi, Z
Bartok, M
Makovec, A
Raics, P
Trocsanyi, ZL
Ujvari, B
Mal, P
Mandal, K
Sahoo, N
Swain, SK
Bansal, S
Beni, SB
Bhatnagar, V
Chawla, R
Gupta, R
Bhawandeep, U
Kalsi, AK
Kaur, A
Kaur, M
Kumar, R
Mehta, A
Mittal, M
Singh, JB
Walia, G
Kumar, A
Bhardwaj, A
Choudhary, BC
Garg, RB
Kumar, A
Malhotra, S
Naimuddin, M
Nishu, N
Ranjan, K
Sharma, R
Sharma, V
Banerjee, S
Bhattacharya, S
Chatterjee, K
Dey, S
Dutta, S
Jain, S
Majumdar, N
Modak, A
Mondal, K
Mukherjee, S
Mukhopadhyay, S
Roy, A
Roy, D
Chowdhury, SR
Sarkar, S
Sharan, M
Abdulsalam, A
Chudasama, R
Dutta, D
Jha, V
Kumar, V
Mohanty, AK
Pant, LM
Shukla, P
Topkar, A
Aziz, T
Banerjee, S
Bhowmik, S
Chatterjee, RM
Dewanjee, RK
Dugad, S
Ganguly, S
Ghosh, S
Guchait, M
Gurtu, A
Kole, G
Kumar, S
Mahakud, B
Maity, M
Majumder, G
Mazumdar, K
Mitra, S
Mohanty, GB
Parida, B
Sarkar, T
Sudhakar, K
Sur, N
Sutar, B
Wickramage, N
Chauhan, S
Dube, S
Sharma, S
Bakhshiansohi, H
Behnamian, H
Etesami, SM
Fahim, A
Goldouzian, R
Khakzad, M
Najafabadi, MM
Naseri, M
Mehdiabadi, SP
Hosseinabadi, FR
Safarzadeh, B
Zeinali, M
Felcini, M
Grunewald, M
Abbrescia, M
Calabria, C
Caputo, C
Colaleo, A
Creanza, D
Cristella, L
De Filippis, N
De Palma, M
Fiore, L
Iaseili, G
Maggi, G
Maggi, M
Miniello, G
My, S
Nuzzo, S
Pompili, A
Pugliese, G
Radogna, R
Ranieri, A
Selvaggi, G
Silvestris, L
Venditti, R
Verwilligen, P
Abbiendi, G
Battilana, C
Benvenuti, AC
Bonacorsi, D
Braibant-Giacomelli, S
Brigliadori, L
Campanini, R
Capiluppi, P
Castro, A
Cavallo, FR
Chhibra, SS
Codispoti, G
Cuffiani, M
Dallavalle, GM
Fabbri, F
Fanfani, A
Fasanella, D
Giacomelli, P
Grandi, C
Guiducci, L
Marcellini, S
Masetti, G
Montanari, A
Navarria, FL
Perrotta, A
Rossi, AM
Rovelli, T
Siroli, GP
Tosi, N
Travaglini, R
Cappello, G
Chiorboli, M
Costa, S
Giordano, F
Potenza, R
Tricomi, A
Tuve, C
Barbagli, G
Ciulli, V
Civinini, C
D'Alessandro, R
Focardi, E
Gonzi, S
Gori, V
Lenzi, P
Meschini, M
Paoletti, S
Sguazzoni, G
Tropiano, A
Viliani, L
Benussi, L
Bianco, S
Fabbri, F
Piccolo, D
Primavera, F
Calvelli, V
Ferro, F
Lo Vetere, M
Monge, MR
Robutti, E
Tosi, S
Brianza, L
Dinardo, ME
Fiorendi, S
Gennai, S
Gerosa, R
Ghezzi, A
Govoni, R
Malvezzi, S
Manzoni, RA
Marzocchi, B
Menasce, D
Moroni, L
Paganoni, M
Pedrini, D
Ragazzi, S
Redaelli, N
de Fatis, TT
Buontempo, S
Cavallo, N
Di Guida, S
Esposito, M
Fabozzi, F
Iorio, AOM
Lanza, G
Lista, L
Meola, S
Merola, M
Paolucci, P
Sciacca, C
Thyssen, F
Azzi, P
Bacchetta, N
Bellato, M
Benato, L
Boletti, A
Branca, A
Osso, MD
Dorigo, T
Dosselli, U
Fanzago, F
Gozzelino, A
Gulmini, M
Lacaprara, S
Margoni, M
Meneguzzo, BT
Montecassiano, F
Passaseo, M
Pazzini, J
Pegoraro, M
Pozzobon, N
Ronchese, P
Simonetto, F
Torassa, E
Tosi, M
Vanini, S
Ventura, S
Zanetti, M
Zotto, P
Zucchetta, A
Braghieri, A
Magnani, A
Montagna, P
Raffi, SP
Re, V
Rieeardi, C
Salvini, P
Vai, I
Vitulo, R
Solestizi, LA
Biasini, M
Bilei, GM
Ciangottini, D
Fano, L
Lariccia, P
Mantovani, G
Menichelli, M
Saha, A
Santocchia, A
Spiezia, A
Androsov, K
Azzurri, P
Bagliesi, G
Bernardini, J
Boccali, T
Broccolo, G
Castaldi, R
Ciocci, MA
Dell'Orso, R
Donato, S
Fedi, G
Foa, L
Giassi, A
Grippo, MT
Ligabue, F
Lomtadze, T
Martini, L
Messineo, A
Palla, F
Rizzi, A
Savoy-Navarro, A
Serban, AT
Spagnolo, P
Squillacioti, P
Tenchini, R
Tonelli, G
Venturi, A
Verdini, PG
Barone, L
Cavallari, F
D'imperio, G
Del Re, D
Diemoz, M
Gelli, S
Jorda, C
Longo, E
Margaroli, F
Meridiani, P
Organtini, G
Paramatti, R
Preiato, F
Rahatlou, S
Rovelli, C
Santanastasio, F
Traczyk, P
Amapane, N
Arcidiacono, R
Argiro, S
Arneodo, M
Bellan, R
Biino, C
Cartiglia, N
Costa, M
Covarelli, R
Degano, A
Demaria, N
Finco, L
Kiani, B
Mariotti, C
Maselli, S
Migliore, E
Maco, V
Monteil, E
Musich, M
Obertino, MM
Pacher, L
Pastrone, N
Pelliccioni, M
Angioni, GLP
Ravera, F
Romero, A
Ruspa, M
Sacchi, R
Solano, A
Staiano, A
Tamponi, U
Belforte, S
Candelise, V
Casarsa, M
Cossutti, F
Della Ricca, G
Gobbo, B
La Licata, C
Marone, M
Schizzi, A
Zanetti, A
Kropivnitskaya, A
Nam, SK
Kim, DH
Kim, GN
Kim, MS
Kong, DJ
Lee, S
Oh, YD
Sakharov, A
Son, DC
Cifuentes, JAB
Kim, H
Kim, TJ
Ryu, MS
Song, S
Choi, S
Go, Y
Gyun, D
Hong, B
Jo, M
Kim, H
Kim, Y
Lee, B
Lee, K
Lee, KS
Lee, S
Park, SK
Roh, Y
Yoo, HD
Choi, M
Kim, H
Kim, JH
Lee, JSH
Park, IC
Ryu, G
Choi, Y
Choi, YK
Goh, J
Kim, D
Kwon, E
Lee, J
Yu, I
Juodagalvis, A
Vaitkus, J
Ahmed, I
Ibrahim, ZA
Komaragiri, JR
Ali, MABM
Idris, FM
Abdullah, WATW
Yusli, MN
Linares, EC
Castilla-Valdez, H
De la Cruz-Burelo, E
Heredia-de la Cruz, I
Hernandez-Almada, A
Lopez-Fernandez, R
Sanchez-Hernandez, A
Moreno, SC
Valencia, FV
Pedraza, I
Ibarguen, HAS
Pineda, AM
Krofcheck, D
Butler, PH
Ahmad, A
Ahmad, M
Hassan, Q
Hoorani, HR
Khan, WA
Khurshid, T
Shoaib, M
Bialkowska, H
Bluj, M
Boimska, B
Frueboes, T
Gorski, M
Kazana, M
Nawrocki, K
Romanowska-Rybinska, K
Szleper, M
Zalewski, P
Brona, G
Bunkowski, K
Doroba, K
Kalinowski, A
Konecki, M
Krolikowski, J
Misiura, M
Olszewski, M
Walczak, M
Bargassa, P
Silva, CBDE
Di Francesco, A
Faccioli, P
Parracho, PGF
Gallinaro, M
Leonardo, N
Iglesias, LL
Nguyen, F
Antunes, JR
Seixas, J
Toldaiev, O
Vadruccio, D
Varela, J
Vischia, P
Afanasiev, S
Bunin, P
Gavrilenko, M
Golutvin, I
Gorbunov, I
Kamenev, A
Karjavin, V
Konoplyanikov, V
Laney, A
Malakhov, A
Matveev, V
Moisenz, P
Palichik, V
Perelygin, V
Shmatov, S
Shulha, S
Skatchkov, N
Smirnov, V
Zarubin, A
Golovtsov, V
Ivanov, Y
Kim, V
Kuznetsova, E
Levchenko, P
Murzin, V
Oreshkin, V
Smirnov, I
Sulimov, V
Uvarov, L
Vavilov, S
Vorobyev, A
Andreev, Y
Dermenev, A
Gninenko, S
Golubev, N
Karneyeu, A
Kirsanov, M
Krasnikov, N
Pashenkov, A
Tlisov, D
Toropin, A
Epshteyn, V
Gavrilov, V
Lychkovskaya, N
Popov, V
Pozdnyakov, I
Safronov, G
Spiridonov, A
Vlasov, E
Zhokin, A
Bylinkin, A
Andreev, V
Azarkin, M
Dremin, I
Kirakosyan, M
Leonidov, A
Mesyats, G
Rusakov, SV
Vinogradov, A
Baskakov, A
Belyaev, A
Boos, E
Dubinin, M
Dudko, L
Ershov, A
Gribushin, A
Klyukhin, V
Kodolova, O
Lokhtin, I
Myagkov, I
Obraztsov, S
Petrushanko, S
Savrin, V
Snigirev, A
Azhgirey, I
Bayshev, I
Bitioukov, S
Kachanov, V
Kalinin, A
Konstantinov, D
Krychkine, V
Petrov, V
Ryutin, R
Sobol, A
Tourtchanovitch, L
Troshin, S
Tyurin, N
Uzunian, A
Volkov, A
Adzic, P
Ekmedzic, M
Milosevic, J
Rekovic, V
Maestre, JA
Calvo, E
Cerrada, M
Llatas, MC
Colino, N
De la Cruz, B
Peris, AD
Vazquez, DD
Del Valle, AE
Bedoya, CF
Ramos, JPF
Flix, J
Fouz, MC
Garcia-Abia, P
Lopez, OG
Lopez, SG
Hernandez, JM
Josa, MI
De Martino, EN
Yzquierdo, APC
Pelayo, JP
Olmeda, AQ
Redondo, I
Romero, L
Soares, MS
Albajar, C
de Troconiz, JF
Missiroli, M
Moran, D
Cuevas, J
Menendez, JF
Folgueras, S
Caballero, IG
Cortezon, EP
Garcia, JMV
Cabrillo, IJ
Calderon, A
De Saa, JRC
Manzano, PDC
Campderros, JD
Fernandez, M
Garcia-Ferrero, J
Gomez, G
Virto, AL
Marco, J
Marco, R
Rivero, CM
Matorras, F
Sanchez, FJM
Gomez, JP
Rodrigo, T
Rodriguez-Marrero, AY
Ruiz-Jimeno, A
Scodellaro, L
Vila, I
Cortabitarte, RV
Abbaneo, D
Auffray, E
Auzinger, G
Bachtis, M
Baillon, P
Ball, AH
Barney, D
Benaglia, A
Bendavid, J
Benhabib, L
Benitez, JF
Berruti, GM
Bloch, P
Bocci, A
Bonato, A
Botta, C
Breuker, H
Camporesi, T
Cerminara, G
Colafranceschi, S
D'Alfonso, M
d'Enterria, D
Dabrowski, A
Daponte, V
David, A
De Gruttola, M
De Guio, F
De Roeck, A
De Visscher, S
Di Marco, E
Dobson, M
Dordevic, M
Dorney, B
du Pree, T
Dunser, M
Dupont, N
Elliott-Peisert, A
Franzoni, G
Funk, W
Gigi, D
Gill, K
Giordano, D
Girone, M
Glege, F
Guida, R
Gundacker, S
Guthoff, M
Hammer, J
Harris, P
Hegeman, J
Innocente, V
Janot, P
Kirschenmann, H
Kortelainen, MJ
Kousouris, K
Krajczar, K
Lecoq, P
Lourenco, C
Lucchini, MT
Magini, N
Malgeri, L
Mannelli, M
Martelli, A
Masetti, L
Meijers, F
Mersi, S
Meschi, E
Moortgat, F
Morovic, S
Mulders, M
Nemallapudi, MV
Neugebauer, H
Orfanelli, S
Orsini, L
Pape, L
Perez, E
Peruzzi, M
Petrilli, A
Petrucciani, G
Pfeiffer, A
Piparo, D
Racz, A
Rolandi, G
Rovere, M
Ruan, M
Sakulin, H
Schafer, C
Schwick, C
Sharma, A
Silva, P
Simon, M
Sphicas, P
Spiga, D
Steggemann, J
Stieger, B
Stoye, M
Takahashi, Y
Treille, D
Triossi, A
Tsirou, A
Veres, GI
Wardle, N
Wohri, HK
Zagozdzinska, A
Zeuner, WD
Bertl, W
Deiters, K
Erdmann, W
Horisberger, R
Ingram, Q
Kaestli, HC
Kotlinski, D
Langenegger, U
Renker, D
Rohe, T
Bachmair, F
Bani, L
Bianchini, L
Buchmann, MA
Casal, B
Dissertori, G
Dittmar, M
Donega, M
Eller, P
Grab, C
Heidegger, C
Hits, D
Hoss, J
Kasieczka, G
Lustermann, W
Mangano, B
Marionneau, M
del Arbol, PMR
Masciovecchio, M
Meister, D
Micheli, F
Musella, P
Nessi-Tedaldi, F
Pandolfi, F
Pata, J
Pauss, F
Perrozzi, L
Quittnat, M
Rossini, M
Starodumov, A
Takahashi, M
Tavolaro, VR
Theofilatos, K
Wallny, R
Aarrestad, TK
Amsler, C
Caminada, L
Canelli, MF
Chiochia, V
De Cosa, A
Galloni, C
Hinzmann, A
Hreus, T
Kilminster, B
Lange, C
Ngadiuba, J
Pinna, D
Robmann, P
Ronga, FJ
Salerno, D
Yang, Y
Cardaci, M
Chen, KH
Doan, TH
Jain, S
Khurana, R
Konyushikhin, M
Kuo, CM
Lin, W
Lu, YJ
Yu, SS
Kumar, A
Bartek, R
Chang, P
Chang, YH
Chang, YW
Chao, Y
Chen, KF
Chen, PH
Dietz, C
Fiori, F
Grundler, U
Hou, WS
Hsiung, Y
Liu, YF
Lu, RS
Moya, MM
Petrakou, E
Tsai, JF
Tzeng, YM
Asavapibhop, B
Kovitanggoon, K
Singh, G
Srimanobhas, N
Suwonjandee, N
Adiguzel, A
Cerci, S
Demiroglu, ZS
Dozen, C
Dumanoglu, I
Girgis, S
Gokbulut, G
Guler, Y
Gurpinar, E
Hos, I
Kangal, EE
Topaksu, AK
Onengut, G
Ozdemir, K
Ozturk, S
Tai, B
Topakli, H
Vergili, M
Zorbilmez, C
Akin, IV
Bilin, B
Bilmis, S
Isildak, B
Karapinar, G
Yalvac, M
Zeyrek, M
Albayrak, EA
Gulmez, E
Kaya, M
Kaya, O
Yetkin, T
Cankocak, K
Sen, S
Vardarli, FI
Grynyov, B
Levchuk, L
Sorokin, P
Aggleton, R
Ball, F
Beck, L
Brooke, JJ
Clement, E
Cussans, D
Flacher, H
Goldstein, J
Grimes, M
Heath, GP
Heath, HF
Jacob, J
Kreczko, L
Lucas, C
Meng, Z
Newbold, DM
Paramesvaran, S
Poll, A
Sakuma, T
El Nasr-Storey, SS
Senkin, S
Smith, D
Smith, VJ
Bell, KW
Belyaev, A
Brew, C
Brown, RM
Cieri, D
Cockerill, DJA
Coughlan, JA
Harder, K
Harper, S
Olaiya, E
Petyt, D
Shepherd-Themistocleous, CH
Thea, A
Thomas, L
Tomalin, IR
Williams, T
Womersley, WJ
Worm, SD
Baber, M
Bainbridge, R
Buchmuller, O
Bundock, A
Burton, D
Casasso, S
Citron, M
Colling, D
Corpe, L
Cripps, N
Dauncey, P
Davies, G
De Wit, A
Della Negra, M
Dunne, P
Elwood, A
Ferguson, W
Fulcher, J
Futyan, D
Hall, G
Iles, G
Kenzie, M
Lane, R
Lucas, R
Lyons, L
Magnan, AM
Malik, S
Nash, J
Nikitenko, A
Pela, J
Pesaresi, M
Petridis, K
Raymond, DM
Richards, A
Rose, A
Seez, C
Tapper, A
Uchida, K
Acosta, MV
Virdee, T
Zenz, SC
Cole, JE
Hobson, PR
Khan, A
Kyberd, P
Leggat, D
Leslie, D
Reid, ID
Symonds, P
Teodorescu, L
Turner, M
Borzou, A
Call, K
Dittmann, J
Hatakeyama, K
Kasmi, A
Liu, H
Pastika, N
Charaf, O
Cooper, SI
Henderson, C
Rumerio, P
Avetisyan, A
Bose, T
Fantasia, C
Gastler, D
Lawson, P
Rankin, D
Richardson, C
Rohlf, J
St John, J
Sulak, L
Zou, D
Alimena, J
Berry, E
Bhattacharya, S
Cutts, D
Dhingra, N
Ferapontov, A
Garabedian, A
Hakala, J
Heintz, U
Laird, E
Landsberg, G
Mao, Z
Narain, M
Piperov, S
Sagir, S
Sinthuprasith, T
Syarif, R
Breedon, R
Breto, G
Sanchez, MCD
Chauhan, S
Chertok, M
Conway, J
Conway, R
Cox, PT
Erbacher, R
Gardner, M
Ko, W
Lander, R
Mulhearn, M
Pellett, D
Pilot, J
Ricci-Tam, F
Shalhout, S
Smith, J
Squires, M
Stolp, D
Tripathi, M
Wilbur, S
Yohay, R
Cousins, R
Everaerts, P
Farrell, C
Hauser, J
Ignatenko, M
Saltzberg, D
Takasugi, E
Valuev, V
Weber, M
Burt, K
Clare, R
Ellison, J
Gary, JW
Hanson, G
Heilman, J
Paneva, MI
Jandir, P
Kennedy, E
Lacroix, F
Long, OR
Luthra, A
Malberti, M
Negrete, MO
Shrinivas, A
Wei, H
Wimpenny, S
Yates, BR
Branson, JG
Cerati, GB
Cittolin, S
D'Agnolo, RT
Holzner, A
Kelley, R
Klein, D
Letts, J
Macneill, I
Olivito, D
Padhi, S
Pieri, M
Sani, M
Sharma, V
Simon, S
Tadel, M
Vartak, A
Wasserbaech, S
Welke, C
Wurthwein, F
Yagil, A
Della Porta, GZ
Barge, D
Bradmiller-Feld, J
Campagnari, C
Dishaw, A
Dutta, V
Flowers, K
Sevilla, MF
Geffert, P
George, C
Golf, F
Gouskos, L
Gran, J
Incandela, J
Justus, C
Mccoll, N
Mullin, SD
Richman, J
Stuart, D
Suarez, I
To, W
West, C
Yoo, J
Anderson, D
Apresyan, A
Bornheim, A
Bunn, J
Chen, Y
Duarte, J
Mott, A
Newman, HB
Pena, C
Pierini, M
Spiropulu, M
Vlimant, JR
Xie, S
Zhu, RY
Andrews, MB
Azzolini, V
Calamba, A
Carlson, B
Ferguson, T
Paulini, M
Russ, J
Sun, M
Vogel, H
Vorobiev, I
Cumalat, JP
Ford, WT
Gaz, A
Jensen, F
Johnson, A
Krohn, M
Mulholland, T
Nauenberg, U
Stenson, K
Wagner, SR
Alexander, J
Chatterjee, A
Chaves, J
Chu, J
Dittmer, S
Eggert, N
Mirman, N
Kaufman, GN
Patterson, JR
Rinkevicius, A
Ryd, A
Skinnari, L
Soffi, L
Sun, W
Tan, SM
Teo, WD
Thom, J
Thompson, J
Tucker, J
Weng, Y
Wittich, P
Abdullin, S
Albrow, M
Anderson, J
Apollinari, G
Bauerdick, LAT
Beretvas, A
Berryhill, J
Bhat, PC
Bolla, G
Burkett, K
Butler, JN
Cheung, HWK
Chlebana, F
Cihangir, S
Elvira, VD
Fisk, I
Freeman, J
Gottschalk, E
Gray, L
Green, D
Grunendahl, S
Gutsche, O
Hanlon, J
Hare, D
Harris, RM
Hirschauer, J
Hooberman, B
Hu, Z
Jindariani, S
Johnson, M
Joshi, U
Jung, AW
Klima, B
Kreis, B
Kwant, S
Lammel, S
Linacre, J
Lincoln, D
Lipton, R
Liu, T
De Sa, RL
Lykken, J
Maeshima, K
Marraffino, JM
Outschoorn, VIM
Maruyama, S
Mason, D
McBride, P
Merkel, P
Mishra, K
Mrenna, S
Nahn, S
Newman-Holmes, C
O'Dell, V
Pedro, K
Prokofyev, O
Rakness, G
Sexton-Kennedy, E
Soha, A
Spalding, WJ
Spiegel, L
Taylor, L
Tkaczyk, S
Tran, NV
Uplegger, L
Vaandering, EW
Vernieri, C
Verzocchi, M
Vidal, R
Weber, HA
Whitbeck, A
Yang, F
Acosta, D
Avery, P
Bortignon, P
Bourilkov, D
Carnes, A
Carver, M
Curry, D
Das, S
Di Giovanni, GP
Field, RD
Furic, IK
Hugon, J
Konigsberg, J
Korytov, A
Low, JF
Ma, P
Matchev, K
Mei, H
Milenovic, P
Mitselmakher, G
Rank, D
Rossin, R
Shchutska, L
Snowball, M
Sperka, D
Terentyev, N
Wang, J
Wang, S
Yelton, J
Hewamanage, S
Linn, S
Markowitz, P
Martinez, G
Rodriguez, JL
Ackert, A
Adams, JR
Adams, T
Askew, A
Bochenek, J
Diamond, B
Haas, J
Hagopian, S
Hagopian, V
Johnson, KF
Khatiwada, A
Prosper, H
Veeraraghavan, V
Weinberg, M
Baarmand, MM
Bhopatkar, V
Hohlmann, M
Kalakhety, H
Noonan, D
Roy, T
Yumiceva, F
Adams, MR
Apanasevich, L
Berry, D
Betts, RR
Bucinskaite, I
Cavanaugh, R
Evdokimov, O
Gauthier, L
Gerber, CE
Hofman, DJ
Kurt, P
O'Brien, C
Gonzalez, IDS
Silkworth, C
Turner, P
Varelas, N
Wu, Z
Zakaria, M
Bilki, B
Clarida, W
Dilsiz, K
Durgut, S
Gandrajula, RP
Haytmyradov, M
Khristenko, V
Merlo, JP
Mermerkaya, H
Mestvirishvili, A
Moeller, A
Nachtman, J
Ogul, H
Onel, Y
Ozok, F
Penzo, A
Snyder, C
Tan, P
Tiras, E
Wetzel, J
Yi, K
Anderson, I
Barnett, BA
Blumenfeld, B
Fehling, D
Feng, L
Gritsan, AV
Maksimovic, P
Martin, C
Osherson, M
Swartz, M
Xiao, M
Xin, Y
You, C
Baringer, P
Bean, A
Benelli, G
Bruner, C
Kenny, RP
Majumder, D
Malek, M
Murray, M
Sanders, S
Stringer, R
Wang, Q
Ivanov, A
Kaadze, K
Khalil, S
Makouski, M
Maravin, Y
Mohammadi, A
Saini, LK
Skhirtladze, N
Toda, S
Lange, D
Rebassoo, F
Wright, D
Anelli, C
Baden, A
Baron, O
Belloni, A
Calvert, B
Eno, SC
Ferraioli, C
Gomez, JA
Hadley, NJ
Jabeen, S
Kellogg, RG
Kolberg, T
Kunkle, J
Lu, Y
Mignerey, AC
Shin, YH
Skuja, A
Tonjes, MB
Tonwar, SC
Apyan, A
Barbieri, R
Baty, A
Bierwagen, K
Brandt, S
Busza, W
Cali, IA
Demiragli, Z
Di Matteo, L
Ceballos, GG
Goncharov, M
Gulhan, D
Iiyama, Y
Innocenti, GM
Klute, M
Kovalskyi, D
Lai, YS
Lee, YJ
Levin, A
Luckey, PD
Marini, AC
Mcginn, C
Mironov, C
Niu, X
Paus, C
Ralph, D
Roland, C
Roland, G
Salfeld-Nebgen, J
Stephans, GSF
Sumorok, K
Varma, M
Velicanu, D
Veverka, J
Wang, J
Wang, TW
Wyslouch, B
Yang, M
Zhukova, V
Dahmes, B
Finkel, A
Gude, A
Hansen, P
Kalafut, S
Kao, SC
Klapoetke, K
Kubota, Y
Lesko, Z
Mans, J
Nourbakhsh, S
Ruckstuhl, N
Rusack, R
Tambe, N
Turkewitz, J
Acosta, JG
Oliveros, S
Avdeeva, E
Bloom, K
Bose, S
Claes, DR
Dominguez, A
Fangmeier, C
Suarez, RG
Kamalieddin, R
Keller, J
Knowlton, D
Kravchenko, I
Lazo-Flores, J
Meier, F
Monroy, J
Ratnikov, F
Siado, JE
Snow, GR
Alyari, M
Dolen, J
George, J
Godshalk, A
Harrington, C
Iashvili, I
Kaisen, J
Kharchilava, A
Kumar, A
Rappoccio, S
Alverson, G
Barberis, E
Baumgartel, D
Chasco, M
Hortiangtham, A
Massironi, A
Morse, DM
Nash, D
Orimoto, T
De Lima, RT
Trocino, D
Wang, RJ
Wood, D
Zhang, J
Hahn, KA
Kubik, A
Mucia, N
Odell, N
Pollack, B
Pozdnyakov, A
Schmitt, M
Stoynev, S
Sung, K
Trovato, M
Velasco, M
Brinkerhoff, A
Dev, N
Hildreth, M
Jessop, C
Karmgard, DJ
Kellams, N
Lannon, K
Lynch, S
Marinelli, N
Meng, F
Mueller, C
Musienko, Y
Pearson, T
Planer, M
Reinsvold, A
Ruchti, R
Smith, G
Taroni, S
Valls, N
Wayne, M
Wolf, M
Woodard, A
Antonelli, L
Brinson, J
Bylsma, B
Durkin, LS
Flowers, S
Hart, A
Hill, C
Hughes, R
Ji, W
Kotov, K
Ling, TY
Liu, B
Luo, W
Puigh, D
Rodenburg, M
Winer, BL
Wulsin, HW
Driga, O
Elmer, P
Hardenbrook, J
Hebda, P
Koay, SA
Lujan, P
Marlow, D
Medvedeva, T
Mooney, M
Olsen, J
Palmer, C
Piroue, P
Quan, X
Saka, H
Stickland, D
Tully, C
Werner, JS
Zuranski, A
Malik, S
Barnes, VE
Benedetti, D
Bortoletto, D
Gutay, L
Jha, MK
Jones, M
Jung, K
Kress, M
Miller, DH
Neumeister, N
Radburn-Smith, BC
Shi, X
Shipsey, I
Silvers, D
Sun, J
Svyatkovskiy, A
Wang, F
Xie, W
Xu, L
Parashar, N
Stupak, J
Adair, A
Akgun, B
Chen, Z
Ecklund, KM
Geurts, FJM
Guilbaud, M
Li, W
Michlin, B
Northup, M
Padley, BP
Redjimi, R
Roberts, J
Rorie, J
Tu, Z
Zabel, J
Betchart, B
Bodek, A
de Barbaro, P
Demina, R
Eshaq, Y
Ferbel, T
Galanti, M
Garcia-Bellido, A
Han, J
Harel, A
Hindrichs, O
Khukhunaishvili, A
Petrillo, G
Verzetti, M
Demortier, L
Arora, S
Barker, A
Chou, JP
Contreras-Campana, C
Contreras-Campana, E
Duggan, D
Ferencek, D
Gershtein, Y
Gray, R
Halkiadakis, E
Hidas, D
Hughes, E
Kaplan, S
Elayavalli, RK
Lath, A
Nash, K
Panwalkar, S
Park, M
Salur, S
Schnetzer, S
Sheffield, D
Somalwar, S
Stone, R
Thomas, S
Thomassen, P
Walker, M
Foerster, M
Riley, G
Rose, K
Spanier, S
York, A
Bouhali, O
Hernandez, AC
Dalchenko, M
De Mattia, M
Delgado, A
Dildick, S
Eusebi, R
Flanagan, W
Gilmore, J
Kamon, T
Krutelyov, V
Montalvo, R
Mueller, R
Osipenkov, I
Pakhotin, Y
Patel, R
Perloff, A
Roe, J
Rose, A
Safonov, A
Tatarinov, A
Ulmer, KA
Akchurin, N
Cowden, C
Damgov, J
Dragoiu, C
Dudero, PR
Faulkner, J
Kunori, S
Lamichhane, K
Lee, SW
Libeiro, T
Undleeb, S
Volobouev, I
Appelt, E
Delannoy, AG
Greene, S
Gurrola, A
Janjam, R
Johns, W
Maguire, C
Mao, Y
Melo, A
Ni, H
Sheldon, P
Snook, B
Tuo, S
Velkovska, J
Xu, Q
Arenton, MW
Boutle, S
Cox, B
Francis, B
Goodell, J
Hirosky, R
Ledovskoy, A
Li, H
Lin, C
Neu, C
Wolfe, E
Wood, J
Xia, F
Clarke, C
Harr, R
Karchin, PE
Don, CKK
Lamichhane, P
Sturdy, J
Belknap, DA
Carlsmith, D
Cepeda, M
Christian, A
Dasu, S
Dodd, L
Duric, S
Friis, E
Gomber, B
Hall-Wilton, R
Herndon, M
Herve, A
Klabbers, P
Lanaro, A
Levine, A
Long, K
Loveless, R
Mohapatra, A
Ojalvo, I
Perry, T
Pierro, GA
Polese, G
Ross, I
Ruggles, T
Sarangi, T
Savin, A
Sharma, A
Smith, N
Smith, WH
Taylor, D
Woods, N
AF Khachatryan, V.
