FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Gaiser, K Erickson, P Stroeve, P Delplanque, JP AF Gaiser, Kyle Erickson, Paul Stroeve, Pieter Delplanque, Jean-Pierre TI An experimental investigation of design parameters for pico-hydro Turgo turbines using a response surface methodology SO RENEWABLE ENERGY LA English DT Article DE Pico-hydro; Turgo turbine; Hydroelectricity; Optimization; Central composite design; Response surface methodology ID PERFORMANCE AB Millions of off-grid homes in remote areas around the world have access to pico-hydro (5 kW or less) resources that are undeveloped due to prohibitive installed costs ($/kW). The Turgo turbine, a hydroelectric impulse turbine generally suited for medium to high head applications, has gained renewed attention in research due to its potential applicability to such sites. Nevertheless, published literature about the Turgo turbine is limited and indicates that current theory and experimental knowledge do not adequately explain the effects of certain design parameters, such as nozzle diameter, jet inlet angle, number of blades, and blade speed on the turbine's efficiency. In this study, these parameters are used in a three-level (34) central composite response surface experiment. A low-cost Turgo turbine is built and tested from readily available materials and a second order regression model is developed to predict its efficiency as a function of each parameter above and their interactions. The effects of blade orientation angle and jet impact location on efficiency are also investigated and experimentally found to be of relatively little significance to the turbine. The purpose of this study is to establish empirical design guidelines that enable small hydroelectric manufacturers and individuals to design low-cost efficient Turgo Turbines that can be optimized to a specific pica-hydra site. The results are also expressed in dimensionless parameters to allow for potential scaling to larger systems and manufacturers. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Gaiser, Kyle; Erickson, Paul; Delplanque, Jean-Pierre] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA. [Stroeve, Pieter] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA. [Gaiser, Kyle] Sandia Natl Labs, Livermore, CA USA. RP Erickson, P (reprint author), Univ Calif Davis, Dept Mech & Aerosp Engn, One Shields Ave, Davis, CA 95616 USA. EM kbgaiser@ucdavis.edu; paericicson@ucdavis.edu RI Delplanque, Jean-Pierre/I-8690-2016; OI Delplanque, Jean-Pierre/0000-0003-1774-1641 NR 39 TC 1 Z9 1 U1 2 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD JAN PY 2016 VL 85 BP 406 EP 418 DI 10.1016/j.renene.2015.06.049 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA CU2HO UT WOS:000363344800039 ER PT J AU Boubault, A Ho, CK Hall, A Lambert, TN Ambrosini, A AF Boubault, Antoine Ho, Clifford K. Hall, Aaron Lambert, Timothy N. Ambrosini, Andrea TI Levelized cost of energy (LCOE) metric to characterize solar absorber coatings for the CSP industry SO RENEWABLE ENERGY LA English DT Article DE LCOE; LCOC; Aging; Durability; Solar absorber; Coating ID SELECTIVE ABSORBERS; THERMAL-STABILITY; DURABILITY; SYSTEM AB The contribution of each component of a power generation plant to the levelized cost of energy (LCOE) can be estimated and used to increase the power output while reducing system operation and maintenance costs. The LCOE is used in order to quantify solar receiver coating influence on the LCOE of solar power towers. Two new parameters are introduced: the absolute levelized cost of coating (LCOC) and the LCOC efficiency. Depending on the material properties, aging, costs, and temperature, the absolute LCOC enables quantifying the cost-effectiveness of absorber coatings, as well as finding optimal operating conditions. The absolute LCOC is investigated for different hypothetic coatings and is demonstrated on Pyromark 2500 paint. Results show that absorber coatings yield lower LCOE values in most cases, even at significant costs. Optimal reapplication intervals range from one to five years. At receiver temperatures greater than 700 degrees C, non-selective coatings are not always worthwhile while durable selective coatings consistently reduce the LCOE-up to 12% of the value obtained for an uncoated receiver. The absolute LCOC is a powerful tool to characterize and compare different coatings, not only considering their initial efficiencies but also including their durability. Published by Elsevier Ltd. C1 [Boubault, Antoine; Ho, Clifford K.; Hall, Aaron; Lambert, Timothy N.; Ambrosini, Andrea] Sandia Natl Labs, Concentrating Solar Technol Dept, Albuquerque, NM 87185 USA. RP Boubault, A (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. EM ckho@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The United States Government and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 24 TC 0 Z9 0 U1 5 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD JAN PY 2016 VL 85 BP 472 EP 483 DI 10.1016/j.renene.2015.06.059 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA CU2HO UT WOS:000363344800045 ER PT J AU Popov, S Abdel-Fattah, T Kumar, S AF Popov, Sergiy Abdel-Fattah, Tarek Kumar, Sandeep TI Hydrothermal treatment for enhancing oil extraction and hydrochar production from oilseeds SO RENEWABLE ENERGY LA English DT Article DE Oilseeds; Hydrothermal pretreatment; Soxhlet extraction; Hydrothermal carbonization; Hydrochar ID SUBCRITICAL WATER; ULTRASONIC EXTRACTION; INFRARED-SPECTROSCOPY; VEGETABLE-OILS; KINETICS AB A novel integrated oil extraction process that includes hydrothermal pretreatment and oil extraction (HPOE) from whole oilseeds followed by hydrothermal carbonization (HTC) of the extracted seedcake to hydrochar was developed. Five different types of oilseeds including cotton-, flax-, mustard-, canola-, and jatropha seeds were used in the study. The seeds were subjected to hydrothermal pretreatment in the range of temperatures from 120 to 210 degrees C for 30 min. Oils were extracted from the pretreated seeds using n-hexane in a Soxhlet apparatus for 120 min. The crude oil yields from the pretreated seeds at 180 degrees C and 210 degrees C were significantly higher (up to 30 wt%) than those from the respective untreated ground seeds. The seedcake after oil extraction was subjected to HTC at 300 degrees C with the recycled aqueous phase collected from the pretreatment step. The produced hydrochar had higher heating value of 26.5 kJ/g comparable to that of bituminous coal. BET surface area and pore volume analysis showed that the pretreated seeds had larger surface area and pore volume/size than the respective raw seeds, which resulted in better extractability of oil, shorter extraction time, and overall efficiency of HPOE process. Analyses of the crude oil did not show significant signs of degradation after the hydrothermal pretreatment of oilseeds. The study is the first of its kind where integrated oil extraction and hydrochar production from oilseeds have been studied with the objective of minimizing feedstock preparation and maximizing oil extraction and overall energy conversion using environmentally benign hydrothermal processes. (c) 2015 Elsevier Ltd. All rights reserved. C1 [Popov, Sergiy; Kumar, Sandeep] Old Dominion Univ, Dept Civil & Environm Engn, Norfolk, VA 23529 USA. [Abdel-Fattah, Tarek] Christopher Newport Univ, Appl Res Ctr, Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Abdel-Fattah, Tarek] Christopher Newport Univ, Dept Mol Biol & Chem, Newport News, VA 23606 USA. RP Kumar, S (reprint author), Old Dominion Univ, Dept Civil & Environm Engn, 5115 Hampton Blvd, Norfolk, VA 23529 USA. EM skumar@odu.edu FU Research Foundation at Old Dominion University (ODURF) FX The authors would like to acknowledge the encouragement and support of our colleagues at the Department of Chemistry and Biochemistry at Old Dominion University in the preparation of this article. We also acknowledge Dr. Florin Barla from Old Dominion University for his help with the oil analyses. Our special appreciation goes to the Research Foundation at Old Dominion University (ODURF) for providing the financial support for this research. NR 27 TC 1 Z9 1 U1 4 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD JAN PY 2016 VL 85 BP 844 EP 853 DI 10.1016/j.renene.2015.07.048 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA CU2HO UT WOS:000363344800082 ER PT J AU Ren, Z Wu, ZL Song, WQ Xiao, W Guo, YB Ding, J Suib, SL Gao, PX AF Ren, Zheng Wu, Zili Song, Wenqiao Xiao, Wen Guo, Yanbing Ding, Jun Suib, Steven L. Gao, Pu-Xian TI Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Nano-array catalyst; in situ DRIFTS; Low temperature propane oxidation; Isotope exchange; Reaction mechanism ID CO OXIDATION; CARBON-MONOXIDE; PEROVSKITE OXIDES; MESOPOROUS CO3O4; COMBUSTION; EMISSIONS; METHANE; SURFACE; MANGANESE; GASOLINE AB Low temperature propane oxidation has been achieved by Co3O4-based nano-array catalysts featuring low catalytic materials loading (15 mg under flow rate of 150 mL/min). The increased Ni doping into the Co3O4 lattice has led to 100% propane conversion at low temperature (<400 degrees C) and has enhanced reaction kinetics by promoting the surface lattice oxygen activity. In situ DRIFTS investigations in tandem with isotopic oxygen exchange reveals that the propane oxidation proceeds via a Mars-van Krevelen mechanism where surface lattice oxygen acts as the active site whereas O-2 in the reaction feed does not directly participate in CO2 formation. The Ni doping promotes the formation of less stable carbonates on the surface to facilitate the CO2 desorption. The thermal stability of Ni doped Co3O4 decreases with increased Ni concentration despite the increased catalytic activity. A balance between enhanced activity and compromised thermal stability is considered in the Ni doped Co3O4 nano-array catalysts for hydrocarbon oxidation. This study provides useful and timely guidance for rational catalyst design toward low temperature catalytic oxidation. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ren, Zheng; Guo, Yanbing; Suib, Steven L.; Gao, Pu-Xian] Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA. [Ren, Zheng; Guo, Yanbing; Suib, Steven L.; Gao, Pu-Xian] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA. [Wu, Zili] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Song, Wenqiao; Suib, Steven L.] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA. [Xiao, Wen; Ding, Jun] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 119260, Singapore. RP Wu, ZL (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM wuzl@ornl.gov; puxian.gao@ims.uconn.edu FU US Department of Energy; US National Science Foundation; General Electrics Graduate Fellowship for Innovation FX The authors are grateful for the financial support from the US Department of Energy and the US National Science Foundation. A portion of this research including the in situ IR and Raman work was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Z.R. would like to acknowledge the partial support from a General Electrics Graduate Fellowship for Innovation. NR 44 TC 10 Z9 10 U1 27 U2 129 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 EI 1873-3883 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD JAN PY 2016 VL 180 BP 150 EP 160 DI 10.1016/j.apcatb.2015.04.021 PG 11 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA CS8ZZ UT WOS:000362379800018 ER PT J AU Ding, SP Liu, FD Shi, XY He, H AF Ding, Shipeng Liu, Fudong Shi, Xiaoyan He, Hong TI Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NOx with NH3 over CeZrOx catalyst SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Selective catalytic reduction; Nitrogen oxides; Diesel engine exhaust; Hydrothermal stability; CeNbZrOx mixed oxide ID MIXED-OXIDE CATALYST; SULFATED ZIRCONIA; AMMONIA; MECHANISM; DRIFT; PERFORMANCE; REACTIVITY; RESISTANCE; EXHAUST; CERIA AB The promotional mechanism of Nb addition on the activity and hydrothermal stability of CeZr2Ox catalyst for the selective catalytic reduction of NOx with NH3 (NH3-SCR) was investigated by various methods including N-2-physisorption, XRD, H-2-TPR and in situ DRIFTS. The Nb-promoted CeZr2Ox catalyst showed remarkable NH3-SCR activity together with excellent N-2 selectivity, SO2/H2O resistance and outstanding hydrothermal stability. The characterization results showed that the introduction of Nb to CeZr2Ox not only resulted in the high surface area and strong redox ability, but also promoted the adsorption and activation of NH3 and enhanced the reactivity of adsorbed nitrate together with NH3 species. All the above features were favorable for the superior NH3-SCR performance. In addition, the CeNb3.0Zr2Ox catalysts hydrothermally aged below 800 degrees C still possessed high redox ability and abundant acid sites, all of which were responsible for the excellent hydrothermal durability. The novel CeNb3.0Zr2Ox catalyst was a promising candidate for the removal of NOx from diesel engine. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ding, Shipeng; Liu, Fudong; Shi, Xiaoyan; He, Hong] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100085, Peoples R China. RP Liu, FD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM fudongliu@lbl.gov; honghe@rcees.ac.cn FU National Natural Science Foundation of China [51221892]; Ministry of Science and Technology, China [2013AA065301] FX This work was supported by the National Natural Science Foundation of China (51221892) and the Ministry of Science and Technology, China (2013AA065301). NR 41 TC 9 Z9 9 U1 22 U2 107 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 EI 1873-3883 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD JAN PY 2016 VL 180 BP 766 EP 774 DI 10.1016/j.apcatb.2015.06.055 PG 9 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA CS8ZZ UT WOS:000362379800086 ER PT J AU Zhou, ZF Yablon, J Zhou, MC Wang, Y Heifetz, A Shahriar, MS AF Zhou, Zifan Yablon, Joshua Zhou, Minchuan Wang, Ye Heifetz, Alexander Shahriar, M. S. TI Modeling and analysis of an ultra-stable subluminal laser SO OPTICS COMMUNICATIONS LA English DT Article DE Optics; Photonics; Laser; Slow light ID ATOMIC PHASE COHERENCE; WHITE-LIGHT CAVITIES; CESIUM VAPOR LASER; RING LASER; QUANTUM LIMIT; ROTATION; POWER; GYRO AB We describe a subluminal laser which is extremely stable against perturbations. It makes use of a composite gain spectrum consisting of a broad background along with a narrow peak. The stability of the laser, defined as the change in frequency as a function of a change in the cavity length, is enhanced by a factor given by the group index, which can be as high as 105 for experimentally realizable parameters. We also show that the fundamental linewidth of such a laser is expected to be smaller by the same factor. We first present an analysis where the gain profile is modeled as a superposition of two Lorentzian functions. We then present a numerical study based on a physical scheme for realizing the composite gain profile. In this scheme, the broad gain is produced by a high pressure buffer gas loaded cell of rubidium vapor. The narrow gain is produced by using a Raman pump in a second rubidium vapor cell, where optical pumping is used to produce a Raman population inversion. We show close agreement between the idealized model and the explicit model. A subluminal laser of this type may prove to be useful for many applications. (C) 2015 Elsevier B.V. All rights reserved C1 [Zhou, Zifan; Yablon, Joshua; Wang, Ye; Shahriar, M. S.] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60201 USA. [Zhou, Minchuan; Shahriar, M. S.] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA. [Heifetz, Alexander] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Zhou, ZF (reprint author), Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60201 USA. EM zifanzhou2012@u.northwestern.edu FU AFOSR [FA9550-10-1-0228]; NSF IGERT [DGE-0801685]; NASA [NNM13AA60C] FX This research was supported in part by AFOSR Grant # FA9550-10-1-0228, NSF IGERT Grant # DGE-0801685, and NASA Grant # NNM13AA60C. NR 45 TC 2 Z9 2 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 EI 1873-0310 J9 OPT COMMUN JI Opt. Commun. PD JAN 1 PY 2016 VL 358 BP 6 EP 19 DI 10.1016/j.optcom.2015.09.007 PG 14 WC Optics SC Optics GA CT8DV UT WOS:000363046100002 ER PT J AU Zarkadoula, E Xue, HZ Zhang, YW Weber, WJ AF Zarkadoula, Eva Xue, Haizhou Zhang, Yanwen Weber, William J. TI Synergy of inelastic and elastic energy loss: Temperature effects and electronic stopping power dependence SO SCRIPTA MATERIALIA LA English DT Article DE Radiation effects; Molecular dynamics; Ceramics; Perovskite; Defects ID THERMAL-CONDUCTIVITY; ION IRRADIATION; HEAVY-IONS; TRACK; RADIATION; CREATION; GROWTH; SRTIO3 AB A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. We also find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Zarkadoula, Eva; Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Xue, Haizhou; Zhang, Yanwen; Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Zarkadoula, E (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM zarkadoulae@ornl.gov RI Weber, William/A-4177-2008; OI Weber, William/0000-0002-9017-7365; Zarkadoula, Eva/0000-0002-6886-9664 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Office of Science, US Department of Energy [DEAC02-05CH11231] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. This research used resources of the National Energy Research Scientific Computing Center, supported by the Office of Science, US Department of Energy under Contract No. DEAC02-05CH11231. NR 32 TC 2 Z9 2 U1 8 U2 42 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JAN 1 PY 2016 VL 110 BP 2 EP 5 DI 10.1016/j.scriptamat.2015.05.044 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA CT6LC UT WOS:000362923500002 ER PT J AU Guo, W Gan, B Molina-Aldareguia, JM Poplawsky, JD Raabe, D AF Guo, Wei Gan, Bin Molina-Aldareguia, Jon M. Poplawsky, Jonathan D. Raabe, Dierk TI Structure and dynamics of shear bands in amorphous-crystalline nanolaminates SO SCRIPTA MATERIALIA LA English DT Article DE Nanolaminates; Metallic glass; Nanocrystallization; Shear band; Atom probe tomography ID METALLIC GLASSES; MECHANICAL-BEHAVIOR; ATOM-PROBE; CU-ZR; DEFORMATION; ALLOYS; NANOCRYSTALLIZATION; TEMPERATURE AB The velocities of shear bands in amorphous CuZr/crystalline Cu nanolaminates were quantified as a function of strain rate and crystalline volume fraction. A rate-dependent transition in flow response was found in a 100 nm CuZr/10 nm Cu nanolaminates. When increasing the Cu layer thickness from 10 nm to 100 nm, the instantaneous velocity of the shear band in these nanolaminates decreases from 11.2 mu m/s to omega < 3.0 eV. We observed a peak in the real part of Theta(K)(omega) and zero crossing in the imaginary part that we attribute to a resonant interaction with a spin-orbit avoided crossing located approximate to 1.6 eV above the Fermi energy. The resonant enhancement allows measurement of the temperature and magnetic field dependence of Theta(K) in the ultrathin film limit, d >= 2 quintuple layers (QL). We find a sharp transition to zero remanent magnetization at 6 K for d < 8 QL, consistent with theories of the dependence of impurity spin interactions on film thickness and their location relative to topological insulator surfaces. C1 [Patankar, Shreyas; Hinton, J. P.; Griesmar, Joel; Orenstein, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Patankar, Shreyas; Hinton, J. P.; Griesmar, Joel; Orenstein, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Dodge, J. S.] Simon Fraser Univ, Dept Phys, Burnaby, BC VST 1Z1, Canada. [Kou, Xufeng; Pan, Lei; Wang, Kang L.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Bestwick, A. J.; Fox, E. J.; Goldhaber-Gordon, D.; Wang, Jing; Zhang, Shou-Cheng] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bestwick, A. J.; Fox, E. J.; Goldhaber-Gordon, D.; Wang, Jing; Zhang, Shou-Cheng] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. RP Patankar, S (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jworenstein@lbl.gov RI Orenstein, Joseph/I-3451-2015; Wang, Jing/E-5925-2012 OI Wang, Jing/0000-0002-4674-9485 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-76SF00515]; Materials Science and Active Surface Program at Ecole Polytechnique, Palaiseau, France (Chaire X-ESPCI-Saint-Gobain); Benchmark Stanford Graduate Fellowship; DOE Office of Science Graduate Fellowship; DARPA MESO program [N66001-12-1-4034, N66001-11-1-4105]; Gordon and Betty Moore Foundation [GBMF3429] FX This research was primarily supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515. J.G. acknowledges a scholarship from the Materials Science and Active Surface Program at Ecole Polytechnique, Palaiseau, France (Chaire X-ESPCI-Saint-Gobain) for support. K.L.W. acknowledges the support of the Raytheon endorsement. A.J.B. acknowledges support from a Benchmark Stanford Graduate Fellowship. E.J.F. acknowledges support from a DOE Office of Science Graduate Fellowship. Materials growth, surface characterization, preliminary electrical characterization, and electronic instrumentation were supported by the DARPA MESO program under Contracts No. N66001-12-1-4034 and No. N66001-11-1-4105. The infrastructure and cryostat were funded in part by the Gordon and Betty Moore Foundation through Grant GBMF3429 to D.G.-G. NR 35 TC 1 Z9 1 U1 9 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 31 PY 2015 VL 92 IS 21 AR 214440 DI 10.1103/PhysRevB.92.214440 PG 6 WC Physics, Condensed Matter SC Physics GA CZ8US UT WOS:000367375200005 ER PT J AU Higginson, DP Link, A Sawada, H Wilks, SC Bartal, T Chawla, S Chen, CD Flippo, KA Jarrott, LC Key, MH McLean, HS Patel, PK Perez, F Wei, MS Beg, FN AF Higginson, D. P. Link, A. Sawada, H. Wilks, S. C. Bartal, T. Chawla, S. Chen, C. D. Flippo, K. A. Jarrott, L. C. Key, M. H. McLean, H. S. Patel, P. K. Perez, F. Wei, M. S. Beg, F. N. TI High-contrast laser acceleration of relativistic electrons in solid cone-wire targets SO PHYSICAL REVIEW E LA English DT Article ID PROTON-BEAMS; HIGH-DENSITY; PLASMA; ABSORPTION; IGNITION; CONDUCTIVITY; SIMULATION; GENERATION; EMISSION; CRYSTALS AB The consequences of small scale-length precursor plasmas on high-intensity laser-driven relativistic electrons are studied via experiments and simulations. Longer scale-length plasmas are shown to dramatically increase the efficiency of electron acceleration, yet, if too long, they reduce the coupling of these electrons into the solid target. Evidence for the existence of an optimal plasma scale-length is presented and estimated to be from 1 to 5 mu m. Experiments on the Trident laser (I = 5 x 10(19) W/cm(2)) diagnosed via K alpha emission from Cu wires attached to Au cones are quantitively reproduced using 2D particle-in-cell simulations that capture the full temporal and spatial scale of the nonlinear laser interaction and electron transport. The simulations indicate that 32% +/- 8% (6.5% +/- 2%) of the laser energy is coupled into electrons of all energies (1-3 MeV) reaching the inner cone tip and that, with an optimized scale-length, this could increase to 35% (9%). C1 [Higginson, D. P.; Sawada, H.; Bartal, T.; Chawla, S.; Jarrott, L. C.; Wei, M. S.; Beg, F. N.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Higginson, D. P.; Link, A.; Wilks, S. C.; Bartal, T.; Chawla, S.; Chen, C. D.; Jarrott, L. C.; Key, M. H.; McLean, H. S.; Patel, P. K.; Perez, F.] Lawrence Livermore Natl Lab, Livermore, CA 94440 USA. [Sawada, H.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Flippo, K. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Perez, F.] Univ Paris 06, Ecole Polytech, CNRS, Lab Utilisat Lasers Intenses,CEA,UMR 7605, F-91128 Palaiseau, France. [Wei, M. S.] Gen Atom Co, San Diego, CA 92186 USA. RP Higginson, DP (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. RI Higginson, Drew/G-5942-2016; Patel, Pravesh/E-1400-2011; Sawada, Hiroshi/Q-8434-2016 OI Higginson, Drew/0000-0002-7699-3788; Sawada, Hiroshi/0000-0002-7972-9894 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Scholar Program at Lawrence Livermore National Laboratory FX The authors acknowledge the contributions of K. U. Akli, S. D. Baton, R. Fedosejevs, R. R. Freeman, H. Friesen, S. Gaillard, D. Hey, G. E. Kemp, M. Koenig, A. G. Krygier, T. Ma, C. Murphy, D. T. Offerman, Y. Y. Tsui, D. Turnbull, T. L. D. Van Woerkom, B. Westover, T. Yabuuchi, and the Trident and Titan Laser team with performing the experiment. We are grateful for the work of D. W. Schumacher and C. Orban in the extended development and improvements to the LSP code. We acknowledge R. B. Stephens and E. Giraldez for fabrication and assembly of targets. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. D.P.H. was supported through the Lawrence Scholar Program at Lawrence Livermore National Laboratory. NR 50 TC 1 Z9 1 U1 6 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 31 PY 2015 VL 92 IS 6 AR 063112 DI 10.1103/PhysRevE.92.063112 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CZ8XZ UT WOS:000367383700010 PM 26764843 ER PT J AU Zhu, W Yu, KM Walukiewicz, W AF Zhu, Wei Yu, Kin Man Walukiewicz, W. TI Indium doped Cd1-xZnxO alloys as wide window transparent conductors SO THIN SOLID FILMS LA English DT Article DE Transparent conducting oxides; Cadmium oxide; Zinc oxides; Full spectrum photovoltaics ID LASER DEPOSITION; FILMS; CDO; OXIDE AB We have synthesized Indium doped Cd1-xZnxO alloys across the full composition range using magnetron sputtering method. The crystallographic structure of these alloys changes from rocksalt (RS) to wurtzite (WZ) when the Zn content is higher than 30%. The rocksalt phase alloys in the composition range 0 < x < 0.3 can be efficiently n-type doped, shifting the absorption edge to 3.25 eV and reducing resistivity to about 2.0 x 10(-4) Omega-cm. We found that In doped CdO (ICO) transmits more solar photons than commercial fluorine doped tin oxide (FTO) with comparable sheet conductivity. The infrared transmittance is further extended to longer than 1500 nm wavelengths by depositing the In doped Cd1-xZnxO in similar to 1% of O-2. This material has a potential for applications as a transparent conductor for silicon and multi-junction solar cells. (C) 2015 Elsevier B.V. All rights reserved. C1 [Zhu, Wei; Yu, Kin Man; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhu, Wei] Univ Sci & Technol China, Ctr Phys Expt, Dept Phys, Hefei 230026, Anhui, Peoples R China. [Yu, Kin Man] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. RP Yu, KM (reprint author), City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. EM kinmanyu@cityu.edu.hk FU Department of Energy through the Bay Area Photovoltaic Consortium [DE-EE0004946]; Oversea Academic Training Funds of USTC FX This work was supported by the Department of Energy through the Bay Area Photovoltaic Consortium under Award Number DE-EE0004946. Wei Zhu acknowledges support from the Oversea Academic Training Funds of USTC. NR 17 TC 0 Z9 0 U1 8 U2 24 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD DEC 31 PY 2015 VL 597 BP 183 EP 187 DI 10.1016/j.tsf.2015.11.052 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA CY8GO UT WOS:000366647000028 ER PT J AU Schultz, AM Brown, TD Buric, MP Lee, SW Gerdes, K Ohodnicki, PR AF Schultz, Andrew M. Brown, Thomas D. Buric, Michael P. Lee, Shiwoo Gerdes, Kirk Ohodnicki, Paul R. TI High temperature fiber-optic evanescent wave hydrogen sensors using La-doped SrTiO3 for SOFC applications SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Optical fiber sensor; Metal oxide; Hydrogen sensor; SrTiO3; High temperature ID STRONTIUM-TITANATE; LANTHANUM; GAS; CHEMISTRY; CERAMICS AB Advanced sensors are needed for development of next-generation fossil fuel power generation technologies and for enhancing efficiencies of existing power generation systems. Optical waveguide-based sensing technologies have become increasingly important for harsh environment energy applications. In this manuscript, we present sensing results for fiber-optic evanescent wave hydrogen sensors employing La-doped SrTiO3 layers as the active sensing element. These sensors show a rapid, reproducible sensing response to hydrogen fuel gas streams at elevated temperatures (600-800 degrees C). The presence of hydrogen results in a reversible and reproducible decrease in near-infrared transmission through the sensor. Sensors were also tested directly in the anode assembly of an operating solid oxide fuel cell (SOFC) with the sensor response correlating with both H-2 concentration and SOFC cell potential. (C) 2015 Elsevier B.V. All rights reserved. C1 [Schultz, Andrew M.; Brown, Thomas D.; Buric, Michael P.; Gerdes, Kirk; Ohodnicki, Paul R.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Lee, Shiwoo] AECOM GES, Morgantown, WV 26507 USA. RP Schultz, AM (reprint author), Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. EM andy.schultzl@gmail.com FU U.S. DOE Advanced Research/Crosscutting Technologies program at National Energy Technology Laboratory; U.S. Department of Energy; United States Government FX The authors acknowledge Dr. Gregory Hackett and Mr. Dave Ruehl for assistance and support in completing the SOFC experiments. This work was funded by the U.S. DOE Advanced Research/Crosscutting Technologies program at the National Energy Technology Laboratory. This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education.; This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 21 TC 3 Z9 3 U1 10 U2 98 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD DEC 31 PY 2015 VL 221 BP 1307 EP 1313 DI 10.1016/j.snb.2015.07.046 PG 7 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA CT6JA UT WOS:000362918100165 ER PT J AU Ayzner, AL Mei, JG Appleton, A DeLongchamp, D Nardes, A Benight, S Kopidakis, N Toney, MF Bao, ZN AF Ayzner, Alexander L. Mei, Jianguo Appleton, Anthony DeLongchamp, Dean Nardes, Alexandre Benight, Stephanie Kopidakis, Nikos Toney, Michael F. Bao, Zhenan TI Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor-Acceptor Conjugated Polymers SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE exciton diffusion; conjugated polymer; texture; crystallographic orientation; fluorescence quenching ID ORGANIC SOLAR-CELLS; DIFFUSION LENGTH; CHARGE-TRANSPORT; PHOTOVOLTAIC DEVICES; FULLERENE ACCEPTORS; ENERGY-TRANSFER; SIDE-CHAINS; THIN-FILMS; HETEROJUNCTION; POLY(3-HEXYLTHIOPHENE) AB Conjugated polymers are widely used materials in organic photovoltaic devices. Owing to their extended electronic wave functions, they often form semicrystalline thin films. In this work, we aim to understand whether distribution of crystallographic orientations affects exciton diffusion using a low-band-gap polymer backbone motif that is representative of the donor/acceptor copolymer class. Using the fact that the polymer side chain can tune the dominant crystallographic orientation in the thin film, we have measured the quenching of polymer photoluminescence, and thus the extent of exciton dissociation, as a function of crystal orientation with respect to a quenching substrate. We find that the crystallite orientation distribution has little effect on the average exciton diffusion length. We suggest several possibilities for the lack of correlation between crystallographic texture and exciton transport in semicrystalline conjugated polymer films. C1 [Ayzner, Alexander L.; Mei, Jianguo; Appleton, Anthony; Benight, Stephanie; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Ayzner, Alexander L.; Toney, Michael F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [DeLongchamp, Dean] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Nardes, Alexandre; Kopidakis, Nikos] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Toney, MF (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. EM mftoney@slac.stanford.edu; zbao@stanford.edu RI mei, jianguo/C-6711-2011; OI mei, jianguo/0000-0002-5743-2715; Ayzner, Alexander/0000-0002-6549-4721 FU Center for Advanced Molecular Photovoltaics [KUS-C1-015-21]; Global Climate and Energy Program at Stanford; Energy Frontier Research Center "Molecularly Engineered Energy Materials (MEEMs)" - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001342:001] FX We thank the Bent group at Stanford University for help with ALD preparation of titania films. This work was partially supported by the Center for Advanced Molecular Photovoltaics, Award No. KUS-C1-015-21, made by King Abdullah University of Science and Technology. We also acknowledge support from the Global Climate and Energy Program at Stanford. GIXD measurements were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. N.K. and A.M.N. acknowledge funding from the Energy Frontier Research Center "Molecularly Engineered Energy Materials (MEEMs)" funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract Number DE-SC0001342:001. NR 52 TC 5 Z9 5 U1 9 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC 30 PY 2015 VL 7 IS 51 BP 28035 EP 28041 DI 10.1021/acsami.5b02968 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DC8CT UT WOS:000369448200008 PM 26292836 ER PT J AU Kung, CW Mondloch, JE Wang, TC Bury, W Hoffeditz, W Klahr, BM Klet, RC Pellin, MJ Farha, OK Hupp, JT AF Kung, Chung-Wei Mondloch, Joseph E. Wang, Timothy C. Bury, Wojciech Hoffeditz, William Klahr, Benjamin M. Klet, Rachel C. Pellin, Michael J. Farha, Omar K. Hupp, Joseph T. TI Metal-Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE metal-organic frameworks; water oxidation; electrocatalyst; atomic layer deposition; cobalt oxide; pyrene ID PHOTOSYSTEM-II; CATALYST; STABILITY; ENERGY; REDUCTION; MECHANISM; EVOLUTION; MODELS; GROWTH AB Thin films of the metal organic framework (MOP) NU-1000 were grown on conducting glass substrates. The films uniformly cover the conducting glass substrates and are composed of free-standing sub-micrometer rods. Subsequently, atomic layer deposition (ALD) was utilized to deposit Co2+ ions throughout the entire MOF film via self-limiting surface-mediated reaction chemistry. The Co ions bind at aqua and hydroxo sites lining the channels of NU-1000, resulting in three-dimensional arrays of separated Co ions in the MOF thin film. The Co-modified MOF thin films demonstrate promising electrocatalytic activity for water oxidation. C1 [Kung, Chung-Wei; Mondloch, Joseph E.; Wang, Timothy C.; Bury, Wojciech; Hoffeditz, William; Klahr, Benjamin M.; Klet, Rachel C.; Farha, Omar K.; Hupp, Joseph T.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Kung, Chung-Wei] Natl Taiwan Univ, Dept Chem Engn, Taipei 10617, Taiwan. [Bury, Wojciech] Warsaw Univ Technol, Dept Chem, PL-00664 Warsaw, Poland. [Hoffeditz, William; Klahr, Benjamin M.; Pellin, Michael J.; Hupp, Joseph T.] Argonne Natl Lab, Argonne, IL 60439 USA. [Farha, Omar K.] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah, Saudi Arabia. RP Farha, OK (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM o-farha@northwestern.edu; j-hupp@northwestem.edu RI Pellin, Michael/B-5897-2008; Faculty of, Sciences, KAU/E-7305-2017 OI Pellin, Michael/0000-0002-8149-9768; FU Argonne Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; Graduate Students Study Abroad Program - National Science Council (Taiwan); Foundation for Polish Science through the "Kolumb" Program; DOE [DE-AC05-060R23100] FX This work was supported as part of the Argonne Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001059. C.-W.K. acknowledges support from the Graduate Students Study Abroad Program sponsored by the National Science Council (Taiwan). W.B. acknowledges support from the Foundation for Polish Science through the "Kolumb" Program. J.E.M. acknowledges a DOE EERE Postdoctoral Research Award, EERE Fuel Cell Technologies Program, administered by ORISE for DOE. B.M.K acknowledges a DOE EERE Postdoctoral Research Award, EERE Solar Program, administered by ORISE for DOE. ORISE is managed by ORAU under DOE Contract DE-AC05-060R23100. We thank Dr. Zhanyong Li for helpful discussions. NR 49 TC 22 Z9 22 U1 40 U2 115 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC 30 PY 2015 VL 7 IS 51 BP 28223 EP 28230 DI 10.1021/acsami.5b06901 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DC8CT UT WOS:000369448200029 PM 26636174 ER PT J AU Li, J Rochester, CW Jacobs, IE Friedrich, S Stroeve, P Riede, M Moule, AJ AF Li, Jun Rochester, Chris W. Jacobs, Ian E. Friedrich, Stephan Stroeve, Pieter Riede, Moritz Moule, Adam J. TI Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE organic light emitting diodes; organic photovoltaics; dopant; diffusion; device stability ID LIGHT-EMITTING-DIODES; DOPED TRANSPORT LAYERS; POLYMER SOLAR-CELLS; ELECTROLUMINESCENT DEVICES; CONJUGATED POLYMERS; CHARGE-TRANSPORT; HIGH-PERFORMANCE; THIN-FILMS; SEMICONDUCTORS; STABILITY AB The diffusion of molecules through and between organic layers is a serious stability concern in organic electronic devices. In this work, the temperature-dependent diffusion of molecular dopants through small molecule hole transport layers is observed. Specifically we investigate bilayer stacks of small molecules used for hole transport (MeO-TPD) and p-type dopants (F4TCNQ and C60F36) used in hole injection layers for organic light emitting diodes and hole collection electrodes for organic photovoltaics. With the use of absorbance spectroscopy, photoluminescence spectroscopy, neutron reflectometry, and near-edge X-ray absorption fine structure spectroscopy, we are able to obtain a comprehensive picture of the diffusion of fluorinated small molecules through MeO-TPD layers. F4TCNQ spontaneously diffuses into the MeO-TPD material even at room temperature, while C60F36, a much bulkier molecule, is shown to have a substantially higher morphological stability. This study highlights that the differences in size/geometry and thermal properties of small molecular dopants can have a significant impact on their diffusion in organic device architectures. C1 [Li, Jun; Rochester, Chris W.; Jacobs, Ian E.; Stroeve, Pieter; Moule, Adam J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Friedrich, Stephan] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Riede, Moritz] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. RP Moule, AJ (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM amoule@ucdavis.edu OI Moule, Adam/0000-0003-1354-3517 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0010419]; BMBF [031P602]; DOE Office of Basic Energy Sciences and Los Alamos National Laboratory (LANL) under DOE [DE-AC52-06NA25396]; U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344] FX This project was carried out with funding from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award No. DE-SC0010419. M. Riede was supported from BMBF, Innoprofile 031P602 Programme. This work benefited from the use of the Lujan Neutron Scattering Center at LANSCE funded by the DOE Office of Basic Energy Sciences and Los Alamos National Laboratory (LANL) under DOE Contract DE-AC52-06NA25396. We thank Jaroslaw Majewski from the LANL for user support and training. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344. We also would like to thank Michael Toney from Stanford Synchrotron Radiation Light source (SSRL) for user support and XRR training. NR 53 TC 10 Z9 10 U1 14 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC 30 PY 2015 VL 7 IS 51 BP 28420 EP 28428 DI 10.1021/acsami.5b09216 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DC8CT UT WOS:000369448200051 PM 26673846 ER PT J AU Feng, ZX Chen, X Qiao, L Lipson, AL Fister, TT Zeng, L Kim, C Yi, TH Sa, N Proffit, DL Burrell, AK Cabana, J Ingram, BJ Biegalski, MD Bedzyk, MJ Fenter, P AF Feng, Zhenxing Chen, Xiao Qiao, Liang Lipson, Albert L. Fister, Timothy T. Zeng, Li Kim, Chunjoong Yi, Tanghong Sa, Niya Proffit, Danielle L. Burrell, Anthony K. Cabana, Jordi Ingram, Brian J. Biegalski, Michael D. Bedzyk, Michael J. Fenter, Paul TI Phase-Controlled Electrochemical Activity of Epitaxial Mg-Spinel Thin Films SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE phase-selective electrochemical activity; Mg-spinel; epitaxial phase stabilization; multivalent insertion; pulsed laser deposition ID X-RAY-DIFFRACTION; ELECTRICAL ENERGY-STORAGE; ION BATTERIES; MAGNESIUM BATTERIES; MGMN2O4; INTERCALATION; LIMN2O4; CHALLENGES; DEPOSITION; DIFFUSION AB We report an approach to control the reversible electrochemical activity (i.e., extraction/insertion) of Mg2+ in a cathode host through the use of phase-pure epitaxially stabilized thin film structures. The epitaxially stabilized MgMn2O4. (MMO) thin films in the distinct tetragonal and cubic phases are shown to exhibit dramatically different properties (in a nonaqueous electrolyte, Mg(TFSI)(2) in propylene carbonate): tetragonal MMO shows negligible activity while the cubic MMO (normally found as polymorph at high temperature or high pressure) exhibits reversible Mg2+ activity with associated changes in film structure and Mn oxidation state. These results demonstrate a novel strategy for identifying the factors that control multivalent cation mobility in next generation battery materials. C1 [Feng, Zhenxing; Lipson, Albert L.; Fister, Timothy T.; Sa, Niya; Proffit, Danielle L.; Burrell, Anthony K.; Ingram, Brian J.; Fenter, Paul] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Feng, Zhenxing; Lipson, Albert L.; Fister, Timothy T.; Kim, Chunjoong; Yi, Tanghong; Sa, Niya; Proffit, Danielle L.; Burrell, Anthony K.; Cabana, Jordi; Ingram, Brian J.; Fenter, Paul] Argonne Natl Lab, JCESR, Lemont, IL 60439 USA. [Chen, Xiao; Zeng, Li; Bedzyk, Michael J.] Northwestern Univ, Appl Phys Program, Evanston, IL 60208 USA. [Bedzyk, Michael J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Bedzyk, Michael J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Qiao, Liang; Bedzyk, Michael J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kim, Chunjoong; Yi, Tanghong; Cabana, Jordi] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. RP Feng, ZX (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. EM fengz@anl.gov; fenter@anl.gov RI Qiao, Liang/A-8165-2012; Cabana, Jordi/G-6548-2012; Bedzyk, Michael/B-7503-2009; SA, NIYA/E-8521-2017 OI Cabana, Jordi/0000-0002-2353-5986; FU Joint Center for Energy Storage Research (JCESR) through the Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE); DOE [DE-AC02-06CH11357]; Materials Research Science and Engineering Center (MRSEC) through National Science Foundation (NSF) [DMR-1121262]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the Joint Center for Energy Storage Research (JCESR) through the Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE). The Advanced Photon Source is supported by the DOE under Contract DE-AC02-06CH11357. This work made use of Northwestern University Central Facilities supported by the Materials Research Science and Engineering Center (MRSEC) through National Science Foundation (NSF) under Contract DMR-1121262. We thank the beamline staff for technical support, including Christian M. Schlepuetz and Jenia Karapetrova at sector 33, Xiaoyi Zhang at sector 11, and Chengjun Sun at sector 20 of APS. The PLD preparation and characterization were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 35 TC 7 Z9 7 U1 15 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC 30 PY 2015 VL 7 IS 51 BP 28438 EP 28443 DI 10.1021/acsami.5b09346 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DC8CT UT WOS:000369448200053 PM 26641524 ER PT J AU Li, XM Wolden, CA Ban, CM Yang, YG AF Li, Xuemin Wolden, Colin A. Ban, Chunmei Yang, Yongan TI Facile Synthesis of Lithium Sulfide Nanocrystals for Use in Advanced Rechargeable Batteries SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE lithium sulfide; lithium-sulfur batteries; synthesis; hydrogen sulfide; lithium naphthalenide ID SULFUR BATTERIES; ION BATTERIES; CATHODE MATERIALS; ENERGY; LI2S; COMPOSITES; PAPER; NANOPARTICLES; ELECTROLYTE; INTERLAYER AB This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nano crystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1-5 mu m). Electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency. C1 [Li, Xuemin; Yang, Yongan] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA. [Wolden, Colin A.] Colorado Sch Mines, Dept Chem & Biol Engn, 1613 Illinois St, Golden, CO 80401 USA. [Ban, Chunmei] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wolden, CA (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, 1613 Illinois St, Golden, CO 80401 USA. EM cwolden@mines.edu; yonyang@mines.edu RI Yang, Yongan/C-2688-2011 OI Yang, Yongan/0000-0003-1451-2923 FU Colorado School of Mines; National Science Foundation [DMR-1207294]; Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC-36-08GO28308] FX This work is financially supported by the Startup Fund for Y.Y. from the Colorado School of Mines. C.A.W. acknowledges support by the National Science Foundation through Award DMR-1207294. C.B. acknowledges support by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. DE-AC-36-08GO28308 under Exploratory Battery Materials Research program. NR 57 TC 2 Z9 2 U1 9 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC 30 PY 2015 VL 7 IS 51 BP 28444 EP 28451 DI 10.1021/acsami.5b09367 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DC8CT UT WOS:000369448200054 PM 26633238 ER PT J AU Jia, WT Lau, GY Huang, WH Zhang, CQ Tomsia, AP Fu, Q AF Jia, Weitao Lau, Grace Y. Huang, Wenhai Zhang, Changqing Tomsia, Antoni P. Fu, Qiang TI Bioactive Glass for Large Bone Repair SO ADVANCED HEALTHCARE MATERIALS LA English DT Article ID TISSUE-ENGINEERED BONE; MARROW STROMAL CELLS; CONTROLLABLE DEGRADATION; IN-VITRO; SCAFFOLDS; DEFECTS; REGENERATION; BOROSILICATE; SILICATE; SIZE AB There has been an ongoing quest for new biomedical materials for the repair and regeneration of large segmental bone defects caused by disease or trauma. Autologous bone graft (ABG) remains the gold standard for bone repair despite their limited supply and donor-site morbidity. The current tissue engineering approach with synthetically derived bone grafts requires a bioactive ceramic or polymeric scaffold loaded with growth factors for osteoinduction and angiogenesis, and bone marrow stromal cells (BMSCs) for osteogenic properties. Unfortunately, this approach has serious drawbacks: the low mechanical strength of scaffolds, the high cost of growth factors, and a lack of optimal strategies for growth-factor delivery. Here, it is shown that, for the first time, a synthetic material alone can repair large bone defects as efficiently as the gold standard ABG. Through the use of strong and resorbable bioactive glass scaffolds, complete bone healing, and defect bridging can be achieved in a rabbit femur segmental defect model without growth factors or BMSCs. New bone and blood vessel formation, in both inner and peripheral scaffolds, demonstrates the excellent osteoinductive and osteogenic properties of these scaffolds similar as ABG. C1 [Jia, Weitao; Zhang, Changqing] Shanghai Jiao Tong Univ, Affiliated Peoples Hosp 6, Dept Orthopaed Surg, Shanghai 200233, Peoples R China. [Lau, Grace Y.; Tomsia, Antoni P.; Fu, Qiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Huang, Wenhai] Tongji Univ, Dept Mat Sci & Engn, Inst Bioengn & Informat Technol Mat, Shanghai 200092, Peoples R China. RP Huang, WH (reprint author), Tongji Univ, Dept Mat Sci & Engn, Inst Bioengn & Informat Technol Mat, Shanghai 200092, Peoples R China. EM whhuang@mail.tongji.edu.cn; zhang_changqing@hotmail.com; qfu@lbl.gov FU National Institutes of Health/National Institute of Dental and Craniofacial Research (NIH/NIDCR) [1R01DE015633]; Natural Science Foundation of China [51072133, 81572105, 51372170]; Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Institutes of Health/National Institute of Dental and Craniofacial Research (NIH/NIDCR) under Grant No. 1R01DE015633, and the Natural Science Foundation of China under Grant Nos. 51072133, 81572105, and 51372170. The authors acknowledge the support of the dedicated X-ray tomography beamline 8.3.2 at the Advanced Light Source, funded by Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank Sabin Russell for helpful comments and editing this manuscript. NR 33 TC 2 Z9 2 U1 10 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2192-2640 EI 2192-2659 J9 ADV HEALTHC MATER JI Adv. Healthc. Mater. PD DEC 30 PY 2015 VL 4 IS 18 BP 2842 EP 2848 DI 10.1002/adhm.201500447 PG 7 WC Engineering, Biomedical; Nanoscience & Nanotechnology; Materials Science, Biomaterials SC Engineering; Science & Technology - Other Topics; Materials Science GA DA9QF UT WOS:000368143900009 PM 26582584 ER PT J AU Bekenstein, Y Koscher, BA Eaton, SW Yang, PD Alivisatos, AP AF Bekenstein, Yehonadav Koscher, Brent A. Eaton, Samuel W. Yang, Peidong Alivisatos, A. Paul TI Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ANION-EXCHANGE; SOLAR-CELLS; NANOCRYSTALS; LIGHT; EMISSION; CSPBBR3; CSPBX3; SHEETS; BR; CL AB Anisotropic colloidal quasi-two-dimensional nanoplates (NPLs) hold great promise as functional materials due to their combination of low dimensional optoelectronic properties and versatility through colloidal synthesis. Recently, lead-halide perovskites have emerged as important optoelectronic materials with excellent efficiencies in photovoltaic and light-emitting applications. Here we report the synthesis of quantum confined all inorganic cesium lead halide nanoplates in the perovskite crystal structure that are also highly luminescent (PLQY 84%). The controllable self-assembly of nanoplates either into stacked columnar phases or crystallographic-oriented thin-sheet structures is demonstrated. The broad accessible emission range, high native quantum yields, and ease of self-assembly make perovskite NPLs an ideal platform for fundamental optoelectronic studies and the investigation of future devices. C1 [Bekenstein, Yehonadav; Koscher, Brent A.; Eaton, Samuel W.; Yang, Peidong; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yang, Peidong; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Bekenstein, Yehonadav; Koscher, Brent A.; Yang, Peidong; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yang, Peidong; Alivisatos, A. Paul] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM ap_alivisatos@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU Physical Chemistry of Inorganic Nanostructures Program [KC3103]; Office of Basic Energy Sciences of the United States Department of Energy [DE-AC02-05CH11231] FX This work is supported by the Physical Chemistry of Inorganic Nanostructures Program, KC3103, Office of Basic Energy Sciences of the United States Department of Energy, under Contract No. DE-AC02-05CH11231. NR 22 TC 95 Z9 96 U1 101 U2 309 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 30 PY 2015 VL 137 IS 51 BP 16008 EP 16011 DI 10.1021/jacs.5b11199 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DA2OV UT WOS:000367636600008 PM 26669631 ER PT J AU Hickey, DP Schiedler, DA Matanovic, I Doan, PV Atanassov, P Minteer, SD Sigman, MS AF Hickey, David P. Schiedler, David A. Matanovic, Ivana Phuong Vy Doan Atanassov, Plamen Minteer, Shelley D. Sigman, Matthew S. TI Predicting Electrocatalytic Properties: Modeling Structure-Activity Relationships of Nitroxyl Radicals SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MEDIATED ELECTROOXIDATION; SELECTIVE OXIDATION; OXOAMMONIUM CATION; CARBONYL-COMPOUNDS; CYCLIC NITROXIDES; OXOAMINIUM SALTS; PRIMARY ALCOHOLS; SPIN LABELS; TEMPO; CATALYST AB Stable nitroxyl radical-containing compounds, such as 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and its derivatives, are capable of electrocatalytically oxidizing a wide range of alcohols under mild and environmentally friendly conditions. Herein, we examine the structure function relationships that determine the catalytic activity of a diverse range of water-soluble nitroxyl radical compounds. A strong correlation is described between the difference in the electrochemical oxidation potentials of a compound and its electrocatalytic activity. Additionally, we construct a simple computational model that is able to accurately predict the electrochemical potential and catalytic activity of a wide range of nitroxyl radical derivatives. C1 [Hickey, David P.; Schiedler, David A.; Phuong Vy Doan; Minteer, Shelley D.; Sigman, Matthew S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. [Matanovic, Ivana; Atanassov, Plamen] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA. [Matanovic, Ivana] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Minteer, SD (reprint author), Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. EM minteer@chem.utah.edu; sigman@chem.utah.edu RI Minteer, Shelley/C-4751-2014 OI Minteer, Shelley/0000-0002-5788-2249 FU Center for High Performance Computing at the University of Utah; Office of Science of the U.S. Department of Energy [DE-AC52-06NA25396]; Center for Advanced Research Computing at University of New Mexico FX The support and resources from the Center for High Performance Computing at the University of Utah are gratefully acknowledged. Part of the calculations were done using computational resources of Theoretical division, LANL, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396 and Center for Advanced Research Computing at University of New Mexico. The authors would like to thank the Army Research Office MURI (#W911NF1410263). This paper was designated LA-UR-15-29076. NR 53 TC 8 Z9 8 U1 9 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 30 PY 2015 VL 137 IS 51 BP 16179 EP 16186 DI 10.1021/jacs.5b11252 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA DA2OV UT WOS:000367636600031 PM 26635089 ER PT J AU Hu, ZC Lustig, WP Zhang, JM Zheng, C Wang, H Teat, SJ Gong, QH Rudd, ND Li, J AF Hu, Zhichao Lustig, William P. Zhang, Jingming Zheng, Chong Wang, Hao Teat, Simon J. Gong, Qihan Rudd, Nathan D. Li, Jing TI Effective Detection of Mycotoxins by a Highly Luminescent Metal-Organic Framework SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TOPOLOGICAL ANALYSIS; LINKERS AB We designed and synthesized a new luminescent metal organic framework (LMOF). LMOF-241 is highly porous and emits strong blue light with high efficiency. We demonstrate for the first time that very fast and extremely sensitive optical detection can be achieved, making use of the fluorescence quenching of an LMOF material. The compound is responsive to Aflatoxin B-1 at parts per billion level, which makes it the best performing luminescence-based chemical sensor to date. We studied the electronic properties of LMOF-241 and selected mycotoxins, as well as the extent of mycotoxin-LMOF interactions, employing theoretical methods. Possible electron and energy transfer mechanisms are discussed. C1 [Hu, Zhichao; Lustig, William P.; Zhang, Jingming; Wang, Hao; Gong, Qihan; Rudd, Nathan D.; Li, Jing] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. [Zheng, Chong] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Li, J (reprint author), Rutgers State Univ, Dept Chem & Chem Biol, 610 Taylor Rd, Piscataway, NJ 08854 USA. EM jingli@rutgers.edu FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-FG02-08ER-46491]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The Rutgers team is grateful for the financial support from the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, of the U.S. Department of Energy through Grant No. DE-FG02-08ER-46491. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Z.H. would like to thank Prof. Davide M. Proserpio for his insightful analysis of the structure topology. W.P.L. would like to thank Ben Deibert for his invaluable assistance with the structure images, as well as general feedback and discussion. NR 32 TC 45 Z9 45 U1 20 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 30 PY 2015 VL 137 IS 51 BP 16209 EP 16215 DI 10.1021/jacs.5b10308 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA DA2OV UT WOS:000367636600035 PM 26654703 ER PT J AU Kemper, AF Sentef, MA Moritz, B Freericks, JK Devereaux, TP AF Kemper, A. F. Sentef, M. A. Moritz, B. Freericks, J. K. Devereaux, T. P. TI Direct observation of Higgs mode oscillations in the pump-probe photoemission spectra of electron-phonon mediated superconductors SO PHYSICAL REVIEW B LA English DT Article ID CHARGE-DENSITY WAVES; CUPRATE SUPERCONDUCTOR; TRANSITION; DYNAMICS; GAP AB Using the nonequilibrium Keldysh formalism, we solve the equations of motion for electron-phonon superconductivity, including an ultrafast pump field. We present results for time-dependent photoemission spectra out of equilibrium which probe the dynamics of the superconducting gap edge. The partial melting of the order by the pump field leads to oscillations at twice the melted gap frequency, a hallmark of the Higgs or amplitude mode. Thus the Higgs mode can be directly excited through the nonlinear effects of an electromagnetic field and detected without requiring any additional symmetry breaking. C1 [Kemper, A. F.