Sirunyan, A. M.
Tumasyan, A.
Adam, W.
Asilar, E.
Bergauer, T.
Brandstetter, J.
Brondolin, E.
Dragicevic, M.
Eroe, J.
Flechl, M.
Friedl, M.
Fruehwirth, R.
Ghete, V. M.
Hartl, C.
Hoermann, N.
Hrubec, J.
Jeitler, M.
Knuenz, V.
Koenig, A.
Krammer, M.
Kraetschmer, I.
Liko, D.
Matsushita, T.
Mikulec, I.
Rabady, D.
Rahbaran, B.
Rohringer, H.
Schieckl, J.
Schoefbeck, R.
Strauss, J.
Treberer-Treberspurg, W.
Waltenberger, W.
Wulz, C. -E.
Mossolov, V.
Shumeiko, N.
Gonzalez, J. Suarez
Alderweireldt, S.
Cornelis, T.
De Wolf, E. A.
Janssen, X.
Knutsson, A.
Lauwers, J.
Luyckx, S.
Ochesanu, S.
Rougny, R.
Van de Klundert, M.
Van Haevermaet, H.
Van Mechelen, P.
Van Remortel, N.
Van Spilbeeck, A.
Abu Zeid, S.
Blekman, F.
D'Hondt, J.
Daci, N.
De Bruyn, I.
Deroover, K.
Heracleous, N.
Keaveney, J.
Lowette, S.
Moreels, L.
Olbrechts, A.
Python, Q.
Strom, D.
Tavernier, S.
Van Doninck, W.
Van Mulders, P.
Van Onsem, G. P.
Van Parijs, I.
Barria, P.
Brun, H.
Caillol, C.
Clerbaux, B.
De Lentdecker, G.
Delannoy, H.
Fasanella, G.
Favart, L.
Gay, A. P. R.
Grebenyuk, A.
Karapostoli, G.
Lenzi, T.
Leonard, A.
Maerschalk, T.
Marinov, A.
Pernie, L.
Randle-conde, A.
Reis, T.
Seva, T.
Velde, C. Vander
Vanlaer, P.
Yonamine, R.
Zenoni, F.
Zhang, F.
Beernaert, K.
Benucci, L.
Cimmino, A.
Crucy, S.
Dobur, D.
Fagot, A.
Garcia, G.
Gul, M.
Mccartin, J.
Rios, A. A. Ocampo
Poyraz, D.
Ryckbosch, D.
Salva, S.
Sigamani, M.
Strobbe, N.
Tytgat, M.
Van Driessche, W.
Yazgan, E.
Zaganidis, N.
Basegmez, S.
Beluffi, C.
Bondu, O.
Brochet, S.
Bruno, G.
Castello, R.
Caudron, A.
Ceard, L.
Da Silveira, G. G.
Delaere, C.
Favart, D.
Forthomme, L.
Giammanco, A.
Hollar, J.
Jafari, A.
Jez, P.
Komm, M.
Lemaitre, V.
Mertens, A.
Nuttens, C.
Perrini, L.
Pin, A.
Piotrzkowski, K.
Popov, A.
Quertenmont, L.
Selvaggi, M.
Marono, M. Vidal
Belly, N.
Hammad, G. H.
Alda Junior, W. L.
Alves, G. A.
Brito, L.
Correa Martins Junior, M.
Hamer, M.
Hensel, C.
Mora Herrera, C.
Moraes, A.
Pol, M. E.
Rebello Teles, P.
Belchior Batista Das Chagas, E.
Carvalho, W.
Chinellato, J.
Custodio, A.
Da Costa, E. M.
De Jesus Damiao, D.
De Oliveira Martins, C.
Fonseca De Souza, S.
Huertas Guativa, L. M.
Malbouisson, H.
Matos Figueiredo, D.
Mundim, L.
Nogima, H.
Prado Da Silva, W. L.
Santoro, A.
Sznajder, A.
Tonelli Manganote, E. J.
Vilela Pereira, A.
Ahuja, S.
Bernardes, C. A.
De Souza Santos, A.
Dogra, S.
Fernandez Perez Tomei, T. R.
Gregores, E. M.
Mercadante, P. G.
Moon, C. S.
Novaes, S. F.
Padula, Sandra S.
Romero Abad, D.
Ruiz Vargas, J. C.
Aleksandrov, A.
Hadjiiska, R.
Iaydjiev, P.
Rodozov, M.
Stoykova, S.
Sultanov, G.
Vutova, M.
Dimitrov, A.
Glushkov, I.
Litov, L.
Pavlov, B.
Petkov, P.
Ahmad, M.
Bian, J. G.
Chen, G. M.
Chen, H. S.
Chen, M.
Cheng, T.
Du, R.
Jiang, C. H.
Plestina, R.
Romeo, F.
Shaheen, S. M.
Tao, J.
Wang, C.
Wang, Z.
Zhang, H.
Asawatangtrakuldee, C.
Ban, Y.
Li, Q.
Liu, S.
Mao, Y.
Qian, S. J.
Wang, D.
Xu, Z.
Zou, W.
Avila, C.
Cabrera, A.
Chaparro Sierra, L. F.
Florez, C.
Gomez, J. P.
Gomez Moreno, B.
Sanabria, J. C.
Godinovic, N.
Lelas, D.
Puljak, I.
Cipriano, P. M. Ribeiro
Antunovic, Z.
Kovac, M.
Brigljevic, V.
Kadija, K.
Luetic, J.
Micanovic, S.
Sudic, L.
Attikis, A.
Mavromanolakis, G.
Mousa, J.
Nicolaou, C.
Ptochos, F.
Razis, P. A.
Rykaczewski, H.
Bodlak, M.
Finger, M.
Finger, M., Jr.
Abdelalim, A. A.
Awad, A.
El Sawy, M.
Mahrous, A.
Mohammed, Y.
Radi, A.
Calpas, B.
Kadastik, M.
Murumaa, M.
Raidal, M.
Tiko, A.
Veelken, C.
Eerola, P.
Pekkanen, J.
Voutilainen, M.
Harkonen, J.
Karimaki, V.
Kinnunen, R.
Lampen, T.
Lassila-Perini, K.
Lehti, S.
Linden, T.
Luukka, P.
Maenpaa, T.
Peltola, T.
Tuominen, E.
Tuominiemi, J.
Tuovinen, E.
Wendland, L.
Talvitie, J.
Tuuva, T.
Besancon, M.
Couderc, F.
Dejardin, M.
Denegri, D.
Fabbro, B.
Faure, J. L.
Favaro, C.
Ferri, F.
Ganjour, S.
Givernaud, A.
Gras, P.
de Monchenault, G. Hamel
Jarry, P.
Locci, E.
Machet, M.
Malcles, J.
Rander, J.
Rosowsky, A.
Titov, M.
Zghiche, A.
Antropov, I.
Baffioni, S.
Beaudette, F.
Busson, P.
Cadamuro, L.
Chapon, E.
Charlot, C.
Dahms, T.
Davignon, O.
Filipovic, N.
Florent, A.
de Cassagnac, R. Grapier
Lisniak, S.
Mastrolorenzo, L.
Mine, P.
Naranjo, I. N.
Nguyen, M.
Ochando, C.
Ortona, G.
Paganini, P.
Pigard, P.
Regnard, S.
Salerno, R.
Sauvan, J. B.
Sirois, Y.
Strebler, T.
Yilmaz, Y.
Zabi, A.
Agram, J. -L.
Andrea, J.
Aubin, A.
Bloch, D.
Brom, J. -M.
Buttignol, M.
Chabert, E. C.
Chanon, N.
Collard, C.
Conte, E.
Coubez, X.
Fontaine, J. -C.
Gele, D.
Goerlach, U.
Goetzmann, C.
Le Bihan, A. -C.
Merlin, J. A.
Skovpen, K.
Van Hove, P.
Gadrat, S.
Beauceron, S.
Bernet, C.
Boudoul, G.
Bouvier, E.
Montoya, C. A. Carrillo
Chierici, R.
Contardo, D.
Courbon, B.
Depasse, P.
El Mamouni, H.
Fan, J.
Fay, J.
Gascon, S.
Gouzevitch, M.
Ille, B.
Lagarde, F.
Laktineh, I. B.
Lethuillier, M.
Mirabito, L.
Pequegnot, A. L.
Perries, S.
Alvarez, J. D. Ruiz
Sabes, D.
Sgandurra, L.
Sordini, V.
Donckt, M. Vander
Verdier, P.
Viret, S.
Xiao, H.
Tsamalaidze, Z.
Autermann, C.
Beranek, S.
Edelhoff, M.
Feld, L.
Heister, A.
Kiesel, M. K.
Klein, K.
Lipinski, M.
Ostapchuk, A.
Preuten, M.
Raupach, F.
Schael, S.
Schulte, J. F.
Verlage, T.
Weber, H.
Wittmer, B.
Zhukov, V.
Ata, M.
Brodski, M.
Dietz-Laursonn, E.
Duchardt, D.
Endres, M.
Erdmann, M.
Erdweg, S.
Esch, T.
Fischer, R.
Gueth, A.
Hebbeker, T.
Heidemann, C.
Hoepfner, K.
Klingebiel, D.
Knutzen, S.
Kreuzer, P.
Merschmeyer, M.
Meyer, A.
Millet, P.
Olschewski, M.
Padeken, K.
Papacz, P.
Pook, T.
Radziej, M.
Reithler, H.
Rieger, M.
Scheuch, F.
Sonnenschein, L.
Teyssier, D.
Thueer, S.
Cherepanov, V.
Erdogan, Y.
Fluegge, G.
Geenen, H.
Geisler, M.
Hoehle, F.
Kargoll, B.
Kress, T.
Kuessel, Y.
Khuensken, A.
Lingemann, J.
Nehrkorn, A.
Nowack, A.
Nugent, I. M.
Pistone, C.
Pooth, O.
Stahl, A.
Martin, M. Aldaya
Asin, I.
Bartosik, N.
Behnke, O.
Behrens, U.
Bell, A. J.
Borras, K.
Burgmeier, A.
Cakir, A.
Calligaris, L.
Campbell, A.
Choudhury, S.
Costanza, F.
Pardos, C. Diez
Dolinska, G.
Dooling, S.
Dorland, T.
Eckerlin, G.
Eckstein, D.
Eichhorn, T.
Flucke, G.
Gallo, E.
Garcia, J. Garay
Geiser, A.
Gizhko, A.
Gunnellini, P.
Hauk, J.
Hempel, M.
Jung, H.
Kalogeropoulos, A.
Karacheban, O.
Kasemann, M.
Katsas, P.
Kieseler, J.
Kleinwort, C.
Korol, I.
Lange, W.
Leonard, J.
Lipka, K.
Lobanov, A.
Lohmann, W.
Mankel, R.
Marfin, I.
Melzer-Pellmann, I. -A.
Meyer, A. B.
Mittag, G.
Mnich, J.
Mussgiller, A.
Naumann-Emme, S.
Nayak, A.
Ntomari, E.
Perrey, H.
Pitzl, D.
Placakyte, R.
Raspereza, A.
Roland, B.
Sahin, M. OE.
Saxena, P.
Schoerner-Sadenius, T.
Schroeder, M.
Seitz, C.
Spannagel, S.
Trippkewitz, K. D.
Walsh, R.
Wissing, C.
Blobel, V.
Vignali, M. Centis
Draeger, A. R.
Erfle, J.
Garutti, E.
Goebel, K.
Gonzalez, D.
Goerner, M.
Haller, J.
Hoffmann, M.
Hoeing, R. S.
Junkes, A.
Klanner, R.
Kogler, R.
Lapsien, T.
Lenz, T.
Marchesini, I.
Marconi, D.
Meyer, M.
Nowatschin, D.
Ott, J.
Pantaleo, F.
Peiffer, T.
Perieanu, A.
Pietsch, N.
Poehlsen, J.
Rathjens, D.
Sander, C.
Schettler, H.
Schleper, P.
Schlieckau, E.
Schmidt, A.
Schwandt, J.
Seidel, M.
Sola, V.
Stadie, H.
Steinbrueck, G.
Tholen, H.
Troendle, D.
Usai, E.
Vanelderen, L.
Vanhoefer, A.
Vormwald, B.
Akbiyik, M.
Barth, C.
Baus, C.
Berger, J.
Boeser, C.
Butz, E.
Chwalek, T.
Colombo, F.
De Boer, W.
Descroix, A.
Dierlamm, A.
Fink, S.
Frensch, F.
Giffels, M.
Gilbert, A.
Hartmann, F.
Heindl, S. M.
Husemann, U.
Katkov, I.
Kornmayer, A.
Pardo, P. Lobelle
Maier, B.
Mildner, H.
Mozer, M. U.
Mueller, T.
Mueller, Th.
Plagge, M.
Quast, G.
Rabbertz, K.
Roecker, S.
Roscher, F.
Simonis, H. J.
Stober, F. M.
Ulrich, R.
Wagner-Kuhr, J.
Wayand, S.
Weber, M.
Weiler, T.
Woehrmann, C.
Wolf, R.
Anagnostou, G.
Daskalakis, G.
Geralis, T.
Giakoumopoulou, V. A.
Kyriakis, A.
Loukas, D.
Psallidas, A.
Topsis-Giotis, I.
Agapitos, A.
Kesisoglou, S.
Panagiotou, A.
Saoulidou, N.
Tziaferi, E.
Evangelou, I.
Flouris, G.
Foudas, C.
Kokkas, P.
Loukas, N.
Manthos, N.
Papadopoulos, I.
Paradas, E.
Strologas, J.
Bencze, G.
Hajdu, C.
Hazi, A.
Hidas, P.
Horvath, D.
Sikler, F.
Veszpremi, V.
Vesztergombi, G.
Zsigmond, A. J.
Beni, N.
Czellar, S.
Karancsi, J.
Molnar, J.
Szillasi, Z.
Bartok, M.
Makovec, A.
Raics, P.
Trocsanyi, Z. L.
Ujvari, B.
Mal, P.
Mandal, K.
Sahoo, N.
Swain, S. K.
Bansal, S.
Beni, S. B.
Bhatnagar, V.
Chawla, R.
Gupta, R.
Bhawandeep, U.
Kalsi, A. K.
Kaur, A.
Kaur, M.
Kumar, R.
Mehta, A.
Mittal, M.
Singh, J. B.
Walia, G.
Kumar, Ashok
Bhardwaj, A.
Choudhary, B. C.
Garg, R. B.
Kumar, A.
Malhotra, S.
Naimuddin, M.
Nishu, N.
Ranjan, K.
Sharma, R.
Sharma, V.
Banerjee, S.
Bhattacharya, S.
Chatterjee, K.
Dey, S.
Dutta, S.
Jain, Sa.
Majumdar, N.
Modak, A.
Mondal, K.
Mukherjee, S.
Mukhopadhyay, S.
Roy, A.
Roy, D.
Chowdhury, S. Roy
Sarkar, S.
Sharan, M.
Abdulsalam, A.
Chudasama, R.
Dutta, D.
Jha, V.
Kumar, V.
Mohanty, A. K.
Pant, L. M.
Shukla, P.
Topkar, A.
Aziz, T.
Banerjee, S.
Bhowmik, S.
Chatterjee, R. M.
Dewanjee, R. K.
Dugad, S.
Ganguly, S.
Ghosh, S.
Guchait, M.
Gurtu, A.
Kole, G.
Kumar, S.
Mahakud, B.
Maity, M.
Majumder, G.
Mazumdar, K.
Mitra, S.
Mohanty, G. B.
Parida, B.
Sarkar, T.
Sudhakar, K.
Sur, N.
Sutar, B.
Wickramage, N.
Chauhan, S.
Dube, S.
Sharma, S.
Bakhshiansohi, H.
Behnamian, H.
Etesami, S. M.
Fahim, A.
Goldouzian, R.
Khakzad, M.
Najafabadi, M. Mohammadi
Naseri, M.
Mehdiabadi, S. Paktinat
Hosseinabadi, F. Rezaei
Safarzadeh, B.
Zeinali, M.
Felcini, M.
Grunewald, M.
Abbrescia, M.
Calabria, C.
Caputo, C.
Colaleo, A.
Creanza, D.
Cristella, L.
De Filippis, N.
De Palma, M.
Fiore, L.
Iaseili, G.
Maggi, G.
Maggi, M.
Miniello, G.
My, S.
Nuzzo, S.
Pompili, A.
Pugliese, G.
Radogna, R.
Ranieri, A.
Selvaggi, G.
Silvestris, L.
Venditti, R.
Verwilligen, P.
Abbiendi, G.
Battilana, C.
Benvenuti, A. C.
Bonacorsi, D.
Braibant-Giacomelli, S.
Brigliadori, L.
Campanini, R.
Capiluppi, P.
Castro, A.
Cavallo, F. R.
Chhibra, S. S.
Codispoti, G.
Cuffiani, M.
Dallavalle, G. M.
Fabbri, F.
Fanfani, A.
Fasanella, D.
Giacomelli, P.
Grandi, C.
Guiducci, L.
Marcellini, S.
Masetti, G.
Montanari, A.
Navarria, F. L.
Perrotta, A.
Rossi, A. M.
Rovelli, T.
Siroli, G. P.
Tosi, N.
Travaglini, R.
Cappello, G.
Chiorboli, M.
Costa, S.
Giordano, F.
Potenza, R.
Tricomi, A.
Tuve, C.
Barbagli, G.
Ciulli, V.
Civinini, C.
D'Alessandro, R.
Focardi, E.
Gonzi, S.
Gori, V.
Lenzi, P.
Meschini, M.
Paoletti, S.
Sguazzoni, G.
Tropiano, A.
Viliani, L.
Benussi, L.
Bianco, S.
Fabbri, F.
Piccolo, D.
Primavera, F.
Calvelli, V.
Ferro, F.
Lo Vetere, M.
Monge, M. R.
Robutti, E.
Tosi, S.
Brianza, L.
Dinardo, M. E.
Fiorendi, S.
Gennai, S.
Gerosa, R.
Ghezzi, A.
Govoni, R.
Malvezzi, S.
Manzoni, R. A.
Marzocchi, B.
Menasce, D.
Moroni, L.
Paganoni, M.
Pedrini, D.
Ragazzi, S.
Redaelli, N.
de Fatis, T. Tabarelli
Buontempo, S.
Cavallo, N.
Di Guida, S.
Esposito, M.
Fabozzi, F.
Iorio, A. O. M.
Lanza, G.
Lista, L.
Meola, S.
Merola, M.
Paolucci, P.
Sciacca, C.
Thyssen, F.
Azzi, P.
Bacchetta, N.
Bellato, M.
Benato, L.
Boletti, A.
Branca, A.
Osso, M. Dail'
Dorigo, T.
Dosselli, U.
Fanzago, F.
Gozzelino, A.
Gulmini, M.
Lacaprara, S.
Margoni, M.
Meneguzzo, Ba. T.
Montecassiano, F.
Passaseo, M.
Pazzini, J.
Pegoraro, M.
Pozzobon, N.
Ronchese, P.
Simonetto, F.
Torassa, E.
Tosi, M.
Vanini, S.
Ventura, S.
Zanetti, M.
Zotto, P.
Zucchetta, A.
Braghieri, A.
Magnani, A.
Montagna, P.
Raffi, S. P.
Re, V.
Rieeardi, C.
Salvini, P.
Vai, I.
Vitulo, R.
Solestizi, L. Alunni
Biasini, M.
Bilei, G. M.
Ciangottini, D.
Fano, L.
Lariccia, P.
Mantovani, G.
Menichelli, M.
Saha, A.
Santocchia, A.
Spiezia, A.
Androsov, K.
Azzurri, P.
Bagliesi, G.
Bernardini, J.
Boccali, T.
Broccolo, G.
Castaldi, R.
Ciocci, M. A.
Dell'Orso, R.
Donato, S.
Fedi, G.
Foa, L.
Giassi, A.
Grippo, M. T.
Ligabue, F.
Lomtadze, T.
Martini, L.
Messineo, A.
Palla, F.
Rizzi, A.
Savoy-Navarro, A.
Serban, A. T.
Spagnolo, P.
Squillacioti, P.
Tenchini, R.
Tonelli, G.
Venturi, A.
Verdini, P. G.
Barone, L.
Cavallari, F.
D'imperio, G.
Del Re, D.
Diemoz, M.
Gelli, S.
Jorda, C.
Longo, E.
Margaroli, F.
Meridiani, P.
Organtini, G.
Paramatti, R.
Preiato, F.
Rahatlou, S.
Rovelli, C.
Santanastasio, F.
Traczyk, P.
Amapane, N.
Arcidiacono, R.
Argiro, S.
Arneodo, M.
Bellan, R.
Biino, C.
Cartiglia, N.
Costa, M.
Covarelli, R.
Degano, A.
Demaria, N.
Finco, L.
Kiani, B.
Mariotti, C.
Maselli, S.
Migliore, E.
Maco, V.
Monteil, E.
Musich, M.
Obertino, M. M.
Pacher, L.
Pastrone, N.
Pelliccioni, M.
Angioni, G. L. Pinna
Ravera, F.
Romero, A.
Ruspa, M.
Sacchi, R.
Solano, A.
Staiano, A.
Tamponi, U.
Belforte, S.
Candelise, V.
Casarsa, M.
Cossutti, F.
Della Ricca, G.
Gobbo, B.
La Licata, C.
Marone, M.
Schizzi, A.
Zanetti, A.
Kropivnitskaya, A.
Nam, S. K.
Kim, D. H.
Kim, G. N.
Kim, M. S.
Kong, D. J.
Lee, S.
Oh, Y. D.
Sakharov, A.
Son, D. C.
Cifuentes, J. A. Brochero
Kim, H.
Kim, T. J.
Ryu, M. S.
Song, S.
Choi, S.
Go, Y.
Gyun, D.
Hong, B.
Jo, M.
Kim, H.
Kim, Y.
Lee, B.
Lee, K.
Lee, K. S.
Lee, S.
Park, S. K.
Roh, Y.
Yoo, H. D.
Choi, M.
Kim, H.
Kim, J. H.
Lee, J. S. H.
Park, I. C.
Ryu, G.
Choi, Y.
Choi, Y. K.
Goh, J.
Kim, D.
Kwon, E.
Lee, J.
Yu, I.
Juodagalvis, A.
Vaitkus, J.
Ahmed, I.
Ibrahim, Z. A.
Komaragiri, J. R.
Ali, M. A. B. Md
Idris, F. Mohamad
Abdullah, W. A. T. Wan
Yusli, M. N.
Casimiro Linares, E.
Castilla-Valdez, H.
De la Cruz-Burelo, E.
Heredia-de la Cruz, I.
Hernandez-Almada, A.
Lopez-Fernandez, R.
Sanchez-Hernandez, A.
Carrillo Moreno, S.
Vazquez Valencia, F.
Pedraza, I.
Salazar Ibarguen, H. A.
Morelos Pineda, A.
Krofcheck, D.
Butler, P. H.
Ahmad, A.
Ahmad, M.
Hassan, Q.
Hoorani, H. R.
Khan, W. A.
Khurshid, T.
Shoaib, M.
Bialkowska, H.
Bluj, M.
Boimska, B.
Frueboes, T.
Gorski, M.
Kazana, M.
Nawrocki, K.
Romanowska-Rybinska, K.
Szleper, M.
Zalewski, P.
Brona, G.
Bunkowski, K.
Doroba, K.
Kalinowski, A.
Konecki, M.
Krolikowski, J.
Misiura, M.
Olszewski, M.
Walczak, M.
Bargassa, P.
Beirao Da Cruz E Silva, C.
Di Francesco, A.
Faccioli, P.
Ferreira Parracho, P. G.
Gallinaro, M.
Leonardo, N.
Lloret Iglesias, L.
Nguyen, F.
Rodrigues Antunes, J.
Seixas, J.
Toldaiev, O.
Vadruccio, D.
Varela, J.
Vischia, P.
Afanasiev, S.
Bunin, P.
Gavrilenko, M.
Golutvin, I.
Gorbunov, I.
Kamenev, A.
Karjavin, V.
Konoplyanikov, V.
Laney, A.
Malakhov, A.
Matveev, V.
Moisenz, P.
Palichik, V.
Perelygin, V.
Shmatov, S.
Shulha, S.
Skatchkov, N.
Smirnov, V.
Zarubin, A.
Golovtsov, V.
Ivanov, Y.
Kim, V.
Kuznetsova, E.
Levchenko, P.
Murzin, V.
Oreshkin, V.
Smirnov, I.
Sulimov, V.
Uvarov, L.
Vavilov, S.
Vorobyev, A.
Andreev, Yu.
Dermenev, A.
Gninenko, S.
Golubev, N.
Karneyeu, A.
Kirsanov, M.
Krasnikov, N.
Pashenkov, A.
Tlisov, D.
Toropin, A.
Epshteyn, V.
Gavrilov, V.
Lychkovskaya, N.
Popov, V.
Pozdnyakov, I.
Safronov, G.
Spiridonov, A.
Vlasov, E.
Zhokin, A.
Bylinkin, A.
Andreev, V.
Azarkin, M.
Dremin, I.
Kirakosyan, M.
Leonidov, A.
Mesyats, G.
Rusakov, S. V.
Vinogradov, A.
Baskakov, A.
Belyaev, A.
Boos, E.
Dubinin, M.
Dudko, L.
Ershov, A.
Gribushin, A.
Klyukhin, V.
Kodolova, O.
Lokhtin, I.
Myagkov, I.
Obraztsov, S.
Petrushanko, S.
Savrin, V.
Snigirev, A.
Azhgirey, I.
Bayshev, I.
Bitioukov, S.
Kachanov, V.
Kalinin, A.
Konstantinov, D.
Krychkine, V.
Petrov, V.
Ryutin, R.
Sobol, A.
Tourtchanovitch, L.
Troshin, S.
Tyurin, N.
Uzunian, A.
Volkov, A.
Adzic, P.
Ekmedzic, M.
Milosevic, J.
Rekovic, V.
Alcaraz Maestre, J.
Calvo, E.
Cerrada, M.
Chamizo Llatas, M.
Colino, N.
De la Cruz, B.
Delgado Peris, A.
Dominguez Vazquez, D.
Escalante Del Valle, A.
Fernandez Bedoya, C.
Fernandez Ramos, J. P.
Flix, J.
Fouz, M. C.
Garcia-Abia, P.
Gonzalez Lopez, O.
Goy Lopez, S.
Hernandez, J. M.
Josa, M. I.
Navarro De Martino, E.
Perez-Calero Yzquierdo, A.
Puerta Pelayo, J.
Quintario Olmeda, A.
Redondo, I.
Romero, L.
Soares, M. S.
Albajar, C.
de Troconiz, J. F.
Missiroli, M.
Moran, D.
Cuevas, J.
Fernandez Menendez, J.
Folgueras, S.
Gonzalez Caballero, I.
Palencia Cortezon, E.
Vizan Garcia, J. M.
Cabrillo, I. J.
Calderon, A.
Castinieiras De Saa, J. R.
Castro Manzano, P. De
Duarte Campderros, J.
Fernandez, M.
Garcia-Ferrero, J.
Gomez, G.
Lopez Virto, A.
Marco, J.
Marco, R.
Martinez Rivero, C.
Matorras, F.
Munoz Sanchez, F. J.
Gomez, J. Piedra
Rodrigo, T.
Rodriguez-Marrero, A. Y.
Ruiz-Jimeno, A.
Scodellaro, L.
Vila, I.
Vilar Cortabitarte, R.
Abbaneo, D.
Auffray, E.
Auzinger, G.
Bachtis, M.
Baillon, P.
Ball, A. H.
Barney, D.
Benaglia, A.
Bendavid, J.
Benhabib, L.
Benitez, J. F.
Berruti, G. M.
Bloch, P.
Bocci, A.
Bonato, A.
Botta, C.
Breuker, H.
Camporesi, T.
Cerminara, G.
Colafranceschi, S.
D'Alfonso, M.
d'Enterria, D.
Dabrowski, A.
Daponte, V.
David, A.
De Gruttola, M.
De Guio, F.
De Roeck, A.
De Visscher, S.
Di Marco, E.
Dobson, M.
Dordevic, M.
Dorney, B.
du Pree, T.
Duenser, M.
Dupont, N.
Elliott-Peisert, A.
Franzoni, G.
Funk, W.
Gigi, D.
Gill, K.
Giordano, D.
Girone, M.
Glege, F.
Guida, R.
Gundacker, S.
Guthoff, M.
Hammer, J.
Harris, P.
Hegeman, J.
Innocente, V.
Janot, P.
Kirschenmann, H.
Kortelainen, M. J.
Kousouris, K.
Krajczar, K.
Lecoq, P.
Lourenco, C.
Lucchini, M. T.
Magini, N.
Malgeri, L.
Mannelli, M.
Martelli, A.
Masetti, L.
Meijers, F.
Mersi, S.
Meschi, E.
Moortgat, F.
Morovic, S.
Mulders, M.
Nemallapudi, M. V.
Neugebauer, H.
Orfanelli, S.
Orsini, L.
Pape, L.
Perez, E.
Peruzzi, M.
Petrilli, A.
Petrucciani, G.
Pfeiffer, A.
Piparo, D.
Racz, A.
Rolandi, G.
Rovere, M.
Ruan, M.
Sakulin, H.
Schaefer, C.
Schwick, C.
Sharma, A.
Silva, P.
Simon, M.
Sphicas, P.
Spiga, D.
Steggemann, J.
Stieger, B.
Stoye, M.
Takahashi, Y.
Treille, D.
Triossi, A.
Tsirou, A.
Veres, G. I.
Wardle, N.
Woehri, H. K.
Zagozdzinska, A.
Zeuner, W. D.
Bertl, W.
Deiters, K.
Erdmann, W.
Horisberger, R.
Ingram, Q.
Kaestli, H. C.
Kotlinski, D.
Langenegger, U.
Renker, D.
Rohe, T.
Bachmair, F.
Baeni, L.
Bianchini, L.
Buchmann, M. A.
Casal, B.
Dissertori, G.
Dittmar, M.
Donega, M.
Eller, P.
Grab, C.
Heidegger, C.
Hits, D.
Hoss, J.
Kasieczka, G.
Lustermann, W.
Mangano, B.
Marionneau, M.
del Arbol, P. Martinez Ruiz
Masciovecchio, M.
Meister, D.
Micheli, F.
Musella, P.
Nessi-Tedaldi, F.
Pandolfi, F.
Pata, J.
Pauss, F.
Perrozzi, L.
Quittnat, M.
Rossini, M.
Starodumov, A.
Takahashi, M.
Tavolaro, V. R.
Theofilatos, K.
Wallny, R.
Aarrestad, T. K.
Amsler, C.
Caminada, L.
Canelli, M. F.
Chiochia, V.
De Cosa, A.
Galloni, C.
Hinzmann, A.
Hreus, T.
Kilminster, B.
Lange, C.
Ngadiuba, J.
Pinna, D.
Robmann, P.
Ronga, F. J.
Salerno, D.
Yang, Y.
Cardaci, M.
Chen, K. H.
Doan, T. H.
Jain, Sh.
Khurana, R.
Konyushikhin, M.
Kuo, C. M.
Lin, W.
Lu, Y. J.
Yu, S. S.
Kumar, Arun
Bartek, R.
Chang, P.
Chang, Y. H.
Chang, Y. W.
Chao, Y.
Chen, K. F.
Chen, P. H.