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Kemper, A. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sentef, M. A.] Univ Bonn, HISKP, D-53115 Bonn, Germany. [Moritz, B.; Devereaux, T. P.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Moritz, B.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Freericks, J. K.] Georgetown Univ, Dept Phys, Washington, DC 20057 USA. [Devereaux, T. P.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. RP Kemper, AF (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM akemper@ncsu.edu RI Moritz, Brian/D-7505-2015; Kemper, Alexander/F-8243-2016; OI Moritz, Brian/0000-0002-3747-8484; Kemper, Alexander/0000-0002-5426-5181; Freericks, James/0000-0002-6232-9165 FU Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering [DE-AC02-76SF00515, DE-FG02-08ER46542, DE-SC0007091]; McDevitt bequest at Georgetown; U.S. Department of Energy, Office of Science [DE-AC02-05CH11231] FX We would like to thank P. Kirchmann for helpful discussions. A.F.K. was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. B.M. and T.P.D. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515. J.K.F. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering, under Contract No. DE-FG02-08ER46542 and also by the McDevitt bequest at Georgetown. The collaboration was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering, under Contract No. DE-SC0007091. Computational resources were provided by the National Energy Research Scientific Computing Center supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-05CH11231. NR 39 TC 12 Z9 12 U1 3 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 30 PY 2015 VL 92 IS 22 AR 224517 DI 10.1103/PhysRevB.92.224517 PG 7 WC Physics, Condensed Matter SC Physics GA CZ8VC UT WOS:000367376200003 ER PT J AU Kyung, W Kim, Y Han, G Leem, C Kim, C Koh, Y Kim, B Kim, Y Kim, JS Kim, KS Rotenberg, E Denlinger, JD Kim, C AF Kyung, Wonshik Kim, Yeongkwan Han, Garam Leem, Choonshik Kim, Chul Koh, Yoonyoung Kim, Beomyoung Kim, Youngwook Kim, Jun Sung Kim, Keun Su Rotenberg, Eli Denlinger, Jonathan D. Kim, Changyoung TI Interlayer-state-driven superconductivity in CaC6 studied by angle-resolved photoemission spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID GRAPHENE SHEETS; C6CA AB We performed angle-resolved photoemission experiments on CaC6 and measured k(z)-dependent electronic structures to investigate the interlayer states. The results reveal a spherical interlayer Fermi surface centered at the Gamma point. We also find that the graphene-driven band possesses a weak k(z) dispersion. The overall electronic structure shows a peculiar single-graphene-layer periodicity in the k(z) direction although the CaC6 unit cell is supposed to contain three graphene layers. This suggests that the c-axis ordering of Ca has little effect on the electronic structure of CaC6. In addition to CaC6, we also studied the a low-temperature superconductor BaC6. For BaC6, the graphene-band Dirac-point energy is smaller than that of CaC6. Based on data from CaC6 and BaC6, we rule out the C-xy phonon mode as the origin of the superconductivity in CaC6, which strongly suggests interlayer-state-driven superconductivity. C1 [Kyung, Wonshik; Kim, Yeongkwan; Han, Garam; Leem, Choonshik; Kim, Chul; Koh, Yoonyoung; Kim, Beomyoung; Kim, Changyoung] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. [Kim, Yeongkwan; Kim, Keun Su; Rotenberg, Eli; Denlinger, Jonathan D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kim, Youngwook; Kim, Jun Sung; Kim, Keun Su] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Kim, Keun Su] Inst for Basic Sci Korea, Ctr Artificial Low Dimens Elect Syst, Pohang 790784, South Korea. RP Kyung, W (reprint author), Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. EM changyoung@snu.ac.kr RI Kim, Jun Sung/G-8861-2012; Kim, Youngwook/J-7101-2016; Kim, Yeong Kwan/L-8207-2016; Rotenberg, Eli/B-3700-2009 OI Kim, Jun Sung/0000-0002-1413-7265; Rotenberg, Eli/0000-0002-3979-8844 FU National Research Foundation of Korea (NRF) - Ministry of Science, ICT (Information and Communication Technologies) and Future Planning [2011-00329]; Converging Research Center Program through the Ministry of Science, ICT and Future Planning, Korea [2014M3C1A8053752]; Mid-Career Researcher Program [2012-013838]; SRC Center for Topological Matter [2011-0030046] FX We are grateful to J. Yu for fruitful discussions. This research was supported by the Global Research Laboratory (2011-00329) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (Information and Communication Technologies) and Future Planning and the Converging Research Center Program through the Ministry of Science, ICT and Future Planning, Korea (2014M3C1A8053752), the Mid-Career Researcher Program (Grant No. 2012-013838) and SRC Center for Topological Matter (Grant No. 2011-0030046). NR 30 TC 1 Z9 1 U1 7 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 30 PY 2015 VL 92 IS 22 AR 224516 DI 10.1103/PhysRevB.92.224516 PG 5 WC Physics, Condensed Matter SC Physics GA CZ8VC UT WOS:000367376200002 ER PT J AU Coloma, P Dobrescu, BA Lopez-Pavon, J AF Coloma, Pilar Dobrescu, Bogdan A. Lopez-Pavon, Jacobo TI Right-handed neutrinos and the 2 TeV W ' boson SO PHYSICAL REVIEW D LA English DT Article ID HEAVY NEUTRINOS; FEYNMAN-RULES; COLLISIONS; SEARCH; PP AB The CMS e(+)e(-) JJ events of invariant mass near 2 TeV are consistent with a W' boson decaying into an electron and a right-handed neutrino whose TeV-scale mass is of the Dirac type. We show that the Dirac partner of the right-handed electron neutrino can be the right-handed tau neutrino. A prediction of this model is that the sum of the tau(+)e(-) JJ and tau(-)e(-) JJ signal cross sections equals twice that for e(+)e(-) JJ. The Standard Model neutrinos acquire Majorana masses and mixings compatible with neutrino oscillation data. C1 [Coloma, Pilar; Dobrescu, Bogdan A.] Fermilab Natl Accelerator Lab, Theoret Phys Dept, Batavia, IL 60510 USA. [Lopez-Pavon, Jacobo] SISSA, I-34136 Trieste, Italy. [Lopez-Pavon, Jacobo] Ist Nazl Fis Nucl, Sez Trieste, I-34136 Trieste, Italy. [Lopez-Pavon, Jacobo] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. RP Coloma, P (reprint author), Fermilab Natl Accelerator Lab, Theoret Phys Dept, Batavia, IL 60510 USA. RI Lopez Pavon, Jacobo/J-7090-2012; OI Lopez Pavon, Jacobo/0000-0002-9554-5075; Coloma, Pilar/0000-0002-1164-9900 FU European Union [PITN-GA-2011-289442-INVISIBLES]; Fermi Research Alliance [DE-AC02-07CH11359]; U.S. Department of Energy; MIUR [2012CPPYP7]; INFN program on Theoretical Astroparticle Physics (TASP) FX We would like to thank Frank Deppisch, Janusz Gluza, Tomasz Jelinski, Zhen Liu, and especially Patrick Fox for stimulating communications. J. L. P. would like to thank Fermilab for hospitality and partial support during the completion of this work. J. L. P. and P. C. acknowledge financial support by the European Union through the ITN INVISIBLES (Marie Curie Actions, PITN-GA-2011-289442-INVISIBLES). P. C. would like to thank the Mainz Institute for Theoretical Physics for hospitality and partial support during the completion of this work. Fermilab is operated by the Fermi Research Alliance under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. J. L. P. was partially supported by Grant No. 2012CPPYP7 (Theoretical Astroparticle Physics) under the program PRIN 2012 funded by MIUR and the INFN program on Theoretical Astroparticle Physics (TASP). NR 33 TC 18 Z9 18 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 30 PY 2015 VL 92 IS 11 AR 115023 DI 10.1103/PhysRevD.92.115023 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ8WX UT WOS:000367380900006 ER PT J AU Noronha, J Denicol, GS AF Noronha, Jorge Denicol, Gabriel S. TI Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in AdS(2) circle times S-2 SO PHYSICAL REVIEW D LA English DT Article AB In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime AdS(2) circle times S-2. We further derive explicit analytic expressions for the momentum dependence of the single-particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density does not match the equilibrium form. The nonequilibrium contribution to the entropy density is shown to be due to higher-order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Thus, in this system the slowly moving hydrodynamic degrees of freedom can exhibit true perfect fluidity while being totally decoupled from the fast moving, nonhydrodynamical microscopic degrees of freedom that lead to entropy production. C1 [Noronha, Jorge] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Noronha, Jorge] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Denicol, Gabriel S.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Denicol, Gabriel S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Noronha, J (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. RI Silveira Denicol, Gabriel/L-5048-2016; Noronha, Jorge/M-8800-2014; Noronha, Jorge/E-5783-2013 FU DOE [DE-SC0012704]; Natural Sciences and Engineering Research Council of Canada; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) FX The authors thank Y. Hatta, B. Xiao, and M. Martinez for collaboration in the early stage of this work. G. S. Denicol is currently supported under DOE Contract No. DE-SC0012704 and acknowledges the previous support of a Banting fellowship provided by the Natural Sciences and Engineering Research Council of Canada. J. N. thanks Columbia University's Physics Department for the hospitality and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) for financial support. NR 32 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 30 PY 2015 VL 92 IS 11 AR 114032 DI 10.1103/PhysRevD.92.114032 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ8WX UT WOS:000367380900001 ER PT J AU Xu, SS Chen, C Cloet, IC Roberts, CD Segovia, J Zong, HS AF Xu, Shu-Sheng Chen, Chen Cloeat, Ian C. Roberts, Craig D. Segovia, Jorge Zong, Hong-Shi TI Contact-interaction Faddeev equation and, inter alia, proton tensor charges SO PHYSICAL REVIEW D LA English DT Article ID QUARK-DIQUARK MODEL; DYSON-SCHWINGER EQUATIONS; ELECTRIC-DIPOLE MOMENTS; QUANTUM CHROMODYNAMICS; PERTURBATION-THEORY; SPIN STRUCTURE; NJL MODEL; SYMMETRY-BREAKING; BARYON STRUCTURE; HADRON PHYSICS AB A confining, symmetry-preserving, Dyson-Schwinger equation treatment of a vector circle times vector contact interaction is used to formulate Faddeev equations for the nucleon and Delta-baryon in which the kernel involves dynamical dressed-quark exchange and whose solutions therefore provide momentum-dependent Faddeev amplitudes. These solutions are compared with those obtained in the static approximation and with a QCD-kindred formulation of the Faddeev kernel. They are also used to compute a range of nucleon properties, amongst them: the proton's sigma-term; the large Bjorken-x values of separate ratios of unpolarized and longitudinally polarized valence u- and d-quark parton distribution functions; and the proton's tensor charges, which enable one to directly determine the effect of dressed-quark electric dipole moments (EDMs) on neutron and proton EDMs. C1 [Xu, Shu-Sheng; Zong, Hong-Shi] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Chen, Chen] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Chen, Chen] Univ Sci & Technol China, Inst Theoret Phys, Hefei 230026, Anhui, Peoples R China. [Chen, Chen] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Cloeat, Ian C.; Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Segovia, Jorge] Univ Salamanca, IUFFyM, E-37008 Salamanca, Spain. RP Roberts, CD (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM cdroberts@anl.gov; zonghs@nju.edu.cn RI Segovia, Jorge/C-7202-2015 OI Segovia, Jorge/0000-0001-5838-7103 FU postdoctoral IUFFyM contract at the Universidad de Salamanca; National Natural Science Foundation of China [11275097, 11475085, 11535005]; Fundamental Research Funds for the Central Universities Programme of China [WK2030040050]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357] FX We are grateful for insightful comments and suggestions from M. Pitschmann, S.-X. Qin and S.-L. Wan. J. Segovia acknowledges financial support from a postdoctoral IUFFyM contract at the Universidad de Salamanca. Work also supported by: the National Natural Science Foundation of China (Grants No. 11275097, No. 11475085 and No. 11535005); the Fundamental Research Funds for the Central Universities Programme of China (Grant No. WK2030040050); and U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 117 TC 2 Z9 2 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC 30 PY 2015 VL 92 IS 11 AR 114034 DI 10.1103/PhysRevD.92.114034 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ8WX UT WOS:000367380900003 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, SP Allbrooke, BMM Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Banas, E Banerjee, S Bannoura, AAE Bansil, HS Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, M Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bieniek, SP Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bruscino, N Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Cardillo, F Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapman, JD Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Cirotto, F Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, PJ Clarke, RN Cleland, W Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Colasurdo, L Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N De Jong, P De la Torre, H De Lorenzi, F De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Pietra, M Della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Ciaccio, A Di Ciaccio, L Domenico, A Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Fitzgerald, EA Flaschel, N Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D French, ST Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goujdami, D Goussiou, AG Govender, N Gozani, E Grabas, HMX Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gray, HM Graziani, E Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Jia, H Jia, J Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-Zada, F Khandanyan, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Krueger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Le Dortz, O Le Guirriec, E Le Menedeu, E LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, S Li, X Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JM Mann, A Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morton, A Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Relich, M Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Rijssenbeek, M Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Sinervo, P Sinev, NB Sioli, M Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Spearman, WR Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T St Denis, RD Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Truong, L Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Aben, R. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Piqueras, D. Alvarez Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansil, H. S. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bieniek, S. P. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bruscino, N. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Cardillo, F. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapman, J. D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Cirotto, F. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, P. J. Clarke, R. N. Cleland, W. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Colasurdo, L. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flaschel, N. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. French, S. T. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisler, M. P. Gemme, C. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Jia, H. Jia, J. Jiang, Y. Jiggins, S. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarro, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. y Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, X. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. Manjarres Mann, A. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morton, A. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Relich, M. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. gg Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Spearman, W. R. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. kk Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Truong, L. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. Nedden, M. Zur Zurzolo, G. Zwalinski, L. CA Atlas Collaboration TI Determination of the Ratio of b-Quark Fragmentation Fractions f(s)/f(d) in pp Collisions at root s=7 TeV with the ATLAS Detector SO PHYSICAL REVIEW LETTERS LA English DT Article AB With an integrated luminosity of 2.47 fb(-1) recorded by the ATLAS experiment at the LHC, the exclusive decays B-s(0) -> J/psi phi and B-d(0) -> J/psi K*(0) of B mesons produced in pp collisions at root s = 7 TeV are used to determine the ratio of fragmentation fractions f(s)/f(d). From the observed B-s(0) -> J/psi phi and B-d(0) -> J/psi K*(0) yields, the quantity (f(s)/f(d))[B(B-s(0) -> J/psi phi)/B(B-d(0) -> J/psi K*(0) )] is measured to be 0.199 +/- 0.004(stat) +/- 0.008(syst). Using a recent theory prediction for [B(B-s(0) -> J/psi phi)/B(B-d(0) -> J/psi K*(0))] yields (f(s)/f(d)) = 0.240 +/- 0.004(stat) +/- 0.010(syst) +/- 0.017(th). This result is based on a new approach that provides a significant improvement of the world average. C1 [Corriveau, F.; Jackson, P.; Lee, L.; McPherson, R. A.; Petridis, A.; Robertson, S. H.; Sobie, R.; Soni, N.; Teuscher, R. J.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Simard, O.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Simard, O.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mont Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, GR-15773 Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bozic, I.; Dimitrievska, A.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin dit; Rosendahl, P. L.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Sperlich, D.; Stamm, S.; Nedden, M. Zur] Humboldt Univ, Dept Phys, D-10099 Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bella, L. Aperio; Baca, M. J.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Biondi, S.; De Castro, S.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; La Rosa Navarro, J. L.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Gadatsch, S.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sforza, F.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; White, R.] Univ Tecn Feder Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B. y; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Liu, B.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Giraud, P. F.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, I-00044 Frascati, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 2, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Sammel, D.; Schillo, C.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Ancu, L. S.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Calace, N.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Paolozzi, L.; Picazio, A.; Ristic, B.; Schramm, S.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, GE-380086 Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany. [Bates, R. L.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Lisovyi, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Castillo, L. R. Flores; Salvucci, A.] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R.; Jussel, P.; Kneringer, E.; Lukas, W.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Nucl Res Inst, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Fuster, J.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Allport, P. P.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bevan, A. J.; Bona, M.; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Labe Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Schwanenberger, C.; Schweiger, H.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J. kk; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Victoria, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Guan, L.; Hu, X.; Levin, D.; Liu, H.; Long, J. D.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Carminati, L.; Resconi, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst Phys, Max Planck Inst Phys, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Vuillermet, R.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Bousson, N.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Abreu, R.; Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] CNRS IN2P3, Orsay, France. [Endo, M.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickering, M. A.; Ryder, N. C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Fletcher, R. R. M.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Reichert, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Cadi Ayyad, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay Commissariat Energie Atom & Energie Al, DSM IRFU Inst Rech Lois Fdan Univers, Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; La Rosa, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.; Meehan, S.; Yacoob, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Govender, N.; Lee, C. A.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Hsu, C.; Kar, D.; March, L.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Richter, S.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Richter, S.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L. gg; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Gozani, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Pettersson, N. E.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Jovicevic, J.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Frate, M.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Neubauer, M. S.; Rybar, M.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Gradin, P. O. J.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Pearce, J.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Jia, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Beermann, T. A.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Thomsen, L. A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.] CNRS IN2P3, Marseille, France. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. IPP, Montreal, PQ, Canada. [Davies, E.] Particle Phys Dept, Rutherford Appleton Lab, Didcot, Oxon, England. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubua, J.] GTU, Tbilisi, Rep of Georgia. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 115, Taiwan. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J. kk] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Gladilin, Leonid/B-5226-2011; Doyle, Anthony/C-5889-2009; Livan, Michele/D-7531-2012; Buttar, Craig/D-3706-2011; Warburton, Andreas/N-8028-2013; Carvalho, Joao/M-4060-2013; Mitsou, Vasiliki/D-1967-2009; Tripiana, Martin/H-3404-2015; Smirnova, Oxana/A-4401-2013; Tikhomirov, Vladimir/M-6194-2015; Savarala, Hari Krishna/A-3516-2015; White, Ryan/E-2979-2015; Di Domenico, Antonio/G-6301-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Boyko, Igor/J-3659-2013; Vranjes Milosavljevic, Marija/F-9847-2016; Chekulaev, Sergey/O-1145-2015; Zhukov, Konstantin/M-6027-2015; SULIN, VLADIMIR/N-2793-2015; Snesarev, Andrey/H-5090-2013; Nechaeva, Polina/N-1148-2015; Mashinistov, Ruslan/M-8356-2015; Vykydal, Zdenek/H-6426-2016; Fedin, Oleg/H-6753-2016; Brooks, William/C-8636-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Nevski, Pavel/M-6292-2015; Villa, Mauro/C-9883-2009; La Rosa Navarro, Jose Luis/K-4221-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Staroba, Pavel/G-8850-2014; Gavrilenko, Igor/M-8260-2015; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; la rotonda, laura/B-4028-2016; OI Gladilin, Leonid/0000-0001-9422-8636; Doyle, Anthony/0000-0001-6322-6195; Livan, Michele/0000-0002-5877-0062; Warburton, Andreas/0000-0002-2298-7315; Carvalho, Joao/0000-0002-3015-7821; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Tikhomirov, Vladimir/0000-0002-9634-0581; Savarala, Hari Krishna/0000-0001-6593-4849; White, Ryan/0000-0003-3589-5900; Di Domenico, Antonio/0000-0001-8078-2759; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Boyko, Igor/0000-0002-3355-4662; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Mashinistov, Ruslan/0000-0001-7925-4676; Vykydal, Zdenek/0000-0003-2329-0672; Brooks, William/0000-0001-6161-3570; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Villa, Mauro/0000-0002-9181-8048; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Gauzzi, Paolo/0000-0003-4841-5822; Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Sannino, Mario/0000-0001-7700-8383; la rotonda, laura/0000-0002-6780-5829; Pina, Joao /0000-0001-8959-5044; Veneziano, Stefano/0000-0002-2598-2659; Lacasta, Carlos/0000-0002-2623-6252; Belanger-Champagne, Camille/0000-0003-2368-2617 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, USA; NSF, USA; Canton of Geneva, Switzerland FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), and in the Tier-2 facilities worldwide. NR 20 TC 1 Z9 1 U1 31 U2 130 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 30 PY 2015 VL 115 IS 26 AR 262001 DI 10.1103/PhysRevLett.115.262001 PG 18 WC Physics, Multidisciplinary SC Physics GA CZ8YO UT WOS:000367385200005 PM 26764987 ER PT J AU Mamun, MA Zhang, K Baumgart, H Elmustafa, AA AF Mamun, M. A. Zhang, K. Baumgart, H. Elmustafa, A. A. TI Evaluation of the nanomechanical properties of vanadium and native oxide vanadium thin films prepared by RF magnetron sputtering SO APPLIED SURFACE SCIENCE LA English DT Article DE Vanadium thin films; RF magnetron sputtering; FE-SEM; XRD; AFM; Nanoindentation; Hardness ID MECHANICAL-PROPERTIES; DEPOSITION; NANOINDENTATION; INDENTATION; COMPRESSION AB Polycrystalline vanadium thin films of 50, 75, and 100 nm thickness were deposited by magnetron sputtering of a vanadium metal target of 2 inch diameter with 99.9% purity on native oxide covered Si substrates. One set of the fabricated samples were kept in moisture free environment and the other set was exposed to ambient air at room temperature for a long period of time that resulted in formation of native oxide prior to testing. The crystal structure and phase purity of the vanadium and the oxidized vanadium thin films were characterized by X-ray diffraction (XRD). The XRD results yield a preferential (1 1 0), and (2 0 0) orientation of the polycrystalline V films and (0 0 4) vanadium oxide (V3O7). The vanadium films thickness were verified using field emission scanning electron microscopy and the films surface morphologies were inspected using atomic force microscopy (AFM). AFM images reveal surface roughness was observed to increase with increasing film thickness and also subsequent to oxidation at room temperature. The nanomechanical properties were measured by nanoindentation to evaluate the modulus and hardness of the vanadium and the oxidized vanadium thin films. The elastic modulus of the vanadium and the oxidized vanadium films was estimated as 150 GPa at 30% film thickness and the elastic modulus of the bulk vanadium target is estimated as 135 GPa. The measured hardness of the vanadium films at 30% film thickness varies between 9 and 14 GPa for the 100 and 50 nm films, respectively, exhibiting size effects, where the hardness increases as the film thickness decreases. The hardness of the oxidized films depicted less variation and is reported as similar to 10 GPa at 30% film thickness for the three oxides. The scanning electron microscopy (SEM) imaging depicted a gradual progression of pile up as the film thickness increased from 75 to 100 nm. It is noticed that as the film thickness increases the films experience softening effect due to grain coarsening and the hardness values depict the hardness of the Si substrate at deep indents. (C) 2015 Elsevier B.V. All rights reserved. C1 [Mamun, M. A.; Elmustafa, A. A.] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA. [Zhang, K.; Baumgart, H.] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA. [Mamun, M. A.; Zhang, K.; Baumgart, H.; Elmustafa, A. A.] Thomas Jefferson Natl Accelerator Facil, Appl Res Ctr, Newport News, VA 23606 USA. RP Elmustafa, AA (reprint author), Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA. EM aelmusta@odu.edu NR 21 TC 1 Z9 1 U1 6 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD DEC 30 PY 2015 VL 359 BP 30 EP 35 DI 10.1016/j.apsusc.2015.10.065 PG 6 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA CY2EC UT WOS:000366220600005 ER PT J AU Gao, J Wang, W Rondinone, AJ He, F Liang, LY AF Gao, Jie Wang, Wei Rondinone, Adam J. He, Feng Liang, Liyuan TI Degradation of Trichloroethene with a Novel Ball Milled Fe-C Nanocomposite SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Activated carbon; ball mill; dechlorination; groundwater remediation; zero-valent iron nanoparticles ID ZERO-VALENT IRON; COLLOIDAL ACTIVATED CARBON; SITU GROUNDWATER TREATMENT; CHLORINATED HYDROCARBONS; ENVIRONMENTAL REMEDIATION; CARBOXYMETHYL CELLULOSE; PALLADIZED IRON; NANOPARTICLES; DECHLORINATION; PARTICLES AB Nanoscale zero-valent iron (NZVI) is effective in reductively degrading dense non-aqueous phase liquids (DNAPLs), such as trichloroethene (TCE), in groundwater (i.e., dechlorination) although the NZVI technology itself still suffers from high material costs and inability to target hydrophobic contaminants in source zones. To address these problems, we developed a novel, inexpensive iron-carbon (Fe-C) nanocomposite material by simultaneously milling micron-size iron and activated carbon powder. Microscopic and X-ray diffraction (XRD) characterization of the composite material revealed that nanoparticles of Fe were dispersed in activated carbon and a new iron carbide phase was formed. Bench-scale studies showed that this material instantaneously sorbed >90% of TCE from aqueous solutions and subsequently decomposed TCE into non-chlorinated products. Compared to milled Fe, Fe-C nanocomposite dechlorinated TCE at a slightly slower rate and favored the production of ethene over other TCE degradation products such as C-3-C-6 compounds. When placed in hexane-water mixture, the Fe-C nanocomposite materials are preferentially partitioned into the organic phase, indicating the ability of the composite materials to target DNAPL during remediation. (C) 2015 Elsevier B.V. All rights reserved. C1 [Gao, Jie; Wang, Wei; Liang, Liyuan] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Rondinone, Adam J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [He, Feng] Zhejiang Univ Technol, Coll Biol & Environm Engn, Hangzhou 310032, Zhejiang, Peoples R China. RP He, F (reprint author), Zhejiang Univ Technol, Coll Biol & Environm Engn, Hangzhou 310032, Zhejiang, Peoples R China. EM fenghe@zjut.edu.cn RI Rondinone, Adam/F-6489-2013; He, Feng/B-9444-2012; Wang, Wei/B-5924-2012; Liang, Liyuan/O-7213-2014 OI Rondinone, Adam/0000-0003-0020-4612; He, Feng/0000-0001-5702-4511; Liang, Liyuan/0000-0003-1338-0324 FU Laboratory Directed R&D fund from Oak Ridge National Laboratory (ORNL); National Natural Science Foundation of China [51308312]; US Department of Energy [DE-AC05-000R22725] FX This research was supported by the Laboratory Directed R&D fund from Oak Ridge National Laboratory (ORNL) and by the National Natural Science Foundation of China (No. 51308312). ORNL is managed by UT-Battelle LLC for the US Department of Energy under Contract DE-AC05-000R22725. NR 50 TC 2 Z9 2 U1 16 U2 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 EI 1873-3336 J9 J HAZARD MATER JI J. Hazard. Mater. PD DEC 30 PY 2015 VL 300 BP 443 EP 450 DI 10.1016/j.jhazmat.2015.07.038 PG 8 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CY2FH UT WOS:000366223700051 PM 26223018 ER PT J AU Ledochowitsch, P Yazdan-Shahmorad, A Bouchard, KE Diaz-Botia, C Hanson, TL He, JW Seybold, BA Olivero, E Phillips, EAK Blanche, TJ Schreiner, CE Hasenstaub, A Chang, EF Sabes, PN Maharbiz, MM AF Ledochowitsch, P. Yazdan-Shahmorad, A. Bouchard, K. E. Diaz-Botia, C. Hanson, T. L. He, J. -W. Seybold, B. A. Olivero, E. Phillips, E. A. K. Blanche, T. J. Schreiner, C. E. Hasenstaub, A. Chang, E. F. Sabes, P. N. Maharbiz, M. M. TI Strategies for optical control and simultaneous electrical readout of extended cortical circuits SO JOURNAL OF NEUROSCIENCE METHODS LA English DT Article DE ECoG; Optogenetics; Cranial window; Epidural; Parvalbumin; Auditory; Rat; Mouse; NHP ID MU-ECOG ARRAY; AUDITORY-CORTEX; HIGH-DENSITY; BRAIN; OPTOGENETICS; MICROSTIMULATION; STIMULATION; TRANSPARENT; ELECTRODES; INTERFACE AB Background: To dissect the intricate workings of neural circuits, it is essential to gain precise control over subsets of neurons while retaining the ability to monitor larger-scale circuit dynamics. This requires the ability to both evoke and record neural activity simultaneously with high spatial and temporal resolution. New Method: In this paper we present approaches that address this need by combining micro-electrocorticography (mu ECoG) with optogenetics in ways that avoid photovoltaic artifacts. Results: We demonstrate that variations of this approach are broadly applicable across three commonly studied mammalian species - mouse, rat, and macaque monkey - and that the recorded mu ECoG signal shows complex spectral and spatio-temporal patterns in response to optical stimulation. Comparison with existing methods: While optogenetics provides the ability to excite or inhibit neural sub-populations in a targeted fashion, large-scale recording of resulting neural activity remains challenging. Recent advances in optical physiology, such as genetically encoded Ca2+ indicators, are promising but currently do not allow simultaneous recordings from extended cortical areas due to limitations in optical imaging hardware. Conclusions: We demonstrate techniques for the large-scale simultaneous interrogation of cortical circuits in three commonly used mammalian species. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ledochowitsch, P.; Diaz-Botia, C.] UC Berkeley UCSF Grad Program Bioengn, Berkeley, CA 94720 USA. [Yazdan-Shahmorad, A.; Bouchard, K. E.; Hanson, T. L.; He, J. -W.; Seybold, B. A.; Phillips, E. A. K.; Schreiner, C. E.; Hasenstaub, A.; Chang, E. F.; Sabes, P. N.] UCSF Ctr Integrat Neurosci, San Francisco, CA USA. [Bouchard, K. E.] LBNL, Div Life Sci, Berkeley, CA USA. [Bouchard, K. E.] LBNL, Computat Res Div, Berkeley, CA USA. [Olivero, E.; Maharbiz, M. M.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Blanche, T. J.] Univ Calif Berkeley, Redwood Ctr Theoret Neurosci, Berkeley, CA 94720 USA. [Ledochowitsch, P.; Yazdan-Shahmorad, A.; Bouchard, K. E.; Diaz-Botia, C.; Hanson, T. L.; He, J. -W.; Seybold, B. A.; Schreiner, C. E.; Chang, E. F.; Sabes, P. N.; Maharbiz, M. M.] Ctr Neural Engn & Prostheses, Berkeley, CA USA. RP Ledochowitsch, P (reprint author), UC Berkeley UCSF Grad Program Bioengn, Berkeley, CA 94720 USA. EM peterl@alleninstitute.org OI Yazdan-Shahmorad, Azadeh/0000-0001-5212-509X FU American Heart Association [14POST18170014]; Defense Advanced Research Projects Agency (DARPA) Reorganization and Plasticity to Accelerate Injury Recovery (REPAIR) [N66001-10-C-2010]; UC Berkeley-UCSF Center for Neural Engineering and Prosthetics (CNEP); NIH [AH: R01-DC014101, CES: R01-DC002260] FX This work was supported by American Heart Association postdoctoral fellowship (AY: award #14POST18170014), Defense Advanced Research Projects Agency (DARPA) Reorganization and Plasticity to Accelerate Injury Recovery (REPAIR; N66001-10-C-2010), and the UC Berkeley-UCSF Center for Neural Engineering and Prosthetics (CNEP) as well as by several grants from the NIH (AH: R01-DC014101; CES: R01-DC002260). We thank Quynh Anh Nguyen, Jon Levy and Alexander Jackson for testing the virus in cell culture, Jonathan Nassi and John Reynolds from the Salk Institute, John Bringas, Adrian Kells and Krystof Bankiewicz from UCSF for technical advice, Karen J. MacLeod, Juliana Milani and Blakely Andrews for their help with animal care, and Joseph O'Doherty and Josh Chartier for their help with the primate experiments. NR 54 TC 2 Z9 2 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-0270 EI 1872-678X J9 J NEUROSCI METH JI J. Neurosci. Methods PD DEC 30 PY 2015 VL 256 BP 220 EP 231 DI 10.1016/j.jneumeth.2015.07.028 PG 12 WC Biochemical Research Methods; Neurosciences SC Biochemistry & Molecular Biology; Neurosciences & Neurology GA CY7VW UT WOS:000366618400023 PM 26296286 ER PT J AU Vishwakarma, V Waghela, C Wei, Z Prasher, R Nagpure, SC Li, JL Liu, FQ Daniel, C Jain, A AF Vishwakarma, Vivek Waghela, Chirag Wei, Zi Prasher, Ravi Nagpure, Shrikant C. Li, Jianlin Liu, Fuqiang Daniel, Claus Jain, Ankur TI Heat transfer enhancement in a lithium-ion cell through improved material-level thermal transport SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-ion cell; Thermal management; Heat transfer; Interfacial thermal conductance; Thermal runaway ID THERMOPHYSICAL PROPERTIES; POLYMER SURFACES; BATTERIES; ADHESION; CONDUCTIVITY; MODEL AB While Li-ion cells offer excellent electrochemical performance for several applications including electric vehicles, they also exhibit poor thermal transport characteristics, resulting in reduced performance, overheating and thermal runaway. Inadequate heat removal from Li-ion cells originates from poor thermal conductivity within the cell. This paper identifies the rate-limiting material-level process that dominates overall thermal conduction in a Li-ion cell. Results indicate that thermal characteristics of a Liion cell are largely dominated by heat transfer across the cathode-separator interface rather than heat transfer through the materials themselves. This interfacial thermal resistance contributes around 88% of total thermal resistance in the cell. Measured value of interfacial resistance is close to that obtained from theoretical models that account for weak adhesion and large acoustic mismatch between cathode and separator. Further, to address this problem, an amine-based chemical bridging of the interface is carried out. This is shown to result in in four-times lower interfacial thermal resistance without deterioration in electrochemical performance, thereby increasing effective thermal conductivity by three-fold. This improvement is expected to reduce peak temperature rise during operation by 60%. By identifying and addressing the material-level root cause of poor thermal transport in Li-ion cells, this work may contributes towards improved thermal performance of Li-ion cells. (C) 2015 Elsevier B.V. All rights reserved. C1 [Vishwakarma, Vivek; Waghela, Chirag; Jain, Ankur] Univ Texas Arlington, Dept Mech & Aerosp Engn, Arlington, TX 75019 USA. [Wei, Zi; Liu, Fuqiang] Univ Texas Arlington, Dept Mat Sci & Engn, Arlington, TX 75019 USA. [Prasher, Ravi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. [Nagpure, Shrikant C.; Li, Jianlin; Daniel, Claus] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Daniel, Claus] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. RP Jain, A (reprint author), 500 W First St,Rm 211, Arlington, TX 76019 USA. EM jaina@uta.edu RI Daniel, Claus/A-2060-2008; Li, Jianlin/D-3476-2011 OI Daniel, Claus/0000-0002-0571-6054; Li, Jianlin/0000-0002-8710-9847 FU Provost's Office and Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington; National Science Foundation [ECCS-1125588]; U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; Office of Energy Efficiency and Renewable Energy's Vehicle Technologies Office FX A.J. and V.V. would like to acknowledge support from Provost's Office and Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington. F.L. would like to acknowledge support from National Science Foundation (ECCS-1125588). Research at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S. Department of Energy (DOE) under contract DE-AC05-00OR22725, utilized the DOE Battery Manufacturing R&D Facility at ORNL sponsored by the Office of Energy Efficiency and Renewable Energy's Vehicle Technologies Office. NR 39 TC 9 Z9 9 U1 14 U2 83 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 30 PY 2015 VL 300 BP 123 EP 131 DI 10.1016/j.jpowsour.2015.09.028 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CV7GC UT WOS:000364439400015 ER PT J AU Rosewater, D Williams, A AF Rosewater, David Williams, Adam TI Analyzing system safety in lithium-ion grid energy storage SO JOURNAL OF POWER SOURCES LA English DT Article DE Energy storage; Battery; Safety; Lithium-ion; STAMP; STPA ID BATTERY; RISK; FIRE AB As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards. (C) 2015 Elsevier B.V. All rights reserved. C1 [Rosewater, David] Sandia Natl Labs, Albuquerque, NM USA. [Williams, Adam] MIT, Cambridge, MA 02139 USA. RP Rosewater, D (reprint author), Sandia Natl Labs, 1515 Eubank, Albuquerque, NM USA. EM dmrose@sandia.gov; adwill@mit.edu FU US DOE OE's Energy Storage Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded by the US DOE OE's Energy Storage Program. The authors would like to thank Dr. Imre Gyuk for his support of research advancing safety in grid energy storage. Special thanks to Dr. Katrina Groth, Dr. Summer Ferreira, and Dr. Josh Lamb for reviewing and editing the content this article.; Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 58 TC 1 Z9 1 U1 7 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 30 PY 2015 VL 300 BP 460 EP 471 DI 10.1016/j.jpowsour.2015.09.068 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CV7GC UT WOS:000364439400055 ER PT J AU Snijders, AM Liu, YY Su, L Huang, YR Mao, JH AF Snijders, Antoine M. Liu, Yueyong Su, Li Huang, Yurong Mao, Jian-Hua TI Expression profiling reveals transcriptional regulation by Fbxw7/mTOR pathway in radiation-induced mouse thymic lymphomas SO ONCOTARGET LA English DT Article DE thymic lymphoma; FBXW7; mTOR; rapamycin; radiation ID F-BOX PROTEIN; PHOSPHORYLATION-DEPENDENT DEGRADATION; ENDOPLASMIC-RETICULUM STRESS; INDUCED TUMOR-DEVELOPMENT; SCFFBW7 UBIQUITIN LIGASE; CYCLIN-E; BREAST-CANCER; HCDC4 GENE; ER STRESS; LUNG ADENOCARCINOMAS AB The tumor suppressor gene FBXW7 is deleted and mutated in many different types of human cancers. FBXW7 primarily exerts its tumor suppressor activity by ubiquitinating different oncoproteins including mTOR. Here we used gene transcript profiling to gain a deeper understanding of the role of FBXW7 in tumor development and to determine the influence of mTOR inhibition by rapamycin on tumor transcriptome and biological functions. In comparison to tumors from p53 single heterozygous (p53+/-) mice, we find that radiation-induced thymic lymphomas from Fbxw7/p53 double heterozygous (Fbxw7+/-p53+/-) mice show significant deregulation of cholesterol metabolic processes independent of rapamycin treatment, while cell cycle related genes were upregulated in tumors from placebo treated Fbxw7+/-p53+/- mice, but not in tumors from rapamycin treated Fbxw7+/-p53+/- mice. On the other hand, tumors from rapamycin treated Fbxw7+/-p53+/- mice were enriched for genes involved in the integrated stress response, an adaptive mechanism to survive in stressful environments. Finally, we demonstrated that the Fbxw7 gene signatures identified in mouse tumors significantly overlap with FBXW7 co-expressed genes in human cancers. Importantly these common FBXW7 gene signatures between mouse and human are predictive for disease-free survival in human colon, breast and lung adenocarcinoma cancer patients. These results provide novel insights into the role of FBXW7 in tumor development and have identified a number of potential targets for therapeutic intervention. C1 [Snijders, Antoine M.; Liu, Yueyong; Su, Li; Huang, Yurong; Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Liu, Yueyong] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Dept Pathol, Boston, MA 02215 USA. RP Snijders, AM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM AMSnijders@lbl.gov; JHMao@lbl.gov FU NIH, National Cancer Institute [R01 CA116481]; Low Dose Scientific Focus Area, Office of Biological and Environmental Research, U.S. Department of Energy [DE AC02-05CH11231] FX This work was supported by the NIH, National Cancer Institute grant R01 CA116481, and Low Dose Scientific Focus Area, Office of Biological and Environmental Research, U.S. Department of Energy under Contract No. DE AC02-05CH11231. NR 53 TC 0 Z9 0 U1 1 U2 3 PU IMPACT JOURNALS LLC PI ALBANY PA 6211 TIPTON HOUSE, STE 6, ALBANY, NY 12203 USA SN 1949-2553 J9 ONCOTARGET JI Oncotarget PD DEC 29 PY 2015 VL 6 IS 42 BP 44794 EP 44805 PG 12 WC Oncology; Cell Biology SC Oncology; Cell Biology GA DD4QX UT WOS:000369908800054 PM 26575021 ER PT J AU Avazbaeva, Z Sung, W Lee, J Phan, MD Shin, K Vaknin, D Kim, D AF Avazbaeva, Zaure Sung, Woongmo Lee, Jonggwan Minh Dinh Phan Shin, Kwanwoo Vaknin, David Kim, Doseok TI Origin of the Instability of Octadecylamine Langmuir Mono layer at Low pH SO LANGMUIR LA English DT Article ID SUM-FREQUENCY GENERATION; AIR-WATER-INTERFACE; HALIDE-IONS; VIBRATIONAL SPECTROSCOPY; AQUEOUS-SOLUTION; ACID MONOLAYERS; FATTY ACIDS; SURFACE; COUNTERION; ADSORPTION AB It has been reported that an octadecylamine (ODA) Langmuir monolayer becomes unstable at low pH values with no measurable surface pressure at around pH 3.5, suggesting significant dissolution of the ODA molecule into the subphase solution (Albrecht, Colloids Surf A 2006, 284-285, 166-174). However, by lowering the pH further, ODA molecules reoccupy the surface, and a full monolayer is recovered at pH 2.5. Using surface sum-frequency spectroscopy and pressure area isotherms, it is found that the recovered monolayer at very low pH has a larger area per molecule with many gauche defects in the ODA molecules as compared to that at high pH values. This structural change suggests that the reappearance of the monolayer is due to the adsorbed Cl- counterions to the protonated amine groups, leading to partial charge neutralization. This proposition is confirmed by intentionally adding monovalent salts (i.e., NaCl, NaBr, or NaI) to the subphase to recover the monolayer at pH 3.5, in which the detailed structure of the monolayer is confirmed by sum frequency spectra and the adsorbed anions by X-ray reflectivity. C1 [Avazbaeva, Zaure; Sung, Woongmo; Lee, Jonggwan; Kim, Doseok] Sogang Univ, Dept Phys, Seoul 121742, South Korea. [Minh Dinh Phan; Shin, Kwanwoo] Sogang Univ, Dept Chem, Seoul 121742, South Korea. [Minh Dinh Phan; Shin, Kwanwoo] Sogang Univ, Inst Biol Interfaces, Seoul 121742, South Korea. [Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Kim, D (reprint author), Sogang Univ, Dept Phys, Seoul 121742, South Korea. EM doseok@sogang.ac.kr RI Vaknin, David/B-3302-2009; Phan, Minh/M-4019-2015 OI Vaknin, David/0000-0002-0899-9248; Phan, Minh/0000-0002-6132-5277 FU National Research Foundation [2011-0017435]; Midcareer Researcher Program - Ministry of Science, ICT & Future Planning, Korea [2011-0017539]; Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358] FX This research is supported by the National Research Foundation Grant No. 2011-0017435. K.S. acknowledges financial support by the Midcareer Researcher Program (2011-0017539), funded by the Ministry of Science, ICT & Future Planning, Korea. Z.A. acknowledges help from Peter V. Pikhitsa of Seoul National University. The work at Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract Number DE-AC02-07CH11358. NR 29 TC 2 Z9 2 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD DEC 29 PY 2015 VL 31 IS 51 BP 13753 EP 13758 DI 10.1021/acs.langmuir.5b03947 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA DA1MK UT WOS:000367559700015 PM 26618452 ER PT J AU Huber, SP Gullikson, E van de Kruijs, RWE Bijkerk, F Prendergast, D AF Huber, S. P. Gullikson, E. van de Kruijs, R. W. E. Bijkerk, F. Prendergast, D. TI Oxygen-stabilized triangular defects in hexagonal boron nitride SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; DEPOSITION; RESOLUTION; MONOLAYER; OXIDATION AB Recently several experimental transmission electron microscopy (TEM) studies have reported the observation of nanoscale triangular defects in mono-and multilayer hexagonal boron nitride (h-BN). First-principles calculations are employed to study the thermodynamical stability and spectroscopic properties of these triangular defects and the chemical nature of their edge termination. Oxygen-terminated defects are found to be significantly more stable than defects with nitrogen-terminated edges. Simulated x-ray absorption spectra of the boron K edge for oxygen-terminated defects show excellent agreement with experimental x-ray absorption near-edge spectroscopy (XANES) measurements on defective h-BN films with oxygen impurities. Finally, we show that the structural model for oxygen defects in h-BN as deduced from the simulated core-level spectroscopy is intrinsically linked to the equilateral triangle shape of defects as observed in many recent electron microscopy measurements. C1 [Huber, S. P.; Prendergast, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Huber, S. P.; van de Kruijs, R. W. E.; Bijkerk, F.] Univ Twente, MESA Res Inst Nanotechnol, Ind Focus Grp XUV Opt, NL-7500 AE Enschede, Netherlands. [Gullikson, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Huber, SP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM shuber@lbl.gov FU Dutch Government; Center for X-ray Optics of Lawrence Berkeley Laboratory; Industrial Focus Group XUV Optics at the MESA+ Institute for Nanotechnology at the University of Twente; Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DE-AC02-05CH11231] FX This work is supported by NanoNextNL, a micro and nanotechnology program of the Dutch Government and 130 partners. We acknowledge the support of the Center for X-ray Optics of Lawrence Berkeley Laboratory and the Industrial Focus Group XUV Optics at the MESA+ Institute for Nanotechnology at the University of Twente, notably the partners ASML, Carl Zeiss SMT GmbH, and the Foundation FOM. All the computational work was performed at the Molecular Foundry, which is supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 3 Z9 3 U1 12 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 29 PY 2015 VL 92 IS 24 AR 245310 DI 10.1103/PhysRevB.92.245310 PG 7 WC Physics, Condensed Matter SC Physics GA CZ8WI UT WOS:000367379400004 ER PT J AU Endres, MG Brower, RC Detmold, W Orginos, K Pochinsky, AV AF Endres, Michael G. Brower, Richard C. Detmold, William Orginos, Kostas Pochinsky, Andrew V. TI Multiscale Monte Carlo equilibration: Pure Yang-Mills theory SO PHYSICAL REVIEW D LA English DT Article ID LATTICE GAUGE-FIELDS; QCD; MODEL; SIMULATIONS; CONFINEMENT; COMPUTATION; ALGORITHMS; TOPOLOGY; SCALE; TIME AB We present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts. C1 [Endres, Michael G.; Detmold, William; Pochinsky, Andrew V.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Brower, Richard C.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Orginos, Kostas] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Orginos, Kostas] Jefferson Lab, Newport News, VA 23606 USA. RP Endres, MG (reprint author), MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. EM endres@mit.edu; brower@bu.edu; wdetmold@mit.edu; kostas@wm.edu; avp@mit.edu FU Office of Science of the U.S. Department of Energy; U.S. Department of Energy Early Career Research Award [DE-SC0010495]; Science Office at MIT; U.S. Department of Energy [DE-SC0010025, DE-FG02-04ER41302, DE-AC05-06OR23177]; U.S. Department of Energy Office of Nuclear Physics [DE-FC02-06ER41444] FX The authors would like to acknowledge C.-J. David Lin and Evan Weinberg for helpful advice regarding gradient flow and topological charge, and Simon Catterall for information about computing renormalized coupling constants numerically. All simulations were performed using a modified version of the Chroma Software System for lattice QCD [43]. Computations for this study were carried out in part on facilities of the USQCD Collaboration, which are funded by the Office of Science of the U.S. Department of Energy. M. G. E. was supported by the U.S. Department of Energy Early Career Research Award No. DE-SC0010495, and moneys from the Dean of Science Office at MIT. R. C. B. was supported by the U.S. Department of Energy under Grant No. DE-SC0010025. W. D. was supported in part by the U.S. Department of Energy Early Career Research Award No. DE-SC0010495. K. O. was supported by the U.S. Department of Energy under Grant No. DE-FG02-04ER41302 and through Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility. A. V. P. was supported in part by the U.S. Department of Energy Office of Nuclear Physics under Grant No. DE-FC02-06ER41444. NR 44 TC 5 Z9 5 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 29 PY 2015 VL 92 IS 11 AR 114516 DI 10.1103/PhysRevD.92.114516 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ8WW UT WOS:000367380800006 ER PT J AU Kilianski, A Carcel, P Yao, SJ Roth, P Schulte, J Donarum, GB Fochler, ET Hill, JM Liem, AT Wiley, MR Ladner, JT Pfeffer, BP Elliot, O Petrosov, A Jima, DD Vallard, TG Melendrez, MC Skowronski, E Quan, PL Lipkin, WI Gibbons, HS Hirschberg, DL Palacios, GF Rosenzweig, CN AF Kilianski, Andy Carcel, Patrick Yao, Shijie Roth, Pierce Schulte, Josh Donarum, Greg B. Fochler, Ed T. Hill, Jessica M. Liem, Alvin T. Wiley, Michael R. Ladner, Jason T. Pfeffer, Bradley P. Elliot, Oliver Petrosov, Alexandra Jima, Dereje D. Vallard, Tyghe G. Melendrez, Melanie C. Skowronski, Evan Quan, Phenix-Lan Lipkin, W. Ian Gibbons, Henry S. Hirschberg, David L. Palacios, Gustavo F. Rosenzweig, C. Nicole TI Pathosphere.org: pathogen detection and characterization through a web-based, open source informatics platform SO BMC BIOINFORMATICS LA English DT Article ID UNASSEMBLED SEQUENCING DATA; EBOLA-VIRUS; CLINICAL-SAMPLES; GENOMIC ANALYSIS; IDENTIFICATION; DISCOVERY; SURVEILLANCE; STRAIN; CHALLENGES; ALIGNMENT AB Background: The detection of pathogens in complex sample backgrounds has been revolutionized by wide access to next-generation sequencing (NGS) platforms. However, analytical methods to support NGS platforms are not as uniformly available. Pathosphere (found at Pathosphere.org) is a cloud based open sourced community tool that allows for communication, collaboration and sharing of NGS analytical tools and data amongst scientists working in academia, industry and government. The architecture allows for users to upload data and run available bioinformatics pipelines without the need for onsite processing hardware or technical support. Results: The pathogen detection capabilities hosted on Pathosphere were tested by analyzing pathogen-containing samples sequenced by NGS with both spiked human samples as well as human and zoonotic host backgrounds. Pathosphere analytical pipelines developed by Edgewood Chemical Biological Center (ECBC) identified spiked pathogens within a common sample analyzed by 454, Ion Torrent, and Illumina sequencing platforms. ECBC pipelines also correctly identified pathogens in human samples containing arenavirus in addition to animal samples containing flavivirus and coronavirus. These analytical methods were limited in the detection of sequences with limited homology to previous annotations within NCBI databases, such as parvovirus. Utilizing the pipeline-hosting adaptability of Pathosphere, the analytical suite was supplemented by analytical pipelines designed by the United States Army Medical Research Insititute of Infectious Diseases and Walter Reed Army Institute of Research (USAMRIID-WRAIR). These pipelines were implemented and detected parvovirus sequence in the sample that the ECBC iterative analysis previously failed to identify. Conclusions: By accurately detecting pathogens in a variety of samples, this work demonstrates the utility of Pathosphere and provides a platform for utilizing, modifying and creating pipelines for a variety of NGS technologies developed to detect pathogens in complex sample backgrounds. These results serve as an exhibition for the existing pipelines and web-based interface of Pathosphere as well as the plug-in adaptability that allows for integration of newer NGS analytical software as it becomes available. C1 [Kilianski, Andy; Roth, Pierce; Hill, Jessica M.; Liem, Alvin T.; Gibbons, Henry S.; Rosenzweig, C. Nicole] Edgewood Chem & Biol Ctr, Biosci Div, Aberdeen Proving Ground, MD 21010 USA. [Carcel, Patrick; Yao, Shijie; Roth, Pierce; Schulte, Josh; Donarum, Greg B.; Fochler, Ed T.; Hill, Jessica M.; Liem, Alvin T.] OptiMetrics Inc, Abingdon, MD USA. [Wiley, Michael R.; Ladner, Jason T.; Pfeffer, Bradley P.; Palacios, Gustavo F.] US Med Res Inst Infect Dis, Ctr Genome Sci, Frederick, MD USA. [Elliot, Oliver] Columbia Univ, Dept Biomed Informat, New York, NY USA. [Jima, Dereje D.; Vallard, Tyghe G.; Melendrez, Melanie C.] Walter Reed Army Inst Res, Viral Dis Branch, Silver Spring, MD USA. [Skowronski, Evan] TMG Biosci LLC, Austin, TX USA. [Petrosov, Alexandra; Quan, Phenix-Lan; Lipkin, W. Ian; Hirschberg, David L.] Columbia Univ, Ctr Infect & Immun, New York, NY USA. [Yao, Shijie] LBNL, Joint Genome Inst, Dept Energy, Berkeley, CA USA. [Hirschberg, David L.] Univ Washington, Dept Interdisciplinary Arts & Sci, Tacoma, WA USA. RP Rosenzweig, CN (reprint author), Edgewood Chem & Biol Ctr, Biosci Div, 5183 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA. EM carolyn.n.rosenzweig.civ@mail.mil RI Palacios, Gustavo/I-7773-2015; OI Palacios, Gustavo/0000-0001-5062-1938; Melendrez, Melanie/0000-0002-4811-4467; Kilianski, Andy/0000-0002-2350-0142 FU National Academy of Science FX This work was made possible by the Defense Threat Reduction Agency effort CB3576 to C.N.R and CB2847 to H.S.G and C.N.R. and CB3575 to W.I.L. A.K is supported by the National Academy of Science and DTRA as a National Research Council (NRC) fellow. The authors report no competing interests for this work. Conclusions and opinions presented here are those of the authors and are not the official policy of the US Army, ECBC, or the US Government. Information in this report is cleared for public release and distribution is unlimited. NR 59 TC 3 Z9 3 U1 5 U2 20 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD DEC 29 PY 2015 VL 16 AR 416 DI 10.1186/s12859-015-0840-5 PG 12 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA CZ6RU UT WOS:000367229200003 PM 26714571 ER PT J AU Lee, IH Kai, H Carlson, LA Groves, JT Hurley, JH AF Lee, Il-Hyung Kai, Hiroyuki Carlson, Lars-Anders Groves, Jay T. Hurley, James H. TI Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE membrane bending; HIV-1; nanofabrication; superresolution imaging ID ESCRT PROTEIN RECRUITMENT; VESICLE FORMATION; III FILAMENTS; MACHINERY; MECHANISMS; PATHWAY; RECONSTITUTION; MORPHOGENESIS; ABSCISSION; DYNAMICS AB The endosomal sorting complexes required for transport (ESCRT) machinery functions in HIV-1 budding, cytokinesis, multivesicular body biogenesis, and other pathways, in the course of which it interacts with concave membrane necks and bud rims. To test the role of membrane shape in regulating ESCRT assembly, we nano-fabricated templates for invaginated supported lipid bilayers. The assembly of the core ESCRT-III subunit CHMP4B/Snf7 is preferentially nucleated in the resulting 100-nm-deep membrane concavities. ESCRT-II and CHMP6 accelerate CHMP4B assembly by increasing the concentration of nucleation seeds. Superresolution imaging was used to visualize CHMP4B/Snf7 concentration in a negatively curved annulus at the rim of the invagination. Although Snf7 assemblies nucleate slowly on flat membranes, outward growth onto the flat membrane is efficiently nucleated at invaginations. The nucleation behavior provides a biophysical explanation for the timing of ESCRT-III recruitment and membrane scission in HIV-1 budding. C1 [Lee, Il-Hyung; Carlson, Lars-Anders; Hurley, James H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Lee, Il-Hyung; Kai, Hiroyuki; Carlson, Lars-Anders; Groves, Jay T.; Hurley, James H.