Dietz, C.
Fiori, F.
Grundler, U.
Hou, W. -S.
Hsiung, Y.
Liu, Y. F.
Lu, R. -S.
Moya, M. Minano
Petrakou, E.
Tsai, J. F.
Tzeng, Y. M.
Asavapibhop, B.
Kovitanggoon, K.
Singh, G.
Srimanobhas, N.
Suwonjandee, N.
Adiguzel, A.
Cerci, S.
Demiroglu, Z. S.
Dozen, C.
Dumanoglu, I.
Girgis, S.
Gokbulut, G.
Guler, Y.
Gurpinar, E.
Hos, I.
Kangal, E. E.
Topaksu, A. Kayis
Onengut, G.
Ozdemir, K.
Ozturk, S.
Tai, B.
Topakli, H.
Vergili, M.
Zorbilmez, C.
Akin, I. V.
Bilin, B.
Bilmis, S.
Isildak, B.
Karapinar, G.
Yalvac, M.
Zeyrek, M.
Albayrak, E. A.
Gulmez, E.
Kaya, M.
Kaya, O.
Yetkin, T.
Cankocak, K.
Sen, S.
Vardarli, F. I.
Grynyov, B.
Levchuk, L.
Sorokin, P.
Aggleton, R.
Ball, F.
Beck, L.
Brooke, J. J.
Clement, E.
Cussans, D.
Flacher, H.
Goldstein, J.
Grimes, M.
Heath, G. P.
Heath, H. F.
Jacob, J.
Kreczko, L.
Lucas, C.
Meng, Z.
Newbold, D. M.
Paramesvaran, S.
Poll, A.
Sakuma, T.
El Nasr-storey, S. Seif
Senkin, S.
Smith, D.
Smith, V. J.
Bell, K. W.
Belyaev, A.
Brew, C.
Brown, R. M.
Cieri, D.
Cockerill, D. J. A.
Coughlan, J. A.
Harder, K.
Harper, S.
Olaiya, E.
Petyt, D.
Shepherd-Themistocleous, C. H.
Thea, A.
Thomas, L.
Tomalin, I. R.
Williams, T.
Womersley, W. J.
Worm, S. D.
Baber, M.
Bainbridge, R.
Buchmuller, O.
Bundock, A.
Burton, D.
Casasso, S.
Citron, M.
Colling, D.
Corpe, L.
Cripps, N.
Dauncey, P.
Davies, G.
De Wit, A.
Della Negra, M.
Dunne, P.
Elwood, A.
Ferguson, W.
Fulcher, J.
Futyan, D.
Hall, G.
Iles, G.
Kenzie, M.
Lane, R.
Lucas, R.
Lyons, L.
Magnan, A. -M.
Malik, S.
Nash, J.
Nikitenko, A.
Pela, J.
Pesaresi, M.
Petridis, K.
Raymond, D. M.
Richards, A.
Rose, A.
Seez, C.
Tapper, A.
Uchida, K.
Acosta, M. Vazquez
Virdee, T.
Zenz, S. C.
Cole, J. E.
Hobson, P. R.
Khan, A.
Kyberd, P.
Leggat, D.
Leslie, D.
Reid, I. D.
Symonds, P.
Teodorescu, L.
Turner, M.
Borzou, A.
Call, K.
Dittmann, J.
Hatakeyama, K.
Kasmi, A.
Liu, H.
Pastika, N.
Charaf, O.
Cooper, S. I.
Henderson, C.
Rumerio, P.
Avetisyan, A.
Bose, T.
Fantasia, C.
Gastler, D.
Lawson, P.
Rankin, D.
Richardson, C.
Rohlf, J.
St John, J.
Sulak, L.
Zou, D.
Alimena, J.
Berry, E.
Bhattacharya, S.
Cutts, D.
Dhingra, N.
Ferapontov, A.
Garabedian, A.
Hakala, J.
Heintz, U.
Laird, E.
Landsberg, G.
Mao, Z.
Narain, M.
Piperov, S.
Sagir, S.
Sinthuprasith, T.
Syarif, R.
Breedon, R.
Breto, G.
Sanchez, M. Calderon De la Barca
Chauhan, S.
Chertok, M.
Conway, J.
Conway, R.
Cox, P. T.
Erbacher, R.
Gardner, M.
Ko, W.
Lander, R.
Mulhearn, M.
Pellett, D.
Pilot, J.
Ricci-Tam, F.
Shalhout, S.
Smith, J.
Squires, M.
Stolp, D.
Tripathi, M.
Wilbur, S.
Yohay, R.
Cousins, R.
Everaerts, P.
Farrell, C.
Hauser, J.
Ignatenko, M.
Saltzberg, D.
Takasugi, E.
Valuev, V.
Weber, M.
Burt, K.
Clare, R.
Ellison, J.
Gary, J. W.
Hanson, G.
Heilman, J.
Paneva, M. Ivova
Jandir, P.
Kennedy, E.
Lacroix, F.
Long, O. R.
Luthra, A.
Malberti, M.
Negrete, M. Olmedo
Shrinivas, A.
Wei, H.
Wimpenny, S.
Yates, B. R.
Branson, J. G.
Cerati, G. B.
Cittolin, S.
D'Agnolo, R. T.
Holzner, A.
Kelley, R.
Klein, D.
Letts, J.
Macneill, I.
Olivito, D.
Padhi, S.
Pieri, M.
Sani, M.
Sharma, V.
Simon, S.
Tadel, M.
Vartak, A.
Wasserbaech, S.
Welke, C.
Wuerthwein, F.
Yagil, A.
Della Porta, G. Zevi
Barge, D.
Bradmiller-Feld, J.
Campagnari, C.
Dishaw, A.
Dutta, V.
Flowers, K.
Sevilla, M. Franco
Geffert, P.
George, C.
Golf, F.
Gouskos, L.
Gran, J.
Incandela, J.
Justus, C.
Mccoll, N.
Mullin, S. D.
Richman, J.
Stuart, D.
Suarez, I.
To, W.
West, C.
Yoo, J.
Anderson, D.
Apresyan, A.
Bornheim, A.
Bunn, J.
Chen, Y.
Duarte, J.
Mott, A.
Newman, H. B.
Pena, C.
Pierini, M.
Spiropulu, M.
Vlimant, J. R.
Xie, S.
Zhu, R. Y.
Andrews, M. B.
Azzolini, V.
Calamba, A.
Carlson, B.
Ferguson, T.
Paulini, M.
Russ, J.
Sun, M.
Vogel, H.
Vorobiev, I.
Cumalat, J. P.
Ford, W. T.
Gaz, A.
Jensen, F.
Johnson, A.
Krohn, M.
Mulholland, T.
Nauenberg, U.
Stenson, K.
Wagner, S. R.
Alexander, J.
Chatterjee, A.
Chaves, J.
Chu, J.
Dittmer, S.
Eggert, N.
Mirman, N.
Kaufman, G. Nicolas
Patterson, J. R.
Rinkevicius, A.
Ryd, A.
Skinnari, L.
Soffi, L.
Sun, W.
Tan, S. M.
Teo, W. D.
Thom, J.
Thompson, J.
Tucker, J.
Weng, Y.
Wittich, P.
Abdullin, S.
Albrow, M.
Anderson, J.
Apollinari, G.
Bauerdick, L. A. T.
Beretvas, A.
Berryhill, J.
Bhat, P. C.
Bolla, G.
Burkett, K.
Butler, J. N.
Cheung, H. W. K.
Chlebana, F.
Cihangir, S.
Elvira, V. D.
Fisk, I.
Freeman, J.
Gottschalk, E.
Gray, L.
Green, D.
Gruenendahl, S.
Gutsche, O.
Hanlon, J.
Hare, D.
Harris, R. M.
Hirschauer, J.
Hooberman, B.
Hu, Z.
Jindariani, S.
Johnson, M.
Joshi, U.
Jung, A. W.
Klima, B.
Kreis, B.
Kwant, S.
Lammel, S.
Linacre, J.
Lincoln, D.
Lipton, R.
Liu, T.
De Sa, R. Lopes
Lykken, J.
Maeshima, K.
Marraffino, J. M.
Outschoorn, V. I. Martinez
Maruyama, S.
Mason, D.
McBride, P.
Merkel, P.
Mishra, K.
Mrenna, S.
Nahn, S.
Newman-Holmes, C.
O'Dell, V.
Pedro, K.
Prokofyev, O.
Rakness, G.
Sexton-Kennedy, E.
Soha, A.
Spalding, W. J.
Spiegel, L.
Taylor, L.
Tkaczyk, S.
Tran, N. V.
Uplegger, L.
Vaandering, E. W.
Vernieri, C.
Verzocchi, M.
Vidal, R.
Weber, H. A.
Whitbeck, A.
Yang, F.
Acosta, D.
Avery, P.
Bortignon, P.
Bourilkov, D.
Carnes, A.
Carver, M.
Curry, D.
Das, S.
Di Giovanni, G. P.
Field, R. D.
Furic, I. K.
Hugon, J.
Konigsberg, J.
Korytov, A.
Low, J. F.
Ma, P.
Matchev, K.
Mei, H.
Milenovic, P.
Mitselmakher, G.
Rank, D.
Rossin, R.
Shchutska, L.
Snowball, M.
Sperka, D.
Terentyev, N.
Wang, J.
Wang, S.
Yelton, J.
Hewamanage, S.
Linn, S.
Markowitz, P.
Martinez, G.
Rodriguez, J. L.
Ackert, A.
Adams, J. R.
Adams, T.
Askew, A.
Bochenek, J.
Diamond, B.
Haas, J.
Hagopian, S.
Hagopian, V.
Johnson, K. F.
Khatiwada, A.
Prosper, H.
Veeraraghavan, V.
Weinberg, M.
Baarmand, M. M.
Bhopatkar, V.
Hohlmann, M.
Kalakhety, H.
Noonan, D.
Roy, T.
Yumiceva, F.
Adams, M. R.
Apanasevich, L.
Berry, D.
Betts, R. R.
Bucinskaite, I.
Cavanaugh, R.
Evdokimov, O.
Gauthier, L.
Gerber, C. E.
Hofman, D. J.
Kurt, P.
O'Brien, C.
Gonzalez, I. D. Sandoval
Silkworth, C.
Turner, P.
Varelas, N.
Wu, Z.
Zakaria, M.
Bilki, B.
Clarida, W.
Dilsiz, K.
Durgut, S.
Gandrajula, R. P.
Haytmyradov, M.
Khristenko, V.
Merlo, J. -P.
Mermerkaya, H.
Mestvirishvili, A.
Moeller, A.
Nachtman, J.
Ogul, H.
Onel, Y.
Ozok, F.
Penzo, A.
Snyder, C.
Tan, P.
Tiras, E.
Wetzel, J.
Yi, K.
Anderson, I.
Barnett, B. A.
Blumenfeld, B.
Fehling, D.
Feng, L.
Gritsan, A. V.
Maksimovic, P.
Martin, C.
Osherson, M.
Swartz, M.
Xiao, M.
Xin, Y.
You, C.
Baringer, P.
Bean, A.
Benelli, G.
Bruner, C.
Kenny, R. P., III
Majumder, D.
Malek, M.
Murray, M.
Sanders, S.
Stringer, R.
Wang, Q.
Ivanov, A.
Kaadze, K.
Khalil, S.
Makouski, M.
Maravin, Y.
Mohammadi, A.
Saini, L. K.
Skhirtladze, N.
Toda, S.
Lange, D.
Rebassoo, F.
Wright, D.
Anelli, C.
Baden, A.
Baron, O.
Belloni, A.
Calvert, B.
Eno, S. C.
Ferraioli, C.
Gomez, J. A.
Hadley, N. J.
Jabeen, S.
Kellogg, R. G.
Kolberg, T.
Kunkle, J.
Lu, Y.
Mignerey, A. C.
Shin, Y. H.
Skuja, A.
Tonjes, M. B.
Tonwar, S. C.
Apyan, A.
Barbieri, R.
Baty, A.
Bierwagen, K.
Brandt, S.
Busza, W.
Cali, I. A.
Demiragli, Z.
Di Matteo, L.
Ceballos, G. Gomez
Goncharov, M.
Gulhan, D.
Iiyama, Y.
Innocenti, G. M.
Klute, M.
Kovalskyi, D.
Lai, Y. S.
Lee, Y. -J.
Levin, A.
Luckey, P. D.
Marini, A. C.
Mcginn, C.
Mironov, C.
Niu, X.
Paus, C.
Ralph, D.
Roland, C.
Roland, G.
Salfeld-Nebgen, J.
Stephans, G. S. F.
Sumorok, K.
Varma, M.
Velicanu, D.
Veverka, J.
Wang, J.
Wang, T. W.
Wyslouch, B.
Yang, M.
Zhukova, V.
Dahmes, B.
Finkel, A.
Gude, A.
Hansen, P.
Kalafut, S.
Kao, S. C.
Klapoetke, K.
Kubota, Y.
Lesko, Z.
Mans, J.
Nourbakhsh, S.
Ruckstuhl, N.
Rusack, R.
Tambe, N.
Turkewitz, J.
Acosta, J. G.
Oliveros, S.
Avdeeva, E.
Bloom, K.
Bose, S.
Claes, D. R.
Dominguez, A.
Fangmeier, C.
Suarez, R. Gonzalez
Kamalieddin, R.
Keller, J.
Knowlton, D.
Kravchenko, I.
Lazo-Flores, J.
Meier, F.
Monroy, J.
Ratnikov, F.
Siado, J. E.
Snow, G. R.
Alyari, M.
Dolen, J.
George, J.
Godshalk, A.
Harrington, C.
Iashvili, I.
Kaisen, J.
Kharchilava, A.
Kumar, A.
Rappoccio, S.
Alverson, G.
Barberis, E.
Baumgartel, D.
Chasco, M.
Hortiangtham, A.
Massironi, A.
Morse, D. M.
Nash, D.
Orimoto, T.
De Lima, R. Teixeira
Trocino, D.
Wang, R. -J.
Wood, D.
Zhang, J.
Hahn, K. A.
Kubik, A.
Mucia, N.
Odell, N.
Pollack, B.
Pozdnyakov, A.
Schmitt, M.
Stoynev, S.
Sung, K.
Trovato, M.
Velasco, M.
Brinkerhoff, A.
Dev, N.
Hildreth, M.
Jessop, C.
Karmgard, D. J.
Kellams, N.
Lannon, K.
Lynch, S.
Marinelli, N.
Meng, F.
Mueller, C.
Musienko, Y.
Pearson, T.
Planer, M.
Reinsvold, A.
Ruchti, R.
Smith, G.
Taroni, S.
Valls, N.
Wayne, M.
Wolf, M.
Woodard, A.
Antonelli, L.
Brinson, J.
Bylsma, B.
Durkin, L. S.
Flowers, S.
Hart, A.
Hill, C.
Hughes, R.
Ji, W.
Kotov, K.
Ling, T. Y.
Liu, B.
Luo, W.
Puigh, D.
Rodenburg, M.
Winer, B. L.
Wulsin, H. W.
Driga, O.
Elmer, P.
Hardenbrook, J.
Hebda, P.
Koay, S. A.
Lujan, P.
Marlow, D.
Medvedeva, T.
Mooney, M.
Olsen, J.
Palmer, C.
Piroue, P.
Quan, X.
Saka, H.
Stickland, D.
Tully, C.
Werner, J. S.
Zuranski, A.
Malik, S.
Barnes, V. E.
Benedetti, D.
Bortoletto, D.
Gutay, L.
Jha, M. K.
Jones, M.
Jung, K.
Kress, M.
Miller, D. H.
Neumeister, N.
Radburn-Smith, B. C.
Shi, X.
Shipsey, I.
Silvers, D.
Sun, J.
Svyatkovskiy, A.
Wang, F.
Xie, W.
Xu, L.
Parashar, N.
Stupak, J.
Adair, A.
Akgun, B.
Chen, Z.
Ecklund, K. M.
Geurts, F. J. M.
Guilbaud, M.
Li, W.
Michlin, B.
Northup, M.
Padley, B. P.
Redjimi, R.
Roberts, J.
Rorie, J.
Tu, Z.
Zabel, J.
Betchart, B.
Bodek, A.
de Barbaro, P.
Demina, R.
Eshaq, Y.
Ferbel, T.
Galanti, M.
Garcia-Bellido, A.
Han, J.
Harel, A.
Hindrichs, O.
Khukhunaishvili, A.
Petrillo, G.
Verzetti, M.
Demortier, L.
Arora, S.
Barker, A.
Chou, J. P.
Contreras-Campana, C.
Contreras-Campana, E.
Duggan, D.
Ferencek, D.
Gershtein, Y.
Gray, R.
Halkiadakis, E.
Hidas, D.
Hughes, E.
Kaplan, S.
Elayavalli, R. Kunnawalkam
Lath, A.
Nash, K.
Panwalkar, S.
Park, M.
Salur, S.
Schnetzer, S.
Sheffield, D.
Somalwar, S.
Stone, R.
Thomas, S.
Thomassen, P.
Walker, M.
Foerster, M.
Riley, G.
Rose, K.
Spanier, S.
York, A.
Bouhali, O.
Hernandez, A. Castaneda
Dalchenko, M.
De Mattia, M.
Delgado, A.
Dildick, S.
Eusebi, R.
Flanagan, W.
Gilmore, J.
Kamon, T.
Krutelyov, V.
Montalvo, R.
Mueller, R.
Osipenkov, I.
Pakhotin, Y.
Patel, R.
Perloff, A.
Roe, J.
Rose, A.
Safonov, A.
Tatarinov, A.
Ulmer, K. A.
Akchurin, N.
Cowden, C.
Damgov, J.
Dragoiu, C.
Dudero, P. R.
Faulkner, J.
Kunori, S.
Lamichhane, K.
Lee, S. W.
Libeiro, T.
Undleeb, S.
Volobouev, I.
Appelt, E.
Delannoy, A. G.
Greene, S.
Gurrola, A.
Janjam, R.
Johns, W.
Maguire, C.
Mao, Y.
Melo, A.
Ni, H.
Sheldon, P.
Snook, B.
Tuo, S.
Velkovska, J.
Xu, Q.
Arenton, M. W.
Boutle, S.
Cox, B.
Francis, B.
Goodell, J.
Hirosky, R.
Ledovskoy, A.
Li, H.
Lin, C.
Neu, C.
Wolfe, E.
Wood, J.
Xia, F.
Clarke, C.
Harr, R.
Karchin, P. E.
Don, C. Kottachchi Kankanamge
Lamichhane, P.
Sturdy, J.
Belknap, D. A.
Carlsmith, D.
Cepeda, M.
Christian, A.
Dasu, S.
Dodd, L.
Duric, S.
Friis, E.
Gomber, B.
Hall-Wilton, R.
Herndon, M.
Herve, A.
Klabbers, P.
Lanaro, A.
Levine, A.
Long, K.
Loveless, R.
Mohapatra, A.
Ojalvo, I.
Perry, T.
Pierro, G. A.
Polese, G.
Ross, I.
Ruggles, T.
Sarangi, T.
Savin, A.
Sharma, A.
Smith, N.
Smith, W. H.
Taylor, D.
Woods, N.
CA CMS Collaboration
TI Reconstruction and identification of tau lepton decays to hadrons and
nu(tau) at CMS
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
DE Particle identification methods; Large detector systems for particle and
astroparticle physics
ID PP COLLISIONS; ROOT-S=7 TEV
AB This paper describes the algorithms used by the CMS experiment to reconstruct and identify tau -> hadrons + nu(tau) decays during Run 1 of the LHC. The performance of the algorithms is studied in proton-proton collisions recorded at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb(-1). The algorithms achieve an identification efficiency of 50-60%, with misidentification rates for quark and gluon jets, electrons, and muons between per mille and per cent levels.
C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Knuenz, V.; Koenig, A.; Krammer, M.; Kraetschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieckl, J.; Schoefbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria.
[Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van de Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium.
[Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium.
[Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Leonard, A.; Maerschalk, T.; Marinov, A.; Pernie, L.; Randle-conde, A.; Reis, T.; Seva, T.; Velde, C. Vander; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Fasanella, D.] Univ Libre Bruxelles, Brussels, Belgium.
[Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Rios, A. A. Ocampo; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, Ghent, Belgium.
[Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal] Catholic Univ Louvain, Louvain La Neuve, Belgium.
[Belly, N.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium.
[Alda Junior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil.
[Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Ahuja, S.; Dogra, S.; Fernandez Perez Tomei, T. R.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil.
[Bernardes, C. A.; De Souza Santos, A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil.
[Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria.
[Dimitrov, A.; Glushkov, I.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria.
[Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.] Inst High Energy Phys, Beijing 100039, Peoples R China.
[Zhang, F.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China.
[Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia.
[Godinovic, N.; Lelas, D.; Puljak, I.; Cipriano, P. M. Ribeiro] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia.
[Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia.
[Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.] Inst Rudjer Boskov, Zagreb, Croatia.
[Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, CY-1678 Nicosia, Cyprus.
[Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic.
[Abdelalim, A. A.; Awad, A.; El Sawy, M.; Mahrous, A.; Mohammed, Y.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt.
[Giammanco, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia.
[Eerola, P.; Pekkanen, J.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland.
[Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland.
[Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland.
[Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France.
[Plestina, R.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; de Cassagnac, R. Grapier; Lisniak, S.; Mastrolorenzo, L.; Mine, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.] Univ Strasbourg, Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France.
[Gadrat, S.] CNRS, IN2P3, Ctr Calcul, Villeurbanne, France.
[Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Montoya, C. A. Carrillo; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France.
[Tsamalaidze, Z.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia.
[Bernet, C.; Autermann, C.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany.
[Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thueer, S.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany.
[Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. OE.; Saxena, P.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.] Deutsch Elekt Synchrotron, Hamburg, Germany.
[Gallo, E.; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.] Univ Hamburg, Hamburg, Germany.
[Weber, H.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Pardo, P. Lobelle; Maier, B.; Mildner, H.; Mozer, M. U.; Mueller, T.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Woehrmann, C.; Wolf, R.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany.
[Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece.
[Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Sphicas, P.] Univ Athens, Athens, Greece.
[Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.] Univ Ioannina, GR-45110 Ioannina, Greece.
[Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Bartok, M.] Wigner Res Ctr Phys, Budapest, Hungary.
[Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary.
[Karancsi, J.; Bartok, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary.
[Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India.
[Bansal, S.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.] Panjab Univ, Chandigarh 160014, India.
[Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi 110007, India.
[Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India.
[Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India.
[Banerjee, S.; Aziz, T.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.] Tata Inst Fundamental Res, Homi Bhabha Rd, Bombay 400005, Maharashtra, India.
[Chauhan, S.; Dube, S.; Sharma, S.] Indian Inst Sci Educ & Res, Pune, Maharashtra, India.
[Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci, IPM, Tehran, Iran.
[Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland.
[Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaseili, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Abbrescia, M.; Calabria, C.; Caputo, C.; Cristella, L.; De Palma, M.; Miniello, G.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy.
[Creanza, D.; De Filippis, N.; Iaseili, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy.
[Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy.
[Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy.
[Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy.
[Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy.
[Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy.
[Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.; Viliani, L.] Univ Florence, Florence, Italy.
[Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, POB 13, I-00044 Frascati, Italy.
[Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy.
[Calvelli, V.; Lo Vetere, M.; Monge, M. R.; Tosi, S.] Univ Genoa, Genoa, Italy.
[Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, R.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Via Celoria 16, I-20133 Milan, Italy.
[Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, R.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy.
[Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy.
[Esposito, M.; Sciacca, C.; Fiori, F.] Univ Naples Federico II, Naples, Italy.
[Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy.
[Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy.
[Azzi, P.; Bacchetta, N.; Bellato, M.; Benato, L.; Boletti, A.; Branca, A.; Osso, M. Dail'; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Margoni, M.; Meneguzzo, Ba. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy.
[Benato, L.; Boletti, A.; Branca, A.; Osso, M. Dail'; Margoni, M.; Meneguzzo, Ba. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.] Univ Padua, Padua, Italy.
[Zanetti, M.] Univ Trento, Trento, Italy.
[Braghieri, A.; Magnani, A.; Montagna, P.; Raffi, S. P.; Re, V.; Salvini, P.; Vai, I.; Vitulo, R.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy.
[Montagna, P.; Raffi, S. P.; Vitulo, R.] Univ Pavia, Via Palestro 3, I-27100 Pavia, Italy.
[Solestizi, L. Alunni; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Solestizi, L. Alunni; Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy.
[Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
[Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy.
[Broccolo, G.; Donato, S.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy.
[Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy.
[Barone, L.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.; Traczyk, P.] Univ Rome, Rome, Italy.
[Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy.
[Argiro, S.; Bellan, R.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monteil, E.; Obertino, M. M.; Pacher, L.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.] Univ Torino, Turin, Italy.
[Arcidiacono, R.; Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy.
[Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy.
[Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.] Univ Trieste, Trieste, Italy.
[Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea.
[Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea.
[Cifuentes, J. A. Brochero; Kim, H.; Kim, T. J.; Ryu, M. S.] Chonbuk Natl Univ, Jeonju 561756, South Korea.
[Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea.
[Lee, S.; Kim, H.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea.
[Yoo, H. D.] Seoul Natl Univ, Seoul, South Korea.
[Kim, H.; Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.] Univ Seoul, Seoul, South Korea.
[Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea.
[Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania.
[Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Yusli, M. N.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia.
[Casimiro Linares, E.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de la Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest Estudios Avanzados, Mexico City 07738, DF, Mexico.
[Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico.
[Pedraza, I.; Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico.
[Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico.
[Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand.
[Butler, P. H.] Univ Canterbury, Christchurch 1, New Zealand.
[Ahmad, M.; Ahmad, A.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan.
[Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland.
[Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland.
[Bargassa, P.; Beirao Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal.
[Finger, M.; Finger, M., Jr.; Tsamalaidze, Z.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Laney, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia.
[Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, Gatchina, St Petersburg, Russia.
[Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia.
[Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Bylinkin, A.; Azarkin, M.; Dremin, I.; Leonidov, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia.
[Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Leninsky Prospect 53, Moscow 117924, Russia.
[Popov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia.
[Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, POB 550, Belgrade 11001, Serbia.
[Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia.
[Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, E-28040 Madrid, Spain.
[Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain.
[Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain.
[Cabrillo, I. J.; Calderon, A.; Castinieiras De Saa, J. R.; Castro Manzano, P. De; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Gomez, J. Piedra; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Rabady, D.; Merlin, J. A.; Lingemann, J.; Pantaleo, F.; Hartmann, F.; Kornmayer, A.; Silvestris, L.; Battilana, C.; Marzocchi, B.; Di Guida, S.; Meola, S.; Paolucci, P.; Azzi, P.; Osso, M. Dail'; Zucchetta, A.; Ciangottini, D.; Donato, S.; D'imperio, G.; Traczyk, P.; Arcidiacono, R.; Finco, L.; Candelise, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duenser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Woehri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Apollinari, G.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland.
[Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland.
[Bachmair, F.; Baeni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] ETH, Inst Particle Phys, Zurich, Switzerland.
[Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland.
[Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan.
[Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Moya, M. Minano; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.] Natl Taiwan Univ, Taipei 10764, Taiwan.
[Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand.
[Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Topakli, H.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey.
[Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey.
[Albayrak, E. A.; Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey.
[Cankocak, K.; Sen, S.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey.
[Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine.
[Levchuk, L.; Sorokin, P.] Natl Sci Ctr, Kharkov Inst Phys & Technol, Kharkov, Ukraine.
[Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-storey, S. Seif; Senkin, S.; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England.
[Belyaev, A.; Newbold, D. M.; Bell, K. W.; Brew, C.; Brown, R. M.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Thomas, L.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England.
[Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX 76798 USA.
[Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA.
[Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St John, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA.
[Bhattacharya, S.; Alimena, J.; Berry, E.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Sinthuprasith, T.; Syarif, R.] Brown Univ, Providence, RI 02912 USA.
[Chauhan, S.; Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA.
[Weber, M.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA.
[Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Paneva, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Sharma, V.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wuerthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Dubinin, M.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA.
[Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA.
[Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY USA.
[Cheng, T.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwant, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA.
[Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA.
[Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA.
[Baarmand, M. M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA.
[Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.] Univ Illinois, Chicago, IL USA.
[Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA.
[Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD USA.
[Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA.
[Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA.
[Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA.
[Wang, J.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Dahmes, B.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA.
[Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA.
[Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA.
[Kumar, A.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.; Wood, J.] Northeastern Univ, Boston, MA 02115 USA.
[Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA.
[Elwood, A.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA.
[Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA.
[Malik, S.] Univ Puerto Rico, Mayaguez, PR USA.
[Savoy-Navarro, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN 47907 USA.
[Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA.
[Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA.
[Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.] Univ Rochester, Rochester, NY 14627 USA.
[Demortier, L.] Rockefeller Univ, 1230 York Ave, New York, NY 10021 USA.
[Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA.
[Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA.
[Rose, A.; Bouhali, O.; Hernandez, A. Castaneda; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA.
[Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA.
[Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA.
[Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.] Univ Virginia, Charlottesville, VA USA.
[Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA.
[Sharma, A.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA.
[Fruehwirth, R.; Jeitler, M.; Krammer, M.; Schieckl, J.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria.
[Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil.
[Moon, C. S.] CNRS, IN2P3, Paris, France.
[Abdelalim, A. A.; Mahrous, A.] Helwan Univ, Cairo, Egypt.
[Abdelalim, A. A.] Zewail City Sci & Technol, Zewail, Egypt.
[Awad, A.; Radi, A.] Ain Shams Univ, Cairo, Egypt.
[Awad, A.; El Sawy, M.; Radi, A.] British Univ Egypt, Cairo, Egypt.
[El Sawy, M.] Beni Suef Univ, Bani Sweif, Egypt.
[Mohammed, Y.] Fayoum Univ, Al Fayyum, Egypt.
[Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France.
[Hempel, M.; Karacheban, O.; Lohmann, W.; Marfin, I.] Brandenburg Tech Univ Cottbus, Cottbus, Germany.
[Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary.
[Bhowmik, S.; Maity, M.; Sarkar, T.] Visva Bharati Univ, Santini Ketan, W Bengal, India.
[Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia.
[Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka.
[Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran.
[Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran.
[Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran.
[Gulmini, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy.
[Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy.
[Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia.
[Idris, F. Mohamad] Agensi Nuklear Malaysia, MOSTI, Kajang, Malaysia.
[Heredia-de la Cruz, I.] Consejo Nacl Ciencia & Technol, Mexico City, DF, Mexico.
[Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia.
[Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy.
[Orfanelli, S.] Natl Tech Univ Athens, Athens, Greece.
[Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy.
[Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland.
[Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Cerci, S.; Tai, B.] Adiyaman Univ, Adiyaman, Turkey.
[Kangal, E. E.] Mersin Univ, Mersin, Turkey.
[Onengut, G.] Cag Univ, Mersin, Turkey.
[Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey.
[Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey.
[Isildak, B.] Ozyegin Univ, Istanbul, Turkey.
[Karapinar, G.] Izmir Inst Technol, Izmir, Turkey.
[Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey.
[Kaya, M.] Marmara Univ, Istanbul, Turkey.
[Kaya, O.] Kafkas Univ, Kars, Turkey.
[Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey.
[Sen, S.] Hacettepe Univ, Ankara, Turkey.
[Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England.
[Acosta, M. Vazquez] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain.
[Wasserbaech, S.] Utah Valley Univ, Orem, UT USA.
[Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey.
[Bouhali, O.; Hernandez, A. Castaneda] Texas A&M Univ Qatar, Doha, Qatar.
RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia.
EM cms-publication-committee-chair@cern.ch
RI Dudko, Lev/D-7127-2012; Tuominen, Eija/A-5288-2017; Yazgan,
Efe/C-4521-2014; Leonidov, Andrey/M-4440-2013; Paulini,
Manfred/N-7794-2014; Moraes, Arthur/F-6478-2010; Dremin,
Igor/K-8053-2015; ciocci, maria agnese /I-2153-2015; Kirakosyan,
Martin/N-2701-2015; TUVE', Cristina/P-3933-2015; Mundim,
Luiz/A-1291-2012; VARDARLI, Fuat Ilkehan/B-6360-2013; Konecki,
Marcin/G-4164-2015; Vogel, Helmut/N-8882-2014; Benussi,
Luigi/O-9684-2014; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016;
Calderon, Alicia/K-3658-2014; Goh, Junghwan/Q-3720-2016; Flix,
Josep/G-5414-2012; Ruiz, Alberto/E-4473-2011; Petrushanko,
Sergey/D-6880-2012; Azarkin, Maxim/N-2578-2015; Chinellato, Jose
Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Tinoco Mendes, Andre
David/D-4314-2011; Seixas, Joao/F-5441-2013; Verwilligen,
Piet/M-2968-2014; Vilela Pereira, Antonio/L-4142-2016; Sznajder,
Andre/L-1621-2016; Stahl, Achim/E-8846-2011; Da Silveira, Gustavo
Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; Della Ricca,
Giuseppe/B-6826-2013; Montanari, Alessandro/J-2420-2012; Lokhtin,
Igor/D-7004-2012; Manganote, Edmilson/K-8251-2013; Calvo Alamillo,
Enrique/L-1203-2014; Matorras, Francisco/I-4983-2015; Hernandez Calama,
Jose Maria/H-9127-2015; Cerrada, Marcos/J-6934-2014; Andreev,
Vladimir/M-8665-2015; Perez-Calero Yzquierdo, Antonio/F-2235-2013;
Novaes, Sergio/D-3532-2012
OI Luukka, Panja/0000-0003-2340-4641; Dudko, Lev/0000-0002-4462-3192;
Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950;
Paulini, Manfred/0000-0002-6714-5787; Moraes,
Arthur/0000-0002-5157-5686; ciocci, maria agnese /0000-0003-0002-5462;
TUVE', Cristina/0000-0003-0739-3153; Mundim, Luiz/0000-0001-9964-7805;
Konecki, Marcin/0000-0001-9482-4841; Vogel, Helmut/0000-0002-6109-3023;
Benussi, Luigi/0000-0002-2363-8889; Xie, Si/0000-0003-2509-5731;
Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083;
Flix, Josep/0000-0003-2688-8047; Ruiz, Alberto/0000-0002-3639-0368;
Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei,
Thiago/0000-0002-1809-5226; Tinoco Mendes, Andre
David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Vilela
Pereira, Antonio/0000-0003-3177-4626; Sznajder,
Andre/0000-0001-6998-1108; Stahl, Achim/0000-0002-8369-7506; Da
Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria
Clemencia/0000-0003-3915-3170; Della Ricca,
Giuseppe/0000-0003-2831-6982; Montanari, Alessandro/0000-0003-2748-6373;
Calvo Alamillo, Enrique/0000-0002-1100-2963; Matorras,
Francisco/0000-0003-4295-5668; Hernandez Calama, Jose
Maria/0000-0001-6436-7547; Cerrada, Marcos/0000-0003-0112-1691;
Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Novaes,
Sergio/0000-0003-0471-8549
FU Austrian Federal Ministry of Science, Research and Economy; Austrian
Science Fund; Belgian Fonds de la Recherche Scientifique; Fonds voor
Wetenschappelijk Onderzoek; Brazilian Funding Agency (CNPq); Brazilian
Funding Agency (CAPES); Brazilian Funding Agency (FAPERJ); Brazilian
Funding Agency (FAPESP); Bulgarian Ministry of Education and Science;
CERN; Chinese Academy of Sciences, Ministry of Science and Technology;
National Natural Science Foundation of China; Colombian Funding Agency
(COLCIENCIAS); Croatian Ministry of Science, Education and Sport;
Croatian Science Foundation; Research Promotion Foundation, Cyprus;
Ministry of Education and Research, Estonia; European Regional
Development Fund, Estonia; Estonian Research Council, Estonia [IUT23-4,
IUT23-6]; Academy of Finland; Finnish Ministry of Education and Culture;
Helsinki Institute of Physics; Institut National de Physique Nucleaire
et de Physique des Particules / CNRS, France; Commissariat a l'Energie
Atomique et aux Energies Alternatives/CEA, France; Bundesministerium fur
Bildung und Forschung, Germany; Deutsche Forschungsgemeinschaft,
Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany;
General Secretariat for Research and Technology, Greece; National
Scientific Research Foundation, Hungary; National Innovation Office,
Hungary; Department of Atomic Energy, India; Department of Science and
Technology, India; Institute for Studies in Theoretical Physics and
Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di
Fisica Nucleare, Italy; Ministry of Science, ICT and Future Planning,
Republic of Korea; National Research Foundation (NRF), Republic of
Korea; Lithuanian Academy of Sciences; Ministry of Education (Malaysia);
University of Malaya (Malaysia); Mexican Funding Agency (CINVESTAV);
Mexican Funding Agency (CONACYT); Mexican Funding Agency (SEP); Mexican
Funding Agency (UASLP-FAI); Ministry of Business, Innovation and
Employment, New Zealand; Pakistan Atomic Energy Commission; Ministry of
Science and Higher Education, Poland; National Science Centre, Poland;
Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; Ministry
of Education and Science of the Russian Federation; Federal Agency of
Atomic Energy of the Russian Federation; Russian Academy of Sciences;
Russian Foundation for Basic Research; Ministry of Education, Science
and Technological Development of Serbia; Secretaria de Estado de
Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio,
Spain; Swiss Funding Agency (ETH Board); Swiss Funding Agency (ETH
Zurich); Swiss Funding Agency (PSI); Swiss Funding Agency (SNF); Swiss
Funding Agency (UniZH); Swiss Funding Agency (Canton Zurich); Swiss
Funding Agency (SER); Ministry of Science and Technology, Taipei;
Thailand Center of Excellence in Physics; Institute for the Promotion of
Teaching Science and Technology of Thailand; Special Task Force for
Activating Research; National Science and Technology Development Agency
of Thailand; Scientific and Technical Research Council of Turkey;
Turkish Atomic Energy Authority; National Academy of Sciences of
Ukraine, Ukraine; State Fund for Fundamental Researches, Ukraine;
Science and Technology Facilities Council, U.K.; US Department of
Energy; US National Science Foundation; Marie-Curie programme (European
Union); European Research Council (European Union); EPLANET (European
Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von
Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour
la Formation a la Recherche dans l'Industrie et dans l'Agriculture
(FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie
(IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the
Czech Republic; Council of Science and Industrial Research, India;
HOMING PLUS programme of the Foundation for Polish Science; European
Union, Regional Development Fund; OPUS programme of the National Science
Center (Poland); Compagnia di San Paolo (Torino); Consorzio per la
Fisica (Trieste); MIUR project (Italy) [20108T4XTM]; Thalis programme -
EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; National Priorities
Research Program by Qatar National Research Fund; Rachadapisek Sompot
Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand);
Welch Foundation [C-1845]
FX We congratulate our colleagues in the CERN accelerator departments for
the excellent performance of the LHC and thank the technical and
administrative staffs at CERN and at other CMS institutes for their
contributions to the success of the CMS effort. In addition, we
gratefully acknowledge the computing centres and personnel of the
Worldwide LHC Computing Grid for delivering so effectively the computing
infrastructure essential to our analyses.; Finally, we acknowledge the
enduring support for the construction and operation of the LHC and the
CMS detector provided by the following funding agencies: the Austrian
Federal Ministry of Science, Research and Economy and the Austrian
Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds
voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq,
CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and
Science; CERN; the Chinese Academy of Sciences, Ministry of Science and
Technology, and National Natural Science Foundation of China; the
Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of
Science, Education and Sport, and the Croatian Science Foundation; the
Research Promotion Foundation, Cyprus; the Ministry of Education and
Research, Estonian Research Council via IUT23-4 and IUT23-6 and European
Regional Development Fund, Estonia; the Academy of Finland, Finnish
Ministry of Education and Culture, and Helsinki Institute of Physics;
the Institut National de Physique Nucleaire et de Physique des
Particules / CNRS, and Commissariat a l'Energie Atomique et aux Energies
Alternatives/CEA, France; the Bundesministerium fur Bildung und
Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft
Deutscher Forschungszentren, Germany; the General Secretariat for
Research and Technology, Greece; the National Scientific Research
Foundation, and National Innovation Office, Hungary; the Department of
Atomic Energy and the Department of Science and Technology, India; the
Institute for Studies in Theoretical Physics and Mathematics, Iran; the
Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare,
Italy; the Ministry of Science, ICT and Future Planning, and National
Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of
Sciences; the Ministry of Education, and University of Malaya
(Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and
UASLP-FAI); the Ministry of Business, Innovation and Employment, New
Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science
and Higher Education and the National Science Centre, Poland; the
Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; the
Ministry of Education and Science of the Russian Federation, the Federal
Agency of Atomic Energy of the Russian Federation, Russian Academy of
Sciences, and the Russian Foundation for Basic Research; the Ministry of
Education, Science and Technological Development of Serbia; the
Secretaria de Estado de Investigacion, Desarrollo e Innovacion and
Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH
Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the
Ministry of Science and Technology, Taipei; the Thailand Center of
Excellence in Physics, the Institute for the Promotion of Teaching
Science and Technology of Thailand, Special Task Force for Activating
Research and the National Science and Technology Development Agency of
Thailand; the Scientific and Technical Research Council of Turkey, and
Turkish Atomic Energy Authority; the National Academy of Sciences of
Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science
and Technology Facilities Council, U.K.; the US Department of Energy,
and the US National Science Foundation.; Individuals have received
support from the Marie-Curie programme and the European Research Council
and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan
Foundation; the Alexander von Humboldt Foundation; the Belgian Federal
Science Policy Office; the Fonds pour la Formation a la Recherche dans
l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor
Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of
Education, Youth and Sports (MEYS) of the Czech Republic; the Council of
Science and Industrial Research, India; the HOMING PLUS programme of the
Foundation for Polish Science, cofinanced from European Union, Regional
Development Fund; the OPUS programme of the National Science Center
(Poland); the Compagnia di San Paolo (Torino); the Consorzio per la
Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and
Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the
National Priorities Research Program by Qatar National Research Fund;
the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn
University (Thailand); and the Welch Foundation, contract C-1845.
NR 67
TC 1
Z9 1
U1 17
U2 37
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD JAN
PY 2016
VL 11
AR P01019
DI 10.1088/1748-0221/11/01/P01019
PG 76
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA DF6MM
UT WOS:000371469800107
ER
PT J
AU Kreis, B
Berryhill, J
Cavanaugh, R
Mishra, K
Rivera, R
Uplegger, L
Apanasevich, L
Zhang, J
Marrouche, J
Wardle, N
Aggleton, R
Ball, F
Brooke, J
Newbold, D
Paramesvaran, S
Smith, D
Baber, M
Bundock, A
Citron, M
Elwood, A
Hall, G
Iles, G
Laner, C
Penning, B
Rose, A
Tapper, A
Foudas, C
Beaudette, F
Cadamuro, L
Mastrolorenzo, L
Romanteau, T
Sauvan, JB
Strebler, T
Zabi, A
Barbieri, R
Cali, IA
Innocenti, GM
Lee, YJ
Roland, C
Wyslouch, B
Guilbaud, M
Li, W
Northup, M
Tran, B
Durkin, T
Harder, K
Harper, S
Shepherd-Themistocleous, C
Thea, A
Williams, T
Cepeda, M
Dasu, S
Dodd, L
Forbes, R
Gorski, T
Klabbers, P
Levine, A
Ojalvo, I
Ruggles, T
Smith, N
Smith, W
Svetek, A
Tikalsky, J
Vicente, M
AF Kreis, B.
Berryhill, J.
Cavanaugh, R.
Mishra, K.
Rivera, R.
Uplegger, L.
Apanasevich, L.
Zhang, J.
Marrouche, J.
Wardle, N.
Aggleton, R.
Ball, F.
Brooke, J.
Newbold, D.
Paramesvaran, S.
Smith, D.
Baber, M.
Bundock, A.
Citron, M.
Elwood, A.
Hall, G.
Iles, G.
Laner, C.
Penning, B.
Rose, A.
Tapper, A.
Foudas, C.
Beaudette, F.
Cadamuro, L.
Mastrolorenzo, L.
Romanteau, T.
Sauvan, J. B.
Strebler, T.
Zabi, A.
Barbieri, R.
Cali, I. A.
Innocenti, G. M.
Lee, Y. -J.
Roland, C.
Wyslouch, B.
Guilbaud, M.
Li, W.
Northup, M.
Tran, B.
Durkin, T.
Harder, K.
Harper, S.
Shepherd-Themistocleous, C.
Thea, A.
Williams, T.
Cepeda, M.
Dasu, S.
Dodd, L.
Forbes, R.
Gorski, T.
Klabbers, P.
Levine, A.
Ojalvo, I.
Ruggles, T.
Smith, N.
Smith, W.
Svetek, A.
Tikalsky, J.
Vicente, M.
TI Run 2 upgrades to the CMS Level-1 calorimeter trigger
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT Topical Workshop on Electronics for Particle Physics
CY SEP 28-OCT 02, 2015
CL Lisbon, PORTUGAL
DE Trigger concepts and systems (hardware and software); Trigger algorithms
AB The CMS Level-1 calorimeter trigger is being upgraded in two stages to maintain performance as the LHC increases pile-up and instantaneous luminosity in its second run. In the first stage, improved algorithms including event-by-event pile-up corrections are used. New algorithms for heavy ion running have also been developed. In the second stage, higher granularity inputs and a time-multiplexed approach allow for improved position and energy resolution. Data processing in both stages of the upgrade is performed with new, Xilinx Virtex-7 based AMC cards.
C1 [Kreis, B.; Berryhill, J.; Cavanaugh, R.; Mishra, K.; Rivera, R.; Uplegger, L.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
[Cavanaugh, R.; Apanasevich, L.; Zhang, J.] Univ Illinois, Chicago, IL USA.
[Marrouche, J.; Wardle, N.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland.
[Aggleton, R.; Ball, F.; Brooke, J.; Newbold, D.; Paramesvaran, S.; Smith, D.] Univ Bristol, Bristol, Avon, England.
[Baber, M.; Bundock, A.; Citron, M.; Elwood, A.; Hall, G.; Iles, G.; Laner, C.; Penning, B.; Rose, A.; Tapper, A.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Foudas, C.] Univ Ioannina, GR-45110 Ioannina, Greece.
[Beaudette, F.; Cadamuro, L.; Mastrolorenzo, L.; Romanteau, T.; Sauvan, J. B.; Strebler, T.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Barbieri, R.; Cali, I. A.; Innocenti, G. M.; Lee, Y. -J.; Roland, C.; Wyslouch, B.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
[Guilbaud, M.; Li, W.; Northup, M.; Tran, B.] Rice Univ, Houston, TX USA.
[Durkin, T.; Harder, K.; Harper, S.; Shepherd-Themistocleous, C.; Thea, A.; Williams, T.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Cepeda, M.; Dasu, S.; Dodd, L.; Forbes, R.; Gorski, T.; Klabbers, P.; Levine, A.; Ojalvo, I.; Ruggles, T.; Smith, N.; Smith, W.; Svetek, A.; Tikalsky, J.; Vicente, M.] Univ Wisconsin, Madison, WI USA.
RP Kreis, B (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
EM kreis@fnal.gov
NR 14
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD JAN
PY 2016
VL 11
AR C01051
DI 10.1088/1748-0221/11/01/C01051
PG 10
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA DF6MM
UT WOS:000371469800051
ER
PT J
AU Lenardo, B
Li, Y
Manalaysay, A
Morad, J
Payne, C
Stephenson, S
Szydagis, M
Tripathi, M
AF Lenardo, B.
Li, Y.
Manalaysay, A.
Morad, J.
Payne, C.
Stephenson, S.
Szydagis, M.
Tripathi, M.
TI Position reconstruction of bubble formation in liquid nitrogen using
piezoelectric sensors
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
DE Time projection Chambers (TPC); Noble liquid detectors (scintillation,
ionization, double-phase); Liquid detectors; Cryogenic detectors
ID SEARCH
AB Cryogenic liquids, particularly liquid xenon and argon, are of interest as detector media for experiments in nuclear and particle physics. Here we present a new detector diagnostic technique using piezoelectric sensors to detect bubbling of the liquid. Bubbling can indicate locations of excess heat dissipation e.g., in immersed electronics. They can also interfere with normal event evolution by scattering of light or by interrupting the drift of ionization charge. In our test apparatus, four sensors are placed in the vacuum space of a double-walled dewar of liquid nitrogen and used to detect and locate a source of bubbling inside the liquid volume. Utilizing the differences in transmitted frequencies through the different media present in the experiment, we find that sound traveling in a direct path from the source to the sensor can be isolated with appropriate filtering. The location of the source is then reconstructed using the time difference of arrivals (TDOA) information. The reconstruction algorithm is shown to have a 95.8% reproducibility rate and reconstructed positions are self-consistent to an average +/- 0.5 cm around the mean in x, y, and z. Systematic effects are observed to cause errors in reconstruction when bubbles occur very close to the surfaces of the liquid volume.
C1 [Lenardo, B.; Li, Y.; Manalaysay, A.; Morad, J.; Payne, C.; Stephenson, S.; Tripathi, M.] Univ Calif Davis, One Shields Ave, Davis, CA 95616 USA.
[Lenardo, B.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
[Szydagis, M.] SUNY Albany, 1400 Washington Ave, Albany, NY 12222 USA.
RP Lenardo, B (reprint author), Univ Calif Davis, One Shields Ave, Davis, CA 95616 USA.; Lenardo, B (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
EM lenardo1@llnl.gov
FU U.S. Department of Energy [DE-FG02-91ER40674]; DOE [DE-NA0000979];
Lawrence Scholars Program at the Lawrence Livermore National Laboratory
(LLNL); U.S. Department of Energy, National Nuclear Security
Administration [DE-AC52-07NA27344, LLNL-CONF-678285]
FX The authors would like to acknowledge Marshall Styczinski and Gavin
Fields for preliminary efforts on the present work. We would also like
to thank Ray Gerhard, Britt Holbrook, David Hemer, and Keith DeLong for
their engineering expertise and support. The sensor readout circuit was
designed by Ilan Levine of Indiana University South Bend. This work at
the University of California, Davis was supported by U.S. Department of
Energy grant DE-FG02-91ER40674, as well as supported by DOE grant
DE-NA0000979, which funds the seven universities involved in the Nuclear
Science and Security Consortium. Brian Lenardo is supported by the
Lawrence Scholars Program at the Lawrence Livermore National Laboratory
(LLNL). LLNL is operated by Lawrence Livermore National Security, LLC,
for the U.S. Department of Energy, National Nuclear Security
Administration under Contract DE-AC52-07NA27344. LLNL-CONF-678285.
NR 11
TC 1
Z9 1
U1 1
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD JAN
PY 2016
VL 11
AR P01013
DI 10.1088/1748-0221/11/01/P01013
PG 10
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA DF6MM
UT WOS:000371469800101
ER
PT J
AU Schambach, J
Contin, G
Greiner, L
Stezelberger, T
Sun, X
Szelezniak, M
Vu, C
AF Schambach, J.
Contin, G.
Greiner, L.
Stezelberger, T.
Sun, X.
Szelezniak, M.
Vu, C.
TI The STAR Heavy Flavor Tracker PXL detector readout electronics
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT Topical Workshop on Electronics for Particle Physics
CY SEP 28-OCT 02, 2015
CL Lisbon, PORTUGAL
DE Data acquisition circuits; Front-end electronics for detector readout;
Detector control systems (detector and experiment monitoring and
slow-control systems, architecture, hardware, algorithms, databases);
Digital electronic circuits
ID MAPS
AB The Heavy Flavor Tracker (HFT) is a recently installed micro-vertex detector upgrade to the STAR experiment at RHIC, consisting of three subsystems with various technologies of silicon sensors arranged in 4 concentric cylinders. The two innermost layers of the HFT close to the beam pipe, the Pixel ("PXL") subsystem, employ CMOS Monolithic Active Pixel Sensor (MAPS) technology that integrate the sensor, front-end electronics, and zero-suppression circuitry in one silicon die. This paper presents selected characteristics of the PXL detector part of the HFT and the hardware, firmware and software associated with the readout system for this detector.
C1 [Schambach, J.] Univ Texas Austin, 1 Univ Stn, Austin, TX 78712 USA.
[Contin, G.; Greiner, L.; Stezelberger, T.; Vu, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Sun, X.] Cent China Normal Univ, Wuhan, Peoples R China.
[Szelezniak, M.] Inst Pluridisciplinaire Hubert Curien, Strasbourg, France.
RP Schambach, J (reprint author), Univ Texas Austin, 1 Univ Stn, Austin, TX 78712 USA.
EM jschamba@physics.utexas.edu
NR 5
TC 1
Z9 1
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD JAN
PY 2016
VL 11
AR C01034
DI 10.1088/1748-0221/11/01/C01034
PG 10
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA DF6MM
UT WOS:000371469800034
ER
PT J
AU Xiao, L
Liu, C
Liu, T
Chen, H
Chen, J
Chen, K
Feng, Y
Gong, D
Guo, D
He, H
Hou, S
Huang, G
Sun, X
Tang, Y
Teng, PK
Xiang, AC
Xu, H
Ye, J
You, Y
AF Xiao, L.
Liu, C.
Liu, T.
Chen, H.
Chen, J.
Chen, K.
Feng, Y.
Gong, D.
Guo, D.
He, H.
Hou, S.
Huang, G.
Sun, X.
Tang, Y.
Teng, P. -K.
Xiang, A. C.
Xu, H.
Ye, J.
You, Y.
TI The clock and control system for the ATLAS Liquid Argon Calorimeter
Phase-I upgrade
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT Topical Workshop on Electronics for Particle Physics
CY SEP 28-OCT 02, 2015
CL Lisbon, PORTUGAL
DE Radiation-hard electronics; Front-end electronics for detector readout;
Detector control systems (detector and experiment monitoring and
slow-control systems, architecture, hardware, algorithms, databases)
AB A Liquid-argon Trigger Digitizer Board (LTDB) is being developed to upgrade the ATLAS Liquid Argon Calorimeter Phase-I trigger electronics. The LTDB located at the front end needs to obtain the clock signals and be configured and monitored remotely from the back end. A clock and control system is being developed for the LTDB and the major functions of the system have been evaluated. The design and evaluation of the clock and control system are presented in this paper.
C1 [Xiao, L.; He, H.; Huang, G.; Sun, X.] Cent China Normal Univ, Wuhan 430079, Hubei, Peoples R China.
[Xiao, L.; Liu, C.; Liu, T.; Gong, D.; Guo, D.; He, H.; Xiang, A. C.; Ye, J.; You, Y.] So Methodist Univ, Dallas, TX 75275 USA.
[Chen, H.; Chen, K.; Xu, H.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Chen, J.; Feng, Y.; Tang, Y.] Univ Houston, Houston, TX 77004 USA.
[Guo, D.] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China.
[He, H.] Shenzhen Polytech, Shenzhen 518055, Peoples R China.
[Hou, S.] Acad Sinica, Taipei 11529, Taiwan.
RP Liu, C (reprint author), So Methodist Univ, Dallas, TX 75275 USA.
EM tliu@mail.smu.edu; gmhuang@phy.ccnu.edu.cn
NR 10
TC 0
Z9 0
U1 4
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD JAN
PY 2016
VL 11
AR C01062
DI 10.1088/1748-0221/11/01/C01062
PG 9
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA DF6MM
UT WOS:000371469800062
ER
PT J
AU Bajaj, S
Wang, H
Doak, JW
Wolverton, C
Snyder, GJ
AF Bajaj, Saurabh
Wang, Heng
Doak, Jeff W.
Wolverton, Chris
Snyder, G. Jeffrey
TI Calculation of dopant solubilities and phase diagrams of X-Pb-Se (X =
Br, Na) limited to defects with localized charge
SO JOURNAL OF MATERIALS CHEMISTRY C
LA English
DT Article
ID HIGH THERMOELECTRIC PERFORMANCE; TOTAL-ENERGY CALCULATIONS; WAVE
BASIS-SET; FIGURE; NANOSTRUCTURES; SEMICONDUCTORS; EFFICIENCY; MOBILITY;
BANDS; MERIT
AB The control of defects, particularly impurities, to tune the concentrations of electrons and holes is of utmost importance in the use of semiconductor materials. To estimate the amount of dopant that can be added to a semiconductor without precipitating secondary phases, a detailed phase diagram is needed. The ability of ab initio computational methods to predict defect stability can greatly accelerate the discovery of new semiconductors by calculating phase diagrams when time-consuming experimental ones are not available. DFT defect energy calculations are particularly successful in identifying doping strategies by determining the energy of multiple defect charge states in large band gap semiconductors and insulators. In metals, detailed phase diagrams can be determined from such calculations but only one, uncharged defect is needed. In this work, we have calculated dopant solubilities of Br and Na in the thermoelectric material PbSe by mapping its solvus boundaries in different regions of the respective ternary phase diagrams using DFT defect energy calculations. The narrow gap PbSe provides an example where defects with nominal charge state (based on valence counting) have properly-localized charge states. However, defects with unexpected charge states produce delocalized electrons, which are then, in effect, defects with the expected charge state. Simply applying the methods for calculating multiple defect charge states in PbSe and treating themas separate defects fails to predict properties measured by experiments. Performing thermodynamic calculations using only the expected charge states, excluding others, enables accurate prediction of experimentally measured doping efficiencies and phase diagrams. Identifying which defect charge states to include in thermodynamic calculations will expedite the use of such calculations for other semiconductors in understanding phase diagrams and devising effective doping strategies.
C1 [Bajaj, Saurabh; Wang, Heng; Snyder, G. Jeffrey] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA.
[Bajaj, Saurabh] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Doak, Jeff W.; Wolverton, Chris; Snyder, G. Jeffrey] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
RP Snyder, GJ (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
EM jeff.snyder@northwestern.edu
RI Wang, Heng/O-5418-2014; Snyder, G. Jeffrey/E-4453-2011; Wolverton,
Christopher/B-7542-2009
OI Snyder, G. Jeffrey/0000-0003-1414-8682;
FU Department of Energys Basic Energy Sciences program - the Materials
Project [EDCBEE]; Office of Science of the U.S. Department of Energy
[DEAC02-05CH11231]; U.S. Department of Energy, Office of Science, Basic
Energy Sciences [DEFG02-07ER46433]
FX This work was supported by the Department of Energys Basic Energy
Sciences program - the Materials Project - under Grant No. EDCBEE. Work
at Lawrence Berkeley, through discussions with Qimin Yan, Mark Asta, and
Jeff Neaton, was supported by the Office of Science of the U.S.
Department of Energy under Contract No. DEAC02-05CH11231. J. W. D. and
C. W. acknowledge support by the U.S. Department of Energy, Office of
Science, Basic Energy Sciences, under Grant DEFG02-07ER46433. The
authors acknowledge the Chemical Engineering Cluster at Texas A&M
University and the National Energy Research Scientific Computing Center,
a DOE Office of Science User Facility supported by the Office of Science
of the U.S. Department of Energy, for providing computing resources
useful in conducting the research reported in this work. The figures in
this article have been created using the LevelScheme scientific figure
preparation system.40
NR 48
TC 1
Z9 1
U1 8
U2 14
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2050-7526
EI 2050-7534
J9 J MATER CHEM C
JI J. Mater. Chem. C
PY 2016
VL 4
IS 9
BP 1769
EP 1775
DI 10.1039/c5tc03970c
PG 7
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA DF6QI
UT WOS:000371480300003
ER
PT J
AU Hu, W
Wang, T
Zhang, RQ
Yang, JL
AF Hu, Wei
Wang, Tian
Zhang, Ruiqi
Yang, Jinlong
TI Effects of interlayer coupling and electric fields on the electronic
structures of graphene and MoS2 heterobilayers
SO JOURNAL OF MATERIALS CHEMISTRY C
LA English
DT Article
ID HEXAGONAL BORON-NITRIDE; DENSITY-FUNCTIONAL THEORY; AB-INITIO; BLACK
PHOSPHORUS; EFFECT TRANSISTORS; MEMORY DEVICES; HETEROSTRUCTURES;
NANOCOMPOSITE; HYDROCARBONS; COMPOSITES
AB Combining the electronic structures of graphene and molybdenum disulphide (MoS2) monolayers in two-dimensional (2D) ultrathin graphene and MoS2 heterostructures has been realized experimentally for novel nanoelectronic devices. Here, first-principles calculations are performed to investigate the effects of interlayer coupling and the electric field on the electronic structures of graphene and MoS2 heterobilayers (G/MoS2 HBLs). We find that an n-type Schottky contact is formed at the G/MoS2 interface with a small Schottky barrier of 0.23 eV, because the work function of graphene is close to the electron affinity of MoS2. Furthermore, increasing the interfacial distances between graphene and MoS2 can reduce the n-type Schottky barriers at the G/MoS2 interface. But applying the electric field perpendicular to the G/MoS2 HBL can not only control the Schottky barriers but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the G/MoS2 interface. Tunable p-type doping in graphene is easily achieved at negative electric fields because electrons can easily transfer from the Dirac point of graphene to the conduction band of MoS2.
C1 [Hu, Wei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
[Wang, Tian] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230026, Anhui, Peoples R China.
[Zhang, Ruiqi; Yang, Jinlong] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China.
[Zhang, Ruiqi; Yang, Jinlong] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China.
RP Hu, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.; Yang, JL (reprint author), Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China.; Yang, JL (reprint author), Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China.
EM whu@lbl.gov; jlyang@ustc.edu.cn
RI Yang, Jinlong/D-3465-2009;
OI Yang, Jinlong/0000-0002-5651-5340; Hu, Wei/0000-0001-9629-2121
FU National Key Basic Research Program [2011CB921404]; NSFC [21121003,
91021004, 21233007, 21222304]; Chinese Academy of Sciences (CAS)
[XDB01020300]; Scientific Discovery through Advanced Computing (SciDAC)
Program - U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research and Basic Energy Sciences; USTCSCC, SCCAS,
Tianjin, and Shanghai Supercomputer Centers
FX This work is partially supported by the National Key Basic Research
Program (2011CB921404), by NSFC (21121003, 91021004, 21233007,
21222304), by Chinese Academy of Sciences (CAS) (XDB01020300), and by
USTCSCC, SCCAS, Tianjin, and Shanghai Supercomputer Centers. This work
is also partially supported by the Scientific Discovery through Advanced
Computing (SciDAC) Program funded by U.S. Department of Energy, Office
of Science, Advanced Scientific Computing Research and Basic Energy
Sciences (W. H.). We thank the National Energy Research Scientific
Computing (NERSC) center for the computational resources.