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Kai, Hiroyuki; Groves, Jay T.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. [Groves, Jay T.; Hurley, James H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Groves, Jay T.] Natl Univ Singapore, Mechanobiol Inst, Singapore 117411, Singapore. RP Hurley, JH (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM jimhurley@berkeley.edu FU National Institute of Allergy and Infectious Diseases of the National Institutes of Health [R01AI112442]; National Cancer Institute of the National Institutes of Health [U01CA202241] FX We thank Peidong Yang and Chong Liu for AFM measurements; Bei Yang, Qingtao Shen, Gerhard Hummer, and Johannes Schoneberg for advice and discussions; the Berkeley Marvell nanofabrication laboratory and Biomolecular Nanotechnology Center for use of nanofabrication instruments; and the Berkeley CNR Biological Imaging Facility for access to and assistance with SIM microscopy. This work was supported by National Institute of Allergy and Infectious Diseases of the National Institutes of Health Grant R01AI112442. Partial support was provided by the National Cancer Institute of the National Institutes of Health under Award no. U01CA202241(to J.T.G.). NR 38 TC 7 Z9 7 U1 3 U2 18 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 29 PY 2015 VL 112 IS 52 BP 15892 EP 15897 DI 10.1073/pnas.1518765113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ6TU UT WOS:000367234700051 PM 26668364 ER PT J AU Abbott, LJ Stevens, MJ AF Abbott, Lauren J. Stevens, Mark J. TI A temperature-dependent coarse-grained model for the thermoresponsive polymer poly(N-isopropylacrylamide) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; VOLUME PHASE-TRANSITION; COIL-GLOBULE TRANSITION; N-ISOPROPYLACRYLAMIDE; SINGLE-CHAIN; FORCE-FIELD; COMPUTER-SIMULATION; EXPLICIT SOLVENT; POOR SOLVENT; WATER AB A coarse-grained (CG) model is developed for the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM), using a hybrid top-down and bottom-up approach. Nonbonded parameters are fit to experimental thermodynamic data following the procedures of the SDK (Shinoda, DeVane, and Klein) CG force field, with minor adjustments to provide better agreement with radial distribution functions from atomistic simulations. Bonded parameters are fit to probability distributions from atomistic simulations using multi-centered Gaussian-based potentials. The temperature-dependent potentials derived for the PNIPAM CG model in this work properly capture the coil-globule transition of PNIPAM single chains and yield a chain-length dependence consistent with atomistic simulations. (C) 2015 AIP Publishing LLC. C1 [Abbott, Lauren J.; Stevens, Mark J.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Stevens, MJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM msteve@sandia.gov OI Abbott, Lauren/0000-0003-3523-9380 FU U.S. Department of Energy, Office of Sciences, Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy's National Nuclear Security Administration [DE-A-C04-94AL85000] FX This work was supported by the U.S. Department of Energy, Office of Sciences, Basic Energy Sciences, Division of Materials Sciences and Engineering. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-A-C04-94AL85000. NR 63 TC 2 Z9 2 U1 10 U2 26 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 28 PY 2015 VL 143 IS 24 AR 244901 DI 10.1063/1.4938100 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DE1UV UT WOS:000370412900126 PM 26723705 ER PT J AU Armas-Perez, JC Hernandez-Ortiz, JP de Pablo, JJ AF Armas-Perez, Julio C. Hernandez-Ortiz, Juan P. de Pablo, Juan J. TI Liquid crystal free energy relaxation by a theoretically informed Monte Carlo method using a finite element quadrature approach SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELASTIC-CONSTANTS; NANOPARTICLES; DROPLETS; SIMULATIONS; BEHAVIOR; INTERFACES; STABILITY; CAPSULES; COLLOIDS; PARTICLE AB A theoretically informed Monte Carlo method is proposed for Monte Carlo simulation of liquid crystals on the basis of theoretical representations in terms of coarse-grained free energy functionals. The free energy functional is described in the framework of the Landau-de Gennes formalism. A piecewise finite element discretization is used to approximate the alignment field, thereby providing an excellent geometrical representation of curved interfaces and accurate integration of the free energy. The method is suitable for situations where the free energy functional includes highly non-linear terms, including chirality or high-order deformation modes. The validity of the method is established by comparing the results of Monte Carlo simulations to traditional Ginzburg-Landau minimizations of the free energy using a finite difference scheme, and its usefulness is demonstrated in the context of simulations of chiral liquid crystal droplets with and without nanoparticle inclusions. (C) 2015 AIP Publishing LLC. C1 [Armas-Perez, Julio C.; Hernandez-Ortiz, Juan P.; de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Hernandez-Ortiz, Juan P.] Univ Nacl Colombia, Dept Mat & Minerals, Medellin, Colombia. [de Pablo, Juan J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Armas-Perez, JC (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. EM jphernandezo@unal.edu.co; depablo@uchicago.edu OI Hernandez-Ortiz, Juan/0000-0003-0404-9947 FU National Science Foundation [DMR-1410674]; Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division [DE SC0004025]; CONACYT [186166, 203840]; Universidad Nacional de Colombia Ph.D. grant; COLCIENCIAS [110-165-843-748] FX The study of nanoparticles suspended in liquid crystals reported in this work is supported by the National Science Foundation through Grant No. DMR-1410674. The study of chiral liquid crystal droplets, for which results are also reported here, is supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, Grant No. DE SC0004025. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program of the Argonne Leadership Computing Facility at Argonne National Laboratory. Additional development work was performed using the Argonne Laboratory Resource Computing Center (LCRC) and the University of Chicago Midway cluster. J.C.A.-P. is thankful to CONACYT for the Postdoctoral Fellowship under Nos. 186166 and 203840. J.P.H.-O. is grateful to funding provided by the Universidad Nacional de Colombia Ph.D. grant and COLCIENCIAS under Contract No. 110-165-843-748, "Patrimonio Autonomo Fondo Nacional de Financiamiento para la Ciencia, Tecnologia y la Innovacion Francisco Jose de Caldas." NR 84 TC 1 Z9 1 U1 5 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 28 PY 2015 VL 143 IS 24 AR 243157 DI 10.1063/1.4937628 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DE1UV UT WOS:000370412900063 PM 26723642 ER PT J AU Ramirez-Hernandez, A Peters, BL Andreev, M Schieber, JD de Pablo, JJ AF Ramirez-Hernandez, Abelardo Peters, Brandon L. Andreev, Marat Schieber, Jay D. de Pablo, Juan J. TI A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID STEP STRAIN PREDICTIONS; LINK MODEL; SEGMENT CONNECTIVITY; CONSTRAINT RELEASE; REPTATION MODELS; DYNAMICS; CHAIN; SHEAR; EQUILIBRIUM; SIMULATIONS AB A theoretically informed entangled polymer simulation approach is presented for description of the linear and non-linear rheology of entangled polymer melts. The approach relies on a many-chain representation and introduces the topological effects that arise from the non-crossability of molecules through effective fluctuating interactions, mediated by slip-springs, between neighboring pairs of macromolecules. The total number of slip-springs is not preserved but, instead, it is controlled through a chemical potential that determines the average molecular weight between entanglements. The behavior of the model is discussed in the context of a recent theory for description of homogeneous materials, and its relevance is established by comparing its predictions to experimental linear and non-linear rheology data for a series of well-characterized linear polyisoprene melts. The results are shown to be in quantitative agreement with experiment and suggest that the proposed formalism may also be used to describe the dynamics of inhomogeneous systems, such as composites and copolymers. Importantly, the fundamental connection made here between our many-chain model and the well-established, thermodynamically consistent single-chain mean-field models provides a path to systematic coarse-graining for prediction of polymer rheology in structurally homogeneous and heterogeneous materials. (C) 2015 AIP Publishing LLC. C1 [Ramirez-Hernandez, Abelardo; de Pablo, Juan J.] Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. [Ramirez-Hernandez, Abelardo; Peters, Brandon L.; Andreev, Marat; Schieber, Jay D.; de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Schieber, Jay D.] IIT, Dept Chem & Biol Engn, Dept Phys, Chicago, IL 60616 USA. [Schieber, Jay D.] IIT, Ctr Mol Study Condensed Soft Matter, Chicago, IL 60616 USA. RP Ramirez-Hernandez, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. EM abelardo@anl.gov; schieber@iit.edu; depablo@uchicago.edu RI Ramirez-Hernandez, Abelardo/A-1717-2011 OI Ramirez-Hernandez, Abelardo/0000-0002-3569-5223 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; National Science Foundation; NSF-CBET Fluid Dynamics [1438700]; Army Research Office [W911NF-11-2-0018]; NIST through CHiMaD postdoctoral award FX This work was supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. An award of computer time was provided by the INCITE program of the Argonne Leadership Computing Facility. We gratefully acknowledge the computing resources provided on Blues, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. J.D.S. acknowledges the support of the National Science Foundation, NSF-CBET Fluid Dynamics No. 1438700, and the Army Research Office, No. W911NF-11-2-0018. Marat Andreev gratefully acknowledges the support from NIST through a CHiMaD postdoctoral award. NR 37 TC 4 Z9 4 U1 11 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 28 PY 2015 VL 143 IS 24 AR 243147 DI 10.1063/1.4936878 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DE1UV UT WOS:000370412900053 PM 26723632 ER PT J AU Chaston, CC Bonnell, JW Wygant, JR Kletzing, CA Reeves, GD Gerrard, A Lanzerotti, L Smith, CW AF Chaston, C. C. Bonnell, J. W. Wygant, J. R. Kletzing, C. A. Reeves, G. D. Gerrard, A. Lanzerotti, L. Smith, C. W. TI Extreme ionospheric ion energization and electron heating in Alfven waves in the storm time inner magnetosphere SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE geomagnetic storms; Alfven waves; ion acceleration; electron precipitation; ion outflow; ion upflow ID FIELD LINE RESONANCES; RING CURRENT; EARTHS MAGNETOSPHERE; ELECTROMAGNETIC-WAVES; ULF WAVES; ACCELERATION; FREQUENCY; OUTFLOWS; SCALE AB We report measurements of energized outflowing/bouncing ionospheric ions and heated electrons in the inner magnetosphere during a geomagnetic storm. The ions arrive in the equatorial plane with pitch angles that increase with energy over a range from tens of eV to>50keV while the electrons are field aligned up to similar to 1keV. These particle distributions are observed during intervals of broadband low-frequency electromagnetic field fluctuations consistent with a Doppler-shifted spectrum of kinetic Alfven waves and kinetic field line resonances. The fluctuations extend from L approximate to 3 out to the apogee of the Van Allen Probes spacecraft at L approximate to 6.5. They thereby span most of the L shell range occupied by the ring current. These measurements suggest a model for ionospheric ion outflow and energization driven by dispersive Alfven waves that may account for the large storm time contribution of ionospheric ions to magnetospheric energy density. C1 [Chaston, C. C.; Bonnell, J. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Chaston, C. C.] Univ Sydney, Sch Phys, Camperdown, NSW, Australia. [Wygant, J. R.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Kletzing, C. A.] Univ Iowa, Dept Phys, Iowa City, IA USA. [Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Gerrard, A.; Lanzerotti, L.] New Jersey Inst Technol, Dept Phys, Ctr Solar Terr Res, Newark, NJ 07102 USA. [Smith, C. W.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Smith, C. W.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. RP Chaston, CC (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM ccc@ssl.berkeley.edu RI Reeves, Geoffrey/E-8101-2011; OI Reeves, Geoffrey/0000-0002-7985-8098; Kletzing, Craig/0000-0002-4136-3348 FU NASA [NNX11AD78G, NNX15AF57G]; RBSP under NASA, EFW [NAS5-01072]; RBSP under NASA, EMFISIS under JHU/APL [921647]; RBSP-ECT JHU/APL [967399]; RBSP-RBSPICE JHU/APL [937836]; Australian Research Council [FT110100316]; University of Sydney FX This research was supported by the NASA grants NNX11AD78G, NNX15AF57G, and Van Allen Probes (RBSP) funding provided under NASA prime contract NAS5-01072; including the EFW investigation (PI: J.R. Wygant, University of Minnesota), the EMFISIS investigation (PI: C.A. Kletzing, University of Iowa) under JHU/APL contract 921647, RBSP-ECT JHU/APL under contract 967399 and RBSP-RBSPICE JHU/APL under contract 937836 to the New Jersey Institute of Technology Chris Chaston also received support from the Australian Research Council through fellowship FT110100316 and a University of Sydney bridging grant. All data used in this study can be obtained from the following data repositories: EFW http://www.space.umn.edu/rbspefw-data/, EMFISIS http://emfisis.physics.uiowa.edu/data/index, HOPE/MAGEIS http://www.rbsp-ect.lanl.gov/science/DataDirectories.php, RBSPICE http://rbspice.ftecs.com/Data.html, and/or by directly contacting the first author. NR 45 TC 6 Z9 6 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 28 PY 2015 VL 42 IS 24 BP 10531 EP 10540 DI 10.1002/2015GL066674 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DC0WX UT WOS:000368939700033 ER PT J AU Ohia, O Egedal, J Lukin, VS Daughton, W Le, A AF Ohia, O. Egedal, J. Lukin, V. S. Daughton, W. Le, A. TI Scaling laws for magnetic reconnection, set by regulation of the electron pressure anisotropy to the firehose threshold SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE magnetic reconnection; electron anisotropy; electron energization; plasma simulation ID INSTABILITIES; SIMULATIONS; PLASMAS AB Magnetic reconnection in a weakly collisional plasma, such as in the Earth's magnetosphere, is known to be accompanied by electron pressure anisotropy. For reconnection scenarios includingmoderate guide magnetic field, electrons are magnetized throughout the reconnection region, and the anisotropy drives extended electron current layers. Along these layers, the anisotropy nears the firehosethreshold. We describe how the anisotropy stagnates at this threshold by a mechanism that does not involve pitch-angle mixing. Using previously established anisotropic equations of state and by imposing the marginalfirehose condition, scaling laws are obtained for quantities along the current layers asfunctions of plasmaparameters upstream of the reconnection region. The predicted reconnection region quantities include the magnetic field strength, plasma density, and the parallel and perpendicular electronpressures, allowing for a characterization of electron energization solely as a function of the upstream plasma conditions. This characterization is in agreement with simulations and spacecraft observations. C1 [Ohia, O.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. [Egedal, J.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Lukin, V. S.] Natl Sci Fdn, Arlington, VA 22230 USA. [Lukin, V. S.] US Naval Res Lab, Washington, DC USA. [Daughton, W.; Le, A.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Ohia, O (reprint author), Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. EM oohia@umd.edu RI Daughton, William/L-9661-2013 FU NSF GEM [1405166]; NASA [NNX14AC68G]; NASA Solar and Heliospheric Physics program; National Science Foundation; NASA's Heliophysics Theory Program FX We thank T. Phan for providing spacecraft data. O.O. would like to acknowledge the National Energy Research Scientific Computing Center for time allocation, as fluid simulations were performed on Hopper. J.E. acknowledges support through NSF GEM award 1405166 and NASA grant NNX14AC68G. V.S.L. acknowledges support from the NASA Solar and Heliospheric Physics program, as well as the National Science Foundation. Contributions from W.D. were supported by NASA's Heliophysics Theory Program. Kinetic simulations were performed on Pleiades provided by NASA's HEC Program and with LANL Institutional Computing resources. Any opinion findings conclusions or recommendations expressed in this material are those of the authors do not necessarily reflect the views of the National Science Foundation. NR 26 TC 3 Z9 3 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 28 PY 2015 VL 42 IS 24 BP 10549 EP 10556 DI 10.1002/2015GL067117 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DC0WX UT WOS:000368939700053 ER PT J AU Kaser, L Karl, T Yuan, B Mauldin, RL Cantrell, CA Guenther, AB Patton, EG Weinheimer, AJ Knote, C Orlando, J Emmons, L Apel, E Hornbrook, R Shertz, S Ullmann, K Hall, S Graus, M de Gouw, J Zhou, X Ye, C AF Kaser, L. Karl, T. Yuan, B. Mauldin, R. L., III Cantrell, C. A. Guenther, A. B. Patton, E. G. Weinheimer, A. J. Knote, C. Orlando, J. Emmons, L. Apel, E. Hornbrook, R. Shertz, S. Ullmann, K. Hall, S. Graus, M. de Gouw, J. Zhou, X. Ye, C. TI Chemistry-turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE hydroxyl radical; isoprene; turbulence; fluxes ID TROPICAL RAIN-FOREST; CONVECTIVE BOUNDARY-LAYER; ISOPRENE OXIDATION; DECIDUOUS FOREST; FIELD CAMPAIGN; MODEL; SCALARS; OZONE; HO2; OH AB The hydroxyl radical (OH) is the most important oxidant in the atmosphere and the primary sink for isoprene, the dominant volatile organic compound emitted by vegetation. Recent research on the atmospheric oxidation capacity in isoprene-dominated environments has suggested missing radical sources leading to significant overestimation of the lifetime of isoprene. Here we report, for the first time, a comprehensive experimental budget of isoprene in the planetary boundary layer based on airborne flux measurements along with in situ OH observations in the Southeast and Central U.S. Our findings show that surface heterogeneity of isoprene emissions lead to a physical separation of isoprene and OH resulting in an effective slowdown in the chemistry. Depending on surface heterogeneity, the intensity of segregation (I-s) could locally slow down isoprene chemistry up to 30%. The effect of segregated reactants in the planetary boundary layer on average has an influence on modeled OH radicals that is comparable to that of recently proposed radical recycling mechanisms. C1 [Kaser, L.; Patton, E. G.; Weinheimer, A. J.; Knote, C.; Orlando, J.; Emmons, L.; Apel, E.; Hornbrook, R.; Shertz, S.; Ullmann, K.; Hall, S.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Karl, T.] Univ Innsbruck, Inst Atmospher & Cryospher Sci, A-6020 Innsbruck, Austria. [Yuan, B.; Graus, M.; de Gouw, J.] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA. [Yuan, B.; de Gouw, J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO USA. [Mauldin, R. L., III; Cantrell, C. A.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Mauldin, R. L., III] Univ Helsinki, Dept Phys, Helsinki, Finland. [Guenther, A. B.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhou, X.; Ye, C.] New York State Dept Hlth, Wadsworth Ctr, Albany, NY USA. RP Karl, T (reprint author), Univ Innsbruck, Inst Atmospher & Cryospher Sci, A-6020 Innsbruck, Austria. EM thomas.Karl@uibk.ac.at RI de Gouw, Joost/A-9675-2008; Knote, Christoph/A-9809-2010; Karl, Thomas/D-1891-2009; Yuan, Bin/A-1223-2012; Emmons, Louisa/R-8922-2016; Manager, CSD Publications/B-2789-2015; OI de Gouw, Joost/0000-0002-0385-1826; Knote, Christoph/0000-0001-9105-9179; Karl, Thomas/0000-0003-2869-9426; Yuan, Bin/0000-0003-3041-0329; Emmons, Louisa/0000-0003-2325-6212; Patton, Edward/0000-0001-5431-9541 FU National Science Foundation; EC [334084]; NSF [1216743] FX We thank the NCAR EOL flight crew and the NOMADSS science team for excellent mission support. We are grateful to T. Campos for collecting and supplying CO and methane data. The National Center for Atmospheric Research is operated by the University Cooperation for Atmospheric Research and is sponsored by the National Science Foundation. Data are provided by NCAR/EOL under sponsorship of the National Science Foundation. T.K. was also supported by the EC Seventh Framework Program (Marie Curie Reintegration Program, "ALP-AIR", grant 334084). C.A.C. and R.L.M. were supported by NSF grant 1216743. NR 41 TC 5 Z9 5 U1 6 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 28 PY 2015 VL 42 IS 24 BP 10894 EP 10903 DI 10.1002/2015GL066641 PG 10 WC Geosciences, Multidisciplinary SC Geology GA DC0WX UT WOS:000368939700006 ER PT J AU Chen, G Lu, J Burrows, DA Leung, LR AF Chen, Gang Lu, Jian Burrows, D. Alex Leung, L. Ruby TI Local finite-amplitude wave activity as an objective diagnostic of midlatitude extreme weather SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE local wave activity; wave breaking; blocking; extreme weather ID REANALYSIS; BREAKING; NORTHERN; BLOCKING; CIRCULATION; TRANSPORT AB Midlatitude extreme weather events are responsible for a large part of climate-related damage, yet our understanding of these extreme events is limited, partly due to the lack of a theoretical basis for midlatitude extreme weather. In this letter, the local finite-amplitude wave activity (LWA) of Huang and Nakamura (2015) is introduced as a diagnostic of the 500hPa geopotential height for characterizing midlatitude weather events. It is found that the LWA climatology and its variability associated with the Arctic Oscillation agree broadly with the previously reported blocking frequency in the literature. There is a strong seasonal and spatial dependence in the trends of LWA in recent decades. While there is no observational evidence for a hemispheric-scale increase in wave amplitude, robust trends in wave activity can be identified at the regional scales, with important implications for regional climate change. C1 [Chen, Gang; Burrows, D. Alex] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY USA. [Lu, Jian; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chen, G (reprint author), Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY USA. EM gchen@cornell.edu FU NSF [AGS-1064079]; DOE [DE-SC0012374]; U.S. Department of Energy, Office of Science, Biological and Environmental Research through the Regional and Global Climate Modeling program; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX We thank Clare S.Y. Huang and Noboru Nakamura for valuable discussion on FAWA and LWA and for sharing their manuscript on LWA in review. We are grateful for two anonymous reviewers for constructive comments on the manuscript, especially on the interpretation of the LWA for Z500. This work also benefited from discussion with Peter Hess, Steve Colucci, and David Straus. G. Chen and D.A. Burrows are supported by NSF grant AGS-1064079 and DOE grant DE-SC0012374. Jian Lu and L. Ruby Leung are supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research through the Regional and Global Climate Modeling program. PNNL is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. The ERA-Interim (ERA-I) reanalysis data were obtained from http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/. The NCEP-DOE Reanalysis 2 (NCEP2) data were downloaded from http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html. The monthly mean Arctic Oscillation index was obtained from Climate Prediction Center (http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.s html). NR 33 TC 0 Z9 0 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 28 PY 2015 VL 42 IS 24 BP 10952 EP 10960 DI 10.1002/2015GL066959 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DC0WX UT WOS:000368939700050 ER PT J AU Kinaci, A Kado, M Rosenmann, D Ling, C Zhu, GH Banerjee, D Chan, MKY AF Kinaci, Alper Kado, Motohisa Rosenmann, Daniel Ling, Chen Zhu, Gaohua Banerjee, Debasish Chan, Maria K. Y. TI Electronic transport in VO2-Experimentally calibrated Boltzmann transport modeling SO APPLIED PHYSICS LETTERS LA English DT Article ID METAL-INSULATOR-TRANSITION; VANADIUM DIOXIDE; BAND THEORY; 1ST PRINCIPLES; THIN-FILMS; VO2; OXIDE; TEMPERATURE; CRYSTAL; HUBBARD AB Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT+U) to model electronic transport properties in VO2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties. (C) 2015 AIP Publishing LLC. C1 [Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y.] Ctr Nanoscale Mat, Argonne Natl Lab, Argonne, IL 60439 USA. [Kado, Motohisa] Toyota Motor Co Ltd, Higashifuji Tech Ctr, Susono, Shizuoka 4101193, Japan. [Ling, Chen; Zhu, Gaohua; Banerjee, Debasish] Toyota Motor Engn & Mfg North Amer Inc, Mat Res Dept, Ann Arbor, MI 48105 USA. RP Banerjee, D (reprint author), Toyota Motor Engn & Mfg North Amer Inc, Mat Res Dept, Ann Arbor, MI 48105 USA. EM debasish.banerjee@toyota.com; mchan@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation [ACI-1053575] FX We acknowledge helpful discussion with Lucas Wagner and David Cahill. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We gratefully acknowledge the computing resources provided on Blues and Fusion, high-performance computing clusters operated by the Laboratory Computing Resource Center at Argonne National Laboratory. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. ACI-1053575.48 NR 47 TC 0 Z9 0 U1 3 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 28 PY 2015 VL 107 IS 26 AR 262108 DI 10.1063/1.4938555 PG 5 WC Physics, Applied SC Physics GA DB3VY UT WOS:000368442300023 ER PT J AU Olson, BV Grein, CH Kim, JK Kadlec, EA Klem, JF Hawkins, SD Shaner, EA AF Olson, B. V. Grein, C. H. Kim, J. K. Kadlec, E. A. Klem, J. F. Hawkins, S. D. Shaner, E. A. TI Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices SO APPLIED PHYSICS LETTERS LA English DT Article ID LAYER SUPERLATTICES; CARRIER LIFETIMES; PERFORMANCE; GAP; DETECTORS; HGCDTE AB The Auger lifetime is a critical intrinsic parameter for infrared photodetectors as it determines the longest potential minority carrier lifetime and consequently the fundamental limitations to their performance. Here, Auger recombination is characterized in a long-wave infrared InAs/InAsSb type-II superlattice. Auger coefficients as small as 7.1 X 10(-26) cm(6)/s are experimentally measured using carrier lifetime data at temperatures in the range of 20 K-80 K. The data are compared to Auger-1 coefficients predicted using a 14-band K . p electronic structure model and to coefficients calculated for HgCdTe of the same bandgap. The experimental superlattice Auger coefficients are found to be an order-of-magnitude smaller than HgCdTe. (C) 2015 AIP Publishing LLC. C1 [Olson, B. V.; Kim, J. K.; Kadlec, E. A.; Klem, J. F.; Hawkins, S. D.; Shaner, E. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Grein, C. H.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RP Olson, BV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM benolso@sandia.gov OI Olson, Benjamin/0000-0003-1421-2541 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Department of Energy's Office of Basic Energy Science; MDA SBIR Phase 1 [HQ0147-15-C-7167] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was supported in part by the Department of Energy's Office of Basic Energy Science. The Sandia authors also thank Professor Michael Flatte at the University of Iowa for use of his K . p software. C.H.G. thanks the MDA SBIR Phase 1 Contract HQ0147-15-C-7167 for supporting this effort. NR 26 TC 9 Z9 9 U1 7 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 28 PY 2015 VL 107 IS 26 AR 261104 DI 10.1063/1.4939147 PG 4 WC Physics, Applied SC Physics GA DB3VY UT WOS:000368442300004 ER PT J AU Somnath, S Belianinov, A Kalinin, SV Jesse, S AF Somnath, Suhas Belianinov, Alexei Kalinin, Sergei V. Jesse, Stephen TI Full information acquisition in piezoresponse force microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID DOMAIN SWITCHING DYNAMICS; THIN-FILMS; NANOSCALE; ELECTROMECHANICS; SPECTROSCOPY; RESOLUTION; TRANSPORT AB The information flow from the tip-surface junction to the detector electronics during the piezoresponse force microscopy (PFM) imaging is explored using the recently developed general mode (G-mode) detection. Information-theory analysis suggests that G-mode PFM in the non-switching regime, close to the first resonance mode, contains a relatively small (100-150) number of components containing significant information. The first two primary components are similar to classical PFM images, suggesting that classical lock-in detection schemes provide high veracity information in this case. At the same time, a number of transient components exhibit contrast associated with surface topography, suggesting pathway to separate the two. The number of significant components increases considerably in the non-linear and switching regimes and approaching cantilever resonances, precluding the use of classical lock-in detection and necessitating the use of band excitation or G-mode detection schemes. The future prospects of full information imaging in scanning probe microscopy are discussed. (C) 2015 AIP Publishing LLC. C1 [Belianinov, Alexei] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Belianinov, A (reprint author), Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. EM somnaths@ornl.gov; belianinova@ornl.gov; sergei2@ornl.gov; sjesse@ornl.gov RI Jesse, Stephen/D-3975-2016; OI Jesse, Stephen/0000-0002-1168-8483; Somnath, Suhas/0000-0002-5398-3050; Belianinov, Alex/0000-0002-3975-4112 FU Division of Materials Sciences and Engineering, Basic Energy Sciences, Department of Energy FX Research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility (A.B. and S.J.). Research was sponsored by the Division of Materials Sciences and Engineering, Basic Energy Sciences, Department of Energy (S.S and S.V.K.). S.S. collected and analyzed the data, prepared the figures and the manuscript. A.B. and S.S. developed the analysis software. A.B and S.V.K. contributed to the thoughtful discussions. S.J. developed the instrumentation software. S.J. and S.V.K. conceived the original idea. NR 27 TC 8 Z9 8 U1 7 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 28 PY 2015 VL 107 IS 26 AR 263102 DI 10.1063/1.4938482 PG 4 WC Physics, Applied SC Physics GA DB3VY UT WOS:000368442300034 ER PT J AU Zarkadoula, E Toulemonde, M Weber, WJ AF Zarkadoula, Eva Toulemonde, Marcel Weber, William J. TI Additive effects of electronic and nuclear energy losses in irradiation-induced amorphization of zircon SO APPLIED PHYSICS LETTERS LA English DT Article ID ION TRACK FORMATION; HEAVY-IONS; ACTINIDES; RADIATION; CREATION; SYNERGY AB We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. We found that taking the electronic energy loss out as a friction term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion. (C) 2015 AIP Publishing LLC. C1 [Zarkadoula, Eva; Weber, William J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Toulemonde, Marcel] Univ Caen, CEA CNRS ENSICAEN, Ctr Interdisciplinaire Rech Ions Matriaux & Photo, F-14070 Caen, France. [Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Zarkadoula, E (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Weber, William/A-4177-2008; OI Weber, William/0000-0002-9017-7365; Zarkadoula, Eva/0000-0002-6886-9664 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Office of Science, U.S. Department of Energy [DEAC02-05CH11231]; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. This research used resources of the National Energy Research Scientific Computing Center, supported by the Office of Science, U.S. Department of Energy under Contract No. DEAC02-05CH11231.; This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 38 TC 1 Z9 1 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 28 PY 2015 VL 107 IS 26 AR 261902 DI 10.1063/1.4939110 PG 5 WC Physics, Applied SC Physics GA DB3VY UT WOS:000368442300014 ER PT J AU Yang, Z Albrecht, AR Cederberg, JG Sheik-Bahae, M AF Yang, Zhou Albrecht, Alexander R. Cederberg, Jeffrey G. Sheik-Bahae, Mansoor TI Optically pumped DBR-free semiconductor disk lasers SO OPTICS EXPRESS LA English DT Article ID SURFACE-EMITTING LASERS; CONTINUOUS-WAVE; HIGH-POWER; VECSEL; INTRACAVITY; EFFICIENCY; OUTPUT AB We report high power distributed Bragg reflector (DBR)-free semiconductor disk lasers. With active regions lifted off and bonded to various transparent heatspreaders, the high thermal impedance and narrow bandwidth of DBRs are mitigated. For a strained InGaAs multi-quantum-well sample bonded to a single-crystalline chemical-vapor deposited diamond, a maximum CW output power of 2.5 W and a record 78 nm tuning range centered at lambda approximate to 1160 nm was achieved. Laser operation using a total internal reflection geometry is also demonstrated. Furthermore, analysis for power scaling, based on thermal management, is presented. (C) 2015 Optical Society of America C1 [Yang, Zhou; Albrecht, Alexander R.; Sheik-Bahae, Mansoor] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Cederberg, Jeffrey G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sheik-Bahae, M (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. EM msb@unm.edu FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Dr. Denis Seletskiy of the University of Konstanz for helpful experimental suggestions and Dr. Stephen Boyd and Behshad Roshanzadeh of the University of New Mexico for assistance with the COMSOL simulations. Special thanks to Element Six for providing high quality diamonds. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 19 TC 5 Z9 5 U1 5 U2 14 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD DEC 28 PY 2015 VL 23 IS 26 BP 33164 EP 33169 DI 10.1364/OE.23.033164 PG 6 WC Optics SC Optics GA DA7SO UT WOS:000368004600030 PM 26831984 ER PT J AU Srinath, S Poyneer, LA Rudy, AR Ammons, SM AF Srinath, Srikar Poyneer, Lisa A. Rudy, Alexander R. Ammons, S. Mark TI Computationally efficient autoregressive method for generating phase screens with frozen flow and turbulence in optical simulations SO OPTICS EXPRESS LA English DT Article ID ADAPTIVE OPTICS; ATMOSPHERIC PHASE; IMPLEMENTATION; STATISTICS AB We present a sample-based, autoregressive (AR) method for the generation and time evolution of atmospheric phase screens that is computationally efficient and uses a single parameter per Fourier mode to vary the power contained in the frozen flow and stochastic components. We address limitations of Fourier-based methods such as screen periodicity and low spatial frequency power content. Comparisons of adaptive optics (AO) simulator performance when fed AR phase screens and translating phase screens reveal significantly elevated residual closed-loop temporal power for small increases in added stochastic content at each time step, thus displaying the importance of properly modeling atmospheric "boiling". We present preliminary evidence that our model fits to AO telemetry are better reflections of real conditions than the pure frozen flow assumption. (C) 2015 Optical Society of America C1 [Srinath, Srikar; Rudy, Alexander R.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Poyneer, Lisa A.; Ammons, S. Mark] Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. RP Srinath, S (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM ssrinath@ucsc.edu FU UC Lab Fees Research Program [12-LF-236852]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The work of SS and ARR is funded by the UC Lab Fees Research Program grant 12-LF-236852.; This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The document number is LLNL-JRNL-667773. NR 31 TC 1 Z9 1 U1 2 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD DEC 28 PY 2015 VL 23 IS 26 BP 33335 EP 33349 DI 10.1364/OE.23.033335 PG 15 WC Optics SC Optics GA DA7SO UT WOS:000368004600044 PM 26831998 ER PT J AU Balluff, J Meinert, M Schmalhorst, JM Reiss, G Arenholz, E AF Balluff, Jan Meinert, Markus Schmalhorst, Jan-Michael Reiss, Guenter Arenholz, Elke TI Exchange bias in epitaxial and polycrystalline thin film Ru2MnGe/Fe bilayers SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HEUSLER ALLOYS; SPIN ELECTRONICS; MAGNETORESISTANCE; SPECTROSCOPY AB We report on thin film bilayers of the antiferromagnetic Heusler compound Ru2MnGe and Fe, as well as the resulting exchange bias field at low temperatures and its temperature dependence. Epitaxial Ru2MnGe/Fe bilayers show an exchange bias field up to 680Oe at 3K. For increasing temperatures, a linearly decreasing exchange bias field is found, which vanishes at 130K. Furthermore, we grew polycrystalline Ru2MnGe showing an exchange bias field up to 540 Oe, which vanishes around 30K. By adding a very thin intermediate layer of Mn, the exchange bias field for polycrystalline samples has been increased by about 40%. We discuss differences between the epitaxial and polycrystalline films regarding magnetic and crystallographic properties and compare our results to already published work on this system. (C) 2015 AIP Publishing LLC. C1 [Balluff, Jan; Meinert, Markus; Schmalhorst, Jan-Michael; Reiss, Guenter] Univ Bielefeld, Ctr Spinelect Mat & Devices, D-33501 Bielefeld, Germany. [Arenholz, Elke] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Balluff, J (reprint author), Univ Bielefeld, Ctr Spinelect Mat & Devices, D-33501 Bielefeld, Germany. EM balluff@physik.uni-bielefeld.de RI Meinert, Markus/E-8794-2011; Reiss, Gunter/A-3423-2010 OI Meinert, Markus/0000-0002-7813-600X; Reiss, Gunter/0000-0002-0918-5940 FU European Union [NMP3-SL-2013-604398] FX The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. NMP3-SL-2013-604398. NR 22 TC 0 Z9 0 U1 4 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 28 PY 2015 VL 118 IS 24 AR 243907 DI 10.1063/1.4939092 PG 4 WC Physics, Applied SC Physics GA DA1CY UT WOS:000367535100015 ER PT J AU Neumayer, SM Strelcov, E Manzo, M Gallo, K Kravchenko, II Kholkin, AL Kalinin, SV Rodriguez, BJ AF Neumayer, Sabine M. Strelcov, Evgheni Manzo, Michele Gallo, Katia Kravchenko, Ivan I. Kholkin, Andrei L. Kalinin, Sergei V. Rodriguez, Brian J. TI Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DOMAIN INVERSION; FORCE MICROSCOPY; LINBO3; CRYSTALS; RESISTANCE; SURFACES; REVERSAL; DIODE AB Mg doped lithium niobate (Mg:LN) exhibits several advantages over undoped LN such as resistance to photorefraction, lower coercive fields, and p-type conductivity that is particularly pronounced at domain walls and opens up a range of applications, e.g., in domain wall electronics. Engineering of precise domain patterns necessitates well founded knowledge of switching kinetics, which can differ significantly from that of undoped LN. In this work, the role of humidity and sample composition in polarization reversal has been investigated under application of the same voltage waveform. Control over domain sizes has been achieved by varying the sample thickness and initial polarization as well as atmospheric conditions. In addition, local introduction of proton exchanged phases allows for inhibition of domain nucleation or destabilization, which can be utilized to modify domain patterns. Polarization dependent current flow, attributed to charged domain walls and band bending, demonstrates the rectifying ability of Mg: LN in combination with suitable metal electrodes that allow for further tailoring of conductivity. (C) 2015 AIP Publishing LLC. C1 [Neumayer, Sabine M.; Rodriguez, Brian J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Neumayer, Sabine M.; Rodriguez, Brian J.] Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin 4, Ireland. [Strelcov, Evgheni; Kravchenko, Ivan I.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Manzo, Michele; Gallo, Katia] KTH Royal Inst Technol, Dept Appl Phys, S-10691 Stockholm, Sweden. [Kholkin, Andrei L.] Dept Phys, P-3810193 Aveiro, Portugal. [Kholkin, Andrei L.] CICECO Aveiro Inst Mat, P-3810193 Aveiro, Portugal. [Kholkin, Andrei L.] Ural Fed Univ, Inst Nat Sci, Ekaterinburg 620000, Russia. RP Rodriguez, BJ (reprint author), Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. EM brian.rodriguez@ucd.ie RI Kravchenko, Ivan/K-3022-2015; Kholkin, Andrei/G-5834-2010; OI Kravchenko, Ivan/0000-0003-4999-5822; Kholkin, Andrei/0000-0003-3432-7610; Rodriguez, Brian/0000-0001-9419-2717; Neumayer, Sabine M./0000-0002-8167-1230 FU European Commission within FP7 Marie Curie Initial Training Network "Nanomotion" [290158]; Science Foundation Ireland [SFI07/IN1/B931]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2015-139]; Swedish Research Council [622-2010-526, 621-2014-5407]; FCT/MEC [FCT UID/CTM/50011/2013]; FEDER FX This research was funded by the European Commission within FP7 Marie Curie Initial Training Network "Nanomotion" (Grant Agreement No. 290158). The AFM used for this work was funded by Science Foundation Ireland (SFI07/IN1/B931). PFM and FORC measurements were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (user Project No. CNMS2015-139). K.G. gratefully acknowledges support from the Swedish Research Council through a Senior Fellowship (622-2010-526) and research Grant No. 621-2014-5407. A.L.K. acknowledges the CICECO-Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement. NR 56 TC 3 Z9 3 U1 6 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 28 PY 2015 VL 118 IS 24 AR 244103 DI 10.1063/1.4938386 PG 8 WC Physics, Applied SC Physics GA DA1CY UT WOS:000367535100019 ER PT J AU Niesen, A Glas, M Ludwig, J Schmalhorst, JM Sahoo, R Ebke, D Arenholz, E Reiss, G AF Niesen, Alessia Glas, Manuel Ludwig, Jana Schmalhorst, Jan-Michael Sahoo, Roshnee Ebke, Daniel Arenholz, Elke Reiss, Guenter TI Titanium nitride as a seed layer for Heusler compounds SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MAGNETIC TUNNEL-JUNCTIONS; FERROMAGNETS AB Titanium nitride (TiN) shows low resistivity at room temperature (27 mu Omega cm), high thermal stability and thus has the potential to serve as seed layer in magnetic tunnel junctions. High quality TiN thin films with regard to the crystallographic and electrical properties were grown and characterized by x-ray diffraction and 4-terminal transport measurements. Element specific x-ray absorption spectroscopy revealed pure TiN inside the thin films. To investigate the influence of a TiN seed layer on a ferro(i)magnetic bottom electrode in magnetic tunnel junctions, an out-of-plane magnetized Mn2.45Ga as well as in- and out-of-plane magnetized Co2FeAl thin films were deposited on a TiN buffer, respectively. The magnetic properties were investigated using a superconducting quantum interference device and anomalous Hall effect for Mn2.45Ga. Magneto optical Kerr effect measurements were carried out to investigate the magnetic properties of Co2FeAl. TiN buffered Mn2.45Ga thin films showed higher coercivity and squareness ratio compared to unbuffered samples. The Heusler compound Co2FeAl showed already good crystallinity when grown at room temperature on a TiN seed-layer. (C) 2015 AIP Publishing LLC. C1 [Niesen, Alessia; Glas, Manuel; Ludwig, Jana; Schmalhorst, Jan-Michael; Reiss, Guenter] Univ Bielefeld, Ctr Spinelect Mat & Devices, Bielefeld, Germany. [Sahoo, Roshnee; Ebke, Daniel] Max Planck Inst Chem Phys Solids, Dresden, Germany. [Arenholz, Elke] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Niesen, A (reprint author), Univ Bielefeld, Ctr Spinelect Mat & Devices, Bielefeld, Germany. EM aniesen@physik.uni-bielefeld.de RI Reiss, Gunter/A-3423-2010; OI Reiss, Gunter/0000-0002-0918-5940; Sahoo, Roshnee/0000-0002-2783-1563 FU Deutsche Forschungsgemeinschaft (DFG) [RE 1052/32-1]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; ERC [291472 Idea Heusler] FX The authors gratefully acknowledge the financial support from the Deutsche Forschungsgemeinschaft (DFG, Contract No. RE 1052/32-1) and the opportunity to work at BL 6.3.1 of the Advanced Light Source, Berkeley, USA, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. D.E. is financially supported by the ERC Advanced Grant (291472 Idea Heusler). NR 19 TC 1 Z9 1 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 28 PY 2015 VL 118 IS 24 AR 243904 DI 10.1063/1.4938388 PG 7 WC Physics, Applied SC Physics GA DA1CY UT WOS:000367535100012 ER PT J AU Wong, S Haberl, B Williams, JS Bradby, JE AF Wong, S. Haberl, B. Williams, J. S. Bradby, J. E. TI The influence of hold time on the onset of plastic deformation in silicon SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; INDUCED PHASE-TRANSFORMATION; SPHERICAL INDENTATION; CRYSTALLINE SILICON; RAMAN-SPECTROSCOPY; AMORPHOUS-SILICON; HIGH-PRESSURE; NANOINDENTATION; SIMULATION; BERKOVICH AB The transformation of diamond-cubic silicon to the metallic beta-Sn phase is known to be "sluggish," even when the critical pressure (similar to 11 GPa) for the transformation is reached. In this letter, we use nanoindentation to apply pressures to just above the critical threshold. In this regime, the sample displays purely elastic behavior at zero hold time. As the hold time at maximum load is increased up to 180 s, the percentage of indents that plastically deform also increase. Interestingly, the indents deform via one of two distinct processes: either via a phase transformation to a mixed bc8/r8-Si end phase, or by initiation of crystalline defects. Raman spectroscopy and cross-sectional transmission electron microscopy are used to show that the two deformation mechanisms are mutually exclusive under the indentation conditions presented here, and elastic modelling was utilized to propose a model for this mutually exclusive behavior. Hence, this behavior enhances the potential for application of the exotic bc8/r8-Si end phase. (C) 2015 AIP Publishing LLC. C1 [Wong, S.] Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys & Engn, Canberra, ACT 2601, Australia. [Haberl, B.] Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 37781 USA. [Williams, J. S.; Bradby, J. E.] Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. RP Wong, S (reprint author), Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 2601, Australia. EM Sherman.Wong@anu.edu.au RI Haberl, Bianca/F-9058-2011 OI Haberl, Bianca/0000-0002-7391-6031 FU Australian Research Council; Alvin M. Weinberg Fellowship (ORNL) - U.S. Department of Energy, Office of Basic Energy Sciences; Spallation Neutron Source (ORNL) - U.S. Department of Energy, Office of Basic Energy Sciences FX This work was performed in part at the ACT node of the Australian National Fabrication Facility, a company established under the National Collaborative Research Infrastructure Strategy to provide nano and micro-fabrication facilities for Australian researchers. We also thank the ACT node of the Australian Microscopy and Microanalysis Research Facility for use of the TEM facilities. Funding from the Australian Research Council is gratefully acknowledged. J.E.B. would like to acknowledge the Australian Research Council for a Future Fellowship and funding under the Discovery Project scheme. B.H. gratefully acknowledges funding from an Alvin M. Weinberg Fellowship (ORNL) and the Spallation Neutron Source (ORNL), sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences. NR 40 TC 4 Z9 4 U1 6 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 28 PY 2015 VL 118 IS 24 AR 245904 DI 10.1063/1.4938480 PG 6 WC Physics, Applied SC Physics GA DA1CY UT WOS:000367535100058 ER PT J AU Zhang, JL Agar, JC Martin, LW AF Zhang, Jialan Agar, Josh C. Martin, Lane W. TI Structural phase diagram and pyroelectric properties of free-standing ferroelectric/non-ferroelectric multilayer heterostructures SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THIN-FILMS; ELASTIC-CONSTANTS; EPITAXIAL BATIO3; DEVICES; OXIDES; MGO; SI AB Ginzburg-Landau-Devonshire models are used to explore ferroelectric phases and pyroelectric coefficients of symmetric free-standing, thin-film trilayer heterostructures composed of a ferroelectric and two identical non-ferroelectric layers. Using BaTiO3 as a model ferroelectric, we explore the influence of temperature, in-plane misfit strain, and the non-ferroelectric layer (including effects of elastic compliance and volume fraction) on the phase evolution in the ferroelectric. The resulting phase diagram reveals six stable phases, two of which are not observed for thin films on semi-infinite cubic substrates. From there, we focus on heterostructures with non-ferroelectric layers of commonly available scandate materials which are widely used as substrates for epitaxial growth. Again, six phases with volatile phase boundaries are found in the phase diagram for the NdScO3/BaTiO3/NdScO3 trilayerheterostructures. The evolution of polarization and pyroelectric coefficients in the free-standing NdScO3 trilayer heterostructures is discussed with particular attention to the role that heterostructure design plays in influencing the phase evolution and temperature-dependence with a goal of creating enhanced pyroelectric response and advantages over traditional thin-film heterostructures. (C) 2015 AIP Publishing LLC. C1 [Zhang, Jialan; Agar, Josh C.; Martin, Lane W.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Zhang, Jialan; Agar, Josh C.; Martin, Lane W.] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. [Zhang, Jialan] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Agar, Josh C.; Martin, Lane W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Martin, Lane W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, JL (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. RI Martin, Lane/H-2409-2011 OI Martin, Lane/0000-0003-1889-2513 FU National Science Foundation [CMMI-1434147, DMR-1451219]; Army Research Office [W911NF-14-1-0104] FX J.Z. acknowledges support from the National Science Foundation under grant CMMI-1434147, J. C. A. acknowledges support from the National Science Foundation under grant DMR-1451219, and L. W. M. acknowledges support from the Army Research Office under grant W911NF-14-1-0104. NR 38 TC 0 Z9 0 U1 5 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 28 PY 2015 VL 118 IS 24 AR 244101 DI 10.1063/1.4938116 PG 8 WC Physics, Applied SC Physics GA DA1CY UT WOS:000367535100017 ER PT J AU Macaluso, DA Aguilar, A Kilcoyne, ALD Red, EC Bilodeau, RC Phaneuf, RA Sterling, NC McLaughlin, BM AF Macaluso, D. A. Aguilar, A. Kilcoyne, A. L. D. Red, E. C. Bilodeau, R. C. Phaneuf, R. A. Sterling, N. C. McLaughlin, B. M. TI Absolute single-photoionization cross sections of Se2+: Experiment and theory SO PHYSICAL REVIEW A LA English DT Article ID NEUTRON-CAPTURE ELEMENTS; ATOMIC DATA; PLANETARY-NEBULAE; ABUNDANCE DETERMINATIONS; IONS; SPECTROSCOPY; EXCITATION; SELENIUM; IMPACT; STATES AB Absolute single-photoionization cross-section measurements for Se2+ ions were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged-beams photo-ion technique. Measurements were made at a photon energy resolution of 24 +/- 3 meV in the photon energy range 23.5-42.5 eV, spanning the ground state and low-lying metastable state ionization thresholds. To clearly resolve the resonant structure near the ground-state threshold, high-resolution measurements were made from 30.0 to 31.9 eV at a photon energy resolution of 6.7 +/- 0.7 meV. Numerous resonance features observed in the experimental spectra are assigned and their energies and quantum defects tabulated. The high-resolution cross-section measurements are compared with large-scale, state-of-the-art theoretical cross-section calculations obtained from the Dirac Coulomb R-matrix method. Suitable agreement is obtained over the entire photon energy range investigated. These results are an experimental determination of the absolute photoionization cross section of doubly ionized selenium and include a detailed analysis of the photoionization resonance spectrum of this ion. C1 [Macaluso, D. A.] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [Aguilar, A.; Kilcoyne, A. L. D.; Red, E. C.; Bilodeau, R. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bilodeau, R. C.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Phaneuf, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Sterling, N. C.] Univ West Georgia, Dept Phys, Carrollton, GA 30118 USA. [McLaughlin, B. M.] Queens Univ Belfast, CTAMOP, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [McLaughlin, B. M.] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA. RP Macaluso, DA (reprint author), Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. EM david.macaluso@umontana.edu; bmclaughlin899@btinternet.com RI Kilcoyne, David/I-1465-2013 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231, DE-AC03-76SF- 00098, DE-FG02-03ER15424]; Advanced Light Source; Montana Space Grant Consortium; NSF Astronomy and Astrophysics Postdoctoral Fellowship [AST-0901432]; NASA [06-APRA206-0049]; U.S. National Science Foundation under the visitors program; Harvard-Smithsonian Center for Astrophysics, Queen's University Belfast, through a visiting research fellowship (VRF); National Energy Research Scientific Computing Center [DE-AC02-05CH11231]; Oak Ridge National Laboratory [AC05-00OR22725] FX Support by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE) under Contracts No. DE-AC02-05CH11231 and No. DE-AC03-76SF- 00098 and Grant No. DE-FG02-03ER15424 is gratefully acknowledged. D.M. acknowledges support from the Doctoral Fellowship in Residence Program at the Advanced Light Source and the Montana Space Grant Consortium. N.C.S. acknowledges support from an NSF Astronomy and Astrophysics Postdoctoral Fellowship under Award No. AST-0901432 and from NASA Grant No. 06-APRA206-0049. B.M.M. acknowledges support by the U.S. National Science Foundation under the visitors program and through a grant to ITAMP at the Harvard-Smithsonian Center for Astrophysics, Queen's University Belfast, through a visiting research fellowship (VRF). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the DOE under Contract No. DE-AC02-05CH11231. The computational work was performed at the National Energy Research Scientific Computing Center in Oakland, California, USA, and at The High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Stuttgart, Germany. This research also used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the DoE under Contract No. DE-AC05-00OR22725. NR 55 TC 3 Z9 3 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD DEC 28 PY 2015 VL 92 IS 6 AR 063424 DI 10.1103/PhysRevA.92.063424 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CZ8TD UT WOS:000367371100017 ER PT J AU Blanco-Roldan, C Choi, Y Quiros, C Valvidares, SM Zarate, R Velez, M Alameda, JM Haskel, D Martin, JI AF Blanco-Roldan, C. Choi, Y. Quiros, C. Valvidares, S. M. Zarate, R. Velez, M. Alameda, J. M. Haskel, D. Martin, J. I. TI Tuning interfacial domain walls in GdCo/Gd/GdCo ' spring magnets SO PHYSICAL REVIEW B LA English DT Article ID AMORPHOUS GD-CO; MAGNETIZATION PROCESSES; TEMPERATURE; DEPENDENCE; FILMS AB Spring magnets based on GdCo multilayers have been prepared to study the nucleation and evolution of interfacial domain walls (iDWs) depending on layer composition and interlayer coupling. GdCo alloy compositions in each layer were chosen so that their net magnetization aligns either with the Gd (Gd35Co65) or Co(Gd11Co89) sublattices. This condition forces an antiparallel arrangement of the layers' net magnetization and leads to nucleation of iDWs above critical magnetic fields whose values are dictated by the interplay between Zeeman and exchange energies. By combining x-ray resonant magnetic scattering with Kerr magnetometry, we provide detailed insight into the nucleation and spatial profile of the iDWs. For strong coupling (GdCo/GdCo' bilayer), iDWs are centered at the interface but with asymmetric width depending on each layer magnetization. When interlayer coupling is weakened by introducing a thin Gd interlayer, the exchange spring effect becomes restricted to a lower temperature and field range than observed in the bilayer structure. Due to the ferromagnetic alignment between the high magnetization Gd35Co65 layer and the Gd interlayer, the iDW shrinks and moves into the lower exchange Gd interlayer, causing a reduction of iDW energy. C1 [Blanco-Roldan, C.; Quiros, C.; Zarate, R.; Velez, M.; Alameda, J. M.; Martin, J. I.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Blanco-Roldan, C.; Quiros, C.; Velez, M.; Alameda, J. M.; Martin, J. I.] Univ Oviedo, CSIC, CINN, El Entrego 33940, Spain. [Choi, Y.; Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Valvidares, S. M.] ALBA Synchrotron Light Facil, Barcelona 08290, Spain. RP Blanco-Roldan, C (reprint author), Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. EM jmartin@uniovi.es RI Martin, Jose/C-5250-2013; Velez, Maria/A-2734-2012; Quiros, Carlos/E-5669-2016; Valvidares, Secundino /M-4979-2016 OI Martin, Jose/0000-0003-2256-0909; Velez, Maria/0000-0003-0311-7434; Quiros, Carlos/0000-0002-0591-5563; Valvidares, Secundino /0000-0003-4895-8114 FU Spanish Ministerio de Economia y Competitividad (MINECO) [FIS2013-45469]; Spanish Ministerio de Ciencia e Innovacion (MICINN) [FIS2008-06249]; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX Work supported by Spanish Ministerio de Economia y Competitividad (MINECO) under grant FIS2013-45469 and Spanish Ministerio de Ciencia e Innovacion (MICINN) under grant FIS2008-06249. Work at Argonne was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. Advices for using the PPM software and code updates from A. Mirone are acknowledged. L. F. Seivane is acknowledged for support with Phyton package. Useful discussions with A. Hoffmann and S.G.E. te Velthuis are also acknowledged. NR 32 TC 0 Z9 0 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 28 PY 2015 VL 92 IS 22 AR 224433 DI 10.1103/PhysRevB.92.224433 PG 10 WC Physics, Condensed Matter SC Physics GA CZ8UV UT WOS:000367375500007 ER PT J AU Norman, MR AF Norman, M. R. TI Vector optical activity in the Weyl semimetal TaAs SO PHYSICAL REVIEW B LA English DT Article ID NATURAL CIRCULAR-DICHROISM; FERMION SEMIMETAL; CRYSTALS; ARCS AB It is shown that the Weyl semimetal TaAs can have a significant polar vector contribution to its optical activity. This is quantified by ab initio calculations of the resonant x-ray diffraction at the Ta L1 edge. For the Bragg vector (400), this polar vector contribution to the circular intensity differential between left and right polarized x rays is predicted to be comparable to that arising from linear dichroism, which could be tested by future experiments. Implications this result has in regards to optical effects predicted for topological Weyl semimetals are discussed. C1 [Norman, M. R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Norman, MR (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Norman, Michael/C-3644-2013 FU Materials Sciences and Engineering Division, Basic Energy Sciences, Office of Science, U.S. DOE FX This work was supported by the Materials Sciences and Engineering Division, Basic Energy Sciences, Office of Science, U.S. DOE. NR 27 TC 0 Z9 0 U1 6 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 28 PY 2015 VL 92 IS 24 AR 241116 DI 10.1103/PhysRevB.92.241116 PG 5 WC Physics, Condensed Matter SC Physics GA CZ8WD UT WOS:000367378900001 ER PT J AU Reichhardt, C Reichhardt, CJO AF Reichhardt, C. Reichhardt, C. J. Olson TI Shapiro steps for skyrmion motion on a washboard potential with longitudinal and transverse ac drives SO PHYSICAL REVIEW B LA English DT Article ID MOVING VORTEX LATTICE; CHARGE-DENSITY WAVES; MODE-LOCKING; QUANTUM INTERFERENCE; MAGNETIC SKYRMIONS; ROOM-TEMPERATURE; DC INTERFERENCE; CHIRAL MAGNET; PHASE-LOCKING; DYNAMICS AB We numerically study the behavior of two-dimensional skyrmions in the presence of a quasi-one-dimensional sinusoidal substrate under the influence of externally applied dc and ac drives. In the overdamped limit, when both dc and ac drives are aligned in the longitudinal direction parallel to the direction of the substrate modulation, the velocity-force curves exhibit classic Shapiro step features when the frequency of the ac drive matches the washboard frequency that is dynamically generated by the motion of the skyrmions over the substrate, similar to previous observations in superconducting vortex systems. In the case of skyrmions, the additional contribution to the skyrmion motion from a nondissipative Magnus force shifts the location of the locking steps to higher dc drives, and we find that the skyrmions move at an angle with respect to the direction of the dc drive. For a longitudinal dc drive and a perpendicular or transverse ac drive, the overdamped system exhibits no Shapiro steps; however, when a finite Magnus force is present, we find pronounced transverse Shapiro steps along with complex two-dimensional periodic orbits of the skyrmions in the phase-locked regimes. Both the longitudinal and transverse ac drives produce locking steps whose widths oscillate with increasing ac drive amplitude. We examine the role of collective skyrmion interactions and find that additional fractional locking steps occur for both longitudinal and transverse ac drives. At higher skyrmion densities, the system undergoes a series of dynamical order-disorder transitions, with the skyrmions forming a moving solid on the phase locking steps and a fluctuating dynamical liquid in regimes between the steps. C1 [Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 FU NNSA of the U.S. DoE at LANL [DE-AC52-06NA25396] FX This work was carried out under the auspices of the NNSA of the U.S. DoE at LANL under Contract No. DE-AC52-06NA25396. NR 64 TC 9 Z9 9 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 28 PY 2015 VL 92 IS 22 AR 224432 DI 10.1103/PhysRevB.92.224432 PG 11 WC Physics, Condensed Matter SC Physics GA CZ8UV UT WOS:000367375500006 ER PT J AU Schneeloch, JA Xu, ZJ Winn, B Stock, C Gehring, PM Birgeneau, RJ Xu, GY AF Schneeloch, John A. Xu, Zhijun Winn, B. Stock, C. Gehring, P. M. Birgeneau, R. J. Xu, Guangyong TI Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary SO PHYSICAL REVIEW B LA English DT Article ID ELASTIC NEUTRON-SCATTERING; DIFFUSE-SCATTERING; SINGLE-CRYSTALS; PBMG1/3NB2/3O3; PB(MG1/3NB2/3)O-3; TRANSITIONS; FREQUENCIES; ANOMALIES; SYSTEMS AB We report neutron inelastic scattering experiments on single-crystal PbMg1/3Nb2/3O3 doped with 32% PbTiO3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E parallel to [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 <= (h) over bar omega <= 9 meV. However, TA and TO phonons polarized perpendicular to E show no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled. C1 [Schneeloch, John A.; Xu, Guangyong] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Schneeloch, John A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Xu, Zhijun; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Xu, Zhijun; Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Winn, B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Stock, C.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Gehring, P. M.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Schneeloch, JA (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM jschneeloch@bnl.gov RI Xu, Guangyong/A-8707-2010 OI Xu, Guangyong/0000-0003-1441-8275 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Office of Basic Energy Sciences, US Department of Energy [DE-SC00112704, DE-AC02-05CH11231]; Carnegie Trust for the Universities of Scotland; Royal Society FX This research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. J.A.S. and G.Y.X. acknowledge support by the Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE-SC00112704. Z.J.X. and R.J.B. are also supported by the Office of Basic Energy Sciences, US Department of Energy, through Contract No. DE-AC02-05CH11231. C.S. acknowledges the support of the Carnegie Trust for the Universities of Scotland and the Royal Society. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology. NR 70 TC 0 Z9 0 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC 28 PY 2015 VL 92 IS 21 AR 214302 DI 10.1103/PhysRevB.92.214302 PG 8 WC Physics, Condensed Matter SC Physics GA CZ8UI UT WOS:000367374200005 ER PT J AU Xu, J Anand, VK Bera, AK Frontzek, M Abernathy, DL Casati, N Siemensmeyer, K Lake, B AF Xu, J. Anand, V. K. Bera, A. K. Frontzek, M. Abernathy, D. L. Casati, N. Siemensmeyer, K. Lake, B. TI Magnetic structure and crystal-field states of the pyrochlore antiferromagnet Nd2Zr2O7 SO PHYSICAL REVIEW B LA English DT Article ID SPIN-ICE; HEAT-CAPACITY; MONOPOLES; ND2MO2O7; HO2TI2O7; OXIDES; MODEL AB We present synchrotron x-ray diffraction, neutron powder diffraction, and time-of-flight inelastic neutron scattering measurements on the rare earth pyrochlore oxide Nd2Zr2O7 to study the ordered state magnetic structure and cystal-field states. The structural characterization by high-resolution synchrotron x-ray diffraction confirms that the pyrochlore structure has no detectable O vacancies or Nd/Zr site mixing. The neutron diffraction reveals long-range all-in/all-out antiferromagnetic order below T-N approximate to 0.4 K with propagation vector k = (0 0 0) and an ordered moment of 1.26(2) mu(B)/Nd at 0.1 K. The ordered moment is much smaller than the estimated moment of 2.65 mu(B)/Nd for the local < 111 > Ising ground state of Nd3+ (J = 9/2) suggesting that the ordering is partially suppressed by quantum fluctuations. The inelastic neutron scattering experiment further confirms the Ising anisotropic ground state of Nd3+ and also reveals its dipolar-octupolar character which possibly induces the quantum fluctuation. The crystal-field level scheme and ground state wave function have been determined. C1 [Xu, J.; Anand, V. K.; Bera, A. K.; Siemensmeyer, K.; Lake, B.] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany. [Xu, J.; Lake, B.] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany. [Bera, A. K.] Bhabha Atom Res Ctr, Div Solid State Phys, Bombay 400085, Maharashtra, India. [Frontzek, M.; Casati, N.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Abernathy, D. L.] Oak Ridge Natl Lab, Neutron Sci Directorate, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Xu, J (reprint author), Helmholtz Zentrum Berlin Mat & Energie GmbH, Hahn Meitner Pl 1, D-14109 Berlin, Germany. EM jianhui.xu@helmholtz-berlin.de; vivekkranand@gmail.com; bella.lake@helmholtz-berlin.de RI Abernathy, Douglas/A-3038-2012; Anand, Vivek Kumar/J-3381-2013; Frontzek, Matthias/C-5146-2012; BL18, ARCS/A-3000-2012; Bera, Anup Kumar /K-6477-2015 OI Lake, Bella/0000-0003-0034-0964; Abernathy, Douglas/0000-0002-3533-003X; Anand, Vivek Kumar/0000-0003-2023-7040; Frontzek, Matthias/0000-0001-8704-8928; Bera, Anup Kumar /0000-0003-0222-0990 FU Helmholtz Gemeinschaft via the Helmholtz Virtual Institute [VH-VI-521]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We thank A. T. M. N. Islam for his help in sample preparation, B. Klemke for his assistance in measurements using PPMS, F. Yokaichiya for his help in refining XRD data, A. T. Boothroyd for help on crystal-field analysis, and Y.-P. Huang and M. Hermele for helpful discussions on the related theory. We acknowledge Helmholtz Gemeinschaft for funding via the Helmholtz Virtual Institute (Project No. VH-VI-521). The research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 48 TC 12 Z9 12 U1 5 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 28 PY 2015 VL 92 IS 22 AR 224430 DI 10.1103/PhysRevB.92.224430 PG 12 WC Physics, Condensed Matter SC Physics GA CZ8UV UT WOS:000367375500004 ER PT J AU Perez, RN Amaro, JE Arriola, ER Maris, P Vary, JP AF Navarro Perez, R. Amaro, J. E. Ruiz Arriola, E. Maris, P. Vary, J. P. TI Statistical error propagation in ab initio no-core full configuration calculations of light nuclei SO PHYSICAL REVIEW C LA English DT Article AB We propagate the statistical uncertainty of experimental NN scattering data into the binding energy of H-3 and He-4. We also study the sensitivity of the magnetic moment and proton radius of the H-3 to changes in the NN interaction. The calculations are made with the no-core full configuration method in a sufficiently large harmonic oscillator basis. For those light nuclei we obtain Delta E-stat(H-3) = 0.015 MeV and Delta E-stat(He-4) = 0.055 MeV. C1 [Navarro Perez, R.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. [Amaro, J. E.; Ruiz Arriola, E.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain. [Amaro, J. E.; Ruiz Arriola, E.] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain. [Maris, P.; Vary, J. P.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Perez, RN (reprint author), Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. EM navarroperez1@llnl.gov; amaro@ugr.es; earriola@ugr.es; pmaris@iastate.edu; jvary@iastate.edu RI Ruiz Arriola, Enrique/A-9388-2015; Amaro, Jose/K-2551-2012 OI Ruiz Arriola, Enrique/0000-0002-9570-2552; Amaro, Jose/0000-0002-3234-9755 FU US Department of Energy [DESC0008485, DE-FG02-87ER40371]; US National Science Foundation [0904782]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Spanish DGI [FIS2014-29386-P]; Junta de Andalucia [FQM225]; U.S. Department of Energy [DE-AC52-07NA27344] FX This work was supported by the US Department of Energy under Grants No. DESC0008485 (SciDAC/NUCLEI) and No. DE-FG02-87ER40371, and by the US National Science Foundation under Grant No. 0904782. Computational resources were provided by the National Energy Research Supercomputer Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was also supported by Spanish DGI (Grant FIS2014-29386-P) and Junta de Andalucia (Grant FQM225). This work was partly performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 29 TC 5 Z9 5 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD DEC 28 PY 2015 VL 92 IS 6 AR 064003 DI 10.1103/PhysRevC.92.064003 PG 6 WC Physics, Nuclear SC Physics GA CZ8WN UT WOS:000367379900001 ER PT J AU Berlin, A Hooper, D McDermott, SD AF Berlin, Asher Hooper, Dan McDermott, Samuel D. TI Dark matter elastic scattering through Higgs loops SO PHYSICAL REVIEW D LA English DT Article ID GALACTIC-CENTER; EMISSION AB We consider a complete list of simplified models in which Majorana dark matter particles annihilate at tree level to hh or hZ final states and calculate the loop-induced elastic scattering cross section with nuclei in each case. Expressions for these annihilation and elastic scattering cross sections are provided and can be easily applied to a variety of UV-complete models. We identify several phenomenologically viable scenarios, including dark matter that annihilates through the s-channel exchange of a spin-zero mediator or through the t-channel exchange of a fermion. Although the elastic scattering cross sections predicted in this class of models are generally quite small, XENON1T and LZ should be sensitive to significant regions of this parameter space. Models in which the dark matter annihilates to hh or hZ can also generate a gamma-ray signal that is compatible with the excess observed from the Galactic center. C1 [Berlin, Asher] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [McDermott, Samuel D.] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. RP Berlin, A (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA. FU Kavli Institute for Cosmological Physics at the University of Chicago through National Science Foundation [PHY-1125897]; U.S. Department of Energy [DE-FG02-13ER41958, DE-AC02-07CH11359]; National Science Foundation [PHY-1066293, PHY-1316617] FX We would like to thank Mikhail Solon and Richard Hill for helpful discussions. A. B. is supported by the Kavli Institute for Cosmological Physics at the University of Chicago through National Science Foundation Grant No. PHY-1125897. D. H. is supported by the U.S. Department of Energy under Contract No. DE-FG02-13ER41958. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. This work was performed in part at the Aspen Center for Physics, which is supported by National Science Foundation Grant No. PHY-1066293. S.D.M. is supported by National Science Foundation Grant No. PHY-1316617. NR 71 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 28 PY 2015 VL 92 IS 12 AR 123531 DI 10.1103/PhysRevD.92.123531 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ8XC UT WOS:000367381400002 ER PT J AU Hirono, Y Kharzeev, DE Yin, Y AF Hirono, Yuji Kharzeev, Dmitri E. Yin, Yi TI Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-ION COLLISIONS; QUANTUM-FIELD THEORY; ELECTROMAGNETIC-FIELD; TRANSPORT AB For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field generates an electric current-this is the chiral magnetic effect (CME). We study the dynamical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse cascade of magnetic helicity toward the large distances, and that at late times this cascade becomes self-similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade represents the transition from linked electric and magnetic fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses of the CME current directed along the magnetic field lines. We devise an experimental signature of these phenomena in heavy ion collisions, and speculate about implications for condensed matter systems. C1 [Hirono, Yuji; Kharzeev, Dmitri E.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kharzeev, Dmitri E.; Yin, Yi] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kharzeev, Dmitri E.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Hirono, Y (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. FU U.S. Department of Energy [DE-FG-88ER40388]; DOE [DE-SC0012704]; JSPS Research Fellowship for Young Scientists FX We thank Larry McLerran, Soren Schlichting, Paul Wiegmann, Aihong Tang, and Ho-Ung Yee for useful discussions, Roman Jackiw for helpful comments on the manuscript and Carlos Hoyos for communication on the spectral representation of the Hopfion solution. This work was supported by the U.S. Department of Energy under Contract No. DE-FG-88ER40388 (D.K.) and by DOE Grant No. DE-SC0012704 (D.K and Y.Y.). Y.H. is supported by the JSPS Research Fellowship for Young Scientists. NR 34 TC 10 Z9 10 U1 4 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 28 PY 2015 VL 92 IS 12 DI 10.1103/PhysRevD.92.125031 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ8XC UT WOS:000367381400006 ER PT J AU Sullivan, JT Mcgee, TJ Thompson, AM Pierce, RB Sumnicht, GK Twigg, L Eloranta, E Hoff, RM AF Sullivan, John T. Mcgee, Thomas J. Thompson, Anne M. Pierce, R. Bradley Sumnicht, Grant K. Twigg, LaurenceW. Eloranta, Edwin Hoff, Raymond M. TI Characterizing the lifetime and occurrence of stratospheric-tropospheric exchange events in the rockymountain region using high-resolution ozone measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID POTENTIAL VORTICITY; NORTHERN-HEMISPHERE; LOW SYSTEMS; TROPOPAUSE; CLIMATOLOGY; LIDAR; INTRUSIONS; TRANSPORT; EUROPE; IMPACT AB The evolution of a Stratospheric-Tropospheric Exchange (STE) event from 4 to 8 August 2014 at Fort Collins, Colorado, is described. The event is characterized with observations from the Goddard Space Flight Center TROPospheric OZone (TROPOZ) Differential Absorption Lidar, the University of Wisconsin High Spectral Resolution Lidar, and multiple ozonesondes during NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality and the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) campaigns. Based on the extended TROPOZ observations throughout the entire campaign, it was found that STE events have largely contributed to an additional 10-30 ppbv of ozone at Fort Collins. Additional measurements of ozone and relative humidity from the Atmospheric Infrared Sounder are characterize the transport of the intrusion. The Real-time Air Quality Modeling System simulated ozone agrees well with the TROPOZ ozone concentrations and altitude during the STE event. To extend the analysis into other seasons and years, the modeled ozone to potential vorticity ratio is used as a tracer for stratospheric air residing below the tropopause. It is found that at Fort Collins, CO, and depending on season from 2012 to 2014, between 18 and 31% of tropospheric ozone corresponds to stratospheric air. A relationship to determine the lifetime of stratospheric air below the tropopause is derived using the simulated ratio tracer. Results indicate that throughout summer 2014, 43% of stratospheric air resided below the tropopause for less than 12 h. However, nearly 39% persisted below the tropopause for 12-48 h and likely penetrated deeper in the troposphere. C1 [Sullivan, John T.; Mcgee, Thomas J.] NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Sullivan, John T.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Thompson, Anne M.] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD USA. [Pierce, R. Bradley] NOAA NESDIS Ctr Satellite Applicat & Res Cooperat, Adv Satellite Prod Branch, Ctr Satellite Applicat & Res, Madison, WI USA. [Sumnicht, Grant K.; Twigg, LaurenceW.] Sci Syst & Applicat Inc, Lanham, MD USA. [Eloranta, Edwin] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Hoff, Raymond M.] Univ Maryland Baltimore Cty, Dept Atmospher Sci, Baltimore, MD 21228 USA. [Hoff, Raymond M.] Joint Ctr Earth Syst Technol, Baltimore, MD USA. RP Sullivan, JT (reprint author), NASA, Goddard Space Flight Ctr, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. EM john.t.sullivan@nasa.gov RI Pierce, Robert Bradley/F-5609-2010; Thompson, Anne /C-3649-2014 OI Pierce, Robert Bradley/0000-0002-2767-1643; Thompson, Anne /0000-0002-7829-0920 FU UMBC/JCE [8306, 374]; Maryland Department of the Environment (MDE) [U00P4400079]; NOAA-CREST CCNY Foundation [49173B-02]; National Aeronautics and Space Administration; NASA DISCOVER AQ grant [NNX10ARG]; Colorado Department of Public Health and Environment (CDPHE); NASA Postdoctoral Program; NASA HQ; NASA Tropospheric Chemistry Program; Tropospheric Ozone Lidar Network (TOLNet); Pennsylvania State University FX Unless otherwise noted, all data used in this study can be found in the DISCOVER-AQ/FRAPPE data archive (http://www-air.larc.nasa.gov/missions/discover-aq), the TOLNet data archive (http://www-air.larc.nasa.gov/missions/TOLNet), or the RAQMS data archive (http://raqms.ssec.wisc.edu). This work was supported by UMBC/JCET (Task 374, Project 8306), the Maryland Department of the Environment (MDE, contract U00P4400079), NOAA-CREST CCNY Foundation (subcontract 49173B-02), and the National Aeronautics and Space Administration. The Platteville Nittany Atmospheric Trailer and Integrated Validation Experiment (NATIVE) operations were sponsored by NASA DISCOVER AQ grant NNX10ARG and the Pennsylvania State University. The University of Wisconsin HSRL operations were supported from the Colorado Department of Public Health and Environment (CDPHE). This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center. The authors gratefully acknowledge support provided by NASA HQ, the NASA Tropospheric Chemistry Program, and the Tropospheric Ozone Lidar Network (TOLNet). Thanks to the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and thanks to the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) for supporting the RAQMS model runs. Thanks to the helpfulness and expertise of Ryan Stauffer, Hannah Halliday, and Nikolai Balashov who worked with the NATIVE trailer at Platteville. Thanks to Debra Wicks Kollonige for providing her insight and recommendations on this work. Also, thanks to A.O. Langford for the extensive discussions on the heritage of stratospheric events. The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official National Oceanic and Atmospheric Administration or U.S. Government position, policy, or decision. NR 40 TC 6 Z9 6 U1 4 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 27 PY 2015 VL 120 IS 24 BP 12410 EP 12424 DI 10.1002/2015JD023877 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DD3TU UT WOS:000369846700006 ER PT J AU Gordon, J Gandhi, P Shekhawat, G Frazier, A Hampton-Marcell, J Gilbert, JA AF Gordon, Julian Gandhi, Prasanthi Shekhawat, Gajendra Frazier, Angel Hampton-Marcell, Jarrad Gilbert, Jack A. TI A simple novel device for air sampling by electrokinetic capture SO MICROBIOME LA English DT Article DE Atomic force microscopy; Reverse transcriptase PCR; Air sampling; Field study; Aerosol; Nanoparticles; Aerobiome; Amplicon sequencing; Bacteria; Molds ID RESISTANT STAPHYLOCOCCUS-AUREUS; AIRBORNE BACTERIAL COMMUNITIES; QUANTITATIVE PCR ANALYSIS; SIZE DISTRIBUTIONS; CARE-CENTER; HOUSE-DUST; ALLERGENS; MICROBIOME; VARIABILITY; ASPERGILLUS AB Background: A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. Results: An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 mu m polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87 %, with the reference filter taken as "gold standard." Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. Conclusions: This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. The performance of the device is substantially equivalent to capture by pumping through a filter for microbiome analysis by quantitative PCR and amplicon sequencing. C1 [Gordon, Julian; Gandhi, Prasanthi] Inspirotec LLC, Glenview, IL 60025 USA. [Shekhawat, Gajendra] Northwestern Univ, McCormick Sch Engn & Appl Sci, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A.] Argonne Natl Lab, Biosci Div, Genom & Syst Biol, Argonne, IL 60439 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Gilbert, Jack A.] Univ Chicago, Dept Surg, Chicago, IL 60637 USA. [Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA. [Gilbert, Jack A.] Zhejiang Univ, Coll Environm & Resource Sci, Hangzhou 310058, Zhejiang, Peoples R China. RP Gordon, J (reprint author), Inspirotec LLC, 3307 Meadow Lane, Glenview, IL 60025 USA. EM jgordon@inspirotec.com FU Breakout Labs; program of the Thiel Foundation; US Dept. of Energy [DE-AC02-06CH11357] FX This work was partly supported by Breakout Labs, a program of the Thiel Foundation, and partly from personal funds from Julian Gordon and Prasanthi Gandhi. The authors are grateful to MS Diana Schnell for making the equestrian facility available for this study. This work was supported in part by the US Dept. of Energy under Contract DE-AC02-06CH11357. NR 50 TC 1 Z9 1 U1 3 U2 11 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2049-2618 J9 MICROBIOME JI Microbiome PD DEC 27 PY 2015 VL 3 AR 79 DI 10.1186/s40168-015-0141-2 PG 8 WC Microbiology SC Microbiology GA CZ7OT UT WOS:000367289400001 PM 26715467 ER PT J AU Lance, MJ Unocic, KA Haynes, JA Pint, BA AF Lance, M. J. Unocic, K. A. Haynes, J. A. Pint, B. A. TI APS TBC performance on directionally-solidified superalloy substrates with HVOF NiCoCrAlYHfSi bond coatings SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Photo-stimulated luminescence piezospectroscopy (PLPS); Water vapor; Bond coating; Alumina scale; TBC; Directionally-solidified superalloy ID THERMAL BARRIER COATINGS; WATER-VAPOR; GAS-TURBINES; ROUGHNESS; OXIDATION; LIFETIME AB Directionally-solidified (DS) superalloy components with advanced thermal barrier coatings (TBC) to lower the metal operating temperature have the potential to replace more expensive single crystal superalloys for large land-based turbines. In order to assess relative TBC performance, furnace cyclic testing was used with superalloys 1483, X4 and Hf-rich DS 247 substrates and high velocity oxygen fuel (HVOF)-NiCoCrAlYHfSi bond coatings at 1100 degrees C with 1-h cycles in air with 10% H2O. With these coating and test conditions, there was no statistically-significant effect of substrate alloy on the average lifetime of the air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) top coatings on small coupons. Using photo-stimulated luminescence piezospectroscopy maps at regular cycling intervals, the residual compressive stress in the alpha-Al2O3 scale underneath the YSZ top coating and on a bare bond coating was similar for all three substrates and delaminations occurred at roughly the same rate and frequency. X-ray fluorescence (XRF) measurements collected from the bare bond coating surface revealed higher Ti interdiffusion occurring with the 1483 substrate, which contained the highest Ti content. (C) 2015 Elsevier B.V. All rights reserved. C1 [Lance, M. J.; Unocic, K. A.; Haynes, J. A.; Pint, B. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Lance, MJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM lancem@ornl.gov RI Lance, Michael/I-8417-2016 OI Lance, Michael/0000-0001-5167-5452 FU U.S. Department of Energy, Office of Coal and Power R&D in the Office of Fossil Energy FX The authors would like to thank D. Leonard, G. Garner, T. Lowe, T. Geer and T. Jordan for the assistance with the experimental work at ORNL and E. Lara-Curzio and D. Wilson for comments on the manuscript. This research was sponsored by the U.S. Department of Energy, Office of Coal and Power R&D in the Office of Fossil Energy (R. Dennis program manager). NR 13 TC 3 Z9 3 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD DEC 25 PY 2015 VL 284 BP 9 EP 13 DI 10.1016/j.surfcoat.2015.08.067 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA DA5RH UT WOS:000367859700003 ER PT J AU Jang, BK Sun, JG Kim, S Oh, YS Lee, SM Kim, HT AF Jang, Byung-Koog Sun, Jiangang Kim, Seongwon Oh, Yoon-Suk Lee, Sung-Min Kim, Hyung-Tae TI Thermal conductivity of ZrO2-4 mol%Y2O3 thin coatings by pulsed thermal imaging method SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Electron beam-physical vapor deposition; ZrO2; Y2O3; Pulsed thermal imaging method; Thermal conductivity ID PHYSICAL VAPOR-DEPOSITION; BARRIER COATINGS; EB-PVD; FLASH METHOD; ZIRCONIA; DIFFUSIVITY; POROSITY AB Thin ZrO2-4 mol% Y2O3 coatings were deposited onto ZrO2 substrates by electron beam-physical vapor deposition. The coated samples revealed a feather-like columnar microstructure. The main phase of the ZrO2-4 mol% Y2O3 coatings was the tetragonal phase. To evaluate the influence of the coating's thickness on the thermal conductivity of thin ZrO2-4 mol% Y2O3 coatings, the pulsed thermal imaging method was employed to obtain the thermal conductivity of the coating layer in the two-layer (coating and substrate) samples with thickness between 56 and 337 lam. The thermal conductivity of the coating layer was successfully evaluated and compared well with those obtained by the laser flash method for similar coatings. The thermal conductivity of coatings shows an increasing tendency with an increase in the coating's thickness. (C) 2015 Elsevier B.V. All rights reserved. C1 [Jang, Byung-Koog] Natl Inst Mat Sci, High Temp Mat Unit, Tsukuba, Ibaraki 3050047, Japan. [Sun, Jiangang] Argonne Natl Lab, Argonne, IL 60439 USA. [Kim, Seongwon; Oh, Yoon-Suk; Lee, Sung-Min; Kim, Hyung-Tae] Korea Inst Ceram Engn & Technol, Engn Ceram Team, Inchon 17303, South Korea. RP Jang, BK (reprint author), Natl Inst Mat Sci, High Temp Mat Unit, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan. EM JANG.Byungkoog@nims.go.jp FU NIMS; fundamental R&D program for strategic core technology of materials - Ministry of Trade, Industry and Energy, Korea; U.S. Department of Energy, Office of Fossil Energy, the Crosscutting Research Program FX This work was carried out with financial support from NIMS and the fundamental R&D program for strategic core technology of materials funded by the Ministry of Trade, Industry and Energy, Korea. The Argonne National Laboratory work was sponsored by the U.S. Department of Energy, Office of Fossil Energy, the Crosscutting Research Program. NR 25 TC 0 Z9 0 U1 6 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD DEC 25 PY 2015 VL 284 BP 57 EP 62 DI 10.1016/j.surfcoat.2015.09.065 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA DA5RH UT WOS:000367859700010 ER PT J AU Clark, BR Pantoya, ML Hunt, EM Kelly, TJ Allen, BF Heaps, RJ Daniels, MA AF Clark, Billy R. Pantoya, Michelle L. Hunt, Emily M. Kelly, Trent J. Allen, Benton F. Heaps, Ronald J. Daniels, Michael A. TI Synthesis and characterization of flexible, free-standing, energetic thin films SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Energetic materials; Mechanical properties; Strength testing; Blade casting; Tape casting; Additive manufacturing; Aluminum combustion; Thermites; Thin films; Energy generation ID COMBUSTION; COMPOSITE; ALUMINUM AB This study uses blade casting methods for the synthesis of flexible, free-standing energetic films. Specifically, films include aluminum (Al) and (MoO3) powder thermites combined with potassium perchlorate (KCIO4) and silicone binder. In addition to this base composite, carbon fiber fabric reinforcement fabric has been incorporated to improve the structural integrity of the film. All films were cast at 1 mm thickness with constant percent solids to ensure consistent rheological properties. The films were ignited and flame propagation was recorded with a high speed camera. The results show that the energy propagation of the films increases with increasing mass percent KCIO4. The inclusion of carbon fiber fabric reinforcement fabric in the energetic film decreased the flame speed by 30% but maintained stable and steady energy propagation. The strengths of the films were tested to determine the effects of the carbon fiber fabric reinforcement fabric on the mechanical properties of the films. The non-reinforced film, failed upon initial loading of approximately 2.27 kg while the reinforced film maintained a load of 72.3 kg. While this method of synthesis allows manufacture of a flexible freestanding energetic film, the composition and rheology of the mixed slurry have potential as an extrusion cast energetic for additive manufacturing of energetic materials. (C) 2015 Elsevier ay. All rights reserved. C1 [Clark, Billy R.; Pantoya, Michelle L.] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. [Heaps, Ronald J.; Daniels, Michael A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Hunt, Emily M.; Kelly, Trent J.; Allen, Benton F.] West Texas A&M Univ, Dept Engn & Comp Sci, Canyon, TX 79016 USA. RP Pantoya, ML (reprint author), Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. EM michelle.pantoya@ttu.edu FU Army Research Office [W911NF-11-1-0439, W911NF-14-1-0250]; Idaho National Laboratory; LDRD program FX The authors are grateful for the support from the Army Research Office contract number W911NF-11-1-0439 and W911NF-14-1-0250 and encouragement from our program manager, Dr. Ralph Anthenien. Idaho National Laboratory is also gratefully acknowledged for supporting this collaborative work with internal funds via the LDRD program. NR 20 TC 0 Z9 0 U1 4 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD DEC 25 PY 2015 VL 284 BP 422 EP 426 DI 10.1016/j.surfcoat.2015.05.048 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA DA5RH UT WOS:000367859700060 ER PT J AU Hinkle, JD Ciesielski, PN Gruchalla, K Munch, KR Donohoe, BS AF Hinkle, Jacob D. Ciesielski, Peter N. Gruchalla, Kenny Munch, Kristin R. Donohoe, Bryon S. TI Biomass accessibility analysis using electron tomography SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Accessibility; Porosimetry; Tomography; Cellulose; Pretreatment; Biomass ID CLOSTRIDIUM-THERMOCELLUM; CELL-WALLS; CELLULOSE ACCESSIBILITY; LIGNOCELLULOSIC BIOMASS; PRETREATED BIOMASS; PORE-SIZE; AXIS; DECONSTRUCTION; DIGESTIBILITY; MICROFIBRILS AB Background: Substrate accessibility to catalysts has been a dominant theme in theories of biomass deconstruction. However, current methods of quantifying accessibility do not elucidate mechanisms for increased accessibility due to changes in microstructure following pretreatment. Results: We introduce methods for characterization of surface accessibility based on fine-scale microstructure of the plant cell wall as revealed by 3D electron tomography. These methods comprise a general framework, enabling analysis of image-based cell wall architecture using a flexible model of accessibility. We analyze corn stover cell walls, both native and after undergoing dilute acid pretreatment with and without a steam explosion process, as well as AFEX pretreatment. Conclusion: Image-based measures provide useful information about how much pretreatments are able to increase biomass surface accessibility to a wide range of catalyst sizes. We find a strong dependence on probe size when measuring surface accessibility, with a substantial decrease in biomass surface accessibility to probe sizes above 5-10 nm radius compared to smaller probes. C1 [Hinkle, Jacob D.; Gruchalla, Kenny; Munch, Kristin R.] Natl Renewable Energy Lab, Computat Sci Ctr, Golden, CO 80401 USA. [Ciesielski, Peter N.; Donohoe, Bryon S.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Donohoe, BS (reprint author), Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM bryon.donohoe@nrel.gov FU Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000997]; BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the US DOE Office of Science FX The 3D electron tomography imaging of cell wall architecture was supported as part of the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Award Number DE-SC0000997. The visualization and computational analysis of accessibility was supported by the BioEnergy Science Center (BESC). BESC is a US Department of Energy (DOE) Bioenergy Research Center supported by the Office of Biological and Environmental Research in the US DOE Office of Science. We would like to thank our colleagues at the Biomass Conversion Research Laboratory at Michigan State University for providing the AFEX-pretreated materials. We thank Xiaowen Chen and Melvin Tucker for providing the original steam-exploded biomass samples. NR 42 TC 0 Z9 0 U1 8 U2 14 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD DEC 25 PY 2015 VL 8 AR 212 DI 10.1186/s13068-015-0395-8 PG 16 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CZ5KP UT WOS:000367141600001 PM 26709354 ER PT J AU Knihtila, R Holzapfel, G Weiss, K Meilleur, F Mattos, C AF Knihtila, Ryan Holzapfel, Genevieve Weiss, Kevin Meilleur, Flora Mattos, Carla TI Neutron Crystal Structure of RAS GTPase Puts in Question the Protonation State of the GTP gamma-Phosphate SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID GUANOSINE TRIPHOSPHATE HYDROLYSIS; FREE-ENERGY RELATIONSHIPS; CONSERVED AMINO-ACIDS; X-RAY; ACTIVATING PROTEIN; MACROMOLECULAR CRYSTALLOGRAPHY; EVOLUTIONARY TREE; TRANSITION-STATE; ATOM POSITIONS; MECHANISM AB RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated gamma-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the start of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. The neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases. C1 [Knihtila, Ryan; Mattos, Carla] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA. [Holzapfel, Genevieve; Meilleur, Flora; Mattos, Carla] N Carolina State Univ, Dept Mol & Struct Biochem, Raleigh, NC 27695 USA. [Weiss, Kevin; Meilleur, Flora] Oak Ridge Natl Lab, Biol & Soft Matter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP Mattos, C (reprint author), Northeastern Univ, Dept Chem & Chem Biol, 102 Hurtig Hall,360 Huntington Ave, Boston, MA 02115 USA. EM c.mattos@neu.edu RI Weiss, Kevin/I-4669-2013 OI Weiss, Kevin/0000-0002-6486-8007 FU National Science Foundation [CHE-0922719]; Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy FX We thank Matthew Civic for assistance with x-ray data collection. Neutron data were collected at the High Flux Isotope Reactor; Oak Ridge National Laboratory; the IMAGINE beamline was supported by National Science Foundation Grant CHE-0922719, Research conducted at High Flux Isotope Reactor, Oak Ridge National Laboratory, was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, United States Department of Energy, Large scale protein expression for crystal optimization was conducted at the Center for Structural Molecular Biology, Oak Ridge National Laboratory, which is supported by the United States Department of Energy, Office of Biological and Environmental Research. NR 58 TC 3 Z9 3 U1 3 U2 5 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD DEC 25 PY 2015 VL 290 IS 52 BP 31025 EP 31036 DI 10.1074/jbc.M115.679860 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CZ6GK UT WOS:000367199000032 PM 26515069 ER PT J AU Hernandez, SC Wilkerson, MP Huda, MN AF Hernandez, Sarah C. Wilkerson, Marianne P. Huda, Muhammad N. TI Understanding oxygen adsorption on 9.375 at. % Ga-stabilized delta-Pu (111) surface: A DFT study SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Density functional theory; Plutonium-gallium; Surface; Oxygen; Oxidation; Electronic structure ID ELECTRONIC-STRUCTURE; PHASE-STABILITY; AB-INITIO; PLUTONIUM; ALLOYS; TRANSFORMATIONS; METALS AB Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature delta-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized delta-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with a chemisorption energy of -5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu-Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states to hybridize with the O 2p states. The Ga 4p states also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O. Published by Elsevier B.V. C1 [Hernandez, Sarah C.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Wilkerson, Marianne P.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Huda, Muhammad N.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. RP Hernandez, SC (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM hernansc@lanl.gov OI Hernandez, Sarah/0000-0002-1432-700X FU US Department of Energy through the Los Alamos National Laboratory LDRD Program; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the US Department of Energy through the Los Alamos National Laboratory LDRD Program. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (contract DE-AC52-06NA25396). S.C.H. would like to gratefully acknowledge discussions with R. Atta-Fynn (UTA), T. J. Venhaus (LANL), and P. Roussel (AWE). Computational support from the Texas Advanced Computing Center (www.tacc.utexas.edu) and the University of Texas at Arlington supercomputing facilities are also gratefully acknowledged. NR 40 TC 1 Z9 1 U1 5 U2 24 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD DEC 25 PY 2015 VL 653 BP 411 EP 421 DI 10.1016/j.jallcom.2015.08.246 PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA CU1GZ UT WOS:000363270000057 ER PT J AU Raz-Yaseef, N Billesbach, DP Fischer, ML Biraud, SC Gunter, SA Bradford, JA Torn, MS AF Raz-Yaseef, Naama Billesbach, Dave P. Fischer, Marc L. Biraud, Sebastien C. Gunter, Stacey A. Bradford, James A. Torn, Margaret S. TI Vulnerability of crops and native grasses to summer drying in the US Southern Great Plains SO AGRICULTURE ECOSYSTEMS & ENVIRONMENT LA English DT Article DE Agriculture; Drought; Southern Great Plains; Wheat; Switchgrass; Prairie; NEE; GPP; Evapotranspiration ID UNITED-STATES; INTERANNUAL VARIABILITY; TALLGRASS PRAIRIE; SPRING DROUGHT; CARBON FLUXES; NET ECOSYSTEM; EXCHANGE; PRECIPITATION; GRASSLAND; CO2 AB The Southern Great Plains are characterized by a fine-scale mixture of different land-cover types, predominantly winter-wheat and grazed pasture, with relatively small areas of other crops, native prairie, and switchgrass. Recent droughts and predictions of increased drought in the Southern Great Plains, especially during the summer months, raise concern for these ecosystems. We measured ecosystem carbon and water fluxes with eddy-covariance systems over cultivated cropland for 10.years, and over lightly grazed prairie and new switchgrass fields for 2 years each. Growing-season precipitation showed the strongest control over net carbon uptake for all ecosystems, but with a variable effect: grasses (prairie and switchgrass) needed at least 350 mm of precipitation during the growing season to become net carbon sinks, while crops needed only 100 mm. In summer, high temperatures enhanced evaporation and led to higher likelihood of dry soil conditions. Therefore, summer-growing native prairie species and switchgrass experienced more seasonal droughts than spring-growing crops. For wheat, the net reduction in carbon uptake resulted mostly from a decrease in gross primary production rather than an increase in respiration. Flux measurements suggested that management practices for crops were effective in suppressing evapotranspiration and decomposition (by harvesting and removing secondary growth), and in increasing carbon uptake (by fertilizing and conserving summer soil water). In light of future projections for wetter springs and drier and warmer summers in the Southern Great Plains, our study indicates an increased vulnerability in native ecosystems and summer crops over time. (C) 2015 Elsevier B.V. C1 [Raz-Yaseef, Naama; Biraud, Sebastien C.; Torn, Margaret S.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Billesbach, Dave P.] Univ Nebraska, Dept Biol Syst Engn, Lincoln, NE 68583 USA. [Fischer, Marc L.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA USA. [Gunter, Stacey A.; Bradford, James A.] ARS, USDA, Southern Plains Range Res Stn, Miami, FL USA. [Torn, Margaret S.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. RP Raz-Yaseef, N (reprint author), 1 Cyclotron Rd,84R118B, Berkeley, CA 94720 USA. EM rynaama@gmail.com RI Torn, Margaret/D-2305-2015; Biraud, Sebastien/M-5267-2013; Raz Yaseef, Naama/D-3385-2015 OI Biraud, Sebastien/0000-0001-7697-933X; Raz Yaseef, Naama/0000-0002-7405-1607 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Atmospheric System Research and Atmospheric Radiation Measurement Programs, under Award Number DE-AC02-05CH11231. NR 50 TC 0 Z9 0 U1 1 U2 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8809 EI 1873-2305 J9 AGR ECOSYST ENVIRON JI Agric. Ecosyst. Environ. PD DEC 25 PY 2015 VL 213 BP 209 EP 218 DI 10.1016/j.agee.2015.07.021 PG 10 WC Agriculture, Multidisciplinary; Ecology; Environmental Sciences SC Agriculture; Environmental Sciences & Ecology GA CS5TL UT WOS:000362141100021 ER PT J AU Porterfield, JP Nguyen, TL Baraban, JH Buckingham, GT Troy, TP Kostko, O Ahmed, M Stanton, JF Daily, JW Ellison, GB AF Porterfield, Jessica P. Thanh Lam Nguyen Baraban, Joshua H. Buckingham, Grant T. Troy, Tyler P. Kostko, Oleg Ahmed, Musahid Stanton, John F. Daily, John W. Ellison, G. Barney TI Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; UNIMOLECULAR DECOMPOSITION; IONIZATION ENERGIES; GAS-PHASE; CYCLOPENTADIENONE; INTERMEDIATE; PYROLYSIS; SPECTRA; BOND; DISSOCIATION AB The thermal decomposition of cyclohexanone (C6H10=O) has been studied in a set of flash-pyrolysis microreactors. Decomposition of the ketone was observed when dilute samples of C6H10=O were heated to 1200 K in a continuous flow microreactor. Pyrolysis products were detected and identified by tunable VUV photoionization mass spectroscopy and by photoionization appearance thresholds. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures were roughly 100 Torr, and contact times with the microreactors were roughly 100 mu s. Thermal cracking of cyclohexanone appeared to result from a variety of competing pathways, all of which open roughly simultaneously. Isomerization of cydohexanone to the enol, cydohexen-1-ol (C6H9OH), is followed by retro-Diels-Alder cleavage to CH2=CH2 and CH2=C(OH)-CH=CH2. Further isomerization of CH2=C(OH)-CH=CH2 to methyl vinyl ketone (CH3CO-CH=CH2, MVK) was also observed. Photoionization spectra identified both enols, C6H9OH and CH2=C(OH)-CH=CH2, and the ionization threshold of C6H9OH was measured to be 8.2 +/- 0.1 eV. Coupled cluster electronic structure calculations were used to establish the energetics of MVK. The heats of formation of MVK and its enol were calculated to be Delta H-f(298)(cis-CH3CO-CH=CH2) = -26.1 +/- 0.5 kcal mol(-1) and Delta H-f(298)(s-cis-1-CH2=C(OH)-CH=CH2) = -13.7 +/- 0.5 kcal mol(-1). The reaction enthalpy Delta H-rxn(298)(C6H10=O -> CH2=CH2 + s-cis-1-CH2=C(OH)-CH=CH2) is 53 +/- 1 kcal mol(-1) and Delta H-rxn(298)(C6H10=O -> CH2=CH2 + cis-CH3CO-CH=CH2) is 41 +/- 1 kcal mol(-1). At 1200 K, the products of cydohexanone pyrolysis were found to be C6H9OH, CH2=C(OH)-CH=CH2, MVK, CH2CHCH2, CO, CH2=C=O, CH3, CH2=C=CH2, CH2=CH-CH=CH2, CH2=CHCH2CH3, CH2=CH2, and HC CH. C1 [Porterfield, Jessica P.; Baraban, Joshua H.; Buckingham, Grant T.; Ellison, G. Barney] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Thanh Lam Nguyen; Stanton, John F.] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA. [Troy, Tyler P.; Kostko, Oleg; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Daily, John W.] Univ Colorado, Dept Mech Engn, Ctr Combust & Environm Res, Boulder, CO 80309 USA. RP Ellison, GB (reprint author), Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. EM barney@jila.colorado.edu RI Kostko, Oleg/B-3822-2009; Ahmed, Musahid/A-8733-2009 OI Kostko, Oleg/0000-0003-2068-4991; FU National Science Foundation [CHE-1112466, CBET-1403979]; Robert A. Welch Foundation [F-1283]; United States Department of Energy, Basic Energy Sciences [DE-FG02-07ER15884]; Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy [DE-AC02- 05CH11231] FX We acknowledge support from the National Science Foundation (CHE-1112466 and CBET-1403979) for J.P.P, J.H.B., G.T.B, J.W.D., and G.B.E. J.F.S. and T.L.N. also acknowledge support from the Robert A. Welch Foundation (Grant F-1283) and the United States Department of Energy, Basic Energy Sciences (DE-FG02-07ER15884). M.A., O.K., and T.P.T. and the Advanced Light Source are supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy under contract no. DE-AC02- 05CH11231. We are grateful to Dr. Aristotelis Zaras for extended discussions about the computational results for cyclohexanone pyrolysis. We are grateful for the helpful suggestions from the referees. NR 58 TC 1 Z9 2 U1 3 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 24 PY 2015 VL 119 IS 51 BP 12635 EP 12647 DI 10.1021/acs.jpca.5b10984 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DA1MY UT WOS:000367561100006 PM 26617252 ER PT J AU Edri, E Frei, H AF Edri, Eran Frei, Heinz TI Charge Transport through Organic Molecular Wires Embedded in Ultrathin Insulating Inorganic Layer SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PROTON-EXCHANGE MEMBRANES; SENSITIZED SOLAR-CELLS; CARBON-DIOXIDE; HYDROGEN-PRODUCTION; ELECTRON-TRANSFER; PHOTOCATALYTIC REDUCTION; MESOPOROUS SILICA; WATER OXIDATION; FUEL-CELLS; LIGHT AB Dense phase silica layers with thickness of a few nanometers featuring embedded organic molecular wires of type p-oligo(phenyienevinylene) are shown by visible light sensitized electrochemical measurements to transport charges across the insulating membrane. We find that such hybrid materials combination allows electronic charge transport only through the wires, while blocking molecular transport. Embodiment of the wire molecules in the silica was accomplished by atomic layer deposition under mild temperature conditions. Grown on CO oxide films:for water oxidation, with the wire molecules covalently anchored on the Oxide surface, the layer functions as a proton conducting separation Membrane. Characterization by XPS, FT-IR and STEM/DX confirms the integrity of the silica-encapsulated organic Wires,. Cyclic voltammetry with redox couple of selected potential relative to the energy-levels of the wire molecules shows that the Membrane is free of pinholes. The new type of membrane allows separation of incompatible redox reaction environments on the length stale of nanometers while enabling controlled electron transport between them. This opens up the coupling of carbon dioxide reduction with water oxidation, the essential reactions of artificial photosynthesis, in an integrated nanoscale photosystem. C1 [Edri, Eran; Frei, Heinz] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Frei, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM hmfrei@lbl.gov RI Edri, Eran/Q-9801-2016 OI Edri, Eran/0000-0003-4593-6489 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences; Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biosciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Portions of this work (plasma enhanced atomic layer deposition, e-beam evaporation, ellipsometry), were performed as a User Project at The Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences. Electron microscopy part of this work was performed as a User Project at The National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences. Portion of the work (XPS measurements, GAATR-FT-IR) was performed at the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993. NR 55 TC 2 Z9 2 U1 6 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 24 PY 2015 VL 119 IS 51 BP 28326 EP 28334 DI 10.1021/acs.jpcc.5b09994 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DA1NE UT WOS:000367561700011 ER PT J AU Mattoon, CM Beck, BR AF Mattoon, C. M. Beck, B. R. TI Designing a new structure for storing nuclear data Progress of the Working Party for Evaluation Cooperation subgroup #38 SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article AB An international effort is underway to design a new structure for storing and using nuclear reaction data, with the goal of eventually replacing the current standard, ENDF-6 (see the formats manual at http://www.nndc.bnl.gov/csewg/docs/endf-manual.pdf). This effort, organized by the Working Party for Evaluation Cooperation, was initiated in 2012 and has resulted in a list of requirements and specifications for how the proposed new structure shall perform. The new structure will take advantage of new developments in computational tools, using a nested hierarchy to store data. The structure can be stored in text form (such as an XML file) for human readability and data sharing, or it can be stored in binary to optimize data access. In this paper, we present the progress towards completing the requirements, specifications and implementation of the new structure. C1 [Mattoon, C. M.; Beck, B. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Mattoon, CM (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave L-059, Livermore, CA 94550 USA. EM mattoon1@llnl.gov FU Department of Energy (Lawrence Livermore National Laboratory) [AC52-07NA27344]; Nuclear Data Program Initiative of American Recovery and Reinvestment Act (ARRA); 31 OECD/NEA FX WPEC is under the auspices of the 31 OECD/NEA databank member countries: http://www.oecd-nea.org/nea/mcnea.html. This work was performed under the auspices of Department of Energy contract No. DE-AC52-07NA27344 (Lawrence Livermore National Laboratory). The project was partly funded through the Nuclear Data Program Initiative of the American Recovery and Reinvestment Act (ARRA). NR 6 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD DEC 24 PY 2015 VL 51 IS 12 AR 183 DI 10.1140/epja/i2015-15183-y PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DA0AQ UT WOS:000367459500004 ER PT J AU Ahmad, MF Huff, SE Pink, J Alam, I Zhang, A Perry, K Harris, ME Misko, T Porwal, SK Oleinick, NL Miyagi, M Viswanathan, R Dealwis, CG AF Ahmad, Md Faiz Huff, Sarah E. Pink, John Alam, Intekhab Zhang, Andrew Perry, Kay Harris, Michael E. Misko, Tessianna Porwal, Suheel K. Oleinick, Nancy L. Miyagi, Masaru Viswanathan, Rajesh Dealwis, Chris Godfrey TI Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID ALLOSTERIC REGULATION; DRUG DISCOVERY; LARGE SUBUNIT; COMPREHENSIVE MODEL; DNA-SYNTHESIS; INDUCED OLIGOMERIZATION; DIPHOSPHATE REDUCTASE; QUATERNARY STRUCTURE; ACCURATE DOCKING; STRUCTURAL BASIS AB Ribonucleotide reductase (RR) catalyzes the rate-limiting :step of,dNTP synthesis and is an established cancer target. Drugs targeting RR are mainly nucleoside in nature. In this study, we sought to identify non-nucleoside small-molecule inhibitors of RR. Using Virtual screening, binding affinity, inhibition, and cell toxicity, we have discovered a class of small molecules that alter the equilibrium of inactive hexamers of RR, leading to its inhibition. Several unique, chemical categories, including a phthalimide derivative, show micromolar IC(50)s and K(D)s while demonstrating cytotoxicity. A crystal structure of an active phthalimide binding at the, targeted interface supports the noncompetitive mode of inhibition determined by kinetic studies. Furthermore, the phthalimide shifts the equilibrium from dimer hexamer. Together, these data identify several novel non-nucleoside inhibitors of human RR which act by stabilizing the inactive form of the enzyme. C1 [Ahmad, Md Faiz; Alam, Intekhab; Zhang, Andrew; Misko, Tessianna; Dealwis, Chris Godfrey] Case Western Reserve Univ, Sch Med, Dept Pharmacol, Cleveland, OH 44106 USA. [Huff, Sarah E.; Viswanathan, Rajesh] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA. [Pink, John; Oleinick, Nancy L.] Case Western Reserve Univ, Case Comprehens Canc Ctr, Cleveland, OH 44106 USA. [Perry, Kay] Argonne Natl Lab, Northeastern CAT Adv Photon Source, Argonne, IL 60439 USA. [Harris, Michael E.] Case Western Reserve Univ, Sch Med, Dept Biochem, Cleveland, OH 44106 USA. [Oleinick, Nancy L.] Case Western Reserve Univ, Sch Med, Dept Radiat Oncol, Cleveland, OH 44106 USA. [Dealwis, Chris Godfrey] Case Western Reserve Univ, Ctr Prote, Cleveland, OH 44106 USA. [Dealwis, Chris Godfrey] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA. [Porwal, Suheel K.] Univ Deharadun, Dehradun Inst Technol, Dept Chem, Dehra Dun 248197, India. [Miyagi, Masaru] Case Western Reserve Univ, Ctr Prote & Bioinformat, Cleveland, OH 44106 USA. RP Dealwis, CG (reprint author), Case Western Reserve Univ, Sch Med, Dept Pharmacol, Cleveland, OH 44106 USA. EM chris.dealwis@case.edu FU National Institutes of Health [R01GM100887, R01CA100827]; Translational Research & Pharmacology Core Facility of Case Comprehensive Cancer Center [P30 CA43703]; Early Clinical Trials of Anti-Cancer Agents; Phase I Emphasis UO1 grant [U01 CA062502]; National Institute of General Medical Sciences from National Institutes of Health [P41 GM103403]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; [5R25CA148052-05] FX This work was funded by the National Institutes of Health, grants R01GM100887 and R01CA100827. T.M. was supported by training grant 5R25CA148052-05. This research was also supported by the Translational Research & Pharmacology Core Facility of the Case Comprehensive Cancer Center (P30 CA43703) and the Early Clinical Trials of Anti-Cancer Agents with Phase I Emphasis UO1 grant (U01 CA062502). We thank the Case Western Reserve University School of Medicine and the University of Cincinnati for making the chemical library available to us for screening. We thank the members of NE-CAT at the APS and X29 at NSLS for assistance with data collection. The NE-CAT beamlines are supported by a grant from the National Institute of General Medical Sciences (P41 GM103403) from the National Institutes of Health. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We acknowledge Mr. Andrew Burr for assisting us with ligand interaction analysis. We appreciate William Seibel for sharing his expert knowledge on the Cincinnati library. We would like to acknowledge Banumathi Sankaran for screening crystals at the ALS beamline. We thank Kathleen Lundberg for her assistance in the mass spectrometry analysis. NR 57 TC 1 Z9 1 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 EI 1520-4804 J9 J MED CHEM JI J. Med. Chem. PD DEC 24 PY 2015 VL 58 IS 24 BP 9498 EP 9509 DI 10.1021/acs.jmedchem.5b00929 PG 12 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA DA1NS UT WOS:000367563100005 PM 26488902 ER PT J AU Clough, K Figueras, P Finkel, H Kunesch, M Lim, EA Tunyasuvunakool, S AF Clough, Katy Figueras, Pau Finkel, Hal Kunesch, Markus Lim, Eugene A. Tunyasuvunakool, Saran TI GRChombo: Numerical relativity with adaptive mesh refinement SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE numerical; general relativity; adaptive mesh ID GRAVITATIONAL COLLAPSE; BLACK-HOLES; EVOLUTIONS; EQUATIONS; WAVES; FIELD AB In this work, we introduce GRChombo: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial 'many-boxes-in-many-boxes' mesh hierarchies and massive parallelism through the message passing interface. GRChombo evolves the Einstein equation using the standard BSSN formalism, with an option to turn on CCZ4 constraint damping if required. The AMR capability permits the study of a range of new physics which has previously been computationally infeasible in a full 3 + 1 setting, while also significantly simplifying the process of setting up the mesh for these problems. We show that GRChombo can stably and accurately evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes, demonstrate the performance characteristics of our code, and discuss various physics problems which stand to benefit from the AMR technique. C1 [Clough, Katy; Lim, Eugene A.] Kings Coll London, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England. [Figueras, Pau] Queen Mary Univ London, London, England. [Finkel, Hal] Argonne Natl Lab, Argonne, IL 60439 USA. [Kunesch, Markus; Tunyasuvunakool, Saran] Univ Cambridge, DAMTP, Cambridge, England. RP Clough, K (reprint author), Kings Coll London, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England. OI Clough, Katy/0000-0001-8841-1522; Tunyasuvunakool, Saran/0000-0002-1620-6797 FU BIS National E-infrastructure capital grant [ST/J005673/1]; STFC grants [ST/H008586/1, ST/K00333X/1]; STFC AGP grant [ST/L000717/1]; European Research Council grant [ERC-2011-StG279363HiDGR]; Stephen Hawking Advanced Research Fellowship from the Centre for Theoretical Cosmology, University of Cambridge; STFC studentship; Bridgwater Summer Undergraduate Research Programme at the Centre for Mathematical Sciences, University of Cambridge; King's College, Cambridge; US Department of Energy (DOE) [DE-AC02-06CH11357]; DOE Office of Science User Facility [DE-AC02-06CH11357] FX We would first like to thank the Lean collaboration for allowing us to use their code as a basis for comparison, and especially Helvi Witek for helping with the setting up and running of the Lean simulation. We would like to thank Erik Schnetter, Ulrich Sperhake, Helvi Witek, Luis Lehner, Carlos Palenzuela and Tom Giblin for many useful conversations, and members of the Chombo collaboration, Daniel Martin and Brian Van Straalen. We would especially like to thank Juha Jaykka and James Briggs for their amazing technical support. This work was undertaken on the COSMOS Shared Memory system at DAMTP, University of Cambridge operated on behalf of the STFC DiRAC HPC Facility. This equipment is funded by BIS National E-infrastructure capital grant ST/J005673/1 and STFC grants ST/H008586/1, ST/K00333X/1. EAL acknowledges support from an STFC AGP grant ST/L000717/1. PF and ST are supported by the European Research Council grant ERC-2011-StG279363HiDGR. PF is also supported by the Stephen Hawking Advanced Research Fellowship from the Centre for Theoretical Cosmology, University of Cambridge. MK is supported by an STFC studentship. He started his work on this project as a summer student funded by the Bridgwater Summer Undergraduate Research Programme at the Centre for Mathematical Sciences, University of Cambridge, and by King's College, Cambridge. HF is supported by the US Department of Energy (DOE), and this research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility, both supported under Contract DE-AC02-06CH11357. Part of the performance test for this work was performed on Louisiana State University's High Performance Computing facility. NR 75 TC 7 Z9 7 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD DEC 24 PY 2015 VL 32 IS 24 AR 245011 DI 10.1088/0264-9381/32/24/245011 PG 34 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY4EH UT WOS:000366360900013 ER PT J AU Ossokine, S Foucart, F Pfeiffer, HP Boyle, M Szilagyi, B AF Ossokine, Serguei Foucart, Francois Pfeiffer, Harald P. Boyle, Michael Szilagyi, Bela TI Improvements to the construction of binary black hole initial data SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE numerical relativity; wave generation and sources; classical black holes ID CAUCHY-CHARACTERISTIC EXTRACTION; GENERAL-RELATIVITY; GRAVITATIONAL-RADIATION; NUMERICAL RELATIVITY; ASTROPHYSICS; EVOLUTION; WAVES AB Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the spectral Einstein code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation. C1 [Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald P.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Ossokine, Serguei] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Foucart, Francois] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Pfeiffer, Harald P.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [Boyle, Michael] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Szilagyi, Bela] CALTECH, Theoret Astrophys 350 17, Pasadena, CA 91125 USA. RP Ossokine, S (reprint author), Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada. EM ossokine@astro.utoronto.ca FU NSERC of Canada; Canada Research Chairs Program; Canadian Institute for Advanced Research; Vincent and Beatrice Tremaine Postdoctoral fellowship at CITA; NASA [PF4-150122]; Sherman Fairchild Foundation; NSF Grants at Cornell [PHY-1306125, AST-1333129]; NSF Grants at Caltech [PHY-1440083, AST-1333520]; Canada Foundation for Innovation (CFI) under Compute Canada; Government of Ontario; Ontario Research Fund (ORF)-Research Excellence; University of Toronto; Canada Foundation for Innovation (CFI); Ministere de l'Economie, de l'Innovation et des Exportations du Quebec (MEIE); RMGA; Fonds de recherche du Quebec-Nature et Technologies (FRQ-NT) FX We thank Geoffrey Lovelace, Larry Kidder and Mark Scheel for helpful discussions. Calculations were performed with the SpEC-code [31]. We gratefully acknowledge support from NSERC of Canada, from the Canada Research Chairs Program, and from the Canadian Institute for Advanced Research. FF gratefully acknowledges support from the Vincent and Beatrice Tremaine Postdoctoral fellowship at CITA. Support for this work was provided by NASA through Einstein Postdoctoral Fellowship grant numbered PF4-150122. We further gratefully acknowledge support from the Sherman Fairchild Foundation; from NSF Grants PHY-1306125 and AST-1333129 at Cornell; and from NSF Grants No. PHY-1440083 and AST-1333520 at Caltech. Calculations were performed at the Gravity cluster and the GPC supercomputer at the SciNet HPC Consortium [71]; SciNet is funded by: the Canada Foundation for Innovation (CFI) under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund (ORF)-Research Excellence; and the University of Toronto. Further calculations were performed on the Briaree cluster from Sherbrooke University, managed by Calcul Quebec and Compute Canada. The operation of this supercomputer is funded by the Canada Foundation for Innovation (CFI), Ministere de l'Economie, de l'Innovation et des Exportations du Quebec (MEIE), RMGA and the Fonds de recherche du Quebec-Nature et Technologies (FRQ-NT). NR 70 TC 5 Z9 5 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD DEC 24 PY 2015 VL 32 IS 24 AR 245010 DI 10.1088/0264-9381/32/24/245010 PG 24 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY4EH UT WOS:000366360900012 ER PT J AU Myers, CE Yamada, M Ji, HT Yoo, J Fox, W Jara-Almonte, J Savcheva, A DeLuca, EE AF Myers, Clayton E. Yamada, Masaaki Ji, Hantao Yoo, Jongsoo Fox, William Jara-Almonte, Jonathan Savcheva, Antonia DeLuca, Edward E. TI A dynamic magnetic tension force as the cause of failed solar eruptions SO NATURE LA English DT Article ID CORONAL MASS EJECTIONS; FLUX ROPE; PROMINENCE ERUPTIONS; TORUS INSTABILITY; KINK INSTABILITY; PLASMA; FLARES; RECONNECTION; EQUILIBRIUM; CATASTROPHE AB Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona(1). In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes(2-5). When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun(6-8). The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability(9-14). This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt(15). This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. Here we report the results of a laboratory experiment(16) that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. This magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events. C1 [Myers, Clayton E.; Ji, Hantao; Jara-Almonte, Jonathan] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; Yoo, Jongsoo; Fox, William; Jara-Almonte, Jonathan] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ji, Hantao] Harbin Inst Technol, Lab Space Environm & Phys Sci, Harbin 150001, Heilongjiang, Peoples R China. [Savcheva, Antonia; DeLuca, Edward E.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Myers, CE (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM cmyers@pppl.gov RI DeLuca, Edward/L-7534-2013; OI DeLuca, Edward/0000-0001-7416-2895; Yoo, Jongsoo/0000-0003-3881-1995; Myers, Clayton/0000-0003-4539-8406 FU Department of Energy (DoE) [DE-AC02-09CH11466]; National Science Foundation/DoE Center for Magnetic Self-Organization (CMSO) FX We thank R. Cutler for constructing the flux rope experiment and for myriad technical contributions. We also thank F. Scotti and P. Sloboda for additional technical contributions and R. M. Kulsrud for theoretical discussions. This research is supported by Department of Energy (DoE) contract number DE-AC02-09CH11466 and by the National Science Foundation/DoE Center for Magnetic Self-Organization (CMSO). NR 43 TC 7 Z9 7 U1 10 U2 28 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD DEC 24 PY 2015 VL 528 IS 7583 BP 526 EP + DI 10.1038/nature16188 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ3GH UT WOS:000366991900046 PM 26701052 ER PT J AU Brunette, TJ Parmeggiani, F Huang, PS Bhabha, G Ekiert, DC Tsutakawa, SE Hura, GL Tainer, JA Baker, D AF Brunette, T. J. Parmeggiani, Fabio Huang, Po-Ssu Bhabha, Gira Ekiert, Damian C. Tsutakawa, Susan E. Hura, Greg L. Tainer, John A. Baker, David TI Exploring the repeat protein universe through computational protein design SO NATURE LA English DT Article ID X-RAY-SCATTERING; SAXS; SOFTWARE; DATABASE; MOTIF; MACROMOLECULES; ARCHITECTURE; GENERATION; RESOLUTION; STABILITY AB A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit(1) are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes(2). Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications(3-5). Here we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix-loop-helix-loop structural motif. Eighty-three designs with sequences unrelated to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 degrees C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 angstrom. Our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering. C1 [Brunette, T. J.; Parmeggiani, Fabio; Huang, Po-Ssu; Baker, David] Univ Washington, Dept Biochem, Seattle, WA 98195 USA. [Brunette, T. J.; Parmeggiani, Fabio; Huang, Po-Ssu; Baker, David] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA. [Bhabha, Gira] UCSF, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA. [Ekiert, Damian C.] UCSF, Dept Microbiol & Immunol, San Francisco, CA 94158 USA. [Tsutakawa, Susan E.; Hura, Greg L.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. [Hura, Greg L.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Tainer, John A.] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA. [Baker, David] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA. RP Baker, D (reprint author), Univ Washington, Dept Biochem, Seattle, WA 98195 USA. EM dabaker@uw.edu RI Parmeggiani, Fabio/B-9344-2016; OI Parmeggiani, Fabio/0000-0001-8548-1090; Ekiert, Damian/0000-0002-2570-0404 FU National Science Foundation (NSF) [MCB-1445201, CHE-1332907]; Defense Threat Reduction Agency (DTRA); Air Force Office of Scientific Research (AFOSR) [FA950-12-10112]; Howard Hughes Medical Institute [HHMI-027779]; Swiss National Science Foundation Postdoc Fellowship [PBZHP3-125470]; Human Frontier Science Program Long-Term Fellowship [LT000070/2009-L]; National Institutes of Health grant MINOS (Macromolecular Insights on Nucleic Acids Optimized by Scattering) [GM105404]; United States Department of Energy program Integrated Diffraction Analysis Technologies (IDAT); Damon Runyon Cancer Research Foundation [DRG-2140-12]; Merck fellowship of the Damon Runyon Cancer Research Foundation [DRG-2136-12]; NIH [K99GM112982]; Robert A. Welch Distinguished Chair in Chemistry; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; UC Office of the President, Multicampus Research Programs and Initiatives [MR-15-338599]; Sandler Foundation; National Institutes of Health; National Institute of General Medical Sciences; Howard Hughes Medical Institute FX We thank D. Kim and members of the protein production facility at the Institute for Protein Design. This work was facilitated though the use of advanced computational, storage and networking infrastructure provided by the Hyak supercomputer system at the University of Washington. This work was supported in part by grants from the National Science Foundation (NSF) (MCB-1445201 and CHE-1332907), the Defense Threat Reduction Agency (DTRA), the Air Force Office of Scientific Research (AFOSR) (FA950-12-10112) and the Howard Hughes Medical Institute (HHMI-027779). F.P. was the recipient of a Swiss National Science Foundation Postdoc Fellowship (PBZHP3-125470) and a Human Frontier Science Program Long-Term Fellowship (LT000070/2009-L). SAXS work at the Advanced Light Source SIBLYS beamline was supported by the National Institutes of Health grant MINOS (Macromolecular Insights on Nucleic Acids Optimized by Scattering) GM105404 and by United States Department of Energy program Integrated Diffraction Analysis Technologies (IDAT). D.C.E. is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation (Grant DRG-2140-12). G.B. is a recipient of the Merck fellowship of the Damon Runyon Cancer Research Foundation (DRG-2136-12) and is supported by NIH grant K99GM112982. J.A.T. is supported by a Robert A. Welch Distinguished Chair in Chemistry. We thank J. Holton for advice on S-SAD data collection, and the staff of ALS 8.2.1 and 8.3.1 for beamline support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. ALS beamline 8.3.1 is supported by the UC Office of the President, Multicampus Research Programs and Initiatives grant MR-15-338599 and the Program for Breakthrough Biomedical Research, which is partially funded by the Sandler Foundation. ALS beamline 8.2.1 and the Berkeley Center for Structural Biology are supported in part by the National Institutes of Health, National Institute of General Medical Sciences, and the Howard Hughes Medical Institute. NR 47 TC 28 Z9 28 U1 21 U2 70 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD DEC 24 PY 2015 VL 528 IS 7583 BP 580 EP + DI 10.1038/nature16162 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ3GH UT WOS:000366991900058 PM 26675729 ER PT J AU Zhou, W Yin, KB Wang, CH Zhang, YY Xu, T Borisevich, A Sun, LT Idrobo, JC Chisholm, MF Pantelides, ST Klie, RF Lupini, AR AF Zhou, Wu Yin, Kuibo Wang, Canhui Zhang, Yuyang Xu, Tao Borisevich, Albina Sun, Litao Idrobo, Juan Carlos Chisholm, Matthew F. Pantelides, Sokrates T. Klie, Robert F. Lupini, Andrew R. TI The observation of square ice in graphene questioned SO NATURE LA English DT Letter C1 [Zhou, Wu; Yin, Kuibo; Zhang, Yuyang; Borisevich, Albina; Chisholm, Matthew F.; Pantelides, Sokrates T.; Lupini, Andrew R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Yin, Kuibo; Xu, Tao; Sun, Litao] Southeast Univ, Minist Educ, Key Lab MEMS, SEU FEI Nanopico Ctr, Nanjing 210096, Jiangsu, Peoples R China. [Wang, Canhui; Klie, Robert F.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Zhang, Yuyang; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Idrobo, Juan Carlos] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Zhou, W (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM wu.zhou.stem@gmail.com RI Zhou, Wu/D-8526-2011; Borisevich, Albina/B-1624-2009; Zhang, Yu-Yang/F-2078-2011; Yin, Kuibo/G-5812-2011; Xu, Tao/N-2539-2013; OI Zhou, Wu/0000-0002-6803-1095; Borisevich, Albina/0000-0002-3953-8460; Zhang, Yu-Yang/0000-0002-9548-0021; Yin, Kuibo/0000-0001-5268-6807; Xu, Tao/0000-0001-5436-0077; Idrobo, Juan Carlos/0000-0001-7483-9034 NR 9 TC 8 Z9 8 U1 30 U2 118 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD DEC 24 PY 2015 VL 528 IS 7583 BP E1 EP E2 DI 10.1038/nature16145 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ3GH UT WOS:000366991900001 PM 26701058 ER PT J AU Guttormsen, M Aiche, M Garrote, FLB Bernstein, LA Bleuel, DL Byun, Y Ducasse, Q Eriksen, TK Giacoppo, F Gorgen, A Gunsing, F Hagen, TW Jurado, B Klintefjord, M Larsen, AC Lebois, L Leniau, B Nyhus, HT Renstrom, T Rose, SJ Sahin, E Siem, S Tornyi, TG Tveten, GM Voinov, A Wiedeking, M Wilson, J AF Guttormsen, M. Aiche, M. Garrote, F. L. Bello Bernstein, L. A. Bleuel, D. L. Byun, Y. Ducasse, Q. Eriksen, T. K. Giacoppo, F. Gorgen, A. Gunsing, F. Hagen, T. W. Jurado, B. Klintefjord, M. Larsen, A. C. Lebois, L. Leniau, B. Nyhus, H. T. Renstrom, T. Rose, S. J. Sahin, E. Siem, S. Tornyi, T. G. Tveten, G. M. Voinov, A. Wiedeking, M. Wilson, J. TI Experimental level densities of atomic nuclei SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article AB It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. From the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold. C1 [Guttormsen, M.; Garrote, F. L. Bello; Eriksen, T. K.; Giacoppo, F.; Gorgen, A.; Hagen, T. W.; Klintefjord, M.; Larsen, A. C.; Nyhus, H. T.; Renstrom, T.; Rose, S. J.; Sahin, E.; Siem, S.; Tornyi, T. G.; Tveten, G. M.] Univ Oslo, Dept Phys, POB 1048, N-0316 Oslo, Norway. [Aiche, M.; Ducasse, Q.; Jurado, B.] Univ Bordeaux, CNRS IN2P3, CENBG, F-33175 Gradignan, France. [Bernstein, L. A.; Bleuel, D. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Byun, Y.; Voinov, A.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Gunsing, F.] CEA Saclay, DSM Irfu SPhN, F-91191 Gif Sur Yvette, France. [Lebois, L.; Leniau, B.; Wilson, J.] Inst Phys Nucl Orsay, F-91406 Orsay, France. [Wiedeking, M.] iThemba LABS, ZA-7129 Somerset West, South Africa. RP Guttormsen, M (reprint author), Univ Oslo, Dept Phys, POB 1048, N-0316 Oslo, Norway. EM magne.guttormsen@fys.uio.no RI Larsen, Ann-Cecilie/C-8742-2014; OI Larsen, Ann-Cecilie/0000-0002-2188-3709; Tveten, Gry Merete/0000-0002-6942-8254; Gorgen, Andreas/0000-0003-1916-9941 NR 37 TC 4 Z9 4 U1 2 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD DEC 23 PY 2015 VL 51 IS 12 AR 170 DI 10.1140/epja/i2015-15170-4 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DI8XM UT WOS:000373785700009 ER PT J AU Jandel, M Baramsai, B Bond, E Rusev, G Walker, C Bredeweg, TA Chadwick, MB Couture, A Fowler, MM Hayes, A Kawano, T Mosby, S Stetcu, I Taddeucci, TN Talou, P Ullmann, JL Vieira, DJ Wilhelmy, JB AF Jandel, M. Baramsai, B. Bond, E. Rusev, G. Walker, C. Bredeweg, T. A. Chadwick, M. B. Couture, A. Fowler, M. M. Hayes, A. Kawano, T. Mosby, S. Stetcu, I. Taddeucci, T. N. Talou, P. Ullmann, J. L. Vieira, D. J. Wilhelmy, J. B. TI Capture and fission with DANCE and NEUANCE SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article AB A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on U-235 are focused on quantifying the population of short-lived isomeric states in U-236 after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. C1 [Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Jandel, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mjandel@lanl.gov OI Rusev, Gencho/0000-0001-7563-1518 FU US Department of Energy by Los Alamos National Security, LLC [DE-AC52-06NA25396]; U.S. Department of Energy (DOE), Office of Science, Nuclear Physics [LANL20135009]; U.S. Department of Energy through the LANL/LDRD Program; Office of Defense Nuclear Nonproliferation Research and Development, US Department of Energy, NNSA FX This work benefited from the use of the LANSCE accelerator facility. Work was performed under the auspices of the US Department of Energy by Los Alamos National Security, LLC, under Contract DE-AC52-06NA25396. Work described in sect. 3 was supported by the U.S. Department of Energy (DOE), Office of Science, Nuclear Physics under the Early Career Award #LANL20135009. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program for the work described in sect. 4. The first measurements of correlated data on fission observables, as described in sect. 5 are supported by the Office of Defense Nuclear Nonproliferation Research and Development, US Department of Energy, NNSA. NR 14 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD DEC 23 PY 2015 VL 51 IS 12 AR 179 DI 10.1140/epja/i2015-15179-7 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DI8XM UT WOS:000373785700018 ER PT J AU Kawanoa, T AF Kawanoa, T. TI Challenges beyond Hauser-Feshbach for nuclear reaction modeling SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID COMPOUND-NUCLEUS; MULTISTEP COMPOUND; FISSION-BARRIERS; CROSS-SECTIONS; HEAVY-NUCLEI; PARTICLE; SCATTERING; CONTINUUM AB We discuss deficiencies in the statistical Hauser-Feshbach theory implemented into the available computer codes, and possible extension of reaction calculations in the next decade, which are particularly important to nuclear data studies. The discussions include a nuclear deformation effect in the width fluctuation calculation, and combining nuclear structure models with the Hauser-Feshbach calculations. Some examples are given to calculate the direct process and the pre-equilibrium process. C1 [Kawanoa, T.] Los Alamos Natl Lab, T-2, Los Alamos, NM 87545 USA. RP Kawanoa, T (reprint author), Los Alamos Natl Lab, T-2, Los Alamos, NM 87545 USA. EM kawano@lanl.gov FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We would like to thank H.A. Weidenmuller, L. Bonneau, S. Kunieda, P. Talou, R. Capote, S. Hilaire, M. Dupuis, E. Bauge, P. Romain for stimulating discussions and invaluable advice. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 37 TC 2 Z9 2 U1 3 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD DEC 23 PY 2015 VL 51 IS 12 AR 164 DI 10.1140/epja/i2015-15164-2 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DI8XM UT WOS:000373785700003 ER PT J AU Moller, P Ichikawa, T AF Moeller, Peter Ichikawa, Takatoshi TI A method to calculate fission-fragment yields Y(Z, N) versus proton and neutron number in the Brownian shape-motion model Application to calculations of U and Pu charge yields SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID NUCLEAR-FISSION; MASSES; HEAVY; BARRIERS AB We propose a method to calculate the two-dimensional (2D) fission-fragment yield Y (Z, N) versus both proton and neutron number, with inclusion of odd-even staggering effects in both variables. The approach is to use the Brownian shape-motion on a macroscopic-microscopic potential-energy surface which, for a particular compound system is calculated versus four shape variables: elongation (quadrupole moment Q(2)), neck d, left nascent fragment spheroidal deformation epsilon(f1), right nascent fragment deformation epsilon(f2) and two asymmetry variables, namely proton and neutron numbers in each of the two fragments. The extension of previous models 1) introduces a method to calculate this generalized potential-energy function and 2) allows the correlated transfer of nucleon pairs in one step, in addition to sequential transfer. In the previous version the potential energy was calculated as a function of Z and N of the compound system and its shape, including the asymmetry of the shape. We outline here how to generalize the model from the "compound-system" model to a model where the emerging fragment proton and neutron numbers also enter, over and above the compound system composition. C1 [Moeller, Peter] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ichikawa, Takatoshi] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. RP Moller, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM moller@lanl.gov OI Moller, Peter/0000-0002-5848-3565 FU NNSA of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; MEXT SPIRE; MEXT JICFuS; JSPS [25287065]; [DE-FG02-06ER41407] FX Discussions with A. Sierk, A. Iwamoto, and J. Randrup are appreciated. This work was supported by travel grants for P.M. to JUSTIPEN (Japan-U.S. Theory Institute for Physics with Exotic Nuclei) under grant number DE-FG02-06ER41407 (U. Tennessee). This work was carried out under the auspices of the NNSA of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. TI was supported in part by MEXT SPIRE and JICFuS and JSPS KAKENHI Grant no. 25287065. NR 26 TC 2 Z9 2 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD DEC 23 PY 2015 VL 51 IS 12 AR 173 DI 10.1140/epja/i2015-15173-1 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DI8XM UT WOS:000373785700012 ER PT J AU Schunck, N McDonnell, JD Higdon, D Sarich, J Wild, SM AF Schunck, N. McDonnell, J. D. Higdon, D. Sarich, J. Wild, S. M. TI Uncertainty quantification and propagation in nuclear density functional theory SO EUROPEAN PHYSICAL JOURNAL A LA English DT Review ID HARMONIC-OSCILLATOR BASIS; FOCK-BOGOLYUBOV EQUATIONS; AXIALLY DEFORMED SOLUTION; MONTE-CARLO METHOD; SPHERICAL-SYMMETRY; COORDINATE-SPACE; ISOTOPE SHIFTS; GOGNY FORCE; 3D MESH; PROGRAM AB Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going efforts seek to better root nuclear DFT in the theory of nuclear forces (see Duguet et al., this Topical Issue), energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in finite nuclei. In this paper, we review recent efforts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature. C1 [Schunck, N.; McDonnell, J. D.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. [McDonnell, J. D.] Francis Marion Univ, Dept Phys & Astron, Florence, SC 29501 USA. [Higdon, D.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Sarich, J.; Wild, S. M.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Schunck, N (reprint author), Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. EM schunck1@llnl.gov RI Wild, Stefan/P-4907-2016; OI Wild, Stefan/0000-0002-6099-2772; Schunck, Nicolas/0000-0002-9203-6849 FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC52-07NA27344, DE-AC02-06CH11357, DE-SC0008511]; NNSA's Stewardship Science Academic Alliances Program [DE-NA0001820]; Livermore Computing Resource Center at Lawrence Livermore National Laboratory; Laboratory Computing Resource Center at Argonne National Laboratory; National Center for Computational Sciences and National Institute for Computational Sciences at Oak Ridge National Laboratory FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under award numbers DE-AC52-07NA27344 (Lawrence Livermore National Laboratory), DE-AC02-06CH11357 (Argonne National Laboratory), and DE-SC0008511 (NUCLEI SciDAC Collaboration), and by the NNSA's Stewardship Science Academic Alliances Program under award no. DE-NA0001820. Computational resources were provided through an INCITE award "Computational Nuclear Structure" by the National Center for Computational Sciences and National Institute for Computational Sciences at Oak Ridge National Laboratory, through an award by the Livermore Computing Resource Center at Lawrence Livermore National Laboratory, and through an award by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 142 TC 3 Z9 3 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD DEC 23 PY 2015 VL 51 IS 12 AR 169 DI 10.1140/epja/i2015-15169-9 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DI8XM UT WOS:000373785700008 ER PT J AU Zadrozny, JM Niklas, J Poluektov, OG Freedman, DE AF Zadrozny, Joseph M. Niklas, Jens Poluektov, Oleg G. Freedman, Danna E. TI Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit SO ACS CENTRAL SCIENCE LA English DT Article ID QUANTUM COMPUTATION; DOPED SOLIDS; TEMPERATURE; RELAXATION; COMPUTERS; COMPLEXES; RADICALS; SILICON; MAGNETS AB Quantum information processing (QIP) could revolutionize areas ranging from chemical modeling to cryptography. One key figure of merit for the smallest unit for QIP, the qubit, is the coherence time (T-2), which establishes the lifetime for the qubit. Transition metal complexes offer tremendous potential as tunable qubits, yet their development is hampered by the absence of synthetic design principles to achieve a long T-2. We harnessed molecular design to create a series of qubits, (Ph4P)(2)[V(C8S8)(3)] (1), (Ph4P)(2)[V(beta-C3S5)(3)] (2), (Ph4P)(2)[V(alpha-C3S5)(3)] (3), and (Ph4P)(2)[V(C3S4O)(3)] (4), with T(2)s of 1-4 mu s at 80 K in protiated and deuterated environments. Crucially, through chemical tuning of nuclear spin content in the vanadium(IV) environment we realized a T-2 of similar to 1 ms for the species (d(20)- Ph4P)(2)[V(C8S8)(3)] (1') in CS2, a value that surpasses the coordination complex record by an order of magnitude. This value even eclipses some prominent solid-state qubits. Electrochemical and continuous wave electron paramagnetic resonance (EPR) data reveal variation in the electronic influence of the ligands on the metal ion across 1-4. However, pulsed measurements indicate that the most important influence on decoherence is nuclear spins in the protiated and deuterated solvents utilized herein. Our results illuminate a path forward in synthetic design principles, which should unite CS2 solubility with nuclear spin free ligand fields to develop a new generation of molecular qubits. C1 [Zadrozny, Joseph M.; Freedman, Danna E.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Niklas, Jens; Poluektov, Oleg G.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Freedman, DE (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM danna.freedman@northwestern.edu RI Niklas, Jens/I-8598-2016; Zadrozny, Joseph/A-1429-2017; OI Niklas, Jens/0000-0002-6462-2680; Zadrozny, Joseph/0000-0002-1309-6545; Freedman, Danna/0000-0002-2579-8835 NR 35 TC 30 Z9 30 U1 10 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2374-7943 EI 2374-7951 J9 ACS CENTRAL SCI JI ACS Central Sci. PD DEC 23 PY 2015 VL 1 IS 9 BP 488 EP 492 DI 10.1021/acscentsci.5b00338 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DI0JC UT WOS:000373180900008 PM 27163013 ER PT J AU Qiao, BF Ferru, G de la Cruz, MO Ellis, RJ AF Qiao, Baofu Ferru, Geoffroy de la Cruz, Monica Olvera Ellis, Ross J. TI Molecular Origins of Mesoscale Ordering in a Metalloamphiphile Phase SO ACS CENTRAL SCIENCE LA English DT Article ID SOLVENT-EXTRACTION SYSTEM; LIQUID-LIQUID-EXTRACTION; ORGANIC SOLUTIONS; SCATTERING DATA; TRANSFORMATION; TRANSITION; MICELLES; DYNAMICS; METAL; ORGANIZATION AB Controlling the assembly of soft and deformable molecular aggregates into mesoscale structures is essential for understanding and developing a broad range of processes including rare earth extraction and cleaning of water, as well as for developing materials with unique properties. By combined synchrotron small-and wide-angle X-ray scattering with large-scale atomistic molecular dynamics simulations we analyze here a metalloamphiphile-oil solution that organizes on multiple length scales. The molecules associate into aggregates, and aggregates flocculate into meso-ordered phases. Our study demonstrates that dipolar interactions, centered on the amphiphile headgroup, bridge ionic aggregate cores and drive aggregate flocculation. By identifying specific intermolecular interactions that drive mesoscale ordering in solution, we bridge two different length scales that are classically addressed separately. Our results highlight the importance of individual intermolecular interactions in driving mesoscale ordering. C1 [Qiao, Baofu; Ferru, Geoffroy; Ellis, Ross J.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [de la Cruz, Monica Olvera] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [de la Cruz, Monica Olvera] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Qiao, BF (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM qiaob@anl.gov; rellis@anl.gov RI ellis, ross/J-1981-2016 OI ellis, ross/0000-0001-7691-5205 NR 41 TC 7 Z9 7 U1 5 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2374-7943 EI 2374-7951 J9 ACS CENTRAL SCI JI ACS Central Sci. PD DEC 23 PY 2015 VL 1 IS 9 BP 493 EP 503 DI 10.1021/acscentsci.5b00306 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA DI0JC UT WOS:000373180900009 PM 27163014 ER PT J AU Huang, CY Zhou, J Tra, VT White, R Trappen, R N'Diaye, AT Spencer, M Frye, C Cabrera, GB Nguyen, V LeBeau, JM Chu, YH Holcomb, MB AF Huang, C-Y Zhou, J. Tra, V. T. White, R. Trappen, R. N'Diaye, A. T. Spencer, M. Frye, C. Cabrera, G. B. Nguyen, V. LeBeau, J. M. Chu, Y-H Holcomb, M. B. TI Imaging magnetic and ferroelectric domains and interfacial spins in magnetoelectric La0.7Sr0.3MnO3/PbZr0.2Ti0.8O3 heterostructures SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE magnetoelectric; manganite; interface; photoemission electron microscopy; dichroism; LSMO; image analysis ID MULTIFERROIC MATERIAL; FERROMAGNETISM; COMPOSITES; BATIO3; FILMS AB Strong magnetoelectric coupling can occur at the interface between ferromagnetic and ferroelectric films. Similar to work on interfacial exchange bias, photoemission electron microscopy was utilized to image both magnetic and ferroelectric domains and the resulting interfacial Ti spin in the same locations of La0.7Sr0.3MnO3/PbZr0.2Ti0.8O3 heterostructures. Multiple image analysis techniques, which could be applicable for a variety of fields needing quantitative data on image switching, confirm both improved magnetic switching and an increased population of interfacial spins with increased thickness of the ultrathin La0.7Sr0.3MnO3 layer. The perpendicular orientation of the interfacial spins is also discussed. This work suggests a magnetoelectric dead layer, with reduced interfacial magnetoelectricity when thin magnetic films are present. C1 [Huang, C-Y; Zhou, J.; Trappen, R.; Spencer, M.; Frye, C.; Cabrera, G. B.; Nguyen, V.; Holcomb, M. B.] W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. [Tra, V. T.] Natl Chiao Tung Univ, Inst Phys, Hsinchu 30010, Taiwan. [White, R.; LeBeau, J. M.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [N'Diaye, A. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Chu, Y-H] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Chu, Y-H] Acad Sinica, Inst Phys, Taipei 105, Taiwan. RP Huang, CY (reprint author), W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. EM mikel.holcomb@mail.wvu.edu RI Ying-Hao, Chu/A-4204-2008 OI Ying-Hao, Chu/0000-0002-3435-9084 FU WV Higher Education Policy Commission Research Challenge [HECP.dsr.12.29]; National Science Foundation's ADVANCE IT Program [HRD-1007978]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX Thank you to Paul Holcomb who developed the initial versions of the Matlab programs for averaging the large data sets shown in figures 3(e) and 4(a). This work was supported predominately by the WV Higher Education Policy Commission Research Challenge grant HECP.dsr.12.29). Partial support for the work was provided by the National Science Foundation's ADVANCE IT Program under Award HRD-1007978. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 43 TC 0 Z9 0 U1 6 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD DEC 23 PY 2015 VL 27 IS 50 AR 504003 DI 10.1088/0953-8984/27/50/504003 PG 9 WC Physics, Condensed Matter SC Physics GA DA7PT UT WOS:000367997100004 PM 26613406 ER PT J AU Cole, JM Low, KS Gong, Y AF Cole, Jacqueline M. Low, Kian Sing Gong, Yun TI Discovery of Black Dye Crystal Structure Polymorphs: Implications for Dye Conformational Variation in Dye-Sensitized Solar Cells SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE multiconformation; structure; dye-sensitized solar cell; black dye; polymorph; dye center dot center dot center dot TiO2 ID NANOCRYSTALLINE TIO2; LINKAGE ISOMERS; COMPLEXES; MOLECULES; DATABASE; ORIENTATION; ABSORPTION; PACKING; SURFACE; PLATON AB We present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world's leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye center dot center dot center dot TiO2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiple conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye center dot center dot center dot TiO2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye TiO2 interfaces in DSSCs, at least for ruthenium-based dye complexes. C1 [Cole, Jacqueline M.; Low, Kian Sing; Gong, Yun] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Cole, Jacqueline M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Cole, JM (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. EM jmc61@cam.ac.uk RI Cole, Jacqueline/C-5991-2008 FU DOE Office of Science, Office of Basic Energy Sciences [DE-AC02-299 06CH11357]; EPSRC [EP/P504120/1]; Cambridge Trusts FX J.M.C. is grateful to the 1851 Royal Commission of the Great Exhibition for the 2014 Design Fellowship and to Argonne National Laboratory, IL, where work done was supported by DOE Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-299 06CH11357. K.S.L. acknowledges the EPSRC for a Doctoral Training Grant (EP/P504120/1). Y.G. thanks the Cambridge Trusts for a PhD scholarship. All authors thank Dr. Sarah Barnett from beamline I19 at Diamond Light Source, United Kingdom, for collecting the data for 2 via the mail-in synchrotron access facility. NR 44 TC 1 Z9 1 U1 7 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD DEC 23 PY 2015 VL 7 IS 50 BP 27646 EP 27653 DI 10.1021/acsami.5b07364 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DA1NC UT WOS:000367561500011 PM 26599130 ER PT J AU Adomanis, BM Resnick, PJ Burckel, DB AF Adomanis, Bryan M. Resnick, Paul J. Burckel, D. Bruce TI Reconciling measured scattering response of 3D metamaterials with simulation SO EPJ APPLIED METAMATERIALS LA English DT Article DE 3D Metamaterials; Split Ring Resonator; Micro Fabrication ID 3-DIMENSIONAL PHOTONIC METAMATERIALS; FABRICATION; RESONATORS; OPTICS AB Membrane projection lithography is used to create 3-dimensional unit cells in a silicon matrix decorated with metallic inclusions. The structures show pronounced resonances in the 4-16 mu m wavelength range and demonstrate direct coupling to the magnetic field of a normally incident transverse electromagnetic (TEM) wave, a behavior only possible for vertically oriented resonators. Qualitative agreement between rigorous coupled wave analysis (RCWA) simulation and measured scattering response is shown. COMSOL simulations show that slight variations in both metallic inclusion and silicon unit cell physical dimensions can have large impact in the scattering response, so that design for manufacture of 3D metamaterial structures for applications should be done with care. C1 [Adomanis, Bryan M.] Air Force Res Lab, Wright Patterson AFB, OH 45433 USA. [Resnick, Paul J.; Burckel, D. Bruce] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Adomanis, BM (reprint author), Air Force Res Lab, 3005 Hobson Way, Wright Patterson AFB, OH 45433 USA. EM dbburck@sandia.gov NR 17 TC 0 Z9 0 U1 2 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 2272-2394 J9 EPJ APPL METAMATERIA JI EPJ Appl. Metamaterials PD DEC 23 PY 2015 VL 2 AR 9 DI 10.1051/epjam/2015015 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA DA0YQ UT WOS:000367523900005 ER PT J AU Klet, RC Tussupbayev, S Borycz, J Gallagher, JR Stalzer, MM Miller, JT Gagliardi, L Hupp, JT Marks, TJ Cramer, CJ Delferro, M Farha, OK AF Klet, Rachel C. Tussupbayev, Samat Borycz, Joshua Gallagher, James R. Stalzer, Madelyn M. Miller, Jeffery T. Gagliardi, Laura Hupp, Joseph T. Marks, Tobin J. Cramer, Christopher J. Delferro, Massimiliano Farha, Omar K. TI Single-Site Organozirconium Catalyst Embedded in a Metal-Organic Framework SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ATOMIC LAYER DEPOSITION; ACTIVATION; ZIRCONIUM; FUNCTIONALIZATION; POLYMERIZATION; COMPLEXES; CHEMISTRY; ETHYLENE AB A structurally well-defined mesoporous Hf-based metal organic framework (Hf-NU-1000) is employed as a well-defined scaffold for a highly electrophilic single-site d(0) Zr-benzyl catalytic center. This new material Hf-NU-1000-ZrBn is fully characterized by a variety of spectroscopic techniques and DFT computation. Hf-NU-1000-ZrBn is found to be a promising single-component catalyst (i.e., not requiring a catalyst/activator) for ethylene and stereoregular 1-hexene polymerization. C1 [Klet, Rachel C.; Stalzer, Madelyn M.; Hupp, Joseph T.; Marks, Tobin J.; Delferro, Massimiliano; Farha, Omar K.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Tussupbayev, Samat; Borycz, Joshua; Gagliardi, Laura; Cramer, Christopher J.] Univ Minnesota, Supercomp Inst, Dept Chem, Minneapolis, MN 55455 USA. [Tussupbayev, Samat; Borycz, Joshua; Gagliardi, Laura; Cramer, Christopher J.] Univ Minnesota, Chem Theory Ctr, Minneapolis, MN 55455 USA. [Gallagher, James R.; Miller, Jeffery T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Miller, Jeffery T.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Farha, Omar K.] King Abdulaziz Univ, Fac Sci, Dept Chem, Jeddah 21413, Saudi Arabia. RP Gagliardi, L (reprint author), Univ Minnesota, Supercomp Inst, Dept Chem, Minneapolis, MN 55455 USA. EM gagliardi@umn.edu; j-hupp@northwestern.edu; t-marks@northwestern.edu; cramer@umn.edu; m-delferro@northwestern.edu; o-farha@northwestern.edu RI Gallagher, James/E-4896-2014; BM, MRCAT/G-7576-2011; Cramer, Christopher/B-6179-2011; Faculty of, Sciences, KAU/E-7305-2017; OI Gallagher, James/0000-0002-5628-5178; Cramer, Christopher/0000-0001-5048-1859; Delferro, Massimiliano/0000-0002-4443-165X FU Inorganometallic Catalyst Design Center, an Energy Frontier Research Center, U.S. DOE [DE-SC0012702, DE-AC02-06CH11357]; Institute for Catalysis in Energy Processes (U.S. DOE) [DE-FG02-03ER15457]; MRSEC program at the Materials Research Center [NSF DMR-1121262]; International Institute for Nanotechnology (IN); State of IL; MRCAT member institutions; U.S. DOE [DE-AC02-06CH11357, DE-AC0-06CH11357] FX I.K.F., J.T.H., L.G., and C.J.C. acknowledge the financial support from the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center funded by the U.S. DOE under award DE-SC0012702 (catalyst synthesis and characterization; computational modeling). M.D. and T.J.M. were supported by the Institute for Catalysis in Energy Processes (U.S. DOE) under award DE-FG02-03ER15457 (catalyst activity). This work made use of the EPIC facility (NUANCE Center-Northwestern U.), which received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IN); and the State of IL. Advanced Photon Source use was supported by the U.S. DOE, under award DE-AC02-06CH11357. MRCAT operations are supported by the U.S. DOE and the MRCAT member institutions. J.T.M. and J.R.G.'s funding was provided by the U.S. DOE under award DE-AC0-06CH11357. NR 41 TC 17 Z9 17 U1 23 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 23 PY 2015 VL 137 IS 50 BP 15680 EP 15683 DI 10.1021/jacs.5b11350 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DA1NP UT WOS:000367562800022 PM 26652625 ER PT J AU Darago, LE Aubrey, ML Yu, CJ Gonzalez, MI Long, JR AF Darago, Lucy E. Aubrey, Michael L. Yu, Chung Jui Gonzalez, Miguel I. Long, Jeffrey R. TI Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal-Organic Framework SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CHARGE-TRANSFER IVCT; 3D CHIRAL MAGNETS; COORDINATION POLYMERS; ELECTRICAL-CONDUCTIVITY; BRIDGING LIGAND; POROUS CRYSTALS; IRON COMPLEXES; SPIN-CROSSOVER; SURFACE-AREAS; THIN-FILMS AB A three-dimensional network solid composed of Fe-III centers and paramagnetic semiquinoid linkers, (NBu4)(2)-Fe-2(III)(dhbq)(3) (dhbq(2-/3-) = 2,5-dioxidobenzoquinone/1,2-dioxido-4,5-semiquinone), is shown to exhibit a conductivity of 0.16 +/- 0.01 S/cm at 298 K, one of the highest values yet observed for a metal organic framework (MOF). The origin of this electronic conductivity is determined to be ligand mixed-valency, which is characterized using a suite of spectroscopic techniques, slow-scan cyclic voltammetry, and variable-temperature conductivity and magnetic susceptibility measurements. Importantly, UV-vis-NIR diffuse reflectance measurements reveal the first observation of Robin-Day Class II/III mixed valency in a MOP. Pursuit of stoichiometric control over the ligand redox states resulted in synthesis of the reduced framework material Na-0.9(NBu4)(1.8)Fe-2(III)(dhbq)(3). Differences in electronic conductivity and magnetic ordering temperature between the two compounds are investigated and correlated to the relative ratio of the two different ligand redox states. Overall, the transition metal semiquinoid system is established as a particularly promising scaffold for achieving tunable long-range electronic communication in MOFs. C1 [Darago, Lucy E.; Aubrey, Michael L.; Yu, Chung Jui; Gonzalez, Miguel I.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Long, Jeffrey R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Long, JR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jrlong@berkeley.edu OI Darago, Lucy/0000-0001-7515-5558; Gonzalez, Miguel/0000-0003-4250-9035 FU NSF [DMR-1309066]; Nanoporous Materials Genome Center of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362]; U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231] FX This work was supported by NSF award no. DMR-1309066, with the exception of the magnetic measurements, which were supported by the Nanoporous Materials Genome Center of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award Number DE-FG02-12ER16362. We thank NSF for graduate fellowship support of L.E.D. We further thank Dianne J. Xiao for assisting with the Mossbauer spectroscopy experiments, Julia Oktawiec and the 17-BM staff at the Advanced Photon Source for assisting with the PXRD experiments, and Dr. Simon J. Teat for helpful discussions regarding the single-crystal X-ray crystallography data. PXRD data were collected at Beamline 17-BM at the Advanced Photon Source. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Single-crystal XRD data were collected at Beamline 11.3.1 at the Advanced Light Source. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE under Contract No. DE-AC02-05CH11231. NR 77 TC 29 Z9 29 U1 62 U2 195 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 23 PY 2015 VL 137 IS 50 BP 15703 EP 15711 DI 10.1021/jacs.5b10385 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DA1NP UT WOS:000367562800028 PM 26573183 ER PT J AU Nickels, JD Cheng, XL Mostofian, B Stanley, C Lindner, B Heberle, FA Perticaroli, S Feirgenson, M Egami, T Standaert, RF Smith, JC Myles, DAA Ohl, M Katsaras, J AF Nickels, Jonathan D. Cheng, Xiaolin Mostofian, Barmak Stanley, Christopher Lindner, Benjamin Heberle, Frederick A. Perticaroli, Stefania Feirgenson, Mikhail Egami, Takeshi Standaert, Robert F. Smith, Jeremy C. Myles, Dean A. A. Ohl, Michael Katsaras, John TI Mechanical Properties of Nanoscopic Lipid Domains SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; PARTICLE MESH EWALD; NEUTRON SOURCE SNS; HYBRID LIPIDS; LINE TENSION; 2-COMPONENT MEMBRANES; PHASE-TRANSITIONS; SEGREGATION LIMIT; MODULATED PHASES; BILAYER MIXTURES AB The lipid raft hypothesis presents insights into how the cell membrane organizes proteins and lipids to accomplish its many vital functions. Yet basic questions remain about the physical mechanisms that lead to the formation, stability, and size of lipid rafts. As a result, much interest has been generated in the study of systems that contain similar lateral heterogeneities, or domains. In the current work we present an experimental approach that is capable of isolating the bending moduli of lipid domains. This is accomplished using neutron scattering and its unique sensitivity to the isotopes of hydrogen. Combining contrast matching approaches with inelastic neutron scattering, we isolate the bending modulus of similar to 13 nm diameter domains residing in 60 nm unilamellar vesicles, whose lipid composition mimics the mammalian plasma membrane outer leaflet. Importantly, the bending modulus of the nanoscopic domains differs from the modulus of the continuous phase surrounding them. From additional structural measurements and all-atom simulations, we also determine that nanoscopic domains are in-register across the bilayer leaflets. Taken together, these results inform a number of theoretical models of domain/raft formation and highlight the fact that mismatches in bending modulus must be accounted for when explaining the emergence of lateral heterogeneities in lipid systems and biological membranes. C1 [Nickels, Jonathan D.; Stanley, Christopher; Heberle, Frederick A.; Perticaroli, Stefania; Feirgenson, Mikhail; Standaert, Robert F.; Myles, Dean A. A.; Katsaras, John] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Nickels, Jonathan D.; Katsaras, John] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Cheng, Xiaolin; Mostofian, Barmak; Lindner, Benjamin; Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [Cheng, Xiaolin; Standaert, Robert F.; Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Nickels, Jonathan D.; Heberle, Frederick A.; Perticaroli, Stefania; Egami, Takeshi; Katsaras, John] Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. [Ohl, Michael] Julich Ctr Neutron Sci, Oak Ridge, TN 37831 USA. RP Nickels, JD (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM nickelsjd@ornl.gov; katsarasj@ornl.gov RI Feygenson, Mikhail /H-9972-2014; myles, dean/D-5860-2016; smith, jeremy/B-7287-2012; Standaert, Robert/D-9467-2013; Nickels, Jonathan/I-1913-2012 OI Katsaras, John/0000-0002-8937-4177; Stanley, Christopher/0000-0002-4226-7710; Feygenson, Mikhail /0000-0002-0316-3265; myles, dean/0000-0002-7693-4964; smith, jeremy/0000-0002-2978-3227; Standaert, Robert/0000-0002-5684-1322; Nickels, Jonathan/0000-0001-8351-7846 FU U.S. DOE BES through the EPSCoR [DE-FG02-08ER46528]; Scientific User Facilities Division of the DOE Office of Basic Energy Sciences (BES) [DE-AC05 00OR2275]; Laboratory Directed RD (LDRD) fund [P7394]; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; US DOE [DE-AC05-00OR22725] FX The authors gratefully acknowledge Professors F. Brown, R. Epand, G.W. Feigenson, and M. Schick for a critical reading of the manuscript and insightful conversations; J. Neuefeind, C. Gao, R. Moody, M. Doktorova, M. Cochran, and P. Zolnierczuk for technical assistance; and Prof. H. Riezman (Univ. of Geneva) for the generous gift of cholesterol-producing yeast strain and protocol. JDN is partially supported by the U.S. DOE BES through the EPSCoR Grant No. DE-FG02-08ER46528. JK is supported through the Scientific User Facilities Division of the DOE Office of Basic Energy Sciences (BES), under contract no. DE-AC05 00OR2275. XC is partially supported by the Laboratory Directed R&D (LDRD) fund P7394 at the Oak Ridge National Laboratory. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Research conducted at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC under US DOE Contract No. DE-AC05-00OR22725. NR 94 TC 11 Z9 11 U1 8 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 23 PY 2015 VL 137 IS 50 BP 15772 EP 15780 DI 10.1021/jacs.5b08894 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DA1NP UT WOS:000367562800035 PM 26415030 ER PT J AU Zhi, YC Shi, H Mu, LY Liu, Y Mei, DH Camaioni, DM Lercher, JA AF Zhi, Yuchun Shi, Hui Mu, Linyu Liu, Yue Mei, Donghai Camaioni, Donald M. Lercher, Johannes A. TI Dehydration Pathways of 1-Propanol on HZSM-5 in the Presence and Absence of Water SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SPACE GAUSSIAN PSEUDOPOTENTIALS; GAS-PHASE DEHYDRATION; ZEOLITE CATALYSTS; AB-INITIO; H-ZSM-5 ZEOLITE; ADSORPTION COMPLEXES; ETHANOL DEHYDRATION; ALCOHOL DEHYDRATION; PORE CONFINEMENT; ISOBUTYL ALCOHOL AB The Bronsted acid-catalyzed gas-phase dehydration of 1-propanol (0.075-4 kPa) was studied on zeolite H-MFI (Si/A1 = 26, containing minimal amounts of extra framework Al moieties) in the absence and presence of co-fed water (0-2.5 kPa) at 413-443 K. It is shown that propene can be formed from monomeric and dimeric adsorbed 1-propanol. The stronger adsorption of 1-propanol relative to water indicates that the reduced dehydration rates in the presence of water are not a consequence of the competitive adsorption between 1-propanol and water. Instead, the deleterious effect is related to the different extents of stabilization of adsorbed intermediates and the relevant elimination/substitution transition states by water. Water stabilizes the adsorbed 1-propanol monomer significantly more than the elimination transition state, leading to a higher activation barrier and a greater entropy gain for the rate-limiting step, which eventually leads to propene. In a similar manner, an excess of 1-propanol stabilizes the adsorbed state of 1-propanol more than the elimination transition state. In comparison with the monomer-mediated pathway, adsorbed dimer and the relevant transition states for propene and ether formation are similarly, while less effectively, stabilized by intrazeolite water molecules. C1 [Zhi, Yuchun; Mu, Linyu; Liu, Yue; Lercher, Johannes A.] Tech Univ Munich, Dept Chem, D-85748 Garching, Germany. [Zhi, Yuchun; Mu, Linyu; Liu, Yue; Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Inst, D-85748 Garching, Germany. [Shi, Hui; Mei, Donghai; Camaioni, Donald M.; Lercher, Johannes A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Lercher, JA (reprint author), Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85748 Garching, Germany. EM Johannes.Lercher@ch.tum.de RI Mei, Donghai/A-2115-2012; Mei, Donghai/D-3251-2011; Shi, Hui/J-7083-2014 OI Mei, Donghai/0000-0002-0286-4182; FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; Office of Biological and Environmental Research; NERSC (the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility by Office of Science of the U.S. Department of Energy) [DE-AC02-05CH11231]; DOE [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Portions of the computational work were performed using resources at EMSL (a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory) and NERSC (the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231). PNNL is a multiprogram national laboratory operated for DOE by Battelle Memorial Institute under contract no. DE-AC05-76RL01830. NR 76 TC 7 Z9 7 U1 26 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 23 PY 2015 VL 137 IS 50 BP 15781 EP 15794 DI 10.1021/jacs.5b09107 PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA DA1NP UT WOS:000367562800036 PM 26560446 ER PT J AU Becknell, N Kang, YJ Chen, C Resasco, J Kornienko, N Guo, JH Markovic, NM Somorjai, GA Stamenkovic, VR Yang, PD AF Becknell, Nigel Kang, Yijin Chen, Chen Resasco, Joaquin Kornienko, Nikolay Guo, Jinghua Markovic, Nenad M. Somorjai, Gabor A. Stamenkovic, Vojislav R. Yang, Peidong TI Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OXYGEN REDUCTION REACTION; PT-SKIN SURFACES; BIMETALLIC NANOPARTICLES; ALLOY NANOPARTICLES; CATALYSTS; FUEL; SEGREGATION; PERFORMANCE; CHALLENGES; GROWTH AB Understanding the atomic structure of a catalyst is crucial to exposing the source of its performance characteristics. It is highly unlikely that a catalyst remains the same under reaction conditions when compared to as-synthesized. Hence, the ideal experiment to study the catalyst structure should be performed in situ. Here, we use X-ray absorption spectroscopy (XAS) as an in situ technique to study Pt3Ni nanoframe particles which have been proven to be an excellent electro catalyst for the oxygen reduction reaction (ORR). The surface characteristics of the nanoframes were probed through electrochemical hydrogen underpotential deposition and carbon monoxide electrooxidation, which showed that nanoframe surfaces with different structure exhibit varying levels of binding strength to adsorbate molecules. It is well-known that Pt-skin formation on Pt-Ni catalysts will enhance ORR activity by weakening the binding energy between the surface and adsorbates. Ex situ and in situ XAS results reveal that nanoframes which bind adsorbates more strongly have a rougher Pt surface caused by insufficient segregation of Pt to the surface and consequent Ni dissolution. In contrast, nanoframes which exhibit extremely high ORR activity simultaneously demonstrate more significant segregation of Pt over Ni-rich subsurface layers, allowing better formation of the critical Pt-skin. This work demonstrates that the high ORR activity of the Pt3Ni hollow nanoframes depends on successful formation of the Pt-skin surface structure. C1 [Becknell, Nigel; Chen, Chen; Kornienko, Nikolay; Somorjai, Gabor A.; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kang, Yijin; Markovic, Nenad M.; Stamenkovic, Vojislav R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Resasco, Joaquin] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Somorjai, Gabor A.; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yang, Peidong] Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu OI Becknell, Nigel/0000-0001-7857-6841 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231, DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation Graduate Research Fellowship Proposal (NSF GRFP) [DGE-0802270]; UC Berkeley Chancellor's Fellowship FX The research conducted at Lawrence Berkeley National Laboratory and Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231 (surface) and No. DE-AC02-06CH11357, respectively. The authors thank Matthew Marcus and Sirine Fakra for help with the XAS studies which were carried out at the Advanced Light Source BL 10.3.2. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. J.R. gratefully acknowledges support from the National Science Foundation Graduate Research Fellowship Proposal (NSF GRFP) under Grant No. DGE-0802270 and the UC Berkeley Chancellor's Fellowship. NR 51 TC 13 Z9 13 U1 51 U2 165 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD DEC 23 PY 2015 VL 137 IS 50 BP 15817 EP 15824 DI 10.1021/jacs.5b09639 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA DA1NP UT WOS:000367562800039 PM 26652294 ER PT J AU Kim, H Lee, JT Magasinski, A Zhao, KJ Liu, Y Yushin, G AF Kim, Hyea Lee, Jung Tae Magasinski, Alexandre Zhao, Kejie Liu, Yang Yushin, Gleb TI In Situ TEM Observation of Electrochemical Lithiation of Sulfur Confined within Inner Cylindrical Pores of Carbon Nanotubes SO ADVANCED ENERGY MATERIALS LA English DT Article DE carbon; carbon nanotubes (CNTs); Li-S; in situ TEM; nanoconfined; solid electrolyte ID TRANSMISSION ELECTRON-MICROSCOPY; RECHARGEABLE LITHIUM BATTERIES; THERMAL-CONDUCTIVITY; ION BATTERIES; CATHODE; PERFORMANCE; NANOPARTICLES; CHALLENGES; DELITHIATION; TEMPERATURE AB Lithium insertion into sulfur confined within 200 nm cylindrical inner pores of individual carbon nanotubes (CNTs) was monitored in situ in a transmission electron microscope (TEM). This electrochemical reaction was initiated at one end of the S-filled CNTs. The material expansion during lithiation was accommodated by the expansion into the remaining empty pore volume and no fracture of the CNT walls was detected. A sharp interface between the initial and lithiated S was observed. The reaction front was flat, oriented perpendicular to the confined S cylinder, and propagated along the cylinder length. Lithiation of S in the proximity of conductive carbon proceeded at the same rate as the one in the center of the pore, suggesting the presence of electron pathways at the Li2S/S interface. Density of states calculations further confirmed this hypothesis. In situ electron diffraction showed a direct phase transformation of S into nanocrystalline Li2S without detectable formation of any intermediates, such as polysulfides and LiS. These important insights may elucidate some of the reaction mechanisms and guide the improvements in the design of C-S nanocomposites for high specific energy Li-S batteries. The proposed use of conductive CNTs with tunable pore diameter as cylindrical reaction vessels for in situ TEM studies of electrochemical reactions proved to be highly advantageous and may help to resolve the ongoing problems in battery technology. C1 [Kim, Hyea; Lee, Jung Tae; Magasinski, Alexandre; Yushin, Gleb] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Kim, Hyea] Sila Nanotechnol Inc, Alameda, CA 94502 USA. [Zhao, Kejie] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47906 USA. [Liu, Yang] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Yushin, G (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM yushin@gatech.edu RI Zhao, Kejie/F-8640-2010; Yushin, Gleb/B-4529-2013 OI Yushin, Gleb/0000-0002-3274-9265 FU US ARO [W911NF-12-1-0259]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was partially supported by US ARO (grant W911NF-12-1-0259). This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 59 TC 7 Z9 7 U1 34 U2 127 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD DEC 23 PY 2015 VL 5 IS 24 AR 1501306 DI 10.1002/aenm.201501306 PG 7 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA CZ6NQ UT WOS:000367218400006 ER PT J AU Hu, WG Zhang, Q Tian, T Li, DY Cheng, G Mu, J Wu, QB Niu, FJ Stegen, JC An, LZ Feng, HY AF Hu, Weigang Zhang, Qi Tian, Tian Li, Dingyao Cheng, Gang Mu, Jing Wu, Qingbai Niu, Fujun Stegen, James C. An, Lizhe Feng, Huyuan TI Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China SO PLOS ONE LA English DT Article ID PHYLOGENETIC BETA DIVERSITY; MICROBIAL DIVERSITY; NEUTRAL PROCESSES; ECOLOGY; BIODIVERSITY; SOIL; PATTERNS; TUNDRA; NICHE; THAW AB Understanding the processes that influence the structure of biotic communities is one of the major ecological topics, and both stochastic and deterministic processes are expected to be at work simultaneously in most communities. Here, we investigated the vertical distribution patterns of bacterial communities in a 10-m-long soil core taken within permafrost of the Qing-hai-Tibet Plateau. To get a better understanding of the forces that govern these patterns, we examined the diversity and structure of bacterial communities, and the change in community composition along the vertical distance (spatial turnover) from both taxonomic and phylogenetic perspectives. Measures of taxonomic and phylogenetic beta diversity revealed that bacterial community composition changed continuously along the soil core, and showed a vertical distance-decay relationship. Multiple stepwise regression analysis suggested that bacterial alpha diversity and phylogenetic structure were strongly correlated with soil conductivity and pH but weakly correlated with depth. There was evidence that deterministic and stochastic processes collectively drived bacterial vertically-structured pattern. Bacterial communities in five soil horizons (two originated from the active layer and three from permafrost) of the permafrost core were phylogenetically random, indicator of stochastic processes. However, we found a stronger effect of deterministic processes related to soil pH, conductivity, and organic carbon content that were structuring the bacterial communities. We therefore conclude that the vertical distribution of bacterial communities was governed primarily by deterministic ecological selection, although stochastic processes were also at work. Furthermore, the strong impact of environmental conditions ( for example, soil physicochemical parameters and seasonal freeze-thaw cycles) on these communities underlines the sensitivity of permafrost microorganisms to climate change and potentially subsequent permafrost thaw. C1 [Hu, Weigang; Zhang, Qi; Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; An, Lizhe; Feng, Huyuan] Lanzhou Univ, Minist Educ, Key Lab Cell Activ & Stress Adaptat, Sch Life Sci, Lanzhou 730000, Peoples R China. [Wu, Qingbai; Niu, Fujun] Chinese Acad Sci, SKLFSE, CAREERI, Lanzhou, Peoples R China. [Stegen, James C.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Wu, QB (reprint author), Chinese Acad Sci, SKLFSE, CAREERI, Lanzhou, Peoples R China. EM qbwu@lzb.ac.cn; fenghy@lzu.edu.cn RI Stegen, James/Q-3078-2016 OI Stegen, James/0000-0001-9135-7424 FU National Basic Research Program [2012CB026105]; National Natural Science Foundation [31170482, 31300445, 31370450]; PhD Programs Foundation of Ministry of Education [20130211120005]; Chinese Postdoctoral Science Foundation [2013M540780, 2014T70949]; Fundamental Research Funds for the Central Universities in China [LZUJBKY-2011-119]; State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Sciences [SKLFSE200901] FX This research was supported by funding from the National Basic Research Program (2012CB026105), National Natural Science Foundation (31170482, 31300445, 31370450), PhD Programs Foundation of Ministry of Education (20130211120005), the Chinese Postdoctoral Science Foundation (2013M540780, 2014T70949), Fundamental Research Funds for the Central Universities in China (LZUJBKY-2011-119) and State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Sciences (SKLFSE200901). NR 79 TC 0 Z9 0 U1 7 U2 38 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 23 PY 2015 VL 10 IS 12 AR e0145747 DI 10.1371/journal.pone.0145747 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ4SI UT WOS:000367092600128 PM 26699734 ER PT J AU Yang, YR Han, XZ Liang, Y Ghosh, A Chen, J Tang, M AF Yang, Yurong Han, Xiaozhen Liang, Yan Ghosh, Amit Chen, Jie Tang, Ming TI The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynthesis, and Antioxidant Enzymes in Robinia pseudoacacia L. SO PLOS ONE LA English DT Article ID HEAVY-METAL STRESS; CHLOROPHYLL FLUORESCENCE; LIPID-PEROXIDATION; HYDROGEN-PEROXIDE; GENE-EXPRESSION; MAIZE PLANTS; WATER STATUS; SALT STRESS; GLUTATHIONE; DAMAGE AB Arbuscular mycorrhizal fungi (AMF) are considered as a potential biotechnological tool for improving phytostabilization efficiency and plant tolerance to heavy metal-contaminated soils. However, the mechanisms through which AMF help to alleviate metal toxicity in plants are still poorly understood. A greenhouse experiment was conducted to evaluate the effects of two AMF species (Funneliformis mosseae and Rhizophagus intraradices) on the growth, Pb accumulation, photosynthesis and antioxidant enzyme activities of a leguminous tree (Robinia pseudoacacia L.) at Pb addition levels of 0, 500, 1000 and 2000 mg kg(-1) soil. AMF symbiosis decreased Pb concentrations in the leaves and promoted the accumulation of biomass as well as photosynthetic pigment contents. Mycorrhizal plants had higher gas exchange capacity, non-photochemistry efficiency, and photochemistry efficiency compared with non-mycorrhizal plants. The enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidases (APX) and glutathione peroxidase (GPX) were enhanced, and hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were reduced in mycorrhizal plants. These findings suggested that AMF symbiosis could protect plants by alleviating cellular oxidative damage in response to Pb stress. Furthermore, mycorrhizal dependency on plants increased with increasing Pb stress levels, indicating that AMF inoculation likely played a more important role in plant Pb tolerance in heavily contaminated soils. Overall, both F. mosseae and R. intraradices were able to maintain efficient symbiosis with R. pseudoacacia in Pb polluted soils. AMF symbiosis can improve photosynthesis and reactive oxygen species (ROS) scavenging capabilities and decrease Pb concentrations in leaves to alleviate Pb toxicity in R. pseudoacacia. Our results suggest that the application of the two AMF species associated with R. pseudoacacia could be a promising strategy for enhancing the phytostabilization efficiency of Pb contaminated soils. C1 [Yang, Yurong] Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China. [Yang, Yurong; Chen, Jie; Tang, Ming] Northwest A&F Univ, Coll Forestry, Yangling 712100, Shaanxi, Peoples R China. [Han, Xiaozhen] Natl Univ Ireland, Sch Nat Sci, Plant Syst Biol Lab, Bot & Plant Sci, Galway, Ireland. [Liang, Yan] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Liang, Yan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ghosh, Amit] Indian Inst Technol Kharagpur, Sch Energy Sci & Engn, PK Sinha Ctr Bioenergy, Kharagpur 721302, W Bengal, India. RP Tang, M (reprint author), Northwest A&F Univ, Coll Forestry, Yangling 712100, Shaanxi, Peoples R China. EM tangm@nwsuaf.edu.cn RI Liang, Yan/K-8199-2016 OI Liang, Yan/0000-0002-2144-1388 FU National Natural Science Foundation of China [31270639, 31170607, 31170567]; Program for Changjiang Scholars and Innovative Research Team in University of China [IRT1035]; PhD Programs Foundation of Education Ministry of China [20100204110033, 20110204130001]; China Scholarship Council [201306300018]; DOE Joint BioEnergy Institute; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX Yurong Yang, Jie Chen and Ming Tang were financially supported by the National Natural Science Foundation of China (31270639, 31170607, 31170567), the Program for Changjiang Scholars and Innovative Research Team in University of China (IRT1035) and the PhD Programs Foundation of Education Ministry of China (20100204110033, 20110204130001). Xiaozhen Han was supported by the China Scholarship Council (201306300018). Yan Liang was funded by the DOE Joint BioEnergy Institute (http://www.jbei.org) which is supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 80 TC 4 Z9 4 U1 13 U2 48 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 23 PY 2015 VL 10 IS 12 AR e0145726 DI 10.1371/journal.pone.0145726 PG 24 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ4SI UT WOS:000367092600123 PM 26698576 ER PT J AU Doudna, JA Gersbach, CA AF Doudna, Jennifer A. Gersbach, Charles A. TI Genome editing: the end of the beginning SO GENOME BIOLOGY LA English DT Editorial Material ID RNA-GUIDED ENDONUCLEASE; CRISPR-CAS SYSTEMS; ENHANCERS; PLANTS; GENES; PROTEINS; FUSION C1 [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Gersbach, Charles A.] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA. [Gersbach, Charles A.] Duke Univ, Ctr Genom & Computat Biol, Durham, NC 27708 USA. [Gersbach, Charles A.] Duke Univ, Med Ctr, Dept Orthopaed Surg, Durham, NC 27710 USA. RP Gersbach, CA (reprint author), Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA. EM charles.gersbach@duke.edu FU NHGRI NIH HHS [U01 HG007900, U01HG007900]; NIAMS NIH HHS [R21AR067467, R21 AR065956, R21 AR067467, R21AR065956]; NIDA NIH HHS [R01 DA036865, R01DA036865]; NIGMS NIH HHS [GM082250, GM102706, P50 GM082250, P50 GM102706]; NIH HHS [DP2 OD008586] NR 37 TC 0 Z9 0 U1 14 U2 56 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1474-760X J9 GENOME BIOL JI Genome Biol. PD DEC 23 PY 2015 VL 16 AR 292 DI 10.1186/s13059-015-0860-5 PG 3 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA CZ4MD UT WOS:000367076400001 PM 26700220 ER PT J AU Wierschem, K Sunku, SS Kong, T Ito, T Canfield, PC Panagopoulos, C Sengupta, P AF Wierschem, Keola Sunku, Sai Swaroop Kong, Tai Ito, Toshimitsu Canfield, Paul C. Panagopoulos, Christos Sengupta, Pinaki TI Origin of modulated phases and magnetic hysteresis in TmB4 SO PHYSICAL REVIEW B LA English DT Article ID METAMAGNETIC TRANSITIONS; ANGULAR-DEPENDENCE; SPIN SYSTEM; LA-ND; SRCU2(BO3)(2); DIAGRAM; SM AB We investigate the low-temperature magnetic phases in TmB4, a metallic quantum magnet on the geometrically frustrated Shastry-Sutherland lattice, using coordinated experimental and theoretical studies. Our results provide an explanation for the appearance of the intriguing fractional plateau in TmB4 and accompanying magnetic hysteresis. Together with observation of the bump in the half plateau, our results support the picture that the magnetization plateau structure in TmB4 is strongly influenced by the zero-field modulated phases. We present a phenomenological model to explain the appearance of the modulated phases and a microscopic Hamiltonian that captures the complete magnetic behavior of TmB4. C1 [Wierschem, Keola; Sunku, Sai Swaroop; Panagopoulos, Christos; Sengupta, Pinaki] Nanyang Technol Univ, Div Phys & Appl Phys, Sch Phys & Math Sci, Singapore 637371, Singapore. [Kong, Tai; Canfield, Paul C.] US DOE, Ames Lab, Ames, IA 50011 USA. [Kong, Tai; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Ito, Toshimitsu] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058562, Japan. RP Wierschem, K (reprint author), Nanyang Technol Univ, Div Phys & Appl Phys, Sch Phys & Math Sci, Singapore 637371, Singapore. RI Sengupta, Pinaki/B-6999-2011; OI Kong, Tai/0000-0002-5064-3464 FU Ministry of Education, Singapore [MOE2014-T2-112]; U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC02-07CH11358] FX It is a pleasure to thank S. Shastry and C. Batista for useful discussions. Work in Singapore was supported by Grant No. MOE2014-T2-112 from the Ministry of Education, Singapore. Work done at Ames Laboratory (P.C.C. and T.K.) was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 27 TC 1 Z9 1 U1 12 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 23 PY 2015 VL 92 IS 21 AR 214433 DI 10.1103/PhysRevB.92.214433 PG 7 WC Physics, Condensed Matter SC Physics GA CZ4FK UT WOS:000367058700003 ER PT J AU Bhattacharya, T Cirigliano, V Gupta, R Mereghetti, E Yoon, B AF Bhattacharya, Tanmoy Cirigliano, Vincenzo Gupta, Rajan Mereghetti, Emanuele Yoon, Boram TI Dimension-5 CP-odd operators: QCD mixing and renormalization SO PHYSICAL REVIEW D LA English DT Article ID ELECTRIC-DIPOLE MOMENT; RIGHT-HANDED CURRENTS; QUANTUM CHROMODYNAMICS; CHIRAL-SYMMETRY; LATTICE QCD; SUM-RULES; NEUTRON; FERMIONS; ORDER; REGULARIZATION AB We study the off-shell mixing and renormalization of flavor-diagonal dimension-five T- and P-odd operators involving quarks, gluons, and photons, including quark electric dipole and chromoelectric dipole operators. We present the renormalization matrix to one loop in the (MS) over bar scheme. We also provide a definition of the quark chromoelectric dipole operator in a regularization-independent momentum-subtraction scheme suitable for nonperturbative lattice calculations and present the matching coefficients with the (MS) over tilde scheme to one loop in perturbation theory, using both the naive dimensional regularization and 't Hooft-Veltman prescriptions for gamma(5). C1 [Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Gupta, Rajan; Mereghetti, Emanuele; Yoon, Boram] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Bhattacharya, T (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. OI mereghetti, emanuele/0000-0002-8623-5796; Bhattacharya, Tanmoy/0000-0002-1060-652X; Gupta, Rajan/0000-0003-1784-3058 FU US DOE Office of Nuclear Physics and Office of High Energy Physics; LDRD program at Los Alamos National Laboratory FX We acknowledge support by the US DOE Office of Nuclear Physics and Office of High Energy Physics, and by the LDRD program at Los Alamos National Laboratory. We thank T. Blum, T. Izubuchi, C. Lehner, and A. Soni for useful discussions. NR 81 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 23 PY 2015 VL 92 IS 11 AR 114026 DI 10.1103/PhysRevD.92.114026 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ4LS UT WOS:000367075300005 ER PT J AU Grohs, E Fuller, GM Kishimoto, CT Paris, MW AF Grohs, E. Fuller, G. M. Kishimoto, C. T. Paris, M. W. TI Effect of neutrino rest mass on ionization equilibrium freeze-out SO PHYSICAL REVIEW D LA English DT Article ID FLAVOR OSCILLATIONS; POWER SPECTRUM; RECOMBINATION; COSMOLOGY AB We show how small neutrino rest masses can increase the expansion rate near the photon decoupling epoch in the early Universe, causing an earlier, higher temperature freeze-out for ionization equilibrium compared to the massless neutrino case. This yields a larger free-electron fraction, thereby affecting the photon diffusion length differently than the sound horizon at photon decoupling. This neutrino-mass and recombination effect depends strongly on the neutrino rest masses. Though below current sensitivity, this effect could be probed by next-generation cosmic microwave background experiments, giving another observational handle on neutrino rest mass. C1 [Grohs, E.; Fuller, G. M.; Kishimoto, C. T.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Kishimoto, C. T.] Univ San Diego, Dept Phys, San Diego, CA 92110 USA. [Paris, M. W.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Grohs, E (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. OI Paris, Mark/0000-0003-0471-7896 FU National Science Foundation at UC San Diego [PHY-1307372]; Los Alamos National Laboratory Institute for Geophysics, Space Sciences and Signatures [257842]; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We would like to acknowledge the Institutional Computing Program at Los Alamos National Laboratory for use of their HPC cluster resources. This work was supported in part by National Science Foundation Grant No. PHY-1307372 at UC San Diego, by the Los Alamos National Laboratory Institute for Geophysics, Space Sciences and Signatures Subcontract No. 257842, and the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We thank J. J. Cherry, Amit Yadav, and Lloyd Knox for helpful discussions. We would also like to thank the anonymous referees for their useful comments. NR 32 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC 23 PY 2015 VL 92 IS 12 AR 125027 DI 10.1103/PhysRevD.92.125027 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ4MZ UT WOS:000367078600022 ER PT J AU Orginos, K Parreno, A Savage, MJ Beane, SR Chang, E Detmold, W AF Orginos, Kostas Parreno, Assumpta Savage, Martin J. Beane, Silas R. Chang, Emmanuel Detmold, William TI Two nucleon systems at m(pi) similar to 450 MeV from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID EFFECTIVE-FIELD THEORY; CHIRAL LAGRANGIANS; FORCES; SCATTERING; BARYONS; STATES; PIONS; LIMIT AB Nucleon-nucleon systems are studied with lattice quantum chromodynamics at a pion mass of m(pi) similar to 450 MeV in three spatial volumes using n(f) = 2 + 1 flavors of light quarks. At the quark masses employed in this work, the deuteron binding energy is calculated to be B-d = 14.4(-2.6)(+3.2) MeV, while the dineutron is bound by B-nn = 12.5(-5.0)(+3.0) MeV. Over the range of energies that are studied, the S-wave scattering phase shifts calculated in the S-1(0) and S-3(1)-D-3(1) channels are found to be similar to those in nature, and indicate repulsive short-range components of the interactions, consistent with phenomenological nucleon-nucleon interactions. In both channels, the phase shifts are determined at three energies that lie within the radius of convergence of the expansion, allowing for constraints to be placed on the inverse scattering lengths and effective ranges. The extracted phase shifts allow for matching to nuclear effective field theories, from which low-energy counterterms are extracted and issues of convergence are investigated. As part of the analysis, a detailed investigation of the single hadron sector is performed, enabling a precise determination of the violation of the Gell-Mann-Okubo mass relation. C1 [Orginos, Kostas] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Orginos, Kostas] Jefferson Lab, Newport News, VA 23606 USA. [Parreno, Assumpta] Univ Barcelona, Dept Estruct & Constituents Materia, E-08028 Barcelona, Spain. [Parreno, Assumpta] Univ Barcelona, ICC, E-08028 Barcelona, Spain. [Savage, Martin J.; Chang, Emmanuel] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Beane, Silas R.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Detmold, William] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. RP Orginos, K (reprint author), Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. FU National Science Foundation [OCI-1053575, NSF PHY11-25915]; NERSC (U.S. Department of Energy) [DE-AC02-05CH11231]; USQCD Collaboration; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; NSF [PHY1206498]; U.S. Department of Energy [DE-SC001347, DE-FG02-04ER41302, DE-AC05-06OR23177]; U.S. Department of Energy Early Career Research Award [DE-SC0010495]; MEC (Spain) [FIS2011-24154]; FEDER; U.S. DOE [DE-FG02-00ER41132] FX We thank Andre Walker-Loud and Thomas Luu for the collaboration during initial stages of this work, and Zohreh Davoudi and Raul Briceno for their comments on the manuscript. Calculations were performed using computational resources provided by the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. OCI-1053575, NERSC (supported by U.S. Department of Energy Grant No. DE-AC02-05CH11231), and by the USQCD Collaboration. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Parts of the calculations used the CHROMA software suite [80]. S. R. B. was partially supported by NSF Continuing Grant No. PHY1206498 and by the U.S. Department of Energy through Grant No. DE-SC001347. W. D. was supported in part by U.S. Department of Energy Early Career Research Award No. DE-SC0010495. K. O. was supported by the U.S. Department of Energy through Grant No. DE-FG02-04ER41302 and through Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility. The work of A. P. was supported by Contract No. FIS2011-24154 from MEC (Spain) and FEDER. M. J. S. was supported in part by U.S. DOE Grant No. DE-FG02-00ER41132. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915 and W. D. and M. J. S. acknowledge the Kavli Institute for Theoretical Physics for its hospitality during completion of this work. NR 79 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 23 PY 2015 VL 92 IS 11 AR 114512 DI 10.1103/PhysRevD.92.114512 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ4LS UT WOS:000367075300008 ER PT J AU Pozharskiy, D Zhang, Y Williams, MO McFarland, DM Kevrekidis, PG Vakakis, AF Kevrekidis, IG AF Pozharskiy, D. Zhang, Y. Williams, M. O. McFarland, D. M. Kevrekidis, P. G. Vakakis, A. F. Kevrekidis, I. G. TI Nonlinear resonances and antiresonances of a forced sonic vacuum SO PHYSICAL REVIEW E LA English DT Article ID DISCRETE BREATHERS; SOLITARY WAVES; CHAIN; LATTICES; MODES AB We consider a harmonically driven acoustic medium in the form of a (finite length) highly nonlinear granular crystal with an amplitude-and frequency-dependent boundary drive. Despite the absence of a linear spectrum in the system, we identify resonant periodic propagation whereby the crystal responds at integer multiples of the drive period and observe that this can lead to local maxima of transmitted force at its fixed boundary. In addition, we identify and discuss minima of the transmitted force ("antiresonances") between these resonances. Representative one-parameter complex bifurcation diagrams involve period doublings and Neimark-Sacker bifurcations as well as multiple isolas (e.g., of period-3, -4, or -5 solutions entrained by the forcing). We combine them in a more detailed, two-parameter bifurcation diagram describing the stability of such responses to both frequency and amplitude variations of the drive. This picture supports a notion of a (purely) "nonlinear spectrum" in a system which allows no sound wave propagation (due to zero sound speed: the so-called sonic vacuum). We rationalize this behavior in terms of purely nonlinear building blocks: apparent traveling and standing nonlinear waves. C1 [Pozharskiy, D.; Williams, M. O.; Kevrekidis, I. G.] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. [Pozharskiy, D.; Williams, M. O.; Kevrekidis, I. G.] Princeton Univ, PACM, Princeton, NJ 08544 USA. [Zhang, Y.; Vakakis, A. F.] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61822 USA. [McFarland, D. M.] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61822 USA. [Kevrekidis, P. G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Kevrekidis, P. G.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA. [Kevrekidis, P. G.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. RP Kevrekidis, IG (reprint author), Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. EM yannis@princeton.edu FU MURI [US ARO W911NF-09-1-0436]; US AFOSR [FA9550-12-1-0332]; US Department of Energy FX A.F.V. would like to acknowledge the support of MURI Grant No. US ARO W911NF-09-1-0436. D.P., M.O.W., P.G.K., and I.G.K. gratefully acknowledge the support of US AFOSR through Grant No. FA9550-12-1-0332. P.G.K.'s work at Los Alamos is supported in part by the US Department of Energy. NR 38 TC 1 Z9 1 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 23 PY 2015 VL 92 IS 6 AR 063203 DI 10.1103/PhysRevE.92.063203 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CZ4OH UT WOS:000367082000010 PM 26764846 ER PT J AU Fischer, W Gu, X Altinbas, Z Costanzo, M Hock, J Liu, C Luo, Y Marusic, A Michnoff, R Miller, TA Pikin, AI Schoefer, V Thieberger, P White, SM AF Fischer, W. Gu, X. Altinbas, Z. Costanzo, M. Hock, J. Liu, C. Luo, Y. Marusic, A. Michnoff, R. Miller, T. A. Pikin, A. I. Schoefer, V. Thieberger, P. White, S. M. TI Operational Head-on Beam-Beam Compensation with Electron Lenses in the Relativistic Heavy Ion Collider SO PHYSICAL REVIEW LETTERS LA English DT Article AB Head-on beam-beam compensation has been implemented in the Relativistic Heavy Ion Collider in order to increase the luminosity delivered to the experiments. We discuss the principle of combining a lattice for resonance driving term compensation and an electron lens for tune spread compensation. We describe the electron lens technology and its operational use. To date, the implemented compensation scheme approximately doubled the peak and average luminosities. C1 [Fischer, W.; Gu, X.; Altinbas, Z.; Costanzo, M.; Hock, J.; Liu, C.; Luo, Y.; Marusic, A.; Michnoff, R.; Miller, T. A.; Pikin, A. I.; Schoefer, V.; Thieberger, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. [White, S. M.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Fischer, W (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM Wolfram.Fischer@bnl.gov FU Collider-Accelerator Department; Superconducting Magnet Division at Brookhaven National Laboratory; U.S. LHC Accelerator Research Program (LARP); Brookhaven Science Associates, LLC [DE-AC02-98CH10886]; U.S. Department of Energy FX The work was supported by many in the Collider-Accelerator Department, and the Superconducting Magnet Division at Brookhaven National Laboratory. The authors are also thankful for discussions and support to V. Shiltsev, A. Valishev, T. Sen, and G. Stancari, FNAL, who generously shared the Tevatron experience with us; N. Milas, LNLS; X. Buffat, R. DeMaria, U. Dorda, W. Herr, J.-P. Koutchouk, T. Pieloni, F. Schmidt, and F. Zimmerman, CERN; K. Ohmi, KEK; V. Kamerdziev, FZ Julich; A. Kabel, SLAC, and P. Gorgen, TU Darmstadt. We are thankful to the U.S. LHC Accelerator Research Program (LARP) for support of beam-beam simulations. Work was supported by Brookhaven Science Associates, LLC, under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. NR 23 TC 3 Z9 3 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 23 PY 2015 VL 115 IS 26 AR 264801 DI 10.1103/PhysRevLett.115.264801 PG 5 WC Physics, Multidisciplinary SC Physics GA CZ4BX UT WOS:000367049000008 PM 26764995 ER PT J AU Shao, JH Antipov, SP Baryshev, SV Chen, HB Conde, M Doran, DS Gai, W Jing, CG Liu, WM Power, J Qiu, JQ Shi, JR Wang, D Wang, FY Whiteford, CE Wisniewski, E Xiao, LL AF Shao, Jiahang Antipov, Sergey P. Baryshev, Sergey V. Chen, Huaibi Conde, Manoel Doran, Darrell S. Gai, Wei Jing, Chunguang Liu, Wanming Power, John Qiu, Jiaqi Shi, Jiaru Wang, Dan Wang, Faya Whiteford, Charles E. Wisniewski, Eric Xiao, Liling TI Observation of Field-Emission Dependence on Stored Energy SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRON-EMISSION AB Field emission from a solid metal surface has been continuously studied for a century over macroscopic to atomic scales. It is general knowledge that, other than the surface properties, the emitted current is governed solely by the applied electric field. A pin cathode has been used to study the dependence of field emission on stored energy in an L-band rf gun. The stored energy was changed by adjusting the axial position (distance between the cathode base and the gun back surface) of the cathode while the applied electric field on the cathode tip is kept constant. Avery strong correlation of the field-emission current with the stored energy has been observed. While eliminating all possible interfering sources, an enhancement of the current by a factor of 5 was obtained as the stored energy was increased by a factor of 3. It implies that under certain circumstances a localized field emission may be significantly altered by the global parameters in a system. C1 [Shao, Jiahang; Chen, Huaibi; Shi, Jiaru; Wang, Dan] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Shao, Jiahang; Antipov, Sergey P.; Baryshev, Sergey V.; Conde, Manoel; Doran, Darrell S.; Gai, Wei; Jing, Chunguang; Liu, Wanming; Power, John; Qiu, Jiaqi; Wang, Dan; Whiteford, Charles E.; Wisniewski, Eric] Argonne Natl Lab, Lemont, IL 60439 USA. [Antipov, Sergey P.; Baryshev, Sergey V.; Jing, Chunguang; Qiu, Jiaqi] Euclid Techlabs LLC, Solon, OH 44139 USA. [Wang, Faya; Xiao, Liling] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Shao, JH (reprint author), Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. EM shaojh07@mails.tsinghua.edu.cn; fywang@slac.stanford.edu FU U.S. Department of Energy Early Career Research Program [LAB 11-572]; U.S. Department of Energy Office of Science [DE-AC02-06CH11357]; National Natural Science Foundation of China [11135004] FX We would like to thank the SLAC machine shop for preparing the pin cathodes, and Dr. Klaus Flottmann from DESY for his great help with the ASTRA code and useful discussions. This work is supported by the U.S. Department of Energy Early Career Research Program under Contract Code LAB 11-572. The work by the AWA group is funded through the U.S. Department of Energy Office of Science under Contract No. DE-AC02-06CH11357, and the work at Tsinghua University is supported by National Natural Science Foundation of China under Grant No. 11135004. NR 28 TC 2 Z9 2 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 23 PY 2015 VL 115 IS 26 AR 264802 DI 10.1103/PhysRevLett.115.264802 PG 5 WC Physics, Multidisciplinary SC Physics GA CZ4BX UT WOS:000367049000009 PM 26764996 ER PT J AU Vasseur, R Karrasch, C Moore, JE AF Vasseur, Romain Karrasch, Christoph Moore, Joel E. TI Expansion Potentials for Exact Far-from-Equilibrium Spreading of Particles and Energy SO PHYSICAL REVIEW LETTERS LA English DT Article ID DELTA-FUNCTION INTERACTION; TONKS-GIRARDEAU GAS; OPTICAL LATTICE; LUTTINGER LIQUID; ULTRACOLD ATOMS; BOSE-GAS; QUANTUM; TRANSPORT; DYNAMICS; MODEL AB The rates at which energy and particle densities move to equalize arbitrarily large temperature and chemical potential differences in an isolated quantum system have an emergent thermodynamical description whenever the energy or particle current commutes with the Hamiltonian. Concrete examples include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (XXZ spin chain), the energy current in Lorentz-invariant theories or the particle current in interacting Bose gases in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call "expansion potentials," expressed as integrals of equilibrium Drude weights. This relation between nonequilibrium quantities and linear response implies nonequilibrium Maxwell relations for the Drude weights. We verify our results via density-matrix renormalization group calculations for the XXZ chain. C1 [Vasseur, Romain] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Vasseur, R (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Moore, Joel/O-4959-2016; Karrasch, Christoph/S-5716-2016 OI Moore, Joel/0000-0002-4294-5761; Karrasch, Christoph/0000-0002-6475-3584 FU NSF [DMR-1206535]; CaIQuE; Moore Foundation's EPiQS initiative FX The authors thank M. J. Bhaseen, B. Doyon, F. Essler, S. Gazit, V. Korepin, A. C. Potter, D. Weld, the Department of Energy through programs Thermoelectrics (C. K.) and Quantum Materials (R. V.), NSF DMR-1206535, AFOSR MURI and a Simons Investigatorship (J. E. M.), and center support from CaIQuE and the Moore Foundation's EPiQS initiative. NR 72 TC 6 Z9 6 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 23 PY 2015 VL 115 IS 26 AR 267201 DI 10.1103/PhysRevLett.115.267201 PG 6 WC Physics, Multidisciplinary SC Physics GA CZ4BX UT WOS:000367049000017 PM 26765017 ER PT J AU Pellegrini, D Latina, A Schulte, D Bogacz, SA AF Pellegrini, Dario Latina, Andrea Schulte, Daniel Bogacz, S. Alex TI Beam-dynamics driven design of the LHeC energy-recovery linac SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with PLACET2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to similar to 150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects. C1 [Pellegrini, Dario; Latina, Andrea; Schulte, Daniel] CERN, CH-1211 Geneva, Switzerland. [Bogacz, S. Alex] Jefferson Lab, Newport News, VA 23606 USA. [Pellegrini, Dario] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. RP Pellegrini, D (reprint author), CERN, CH-1211 Geneva, Switzerland. NR 13 TC 0 Z9 0 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC 23 PY 2015 VL 18 IS 12 AR 121004 DI 10.1103/PhysRevSTAB.18.121004 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CZ4PD UT WOS:000367084300001 ER PT J AU Zhang, PF Li, MT Yang, BL Fang, YX Jiang, XG Veith, GM Sun, XG Dai, S AF Zhang, Pengfei Li, Mingtao Yang, Bolun Fang, Youxing Jiang, Xueguang Veith, Gabriel M. Sun, Xiao-Guang Dai, Sheng TI Polymerized Ionic Networks with High Charge Density: Quasi-Solid Electrolytes in Lithium-Metal Batteries SO ADVANCED MATERIALS LA English DT Article ID NANOPARTICLE HYBRID ELECTROLYTES; POLY-IMIDAZOLIUM SALTS; SELECTIVE CO2 CAPTURE; POLY(IONIC LIQUID)S; RADICAL POLYMERIZATION; DENDRITE FORMATION; CONDUCTION; MEMBRANES; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; POLYELECTROLYTES AB Polymerized ionic networks (PINs) with six ion pairs per repeating unit are synthesized by nucleophilic-substitutionmediated polymerization or radical polymerization of monomers bearing six 1-vinylimidazolium cations. PIN-based solid-like electrolytes show good ionic conductivities (up to 5.32 x 10(-3) S cm(-1) at 22 degrees C), wide electrochemical stability windows (up to 5.6 V), and good interfacial compatibility with the electrodes. C1 [Zhang, Pengfei; Li, Mingtao; Sun, Xiao-Guang; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Li, Mingtao; Yang, Bolun] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shaanxi, Peoples R China. [Fang, Youxing; Jiang, Xueguang; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Veith, Gabriel M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Li, MT (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM lmt01558@mail.xjtu.edu.cn; dais@ornl.gov RI Jiang, Xueguang/J-5784-2013; fang, youxing/K-1972-2016; Dai, Sheng/K-8411-2015 OI Jiang, Xueguang/0000-0002-9937-6029; Dai, Sheng/0000-0002-8046-3931 FU Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division; National Natural Science Foundation of China [21303132] FX P.Z. and X.J. (polymer synthesis and characterization) were supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Y.F., G.V, X.S., and S.D. (XPS and battery characterizations) were supported by the U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division. M.L. appreciates the financial support from the National Natural Science Foundation of China (21303132). NR 61 TC 10 Z9 10 U1 42 U2 133 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD DEC 22 PY 2015 VL 27 IS 48 BP 8088 EP 8094 DI 10.1002/adma.201502855 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DA5JR UT WOS:000367839900025 PM 26523468 ER PT J AU Lipson, AL Pan, BF Lapidus, SH Liao, C Vaughey, JT Ingram, BJ AF Lipson, Albert L. Pan, Baofei Lapidus, Saul H. Liao, Chen Vaughey, John T. Ingram, Brian J. TI Rechargeable Ca-Ion Batteries: A New Energy Storage System SO CHEMISTRY OF MATERIALS LA English DT Article ID PRUSSIAN BLUE STRUCTURES; X-RAY-ABSORPTION; HEXACYANOFERRATE NANOPARTICLES; NICKEL HEXACYANOFERRATE; CATHODE MATERIALS; LITHIUM; ELECTRODES; SPECTROSCOPY; INSERTION; XANES AB As new uses for larger scale energy storage systems are realized, new chemistries that are less expensive or have higher energy density are needed. While lithium-ion systems have been well studied, the availability of new energy storage chemistries opens up the possibilities for more diverse strategies and uses. One potential path to achieving this goal is to explore chemistries where a multivalent ion such as Ca2+ or Mg2+ is the active species. Herein, we demonstrate this concept for a Ca-ion system utilizing manganese hexacyanoferrate (MFCN) as the cathode to intercalate Ca reversibly in a dry nonaqueous electrolyte. Through characterization via X-ray absorption near-edge spectroscopy, it is determined that only the manganese changes oxidation state during cycling with Ca. X-ray diffraction indicates the MFCN maintains its crystallinity during cycling, with only minor structural changes associated with expansion and contraction. Furthermore, we have demonstrated the first rechargeable Ca-ion battery utilizing MFCN as the cathode and elemental tin as the anode. C1 [Lipson, Albert L.; Pan, Baofei; Liao, Chen; Vaughey, John T.; Ingram, Brian J.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Lapidus, Saul H.] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA. [Lipson, Albert L.; Pan, Baofei; Liao, Chen; Vaughey, John T.; Ingram, Brian J.] Argonne Natl Lab, Joint Ctr Energy Storage Res, Lemont, IL 60439 USA. RP Ingram, BJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM ingram@anl.gov RI BM, MRCAT/G-7576-2011; OI Vaughey, John/0000-0002-2556-6129 FU Joint Center for Energy Storage Research, an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; DOE Office of Science [DE-AC02-06CH11357] FX This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. We would also like to acknowledge the use of the Center for Nanoscale Materials, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT (APS sector 10BM) operations are supported by the Department of Energy and the MRCAT member institutions. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. D.S. Hodge, JCSER, provided assistance during the preparation of the manuscript. NR 27 TC 21 Z9 21 U1 17 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD DEC 22 PY 2015 VL 27 IS 24 BP 8442 EP 8447 DI 10.1021/acs.chemmater.5b04027 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA DA1NH UT WOS:000367562000032 ER PT J AU Hartnett, CA Mahady, K Fowlkes, JD Afkhami, S Kondic, L Rack, PD AF Hartnett, C. A. Mahady, K. Fowlkes, J. D. Afkhami, S. Kondic, L. Rack, P. D. TI Instability of Nano- and Microscale Liquid Metal Filaments: Transition from Single Droplet Collapse to Multidroplet Breakup SO LANGMUIR LA English DT Article ID NANOPARTICLE ARRAYS; SURFACE-TENSION; NANOSTRUCTURES; ELECTRONICS; PLASMONICS; DYNAMICS AB We carry out experimental and numerical studies to investigate the collapse and breakup of finite size, nano- and microscale, liquid metal filaments supported on a substrate. We find the critical dimensions below which filaments do not break up but rather collapse to a single droplet. The transition from collapse to breakup can be described as a competition between two fluid dynamic phenomena: the capillary driven end retraction and the Rayleigh Plateau type instability mechanism that drives the breakup. We focus on the unique spatial and temporal transition region between these two phenomena using patterned metallic thin film strips and pulsed-laser-induced dewetting. The experimental results are compared to an analytical model proposed by Driessen et al. and modified to include substrate interactions. In addition, we report the results of numerical simulations based on a volume-of-fluid method to provide additional insight and highlight the importance of liquid metal resolidification, which reduces inertial effects. C1 [Hartnett, C. A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Fowlkes, J. D.; Rack, P. D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Mahady, K.; Afkhami, S.; Kondic, L.] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA. [Fowlkes, J. D.; Rack, P. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Nanofabricat Res Lab, Oak Ridge, TN 37831 USA. RP Rack, PD (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM prack@utk.edu FU NSF [CBET-1235710, NSF-DMS-1320037]; U.S. Department of Energy [DE-AC05-00OR22725] FX Sample preparation including lithography and metal deposition were conducted at the Center for Nanophase Materials Sciences, which is a U.S. Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory. C.A.H, P.D.R., and L.K. acknowledge support from NSF Grant CBET-1235710. S.A. acknowledges support from NSF Grant NSF-DMS-1320037. This manuscript has been authored by UT-Battelle, LLC, under Contract DE-AC05-00OR22725, with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 26 TC 3 Z9 3 U1 8 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD DEC 22 PY 2015 VL 31 IS 50 BP 13609 EP 13617 DI 10.1021/acs.langmuir.5b03598 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CZ7LD UT WOS:000367280000017 PM 26595519 ER PT J AU Murphy, RJ Weigandt, KM Uhrig, D Alsayed, A Badre, C Hough, L Muthukumar, M AF Murphy, Ryan J. Weigandt, Katie M. Uhrig, David Alsayed, Ahmed Badre, Chantal Hough, Larry Muthukumar, Murugappan TI Scattering Studies on Poly(3,4-ethylenedioxythiophene)-Polystyrenesulfonate in the Presence of Ionic Liquids SO MACROMOLECULES LA English DT Article ID ANGLE NEUTRON-SCATTERING; X-RAY-SCATTERING; SIGNIFICANT CONDUCTIVITY ENHANCEMENT; DILUTE-SOLUTIONS; LIGHT-SCATTERING; POLY(STYRENESULFONATE) FILMS; NANOSTRUCTURAL ORGANIZATION; ELECTRICAL-CONDUCTIVITY; ANIONIC-POLYMERIZATION; ORDERED STRUCTURE AB The demand for lower cost and flexible electronics has driven industry to develop alternative transparent electrode (TB) materials to replace indium tin oxide (ITO). ITO is the benchmark TE on the market, but its high cost and low flexibility limit it for use in future technologies. Recent work has shown the combination of the conducting polymer poly (3,4- ethylene dioxythiophene)p-olystyrene-sulfonate (PEDOT:PSS) with the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate (EMIM:TCB) is a viable ITO replacement. The work presented here investigates the nature of the interaction between PEDOT:PSS and EMIIVI:TCB in the solution state. A combination of scattering methods is used to illustrate a novel, multilength scale model of this system. At length scales larger than 300 nm PEODT:PSS adopts a micro.gel-like structure, and below similar to 300 nm the system adopts an entangled polyelectrolyte mesh structure. As EMIM:TCB is added, the microgel interior adopts a more neutral polymer mesh structure as EMIM:TCB concentration is increased. C1 [Murphy, Ryan J.; Alsayed, Ahmed; Badre, Chantal; Hough, Larry] CNRS SOLVAY PENN UMI 3254, Complex Assemblies Soft Matter, Bristol, PA 19007 USA. [Weigandt, Katie M.] NIST, Gaithersburg, MD 20899 USA. [Uhrig, David] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Muthukumar, Murugappan] Univ Massachusetts, Silvio O Conte Natl Ctr Polymer Res, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. RP Murphy, RJ (reprint author), CNRS SOLVAY PENN UMI 3254, Complex Assemblies Soft Matter, Bristol, PA 19007 USA. EM ryan.murphy@solvay.com FU U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy FX This manuscript has been authored by UT-Battelle, LLC under Contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 56 TC 1 Z9 1 U1 11 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD DEC 22 PY 2015 VL 48 IS 24 BP 8989 EP 8997 DI 10.1021/acs.macromol.5b02320 PG 9 WC Polymer Science SC Polymer Science GA CZ7KY UT WOS:000367279500033 ER PT J AU Goswami, M Borreguero, JM Pincus, PA Sumpter, BG AF Goswami, Monojoy Borreguero, Jose M. Pincus, Philip A. Sumpter, Bobby G. TI Surfactant-Mediated Polyelectrolyte Self-Assembly in a Polyelectrolyte-Surfactant Complex SO MACROMOLECULES LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; MONTE-CARLO SIMULATIONS; CHARGE-DENSITY; MICELLE COACERVATION; IONIC SURFACTANTS; DODECYL-SULFATE; DRUG-DELIVERY; SALT; MIXTURES; BEHAVIOR AB Self-assembly and dynamics of a polyelectrolyte (PE) surfactant complex (PES) are investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, the polymer chain, segmental, and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain and surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure property relationship for polymer-surfactant complexation. These results help improve the understanding of PES complexes and should aid in the design of better materials for future applications. C1 [Goswami, Monojoy; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Goswami, Monojoy; Sumpter, Bobby G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Borreguero, Jose M.] Oak Ridge Natl Lab, Neutron Data Anal & Visualizat, Oak Ridge, TN 37831 USA. [Pincus, Philip A.] Univ Calif Santa Barbara, Dept Mat Sci, Santa Barbara, CA 93106 USA. RP Goswami, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM goswamim@ornl.gov RI Borreguero, Jose/B-2446-2009 OI Borreguero, Jose/0000-0002-0866-8158 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division (MSED); Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; Center for Accelerated Materials Modeling (CAMM) - U.S. DOE, BES, MSED; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division (MSED). This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC05-00OR22725. Research by M.G. and J.M.B. is supported by the Center for Accelerated Materials Modeling (CAMM) funded by the U.S. DOE, BES, MSED. This manuscript has been authored by UT-Battelle, LLC, under Contract DE-AC05-00OR22725 with the U.S. Department of Energy. NR 64 TC 3 Z9 3 U1 5 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD DEC 22 PY 2015 VL 48 IS 24 BP 9050 EP 9059 DI 10.1021/acs.macromol.5b02145 PG 10 WC Polymer Science SC Polymer Science GA CZ7KY UT WOS:000367279500039 ER PT J AU Liu, ZK Yi, M Zhang, Y Hu, J Yu, R Zhu, JX He, RH Chen, YL Hashimoto, M Moore, RG Mo, SK Hussain, Z Si, Q Mao, ZQ Lu, DH Shen, ZX AF Liu, Z. K. Yi, M. Zhang, Y. Hu, J. Yu, R. Zhu, J. -X. He, R. -H. Chen, Y. L. Hashimoto, M. Moore, R. G. Mo, S. -K. Hussain, Z. Si, Q. Mao, Z. Q. Lu, D. H. Shen, Z. -X. TI Experimental observation of incoherent-coherent crossover and orbital-dependent band renormalization in iron chalcogenide superconductors SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; PNICTIDES AB The level of electronic correlation has been one of the key questions in understanding the nature of superconductivity. Among the iron-based superconductors, the iron chalcogenide family exhibits the strongest electron correlations. To gauge the correlation strength, we performed a systematic angle-resolved photoemission spectroscopy study on the iron chalcogenide series Fe1+ySexTe1-x (0 < x < 0.59), a model system with the simplest structure. Our measurement reveals an incoherent-to-coherent crossover in the electronic structure as the selenium ratio increases and the system evolves from a weakly localized to a more itinerant state. Furthermore, we found that the effective mass of bands dominated by the d(xy) orbital character significantly decreases with increasing selenium ratio, as compared to the d(xz/dyz) orbital-dominated bands. The orbital-dependent change in the correlation level agrees with theoretical calculations on the band structure renormalization, and may help to understand the onset of superconductivity in Fe1+ySexTe1-x. C1 [Liu, Z. K.; Yi, M.; Zhang, Y.; Moore, R. G.; Shen, Z. -X.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Liu, Z. K.; Yi, M.; Shen, Z. -X.] Stanford Univ, Dept Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Liu, Z. K.; Yi, M.; Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Zhang, Y.; Mo, S. -K.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Hu, J.; Mao, Z. Q.] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA. [Yu, R.] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Yu, R.; Si, Q.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Zhu, J. -X.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [He, R. -H.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Chen, Y. L.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Hashimoto, M.; Lu, D. H.