NR 63
TC 8
Z9 8
U1 21
U2 61
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2050-7526
EI 2050-7534
J9 J MATER CHEM C
JI J. Mater. Chem. C
PY 2016
VL 4
IS 9
BP 1776
EP 1781
DI 10.1039/c6tc00207b
PG 6
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA DF6QI
UT WOS:000371480300004
ER
PT J
AU Rungtaweevoranit, B
Zhao, YB
Choi, KM
Yaghi, OM
AF Rungtaweevoranit, Bunyarat
Zhao, Yingbo
Choi, Kyung Min
Yaghi, Omar M.
TI Cooperative effects at the interface of nanocrystalline metal-organic
frameworks
SO NANO RESEARCH
LA English
DT Review
DE metal-organic framework; inorganic nanocrystal; cooperative effects;
interface design
ID POROUS COORDINATION POLYMERS; HETEROGENEOUS CATALYSTS; MODULATED
SYNTHESIS; PD NANOPARTICLES; LIGHT-SCATTERING; CRYSTAL-GROWTH; GOLD
NANORODS; AT-MOF; SHELL; CORE
AB Controlling the chemistry at the interface of nanocrystalline solids has been a challenge and an important goal to realize desired properties. Integrating two different types of materials has the potential to yield new functions resulting from cooperative effects between the two constituents. Metal-organic frameworks (MOFs) are unique in that they are constructed by linking inorganic units with organic linkers where the building units can be varied nearly at will. This flexibility has made MOFs ideal materials for the design of functional entities at interfaces and hence allowing control of properties. This review highlights the strategies employed to access synergistic functionality at the interface of nanocrystalline MOFs (nMOFs) and inorganic nanocrystals (NCs).
C1 [Rungtaweevoranit, Bunyarat; Zhao, Yingbo; Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.
RP Rungtaweevoranit, B; Zhao, YB; Yaghi, OM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM bunyaratr@berkeley.edu; zhaoyybb@berkeley.edu; yaghi@berkeley.edu
OI Yaghi, Omar/0000-0002-5611-3325; Rungtaweevoranit,
Bunyarat/0000-0002-9069-4370
FU Royal Thai Government Scholarship; BASF (Ludwigshafen, Germany); U.S.
Department of Defense, Defense Threat Reduction Agency [HDTRA
1-12-1-0053]
FX B. R. is supported by the Royal Thai Government Scholarship. Research in
the Yaghi group on nanoMOFs is supported by BASF (Ludwigshafen, Germany)
and U.S. Department of Defense, Defense Threat Reduction Agency (No.
HDTRA 1-12-1-0053). We thank Profs. Gabor Somorjai and Peidong Yang and
their research group members for our ongoing collaborations on aspects
of this review.
NR 46
TC 5
Z9 5
U1 33
U2 97
PU TSINGHUA UNIV PRESS
PI BEIJING
PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA
SN 1998-0124
EI 1998-0000
J9 NANO RES
JI Nano Res.
PD JAN
PY 2016
VL 9
IS 1
BP 47
EP 58
DI 10.1007/s12274-015-0970-0
PG 12
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DG1AQ
UT WOS:000371797800004
ER
PT J
AU Salandrino, A
Wang, Y
Zhang, X
AF Salandrino, Alessandro
Wang, Yuan
Zhang, Xiang
TI Nonlinear infrared plasmonic waveguide arrays
SO NANO RESEARCH
LA English
DT Article
DE infrared plasmonics; plasmonic waveguides; nonlinear plasmonics;
waveguide theory; waveguide arrays
ID SURFACE-PLASMONS; METAMATERIALS
AB The large negative permittivity of noble metals in the infrared region prevents the possibility of highly confined plasmons in simple waveguide structures such as thin films or rods. This is a critical obstacle to applications of nonlinear plasmonics in the telecommunication wavelength region. We theoretically propose and numerically demonstrate that such limitation can be overcome by exploiting inter-element coupling effects in a plasmonic waveguide array. The supermodes of a plasmonic array span a large range of effective indices, making these structures ideal for broadband mode-multiplexed interconnects for integrated photonic devices. We show such plasmonic waveguide arrays can significantly enhance nonlinear optical interactions when operating in a high-index, tightly bound supermode. For example, a third-order nonlinear coefficient in such a waveguide can be more than three orders of magnitude larger compared to silicon waveguides of similar dimensions. These findings open new design possibilities towards the application of plasmonics in integrated optical devices in the telecommunications spectral region.
C1 [Salandrino, Alessandro; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA.
[Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Salandrino, Alessandro] Univ Kansas, Dept EECS, Lawrence, KS 66045 USA.
RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA.; Zhang, X (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM xzhang@me.berkeley.edu
RI Zhang, Xiang/F-6905-2011; Wang, Yuan/F-7211-2011
FU U.S. Air Force Office of Scientific Research (AFOSR) MURI program
[FA9550-12-1-0024]
FX This work was supported by U.S. Air Force Office of Scientific Research
(AFOSR) MURI program (No. FA9550-12-1-0024).
NR 24
TC 0
Z9 0
U1 8
U2 16
PU TSINGHUA UNIV PRESS
PI BEIJING
PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 100084, PEOPLES R CHINA
SN 1998-0124
EI 1998-0000
J9 NANO RES
JI Nano Res.
PD JAN
PY 2016
VL 9
IS 1
BP 224
EP 229
DI 10.1007/s12274-016-0994-0
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DG1AQ
UT WOS:000371797800019
ER
PT J
AU Zhu, J
Quan, Z
Wang, C
Wen, X
Jiang, Y
Fang, J
Wang, Z
Zhao, Y
Xu, H
AF Zhu, J.
Quan, Z.
Wang, C.
Wen, X.
Jiang, Y.
Fang, J.
Wang, Z.
Zhao, Y.
Xu, H.
TI Structural evolution and mechanical behaviour of Pt nanoparticle
superlattices at high pressure
SO NANOSCALE
LA English
DT Article
ID NANOCRYSTALS; ASSEMBLIES; NANOCUBES; ENERGY; PHASE
AB High pressure is an effective means for tuning the interparticle distances of nanoparticle (NP) superlattices and thus for modifying their physical properties and functionalities. In this work, we determined the evolution of inter-NP distances of a Pt NP superlattice with increasing pressure using an in situ synchrotron small-angle X-ray scattering (SAXS) technique in a diamond-anvil cell (DAC). Transmission electron microscopy (TEM) was used to characterize the microstructures of pre- and post-compression samples. Our results demonstrate that the evolution of Pt NP assemblies with increasing pressure consists of four stages: (1) ligand elastic response, (2) uniform compression, (3) ligand detachment from NP surfaces, and (4) deviatoric compression of ligands between neighboring NPs. By controlling the magnitudes of applied pressure and deviatoric stress, one can sinter NPs into novel architectures such as nanowires and nanoceramics.
C1 [Zhu, J.; Zhao, Y.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA.
[Quan, Z.; Xu, H.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
[Wang, C.; Fang, J.] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA.
[Wen, X.] Chinese Acad Sci, Inst Coal Chem, Taiyuan 030001, Shanxi, Peoples R China.
[Jiang, Y.] Univ New Mexico, TEM Lab, Albuquerque, NM 87131 USA.
[Wang, Z.] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA.
RP Zhu, J (reprint author), Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA.; Xu, H (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.; Fang, J (reprint author), SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA.
EM jlzhu04@physics.unlv.edu; jfang@binghamton.edu; hxu@lanl.gov
OI Xu, Hongwu/0000-0002-0793-6923
FU laboratory-directed research and development (LDRD) program of Los
Alamos National Laboratory; NSF [DMR-0936384]; High Pressure Science and
Engineering Center; University of Nevada at Las Vegas; National Nuclear
Security Administration under Stewardship Science Academic Alliances
program through DOE Cooperative Agreement [DE-NA0001982]; Los Alamos
National Security LLC under DOE [DE-AC52-06NA25396]
FX This work was supported by the laboratory-directed research and
development (LDRD) program of Los Alamos National Laboratory, which is
operated by Los Alamos National Security LLC under DOE Contract No.
DE-AC52-06NA25396. The experimental work has benefited from the use of
CHESS at Cornell University, which is supported by the NSF award
DMR-0936384. The later stage of the work was also supported by the High
Pressure Science and Engineering Center, the University of Nevada at Las
Vegas, which was sponsored in part by the National Nuclear Security
Administration under the Stewardship Science Academic Alliances program
through DOE Cooperative Agreement #DE-NA0001982.
NR 30
TC 0
Z9 0
U1 10
U2 32
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2040-3364
EI 2040-3372
J9 NANOSCALE
JI Nanoscale
PY 2016
VL 8
IS 9
BP 5214
EP 5218
DI 10.1039/c5nr08291a
PG 5
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DF6PW
UT WOS:000371479000047
PM 26878810
ER
PT J
AU Jubb, AM
Jiao, Y
Eres, G
Retterer, ST
Gu, B
AF Jubb, A. M.
Jiao, Y.
Eres, G.
Retterer, S. T.
Gu, B.
TI Elevated gold ellipse nanoantenna dimers as sensitive and tunable
surface enhanced Raman spectroscopy substrates
SO NANOSCALE
LA English
DT Article
ID PLASMON RESONANCE SENSORS; PERCHLORATE DETECTION; SINGLE-MOLECULE;
BOWTIE NANOANTENNA; SCATTERING SERS; ARRAYS; NANOPARTICLES; FABRICATION;
MONOLAYERS; FIELD
AB We demonstrate large area arrays of elevated gold ellipse dimers with precisely controlled gaps for use as sensitive and highly controllable surface enhanced Raman scattering (SERS) substrates. The enhanced Raman signal observed with SERS arises from both localized and long range plasmonic effects. By controlling the geometry of a SERS substrate, in this case the size and aspect ratio of individual ellipses, the plasmon resonance can be tuned in a broad wavelength range, providing a method for designing the response of SERS substrates at different excitation wavelengths. Plasmon effects exhibited by the elevated gold ellipse dimer substrates are also demonstrated and confirmed through finite difference time domain (FDTD) simulations. A plasmon resonance red shift with an increase of the ellipse aspect ratio is observed, allowing systematic control of the resulting SERS signal intensity. Optimized elevated ellipse dimer substrates with 10 +/- 2 nm gaps exhibit uniform SERS enhancement factors on the order of 10(9) for adsorbed p-mercaptoaniline molecules.
C1 [Jubb, A. M.; Jiao, Y.; Gu, B.] Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA.
[Eres, G.; Retterer, S. T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Eres, G.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Jubb, AM; Gu, B (reprint author), Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA.
EM jubbam@ornl.gov; gub1@ornl.gov
RI Jubb, Aaron/G-4538-2013; Eres, Gyula/C-4656-2017
OI Jubb, Aaron/0000-0001-6875-1079; Eres, Gyula/0000-0003-2690-5214
FU Environmental Security and Technology Certification Program (ESTCP) of
the U.S. Department of Defense; Materials Sciences and Engineering
Division, Office of Basic Energy Sciences, Office of Science; U.S.
Department of Energy; DOE Scientific User Facilities Division; US DOE
[DE-AC05-00OR22725]
FX This research was supported in part by the Environmental Security and
Technology Certification Program (ESTCP) of the U.S. Department of
Defense. The contribution by G.E. was sponsored by the Materials
Sciences and Engineering Division, Office of Basic Energy Sciences,
Office of Science, U.S. Department of Energy. The fabrication of
elevated Au ellipse dimers and the 633 nm SERS spectra collection were
conducted at the Center for Nanophase Materials Sciences of Oak Ridge
National Laboratory (ORNL), which is sponsored by DOE Scientific User
Facilities Division. ORNL is managed by UT-Battelle, LLC, for US DOE
under contract DE-AC05-00OR22725. The authors thank Nickolay Lavrik for
his assistance with the 633 nm Raman measurements.
NR 44
TC 3
Z9 3
U1 8
U2 40
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2040-3364
EI 2040-3372
J9 NANOSCALE
JI Nanoscale
PY 2016
VL 8
IS 10
BP 5641
EP 5648
DI 10.1039/c5nr08920d
PG 8
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DF9FC
UT WOS:000371665400030
PM 26893035
ER
PT J
AU Li, CY
Liu, S
Luk, TS
Figiel, JJ
Brener, I
Brueck, SRJ
Wang, GT
AF Li, Changyi
Liu, Sheng
Luk, Ting. S.
Figiel, Jeffrey J.
Brener, Igal
Brueck, S. R. J.
Wang, George T.
TI Intrinsic polarization control in rectangular GaN nanowire lasers
SO NANOSCALE
LA English
DT Article
ID PHOTONICS; EMISSION
AB We demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444 kW cm(-2) and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control over the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.
C1 [Li, Changyi; Brueck, S. R. J.] Univ New Mexico, Ctr High Technol Mat, 1313 Goddard St SE, Albuquerque, NM 87106 USA.
[Liu, Sheng; Luk, Ting. S.; Figiel, Jeffrey J.; Brener, Igal; Wang, George T.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
[Liu, Sheng; Luk, Ting. S.; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA.
RP Wang, GT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM gtwang@sandia.gov
FU Sandia's Solid-State-Lighting Science Energy Frontier Research Center;
U. S. Department of Energy (DOE), Office of Science, Office of Basic
Energy Sciences; Sandia's Laboratory Directed Research and Development
program; U. S. DOE, Office of Science, Office of Basic Energy Sciences,
Materials Science and Engineering Division; Lock-heed Martin
Corporation; U.S. Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX We thank Dr Jeremy B. Wright for helpful discussions and a critical
reading of this manuscript. C.L. and S.R.J.B. acknowledge funding from
Sandia's Solid-State-Lighting Science Energy Frontier Research Center,
funded by the U. S. Department of Energy (DOE), Office of Science,
Office of Basic Energy Sciences. S.L., T.S.L., and I.B. acknowledge
funding from Sandia's Laboratory Directed Research and Development
program. G.T.W. and J.J.F. acknowledge funding from the U. S. DOE,
Office of Science, Office of Basic Energy Sciences, Materials Science
and Engineering Division. This work was performed, in part, at the
Center for Integrated Nanotechnologies, a U. S. Department of Energy,
Office of Basic Energy Sciences user facility. Sandia National
Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lock-heed Martin
Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.
NR 29
TC 4
Z9 4
U1 5
U2 20
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2040-3364
EI 2040-3372
J9 NANOSCALE
JI Nanoscale
PY 2016
VL 8
IS 10
BP 5682
EP 5687
DI 10.1039/c5nr07504a
PG 6
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA DF9FC
UT WOS:000371665400035
PM 26899502
ER
PT J
AU Li, Q
Zhang, J
Wang, LS
Hao, J
Yin, PC
Wei, YG
AF Li, Qiang
Zhang, Jin
Wang, Longsheng
Hao, Jian
Yin, Panchao
Wei, Yongge
TI Nucleophilic substitution reaction for rational post-functionalization
of polyoxometalates
SO NEW JOURNAL OF CHEMISTRY
LA English
DT Article
ID ORGANOIMIDO DERIVATIVES; HYBRID; NANOSCALE; DESIGN; CLUSTERS;
HEXAMOLYBDATE; CATALYSIS; DEVICES; CARBON
AB A hexamolybdate-based organic-inorganic hybrid molecule containing a chloralkane fragment is synthesized and its Cl atom can be substituted by iodine and nitrate through nucleophilic substitution reactions in high yields, which provide a post-functionalization protocol to bring in various additional functional groups into polyoxometalate-based hybrid materials under mild conditions.
C1 [Li, Qiang; Zhang, Jin; Wang, Longsheng; Hao, Jian; Wei, Yongge] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China.
[Li, Qiang] Beijing Forestry Univ, Dept Chem, Beijing 100083, Peoples R China.
[Yin, Panchao] Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA.
[Wei, Yongge] Peking Univ, State Key Lab Nat & Biomimet Drugs, Beijing 100191, Peoples R China.
RP Wei, YG (reprint author), Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China.; Yin, PC (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA.; Wei, YG (reprint author), Peking Univ, State Key Lab Nat & Biomimet Drugs, Beijing 100191, Peoples R China.
EM yinp@ornl.gov; yonggewei@tsinghua.edu.cn
RI Yin, Panchao/J-3322-2013
OI Yin, Panchao/0000-0003-2902-8376
FU Neutron Sciences Directorate in Oak Ridge National Laboratory; Office of
Science of the US Department of Energy [DE-AC05-00-OR22725]; National
Natural Science Foundation of China (NSFC) [21225103, 21221062];
Tsinghua University Initiative Foundation Research Program [20131089204]
FX We acknowledge the Clifford G. Shull Fellowship support from Neutron
Sciences Directorate in Oak Ridge National Laboratory, which is
supported by the Office of Science of the US Department of Energy under
Contract No. DE-AC05-00-OR22725, and the support from the National
Natural Science Foundation of China (NSFC No. 21225103 and 21221062) and
Tsinghua University Initiative Foundation Research Program No.
20131089204.
NR 34
TC 1
Z9 1
U1 4
U2 17
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1144-0546
EI 1369-9261
J9 NEW J CHEM
JI New J. Chem.
PY 2016
VL 40
IS 2
BP 906
EP 909
DI 10.1039/c5nj01090j
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA DF7SX
UT WOS:000371559000004
ER
PT J
AU Zhang, L
Jia, YL
Wang, H
Zhang, DW
Zhang, Q
Liu, Y
Li, ZT
AF Zhang, Liang
Jia, Youli
Wang, Hui
Zhang, Dan-Wei
Zhang, Qi
Liu, Yi
Li, Zhan-Ting
TI pH-Responsive single-layer honeycomb supramolecular organic frameworks
that exhibit antimicrobial activity
SO POLYMER CHEMISTRY
LA English
DT Article
ID AMPHIPHILIC PYRENE OLIGOMERS; ON-SURFACE POLYMERIZATION; 2-DIMENSIONAL
POLYMERS; AIR/WATER INTERFACE; ARCHITECTURES; DIMERIZATION; GROWTH;
WATER
AB Two two-dimensional (2D) single-layer supramolecular organic frameworks (SOFs) have been constructed in water. One framework displays pH-responsive self-assembly and de-assembly and both exhibit activity against methicillin-resistant Staphylococcus aureus.
C1 [Zhang, Liang; Jia, Youli; Wang, Hui; Zhang, Dan-Wei; Zhang, Qi; Li, Zhan-Ting] Fudan Univ, Dept Chem, Collaborat Innovat Ctr Chem Energy Mat IChEM, 220 Handan Rd, Shanghai 200433, Peoples R China.
[Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
RP Zhang, DW; Zhang, Q; Li, ZT (reprint author), Fudan Univ, Dept Chem, Collaborat Innovat Ctr Chem Energy Mat IChEM, 220 Handan Rd, Shanghai 200433, Peoples R China.; Liu, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
EM zhangdw@fudan.edu.cn; qizhang_chem@fudan.edu.cn; yliu@lbl.gov;
ztli@fudan.edu.cn
RI Liu, yi/A-3384-2008
OI Liu, yi/0000-0002-3954-6102
FU Science and Technology Commission of Shanghai Municipality [13M1400200];
Ministry of Science and Technology [2013CB834501]; Ministry of Education
of China Research Fund for Doctoral Program; National Science Foundation
of China [21432004, 21529201, 91527301]; Molecular Foundry, Lawrence
Berkeley National Laboratory; Office of Science, Office of Basic Energy
Sciences, Scientific User Facilities Division, of the U.S. Department of
Energy [DE-AC02-05CH11231]
FX This work was financially supported by the Science and Technology
Commission of Shanghai Municipality (13M1400200), the Ministry of
Science and Technology (2013CB834501), the Ministry of Education of
China Research Fund for the Doctoral Program, and the National Science
Foundation of China (No. 21432004, 21529201 and 91527301). We thank the
Shanghai Synchrotron Radiation Facility for providing the BL16B beamline
for collecting the solution-phase synchrotron X-ray scattering data. The
support from the Molecular Foundry, Lawrence Berkeley National
Laboratory, supported by the Office of Science, Office of Basic Energy
Sciences, Scientific User Facilities Division, of the U.S. Department of
Energy under the Contract no. DE-AC02-05CH11231 is also appreciated.
NR 33
TC 3
Z9 4
U1 8
U2 25
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1759-9954
EI 1759-9962
J9 POLYM CHEM-UK
JI Polym. Chem.
PY 2016
VL 7
IS 10
BP 1861
EP 1865
DI 10.1039/c5py02054a
PG 5
WC Polymer Science
SC Polymer Science
GA DG1GY
UT WOS:000371815300002
ER
PT B
AU Rupnowski, P
Ulsh, M
Sopori, B
AF Rupnowski, Peter
Ulsh, Michael
Sopori, Bhushan
GP ASME
TI HIGH THROUGHPUT AND HIGH RESOLUTION IN-LINE MONITORING OF PEMFC
MATERIALS BY MEANS OF VISIBLE LIGHT DIFFUSE REFLECTANCE IMAGING AND
COMPUTER VISION
SO PROCEEDINGS OF THE ASME 13TH FUEL CELL SCIENCE, ENGINEERING, AND
TECHNOLOGY CONFERENCE, 2015
LA English
DT Proceedings Paper
CT 13th ASME Fuel Cell Science, Engineering, and Technology Conference
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div
ID INFRARED THERMOGRAPHY; RAPID DETECTION; THIN-FILMS; THICKNESS;
PROFILOMETRY
AB In this paper we present results from our recent work in which polymer electrolyte membrane fuel cell electrodes with intentionally introduced known defects were imaged and analyzed using a fuel cell scanner recently developed at the National Renewable Energy Laboratory. The defect types considered included particle debris, scuffs, scores, slits, and laser perforated pinholes. The debris defects were analyzed on samples from three different production stages, whereas the other defect types were introduced in a membrane tacked on a catalyst-coated diffusion media. We are showing that the fuel cell scanner can generate good quality, high resolution images of both baseline and defect-containing material. Based on the scanned images, an automatic, computer vision algorithm is developed that identifies presence and location of debris particles. The presented results clearly indicate that the in-line visible-light-diffuse-reflectance-based system can be successfully employed to monitor quality and to detect critical defects in fuel cell electrodes that are transported with high speed in a high volume manufacturing facility.
C1 [Rupnowski, Peter; Ulsh, Michael; Sopori, Bhushan] Natl Renewable Energy Lab, Golden, CO USA.
RP Rupnowski, P (reprint author), Natl Renewable Energy Lab, Golden, CO USA.
NR 15
TC 0
Z9 0
U1 0
U2 1
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5661-1
PY 2016
AR V001T04A002
PG 10
WC Electrochemistry; Energy & Fuels; Engineering, Mechanical
SC Electrochemistry; Energy & Fuels; Engineering
GA BE4FO
UT WOS:000371648500010
ER
PT B
AU Tucker, D
Haynes, C
Geoghegan, P
AF Tucker, David
Haynes, Comas
Geoghegan, Patrick
GP ASME
TI NEEDS AND APPROACHES FOR NOVEL CHARACTERIZATION OF DIRECT HYBRID FUEL
CELL/GAS TURBINES
SO PROCEEDINGS OF THE ASME 13TH FUEL CELL SCIENCE, ENGINEERING, AND
TECHNOLOGY CONFERENCE, 2015
LA English
DT Proceedings Paper
CT 13th ASME Fuel Cell Science, Engineering, and Technology Conference
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div
DE SOFC turbine hybrid simulation characterization
AB Solid oxide fuel cell (SOFC)/ gas turbine (GT) hybrid systems possess the capacity for unprecedented performances, such as electric efficiencies nearly twice that of conventional heat engines at variable scale power ratings inclusive of distributed generation. Additionally, these hybrids can have excellent operational flexibility with turndowns possibly as great as 85%. There are, however, developmental needs such as turbomachinery characterization and re-design. A leading example is that of greater propensity to have occurrences of stall-surge given the significantly different operating environment in contrast to conventional heat engines. Additionally, dynamic variation in power generation has to be done with significant a priori insight to avoid thermomechanical threats to cell stack and turbomachinery.
State-of-the-art approaches involving hardware-in-the-loop simulation and, ultimately, additive manufacturing are being pursued to enable such characterization and re-design considerations given variable and dynamic operability requirements. Compressor performance in hybrid systems has been characterized at the United States National Energy Technology Laboratory (NETL), inclusive of a capability of feed forward hardware-in-the-loop simulation of hybrid systems under dynamic conditions and a capability of replacing turbine and compressor components at a relatively low cost. This paper highlights some of the simulation results, and the net result is an approach that addresses hybrid system developmental needs for accommodating generation transients.
C1 [Tucker, David] Natl Energy Technol Lab, Morgantown, WV USA.
[Haynes, Comas] Georgia Tech Res Inst, Atlanta, GA 30332 USA.
[Haynes, Comas; Geoghegan, Patrick] Oak Ridge Natl Lab, Oak Ridge, TN USA.
RP Tucker, D (reprint author), Natl Energy Technol Lab, Morgantown, WV USA.
NR 11
TC 0
Z9 0
U1 1
U2 2
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5661-1
PY 2016
AR V001T05A001
PG 6
WC Electrochemistry; Energy & Fuels; Engineering, Mechanical
SC Electrochemistry; Energy & Fuels; Engineering
GA BE4FO
UT WOS:000371648500014
ER
PT B
AU Boldon, L
Sabharwall, P
Liu, L
AF Boldon, Lauren
Sabharwall, Piyush
Liu, Li (Emily)
GP ASME
TI EXERGY ANALYSIS FOR SMALL MODULAR REACTOR HYBRID ENERGY SYSTEM
SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015
LA English
DT Proceedings Paper
CT American-Society-of-Mechanical-Engineers Nuclear Forum
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Nucl Engn Div
ID COST
AB Nuclear hybrid energy systems (NHES) with the capability to store energy will advance the development of renewable energy technologies by providing reliable, non-carbon emitting, and integrated base-load nuclear energy. Small modular reactors (SMRs) will be significant in establishing hybrid energy systems because of their inherent financial advantages over larger commercial reactors; flexible deployment and faster onsite assembly; and ability to closely match required energy needs for industrial process heat applications. An SMR is a thermal energy plant comprised of many complex systems that interact with each other and their surroundings. To study such a system and set appropriate prices for outputs, it is important to assess thermoeconomics or the effective utility and costs of all resources. At its core, thermoeconomics is based upon the quality of energy, or exergy, flowing into and out of each component within a system. Limited research into the thermoeconomics behind SMRs has been performed, leaving an important gap in understanding. This article presents relevant exergetic cost theory and details methods behind an exergy analysis for an SMR-wind-storage system. To perform this analysis, both the physical and economic environments are identified to provide information on how overall system efficiencies and costs may be analyzed. The physical environment incorporates the actual system components, necessary raw materials, and the surroundings or reference environment. The economic environment refers to the upfront installation and operational costs in addition to market prices. In a purely thermodynamic exergy analysis, the exergetic cost may be determined from the physical environment alone and describes the necessary exergy for production to occur. To improve or optimize a system, system efficiency must be balanced with economics to make NHES more competitive and further their development.
C1 [Boldon, Lauren; Liu, Li (Emily)] Rensselaer Polytech Inst, Troy, NY USA.
[Sabharwall, Piyush] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Boldon, L (reprint author), Rensselaer Polytech Inst, Troy, NY USA.
NR 7
TC 0
Z9 0
U1 4
U2 6
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5686-4
PY 2016
PG 8
WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology
SC Energy & Fuels; Engineering; Nuclear Science & Technology
GA BE4FQ
UT WOS:000371649300002
ER
PT B
AU Hawkes, GL
Sterbentz, JW
Pham, BT
AF Hawkes, Grant L.
Sterbentz, James W.
Pham, Binh T.
GP ASME
TI SENSITIVITY EVALUATION OF THE DAILY THERMAL PREDICTIONS OF THE AGR-2
EXPERIMENT IN THE ADVANCED TEST REACTOR
SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015
LA English
DT Proceedings Paper
CT American-Society-of-Mechanical-Engineers Nuclear Forum
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Nucl Engn Div
AB A temperature sensitivity evaluation has been performed for an individual test capsule in the AGR-2 TRISO particle fuel experiment. The AGR-2 experiment is the second in a series of fueled test experiments for TRISO coated fuel particles run in the Advanced Test Reactor at the Idaho National Laboratory. A series of cases were compared to a base case by varying different input parameters in an ABAQUS finite element thermal model. Most input parameters were varied by +/- 10%, with one parameter +/- 20%, to show the temperature sensitivity to each parameter. The most sensitive parameters were the outer control gap distance, heat rate in the fuel compacts, and neon gas fraction. The thermal conductivity of the fuel compacts and thermal conductivity of the graphite holder were of moderate sensitivity. The least sensitive parameters were the emissivities of the stainless steel and graphite, along with gamma heat rate in the non -fueled components. Sensitivity calculations were also performed for the fast neutron fluence, which showed a general, but minimal, temperature rise with increasing fluence.
C1 [Hawkes, Grant L.; Sterbentz, James W.; Pham, Binh T.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Hawkes, GL (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
NR 9
TC 0
Z9 0
U1 2
U2 2
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5686-4
PY 2016
PG 9
WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology
SC Energy & Fuels; Engineering; Nuclear Science & Technology
GA BE4FQ
UT WOS:000371649300012
ER
PT B
AU Mohamed, W
Roh, HS
Hofman, G
Medvedev, PG
AF Mohamed, Walid
Roh, Hee Seok
Hofman, Gerard
Medvedev, Pavel G.
GP ASME
TI IMPACT OF MECHANICAL CONSTRAINTS ON THE IRRADIATION PERFORMANCE OF U10MO
MONOLITHIC MINI-PLATES
SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015
LA English
DT Proceedings Paper
CT American-Society-of-Mechanical-Engineers Nuclear Forum
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Nucl Engn Div
DE Monolithic Fuel Plate; U10Mo; Irradiation; Mechanical constraints;
Finite Element Analysis
ID FUEL
AB For the conversion of high performance research reactors to low enrichment Uranium fuel, U-Mo alloy based fuels in monolithic form were proposed. These plate-type fuels consist of a high uranium density, low enrichment uranium (LEU) foil contained within a diffusion barrier, and encapsulated within a cladding. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance have been evaluated. In this work, the effects of mechanical constraints on the thermo-mechanical behavior of a plate were studied. To evaluate these effects, a selected plate from RERTR-12 experiments (Plate L1P756) was simulated. Four distinct cases which represent four distinct welding conditions were considered. Evaluation of the stress-strain fields in the fuel elements revealed that mechanical constraints may impact the plate's performance. These constraints include (a) inlet side, (b) outlet side, (c) both inlet and outlet sides; and finally, (d) entire long edges. Results of these cases were then compared with the ideal case. The peak stress-strain magnitudes, displacement, stress and strain profiles on the fuel elements are evaluated to make a comparative assessment. The results indicated that the cases with constraints on "inlet side only" and "outlet side only" yielded lower cladding strains compared with other cases. The difference on the displacement profiles on the fuel foil was not significant. Peak stresses on the foil did not change considerably. These results imply that the mechanical constraints effects peak cladding strains, while it does not cause significant effects on the fuel behavior.
C1 [Mohamed, Walid; Roh, Hee Seok; Hofman, Gerard] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Medvedev, Pavel G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Mohamed, W (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM wmohamed@anl.gov
NR 7
TC 0
Z9 0
U1 0
U2 0
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5686-4
PY 2016
PG 13
WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology
SC Energy & Fuels; Engineering; Nuclear Science & Technology
GA BE4FQ
UT WOS:000371649300008
ER
PT B
AU Moisseytsev, A
Sienicki, JJ
AF Moisseytsev, Anton
Sienicki, James J.