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Liu, ZK (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM zxshen@stanford.edu RI Mo, Sung-Kwan/F-3489-2013; Hu, Jin/C-4141-2014; Yu, Rong/H-3355-2016 OI Mo, Sung-Kwan/0000-0003-0711-8514; Hu, Jin/0000-0003-0080-4239; FU U.S. DOE, Office of Basic Energy Science, Division of Materials Science and Engineering [DE-AC02-76SF00515]; NSF [DMR-1205469, DMR-1309531]; LA-SiGMA program [EPS-1003897]; Robert A. Welch Foundation [C-1411]; National Science Foundation of China [11374361]; Fundamental Research Funds for the Central Universities; Research Funds of Renmin University of China FX ARPES experiments were performed at the Stanford Synchrotron Radiation Lightsource and the Advanced Light Source, which are both operated by the Office of Basic Energy Sciences, U.S. Department of Energy. The Stanford work is supported by the U.S. DOE, Office of Basic Energy Science, Division of Materials Science and Engineering, under Award No. DE-AC02-76SF00515. The work at Tulane is supported by the NSF under Grant No. DMR-1205469 and the LA-SiGMA program under Award No. EPS-1003897. The work at Rice has been supported by NSF Grant No. DMR-1309531 and the Robert A. Welch Foundation Grant No. C-1411. The work at Renmin University has been supported by the National Science Foundation of China Grant No. 11374361, and the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China. NR 31 TC 4 Z9 4 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 22 PY 2015 VL 92 IS 23 AR 235138 DI 10.1103/PhysRevB.92.235138 PG 7 WC Physics, Condensed Matter SC Physics GA CZ4HM UT WOS:000367064100001 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, SP Allbrooke, BMM Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bieniek, SP Biesuz, NV Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutle, SK Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bruscino, N Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapman, JD Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Cirotto, F Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Colasurdo, L Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Munio, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuth, J Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, G Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D French, ST Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goujdami, D Goussiou, AG Govender, N Gozani, E Grabas, HMX Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henkelmann, S Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawade, K Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-zada, F Khandanyan, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLLR La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Le Dortz, O Le Guirriec, E Le Menedeu, E LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, S Li, X Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JM Mann, A Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ dit Latour, BM Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Zu Theenhausen, HM Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monden, R Monig, K Monini, C Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morton, A Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB Panagiotopoulou, ES Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pin, AWJ Pina, J Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Sinervo, P Sinev, NB Sioli, M Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Spearman, WR Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Denis, RDS Stabile, A Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Tannoury, N Araya, ST Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Aben, R. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bieniek, S. P. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bruscino, N. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Cabrera Urban, S. Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapman, J. D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Cirotto, F. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Colasurdo, L. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Fernandez Martinez, P. Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, G. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. French, S. T. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisler, M. P. Gemme, C. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henkelmann, S. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawade, K. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, X. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. dit Latour, B. Martin Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Zu Theenhausen, H. Meyer Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monden, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montalbano, A. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morton, A. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. Panagiotopoulou, E. St. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Salazar Loyola, J. E. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Spearman, W. R. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Denis, R. D. St. Stabile, A. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tannoury, N. Tapia Araya, S. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Vallecorsa, S. Valls Ferrer, J. A. Van Den Wollenberg, W. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Search for pair production of a new heavy quark that decays into a W boson and a light quark in pp collisions at root s=8 TeV with the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; PARTON DISTRIBUTIONS; HADRON COLLIDERS; HIGGS-BOSON; FINAL-STATE; LHC; DYNAMICS AB A search is presented for pair production of a new heavy quark (Q) that decays into aW boson and a light quark (q) in the final state where one W boson decays leptonically (to an electron or muon plus a neutrino) and the other W boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb(-1) of pp collisions at root s = 8 TeV collected by the ATLAS detector at the LHC. No evidence of Q (Q) over bar production is observed. New chiral quarks with masses below 690 GeVare excluded at 95% confidence level, assuming BR(Q -> Wq) = 1. Results are also interpreted in the context of vectorlike quark models, resulting in the limits on the mass of a vectorlike quark in the two-dimensional plane of BR(Q -> Wq) versus BR(Q -> Hq). C1 [Jackson, P.; Lee, L.; McPherson, R. A.; Petridis, A.; Robertson, S. H.; Sobie, R.; Soni, N.; Teuscher, R. J.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E. St.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.; Looper, K. A.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; dit Latour, B. Martin; Rosendahl, P. L.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Alonso, A.; Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Watson, M. F.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Alonso, A.; Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Watson, M. F.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, D-10099 Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Gach, G. P.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Biondi, S.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Grefe, C.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Alpigiani, C.; Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz de Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao del Rei, Brazil. [Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Feng, E. J.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Gadatsch, S.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruiz-Martinez, A.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sforza, F.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Blunier, S.; Carquin, E.; Diaz, M. A.; Ochoa-Ricoux, J. P.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Salazar Loyola, J. E.; Tapia Araya, S.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Carbone, R. M.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, Lab Nazl Frascati, Cosenza, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Dutta, B.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Hamburg, Germany. [Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Dutta, B.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Dette, K.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Ancu, L. S.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Calace, N.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Paolozzi, L.; Picazio, A.; Ristic, B.; Schramm, S.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartmento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, GE-380086 Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Albrand, S.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Zu Theenhausen, H. Meyer; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Castillo, L. R. Flores; Salvucci, A.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R.; Jussel, P.; Kneringer, E.; Lukas, W.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Argyropoulos, S.; Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Dubna, Russia. [Alonso, F.; Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Bevan, A. J.; Bona, M.; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Cuth, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Schwanenberger, C.; Schweiger, H.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Guan, L.; Hu, X.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Tollefson, K.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartmento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] PN Lebedev Phys Inst, Acad Sci, Moscow 117924, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kawade, K.; Morvaj, L.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Horii, Y.; Kawade, K.; Morvaj, L.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartmento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Saha, P.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, Budker Inst Nucl Phys, SB, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Bousson, N.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Abreu, R.; Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickering, M. A.; Ryder, N. C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartmento Fis, I-27100 Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Reichert, J.; Stahlman, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Hong, T. M.; Mueller, J.; Sapp, K.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Su, J.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartmento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Pedersen, L. E.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Pedersen, L. E.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Lphea Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Moursli, R.; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Hance, M.; Kuhl, A.; La Rosa, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Glazov, A.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Plazak, L.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Lee, C. A.; Meehan, S.; Yacoob, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Hsu, C.; Kar, D.; March, L.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Gozani, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Pettersson, N. E.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Jovicevic, J.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Hayashi, T.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Frate, M.; Gerbaudo, D.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] INFN Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Neubauer, M. S.; Rybar, M.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Gradin, P. O. J.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.] Univ Valencia, IMB CNM, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.; Vos, M.] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Pearce, J.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Thomsen, L. A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] Ctr Calcul Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.; Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Chen, L.; Zhang, R.] CNRS IN2P3, Marseille, France. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. [Guo, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Li, B.; Song, H. Y.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Li, Y.] Univ Paris 11, LAL, Orsay, France. [Li, Y.] CNRS IN2P3, Orsay, France. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 115, Taiwan. [Liu, B.] Shandong Univ, Sch Phys, Shandong, Peoples R China. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Inst Particle & Nucl Phys, Wigner Res Ctr Phys, Budapest, Hungary. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI White, Ryan/E-2979-2015; Doyle, Anthony/C-5889-2009; Warburton, Andreas/N-8028-2013; Gladilin, Leonid/B-5226-2011; Livan, Michele/D-7531-2012; Carvalho, Joao/M-4060-2013; Buttar, Craig/D-3706-2011; Mitsou, Vasiliki/D-1967-2009; Tripiana, Martin/H-3404-2015; Smirnova, Oxana/A-4401-2013; Tikhomirov, Vladimir/M-6194-2015; Savarala, Hari Krishna/A-3516-2015; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; Garcia, Jose /H-6339-2015; la rotonda, laura/B-4028-2016; Staroba, Pavel/G-8850-2014; Kukla, Romain/P-9760-2016; Gavrilenko, Igor/M-8260-2015; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Mashinistov, Ruslan/M-8356-2015; Fabbri, Laura/H-3442-2012; Gutierrez, Phillip/C-1161-2011; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Vykydal, Zdenek/H-6426-2016; Fedin, Oleg/H-6753-2016; Brooks, William/C-8636-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Nevski, Pavel/M-6292-2015; Villa, Mauro/C-9883-2009; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Stabile, Alberto/L-3419-2016; Di Domenico, Antonio/G-6301-2011; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Boyko, Igor/J-3659-2013; Vranjes Milosavljevic, Marija/F-9847-2016; Chekulaev, Sergey/O-1145-2015; Zhukov, Konstantin/M-6027-2015; SULIN, VLADIMIR/N-2793-2015; Snesarev, Andrey/H-5090-2013; Nechaeva, Polina/N-1148-2015 OI White, Ryan/0000-0003-3589-5900; Doyle, Anthony/0000-0001-6322-6195; Warburton, Andreas/0000-0002-2298-7315; Gladilin, Leonid/0000-0001-9422-8636; Livan, Michele/0000-0002-5877-0062; Carvalho, Joao/0000-0002-3015-7821; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Tikhomirov, Vladimir/0000-0002-9634-0581; Savarala, Hari Krishna/0000-0001-6593-4849; Lacasta, Carlos/0000-0002-2623-6252; Belanger-Champagne, Camille/0000-0003-2368-2617; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Sannino, Mario/0000-0001-7700-8383; la rotonda, laura/0000-0002-6780-5829; Pina, Joao /0000-0001-8959-5044; Sotiropoulou, Calliope-Louisa/0000-0001-9851-1658; Veneziano, Stefano/0000-0002-2598-2659; Kukla, Romain/0000-0002-1140-2465; Gauzzi, Paolo/0000-0003-4841-5822; Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Mashinistov, Ruslan/0000-0001-7925-4676; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Vykydal, Zdenek/0000-0003-2329-0672; Brooks, William/0000-0001-6161-3570; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Villa, Mauro/0000-0002-9181-8048; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Stabile, Alberto/0000-0002-6868-8329; Di Domenico, Antonio/0000-0001-8078-2759; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Boyko, Igor/0000-0002-3355-4662; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; RGC, Hong Kong SAR, China; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR, Serbia; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society and Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 77 TC 11 Z9 11 U1 18 U2 96 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 22 PY 2015 VL 92 IS 11 AR 112007 DI 10.1103/PhysRevD.92.112007 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ4KC UT WOS:000367070900002 ER PT J AU Dai, LY Kang, ZB Prokudin, A Vitev, I AF Dai, Ling-Yun Kang, Zhong-Bo Prokudin, Alexei Vitev, Ivan TI Next-to-leading order transverse momentum-weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: The role of the three-gluon correlator SO PHYSICAL REVIEW D LA English DT Article ID SINGLE-SPIN ASYMMETRIES; DRELL-YAN; EVOLUTION; DIS; DISTRIBUTIONS; COLLINS; NUCLEON; PIONS; KAONS AB We study the Sivers asymmetry in semi-inclusive hadron production in deep inelastic scattering. We concentrate on the contribution from the photon-gluon fusion channel at O(alpha(2)(em)alpha(s)), where three-gluon correlation functions play a major role within the twist-3 collinear factorization formalism. We establish the correspondence between such a formalism with three-gluon correlation functions and the usual transverse momentum-dependent (TMD) factorization formalism at moderate hadron transverse momenta. We derive the coefficient functions used in the usual TMD evolution formalism related to the quark Sivers function expansion in terms of the three-gluon correlation functions. We further perform the next-to-leading order calculation for the transverse momentum-weighted spin-dependent differential cross section and identify the off-diagonal contribution from the three-gluon correlation functions to the QCD collinear evolution of the twist-3 Qiu-Sterman function. C1 [Dai, Ling-Yun; Prokudin, Alexei] Jefferson Lab, Newport News, VA 23606 USA. [Kang, Zhong-Bo; Vitev, Ivan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Prokudin, Alexei] Penn State Berks, Div Sci, Reading, PA 19610 USA. RP Dai, LY (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM lingyun@jlab.org; zkang@lanl.gov; prokudin@jlab.org; ivitev@lanl.gov RI Kang, Zhongbo/P-3645-2014 FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC05-06OR23177, DE-AC52-06NA25396]; LDRD program at LANL FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contracts No. DE-AC05-06OR23177 (L. D., A. P.) and No. DE-AC52-06NA25396 (Z. K., I. V.), and in part by the LDRD program at LANL. NR 57 TC 4 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 22 PY 2015 VL 92 IS 11 AR 114024 DI 10.1103/PhysRevD.92.114024 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ4KC UT WOS:000367070900006 ER PT J AU Kumar, N Martin, SP AF Kumar, Nilanjana Martin, Stephen P. TI Vectorlike leptons at the Large Hadron Collider SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRIC MODEL; HIGGS; PHENOMENOLOGY; MASS AB We study the prospects for excluding or discovering vectorlike leptons using multilepton events at the LHC. We consider models in which the vectorlike leptons decay to tau leptons. If the vectorlike leptons are weak isosinglets, then discovery in multilepton states is found to be extremely challenging. For the case that the vectorlike leptons are weak isodoublet, we argue that there may be an opportunity for exclusion for masses up to about 275 GeV by direct searches with existing LHC data at root s = 8 TeV. We also discuss prospects for exclusion or discovery at the LHC with future root s = 13 TeV data. C1 [Kumar, Nilanjana; Martin, Stephen P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Martin, Stephen P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Kumar, N (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. FU National Science Foundation [PHY-1417028] FX We thank Jahred Adelman and Glen Cowan for helpful discussions about the treatment of significances in the presence of background uncertainties. This work was supported in part by the National Science Foundation Grant No. PHY-1417028. NR 67 TC 9 Z9 9 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC 22 PY 2015 VL 92 IS 11 AR 115018 DI 10.1103/PhysRevD.92.115018 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ4KC UT WOS:000367070900009 ER PT J AU Lees, JP Poireau, V Tisserand, V Grauges, E Palano, A Eigen, G Stugu, B Brown, DN Kerth, LT Kolomensky, YG Lee, MJ Lynch, G Koch, H Schroeder, T Hearty, C Mattison, TS McKenna, JA So, RY Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Lankford, AJ Dey, B Gary, JW Long, O Sevilla, MF Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Lockman, WS Vazquez, WP Schumm, BA Seiden, A Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Miyashita, TS Ongmongkolkul, P Porter, FC Rohrken, M Andreassen, R Huard, Z Meadows, BT Pushpawela, BG Sokoloff, MD Sun, L Bloom, PC Ford, WT Gaz, A Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Bernard, D Verderi, M Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Piemontese, L Santoro, V Calcaterra, A de Sangro, R Finocchiaro, G Martellotti, S Patteri, P Peruzzi, IM Piccolo, M Zallo, A Contri, R Monge, MR Passaggio, S Patrignani, C Bhuyan, B Prasad, V Adametz, A Uwer, U Lacker, HM Mallik, U Chen, C Cochran, J Prell, S Ahmed, H Gritsan, AV Arnaud, N Davier, M Derkach, D Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Stocchi, A Wormser, G Lange, DJ Wright, DM Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Cowan, G Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Schubert, KR Barlow, RJ Lafferty, GD Cenci, R Hamilton, B Jawahery, A Roberts, DA Cowan, R Cheaib, R Patel, PM Robertson, SH Neri, N Palombo, F Cremaldi, L Godang, R Summers, DJ Simard, M Taras, P De Nardo, G Onorato, G Sciacca, C Raven, G Jessop, CP LoSecco, JM Honscheid, K Kass, R Margoni, M Morandin, M Posocco, M Rotondo, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Leruste, P Marchiori, G Ocariz, J Biasini, M Manoni, E Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Chrzaszcz, M Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Rama, M Rizzo, G Walsh, JJ Pegna, DL Olsen, J Smith, AJS Anulli, F Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Pilloni, A Piredda, G Bunger, C Dittrich, S Grunberg, O Hess, M Leddig, T Voss, C Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S Vasseur, G Aston, D Bard, DJ Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Ebert, M Field, RC Fulsom, BG Graham, MT Hast, C Innes, WR Kim, P Leith, DWGS Luitz, S Luth, V MacFarlane, DB Muller, DR Neal, H Pulliam, T Ratcliff, BN Roodman, A Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wisniewski, WJ Wulsin, HW Purohit, MV Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Puccio, EMT Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Spanier, SM Ritchie, JL Schwitters, RF Izen, JM Lou, XC Bianchi, F De Mori, F Filippi, A Gamba, D Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Albert, J Banerjee, S Beaulieu, A Bernlochner, FU Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Lueck, T Nugent, IM Roney, JM Sobie, RJ Tasneem, N Gershon, TJ Harrison, PF Latham, TE Band, HR Dasu, S Pan, Y Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Grauges, E. Palano, A. Eigen, G. Stugu, B. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lee, M. J. Lynch, G. Koch, H. Schroeder, T. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Lankford, A. J. Dey, B. Gary, J. W. Long, O. Sevilla, M. Franco Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Lockman, W. S. Vazquez, W. Panduro Schumm, B. A. Seiden, A. Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Miyashita, T. S. Ongmongkolkul, P. Porter, F. C. Roehrken, M. Andreassen, R. Huard, Z. Meadows, B. T. Pushpawela, B. G. Sokoloff, M. D. Sun, L. Bloom, P. C. Ford, W. T. Gaz, A. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Bernard, D. Verderi, M. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Piemontese, L. Santoro, V. Calcaterra, A. de Sangro, R. Finocchiaro, G. Martellotti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Zallo, A. Contri, R. Monge, M. R. Passaggio, S. Patrignani, C. Bhuyan, B. Prasad, V. Adametz, A. Uwer, U. Lacker, H. M. Mallik, U. Chen, C. Cochran, J. Prell, S. Ahmed, H. Gritsan, A. V. Arnaud, N. Davier, M. Derkach, D. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Cowan, G. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Schubert, K. R. Barlow, R. J. Lafferty, G. D. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Cowan, R. Cheaib, R. Patel, P. M. Robertson, S. H. Neri, N. Palombo, F. Cremaldi, L. Godang, R. Summers, D. J. Simard, M. Taras, P. De Nardo, G. Onorato, G. Sciacca, C. Raven, G. Jessop, C. P. LoSecco, J. M. Honscheid, K. Kass, R. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Leruste, Ph. Marchiori, G. Ocariz, J. Biasini, M. Manoni, E. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Chrzaszcz, M. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Rama, M. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Olsen, J. Smith, A. J. S. Anulli, F. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Pilloni, A. Piredda, G. Buenger, C. Dittrich, S. Gruenberg, O. Hess, M. Leddig, T. Voss, C. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. Vasseur, G. Aston, D. Bard, D. J. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Ebert, M. Field, R. C. Fulsom, B. G. Graham, M. T. Hast, C. Innes, W. R. Kim, P. Leith, D. W. G. S. Luitz, S. Luth, V. MacFarlane, D. B. Muller, D. R. Neal, H. Pulliam, T. Ratcliff, B. N. Roodman, A. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wisniewski, W. J. Wulsin, H. W. Purohit, M. V. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Puccio, E. M. T. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Spanier, S. M. Ritchie, J. L. Schwitters, R. F. Izen, J. M. Lou, X. C. Bianchi, F. De Mori, F. Filippi, A. Gamba, D. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Albert, J. Banerjee, Sw. Beaulieu, A. Bernlochner, F. U. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Lueck, T. Nugent, I. M. Roney, J. M. Sobie, R. J. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Wu, S. L. CA BaBar Collaboration TI Collins asymmetries in inclusive charged KK and K pi pairs produced in e(+)e(-) annihilation SO PHYSICAL REVIEW D LA English DT Article ID BABAR DETECTOR; PARTON DISTRIBUTIONS; JETS; FRAGMENTATION; PIONS; KAONS AB We present measurements of Collins asymmetries in the inclusive process e(+)e(-) -> h(1)h(2)X, h(1)h(2) = KK, K pi, pi pi, at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb(-1) collected by the BABAR experiment at the PEP-II B factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike sign to like sign, and unlike sign to all charged h(1)h(2) pairs, which increase with hadron energies. The K pi asymmetries are similar to those measured for the pi pi pairs, whereas those measured for high-energy KK pairs are, in general, larger. C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartmento Fis, I-70126 I- Bari, Italy. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] RAS, Budker Inst Nucl Phys, SB, Novosibirsk 630090, Russia. [Blinov, V. E.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Blinov, V. E.; Onuchin, A. P.] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia. [Lankford, A. J.] Univ Calif Irvine, Irvine, CA 92697 USA. [Dey, B.; Gary, J. W.; Long, O.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sevilla, M. Franco; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Lockman, W. S.; Vazquez, W. Panduro; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Roehrken, M.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Monge, M. R.; Passaggio, S.; Patrignani, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Prell, S.] Iowa State Univ, Ames, IA 50011 USA. [Ahmed, H.] Jazan Univ, Dept Phys, Jazan 22822, Saudi Arabia. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] IN2P3 CNRS, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Cowan, R.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cheaib, R.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Neri, N.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Palombo, F.] Univ Milan, Dipartmento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Phys Particules, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Margoni, M.; Simi, G.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartmento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.] Univ Paris 07, Univ Paris 06, IN2P3 CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Biasini, M.] Univ Perugia, Dipartmento Fis, I-06123 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartmento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Pilloni, A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.; Pilloni, A.] Univ Roma La Sapienza, Dipartmento Fis, I-00185 Rome, Italy. [Buenger, C.; Dittrich, S.; Gruenberg, O.; Hess, M.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Vasseur, G.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Aston, D.; Bard, D. J.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; Luth, V.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Wulsin, H. W.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Purohit, M. V.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.] Univ Turin, Dipartmento Fis, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Beaulieu, A.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Lees, JP (reprint author), Univ Savoie, CNRS IN2P3, LAPP, F-74941 Annecy Le Vieux, France. RI Patrignani, Claudia/C-5223-2009; Kravchenko, Evgeniy/F-5457-2015; Di Lodovico, Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; OI Patrignani, Claudia/0000-0002-5882-1747; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Ebert, Marcus/0000-0002-3014-1512; Bettarini, Stefano/0000-0001-7742-2998; FORD, WILLIAM/0000-0001-8703-6943 FU BABAR; SLAC; DOE (U.S.); NSF (U.S.); NSERC (Canada); CEA (France); CNRS-IN2P3 (France); BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (U.K.); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II2 colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (U.K.). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 29 TC 2 Z9 2 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC 22 PY 2015 VL 92 IS 11 AR 111101 DI 10.1103/PhysRevD.92.111101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CZ4KC UT WOS:000367070900001 ER PT J AU Ben-Naim, E Krapivsky, PL Lemons, NW AF Ben-Naim, E. Krapivsky, P. L. Lemons, N. W. TI Scaling exponents for ordered maxima SO PHYSICAL REVIEW E LA English DT Article ID 1ST-PASSAGE PROPERTIES; RANDOM-WALKS; PERSISTENCE; DIFFUSION; WALLS AB We study extreme value statistics of multiple sequences of random variables. For each sequence with N variables, independently drawn from the same distribution, the running maximum is defined as the largest variable to date. We compare the running maxima of m independent sequences and investigate the probability S-N that the maxima are perfectly ordered, that is, the running maximum of the first sequence is always larger than that of the second sequence, which is always larger than the running maximum of the third sequence, and so on. The probability S-N is universal: it does not depend on the distribution from which the random variables are drawn. For two sequences, S-N similar to N-1/2, and in general, the decay is algebraic, S-N similar to N-sigma m, for large N. We analytically obtain the exponent sigma(3) congruent to 1.302931 as root of a transcendental equation. Furthermore, the exponents sigma(m) grow with m, and we show that sigma(m) similar to m for large m. C1 [Ben-Naim, E.; Lemons, N. W.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ben-Naim, E.; Lemons, N. W.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Krapivsky, P. L.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Krapivsky, P. L.] Univ Paris Saclay, CEA, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Krapivsky, P. L.] CNRS, F-91191 Gif Sur Yvette, France. RP Ben-Naim, E (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Ben-Naim, Eli/C-7542-2009; Krapivsky, Pavel/A-4612-2014 OI Ben-Naim, Eli/0000-0002-2444-7304; FU DOE (USA) [DE-AC52-06NA25396] FX We acknowledge financial support through DOE (USA) Grant No. DE-AC52-06NA25396 for support (E.B. and N.W.L.). NR 43 TC 1 Z9 1 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 22 PY 2015 VL 92 IS 6 AR 062139 DI 10.1103/PhysRevE.92.062139 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CZ4OD UT WOS:000367081600003 PM 26764664 ER PT J AU Zhang, YP Li, TT Chen, Q Zhang, HY O'Hara, JF Abele, E Taylor, AJ Chen, HT Azad, AK AF Zhang, Yuping Li, Tongtong Chen, Qi Zhang, Huiyun O'Hara, John F. Abele, Ethan Taylor, Antoinette J. Chen, Hou-Tong Azad, Abul K. TI Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies SO SCIENTIFIC REPORTS LA English DT Article ID METAMATERIAL ABSORBER; TERAHERTZ WAVES; ABSORPTION; ARRAY AB We design a dual-band absorber formed by combining two cross-shaped metallic resonators of different sizes within a super-unit-cell arranged in mirror symmetry. Simulations indicate that absorption efficiencies greater than 99% can be achieved at two different frequencies under normal incidence. We employ a design scheme with graphene integration, which allows independent tuning of individual absorption frequencies by electrostatically changing the Fermi energy of the graphene layer. High absorbance is maintained over a wide incident angle range up to 50 degrees for both TE and TM polarizations. It thus enables a promising way to design electrically tunable absorbers, which may contribute toward the realization of frequency selective detectors for sensing applications. C1 [Zhang, Yuping; Li, Tongtong; Zhang, Huiyun] Shandong Univ Sci & Technol, Qingdao Key Lab Terahertz Technol, Coll Elect Commun & Phys, Qingdao 266510, Shandong, Peoples R China. [Zhang, Yuping; Taylor, Antoinette J.; Chen, Hou-Tong; Azad, Abul K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Chen, Qi] China Acad Engn Phys, Inst Elect Engn, Mianyang 621999, Sichuan, Peoples R China. [O'Hara, John F.; Abele, Ethan] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. RP O'Hara, JF (reprint author), Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. EM john@wavetechllc.com; aazad@lanl.gov RI Chen, Hou-Tong/C-6860-2009; OI Chen, Hou-Tong/0000-0003-2014-7571; Azad, Abul/0000-0002-7784-7432 FU Los Alamos National Laboratory LDRD program; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; Natural Science Foundation of Shandong Province, China [ZR2012FM011]; Qingdao city innovative leading talent plan [13-CX-25]; CAEP THz Science and Technology Foundation [201401]; Qingdao Economic & Technical Development Zone Science & Technology Project [2013-1-64]; Shandong University of Science and Technology Foundation, China [YC140108]; China Scholarship Council FX We acknowledge partial support from the Los Alamos National Laboratory LDRD program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. We also acknowledge partial support from the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FM011), Qingdao city innovative leading talent plan(13-CX-25), the CAEP THz Science and Technology Foundation (Grant No. 201401), Qingdao Economic & Technical Development Zone Science & Technology Project (Grant No. 2013-1-64), the Shandong University of Science and Technology Foundation, China (Grant No. YC140108), and the China Scholarship Council. We also gratefully acknowledge fruitful discussion with Akhilesh Singh. NR 55 TC 6 Z9 6 U1 23 U2 104 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 22 PY 2015 VL 5 AR 18463 DI 10.1038/srep18463 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ3XL UT WOS:000367037200001 PM 26689917 ER PT J AU Emerson, JM Bartholomai, BM Ringelberg, CS Baker, SE Loros, JJ Dunlap, JC AF Emerson, Jillian M. Bartholomai, Bradley M. Ringelberg, Carol S. Baker, Scott E. Loros, Jennifer J. Dunlap, Jay C. TI period-1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE circadian; FRQ; RNA helicase; DDX5; Dbp2p ID DEAD-BOX PROTEINS; TEMPERATURE COMPENSATION; MOLECULAR ARCHITECTURE; CRASSA; RHYTHMS; DBP2; MUTATIONS; FEEDBACK; COMPLEX; TRANSCRIPTION AB Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 [ DEAD (Asp-Glu-Ala-Asp) Box Helicase 5] and DDX17 in humans and DBP2 (Dead Box Protein 2) in yeast, are implicated in various processes, including transcriptional regulation, elongation, and termination, ribosome biogenesis, and mRNA decay. Although prd-1 mutants display a long period (similar to 25 h) circadian developmental cycle, they interestingly display a WT period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator in the prd-1 mutant strain runs with a long period under glucose-sufficient conditions. Thus, PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein, and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose, PRD-1 is in the nucleus until glucose runs out, which elicits its disappearance fromthe nucleus. Because circadian period length is carbon concentration-dependent, prd-1 may be formally viewed as a clock mutant with defective nutritional compensation of circadian period length. C1 [Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.; Loros, Jennifer J.; Dunlap, Jay C.] Geisel Sch Med Dartmouth, Dept Genet, Hanover, NH 03755 USA. [Baker, Scott E.] Pacific NW Natl Lab, Earth & Biol Sci Directorate, Environm Mol Sci Lab, Richland, WA 99354 USA. [Loros, Jennifer J.] Geisel Sch Med Dartmouth, Dept Biochem, Hanover, NH 03755 USA. RP Dunlap, JC (reprint author), Geisel Sch Med Dartmouth, Dept Genet, Hanover, NH 03755 USA. EM jay.c.dunlap@dartmouth.edu RI Dunlap, Jay/L-6232-2013 OI Dunlap, Jay/0000-0003-1577-0457 FU National Institute of General Medical Sciences, National Institutes of Health [GM34985, GM083336] FX We thank Xiangjun Xiao and Christopher I. Amos for help with identification of genetic variants based on genomic sequences, and Joanna Hamilton and the staff of the Genomics Shared Resource at the Geisel School of Medicine for excellent technical support. This work was supported by National Institute of General Medical Sciences, National Institutes of Health Grants GM34985 (to J.C.D.) and GM083336 (to J.J.L.). NR 40 TC 3 Z9 3 U1 2 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 22 PY 2015 VL 112 IS 51 BP 15707 EP 15712 DI 10.1073/pnas.1521918112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ2DT UT WOS:000366916000056 PM 26647184 ER PT J AU Kammer, DC Allen, MS Mayes, RL AF Kammer, Daniel C. Allen, Mathew S. Mayes, Randy L. TI Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID MATRICES; MASS AB Experimental-analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. The method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinates to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig-Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. These modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Kammer, Daniel C.; Allen, Mathew S.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Mayes, Randy L.] Sandia Natl Labs, Struct Dynam, Albuquerque, NM 87185 USA. RP Kammer, DC (reprint author), Univ Wisconsin, Dept Engn Phys, 1500 Engn Dr, Madison, WI 53706 USA. EM kammer@engr.wisc.edu; msallen@engr.wisc.edu; rlmayes@sandia.gov FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Sandia National Laboratories. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract: DE-AC04-94AL85000. NR 19 TC 1 Z9 1 U1 2 U2 10 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X EI 1095-8568 J9 J SOUND VIB JI J. Sound Vibr. PD DEC 22 PY 2015 VL 359 BP 179 EP 194 DI 10.1016/j.jsv.2015.09.002 PG 16 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA CT0AM UT WOS:000362456100013 ER PT J AU Deffner, S AF Deffner, Sebastian TI Shortcuts to adiabaticity: suppression of pair production in driven Dirac dynamics SO NEW JOURNAL OF PHYSICS LA English DT Article DE shortcuts to adiabaticity; Dirac dynamics; fast-forward technique ID QUANTUM-MECHANICS; FAST-FORWARD; EQUATION; THEOREM; FIELDS; TIME AB Achieving effectively adiabatic dynamics in finite time is a ubiquitous goal in virtually all areas of modern physics. So-called shortcuts to adiabaticity refer to a set of methods and techniques that allow us to produce in a short time the same final state that would result from an adiabatic, infinitely slow process. In this paper we generalize one of these methods-the fast-forward technique-to driven Dirac dynamics. As our main result we find that shortcuts to adiabaticity for the (1 + 1)-dimensional Dirac equation are facilitated by a combination of both scalar and pseudoscalar potentials. Our findings are illustrated for two analytically solvable examples, namely charged particles driven in spatially homogeneous and linear vector fields. C1 [Deffner, Sebastian] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Deffner, Sebastian] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Deffner, S (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM sebastian.deffner@gmail.com RI Deffner, Sebastian/C-5170-2008 OI Deffner, Sebastian/0000-0003-0504-6932 FU US Department of Energy through a LANL Director's Funded Fellowship FX It is a pleasure to thank Avadh Saxena for inspiring an interest in Dirac dynamics, and Bartlomiej Gardas for insightful discussions. SD acknowledges financial support by the US Department of Energy through a LANL Director's Funded Fellowship. NR 45 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD DEC 21 PY 2015 VL 18 AR 012001 DI 10.1088/1367-2630/18/1/012001 PG 10 WC Physics, Multidisciplinary SC Physics GA DG8UY UT WOS:000372360300001 ER PT J AU Deffner, S AF Deffner, Sebastian TI Shortcuts to adiabaticity: suppression of pair production in driven Dirac dynamics SO NEW JOURNAL OF PHYSICS LA English DT Article DE shortcuts to adiabaticity; Dirac dynamics; fast-forward technique ID QUANTUM-MECHANICS; FAST-FORWARD; EQUATION; THEOREM; FIELDS; TIME AB Achieving effectively adiabatic dynamics in finite time is a ubiquitous goal in virtually all areas of modern physics. So-called shortcuts to adiabaticity refer to a set of methods and techniques that allow us to produce in a short time the same final state that would result from an adiabatic, infinitely slow process. In this paper we generalize one of these methods-the fast-forward technique-to driven Dirac dynamics. As our main result we find that shortcuts to adiabaticity for the (1 + 1)-dimensional Dirac equation are facilitated by a combination of both scalar and pseudoscalar potentials. Our findings are illustrated for two analytically solvable examples, namely charged particles driven in spatially homogeneous and linear vector fields. C1 [Deffner, Sebastian] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Deffner, Sebastian] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Deffner, S (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM sebastian.deffner@gmail.com FU US Department of Energy through a LANL Director's Funded Fellowship FX It is a pleasure to thank Avadh Saxena for inspiring an interest in Dirac dynamics, and Bartlomiej Gardas for insightful discussions. SD acknowledges financial support by the US Department of Energy through a LANL Director's Funded Fellowship. NR 45 TC 0 Z9 0 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD DEC 21 PY 2015 VL 18 AR 012001 DI 10.1088/1367-2630/18/1/012001 PG 10 WC Physics, Multidisciplinary SC Physics GA DZ3JC UT WOS:000385741800001 ER PT J AU Kidon, L Wilner, EY Rabani, E AF Kidon, Lyran Wilner, Eli Y. Rabani, Eran TI Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID BROWNIAN-MOTION; QUANTUM; DYNAMICS; SYSTEM; FORMULATION AB The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or " generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed. (C) 2015 AIP Publishing LLC. C1 [Kidon, Lyran] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel. [Kidon, Lyran; Rabani, Eran] Tel Aviv Univ, Sackler Ctr Computat Mol & Mat Sci, IL-69978 Tel Aviv, Israel. [Wilner, Eli Y.] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Rabani, Eran] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Rabani, Eran] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Kidon, L (reprint author), Tel Aviv Univ, Sackler Fac Exact Sci, Sch Chem, IL-69978 Tel Aviv, Israel. FU Center for Nanoscience and Nanotechnology at Tel Aviv University FX We would like to thank Shaul Mukamel, David Reichman, and Michael Thoss for insightful discussions and suggestions. E.Y.W. is grateful to The Center for Nanoscience and Nanotechnology at Tel Aviv University for a doctoral fellowship. NR 54 TC 1 Z9 1 U1 3 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 21 PY 2015 VL 143 IS 23 AR 234110 DI 10.1063/1.4937396 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DD3FD UT WOS:000369806500012 PM 26696049 ER PT J AU Lee, O You, L Jang, J Subramanian, V Salahuddin, S AF Lee, OukJae You, Long Jang, Jaewon Subramanian, Vivek Salahuddin, Sayeef TI Flexible spin-orbit torque devices SO APPLIED PHYSICS LETTERS LA English DT Article ID DOMAIN-WALLS; STRETCHABLE ELECTRONICS; MECHANICS; DYNAMICS; FIELDS AB We report on state-of-the-art spintronic devices synthesized and fabricated directly on a flexible organic substrate. Large perpendicular magnetic anisotropy was achieved in ultrathin ferromagnetic heterostructures of Pt/Co/MgO sputtered on a non-rigid plastic substrate at room temperature. Subsequently, a full magnetic reversal of the Co was observed by exploiting the spin orbit coupling in Pt that leads to a spin accumulation at the Pt/Co interface when an in-plane current is applied. Quasi-static measurements show the potential for operating these devices at nano-second speeds. Importantly, the behavior of the devices remained unchanged under varying bending conditions (up to a bending radius of approximate to +/- 20-30mm). Furthermore, the devices showed robust operation even after application of 10(6) successive pulses, which is likely sufficient for many flexible applications. Thus, this work demonstrates the potential for integrating high performance spintronic devices on flexible substrates, which could lead to many applications ranging from flexible non-volatile magnetic memory to local magnetic resonance imaging. (C) 2015 AIP Publishing LLC. C1 [Lee, OukJae; You, Long; Jang, Jaewon; Subramanian, Vivek; Salahuddin, Sayeef] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Salahuddin, Sayeef] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Lee, O (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. RI Subramanian, Vivek/K-9818-2016 OI Subramanian, Vivek/0000-0002-1783-8219 FU Center of Function Accelerated NanoMaterial Engineering (FAME), one of the six SRC STARnet Centers - MARCO; Center of Function Accelerated NanoMaterial Engineering (FAME), one of the six SRC STARnet Centers - DARPA; NSF E3S center at Berkeley [ECCS-0939514]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012371] FX The authors would like to thank Dominic Labanowski for useful conversations. This research was supported in part by the Center of Function Accelerated NanoMaterial Engineering (FAME), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA; and the NSF E3S center at Berkeley, Grant No. ECCS-0939514. The materials' development was funded by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0012371. NR 32 TC 1 Z9 1 U1 11 U2 42 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 21 PY 2015 VL 107 IS 25 AR 252401 DI 10.1063/1.4936934 PG 5 WC Physics, Applied SC Physics GA DB3VW UT WOS:000368442100024 ER PT J AU Leroy, MA Bataille, AM Wang, Q Fitzsimmons, MR Bertran, F Le Fevre, P Taleb-Ibrahimi, A Vlad, A Coati, A Garreau, Y Hauet, T Gatel, C Ott, F Andrieu, S AF Leroy, M. -A. Bataille, A. M. Wang, Q. Fitzsimmons, M. R. Bertran, F. Le Fevre, P. Taleb-Ibrahimi, A. Vlad, A. Coati, A. Garreau, Y. Hauet, T. Gatel, C. Ott, F. Andrieu, S. TI Enhanced magnetization at the Cr/MgO(001) interface SO APPLIED PHYSICS LETTERS LA English DT Article ID SCANNING TUNNELING SPECTROSCOPY; SURFACE ELECTRONIC-STRUCTURE; ANTIFERROMAGNETIC CHROMIUM; CR(001); CR(100); DOMAINS; FILM AB We report on the magnetization at the Cr/MgO interface, which we studied through two complementary techniques: angle-resolved photoemission spectroscopy and polarized neutron reflectivity. We experimentally observe an enhanced interface magnetization at the interface, yet with values much smaller than the ones reported so far by theoretical and experimental studies on Cr(001) surfaces. Our findings cast some doubts on the interpretations on previous works and could be useful in antiferromagnetic spin torque studies. (C) 2015 AIP Publishing LLC. C1 [Leroy, M. -A.; Bataille, A. M.; Ott, F.] CEA Saclay, IRAMIS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France. [Leroy, M. -A.; Hauet, T.; Andrieu, S.] Univ Lorraine, Inst Jean Lamour, F-54500 Vandoeuvre Les Nancy, France. [Wang, Q.; Fitzsimmons, M. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bertran, F.; Le Fevre, P.; Taleb-Ibrahimi, A.; Vlad, A.; Coati, A.; Garreau, Y.] Synchrotron SOLEIL, LOrme Merisiers, F-91192 Gif Sur Yvette, France. [Garreau, Y.] Univ Paris 07, Sorbonne Paris Cite, MPQ, CNRS,UMR 7162, F-75205 Paris 13, France. [Gatel, C.] CEMES CNRS, F-31055 Toulouse, France. RP Bataille, AM (reprint author), CEA Saclay, IRAMIS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France. EM alexandre.bataille@cea.fr RI Bataille, Alexandre/K-1711-2013; Gatel, Christophe/F-6046-2014; BERTRAN, Francois/B-7515-2008; andrieu, stephane/N-3654-2016 OI Gatel, Christophe/0000-0001-5549-7008; BERTRAN, Francois/0000-0002-2416-0514; andrieu, stephane/0000-0003-0373-8193 FU French Agence Nationale de la Recherche [ANR-11-JS10-005]; Department of Energy's Office of Basic Energy Science FX We thank Amina Neggache for her help with the ARPES experiment and samples growth and Florence Porcher for her help during diffraction experiments. This work was supported by the French Agence Nationale de la Recherche, ANR-11-JS10-005 "Electra". The HRTEM experiments were supported by the METSA network. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Department of Energy's Office of Basic Energy Science. NR 37 TC 0 Z9 0 U1 4 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 21 PY 2015 VL 107 IS 25 AR 251602 DI 10.1063/1.4938131 PG 5 WC Physics, Applied SC Physics GA DB3VW UT WOS:000368442100010 ER PT J AU Santala, MK Raoux, S Campbell, GH AF Santala, M. K. Raoux, S. Campbell, G. H. TI Kinetics of liquid-mediated crystallization of amorphous Ge from multi-frame dynamic transmission electron microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID PULSED-LASER IRRADIATION; TIME-RESOLVED TEM; EXPLOSIVE CRYSTALLIZATION; GERMANIUM; FILMS; SILICON; TEMPERATURE AB The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in similar to 100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measured with time-resolved imaging experiments. Crystal growth rates exceed 10m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. The high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments. (C) 2015 AIP Publishing LLC. C1 [Santala, M. K.; Campbell, G. H.] Lawrence Livermore Natl Lab, Div Mat Sci, 7000 East Ave, Livermore, CA 94551 USA. [Raoux, S.] Mat & Energie GmbH, Helmholtz Zentrum Berlin, Hahn Meitner Pl 1, D-14109 Berlin, Germany. RP Santala, MK (reprint author), Oregon State Univ, Mech Ind & Mfg Engn, 204 Rogers Hall, Corvallis, OR 97331 USA. EM melissa.santala@oregonstate.edu RI Raoux, Simone/G-3920-2016 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering for FWP SCW0974 by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering for FWP SCW0974 by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 29 TC 3 Z9 3 U1 4 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 21 PY 2015 VL 107 IS 25 AR 252106 DI 10.1063/1.4938751 PG 5 WC Physics, Applied SC Physics GA DB3VW UT WOS:000368442100023 ER PT J AU Siah, SC Brandt, RE Lim, K Schelhas, LT Jaramillo, R Heinemann, MD Chua, D Wright, J Perkins, JD Segre, CU Gordon, RG Toney, MF Buonassisi, T AF Siah, S. C. Brandt, R. E. Lim, K. Schelhas, L. T. Jaramillo, R. Heinemann, M. D. Chua, D. Wright, J. Perkins, J. D. Segre, C. U. Gordon, R. G. Toney, M. F. Buonassisi, T. TI Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID BETA-GA2O3 SINGLE-CRYSTAL; ELECTRON-PARAMAGNETIC-RESONANCE; FILMS AB Doping activity in both beta-phase (beta-) and amorphous (a-) Sn-doped gallium oxide (Ga2O3:Sn) is investigated by X-ray absorption spectroscopy (XAS). A single crystal of beta-Ga2O3:Sn grown using edge-defined film-fed growth at 1725 degrees C is compared with amorphous Ga2O3:Sn films deposited at low temperature (<300 degrees C). Our XAS analyses indicate that activated Sn dopant atoms in conductive single crystal beta-Ga2O3:Sn are present as Sn4+, preferentially substituting for Ga at the octahedral site, as predicted by theoretical calculations. In contrast, inactive Sn atoms in resistive a-Ga2O3:Sn are present in either +2 or +4 charge states depending on growth conditions. These observations suggest the importance of growing Ga2O3:Sn at high temperature to obtain a crystalline phase and controlling the oxidation state of Sn during growth to achieve dopant activation. (C) 2015 AIP Publishing LLC. C1 [Siah, S. C.; Brandt, R. E.; Jaramillo, R.; Buonassisi, T.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Lim, K.; Schelhas, L. T.; Toney, M. F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Lim, K.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Heinemann, M. D.] PVcomB, Helmholtz Zentrum Berlin, D-12489 Berlin, Germany. [Chua, D.; Gordon, R. G.] Harvard Univ, Dept Chem Mat Sci & Chem Biol, Cambridge, MA 02138 USA. [Wright, J.; Segre, C. U.] IIT, Dept Phys, Chicago, IL 60616 USA. [Wright, J.] IIT, CSRRI, Chicago, IL 60616 USA. [Perkins, J. D.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Siah, SC (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM sincheng@alum.mit.edu; buonassisi@mit.edu RI Segre, Carlo/B-1548-2009; ID, MRCAT/G-7586-2011; OI Segre, Carlo/0000-0001-7664-1574; Heinemann, Marc Daniel/0000-0001-9666-4343 FU Center for Next Generation Materials by Design (CMGMD), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC36-08GO28308]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-76SF00515]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NRF Singapore; NSF; Kwanjeong Education Foundation; U.S. Department of Energy EERE FX This work was supported as part of the Center for Next Generation Materials by Design (CMGMD), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC36-08GO28308. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. S. Lany, D. S. Ginley, W. Tumas (NREL), and A. M. Kolpak (MIT) are thanked for helpful discussions. J.R. Poindexter (MIT) is thanked for synchrotron assistance. S.C.S., R.E.B., K.L., and R.J. acknowledge a Clean Energy Scholarship from NRF Singapore, an NSF Graduate Research Fellowship, a Kwanjeong Education Foundation Fellowship, and a U.S. Department of Energy EERE Postdoctoral Research Award, respectively. Lastly, Tamura Corporation is thanked for providing insightful information. NR 26 TC 5 Z9 5 U1 10 U2 29 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 21 PY 2015 VL 107 IS 25 AR 252103 DI 10.1063/1.4938123 PG 5 WC Physics, Applied SC Physics GA DB3VW UT WOS:000368442100020 ER PT J AU Yi, H Liao, ZX Zhang, GH Zhang, GT Fan, C Zhang, X Bunel, EE Pao, CW Lee, JF Lei, AW AF Yi, Hong Liao, Zhixiong Zhang, Guanghui Zhang, Guoting Fan, Chao Zhang, Xu Bunel, Emilio E. Pao, Chih-Wen Lee, Jyh-Fu Lei, Aiwen TI Evidence of Cu-I/Cu-II Redox Process by X-ray Absorption and EPR Spectroscopy: Direct Synthesis of Dihydrofurans from beta-Ketocarbonyl Derivatives and Olefins SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE copper; homogeneous catalysis; oxidative coupling; redox chemistry; X-ray absorption spectroscopy ID FREE-RADICAL REACTIONS; COUPLING REACTIONS; ULLMANN REACTION; BOND FORMATION; ARYL HALIDES; NATURAL-PRODUCTS; OPERANDO IR; COMPLEXES; OXIDATION; AMINATION AB The Cu-I/Cu-II and Cu-I/Cu-III catalytic cycles have been subject to intense debate in the field of copper-catalyzed oxidative coupling reactions. A mechanistic study on the Cu-I/Cu-II redox process, by X-ray absorption (XAS) and electron paramagnetic resonance (EPR) spectroscopies, has elucidated the reduction mechanism of Cu-II to Cu-I by 1,3-diketone and detailed investigation revealed that the halide ion is important for the reduction process. The oxidative nature of the thereby-formed Cu-I has also been studied by XAS and EPR spectroscopy. This mechanistic information is applicable to the copper-catalyzed oxidative cyclization of beta-ketocarbonyl derivatives to dihydrofurans. This protocol provides an ideal route to highly substituted dihydrofuran rings from easily available 1,3-dicarbonyls and olefins. C1 [Yi, Hong; Liao, Zhixiong; Zhang, Guanghui; Zhang, Guoting; Fan, Chao; Zhang, Xu; Lei, Aiwen] Wuhan Univ, IAS, Coll Chem & Mol Sci, Wuhan 430072, Hubei, Peoples R China. [Lei, Aiwen] Jiangxi Normal Univ, Natl Res Ctr Carbohydrate Synth, Nanchang 330022, Jiangxi, Peoples R China. [Bunel, Emilio E.