GP ASME
TI LESSONS LEARNED AND IMPROVEMENTS IN ANL PLANT DYNAMICS CODE SIMULATION
OF EXPERIMENTAL S-CO2 LOOPS
SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015
LA English
DT Proceedings Paper
CT American-Society-of-Mechanical-Engineers Nuclear Forum
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Nucl Engn Div
AB Validation of the ANL Plant Dynamics Code with the experimental data from integral S-CO2 cycle facilities has been continued. Several code modifications as well as modeling approaches and assumptions were introduced to improve both the code's capabilities in modeling the experimental loops and the agreement of the code prediction with the experimental data. The lessons learned from the code improvement and modeling experience important for the validation of the codes with the experimental data from small-scale integral loops are presented.
C1 [Moisseytsev, Anton; Sienicki, James J.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Moisseytsev, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
NR 7
TC 0
Z9 0
U1 0
U2 0
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5686-4
PY 2016
PG 12
WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology
SC Energy & Fuels; Engineering; Nuclear Science & Technology
GA BE4FQ
UT WOS:000371649300003
ER
PT B
AU Ozaltun, H
Medvedev, P
AF Ozaltun, Hakan
Medvedev, Pavel
GP ASME
TI EFFECTS OF THE SHAPE OF THE FOIL CORNERS ON THE IRRADIATION PERFORMANCE
OF U10MO ALLOY BASED MONOLITHIC MINI-PLATES
SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015
LA English
DT Proceedings Paper
CT American-Society-of-Mechanical-Engineers Nuclear Forum
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Nucl Engn Div
DE Monolithic Fuel Plate; U10Mo; Irradiation; Sensitivity; Foil corners;
Finite Element Analysis
ID FUEL
AB Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These fuel elements are comprised of a high density, low enrichment, U-Mo alloy based fuel foil, sandwiched between Zirconium liners and encapsulated in Aluminum cladding. The use of a high density fuel in a foil form presents a number of fabrication and operational concerns, such as: foil centering, flatness of the foil, fuel thickness variation, geometrical tilting, foil corner shape etc. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance have been evaluated. As a part of these series of sensitivity studies, the shape of the foil corners were studied. To understand the effects of the corner shapes of the foil on thermo-mechanical performance of the plates, a behavioral model was developed for a selected plate from RERTR-12 experiments (Plate L1P785). Both fabrication and irradiation processes were simulated. Once the thermo-mechanical behavior the plate is understood for the nominal case, the simulations were repeated for two additional corner shapes to observe the changes in temperature, displacement and stress-strain fields. The results from the fabrication simulations indicated that the foil corners do not alter the post-fabrication stress-strain magnitudes. Furthermore, the irradiation simulations revealed that post-fabrication stresses of the foil would be relieved very quickly in operation. While, foils with chamfered and filleted corners yielded stresses with comparable magnitudes, they are slightly lower in magnitudes, and provided a more favorable mechanical response compared with the foil with sharp corners.
C1 [Ozaltun, Hakan; Medvedev, Pavel] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Ozaltun, H (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
EM hakan.ozaltun@inl.gov
NR 18
TC 0
Z9 0
U1 0
U2 0
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5686-4
PY 2016
PG 14
WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology
SC Energy & Fuels; Engineering; Nuclear Science & Technology
GA BE4FQ
UT WOS:000371649300007
ER
PT B
AU Sienicki, JJ
Moisseytsev, A
Krajtl, L
AF Sienicki, James J.
Moisseytsev, Anton
Krajtl, Lubomir
GP ASME
TI A SUPERCRITICAL CO2 BRAYTON CYCLE POWER CONVERTER FOR A SODIUM-COOLED
FAST REACTOR SMALL MODULAR REACTOR
SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015
LA English
DT Proceedings Paper
CT American-Society-of-Mechanical-Engineers Nuclear Forum
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Nucl Engn Div
AB Although a number of power conversion applications have been identified or have even been developed (e.g., waste heat recovery) for supercritical carbon dioxide (S-CO2) cycles including fossil fuel combustors, concentrated solar power (i.e., solar power towers), and marine propulsion, the benefits of S-CO2 Brayton cycle power conversion are especially prominent for applications to nuclear power reactors. In particular, the S-CO2 Brayton cycle is well matched to the Sodium-Cooled Fast Reactor (SFR) nuclear power reactor system and offers significant benefits for SFRs. The recompression closed Brayton cycle is highly recuperated and wants to operate with an approximate optimal S-CO2 temperature rise in the sodium-to-CO2 heat exchangers of about 150 degrees C which is well matched to the sodium temperature rise through the core that is also about 150 degrees C. Use of the S-CO2 Brayton cycle eliminates sodium-water reactions and can reduce the nuclear power plant cost per unit electrical power. A conceptual design of an optimized S-CO2 Brayton cycle power converter and supporting systems has been developed for the Advanced Fast Reactor - 100 (AFR-100) 100 MWe-class (250 MWt) SFR Small Modular Reactor (SMR). The AFR-100 is under ongoing development at Argonne National Laboratory (ANL) to target emerging markets where a clean, secure, and stable source of electricity is required but a large-scale power plant cannot be accommodated. The S-CO2 Brayton cycle components and cycle conditions were optimized to minimize the power plant cost per unit electrical power (i.e., $/kWe). For a core outlet temperature of 550 degrees C and turbine inlet temperature of 517 degrees C, a cycle efficiency of 42.3 % is calculated that exceeds that obtained with a traditional superheated steam cycle by one percentage point or more. A normal shutdown heat removal system incorporating a pressurized pumped S-CO2 loop slightly above the critical pressure on each of the two intermediate sodium loops has been developed to remove heat from the reactor when the power converter is shut down. Three-dimensional layouts of S-CO2 Brayton cycle power converter and shutdown heat removal components and piping have been determined and three-dimensional CAD drawings prepared. The S-CO2 Brayton cycle power converter is found to have a small footprint reducing the space requirements for components and systems inside of both the turbine generator building and reactor building. The results continue to validate earlier notions about the benefits of S-CO2 Brayton cycle power conversion for SFRs including higher efficiency, improved economics, elimination of sodium-water reactions, load following, and smaller footprint.
C1 [Sienicki, James J.; Moisseytsev, Anton; Krajtl, Lubomir] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Sienicki, JJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
NR 4
TC 0
Z9 0
U1 1
U2 2
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5686-4
PY 2016
PG 10
WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology
SC Energy & Fuels; Engineering; Nuclear Science & Technology
GA BE4FQ
UT WOS:000371649300004
ER
PT B
AU Wen, HM
Van Rooyen, IJ
Hill, CM
Trowbridge, TL
Coryell, BD
AF Wen, Haiming
Van Rooyen, Isabella J.
Hill, Connie M.
Trowbridge, Tammy L.
Coryell, Ben D.
GP ASME
TI FISSION PRODUCTS DISTRIBUTION IN TRISO COATED FUEL PARTICLES IRRADIATED
TO 3.22 X 10(21) N/CM2 FAST FLUENCE AT 1092 degrees C
SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015
LA English
DT Proceedings Paper
CT American-Society-of-Mechanical-Engineers Nuclear Forum
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Nucl Engn Div
DE TRISO fuel particles; irradiation; fission product; transport
ID RELEASE
AB Mechanisms by which fission products (especially silver [Ag]) migrate across the coating layers of tristructural isotropic (TRISO) coated fuel particles designed for next generation nuclear reactors have been the subject of a variety of research activities due to the complex nature of the migration mechanisms. This paper presents results obtained from the electron microscopic examination of selected irradiated TRISO coated particles from fuel compact 1-3-1 irradiated in the first Advanced Gas Reactor experiment (AGR-1) that was performed as part of the Next Generation Nuclear Plant (NGNP) project. It is of specific interest to study particles of this compact as they were fabricated using a different carrier gas composition ratio for the SiC layer deposition compared with the baseline coated fuel particles reported on previously. Basic scanning electron microscopy (SEM) and SEM montage investigations of the particles indicate a correlation between the distribution of fission product precipitates and the proximity of the inner pyrolytic carbon (IPyC)-silicon carbide (SiC) interface to the fuel kernel. Transmission electron microscopy (TEM) samples were sectioned by focused ion beam (FIB) technique from the IPyC layer, the SiC layer and the IPyC-SiC interlayer of the coated fuel particle. Detailed TEM and scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray spectroscopy (EDS) were performed to identify fission products and characterize their distribution across the IPyC and SiC layers in the areas examined. Results indicate the presence of palladium-silicon uranium (Pd-Si-U), Pd-Si, Pd-U, Pd, U, U-Si precipitates in the SiC layer and the presence of Pd-Si-U, Pd-Si, U-Si, U precipitates in the IPyC layer. No Ag-containing precipitates are evident in the IPyC or SiC layers. With increased distance from the IPyC-SiC interface, there are less U-containing precipitates, however, such precipitates are present across nearly the entire SiC layer.
C1 [Wen, Haiming; Van Rooyen, Isabella J.; Hill, Connie M.; Trowbridge, Tammy L.; Coryell, Ben D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Van Rooyen, IJ (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
EM isabella.vanrooyen@inl.gov
RI Wen, Haiming/B-3250-2013
OI Wen, Haiming/0000-0003-2918-3966
NR 16
TC 0
Z9 0
U1 1
U2 4
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5686-4
PY 2016
PG 13
WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology
SC Energy & Fuels; Engineering; Nuclear Science & Technology
GA BE4FQ
UT WOS:000371649300010
ER
PT B
AU Wright, J
Ozaltun, H
AF Wright, Jill
Ozaltun, Hakan
GP ASME
TI EFFECTS OF THE FOIL CENTERING ON THE IRRADIATION PERFORMANCE OF U10MO
ALLOY BASED MONOLITHIC MINI-PLATES
SO PROCEEDINGS OF THE ASME NUCLEAR FORUM - 2015
LA English
DT Proceedings Paper
CT American-Society-of-Mechanical-Engineers Nuclear Forum
CY JUN 28-JUL 02, 2015
CL San Diego, CA
SP ASME, Nucl Engn Div
DE Monolithic Fuel Plate; U10Mo; Irradiation; Sensitivity; Foil centering;
Finite Element Analysis
ID FUEL; BEHAVIOR
AB Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These plate-type fuels consist of a high uranium density LEU foil contained within diffusion barriers and encapsulated within a cladding material. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance have been evaluated. For this work, the effects of fuel foil centering on the thermo-mechanical performance of the mini-plates were studied. To evaluate these effects, a selected plate from RERTR-12 experiments, the Plate L1P756, was considered. The fuel foil was moved within the fuel plate to study the effects of the fuel centering on stress, strain and overall shape of the fuel elements. The thickness of the fuel foil, thickness of the Zr-liners and total thickness of the plate were held constant, except the centerline alignment of the fuel foil. For this, the position, of the fuel foil was varied from the center position to a maximum offset corresponding to the minimum allowable aluminum cladding thickness of 0.1524 mm. Results for various offset cases were then compared to each other and to the ideal case of a centered fuel foil. Fabrication simulations indicated that the thermal expansion mismatch results in warping of the fuel plate during fabrication as the fuel plate is cooled from the HIP temperature when the fuel is not centered. Even if the model is constrained during cooling to simulate the rigid HIP can surrounding the fuel plate during cooling, warping is observed when the constraint is removed. Similarly, irradiation simulations revealed that the fuel offset causes virtually all irradiation-induced swelling to occur on the thin-cladding side of the plate. This is observed even for the smallest offset that was considered. The total magnitude of the swelling is approximately same for all offsets values.
C1 [Wright, Jill; Ozaltun, Hakan] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Wright, J (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
EM jill.wright@ird.gov
NR 24
TC 0
Z9 0
U1 0
U2 0
PU AMER SOC MECHANICAL ENGINEERS
PI NEW YORK
PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA
BN 978-0-7918-5686-4
PY 2016
PG 10
WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology
SC Energy & Fuels; Engineering; Nuclear Science & Technology
GA BE4FQ
UT WOS:000371649300009
ER
PT J
AU Xu, XF
Goswami, S
Gulledge, J
Wullschleger, SD
Thornton, PE
AF Xu, Xiaofeng
Goswami, Santonu
Gulledge, Jay
Wullschleger, Stan D.
Thornton, Peter E.
TI Interdisciplinary research in climate and energy sciences
SO WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT
LA English
DT Review
ID BUDGETS; CARBON
AB Due to the complex nature of climate change, interdisciplinary research approaches involving knowledge and skills from a broad range of disciplines have been adopted for studying changes in the climate system as well as strategies for mitigating climate change (i.e., greenhouse gas emissions reductions) and adapting to its impacts on society and natural systems. Harnessing of renewable energy sources to replace fossil fuels is widely regarded as a long-term mitigation strategy that requires the synthesis of knowledge from engineering, technology, and natural and social sciences. In this study, we examine how the adoption of interdisciplinary approaches has evolved over time and in different geographic regions. We conducted a comprehensive literature survey using an evaluation matrix of keywords, in combination with a word cloud analysis, to evaluate the spatiotemporal dynamics of scholarly discourse about interdisciplinary approaches to climate change and renewable energy research and development (R&D). Publications that discuss interdisciplinary approaches to climate change and renewable energy have substantially increased over the last 60 years; it appears, however, that the nature, timing, and focus of these publications vary across countries and through time. Over the most recent three decades, the country-level contribution to interdisciplinary research for climate change has become more evenly distributed, but this was not true for renewable energy research, which remained dominated by the United Sates and a few other major economies. The research topics have also evolved: Water resource management was emphasized from 1990s to 2000s, policy and adaptation were emphasized from the 2000s to 2010-2013, while vulnerability became prominent during the most recent years (2010-2013). Our analysis indicates that the rate of growth of interdisciplinary research for renewable energy lags behind that for climate change, possibly because knowledge emanating from climate change science has motivated the subsequent upswing in renewable energy R&D. (C) 2015 The Authors. WIREs Energy and Environment published by John Wiley & Sons, Ltd.
C1 [Xu, Xiaofeng; Goswami, Santonu; Gulledge, Jay; Wullschleger, Stan D.; Thornton, Peter E.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
[Xu, Xiaofeng; Goswami, Santonu; Gulledge, Jay; Wullschleger, Stan D.; Thornton, Peter E.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA.
[Xu, Xiaofeng] Univ Texas El Paso, Dept Biol Sci, El Paso, TX 79968 USA.
RP Xu, XF; Goswami, S (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.; Xu, XF; Goswami, S (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA.; Xu, XF (reprint author), Univ Texas El Paso, Dept Biol Sci, El Paso, TX 79968 USA.
EM xxu2@utep.edu; goswamis@ornl.gov
RI Wullschleger, Stan/B-8297-2012; Xu, Xiaofeng/B-2391-2008;
OI Wullschleger, Stan/0000-0002-9869-0446; Xu,
Xiaofeng/0000-0002-6553-6514; Gulledge, Jay/0000-0002-9779-8690;
Thornton, Peter/0000-0002-4759-5158
FU DOE [DE-AC05-00OR22725]
FX We thank Drs Virginia Dale, Rebecca A. Efroymson, Yetta Jager, and Bruce
Tonn at Oak Ridge National Laboratory for their constructive comments
and Ms Amy Harkey at Oak Ridge National Laboratory for editing the
language. Oak Ridge National Laboratory is managed by UT-Battelle, LLC,
for DOE under contract DE-AC05-00OR22725.
NR 37
TC 1
Z9 1
U1 3
U2 7
PU WILEY PERIODICALS, INC
PI SAN FRANCISCO
PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA
SN 2041-8396
EI 2041-840X
J9 WIRES ENERGY ENVIRON
JI Wiley Interdiscip. Rev. Energy Environ.
PD JAN-FEB
PY 2016
VL 5
IS 1
BP 49
EP 56
DI 10.1002/wene.180
PG 8
WC Energy & Fuels
SC Energy & Fuels
GA DF6SC
UT WOS:000371485600005
ER
PT J
AU Stupak, I
Joudrey, J
Smith, CT
Pelkmans, L
Chum, H
Cowie, A
Englund, O
Goh, CS
Junginger, M
AF Stupak, Inge
Joudrey, Jamie
Smith, C. Tattersall
Pelkmans, Luc
Chum, Helena
Cowie, Annette
Englund, Oskar
Goh, Chun Sheng
Junginger, Martin
TI A global survey of stakeholder views and experiences for systems needed
to effectively and efficiently govern sustainability of bioenergy
SO WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT
LA English
DT Review
ID FOREST CERTIFICATION; ROUND-TABLE; PALM OIL; STANDARDS; MARKET;
LEGITIMACY; BIOMASS; BIODIVERSITY; CHALLENGES; BIOFUELS
AB Different governance mechanisms have emerged to ensure biomass and bioenergy sustainability amidst a myriad of related public and private regulations that have existed for decades. We conducted a global survey with 59 questions which examined 192 stakeholders' views and experiences related to (1) the multi-leveled governance to which they are subjected, (2) the impacts of that governance on bioenergy production and trade, and (3) the most urgent areas for improvement of certification schemes. The survey revealed significant support along the whole supply chain for new legislation which uses market-based certification schemes to demonstrate compliance (co-regulation). Some respondents did not see a need for new regulation, and meta-standards is a promising approach for bridging divergent views, especially if other proof than certification will be an option. Most respondents had so far experienced positive or neutral changes to their bioenergy production or trade after the introduction of new sustainability governance. Legislative requirements and a green business profile were important motivations for getting certified, while lack of market advantages, administrative complexity and costs all were barriers of varying importance. A need to include, e.g., regular standard revision and dealing with conflicting criteria was identified by respondents associated with bioenergy schemes. Respondents associated with forestry schemes saw less need for revisions, but some were interested in supply chain sustainability criteria. Significant differences among schemes suggest it is crucial in the future to examine the tradeoffs between certification costs, schemes' inclusiveness, the quality of their substantive and procedural rules, and the subsequent effectiveness on-the-ground. (C) 2015 John Wiley & Sons, Ltd.
C1 [Stupak, Inge] Univ Copenhagen, Fac Sci, Dept Geosci & Nat Resource Management, Copenhagen, Denmark.
[Joudrey, Jamie] Univ Toronto, Fac Forestry, Toronto, ON, Canada.
[Smith, C. Tattersall] Univ Toronto, Dept Geog, Toronto, ON M5S 1A1, Canada.
[Pelkmans, Luc] VITO NV, Unit Separat & Convers Proc, Mol, Belgium.
[Chum, Helena] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA.
[Cowie, Annette] Univ New England, NSW Dept Primary Ind, Armidale, NSW, Australia.
[Englund, Oskar] Chalmers, Dept Energy & Environm, Div Phys Resource Theory, S-41296 Gothenburg, Sweden.
[Goh, Chun Sheng; Junginger, Martin] Univ Utrecht, Copernicus Inst Sustainable Dev, Energy & Resources, Utrecht, Netherlands.
RP Stupak, I (reprint author), Univ Copenhagen, Fac Sci, Dept Geosci & Nat Resource Management, Copenhagen, Denmark.
EM ism@ign.ku.dk
RI Goh, Chun Sheng/K-3364-2012; Junginger, Martin/A-2687-2009;
OI Junginger, Martin/0000-0002-5010-2051; Englund,
Oskar/0000-0002-1662-6951
FU IEA Bioenergy Executive Committee; Nordic Energy Research (ENERWOODS);
EUDP program under the Danish Energy Agency
FX The authors gratefully acknowledge the IEA Bioenergy Executive Committee
for providing funding to make the project possible, and the Nordic
Energy Research (ENERWOODS) and the EUDP program under the Danish Energy
Agency for supporting the work with supplementary funding. We sincerely
thank the key organizations that generously prioritized giving us very
helpful feedback for improving the survey design and questions. FSC,
PEFC, and the INBIOM network kindly published the invitation to
participate in their newsletters, and colleagues provided us with
relevant contacts from their networks. Torben Martinussen, University of
Copenhagen, was indispensable in providing statistical advice and
feedback and suggestions from two anonymous reviewers were greatly
appreciated and helped improve the paper. Finally, we would especially
like to thank the respondents of the survey, for providing thoughtful
and engaging answers, and helping to move the discussion beyond the
identification of the challenges, toward solutions.
NR 94
TC 0
Z9 0
U1 2
U2 10
PU WILEY PERIODICALS, INC
PI SAN FRANCISCO
PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA
SN 2041-8396
EI 2041-840X
J9 WIRES ENERGY ENVIRON
JI Wiley Interdiscip. Rev. Energy Environ.
PD JAN-FEB
PY 2016
VL 5
IS 1
BP 89
EP 118
DI 10.1002/wene.166
PG 30
WC Energy & Fuels
SC Energy & Fuels
GA DF6SC
UT WOS:000371485600008
ER
PT S
AU Creutz, M
AF Creutz, Michael
BE Andrianov, A
Brambilla, N
Kim, V
Kolevatov, S
TI Gauge field topology and the hadron spectrum
SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 11th Conference on Quark Confinement and Hadron Spectrum
CY SEP 08-12, 2014
CL Saint Petersburg, RUSSIA
SP Saint Petersburg State Univ
DE gauge fields; topology; chiral anomalies
ID SYMMETRY-BREAKING; CHIRAL-SYMMETRY; LATTICE; INSTANTONS; BEHAVIOR;
QUARKS; U(1); MASS
AB Topologically non-trivial gauge field configurations are an interesting aspect of non-abelian gauge theories. These become particularly important upon quantizing the theory, especially through their effect on the pseudo-scalar spectrum. These effects are closely tied to chiral anomalies and the possibility of CP violation in the strong interactions.
C1 [Creutz, Michael] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Creutz, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
NR 26
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1348-1
J9 AIP CONF PROC
PY 2016
VL 1701
AR 020008
DI 10.1063/1.4938597
PG 11
WC Physics, Applied
SC Physics
GA BE4FZ
UT WOS:000371663500008
ER
PT S
AU Gursoy, U
Kharzeev, D
Rajagopal, K
AF Gursoy, Umut
Kharzeev, Dmitri
Rajagopal, Krishna
BE Andrianov, A
Brambilla, N
Kim, V
Kolevatov, S
TI Magnetohydrodynamics and charge identified directed flow in heavy ion
collisions
SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 11th Conference on Quark Confinement and Hadron Spectrum
CY SEP 08-12, 2014
CL Saint Petersburg, RUSSIA
SP Saint Petersburg State Univ
AB Strong magnetic fields produced in any non-central heavy ion collision are expected to affect the dynamics of the hot QCD matter produced in this collision. The magnetic field is time -dependent and the medium is expanding, which leads to the induction of charged currents due to the combination of Faraday and Hall effects. We study the imprint the magnetic fields produced in non-central heavy ion collisions leave on the azimuthal distributions and correlations of the produced charged hadrons by employing an analytic solution to hydrodynamics combined with the electromagnetic effects in a perturbative fashion. We use the Cooper-Frye freeze-out procedure on an isothermal freeze-out surface to obtain the azimuthal hadron distributions. We find that the charged currents induced by the present of the electromagnetic fields result in a charge -dependent directed flow v(1) that is odd in rapidity and odd under charge exchange. It can be detected by measuring correlations between the directed flow of charged hadrons at different rapidities, < v(1)(-/+) (y(1))v(1)(-/+)(y(2)))>.
C1 [Gursoy, Umut] Univ Utrecht, Inst Theoret Phys, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands.
[Kharzeev, Dmitri] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Kharzeev, Dmitri] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Rajagopal, Krishna] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA.
RP Gursoy, U (reprint author), Univ Utrecht, Inst Theoret Phys, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands.
NR 32
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1348-1
J9 AIP CONF PROC
PY 2016
VL 1701
AR 030006
DI 10.1063/1.4938612
PG 8
WC Physics, Applied
SC Physics
GA BE4FZ
UT WOS:000371663500023
ER
PT S
AU Kim, S
Petreczky, P
Rothkopf, A
AF Kim, Seyong
Petreczky, Peter
Rothkopf, Alexander
BE Andrianov, A
Brambilla, N
Kim, V
Kolevatov, S
TI Lattice NRQCD study on in-medium bottomonium spectra using a novel
Bayesian reconstruction approach
SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 11th Conference on Quark Confinement and Hadron Spectrum
CY SEP 08-12, 2014
CL Saint Petersburg, RUSSIA
SP Saint Petersburg State Univ
DE Bottomonium; Lattice QCD; NRQCD; Finite-temperature
ID HEAVY QUARKONIUM; BOUND-STATES; QCD; SUPPRESSION; EQUATION; PLASMA
AB We present recent results on the in-medium modification of S- and P -wave bottomonium states around the deconfinement transition. Our study uses lattice QCD with Nf = 2+ 1 light quark flavors to describe the non-perturbative thermal QCD medium between 140MeV< T < 249MeV and deploys lattice regularized non-relativistic QCD (NRQCD) effective field theory to capture the physics of heavy quark bound states immersed therein. The spectral functions of the S-3(1) (T) and P-3(1) (xbi) bottomonium states are extracted from Euclidean time Monte Carlo simulations using a novel Bayesian prescription, which provides higher accuracy than the Maximum Entropy Method. Based on a systematic comparison of interacting and free spectral functions we conclude that the ground states of both the S -wave (T) and P -wave (xbi) channel survive up to T = 249MeV. Stringent upper limits on the size of the in -medium modification of bottomonium masses and widths are provided.
C1 [Kim, Seyong] Sejong Univ, Dept Phys, Seoul 143747, South Korea.
[Petreczky, Peter] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Rothkopf, Alexander] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany.
RP Kim, S (reprint author), Sejong Univ, Dept Phys, Seoul 143747, South Korea.
NR 39
TC 0
Z9 0
U1 0
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1348-1
J9 AIP CONF PROC
PY 2016
VL 1701
AR 060017
DI 10.1063/1.4938680
PG 8
WC Physics, Applied
SC Physics
GA BE4FZ
UT WOS:000371663500091
ER
PT S
AU Nebreda, J
Carraseo, JA
Londergan, JT
Pelaez, JR
Szczepaniak, AP
AF Nebreda, J.
Carraseo, J. A.
Londergan, J. T.
Pelaez, J. R.
Szczepaniak, A. P.
BE Andrianov, A
Brambilla, N
Kim, V
Kolevatov, S
TI Regge trajectories of ordinary and non-ordinary mesons from their
scattering poles
SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 11th Conference on Quark Confinement and Hadron Spectrum
CY SEP 08-12, 2014
CL Saint Petersburg, RUSSIA
SP Saint Petersburg State Univ
DE Regge Theory; Light scalar mesons
AB Our results on obtaining the Regge trajectory of a resonance from its pole in a scattering process and from analytic constraints in the complex angular momentum plane are presented. The method, suited for resonances that dominate au elastic scattering amplitude, has been applied to the rho(770), f(2)(1270), f(2)(1525) and f(0)(500) resonances. Whereas for the first three we obtain linear Regge trajectories, characteristic of ordinary quark-antiquark states, for the latter we find a nonlinear trajectory with a much smaller slope at the resonance mass. We also show that if a linear trajectory with a slope of typical size is imposed for the f(0)(500), the corresponding amplitude is at odds with the data. This provides a strong indication of the non-ordinary nature of the sigma meson.
C1 [Nebreda, J.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan.
[Nebreda, J.; Londergan, J. T.; Szczepaniak, A. P.] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA.
[Nebreda, J.; Londergan, J. T.; Szczepaniak, A. P.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Nebreda, J.; Carraseo, J. A.; Pelaez, J. R.] Univ Complutense Madrid, Dept Fis Teor 2, E-28040 Madrid, Spain.
[Szczepaniak, A. P.] Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA.
RP Nebreda, J (reprint author), Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan.
NR 16
TC 0
Z9 0
U1 0
U2 0
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1348-1
J9 AIP CONF PROC
PY 2016
VL 1701
AR 040015
DI 10.1063/1.4938632
PG 6
WC Physics, Applied
SC Physics
GA BE4FZ
UT WOS:000371663500043
ER
PT S
AU Prelovsek, S
Lang, CB
Leskovec, L
Mohler, D
AF Prelovsek, Sasa
Lang, C. B.
Leskovec, Luka
Mohler, Daniel
BE Andrianov, A
Brambilla, N
Kim, V
Kolevatov, S
TI Lattice QCD simulations of the Z(c)(+) channel
SO XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 11th Conference on Quark Confinement and Hadron Spectrum
CY SEP 08-12, 2014
CL Saint Petersburg, RUSSIA
SP Saint Petersburg State Univ
DE charmonium-like states; lattice QCD; tetraquark
ID GAUGE-THEORY
AB We discuss the lattice QCD simulations that search for the Z(c)(+) with the unconventional quark content (c) over barc (d) over baru in the channel I-G(J(PC)) = 1(+)(1(+-)). The major challenge is due to the two-meson states J/psi pi, psi(2S)pi, psi(1D)pi, D (D) over bar*, D*(D) over bar*, eta(c)rho that are also inevitably present in this channel. The available lattice simulations find expected two-meson eigenstates, but no additional eigenstate as a candidate for Z(c)(+). This is in a striking contrast to the lattice results in the flavour non-exotic channels, where additional states are found in relation to most of the known resonances and bound states.
C1 [Prelovsek, Sasa] Univ Ljubljana, Dept Phys, Jadranska 19, Ljubljana 1000, Slovenia.
[Lang, C. B.] Graz Univ, Inst Phys, A-8010 Graz, Austria.
[Prelovsek, Sasa; Leskovec, Luka] Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia.
[Mohler, Daniel] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
RP Prelovsek, S (reprint author), Univ Ljubljana, Dept Phys, Jadranska 19, Ljubljana 1000, Slovenia.; Prelovsek, S (reprint author), Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia.
NR 22
TC 0
Z9 0
U1 1
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1348-1
J9 AIP CONF PROC
PY 2016
VL 1701
AR 050012
DI 10.1063/1.4938652
PG 6
WC Physics, Applied
SC Physics
GA BE4FZ
UT WOS:000371663500063
ER
PT S
AU Bajt, S
Prasciolu, M
Morgan, AJ
Chapman, HN
Krzywinski, J
Andrejczuk, A
AF Bajt, Sasa
Prasciolu, Mauro
Morgan, Andrew J.
Chapman, Henry N.
Krzywinski, Jacek
Andrejczuk, Andrzej
BE DeJonge, MD
Paterson, DJ
Ryan, CG
TI One Dimensional Focusing with High Numerical Aperture Multilayer Laue
Lens
SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY
MICROSCOPY
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 12th International Conference on X-Ray Microscopy
CY OCT 26-31, 2014
CL Australian Synchrotron, Melbourne, AUSTRALIA
SP Bruker, Xradia
HO Australian Synchrotron
ID FABRICATION
AB Multilayer Laue lenses (MLLs) capitalize on the developments in multilayer deposition technologies for fabricating reflective coatings, specifically undertaken for EUV lithography, where layer thicknesses of several nanometers can be achieved. MLLs are deposited layer by layer, with their thicknesses following the zone plate law, and then pieces are sliced and extracted for use in focusing. Rays are reflected in the Laue geometry. The efficiency of a MLL can be very high, and is maximized by making the slice equal to about a half Pendellosung period so that most energy is transferred from the undiffracted to the diffracted beam, and by ensuring that the Bragg condition is met at each point in the zone plate. This latter condition requires that the layers are tilted to the beam by an amount that varies with layer position; e.g. for focusing a collimated beam, the layers should be normal to a cylinder of radius of twice the focal length. We have fabricated such tilted-zone MLLs and find that they exhibit improved efficiency across their entire pupil as compared with parallel-zone MLLs. This leads to a higher effective NA of the optic and hence higher resolution.
C1 [Bajt, Sasa; Prasciolu, Mauro] DESY, Photon Sci, Notkestr 85, D-22607 Hamburg, Germany.
[Morgan, Andrew J.; Chapman, Henry N.] DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany.
[Chapman, Henry N.] Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22607 Hamburg, Germany.
[Chapman, Henry N.] Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22607 Hamburg, Germany.
[Krzywinski, Jacek] SLAC, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
[Andrejczuk, Andrzej] Univ Bialystok, Fac Phys, K Ciolkowskiego 1L, PL-15245 Bialystok, Poland.
RP Bajt, S (reprint author), DESY, Photon Sci, Notkestr 85, D-22607 Hamburg, Germany.
EM sasa.bajt@desy.de
RI Andrejczuk, Andrzej/B-4031-2013
OI Andrejczuk, Andrzej/0000-0001-9736-6321
NR 11
TC 0
Z9 0
U1 4
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1343-6
J9 AIP CONF PROC
PY 2016
VL 1696
AR 020049
DI 10.1063/1.4937543
PG 6
WC Microscopy; Physics, Applied
SC Microscopy; Physics
GA BE4GB
UT WOS:000371671300049
ER
PT S
AU Chang, H
Cummings, M
Shirato, N
Stripe, B
Rosenmann, D
Preissner, C
Freeland, JW
Kersell, H
Hla, SW
Rose, V
AF Chang, Hao
Cummings, Marvin
Shirato, Nozomi
Stripe, Benjamin
Rosenmann, Daniel
Preissner, Curt
Freeland, John W.
Kersell, Heath
Hla, Saw-Wai
Rose, Volker
BE DeJonge, MD
Paterson, DJ
Ryan, CG
TI Ultra-High Vacuum Compatible Optical Chopper System for Synchrotron
X-ray Scanning Tunneling Microscopy
SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY
MICROSCOPY
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 12th International Conference on X-Ray Microscopy
CY OCT 26-31, 2014
CL Australian Synchrotron, Melbourne, AUSTRALIA
SP Bruker, Xradia
HO Australian Synchrotron
ID RADIATION
AB High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.
C1 [Chang, Hao; Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W.; Rose, Volker] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Chang, Hao; Kersell, Heath; Hla, Saw-Wai] Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA.
[Rosenmann, Daniel; Kersell, Heath; Hla, Saw-Wai; Rose, Volker] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Chang, H; Rose, V (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA.; Chang, H (reprint author), Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA.; Rose, V (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM hc000211@ohio.edu; vrose@anl.gov
RI Rose, Volker/B-1103-2008
OI Rose, Volker/0000-0002-9027-1052
NR 18
TC 0
Z9 0
U1 3
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1343-6
J9 AIP CONF PROC
PY 2016
VL 1696
AR 020001
DI 10.1063/1.4937495
PG 4
WC Microscopy; Physics, Applied
SC Microscopy; Physics
GA BE4GB
UT WOS:000371671300001
ER
PT S
AU Chen, S
Paunesku, T
Yuan, Y
Deng, J
Jin, Q
Hong, YP
Vine, DJ
Lai, B
Flachenecker, C
Hornberger, B
Brister, K
Jacobsen, C
Woloschak, GE
Vogt, S
AF Chen, S.
Paunesku, T.
Yuan, Y.
Deng, J.
Jin, Q.
Hong, Y. P.
Vine, D. J.
Lai, B.
Flachenecker, C.
Hornberger, B.
Brister, K.
Jacobsen, C.
Woloschak, G. E.
Vogt, S.
BE DeJonge, MD
Paterson, DJ
Ryan, CG
TI 2D/3D Cryo X-ray Fluorescence Imaging at the Bionanoprobe at the
Advanced Photon Source
SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY
MICROSCOPY
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 12th International Conference on X-Ray Microscopy
CY OCT 26-31, 2014
CL Australian Synchrotron, Melbourne, AUSTRALIA
SP Bruker, Xradia
HO Australian Synchrotron
ID EPIDERMAL-GROWTH-FACTOR; NUCLEAR-LOCALIZATION; MICROSCOPY; RECEPTOR
AB Trace elements, particularly metals, play very important roles in biological systems. Synchrotron-based hard X-ray fluorescence microscopy offers the most suitable capabilities to quantitatively study trace metals in thick biological samples, such as whole cells and tissues. In this manuscript, we have demonstrated X-ray fluorescence imaging of frozen-hydrated whole cells using the recent developed Bionanoprobe (BNP). The BNP provides spatial resolution down to 30 nm and cryogenic capabilities. Frozen-hydrated biological cells have been directly examined on a sub-cellular level at liquid nitrogen temperatures with minimal sample preparation.
C1 [Chen, S.; Vine, D. J.; Lai, B.; Jacobsen, C.; Vogt, S.] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA.
[Paunesku, T.; Yuan, Y.; Woloschak, G. E.; Vogt, S.] Northwester Univ, Dept Radiat Oncol, Chicago, IL 60611 USA.
[Deng, J.; Jacobsen, C.] Northwestern Univ, Appl Phys, Evanston, IL 60208 USA.
[Jin, Q.; Hong, Y. P.; Jacobsen, C.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
[Flachenecker, C.; Hornberger, B.] Carl Zeiss Xray Microscopy, Pleasanton, CA 94588 USA.
[Brister, K.] Northwestern Univ, Synchrotron Res Ctr, Argonne, IL 60439 USA.
[Jacobsen, C.] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA.
RP Chen, S (reprint author), Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA.
EM sichen@aps.anl.gov
RI Vogt, Stefan/J-7937-2013; Jacobsen, Chris/E-2827-2015; Paunesku,
Tatjana/A-3488-2017; Woloschak, Gayle/A-3799-2017
OI Vogt, Stefan/0000-0002-8034-5513; Jacobsen, Chris/0000-0001-8562-0353;
Paunesku, Tatjana/0000-0001-8698-2938; Woloschak,
Gayle/0000-0001-9209-8954
NR 16
TC 0
Z9 0
U1 2
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1343-6
J9 AIP CONF PROC
PY 2016
VL 1696
AR 020028
DI 10.1063/1.4937522
PG 5
WC Microscopy; Physics, Applied
SC Microscopy; Physics
GA BE4GB
UT WOS:000371671300028
ER
PT S
AU Deng, J
Vine, DJ
Chen, S
Nashed, YSG
Jin, Q
Peterka, T
Vogt, S
Jacobsen, C
AF Deng, J.
Vine, D. J.
Chen, S.
Nashed, Y. S. G.
Jin, Q.
Peterka, T.
Vogt, S.
Jacobsen, C.
BE DeJonge, MD
Paterson, DJ
Ryan, CG
TI Advances and challenges in cryo ptychography at the Advanced Photon
Source
SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY
MICROSCOPY
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 12th International Conference on X-Ray Microscopy
CY OCT 26-31, 2014
CL Australian Synchrotron, Melbourne, AUSTRALIA
SP Bruker, Xradia
HO Australian Synchrotron
DE ptychography; cryogenic sample; parallel computation; fly scan; 3D
ptychography
ID RAY-DIFFRACTION MICROSCOPY; COMPUTED-TOMOGRAPHY; RESOLUTION;
NANOTOMOGRAPHY
AB Ptychography has emerged as a nondestructive tool to quantitatively study extended samples at a high spatial resolution. In this manuscript, we report on recent developments from our team. We have combined cryo ptychography and fluorescence microscopy to provide simultaneous views of ultrastructure and elemental composition, we have developed multi-GPU parallel computation to speed up ptychographic reconstructions, and we have implemented fly-scan ptychography to allow for faster data acquisition. We conclude with a discussion of future challenges in high-resolution 3D ptychography.
C1 [Deng, J.] Northwestern Univ, Appl Phys, Evanston, IL 60208 USA.
[Vine, D. J.; Chen, S.; Vogt, S.; Jacobsen, C.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
[Nashed, Y. S. G.; Peterka, T.] Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Jacobsen, C.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
[Jacobsen, C.] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA.
RP Deng, J (reprint author), Northwestern Univ, Appl Phys, Evanston, IL 60208 USA.
RI Vogt, Stefan/J-7937-2013; Jacobsen, Chris/E-2827-2015
OI Vogt, Stefan/0000-0002-8034-5513; Jacobsen, Chris/0000-0001-8562-0353
NR 34
TC 0
Z9 0
U1 0
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1343-6
J9 AIP CONF PROC
PY 2016
VL 1696
AR 020030
DI 10.1063/1.4937524
PG 6
WC Microscopy; Physics, Applied
SC Microscopy; Physics
GA BE4GB
UT WOS:000371671300030
ER
PT S
AU Jacobsen, C
AF Jacobsen, Chris
BE DeJonge, MD
Paterson, DJ
Ryan, CG
TI Future challenges for x-ray microscopy
SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY
MICROSCOPY
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 12th International Conference on X-Ray Microscopy
CY OCT 26-31, 2014
CL Australian Synchrotron, Melbourne, AUSTRALIA
SP Bruker, Xradia
HO Australian Synchrotron
DE x-ray microscopy; cryo microscopy; single particle imaging
ID CRYO-ELECTRON-MICROSCOPY; RADIATION-DAMAGE; CRYOELECTRON MICROSCOPY;
BIOLOGICAL APPLICATIONS; GIANT MIMIVIRUS; ION-CHANNEL; TOMOGRAPHY;
CRYOTOMOGRAPHY; RESOLUTION; CARBOXYSOMES
AB X-ray microscopy has made immense progress over the time of the "modern" conference series dating back to 1983 [1]. Knowing well that predictions of the future inevitably provide fodder for embarrassing retrospectives, it is nevertheless worthwhile to consider a few recent developments and what they might suggest for future challenges in x-ray microscopy.
C1 [Jacobsen, Chris] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
[Jacobsen, Chris] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA.
[Jacobsen, Chris] Northwestern Univ, Chem Life Proc Inst, Evanston, IL USA.
RP Jacobsen, C (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.; Jacobsen, C (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL USA.; Jacobsen, C (reprint author), Northwestern Univ, Chem Life Proc Inst, Evanston, IL USA.
RI Jacobsen, Chris/E-2827-2015
OI Jacobsen, Chris/0000-0001-8562-0353
NR 67
TC 0
Z9 0
U1 2
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1343-6
J9 AIP CONF PROC
PY 2016
VL 1696
AR 020035
DI 10.1063/1.4937529
PG 7
WC Microscopy; Physics, Applied
SC Microscopy; Physics
GA BE4GB
UT WOS:000371671300035
ER
PT S
AU Mak, R
Wild, SM
Jacobsen, C
AF Mak, Rachel
Wild, Stefan M.
Jacobsen, Chris
BE DeJonge, MD
Paterson, DJ
Ryan, CG
TI Non-negative matrix analysis in x-ray spectromicroscopy: choosing
regularizers
SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY
MICROSCOPY
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 12th International Conference on X-Ray Microscopy
CY OCT 26-31, 2014
CL Australian Synchrotron, Melbourne, AUSTRALIA
SP Bruker, Xradia
HO Australian Synchrotron
DE x-ray spectromicroscopy; x-ray microscopy; multivariate statistical
analysis; non-negative matrix analysis; optimization
AB In x-ray spectromicroscopy, a set of images can be acquired across an absorption edge to reveal chemical speciation. We previously described the use of non-negative matrix approximation methods for improved classification and analysis of these types of data. We present here an approach to find appropriate values of regularization parameters for this optimization approach.
C1 [Mak, Rachel; Jacobsen, Chris] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA.
[Wild, Stefan M.] Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Jacobsen, Chris] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
RP Mak, R (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL USA.
RI Jacobsen, Chris/E-2827-2015; Wild, Stefan/P-4907-2016
OI Jacobsen, Chris/0000-0001-8562-0353; Wild, Stefan/0000-0002-6099-2772
NR 6
TC 0
Z9 0
U1 0
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1343-6
J9 AIP CONF PROC
PY 2016
VL 1696
AR 020034
DI 10.1063/1.4937528
PG 4
WC Microscopy; Physics, Applied
SC Microscopy; Physics
GA BE4GB
UT WOS:000371671300034
ER
PT S
AU Zhu, XH
Tyliszczak, T
Shiu, HW
Shapiro, D
Bazylinski, DA
Lins, U
Hitchcock, AP
AF Zhu, X. H.
Tyliszczak, T.
Shiu, H. -W.
Shapiro, D.
Bazylinski, D. A.
Lins, U.
Hitchcock, A. P.
BE DeJonge, MD
Paterson, DJ
Ryan, CG
TI Magnetic studies of magnetotactic bacteria by soft X-ray STXM and
ptychography
SO XRM 2014: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON X-RAY
MICROSCOPY
SE AIP Conference Proceedings
LA English
DT Proceedings Paper
CT 12th International Conference on X-Ray Microscopy
CY OCT 26-31, 2014
CL Australian Synchrotron, Melbourne, AUSTRALIA
SP Bruker, Xradia
HO Australian Synchrotron
ID MAGNETOSOMES; MICROSCOPY
AB Magnetotactic bacteria (MTB) biomineralize chains of nanoscale magnetite single crystals which align the cell with the earth's magnetic field and assist the cell to migrate to, and maintain its position at, the oxic-anoxic transition zone, their preferred habitat. Here we describe use of multi-edge scanning transmission X-ray microscopy (STXM) to investigate the chemistry and magnetism of MTB on an individual cell basis. We report measurements of the orientation of the magnetic vector of magnetosome chains relative to the location of the single flagellum in marine vibrio, Magnetovibrio blakemorei strain MV-1 cells from both the southern and northern hemisphere. We also report a major improvement in both spatial resolution and spectral quality through the use of spectro-ptychography at the Fe L-3 edge.
C1 [Zhu, X. H.; Hitchcock, A. P.] McMaster Univ, Chem & Chem Biol, Hamilton, ON L8S 4M1, Canada.
[Tyliszczak, T.; Shiu, H. -W.; Shapiro, D.] LBNL, Adv Light Source, Berkeley, CA 94720 USA.
[Shiu, H. -W.] NSRRC, Hsinchu 30076, Taiwan.
[Bazylinski, D. A.] Univ Nevada, Life Sci, Las Vegas, NV 89154 USA.
[Lins, U.] Univ Fed Rio de Janeiro, Dept Microbiol Geral, Rio de Janeiro, RJ, Brazil.
RP Hitchcock, AP (reprint author), McMaster Univ, Chem & Chem Biol, Hamilton, ON L8S 4M1, Canada.
EM aph@mcmaster.ca
NR 11
TC 2
Z9 2
U1 1
U2 6
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0094-243X
BN 978-0-7354-1343-6
J9 AIP CONF PROC
PY 2016
VL 1696
AR 020002
DI 10.1063/1.4937496
PG 5
WC Microscopy; Physics, Applied
SC Microscopy; Physics
GA BE4GB
UT WOS:000371671300002
ER
PT J
AU Dastmalchi, B
Tassin, P
Koschny, T
Soukoulis, CM
AF Dastmalchi, Babak
Tassin, Philippe
Koschny, Thomas
Soukoulis, Costas M.
TI A New Perspective on Plasmonics: Confinement and Propagation Length of
Surface Plasmons for Different Materials and Geometries
SO ADVANCED OPTICAL MATERIALS
LA English
DT Article
ID WAVE-GUIDES; SUBWAVELENGTH OPTICS; NANO-OPTICS; GRAPHENE; POLARITONS;
SPECTROSCOPY; EXCITATION; METALS; SILVER; LIGHT
AB Surface-plasmon polaritons are electromagnetic waves propagating on the surface of a metal. Thanks to subwavelength confinement, they can concentrate optical energy on the micrometer or even nanometer scale, enabling new applications in bio-sensing, optical interconnects, and nonlinear optics, where small footprint and strong field concentration are essential. The major obstacle in developing plasmonic applications is dissipative loss, which limits the propagation length of surface plasmons and broadens the bandwidth of surface-plasmon resonances. Here, a new analysis of plasmonic materials and geometries is presented which fully considers the tradeoff between propagation length and degree of confinement. It is based on a two-dimensional analysis of two independent figures of merit and the analysis is applied to relevant plasmonic materials, e.g., noble metals, aluminum, silicon carbide, doped semiconductors, graphene, etc. The analysis provides guidance on how to improve the performance of any particular plasmonic application and substantially eases the selection of the plasmonic material.
C1 [Dastmalchi, Babak; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
[Dastmalchi, Babak; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Dastmalchi, Babak; Soukoulis, Costas M.] FORTH, IESL, Iraklion 71110, Crete, Greece.
[Tassin, Philippe] Chalmers Univ, Dept Appl Phys, SE-41296 Gothenburg, Sweden.
RP Tassin, P (reprint author), Chalmers Univ, Dept Appl Phys, SE-41296 Gothenburg, Sweden.
EM graphenemodulators@gmail.com
RI Soukoulis, Costas/A-5295-2008; Dastmalchi, Babak/C-9050-2013; bagheri,
amir/C-3274-2017
OI Dastmalchi, Babak/0000-0002-2701-3712;
FU U.S. Department of Energy, Office of Basic Energy Science, Division of
Materials Science and Engineering (U.S. Department of Energy)
[DE-AC02-07CH11358]; U.S. Office of Naval Research [N00014-14-1-0474];
European Research Council [320081]
FX Work at Ames Laboratory was partially supported by the U.S. Department
of Energy, Office of Basic Energy Science, Division of Materials Science
and Engineering (Ames Laboratory is operated for the U.S. Department of
Energy by Iowa State University under contract No. DE-AC02-07CH11358),
by the U.S. Office of Naval Research, award No. N00014-14-1-0474
(simulations). The European Research Council under the ERC Advanced
Grant No. 320081 (PHOTOMETA) supported work (theory) at FORTH.
NR 62
TC 10
Z9 10
U1 9
U2 34
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 2195-1071
J9 ADV OPT MATER
JI Adv. Opt. Mater.
PD JAN
PY 2016
VL 4
IS 1
BP 177
EP 184
DI 10.1002/adom.201500446
PG 8
WC Materials Science, Multidisciplinary; Optics
SC Materials Science; Optics
GA DF3SQ
UT WOS:000371268300019
ER
PT J
AU Ilgu, M
Nilsen-Hamilton, M
AF Ilgu, Muslum
Nilsen-Hamilton, Marit
TI Aptamers in analytics
SO ANALYST
LA English
DT Review
ID SURFACE-PLASMON RESONANCE; FREE ELECTROCHEMICAL APTASENSOR; LABEL-FREE
DETECTION; IN-VITRO SELECTION; THROUGHPUT SEQUENCE-ANALYSIS; INDUCED
STRAND DISPLACEMENT; GREEN FLUORESCENT PROTEIN; POTASSIUM-ION DETECTION;
HIV-1 TAT PROTEIN; RNA APTAMER
AB Nucleic acid aptamers are promising alternatives to antibodies in analytics. They are generally obtained through an iterative SELEX protocol that enriches a population of synthetic oligonucleotides to a subset that can recognize the chosen target molecule specifically and avidly. A wide range of targets is recognized by aptamers. Once identified and optimized for performance, aptamers can be reproducibly synthesized and offer other key features, like small size, low cost, sensitivity, specificity, rapid response, stability, and reusability. This makes them excellent options for sensory units in a variety of analytical platforms including those with electrochemical, optical, and mass sensitive transduction detection. Many novel sensing strategies have been developed by rational design to take advantage of the tendency of aptamers to undergo conformational changes upon target/analyte binding and employing the principles of base complementarity that can drive the nucleic acid structure. Despite their many advantages over antibodies, surprisingly few aptamers have yet been integrated into commercially available analytical devices. In this review, we discuss how to select and engineer aptamers for their identified application(s), some of the challenges faced in developing aptamers for analytics and many examples of their reported successful performance as sensors in a variety of analytical platforms.
C1 [Ilgu, Muslum; Nilsen-Hamilton, Marit] Iowa State Univ, Roy J Carver Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA.
[Ilgu, Muslum; Nilsen-Hamilton, Marit] Aptalogic Inc, Ames, IA 50014 USA.
[Nilsen-Hamilton, Marit] US DOE, Ames Lab, Ames, IA 50011 USA.
RP Ilgu, M (reprint author), Iowa State Univ, Roy J Carver Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA.; Ilgu, M (reprint author), Aptalogic Inc, Ames, IA 50014 USA.
EM ilgu@iastate.edu
FU National Institutes of Health [1R43DK098031, 2R44DK098031]
FX MI was supported by grants 1R43DK098031 and 2R44DK098031 from the
National Institutes of Health. Images of antibodies in the graphical
abstract from the RCSB PDB April 2001 Molecule of the Month feature by
David Goodsell (DOI: 10.2210/rcsb_pdb/mom_2011_4).
NR 223
TC 3
Z9 3
U1 23
U2 68
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0003-2654
EI 1364-5528
J9 ANALYST
JI Analyst
PY 2016
VL 141
IS 5
BP 1551
EP 1568
DI 10.1039/c5an01824b
PG 18
WC Chemistry, Analytical
SC Chemistry
GA DF3FO
UT WOS:000371229600001
PM 26864075
ER
PT J
AU Kyle, JE
Zhang, X
Weitz, KK
Monroe, ME
Ibrahim, YM
Moore, RJ
Cha, J
Sun, XF
Lovelace, ES
Wagoner, J
Polyak, SJ
Metz, TO
Dey, SK
Smith, RD
Burnum-Johnson, KE
Baker, ES
AF Kyle, Jennifer E.
Zhang, Xing
Weitz, Karl K.
Monroe, Matthew E.
Ibrahim, Yehia M.
Moore, Ronald J.
Cha, Jeeyeon
Sun, Xiaofei
Lovelace, Erica S.
Wagoner, Jessica
Polyak, Stephen J.
Metz, Thomas O.
Dey, Sudhansu K.
Smith, Richard D.
Burnum-Johnson, Kristin E.
Baker, Erin S.
TI Uncovering biologically significant lipid isomers with liquid
chromatography, ion mobility spectrometry and mass spectrometry
SO ANALYST
LA English
DT Article
ID RESOLUTION MS DETECTION; C VIRUS-INFECTION; HUMAN PLASMA;
STRUCTURAL-CHARACTERIZATION; INDUCED DISSOCIATION; PHOSPHATIDYLCHOLINES;
SEPARATION; UPLC; DERIVATIZATION; IMPLANTATION
AB Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Mass spectrometry (MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids' biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are often unresolvable using present approaches. Here we show that combining liquid chromatography (LC) and structurally-based ion mobility spectrometry (IMS) measurement with MS analyses distinguishes lipid isomers and allows insight into biological and disease processes.
C1 [Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Metz, Thomas O.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin S.] Pacific NW Natl Lab, Biol Sci Div, Richland, WA 99352 USA.
[Cha, Jeeyeon; Sun, Xiaofei; Dey, Sudhansu K.] Cincinnati Childrens Hosp, Cincinnati, OH USA.
[Lovelace, Erica S.; Wagoner, Jessica; Polyak, Stephen J.] Univ Washington, Dept Lab Med, Seattle, WA 98195 USA.
[Polyak, Stephen J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA.
[Cha, Jeeyeon] Vanderbilt Univ, Med Ctr, Dept Med, Nashville, TN USA.
RP Burnum-Johnson, KE; Baker, ES (reprint author), Pacific NW Natl Lab, Biol Sci Div, Richland, WA 99352 USA.
EM kristin.burnum-johnson@pnnl.gov; erin.baker@pnnl.gov
RI Smith, Richard/J-3664-2012; zhang, xuesong/B-7907-2009
OI Smith, Richard/0000-0002-2381-2349;
FU National Institute of Environmental Health Sciences of the NIH
[R01ES022190]; National Institute of General Medical Sciences [P41
GM103493]; Laboratory Directed Research and Development Program at
Pacific Northwest National Laboratory; U.S. Department of Energy Office
of Biological and Environmental Research Genome Sciences Program;
National Institute of Allergy and Infectious Diseases [U19AI106772]; NIH
[HD068524, DA006668]; March of Dimes [21-FY12-127]; NCCIH [5R01AT006842,
3R01AT006842-03S1]; NIH Common Fund's Metabolomics Program; DOE
[DE-AC05-76RL0 1830]
FX Portions of this research were supported by grants from the National
Institute of Environmental Health Sciences of the NIH (R01ES022190),
National Institute of General Medical Sciences (P41 GM103493), the
Laboratory Directed Research and Development Program at Pacific
Northwest National Laboratory. This research utilized capabilities
developed by the Panomics program (funded by the U.S. Department of
Energy Office of Biological and Environmental Research Genome Sciences
Program) and by the National Institute of Allergy and Infectious
Diseases under grant U19AI106772. The research was also supported in
part by grants from the NIH (HD068524 and DA006668) and March of Dimes
(21-FY12-127) (to S. K. D.) and 5R01AT006842 and 3R01AT006842-03S1 from
NCCIH and the NIH Common Fund's Metabolomics Program (to S. J. P.). This
work was performed in the W. R. Wiley Environmental Molecular Sciences
Laboratory (EMSL), a DOE national scientific user facility at the
Pacific Northwest National Laboratory (PNNL). PNNL is operated by
Battelle for the DOE under contract DE-AC05-76RL0 1830.
NR 42
TC 11
Z9 11
U1 13
U2 23
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0003-2654
EI 1364-5528
J9 ANALYST
JI Analyst
PY 2016
VL 141
IS 5
BP 1649
EP 1659
DI 10.1039/c5an02062j
PG 11
WC Chemistry, Analytical
SC Chemistry
GA DF3FO
UT WOS:000371229600010
PM 26734689
ER
PT J
AU Golebiowska, B
Wlodek, A
Pieczka, A
Borkiewicz, O
Polak, M
AF Golebiowska, Bozena
Wlodek, Adam
Pieczka, Adam
Borkiewicz, Olaf
Polak, Marta
TI THE PHILIPSBORNITE-SEGNITITE SOLID-SOLUTION SERIES FROM REDZINY, EASTERN
METAMORPHIC COVER OF THE KARKONOSZE GRANITE (SW POLAND)
SO ANNALES SOCIETATIS GEOLOGORUM POLONIAE
LA English
DT Article
DE arsenates; oxidation zone; philipsbornite; segnitite; carminite;
chemical composition; Redziny
ID SOUTHWESTERN POLAND; BOHEMIAN MASSIF; IZERA MASSIF; BROKEN-HILL;
ALUNITE; MINERALS; MINERALIZATION; NOMENCLATURE; AUSTRALIA; JAROSITE
AB Supergene minerals of the philipsbornite-segnitite series, PbAl3(AsO4)(AsO3OH)(OH)(6)-PbFe3+ (3)(AsO4) (AsO3OH)(OH)(6), accompanied by carminite, PbFe3+ (2)(AsO4)(2)(OH)(2), were found in relics of hydrothermal quartz-chlorite-arsenopyrite veins, associated with subordinate polymetallic ores disseminated in contact zones of a dolomitic marble deposit at Redziny, Western Sudetes, Poland, and recognized by means of electron microprobe and X-ray and electron-back-scattered diffraction (XRD and EBSD). Philipsbornite and segnitite, as the two minerals of the series, exhibit highly variable compositions, especially in terms of the range of Fe3+ <-> Al3+ substitution at the G site, with a distinct gap between the values of 0.52 and 0.89 for the Fe/(Al+Fe) ratio; substitutions at the D and T sites are less important. In this respect, the minerals are almost identical with philips-bornite and segnitite, known from other localities. The gap might be a consequence of the limited miscibility of the end-members, but also might be attributed to crystallization under the changing and distinctly differing activities of Al3+ and Fe3+. The unit-cell parameters of philipsbornite, a = 7.1245(13) angstrom, c = 17.0967(45) angstrom, make the mineral comparable with philipsbornites from other occurrences. The EBSD analysis confirmed the rhombohedral structure of both minerals and the space group symmetry R-3m. The minerals crystallized in the sequence: philipsbornite -> segnitite -> carminite, which reflects (i) decreasing acidity in the oxidation zone, due to the leaching of sulphate ions and interaction of the solutions with a nearby dolomite lens, and (ii) varying activities of Al3+, Fe3+ and Pb2+ cations, mobilized by the solutions through interaction with the silicate host containing disseminated arsenopyrite and subordinate sulphides, up to complete Pb2+ depletion.
C1 [Golebiowska, Bozena; Wlodek, Adam; Pieczka, Adam; Polak, Marta] AGH Univ Sci & Technol, Dept Mineral Petrog & Geochem, Mickiewicza 30, PL-30059 Krakow, Poland.
[Borkiewicz, Olaf] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60563 USA.
RP Golebiowska, B (reprint author), AGH Univ Sci & Technol, Dept Mineral Petrog & Geochem, Mickiewicza 30, PL-30059 Krakow, Poland.
EM goleb@agh.edu.pl
FU AGH University of Science and Technology [11.11.140.319]
FX The authors would like to thank Evgeny Galuskin, Krzysztof Szopa,
Bartosz Budzyn and Frank Simpson for their helpful discussion on the
manuscript. We also thank Piotr Dzierzanowski and Lidia Jezak
(University of Warsaw) for their assistance during the EMP analyses. The
work was financially supported by AGH University of Science and
Technology Grant No 11.11.140.319.
NR 48
TC 1
Z9 1
U1 4
U2 4
PU POLISH GEOLOGICAL SOC
PI KRAKOW
PA UL. OLEANDRY 2A, KRAKOW, POLAND
SN 0208-9068
J9 ANN SOC GEOL POL
JI Ann. Soc. Geol. Pol.
PY 2016
VL 86
IS 1
BP 73
EP 83
PG 11
WC Geology
SC Geology
GA DF6YE
UT WOS:000371503400005
ER
PT J
AU Feng, Y
Kotamarthi, VR
Coulter, R
Zhao, C
Cadeddu, M
AF Feng, Y.
Kotamarthi, V. R.
Coulter, R.
Zhao, C.
Cadeddu, M.
TI Radiative and thermodynamic responses to aerosol extinction profiles
during the pre-monsoon month over South Asia
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID OPTICAL DEPTH; SUMMER MONSOON; DUST AEROSOLS; GOCART MODEL;
ANTHROPOGENIC AEROSOLS; CLIMATE SIMULATIONS; FORCING UNCERTAINTY; SOLAR
ABSORPTION; COORDINATE MODEL; CARBON
AB Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83% of the model's low bias is due to aerosol extinctions below similar to 2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48% more heating in the atmosphere and 21% more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7Kday(-1), which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II, underlining the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. In addition, the model results suggest that both the direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.
C1 [Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Cadeddu, M.] Argonne Natl Lab, Environm Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
[Zhao, C.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
RP Feng, Y (reprint author), Argonne Natl Lab, Environm Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM yfeng@anl.gov
OI Kotamarthi, Veerabhadra Rao/0000-0002-2612-7590
FU U.S. Department of Energy (DOE) as part of Atmospheric System Research
Program; Argonne National Laboratory under U.S. DOE [DE-AC02-06CH11357];
U.S. DOE as part of the Regional and Global Climate Modeling program
[DE-AC05-76RL01830]
FX This work was supported by the U.S. Department of Energy (DOE) as part
of the Atmospheric System Research Program. Support for this research
was provided to Y. Feng, V. R. Kotamarthi, R. Coulter, and M. Cadeddu by
Argonne National Laboratory under U.S. DOE contract DE-AC02-06CH11357.
C. Zhao's contribution to this study was supported by the U.S. DOE as
part of the Regional and Global Climate Modeling program through
contract DE-AC05-76RL01830. All of the numerical simulations were
performed by using the computing cluster (Fusion) operated by the
Argonne's Laboratory Computing Resource Center.
NR 78
TC 6
Z9 6
U1 3
U2 8
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2016
VL 16
IS 1
BP 247
EP 264
DI 10.5194/acp-16-247-2016
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF3YG
UT WOS:000371283900016
ER
PT J
AU Jahn, M
Munoz-Esparza, D
Chouza, F
Reitebuch, O
Knoth, O
Haarig, M
Ansmann, A
AF Jaehn, M.
Munoz-Esparza, D.
Chouza, F.
Reitebuch, O.
Knoth, O.
Haarig, M.
Ansmann, A.
TI Investigations of boundary layer structure, cloud characteristics and
vertical mixing of aerosols at Barbados with large eddy simulations
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID SAHARAN DUST; NUMERICAL-SIMULATION; LIDAR MEASUREMENTS; HEAT ISLANDS;
RAMAN LIDAR; AIR-FLOW; CONVECTION; MODEL; MESOSCALE; PARAMETERIZATION
AB Large eddy simulations (LESs) are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Due to the presence of a topographically structured island surface in the domain center, the model setup has to be designed with open lateral boundaries. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude potential temperature perturbations. In this work, this method is for the first time tested and validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE field campaign is used for both model initialization and a comparison with Doppler wind and Raman lidar data. Several numerical sensitivity tests are carried out to demonstrate the problems related to "gray zone modeling" when using coarser spatial grid spacings beyond the inertial subrange of three-dimensional turbulence or when the turbulent marine boundary layer flow is replaced by laminar winds. Especially cloud properties in the downwind area west of Barbados are markedly affected in these kinds of simulations. Results of an additional simulation with a strong trade-wind inversion reveal its effect on cloud layer depth and location. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z approximate to 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength) and wind shear. Comparisons of LES model output with wind lidar data show similarities in the downwind vertical wind structure. Additionally, the model results accurately reproduce the development of the daytime convective boundary layer measured by the Raman lidar.
C1 [Jaehn, M.; Knoth, O.; Haarig, M.; Ansmann, A.] Leibniz Inst Tropospher Res, Permoserstr 15, D-04318 Leipzig, Germany.
[Munoz-Esparza, D.] Los Alamos Natl Lab, Earth & Environm Sci Div EES 16, POB 1663, Los Alamos, NM 87545 USA.
[Chouza, F.; Reitebuch, O.] Inst Atmospher Phys, Deutsches Zentrum Luft & Raumfahrt DLR, Munchner Str 20, D-82234 Oberpfaffenhofen, Germany.
RP Jahn, M (reprint author), Leibniz Inst Tropospher Res, Permoserstr 15, D-04318 Leipzig, Germany.
EM jaehn@tropos.de
FU TROPOS; Helmholtz Association; DLR; LMU; Earth Observatory Team NASA
FX The first author was internally funded by TROPOS. The authors thank
Bernd Heinold and the two reviewers for their constructive comments.
Satellite data were downloaded from NOAA's web archive
(ftp://ftp.nnvl.noaa.gov/GOES/). The basemap was provided by the Earth
Observatory Team NASA (http://earthobservatory.nasa.gov).
High-resolution topography data were provided by the CGIAR-CSI SRTM data
set (http://srtm.csi.cgiar.org). Numerical simulations were performed at
the HPC cluster of and at the Julich Supercomputing Centre (JSC). We
would also like to thank Thomas Bjerring Kristensen from TROPOS for
provision of CCN data. The SALTRACE campaign was mainly funded by the
Helmholtz Association, DLR, LMU and TROPOS.
NR 39
TC 1
Z9 1
U1 2
U2 5
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2016
VL 16
IS 2
BP 651
EP 674
DI 10.5194/acp-16-651-2016
PG 24
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF3YH
UT WOS:000371284000013
ER
PT J
AU Zamora, LM
Kahn, RA
Cubison, MJ
Diskin, GS
Jimenez, JL
Kondo, Y
McFarquhar, GM
Nenes, A
Thornhill, KL
Wisthaler, A
Zelenyuk, A
Ziemba, LD
AF Zamora, L. M.
Kahn, R. A.
Cubison, M. J.
Diskin, G. S.
Jimenez, J. L.
Kondo, Y.
McFarquhar, G. M.
Nenes, A.
Thornhill, K. L.
Wisthaler, A.
Zelenyuk, A.
Ziemba, L. D.
TI Aircraft-measured indirect cloud effects from biomass burning smoke in
the Arctic and subarctic
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID AEROSOL-SIZE DISTRIBUTIONS; IN-SITU CHARACTERIZATION; MIXED-PHASE
CLOUDS; CONDENSATION NUCLEI; SPLAT II; PERFORMANCE-CHARACTERISTICS;
STRATIFORM CLOUDS; MASS-SPECTROMETER; FIELD CAMPAIGN; BOREAL FORESTS
AB The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were similar to 40-60% smaller than in background clouds. Based on the relationship between cloud droplet number (N-liq ) and various biomass burning tracers (BBt ) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3 x dln. N-liq/dln(BBt) to be similar to 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content
C1 [Zamora, L. M.; Kahn, R. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.
[Zamora, L. M.] Oak Ridge Associated Univ, Oak Ridge, TN USA.
[Cubison, M. J.; Jimenez, J. L.] Univ Colorado, CIRES, Boulder, CO 80309 USA.
[Cubison, M. J.; Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
[Diskin, G. S.; Thornhill, K. L.; Ziemba, L. D.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Kondo, Y.] Natl Inst Polar Res, Tokyo, Japan.
[McFarquhar, G. M.] Univ Illinois, Urbana, IL USA.
[Nenes, A.] Georgia Inst Technol, Atlanta, GA 30332 USA.
[Nenes, A.] Fdn Res & Technol Hellas, Patras, Greece.
[Nenes, A.] Natl Observ Athens, Athens, Greece.
[Wisthaler, A.] Univ Oslo, Dept Chem, Oslo, Norway.
[Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria.
[Zelenyuk, A.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Zamora, LM (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA.; Zamora, LM (reprint author), Oak Ridge Associated Univ, Oak Ridge, TN USA.
EM lauren.m.zamora@nasa.gov
RI Jimenez, Jose/A-5294-2008;
OI Jimenez, Jose/0000-0001-6203-1847; McFarquhar, Greg/0000-0003-0950-0135;
Zamora, Lauren/0000-0002-0878-4378
FU U.S. Department of Energy, Office of Science, Office of Biological and
Environmental Research, Climate and Environmental Sciences Division;
Austrian Federal Ministry for Transport, Innovation and Technology
(bmvit) through the Austrian Space Applications Programme (ASAP) of the
Austrian Research Promotion Agency (FFG); NASA Postdoctoral Program at
Goddard Space Flight Center; NASA [NNX12AC03G, NNX15AH33A]
FX The authors would like to thank A. Aknan, B. Anderson, E. Apel, G. Chen,
M. Couture, T. Garrett, K. B. Huebert, A. Khain, A. Korolev, T. Lathem,
P. Lawson, R. Leaitch, J. Limbacher, J. Nelson, M. Pinsky, W. Ridgeway,
A. Rangno, S. Williams, S. Woods, and Y. Yang for data and/or advice or
help with various aspects of this project, and all others who were
involved in collecting and funding the collection of the data sets we
have used. We acknowledge the Atmospheric Radiation Measurement (ARM)
Program sponsored by the U.S. Department of Energy, Office of Science,
Office of Biological and Environmental Research, Climate and
Environmental Sciences Division for providing the ISDAC data set. The
authors also gratefully acknowledge the NOAA Air Resources Laboratory
(ARL) for the provision of the HYSPLIT transport and dispersion model
and/or READY website (http://www.ready.noaa.gov) used in this
publication. Plots were made with Ocean Data View (Schlitzer, R., Ocean
Data View, http://odv.awi.de, 2015) and R (R Core Team, 2013).
CH3CN measurements were supported by the Austrian Federal
Ministry for Transport, Innovation and Technology (bmvit) through the
Austrian Space Applications Programme (ASAP) of the Austrian Research
Promotion Agency (FFG). T. Mikoviny is acknowledged for his support with
the CH3CN data acquisition and analysis. LMZ's funding for
this study was provided by an appointment to the NASA Postdoctoral
Program at Goddard Space Flight Center, administered by Oak Ridge
Associated Universities through a contract with NASA. M. J. Cubison and
J. L. Jimenez were supported by NASA NNX12AC03G and NNX15AH33A.
NR 127
TC 2
Z9 2
U1 4
U2 11
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2016
VL 16
IS 2
BP 715
EP 738
DI 10.5194/acp-16-715-2016
PG 24
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF3YH
UT WOS:000371284000017
ER
PT J
AU Beyersdorf, AJ
Ziemba, LD
Chen, G
Corr, CA
Crawford, JH
Diskin, GS
Moore, RH
Thornhill, KL
Winstead, EL
Anderson, BE
AF Beyersdorf, A. J.
Ziemba, L. D.
Chen, G.
Corr, C. A.
Crawford, J. H.
Diskin, G. S.
Moore, R. H.
Thornhill, K. L.
Winstead, E. L.
Anderson, B. E.
TI The impacts of aerosol loading, composition, and water uptake on aerosol
extinction variability in the Baltimore-Washington, DC region
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID UNITED-STATES; DISCOVER-AQ; AIR-QUALITY; PM2.5; ABSORPTION; PROFILES;
HUMIDITY; AIRBORNE; MASS
AB In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions.
Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ngm(-3) in the lowest 1 km, decreasing to 35 ngm(-3) in the free troposphere (above 3 km).
Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed-layer aerosol extinction. Aerosol loading (dry extinction) was found to be the predominant source, accounting for 88 % on average of the measured spatial variability in ambient extinction, with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction.
This work shows that extinction is driven to first order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite-modeling assimilation products that are able to capture these components of the aerosol optical depth (AOD)-PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day to day were large and could cause a bias of up to 27% if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km(2)). This is complimentary to the results of Chu et al. (2015), who determined that the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region.
C1 [Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA.
[Corr, C. A.] Oak Ridge Associated Univ, Oak Ridge, TN USA.
[Thornhill, K. L.; Winstead, E. L.] Sci Syst & Applicat Inc, Hampton, VA USA.
RP Beyersdorf, AJ (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA.
EM andreas.j.beyersdorf@nasa.gov
FU NASA's Earth Venture-1 Program through Earth System Science Pathfinder
(ESSP) Program Office
FX This research was funded by NASA's Earth Venture-1 Program through the
Earth System Science Pathfinder (ESSP) Program Office. We thank the
DISCOVER-AQ Science Team, especially the pilots and flight crews of
NASA's P-3B. Boundary layer heights based on airborne measurements of
the potential temperature profile were provided by Don Lenschow of the
University Corporation for Atmospheric Research (UCAR). Thanks also to
Joshua DiGangi and Michael Shook (both of NASA Langley) for valuable
discussions during manuscript preparation.
NR 32
TC 0
Z9 0
U1 18
U2 18
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2016
VL 16
IS 2
BP 1003
EP 1015
DI 10.5194/acp-16-1003-2016
PG 13
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF3YH
UT WOS:000371284000032
ER
PT J
AU Xu, L
Williams, LR
Young, DE
Allan, JD
Coe, H
Massoli, P
Fortner, E
Chhabra, P
Herndon, S
Brooks, WA
Jayne, JT
Worsnop, DR
Aiken, AC
Liu, S
Gorkowski, K
Dubey, MK
Fleming, ZL
Visser, S
Prevot, ASH
Ng, NL
AF Xu, L.
Williams, L. R.
Young, D. E.
Allan, J. D.
Coe, H.
Massoli, P.
Fortner, E.
Chhabra, P.
Herndon, S.
Brooks, W. A.
Jayne, J. T.
Worsnop, D. R.
Aiken, A. C.
Liu, S.
Gorkowski, K.
Dubey, M. K.
Fleming, Z. L.
Visser, S.
Prevot, A. S. H.
Ng, N. L.
TI Wintertime aerosol chemical composition, volatility, and spatial
variability in the greater London area
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID SECONDARY ORGANIC AEROSOL; MASS-SPECTROMETER DATA; POSITIVE MATRIX
FACTORIZATION; SOUTHEASTERN UNITED-STATES; EQUILIBRATION TIME SCALES;
SOURCE APPORTIONMENT; HIGH-RESOLUTION; PARTICULATE MATTER; BROWN CARBON;
PHOTOCHEMICAL OXIDATION
AB The composition of PM1 (particulate matter with diameter less than 1 mu m) in the greater London area was characterized during the Clean Air for London (ClearfLo) project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS) were deployed at a rural site (Detling,Kent) and an urban site (North Kensington, London). The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA) concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA) are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70% of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested.
A suite of instruments was deployed downstream of a thermal denuder (TD) to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 degrees C in the TD, 40% of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer) only accounts for < 10% of the total OA (measured by a HR-ToF-AMS) at 250 degrees C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have undergone similar chemical processing as rBC in the atmosphere. Although the atomic O: C ratio of OOA is substantially larger than that of solid fuel OA and hydrocarbon-like OA, these three factors have similar volatility, which is inferred from the change in mass concentration after heating at 120 degrees C. Finally, we discuss the relationship between the mass fraction remaining (MFR) of OA after heating in the TD and atomic O: C of OA and find that particles with a wide range of O: C could have similar MFR after heating. This analysis emphasizes the importance of understanding the distribution of volatility and O: C in bulk OA.
C1 [Xu, L.; Ng, N. L.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.
[Williams, L. R.; Massoli, P.; Fortner, E.; Chhabra, P.; Herndon, S.; Brooks, W. A.; Jayne, J. T.; Worsnop, D. R.] Aerodyne Res Inc, Billerica, MA USA.
[Young, D. E.; Allan, J. D.; Coe, H.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester, Lancs, England.
[Allan, J. D.] Univ Manchester, Natl Ctr Atmospher Sci, Manchester, Lancs, England.
[Aiken, A. C.; Liu, S.; Gorkowski, K.; Dubey, M. K.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
[Fleming, Z. L.] Univ Leicester, Dept Chem, Leicester LE1 7RH, Leics, England.
[Fleming, Z. L.] Univ Leicester, Natl Ctr Atmospher Sci, Leicester, Leics, England.
[Visser, S.; Prevot, A. S. H.] Paul Scherrer Inst, Lab Atmospher Chem, Villigen, Switzerland.
[Ng, N. L.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
[Young, D. E.] Univ Calif Davis, Dept Environm Toxicol, Davis, CA 95616 USA.
[Chhabra, P.] PerkinElmer Inc, Hopkinton, MA USA.
[Liu, S.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Gorkowski, K.] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA.
RP Ng, NL (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.; Ng, NL (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA.
EM ng@chbe.gatech.edu
RI Prevot, Andre/C-6677-2008; Allan, James/B-1160-2010; Dubey,
Manvendra/E-3949-2010; Liu, Shang/F-9085-2011; Worsnop,
Douglas/D-2817-2009; Aiken, Allison/B-9659-2009;
OI Prevot, Andre/0000-0002-9243-8194; Allan, James/0000-0001-6492-4876;
Dubey, Manvendra/0000-0002-3492-790X; Liu, Shang/0000-0002-3403-8651;
Worsnop, Douglas/0000-0002-8928-8017; Aiken,
Allison/0000-0001-5749-7626; Coe, Hugh/0000-0002-3264-1713
FU US Department of Energy [DE-SC000602]; UK Natural Environment Research
Council (NERC) ClearfLo project [NE/H008136/1]; National Centre for
Atmospheric Science (NCAS); NERC PhD studentship [NE/I528142/1]; LANL's
LDRD program; US DOE Office of Biological and Environmental Research
Atmospheric System Research Program [F265]; Swiss National Science
Foundation [200021_132467/1, 200020_150056]; European Community's
Seventh Framework Programme [312284]
FX This project was supported by the US Department of Energy (grant no.
DE-SC000602) and in part by the UK Natural Environment Research Council
(NERC) ClearfLo project (grant ref. NE/H008136/1), coordinated by the
National Centre for Atmospheric Science (NCAS). D.E. Young acknowledges
a NERC PhD studentship (ref. NE/I528142/1). A.C. Aiken acknowledges
Director's postdoctoral funding from LANL's LDRD program. M.K. Dubey
acknowledges support by the US DOE Office of Biological and
Environmental Research Atmospheric System Research Program, F265 to
LANL. Elemental analysis was funded by the Swiss National Science
Foundation (grant nos. 200021_132467/1 and 200020_150056) and the
European Community's Seventh Framework Programme (FP7/2007-2013; grant
no. 312284). The authors would like to thank the Met Office for use of
the NAME dispersion model and the Meteorological data used in it and for
the Leicester University ALICE supercomputer for running the model. The
authors gratefully acknowledge Ashley Williamson (DOE), Amon Haruta (Los
Alamos National Laboratory), David Green (Kings College London), and
Roger Moore (Kent County Showgrounds) for assistance with the
organization of the field site in Detling, UK. Processed and quality
assured data are available through the ClearfLo project archive at the
British Atmospheric Data Centre
(http://badc.nerc.ac.uk/browse/badc/clearflo) and through the US
Department of Energy Atmospheric Radiation Measurement Archive
(www.archive.arm.gov). Raw data are archived at the Georgia Institute of
Technology and at Aerodyne Research, Inc. and are available on request.
NR 94
TC 5
Z9 5
U1 20
U2 39
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2016
VL 16
IS 2
BP 1139
EP 1160
DI 10.5194/acp-16-1139-2016
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF3YH
UT WOS:000371284000040
ER
PT J
AU Massart, S
Agusti-Panareda, A
Heymann, J
Buchwitz, M
Chevallier, F
Reuter, M
Hilker, M
Burrows, JP
Deutscher, NM
Feist, DG
Hase, F
Sussmann, R
Desmet, F
Dubey, MK
Griffith, DWT
Kivi, R
Petri, C
Schneider, M
Velazco, VA
AF Massart, Sebastien
Agusti-Panareda, Anna
Heymann, Jens
Buchwitz, Michael
Chevallier, Frederic
Reuter, Maximilian
Hilker, Michael
Burrows, John P.
Deutscher, Nicholas M.
Feist, Dietrich G.
Hase, Frank
Sussmann, Ralf
Desmet, Filip
Dubey, Manvendra K.
Griffith, David W. T.
Kivi, Rigel
Petri, Christof
Schneider, Matthias
Velazco, Voltaire A.
TI Ability of the 4-D-Var analysis of the GOSAT BESD XCO2 retrievals to
characterize atmospheric CO2 at large and synoptic scales
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID SCIAMACHY; ALGORITHM; VALIDATION; SATELLITE; PRODUCTS; SYSTEM; TCCON;
TANSO
AB This study presents results from the European Centre for Medium-Range Weather Forecasts (ECMWF) carbon dioxide (CO2) analysis system where the atmospheric CO2 is controlled through the assimilation of column-averaged dry-air mole fractions of CO2 (XCO2) from the Greenhouse gases Observing Satellite (GOSAT). The analysis is compared to a free-run simulation (without assimilation of XCO2), and they are both evaluated against XCO2 data from the Total Carbon Column Observing Network (TC-CON). We show that the assimilation of the GOSAT XCO2 product from the Bremen Optimal Estimation Differential Optical Absorption Spectroscopy (BESD) algorithm during the year 2013 provides XCO2 fields with an improved mean absolute error of 0.6 parts per million (ppm) and an improved station-to-station bias deviation of 0.7 ppm compared to the free run (1.1 and 1.4 ppm, respectively) and an improved estimated precision of 1 ppm compared to the GOSAT BESD data (3.3 ppm). We also show that the analysis has skill for synoptic situations in the vicinity of frontal systems, where the GOSAT retrievals are sparse due to cloud contamination. We finally computed the 10-day forecast from each analysis at 00: 00 UTC, and we demonstrate that the CO2 forecast shows synoptic skill for the largest-scale weather patterns (of the order of 1000 km) even up to day 5 compared to its own analysis.
C1 [Massart, Sebastien; Agusti-Panareda, Anna] European Ctr Medium Range Weather Forecasts, Shinfield Pk, Reading RG2 9AX, Berks, England.
[Heymann, Jens; Buchwitz, Michael; Reuter, Maximilian; Hilker, Michael; Burrows, John P.; Deutscher, Nicholas M.; Petri, Christof] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany.
[Chevallier, Frederic] IPSL, CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France.
[Feist, Dietrich G.] Max Planck Inst Biogeochem, D-07745 Jena, Germany.
[Hase, Frank; Schneider, Matthias] IMK ASF, Karlsruhe Inst Technol, Karlsruhe, Germany.
[Sussmann, Ralf] IMK IFU, Karlsruhe Inst Technol, Garmisch Partenkirchen, Germany.
[Desmet, Filip] Univ Antwerp, Dept Chem, B-2020 Antwerp, Belgium.
[Dubey, Manvendra K.] Los Alamos Natl Lab, Earth & Environm Sci, Los Alamos, NM USA.
[Deutscher, Nicholas M.; Griffith, David W. T.; Velazco, Voltaire A.] Univ Wollongong, Sch Chem, Ctr Atmospher Chem, Wollongong, NSW, Australia.
[Kivi, Rigel] Arctic & Antarctic Res Inst, Finnish Meteorol Inst, Sodankyla, Finland.
RP Massart, S (reprint author), European Ctr Medium Range Weather Forecasts, Shinfield Pk, Reading RG2 9AX, Berks, England.
EM sebastien.massart@ecmwf.int
RI Chevallier, Frederic/E-9608-2016; Feist, Dietrich/B-6489-2013; Velazco,
Voltaire/H-2280-2011; Dubey, Manvendra/E-3949-2010; Reuter,
Maximilian/L-3752-2014; Schneider, Matthias/B-1441-2013; Sussmann,
Ralf/K-3999-2012; Burrows, John/B-6199-2014
OI Chevallier, Frederic/0000-0002-4327-3813; Feist,
Dietrich/0000-0002-5890-6687; Velazco, Voltaire/0000-0002-1376-438X;
Dubey, Manvendra/0000-0002-3492-790X; Reuter,
Maximilian/0000-0001-9141-3895; Burrows, John/0000-0002-6821-5580
FU European Commission under the European Union's Horizon 2020 programme;
European Space Agency (ESA) Greenhouse Gases Climate Change Initiative
(GHG-CCI); LANL's LDRD programme; NASA [NAG5-12247, NNG05-GD07G];
Australian Research Council [DP140101552, DP110103118, DP0879468,
LE0668470, LP0562346]; ICOS-INWIRE; InGOS; Senate of Bremen; ARC-DECRA
fellowship [DE140100178]
FX This study was funded by the European Commission under the European
Union's Horizon 2020 programme. The development of the GOSAT BESD
algorithm received funding from the European Space Agency (ESA)
Greenhouse Gases Climate Change Initiative (GHG-CCI). TCCON data were
obtained from the TCCON Data Archive, hosted by the Carbon Dioxide
Information Analysis Center (CDIAC) - http://tccon.ornl.gov/.Garmisch
work was funded in part via the ESA GHG-CCI project. Four Corners TCCON
was funded by LANL's LDRD programme. Darwin and Wollongong TCCON
measurements are funded by NASA grants NAG5-12247 and NNG05-GD07G and
the Australian Research Council grants DP140101552, DP110103118,
DP0879468, LE0668470 and LP0562346. We are grateful to the DOE ARM
programme for technical support in Darwin, and Clare Murphy, Nicholas
Jones and others for support in Wollongong. TCCON measurements in
Bialystok and Orleans are supported by ICOS-INWIRE, InGOS and the Senate
of Bremen. N. Deutscher is supported by an ARC-DECRA fellowship,
DE140100178. The authors are grateful to Marijana Crepulja for the
acquisition of the BESD GOSAT data at ECMWF and the preparation of the
data for the assimilation. The authors would like to acknowledge Paul
Wennberg, PI of the Lamont and Park Falls TCCON stations. Finally, we
would like to express our great appreciation to William Lahoz, editor of
this paper, for his useful comments during the revision process.
NR 35
TC 7
Z9 7
U1 7
U2 15
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2016
VL 16
IS 3
BP 1653
EP 1671
DI 10.5194/acp-16-1653-2016
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF3YI
UT WOS:000371284100028
ER
PT J
AU Gao, M
Carmichael, GR
Wang, Y
Saide, PE
Yu, M
Xin, J
Liu, Z
Wang, Z
AF Gao, M.
Carmichael, G. R.
Wang, Y.
Saide, P. E.
Yu, M.
Xin, J.
Liu, Z.
Wang, Z.
TI Modeling study of the 2010 regional haze event in the North China Plain
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID SECONDARY ORGANIC AEROSOL; URBAN AIR-QUALITY; EASTERN CHINA; FORMATION
MECHANISM; SIZE DISTRIBUTIONS; SOUTHERN HEBEI; WINTER HAZE; POLLUTION;
IMPACT; TRANSPORT
AB The online coupled Weather Research and Forecasting-Chemistry (WRF-Chem) model was applied to simulate a haze event that happened in January 2010 in the North China Plain (NCP), and was validated against various types of measurements. The evaluations indicate that WRF-Chem provides reliable simulations for the 2010 haze event in the NCP. This haze event was mainly caused by high emissions of air pollutants in the NCP and stable weather conditions in winter. Secondary inorganic aerosols also played an important role and cloud chemistry had important contributions. Air pollutants outside Beijing contributed about 64.5% to the PM2.5 levels in Beijing during this haze event, and most of them are from south Hebei, Tianjin city, Shandong and Henan provinces. In addition, aerosol feedback has important impacts on surface temperature, relative humidity (RH) and wind speeds, and these meteorological variables affect aerosol distribution and formation in turn. In Shijiazhuang, Planetary Boundary Layer (PBL) decreased about 278.2 m and PM2.5 increased more than 20 mu g m(-3) due to aerosol feedback. It was also shown that black carbon (BC) absorption has significant impacts on meteorology and air quality changes, indicating more attention should be paid to BC from both air pollution control and climate change perspectives.
C1 [Gao, M.; Carmichael, G. R.; Yu, M.] Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA.
[Gao, M.; Carmichael, G. R.; Saide, P. E.; Yu, M.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA.
[Wang, Y.; Xin, J.; Liu, Z.; Wang, Z.] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & At, Beijing, Peoples R China.
[Saide, P. E.] Natl Ctr Atmospher Res, Atmospher Chem Observat & Modeling ACOM Lab, POB 3000, Boulder, CO 80307 USA.
[Yu, M.] Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
RP Gao, M; Carmichael, GR (reprint author), Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA.; Gao, M; Carmichael, GR (reprint author), Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA.
EM meng-gao@uiowa.edu; gcarmich@engineering.uiowa.edu
RI Gao, Meng/P-8921-2015; 辛, 金元/F-7310-2012; Wang, Zifa/B-5799-2011
OI Gao, Meng/0000-0002-8657-3541; 辛, 金元/0000-0003-4243-5072;
FU National Natural Science Foundation of China [41222033, 41375036]; CAS
Strategic Priority Research Program Grant [XDA05100102, XDB05020103]
FX Special thanks are given to Yuesi Wang, Jinyuan Xin and their research
groups for providing measurements to evaluate model performance. The
ground observation was supported by the National Natural Science
Foundation of China (41222033; 41375036) and the CAS Strategic Priority
Research Program Grant (XDA05100102, XDB05020103). We also would like to
thank Yafang Cheng for her contributions to the development of emission
processing model. The NCEP FNL data were available at
http://rda.ucar.edu/datasets/ds083.2/. The MEIC emission inventory data
are obtained from http://www.meicmodel.org/. The MOZART-4 chemical data
are available at http://www.acd.ucar.edu/wrf-chem/mozart.shtml. Contact
M. Gao (meng-gao@uiowa.edu) or G. R. Carmichael
(gcarmich@engineering.uiowa.edu) for data requests.
NR 67
TC 6
Z9 6
U1 24
U2 60
PU COPERNICUS GESELLSCHAFT MBH
PI GOTTINGEN
PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY
SN 1680-7316
EI 1680-7324
J9 ATMOS CHEM PHYS
JI Atmos. Chem. Phys.
PY 2016
VL 16
IS 3
BP 1673
EP 1691
DI 10.5194/acp-16-1673-2016
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA DF3YI
UT WOS:000371284100029
ER
PT J
AU Kleinman, L
Kuang, C
Sedlacek, A
Senum, G
Springston, S
Wang, J
Zhang, Q
Jayne, J
Fast, J
Hubbe, J
Shilling, J
Zaveri, R
AF Kleinman, L.
Kuang, C.
Sedlacek, A.
Senum, G.
Springston, S.
Wang, J.
Zhang, Q.
Jayne, J.
Fast, J.
Hubbe, J.
Shilling, J.
Zaveri, R.
TI What do correlations tell us about anthropogenic-biogenic interactions
and SOA formation in the Sacramento plume during CARES?
SO ATMOSPHERIC CHEMISTRY AND PHYSICS
LA English
DT Article
ID SECONDARY ORGANIC AEROSOL; MEXICO-CITY; CARBONACEOUS AEROSOL; SIZE
DISTRIBUTION; SIERRA-NEVADA; SAMPLE-SIZE; EMISSIONS; ISOPRENE;
CALIFORNIA; OXIDATION
AB During the Carbonaceous Aerosols and Radiative Effects Study (CARES) the US Department of Energy (DOE) G-1 aircraft was used to sample aerosol and gas phase compounds in the Sacramento, CA, plume and surrounding region. We present data from 66 plume transects obtained during 13 flights in which southwesterly winds transported the plume towards the foothills of the Sierra Nevada. Plume transport occurred partly over land with high isoprene emission rates. Our objective is to empirically determine whether organic aerosol (OA) can be attributed to anthropogenic or biogenic sources, and to determine whether there is a synergistic effect whereby OA concentrations are enhanced by the simultaneous presence of high concentrations of carbon monoxide (CO) and either isoprene, MVK + MACR (sum of methyl vinyl ketone and methacrolein), or methanol, which are taken as tracers of anthropogenic and biogenic emissions, respectively. Linear and bilinear correlations between OA, CO, and each of three biogenic tracers, "Bio", for individual plume transects indicate that most of the variance in OA over short timescales and distance scales can be explained by CO. For each transect and species a plume perturbation, (i.e., Delta OA, defined as the difference between 90th and 10th percentiles) was defined and regressions done amongst Delta values in order to probe day-to-day and location-dependent variability. Species that predicted the largest fraction of the variance in Delta OA were Delta O-3 and Delta CO. Background OA was highly correlated with background methanol and poorly correlated with other tracers. Because background OA was similar to 60% of peak OA in the urban plume, peak OA should be primarily biogenic and therefore non-fossil, even though the day-today and spatial variability of plume OA is best described by an anthropogenic tracer, CO. Transects were split into subsets according to the percentile rankings of Delta CO and Delta Bio, similar to an approach used by Setyan et al. (2012) and Shilling et al. (2013) to determine if anthropogenic-biogenic (A-B) interactions enhance OA production. As found earlier, Delta OA in the data subset having high Delta CO and high Delta Bio was several-fold greater than in other subsets. Part of this difference is consistent with a synergistic interaction between anthropogenic and biogenic precursors and part to an independent linear dependence