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Pao, Chih-Wen; Lee, Jyh-Fu] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. RP Lei, AW (reprint author), Wuhan Univ, IAS, Coll Chem & Mol Sci, Wuhan 430072, Hubei, Peoples R China. EM aiwenlei@whu.edu.cn RI Zhang, Guanghui/C-4747-2008 OI Zhang, Guanghui/0000-0002-5854-6909 FU 973 Program [2012CB725302, 2011CB808600]; National Natural Science Foundation of China [21390400, 21272180, 21302148]; Research Fund for the Doctoral Program of Higher Education of China [20120141130002]; Program for Changjiang Scholars and Innovative Research Team in University [IRT1030]; Ministry of Science and Technology of China [2012YQ120060]; Program of Introducing Talents of Discipline to Universities of China (111 Program); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Chemical Sciences and Engineering Division at Argonne National Laboratory FX This work was supported by the 973 Program (2012CB725302 and 2011CB808600), the National Natural Science Foundation of China (21390400, 21272180, and 21302148), the Research Fund for the Doctoral Program of Higher Education of China (20120141130002), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1030), and the Ministry of Science and Technology of China (2012YQ120060). The Program of Introducing Talents of Discipline to Universities of China (111 Program) is also appreciated. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. This work was also funded by the Chemical Sciences and Engineering Division at Argonne National Laboratory. Some X-ray absorption spectroscopy studies were carried out at beamline 17C1 of the National Synchrotron Radiation Research Center (NSRRC) in Taiwan. NR 65 TC 8 Z9 8 U1 15 U2 53 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD DEC 21 PY 2015 VL 21 IS 52 BP 18925 EP 18929 DI 10.1002/chem.201503822 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DB1PX UT WOS:000368282100007 PM 26514113 ER PT J AU Reed, SL McMahon, RG Banerji, M Becker, GD Gonzalez-Solares, E Martini, P Ostrovski, F Rauch, M Abbott, T Abdalla, FB Allam, S Benoit-Levy, A Bertin, E Buckley-Geer, E Burke, D Rosell, AC da Costa, LN D'Andrea, C DePoy, DL Desai, S Diehl, HT Doel, P Cunha, CE Estrada, J Evrard, AE Neto, AF Finley, DA Fosalba, P Frieman, J Gruen, D Honscheid, K James, D Kent, S Kuehn, K Kuropatkin, N Lahav, O Maia, MAG Makler, M Marshall, J Merritt, K Miquel, R Mohr, J Nord, B Ogando, R Plazas, A Romer, K Roodman, A Rykoff, E Sako, M Sanchez, E Santiago, B Schubnell, M Sevilla, I Smith, C Soares-Santos, M Suchyta, E Swanson, MEC Tarle, G Thomas, D Tucker, D Walker, A Wechsler, RH AF Reed, S. L. McMahon, R. G. Banerji, M. Becker, G. D. Gonzalez-Solares, E. Martini, P. Ostrovski, F. Rauch, M. Abbott, T. Abdalla, F. B. Allam, S. Benoit-Levy, A. Bertin, E. Buckley-Geer, E. Burke, D. Rosell, A. Carnero da Costa, L. N. D'Andrea, C. DePoy, D. L. Desai, S. Diehl, H. T. Doel, P. Cunha, C. E. Estrada, J. Evrard, A. E. Neto, A. Fausti Finley, D. A. Fosalba, P. Frieman, J. Gruen, D. Honscheid, K. James, D. Kent, S. Kuehn, K. Kuropatkin, N. Lahav, O. Maia, M. A. G. Makler, M. Marshall, J. Merritt, K. Miquel, R. Mohr, J. Nord, B. Ogando, R. Plazas, A. Romer, K. Roodman, A. Rykoff, E. Sako, M. Sanchez, E. Santiago, B. Schubnell, M. Sevilla, I. Smith, C. Soares-Santos, M. Suchyta, E. Swanson, M. E. C. Tarle, G. Thomas, D. Tucker, D. Walker, A. Wechsler, R. H. TI DES J0454-4448: discovery of the first luminous z >= 6 quasar from the Dark Energy Survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; galaxies: formation; galaxies: high-redshift; quasars: individual: DES J0454-4448; dark ages, reionization, first stars ID DIGITAL SKY SURVEY; ACTIVE GALACTIC NUCLEI; LY-ALPHA FOREST; DATA RELEASE; Z-SIMILAR-TO-6; EVOLUTION; SELECTION; REDSHIFT; REIONIZATION; DENSITY AB We present the first results of a survey for high-redshift, z >= 6, quasars using izY multicolour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the Z(AB), Y-AB = 20.2, 20.2 (M-1450 = -26.5) quasar DES J0454-4448 with a redshift of z = 6.09 +/- 0.02 based on the onset of the Ly alpha forest and an H I near zone size of 4.1(-1.2)(+1.1) proper Mpc. The quasar was selected as an i-band drop out with i-z = 2.46 and z(AB) < 21.5 from an area of similar to 300 deg(2). It is the brightest of our 43 candidates and was identified for spectroscopic follow-up solely based on the DES i-z and z-Y colours. The quasar is detected by WISE and has W1(AB) = 19.68. The discovery of one spectroscopically confirmed quasar with 5.7 < z < 6.5 and z(AB) <= 20.2 is consistent with recent determinations of the luminosity function at z similar to 6. DES when completed will have imaged -5000 deg2 to Y-AB = 23.0 (5 sigma point source) and we expect to discover 50-100 new quasars with z > 6 including 3-10 with z > 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies. C1 [Reed, S. L.; McMahon, R. G.; Banerji, M.; Becker, G. D.; Gonzalez-Solares, E.; Ostrovski, F.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Reed, S. L.; McMahon, R. G.; Banerji, M.; Becker, G. D.; Ostrovski, F.] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Banerji, M.; Abdalla, F. B.; Benoit-Levy, A.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Becker, G. D.; Allam, S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Martini, P.; Honscheid, K.; Suchyta, E.; Swanson, M. E. C.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Rauch, M.] Observatories Carnegie Inst Sci, Pasadena, CA 91101 USA. [Abbott, T.; James, D.; Smith, C.; Walker, A.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, La Serena, Chile. [Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Estrada, J.; Finley, D. A.; Frieman, J.; Kent, S.; Kuropatkin, N.; Merritt, K.; Nord, B.; Soares-Santos, M.; Tucker, D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bertin, E.] Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] CNRS, UMR7095, F-75014 Paris, France. [Burke, D.; Roodman, A.; Rykoff, E.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rosell, A. Carnero; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observatorio Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [da Costa, L. N.; Neto, A. Fausti; Maia, M. A. G.] Lab Interinst eAstron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [D'Andrea, C.; Romer, K.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [DePoy, D. L.; Marshall, J.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Marshall, J.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.; Gruen, D.; Mohr, J.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Cunha, C. E.; Roodman, A.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Evrard, A. E.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Fosalba, P.] CSIC, Inst Ciencies Espai, IEEC, Fac Ciencies, E-08193 Barcelona, Spain. [Gruen, D.] Univ Observ Munich, D-81679 Munich, Germany. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Makler, M.] ICRA, Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil. [Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Plazas, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sako, M.] Hosp Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Sanchez, E.; Sevilla, I.] Ctr Invest Energet Medioambientales & Technol CIE, E-28040 Madrid, Spain. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Phys, BR-91501970 Porto Alegre, RS, Brazil. [Suchyta, E.; Swanson, M. E. C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Swanson, M. E. C.] Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Thomas, D.] SEPnet, South East Phys Network, Southampton, Hants, England. [Wechsler, R. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Reed, SL (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. EM sr525@ast.cam.ac.uk RI Ogando, Ricardo/A-1747-2010; Makler, Martin/G-2639-2012; Sanchez, Eusebio/H-5228-2015; Fosalba Vela, Pablo/I-5515-2016; OI Ogando, Ricardo/0000-0003-2120-1154; Makler, Martin/0000-0003-2206-2651; Sanchez, Eusebio/0000-0002-9646-8198; McMahon, Richard/0000-0001-8447-8869; Banerji, Manda/0000-0002-0639-5141; Abdalla, Filipe/0000-0003-2063-4345; Reed, Sophie/0000-0002-4422-0553; Tucker, Douglas/0000-0001-7211-5729 FU UK Science and Technology research Council (STFC); US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of UK; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; Argonne National Laboratories; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Edinburgh; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Laboratory; Stanford University; University of Sussex; Texas AM University; PAPDRJ CAPES/FAPERJ Fellowship FX RGM, SLR and MB acknowledge the support of UK Science and Technology research Council (STFC).; Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of UK, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the DES.; The Collaborating Institutions are Argonne National Laboratories, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, the Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; ACR acknowledges financial support provided by the PAPDRJ CAPES/FAPERJ Fellowship. NR 38 TC 6 Z9 6 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 21 PY 2015 VL 454 IS 4 BP 3952 EP 3961 DI 10.1093/mnras/stv2031 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7RK UT WOS:000368001600050 ER PT J AU Fox, OD Smith, N Ammons, SM Andrews, J Bostroem, KA Cenko, SB Clayton, GC Dwek, E Filippenko, AV Gallagher, JS Kelly, PL Mauerhan, JC Miller, AA Van Dyk, SD AF Fox, Ori D. Smith, Nathan Ammons, S. Mark Andrews, Jennifer Bostroem, K. Azalee Cenko, S. Bradley Clayton, Geoffrey C. Dwek, Eli Filippenko, Alexei V. Gallagher, Joseph S. Kelly, Patrick L. Mauerhan, Jon C. Miller, Adam A. Van Dyk, Schuyler D. TI What powers the 3000-day light curve of SN 2006gy? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE circumstellar matter; supernovae: general; supernovae: individual: SN 2006gy; dust, extinction; infrared: stars ID LUMINOUS SUPERNOVA; CIRCUMSTELLAR INTERACTION; IIN SUPERNOVAE; DUST FORMATION; SPECTROSCOPY; STAR; PHOTOMETRY; EMISSION; 2005IP; 1987A AB SN 2006gy was the most luminous supernova (SN) ever observed at the time of its discovery and the first of the newly defined class of superluminous supernovae (SLSNe). The extraordinary energetics of SN 2006gy and all SLSNe (>10(51) erg) require either atypically large explosion energies (e.g. pair-instability explosion) or the efficient conversion of kinetic into radiative energy (e.g. shock interaction). The mass-loss characteristics can therefore offer important clues regarding the progenitor system. For the case of SN 2006gy, both a scattered and thermal light echo from circumstellar material (CSM) have been reported at later epochs (day similar to 800), ruling out the likelihood of a pair-instability event and leading to constraints on the characteristics of the CSM. Owing to the proximity of the SN to the bright host-galaxy nucleus, continued monitoring of the light echo has not been trivial, requiring the high resolution offered by the Hubble Space Telescope (HST) or ground-based adaptive optics (AO). Here, we report detections of SN 2006gy using HST and Keck AO at similar to 3000 d post-explosion and consider the emission mechanism for the very late-time light curve. While the optical light curve and optical spectral energy distribution are consistent with a continued scattered-light echo, a thermal echo is insufficient to power the K'-band emission by day 3000. Instead, we present evidence for late-time infrared emission from dust that is radiatively heated by CSM interaction within an extremely dense dust shell, and we consider the implications on the CSM characteristics and progenitor system. C1 [Fox, Ori D.; Filippenko, Alexei V.; Kelly, Patrick L.; Mauerhan, Jon C.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Fox, Ori D.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Smith, Nathan; Andrews, Jennifer] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Ammons, S. Mark] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bostroem, K. Azalee] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Cenko, S. Bradley; Dwek, Eli] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Clayton, Geoffrey C.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Gallagher, Joseph S.] Univ Cincinnati, Blue Ash Coll, Blue Ash, OH 45236 USA. [Miller, Adam A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Miller, Adam A.] CALTECH, Pasadena, CA 91125 USA. [Van Dyk, Schuyler D.] CALTECH, IPAC, Pasadena, CA 91125 USA. RP Fox, OD (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM ofox@stsci.edu OI Van Dyk, Schuyler/0000-0001-9038-9950; Clayton, Geoffrey/0000-0002-0141-7436 FU NASA [NAS5-26555]; W. M. Keck Foundation; NASA through STScI [GO-13287]; Christopher R. Redlich Fund; TABASGO Foundation; NSF [AST-1211916]; US Department of Energy through the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work is based on observations made with the NASA/ESA HST, obtained from the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555. We are grateful to the STScI Help Desk for their assistance with the HST data. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. The Keck observations were made possible by the ToO program. We thank the staff of the Keck Observatory for their assistance with the observations, as well as efforts by Sam Ragland and Mark Morris. Melissa L. Graham and WeiKang Zheng helped obtain and reduce the Keck spectra. We wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.; Financial support for ODF was provided by NASA through grant GO-13287 from STScI. AVF and his group acknowledge generous financial assistance from the Christopher R. Redlich Fund, the TABASGO Foundation, and NSF grant AST-1211916. The research by SMA is supported by the US Department of Energy through the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 45 TC 2 Z9 2 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 21 PY 2015 VL 454 IS 4 BP 4366 EP 4378 DI 10.1093/mnras/stv2270 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DA7RK UT WOS:000368001600080 ER PT J AU Zhai, DY Lau, KC Wang, HH Wen, JG Miller, DJ Kang, FY Li, BH Zavadil, K Curtiss, LA AF Zhai, Dengyun Lau, Kah Chun Wang, Hsien-Hau Wen, Jianguo Miller, Dean J. Kang, Feiyu Li, Baohua Zavadil, Kevin Curtiss, Larry A. TI The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium-Oxygen Batteries SO CHEMSUSCHEM LA English DT Article DE carbon; batteries; lithium; oxygen; potassium ID RECHARGEABLE LI-O-2 BATTERIES; AIR BATTERIES; LONG-LIFE; ELECTROCHEMICAL PERFORMANCE; POROUS GRAPHENE; RATE CAPABILITY; CATALYSTS; ELECTRODE; CHARGE; DISPROPORTIONATION AB Rechargeable lithium-air (Li-O-2) batteries have drawn much interest owing to their high energy density. We report on the effect of deliberately introducing potassium impurities into the cathode material on the electrochemical performance of a Li-O-2 battery. Small amounts of potassium introduced into the activated carbon (AC) cathode material in the synthesis process are found to have a dramatic effect on the performance of the Li-O-2 cell. An increased amount of potassium significantly increases capacity, cycle life, and round-trip efficiency. This improved performance is probably due to a larger amount of LiO2 in the discharge product, which is a mixture of LiO2 and Li2O2, resulting from the increase in the amount of potassium present. No substantial correlation with porosity or surface area in an AC cathode is found. Experimental and computational studies indicate that potassium can act as an oxygen reduction catalyst, which can account for the dependence of performance on the amount of potassium. C1 [Zhai, Dengyun] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lau, Kah Chun; Wang, Hsien-Hau; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Elect Microscopy Ctr, Argonne, IL 60439 USA. [Kang, Feiyu; Li, Baohua] Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Peoples R China. [Zavadil, Kevin] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Zhai, DY (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. EM curtiss@anl.gov FU U.S. Department of Energy, Basic Energy Science, Joint Center for Energy Storage Research an Energy Innovation Hub [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Support for this work came from the U.S. Department of Energy, Basic Energy Science, Joint Center for Energy Storage Research an Energy Innovation Hub under Contract No. DE-AC02-06CH11357. We also acknowledge grants of computer time through the ALCF Fusion and Blues Cluster at Argonne National Laboratory, and the EMSL Chinook Cluster at Pacific Northwest National Laboratory. Use of the Electron Microscopy Center for Materials Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 57 TC 2 Z9 2 U1 8 U2 53 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD DEC 21 PY 2015 VL 8 IS 24 BP 4235 EP 4241 DI 10.1002/cssc.201500960 PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA DA5EP UT WOS:000367825900015 PM 26630086 ER PT J AU Beaton, DA Mascarenhas, A Alberi, K AF Beaton, D. A. Mascarenhas, A. Alberi, K. TI Insight into the epitaxial growth of high optical quality GaAs1-xBix SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-BEAM EPITAXY; SEMICONDUCTOR ALLOY GAAS1-XBIX; DILUTE NITRIDES; GAAS; AS-4; SB AB The ternary alloy GaAs1-xBix is a potentially important material for infrared light emitting devices, but its use has been limited by poor optical quality. We report on the synthesis of GaAs1-xBix epilayers that exhibit narrow, band edge photoluminescence similar to other ternary GaAs based alloys, e.g., InyGa1-yAs. The measured spectral line widths are as low as 14 meV and 37 meV at low temperature (6 K) and room temperature, respectively, and are less than half of previously reported values. The improved optical quality is attributed to the use of incident UV irradiation of the epitaxial surface and the presence of a partial surface coverage of bismuth in a surfactant layer during epitaxy. Comparisons of samples grown under illuminated and dark conditions provide insight into possible surface processes that may be altered by the incident UV light. The improved optical quality now opens up possibilities for the practical use of GaAs1-xBix in optoelectronic devices. (C) 2015 AIP Publishing LLC. C1 [Beaton, D. A.; Mascarenhas, A.; Alberi, K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Beaton, DA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM daniel.beaton@nrel.gov FU Department of Energy, Office of Science, Basic Energy Sciences [DE-AC36-O8GO-28308] FX We acknowledge the financial support of the Department of Energy, Office of Science, Basic Energy Sciences under DE-AC36-O8GO-28308. We thank M. C. Tarun and P. M. Mooney at Simon Fraser Univ. for the preliminary DLTS results. NR 36 TC 2 Z9 2 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 21 PY 2015 VL 118 IS 23 AR 235701 DI 10.1063/1.4937574 PG 8 WC Physics, Applied SC Physics GA CZ8VG UT WOS:000367376600061 ER PT J AU Fensin, SJ Walker, EK Cerreta, EK Trujillo, CP Martinez, DT Gray, GT AF Fensin, S. J. Walker, E. K. Cerreta, E. K. Trujillo, C. P. Martinez, D. T. Gray, G. T., III TI Dynamic failure in two-phase materials SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID STACKING-FAULT ENERGY; GRAIN-BOUNDARIES; SPALL DAMAGE; COPPER; FRACTURE; METALS; COMPOSITES; BEHAVIOR; SOLIDS AB Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as void nucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parent materials. In this work, we present results on three different polycrystalline materials: (1) Cu, (2) Cu-24 wt. % Ag, and (3) Cu-15 wt. % Nb which were studied to probe the influence of bi-metal interfaces on void nucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the "weaker" material that dictates the dynamic spall strength of the overall two-phase material. (C) 2015 AIP Publishing LLC. C1 [Fensin, S. J.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T., III] Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. [Walker, E. K.] Los Alamos Natl Lab, MET 2, Los Alamos, NM USA. RP Fensin, SJ (reprint author), Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. EM saryuj@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396]; Joint DoD/DOE Munitions Technology Development Program FX The authors would like to acknowledge R. S. Hixson, P. Rigg for helpful discussion, and Gerald Stevens for assistance with PDV analysis. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. This work was partially sponsored by the Joint DoD/DOE Munitions Technology Development Program. NR 32 TC 1 Z9 1 U1 3 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 21 PY 2015 VL 118 IS 23 AR 235305 DI 10.1063/1.4938109 PG 8 WC Physics, Applied SC Physics GA CZ8VG UT WOS:000367376600056 ER PT J AU Samin, A Li, X Zhang, JS Mariani, RD Unal, C AF Samin, Adib Li, Xiang Zhang, Jinsuo Mariani, R. D. Unal, Cetin TI Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; FAST-REACTOR; MINOR ACTINIDES; ALKALI-METALS; BASIS-SET; SOLUBILITY; FUELS; CHLORIDE; URANIUM AB For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 x 10(-9) m(2)/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions. (C) 2015 AIP Publishing LLC. C1 [Samin, Adib; Li, Xiang; Zhang, Jinsuo] Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, Columbus, OH 43210 USA. [Mariani, R. D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Unal, Cetin] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Samin, A (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, 201 W 19th Ave, Columbus, OH 43210 USA. RI Zhang, Jinsuo/H-4717-2012; OI Zhang, Jinsuo/0000-0002-3412-7769; Mariani, Robert/0000-0002-7502-3536; Samin, Adib/0000-0001-7493-2829 FU DOE Office of Nuclear Energy's Nuclear Energy University Programs [14-6482] FX This work was supported in part by an allocation of computing time from the Idaho National Laboratory Supercomputer Center and has been performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs (Project No. 14-6482). NR 28 TC 1 Z9 1 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 21 PY 2015 VL 118 IS 23 AR 234902 DI 10.1063/1.4937910 PG 5 WC Physics, Applied SC Physics GA CZ8VG UT WOS:000367376600050 ER PT J AU Srivastava, AC Chen, F Ray, T Pattathil, S Pena, MJ Avci, U Li, HJ Huhman, DV Backe, J Urbanowicz, B Miller, JS Bedair, M Wyman, CE Sumner, LW York, WS Hahn, MG Dixon, RA Blancaflor, EB Tang, YH AF Srivastava, Avinash C. Chen, Fang Ray, Tui Pattathil, Sivakumar Pena, Maria J. Avci, Utku Li, Hongjia Huhman, David V. Backe, Jason Urbanowicz, Breeanna Miller, Jeffrey S. Bedair, Mohamed Wyman, Charles E. Sumner, Lloyd W. York, William S. Hahn, Michael G. Dixon, Richard A. Blancaflor, Elison B. Tang, Yuhong TI Loss of function of folylpolyglutamate synthetase 1 reduces lignin content and improves cell wall digestibility in Arabidopsis SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Arabidopsis; Bioenergy; C1 metabolism; Cell-wall recalcitrance; FPGS1; Lignin; Folylpolyglutamate synthetase ID CINNAMYL ALCOHOL-DEHYDROGENASE; A O-METHYLTRANSFERASE; ONE-CARBON METABOLISM; S-ADENOSYLMETHIONINE; BIOFUEL PRODUCTION; DOWN-REGULATION; BIOSYNTHESIS PERTURBATIONS; FOLATE POLYGLUTAMYLATION; GENETIC MANIPULATION; GLUCURONIC-ACID AB Background: One-carbon (C1) metabolism is important for synthesizing a range of biologically important compounds that are essential for life. In plants, the C1 pathway is crucial for the synthesis of a large number of secondary metabolites, including lignin. Tetrahydrofolate and its derivatives, collectively referred to as folates, are crucial co-factors for C1 metabolic pathway enzymes. Given the link between the C1 and phenylpropanoid pathways, we evaluated whether folylpolyglutamate synthetase (FPGS), an enzyme that catalyzes the addition of a glutamate tail to folates to form folylpolyglutamates, can be a viable target for reducing cell wall recalcitrance in plants. Results: Consistent with its role in lignocellulosic formation, FPGS1 was preferentially expressed in vascular tissues. Total lignin was low in fpgs1 plants leading to higher saccharification efficiency of the mutant. The decrease in total lignin in fpgs1 was mainly due to lower guaiacyl (G) lignin levels. Glycome profiling revealed subtle alterations in the cell walls of fpgs1. Further analyses of hemicellulosic polysaccharides by NMR showed that the degree of methylation of 4-O-methyl glucuronoxylan was reduced in the fpgs1 mutant. Microarray analysis and real-time qRT-PCR revealed that transcripts of a number of genes in the C1 and lignin pathways had altered expression in fpgs1 mutants. Consistent with the transcript changes of C1-related genes, a significant reduction in S-adenosyl-l-methionine content was detected in the fpgs1 mutant. The modified expression of the various methyltransferases and lignin-related genes indicate possible feedback regulation of C1 pathway-mediated lignin biosynthesis. Conclusions: Our observations provide genetic and biochemical support for the importance of folylpolyglutamates in the lignocellulosic pathway and reinforces previous observations that targeting a single FPGS isoform for down-regulation leads to reduced lignin in plants. Because fpgs1 mutants had no dramatic defects in above ground biomass, selective down-regulation of individual components of C1 metabolism is an approach that should be explored further for the improvement of lignocellulosic feedstocks. C1 [Srivastava, Avinash C.; Ray, Tui; Huhman, David V.; Bedair, Mohamed; Sumner, Lloyd W.; Blancaflor, Elison B.; Tang, Yuhong] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Srivastava, Avinash C.; Chen, Fang; Pattathil, Sivakumar; Pena, Maria J.; Avci, Utku; Li, Hongjia; Backe, Jason; Urbanowicz, Breeanna; Wyman, Charles E.; York, William S.; Hahn, Michael G.; Dixon, Richard A.; Blancaflor, Elison B.; Tang, Yuhong] US DOE, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Pattathil, Sivakumar; Pena, Maria J.; Avci, Utku; Backe, Jason; Urbanowicz, Breeanna; Miller, Jeffrey S.; York, William S.; Hahn, Michael G.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Pattathil, Sivakumar; Avci, Utku; York, William S.; Hahn, Michael G.] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. [Li, Hongjia; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol CE CERT, Riverside, CA 92507 USA. [Chen, Fang; Dixon, Richard A.] Univ N Texas, Dept Biol Sci, Denton, TX 76203 USA. RP Tang, YH (reprint author), Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. EM ytang@noble.org OI , Sivakumar Pattathil/0000-0003-3870-4137 FU BioEnergy Science Center (BESC, a U.S. Department of Energy Bioenergy Research Center - Office of Biological and Environmental Research in DOE Office of Science, U.S. Department of Energy); Samuel Roberts Noble Foundation; NSF Plant Genome Program [DBI-0421683, IOS-0923992] FX The research described in this paper was carried out under the support of the BioEnergy Science Center (BESC, a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, U.S. Department of Energy) and also funded by the Samuel Roberts Noble Foundation. The authors thank Chunxiang Fu for critical reading of the manuscript and technical assistance with sugar analysis and Stacy Allen for assistance with array data generation. The generation of the CCRC series of glycan-directed monoclonal antibodies used in this work was supported by the NSF Plant Genome Program (DBI-0421683; IOS-0923992). NR 91 TC 0 Z9 1 U1 9 U2 30 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD DEC 21 PY 2015 VL 8 AR 224 DI 10.1186/s13068-015-0403-z PG 17 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CZ6RD UT WOS:000367227500008 PM 26697113 ER PT J AU Vermaas, JV Petridis, L Qi, XH Schulz, R Lindner, B Smith, JC AF Vermaas, Josh V. Petridis, Loukas Qi, Xianghong Schulz, Roland Lindner, Benjamin Smith, Jeremy. C. TI Mechanism of lignin inhibition of enzymatic biomass deconstruction SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Biofuel; Lignin; Cel7A; Cellulose crystallinity ID CARBOHYDRATE-BINDING MODULE; REESEI CELLOBIOHYDROLASE-I; MOLECULAR-DYNAMICS SIMULATIONS; STEAM PRETREATED SOFTWOOD; TRICHODERMA-REESEI; DILUTE-ACID; FORCE-FIELD; CORN STOVER; THERMOCHEMICAL PRETREATMENT; LIGNOCELLULOSIC BIOMASS AB Background: The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process. Results: By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A (Y466, Y492, and Y493). Conclusions: Lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal. C1 [Vermaas, Josh V.; Petridis, Loukas; Qi, Xianghong; Schulz, Roland; Lindner, Benjamin; Smith, Jeremy. C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [Vermaas, Josh V.] Univ Illinois, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA. [Qi, Xianghong; Schulz, Roland; Smith, Jeremy. C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. RP Smith, JC (reprint author), Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, POB 2008, Oak Ridge, TN 37831 USA. EM smithjc@ornl.gov RI smith, jeremy/B-7287-2012; Petridis, Loukas/B-3457-2009; OI smith, jeremy/0000-0002-2978-3227; Petridis, Loukas/0000-0001-8569-060X; Vermaas, Josh/0000-0003-3139-6469 FU Genomic Science Program; DOE Office of Science [DE AC05 00OR22725]; DOE Computational Sciences Graduate Fellowship [DE FG02 97ER25308]; Office of Biological and Environmental Research, US Department of Energy FX This research is funded by the Genomic Science Program, Office of Biological and Environmental Research, US Department of Energy. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE AC05 00OR22725. J.V. acknowledges support from the DOE Computational Sciences Graduate Fellowship supported by Grant DE FG02 97ER25308. NR 104 TC 6 Z9 6 U1 6 U2 43 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD DEC 21 PY 2015 VL 8 AR 217 DI 10.1186/s13068-015-0379-8 PG 16 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CZ6RD UT WOS:000367227500001 PM 26697106 ER PT J AU Walker, JA Takasuka, TE Deng, K Bianchetti, CM Udell, HS Prom, BM Kim, H Adams, PD Northen, TR Fox, BG AF Walker, Johnnie A. Takasuka, Taichi E. Deng, Kai Bianchetti, Christopher M. Udell, Hannah S. Prom, Ben M. Kim, Hyunkee Adams, Paul D. Northen, Trent R. Fox, Brian G. TI Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Cellulase; Xylanase; Hemicellulase; Mannanase; Carbohydrate binding module; Ruminoclostridium thermocellum; Enzyme engineering; Biofuels; Mass spectrometry; Kinetic analysis ID PLANT-CELL WALLS; IONIC LIQUID PRETREATMENT; NEUTRON FIBER DIFFRACTION; HYDROGEN-BONDING SYSTEM; SYNCHROTRON X-RAY; CLOSTRIDIUM-THERMOCELLUM; ENZYMATIC-HYDROLYSIS; CRYSTAL-STRUCTURE; LIGNOCELLULOSIC BIOMASS; GLYCOSIDE HYDROLASE AB Background: Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed. Results: CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolytic activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass. Conclusion: We have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass. C1 [Walker, Johnnie A.; Takasuka, Taichi E.; Bianchetti, Christopher M.; Udell, Hannah S.; Prom, Ben M.; Kim, Hyunkee; Fox, Brian G.] Univ Wisconsin, US DOE, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Walker, Johnnie A.; Takasuka, Taichi E.; Bianchetti, Christopher M.; Fox, Brian G.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Takasuka, Taichi E.] Hokkaido Univ, Res Fac Agr, Sapporo, Hokkaido 0608589, Japan. [Deng, Kai; Adams, Paul D.; Northen, Trent R.] US DOE, Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Deng, Kai] Sandia Natl Labs, Livermore, CA 94551 USA. [Adams, Paul D.; Northen, Trent R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Fox, BG (reprint author), Univ Wisconsin, US DOE, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. EM bgfox@biochem.wisc.edu RI Adams, Paul/A-1977-2013; OI Adams, Paul/0000-0001-9333-8219; Northen, Trent/0000-0001-8404-3259 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-FC02-07ER64494, DE AC02 05CH11231]; UW-Madison Science and Medicine Graduate Research Scholars Advanced Opportunity Fellowship Program; National Institute of General Medical Sciences Molecular Biophysics Training Program [NIH T32 GM08293]; National Science Foundation Graduate Research Fellowship [DGE-1256259] FX The DOE Great Lakes Bioenergy Research Center and the DOE Joint BioEnergy Institute are supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contracts DE-FC02-07ER64494 and through contract DE AC02 05CH11231, respectively. J.A.W. was supported by the UW-Madison Science and Medicine Graduate Research Scholars Advanced Opportunity Fellowship Program, the National Institute of General Medical Sciences Molecular Biophysics Training Program (NIH T32 GM08293), and the National Science Foundation Graduate Research Fellowship (DGE-1256259). NR 111 TC 5 Z9 5 U1 13 U2 62 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD DEC 21 PY 2015 VL 8 AR 220 DI 10.1186/s13068-015-0402-0 PG 20 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CZ6RD UT WOS:000367227500004 PM 26697109 ER PT J AU Boyle, TJ Sears, JM Neville, ML Alam, TM Young, VG AF Boyle, Timothy J. Sears, Jeremiah M. Neville, Michael L. Alam, Todd M. Young, Victor G., Jr. TI Structural Properties of the Acidification Products of Scandium Hydroxy Chloride Hydrate SO INORGANIC CHEMISTRY LA English DT Article ID RAY CRYSTAL-STRUCTURES; HYDROTHERMAL SYNTHESIS; MOLECULAR-STRUCTURE; SOLVENT-EXTRACTION; COMPLEXES; PHOSPHATE; SC-45; YTTRIUM(III); COORDINATION; SULFATES AB The structural properties of a series of scandium inorganic acid derivatives were determined. The reaction of Sc-0 with concentrated aqueous hydrochloric acid led to the isolation of [(H2O)(5)Sc(mu-OH)](2)4Cl center dot 2H(2)O (1). Compound 1 was modified with a series of inorganic acids (i.e., HNO3, H3PO4, and H2SO4) at room temperature and found to form {[(H2O)(4)Sc(kappa(2)-NO3)(mu-OH)]NO3}(2) (2a), [(H2O)(4)Sc(x2-NO3)(2)]NO3 center dot H2O (2b) (at reflux temperatures), {6[H] [Sc(mu-PO4) (PO4)](6)}(n) (3), and [H] [Sc(mu(3)-SO4)(2)]center dot 2H(2)O (4a). Additional organosulfonic acid derivatives were investigated, including tosylic acid (H-OTs) to yield {[(H2O)(4)Sc(OTs)(2)]OTs}center dot 2H(2)O (4b) in H2O and [(DMSO)(3)Sc-(OTs)(3)] (4c) in dimethyl sulfoxide and triflic acid (H-OTf) to form [Sc(H2O)(8)]OTf3 (4d). Other organic acid modifications of 1 were also investigated, and the final structures were determined to be {([(H2O)(2)Sc(mu-OAc)(2)]Cl)(6)}(n) (5) from acetic acid (H-OAc) and [Sc(mu-TFA)(3)Sc(mu-TFA)(3)](n) (6) from trifluoroacetic acid (H-TEA). In addition to single-crystal X-ray structures, the compounds were identified by solid-state and solution-state Sc-45 nuclear magnetic resonance spectroscopic studies. C1 [Boyle, Timothy J.; Sears, Jeremiah M.; Neville, Michael L.; Alam, Todd M.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Young, Victor G., Jr.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. RP Boyle, TJ (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd, Albuquerque, NM 87106 USA. EM tjboyle@Sandia.gov FU Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; National Science Foundation [CHE04-43580] FX This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. The Bruker X-ray diffractometer used for some crystal solutions was purchased via a National Science Foundation CRIF:MU award to the University of New Mexico (CHE04-43580). Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 45 TC 0 Z9 0 U1 2 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 21 PY 2015 VL 54 IS 24 BP 11831 EP 11841 DI 10.1021/acs.inorgchem.5b02030 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CZ5BU UT WOS:000367118100028 PM 26641309 ER PT J AU Pegis, ML Roberts, JAS Wasylenko, DJ Mader, EA Appel, AM Mayer, JM AF Pegis, Michael L. Roberts, John A. S. Wasylenko, Derek J. Mader, Elizabeth A. Appel, Aaron M. Mayer, James M. TI Standard Reduction Potentials for Oxygen and Carbon Dioxide Couples in Acetonitrile and N,N-Dimethylformamide SO INORGANIC CHEMISTRY LA English DT Article ID ELECTROCATALYTIC CO2 REDUCTION; NORMAL HYDROGEN ELECTRODE; MOLECULAR ELECTROCATALYSTS; ELECTROCHEMICAL REDUCTION; AIR BATTERIES; WEAK ACIDS; FUEL-CELLS; WATER; CATALYSTS; SOLVATION AB A variety of next-generation energy processes utilize the electrochemical interconversions of dioxygen and water as the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Reported here are the first estimates of the standard reduction potential of the O-2 + 4e(-) + 4H(+) reversible arrow 2H(2)O couple in organic solvents. The values are +1.21 V in acetonitrile (MeCN) and +0.60 V in N,N-dimethylformamide (DMF), each versus the ferrocenium/ferrocene couple (Fc(+/0)) in the respective solvent (as are all of the potentials reported here). The potentials have been determined using a thermochemical cycle that combines the free energy for transferring water from aqueous solution to organic solvent, -0.43 kcal mol(-1) for MeCN and -1.47 kcal mol(-1) for DMF, and the potential of the H+/H-2 couple, - 0.028 V in MeCN and -0.662 V in DMF. The H+/H-2 couple in DMF has been directly measured electrochemically using the previously reported procedure for the MeCN value. The thermochemical approach used for the O-2/H2O couple has been extended to the CO2/CO and CO2/CH4 couples to give values of -0.12 and +0.15 V in MeCN and -0.73 and -0.48 V in DMF, respectively. Extensions to other reduction potentials are discussed. Additionally, the free energy for transfer of protons from water to organic solvent is estimated as +14 kcal mol(-1) for acetonitrile and +0.6 kcal mol(-1) for DMF. C1 [Pegis, Michael L.; Mader, Elizabeth A.; Mayer, James M.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. [Roberts, John A. S.; Appel, Aaron M.] Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. [Wasylenko, Derek J.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Appel, AM (reprint author), Pacific NW Natl Lab, Ctr Mol Electrocatalysis, POB 999 K2-57, Richland, WA 99352 USA. EM aaron.appel@pnnl.gov; james.mayer@yale.edu OI Appel, Aaron/0000-0002-5604-1253 FU Center for Molecular Electrocatalysis, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX The authors thank Dr. Robert Nielsen for helpful discussions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 37 TC 14 Z9 14 U1 11 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 21 PY 2015 VL 54 IS 24 BP 11883 EP 11888 DI 10.1021/acs.inorgchem.5b02136 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CZ5BU UT WOS:000367118100034 PM 26640971 ER PT J AU Manson, JL Huang, QZ Brown, CM Lynn, JW Stone, MB Singleton, J Xiao, F AF Manson, Jamie L. Huang, Qing-zhen Brown, Craig M. Lynn, Jeffrey W. Stone, Matthew B. Singleton, John Xiao, Fan TI Magnetic Structure and Exchange Interactions in Quasi-One-Dimensional MnCl2(urea)(2) SO INORGANIC CHEMISTRY LA English DT Article ID LINEAR-CHAIN; POLYNUCLEAR AGGREGATION; SPIN; COMPLEXES; ANTIFERROMAGNET; MANGANESE; SYSTEMS; NI; PYRAZINE; RB2CRCL4 AB MnCl2(urea)(2) is a new linear chain coordination polymer that exhibits slightly counter-rotated Mn2Cl2 rhomboids along the chain-axis. The material crystallizes in the noncentrosymmetric orthorhombic space group Iba2, with each Mn(II) ion equatorially surrounded by four Cl- that lead to bibridged ribbons. Urea ligands coordinate via O atoms in the axial positions. Hydrogen bonds of the Cl center dot center dot center dot H-N and O center dot center dot center dot H-N type link the chains into a quasi-3D network. Magnetic susceptibility data reveal a broad maximum at 9 K that is consistent with short-range magnetic order. Pulsed-field magnetization measurements conducted at 0.6 K show that a fully polarized magnetic state is achieved at B-sat = 19.6 T with another field-induced phase transition occurring at 2.8 T. Zero-field neutron diffraction studies made on a powdered sample of MnCl2(urea)(2) reveal that long-range magnetic order occurs below T-N = 3.2(1) K. Additional Bragg peaks due to antiferromagnetic (AFM) ordering can be indexed according to the Ib'a2' magnetic space group and propagation vector tau = [0, 0, 0]. Rietveld profile analysis of these data revealed a Neel-type collinear ordering of Mn(II) ions with an ordered magnetic moment of 4.06(6) mu(B) (5 mu(B) is expected for isotropic S = 5/2) oriented along the b-axis, i.e., perpendicular to the chain-axis that runs along the c-direction. Owing to the potential for spatial exchange anisotropy and the pitfalls in modeling bulk magnetic data, we analyzed inelastic neutron scattering data to retrieve the exchange constants: J(c) = 2.22 K (intrachain), J(a) = -0.10 K (interchain), and D = -0.14 K with J > 0 assigned to AFM coupling. This J configuration is most unusual and contrasts the more commonly observed AFM interchain coupling of 1D chains. C1 [Manson, Jamie L.] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. [Huang, Qing-zhen; Brown, Craig M.; Lynn, Jeffrey W.] NIST, NISTCtr Neutron Res, Gaithersburg, MD 20899 USA. [Brown, Craig M.] Univ Delaware, Dept Chem & Biochem Engn, Newark, DE 19716 USA. [Stone, Matthew B.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37830 USA. [Singleton, John] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Xiao, Fan] Univ Durham, Ctr Phys Mat, Durham DH1 3LE, England. RP Manson, JL (reprint author), Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. EM jmanson@ewu.edu RI Stone, Matthew/G-3275-2011; Brown, Craig/B-5430-2009 OI Stone, Matthew/0000-0001-7884-9715; Brown, Craig/0000-0002-9637-9355 FU National Science Foundation (NSF) [DMR-1306158]; National Science Foundation [DMR-1157490]; State of Florida; U.S. Department of Energy (DoE); DoE Basic Energy Science Field Work Proposal "Science in 100 T"; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The work at EWU was supported by the National Science Foundation (NSF) under Grant DMR-1306158. J.L.M. thanks Prof. Jesper Bendix for helpful discussions. We acknowledge the support of the National Institute of Standards and Technology (NIST), U.S. Department of Commerce, in providing their neutron research facilities used in this work; identification of any commercial product or trade name does not imply endorsement or recommendation by NIST. Work performed at the National High Magnetic Field Laboratory, USA, was supported by the National Science Foundation Cooperative Agreement DMR-1157490, the State of Florida, and the U.S. Department of Energy (DoE), and through the DoE Basic Energy Science Field Work Proposal "Science in 100 T." The research at ORNL was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 60 TC 2 Z9 2 U1 4 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 21 PY 2015 VL 54 IS 24 BP 11897 EP 11905 DI 10.1021/acs.inorgchem.5b02162 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CZ5BU UT WOS:000367118100036 PM 26645988 ER PT J AU Brown, JL Davis, BL Scott, BL Gaunt, AJ AF Brown, Jessie L. Davis, Benjamin L. Scott, Brian L. Gaunt, Andrew J. TI Early-Lanthanide(III) Acetonitrile-Solvento Adducts with Iodide and Noncoordinating Anions SO INORGANIC CHEMISTRY LA English DT Article ID RAY CRYSTAL-STRUCTURES; RARE-EARTH IODIDES; STRUCTURAL-CHARACTERIZATION; LANTHANIDE COMPLEXES; IONIC LIQUIDS; COORDINATION NUMBERS; NEODYMIUM DIIODIDE; FT-IR; TETRAHYDROFURAN; PRECURSORS AB Dissolution of LnI(3) (Ln = La, Ce) in acetonitrile (MeCN) results in the highly soluble solvates LnI(3)(MeCN)(5) [Ln = La (1), Ce (2)] in good yield. The ionic complex [La(MeCN)(9)][LaI6] (4), containing a rare homoleptic La3+ cation and anion, was also isolated as a minor product. Extending this chemistry to NdI3 results in the consistent formation of the complex ionic structure [Nd-(MeCN)(9)](2)[NdI5(MeCN)][NdI6][I] (3), which contains an unprecedented pentaiodide lanthanoid anion. Also described is the synthesis, isolation, and structural characterization of several homoleptic early-lanthanide MeCN solvates with noncoordinating anions, namely, [Ln(MeCN)(9)][AlCl4](3) [Ln = La (5), Ce (6), Nd (7)]. Notably, complex 6 is the first homoleptic cerium MeCN solvate reported to date. All reported complexes were structurally characterized by X-ray crystallography, as well as by IR spectroscopy and CHN elemental analysis. Complexes 1-3 were also characterized by thermogravimetric analysis coupled with mass spectrometry to further elucidate their bulk composition in the solid-state. C1 [Brown, Jessie L.; Gaunt, Andrew J.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Davis, Benjamin L.; Scott, Brian L.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Brown, Jessie L.] Transylvania Univ, Div Nat Sci & Math, Lexington, KY 40508 USA. RP Brown, JL (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM jlbrown@transy.edu; gaunt@lanl.gov RI Davis, Benjamin /I-7897-2015; Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Davis, Benjamin/0000-0001-5439-0751; Gaunt, Andrew/0000-0001-9679-6020 FU Heavy Element Chemistry program [DE-AC52-06NA25396]; G. T. Seaborg Institute at Los Alamos National Laboratory FX We thank the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Early Career program (syntheses and characterization) and the Heavy Element Chemistry program (manuscript preparation) under Contract DE-AC52-06NA25396. J.L.B. thanks the G. T. Seaborg Institute at Los Alamos National Laboratory for postdoctoral fellowship support. NR 55 TC 1 Z9 1 U1 2 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD DEC 21 PY 2015 VL 54 IS 24 BP 11958 EP 11968 DI 10.1021/acs.inorgchem.5b02291 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA CZ5BU UT WOS:000367118100042 PM 26605553 ER PT J AU Barmparis, GD Puzyrev, YS Zhang, XG Pantelides, ST AF Barmparis, Georgios D. Puzyrev, Yevgeniy S. Zhang, X. -G. Pantelides, Sokrates T. TI Theory of inelastic multiphonon scattering and carrier capture by defects in semiconductors: Application to capture cross sections SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON; TRANSITIONS; SILICON; RECOMBINATION; RELIABILITY; TRANSISTORS; GENERATION AB Inelastic scattering and carrier capture by defects in semiconductors are the primary causes of hot-electron-mediated degradation of power devices, which holds up their commercial development. At the same time, carrier capture is a major issue in the performance of solar cells and light-emitting diodes. A theory of nonradiative (multiphonon) inelastic scattering by defects, however, is nonexistent, while the theory for carrier capture by defects has had a long and arduous history. Here we report the construction of a comprehensive theory of inelastic scattering by defects, with carrier capture being a special case. We distinguish between capture under thermal equilibrium conditions and capture under nonequilibrium conditions, e.g., in the presence of an electrical current or hot carriers where carriers undergo scattering by defects and are described by a mean free path. In the thermal-equilibrium case, capture is mediated by a nonadiabatic perturbation Hamiltonian, originally identified by Huang and Rhys and by Kubo, which is equal to linear electron-phonon coupling to first order. In the nonequilibrium case, we demonstrate that the primary capture mechanism is within the Born-Oppenheimer approximation (adiabatic transitions), with coupling to the defect potential inducing Franck-Condon electronic transitions, followed by multiphonon dissipation of the transition energy, while the nonadiabatic terms are of secondary importance (they scale with the inverse of the mass of typical atoms in the defect complex). We report first-principles density-functional-theory calculations of the capture cross section for a prototype defect using the projector-augmented wave, which allows us to employ all-electron wave functions. We adopt a Monte Carlo scheme to sample multiphonon configurations and obtain converged results. The theory and the results represent a foundation upon which to build engineering-level models for hot-electron degradation of power devices and the performance of solar cells and light-emitting diodes. C1 [Barmparis, Georgios D.; Puzyrev, Yevgeniy S.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Barmparis, Georgios D.] Univ Crete, Dept Phys, Crete Ctr Quantum Complex & Nanotechnol, Iraklion 71003, Greece. [Zhang, X. -G.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Zhang, X. -G.] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Pantelides, Sokrates T.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. RP Barmparis, GD (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM yevgeniy.s.puzyrev@vanderbilt.edu FU Samsung Advanced Institute of Technology (SAIT)'s Global Research Outreach (GRO) Program; AFOSR and AFRL through the Hi-REV program; NSF [ECCS-1508898]; Division of Scientific User Facilities; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; McMinn Endowment at Vanderbilt University; UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy; [EU/FP7-REGPOT-2012-2013-1]; [316165] FX We would like to thank Chris Van de Walle and Audrius Alkauskas for valuable discussions. This work was supported in part by the Samsung Advanced Institute of Technology (SAIT)'s Global Research Outreach (GRO) Program, by the AFOSR and AFRL through the Hi-REV program, and by NSF Grant No. ECCS-1508898. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities. The computation was done using the utilities of the National Energy Research Scientific Computing Center (NERSC) and resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. G.D. Barmparis acknowledges support from EU/FP7-REGPOT-2012-2013-1 under Grant Agreement No. 316165. The work was also supported by the McMinn Endowment at Vanderbilt University. This paper was authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of the manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 30 TC 4 Z9 4 U1 4 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 21 PY 2015 VL 92 IS 21 AR 214111 DI 10.1103/PhysRevB.92.214111 PG 17 WC Physics, Condensed Matter SC Physics GA CZ4FC UT WOS:000367057800001 ER PT J AU Prokop, CJ Crider, BP Liddick, SN Ayangeakaa, AD Carpenter, MP Carroll, JJ Chen, J Chiara, CJ David, HM Dombos, AC Go, S Harker, J Janssens, RVF Larson, N Lauritsen, T Lewis, R Quinn, SJ Recchia, F Seweryniak, D Spyrou, A Suchyta, S Walters, WB Zhu, S AF Prokop, C. J. Crider, B. P. Liddick, S. N. Ayangeakaa, A. D. Carpenter, M. P. Carroll, J. J. Chen, J. Chiara, C. J. David, H. M. Dombos, A. C. Go, S. Harker, J. Janssens, R. V. F. Larson, N. Lauritsen, T. Lewis, R. Quinn, S. J. Recchia, F. Seweryniak, D. Spyrou, A. Suchyta, S. Walters, W. B. Zhu, S. TI New low-energy 0(+) state and shape coexistence in Ni-70 SO PHYSICAL REVIEW C LA English DT Article ID BETA-DECAY; ISOTOPES; NUCLEI; SPECTROSCOPY; ISOMERS; BANDS; ODD AB In recent models, the neutron-rich Ni isotopes around N = 40 are predicted to exhibit multiple low-energy excited 0(+) states attributed to neutron and proton excitations across both the N = 40 and Z = 28 shell gaps. In Ni-68, the three observed 0(+) states have been interpreted in terms of triple shape coexistence between spherical, oblate, and prolate deformed shapes. In the present work a new (0(2)(+)) state at an energy of 1567 keV has been discovered in Ni-70 by using beta-delayed, gamma-ray spectroscopy following the decay of Co-70. The precipitous drop in the energy of the prolate-deformed 0(+) level between Ni-68 and Ni-70 with the addition of two neutrons compares favorably with results of Monte Carlo shell-model calculations carried out in the large fpg(9/2)d(5/2) model space, which predict a 0(2)(+) state at 1525 keV in Ni-70. The result extends the shape-coexistence picture in the region to Ni-70 and confirms the importance of the role of the tensor component of the monopole interaction in describing the structure of neutron-rich nuclei. C1 [Prokop, C. J.; Crider, B. P.; Liddick, S. N.; Chen, J.; Dombos, A. C.; Larson, N.; Lewis, R.; Quinn, S. J.; Spyrou, A.] Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. [Prokop, C. J.; Liddick, S. N.; Larson, N.; Lewis, R.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Ayangeakaa, A. D.; Carpenter, M. P.; David, H. M.; Harker, J.; Janssens, R. V. F.; Lauritsen, T.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Carroll, J. J.] US Army, Res Lab, Adelphi, MD 20783 USA. [Chiara, C. J.] US Army, Res Lab, Oak Ridge Associated Univ Fellowship Program, Adelphi, MD 20783 USA. [Dombos, A. C.; Quinn, S. J.; Spyrou, A.] Michigan State Univ, Dept Phys, E Lansing, MI 48824 USA. [Go, S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Harker, J.; Walters, W. B.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Recchia, F.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy. [Suchyta, S.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Prokop, CJ (reprint author), Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. EM prokop@nscl.msu.edu RI Larson, Nicole/S-5997-2016 OI Larson, Nicole/0000-0003-0292-957X FU National Science Foundation (NSF) [PHY-1102511]; Department of Energy National Nuclear Security Administration (NNSA) [DE-NA0000979, DE-NA0002132, DE-FG52-08NA28552]; U.S Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC-06CH11357, DE-FG02-94ER40834, DE-FG02-96ER40983]; U.S. Army Research Laboratory [W911NF-12-2-0019] FX This work was supported in part by National Science Foundation (NSF) under contract No. PHY-1102511, by the Department of Energy National Nuclear Security Administration (NNSA) under Awards No. DE-NA0000979, No. DE-NA0002132, and No. DE-FG52-08NA28552, by the U.S Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC-06CH11357 (ANL) and Grants No. DE-FG02-94ER40834 (Maryland) and No. DE-FG02-96ER40983 (UT), and by the U.S. Army Research Laboratory under Cooperative Agreement W911NF-12-2-0019. NR 41 TC 10 Z9 10 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD DEC 21 PY 2015 VL 92 IS 6 AR 061302 DI 10.1103/PhysRevC.92.061302 PG 6 WC Physics, Nuclear SC Physics GA CZ4IW UT WOS:000367067700001 ER PT J AU Liu, Y Vishniakou, S Yoo, J Dayeh, SA AF Liu, Yang Vishniakou, Siarhei Yoo, Jinkyoung Dayeh, Shadi A. TI Engineering Heteromaterials to Control Lithium Ion Transport Pathways SO SCIENTIFIC REPORTS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; ELECTROCHEMICAL LITHIATION; SILICON NANOWIRES; STRAIN-RELAXATION; BATTERY ANODES; SURFACE; HETEROSTRUCTURES; NANOIONICS; INTERFACE; SYSTEMS AB Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries. C1 [Liu, Yang] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Liu, Yang] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Vishniakou, Siarhei; Dayeh, Shadi A.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Yoo, Jinkyoung] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Dayeh, Shadi A.] Univ Calif San Diego, Mat Sci Program, La Jolla, CA 92093 USA. RP Liu, Y (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM yliu78@ncsu.edu; sdayeh@ece.ucsd.edu RI Yoo, Jinkyoung/B-5291-2008 OI Yoo, Jinkyoung/0000-0002-9578-6979 FU Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory; Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratorie (SNL); Nanostructures for Electrical Energy Storage (NEES); Energy Frontier Research Center (EFRC) - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; NSF CAREER Award [ECCS-1351980]; NSF [DMR-1503595]; U.S. Department of Energy, Office of Basic Energy Sciences User Facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; U.S. Department of Energy, Office of Basic Energy Sciences User Facility at Sandia National Laboratorie [DE-AC04-94AL85000]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Dr. Binh-Minh Nguyen for providing some of the Ge/Si heteronanowires for this work. Portions of this work were supported by a Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory and Sandia National Laboratories (SNL) and partly by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160, and an NSF CAREER Award under ECCS-1351980 and an NSF DMR-1503595 Award. This work was performed in part at the Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences User Facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 55 TC 3 Z9 3 U1 5 U2 39 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 21 PY 2015 VL 5 AR 18482 DI 10.1038/srep18482 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ4NN UT WOS:000367080000001 PM 26686655 ER PT J AU Vasin, M Ryzhov, V Vinokur, VM AF Vasin, M. Ryzhov, V. Vinokur, V. M. TI Quantum-to-classical crossover near quantum critical point SO SCIENTIFIC REPORTS LA English DT Article ID RENORMALIZATION-GROUP APPROACH; DIMENSIONAL ISING-MODEL; TRANSVERSE FIELD; PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; DYNAMICS; SYSTEM AB A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+z Lambda(T), where z is the dynamical exponent, and temperature-depending parameter.(T). [0, 1] decreases with the temperature such that.(T=0)=1 and Lambda(T ->infinity)=0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation-and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover. C1 [Vasin, M.] Russian Acad Sci, Ural Branch, Phys Tech Inst, Izhevsk 426000, Russia. [Vasin, M.; Ryzhov, V.] Russian Acad Sci, Inst High Pressure Phys, Moscow, Russia. [Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60637 USA. RP Vinokur, VM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60637 USA. EM vinokour@anl.gov RI Vasin, Mikhail/G-4461-2016; Ryzhov, Valentin/A-4472-2017 OI Ryzhov, Valentin/0000-0002-1331-3984 FU Russian Scientific Foundation [RNF 14-12-01185]; U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division; Russian Foundation for Basic Research [14-22-00093] FX We are grateful to S. M. Stishov and V. V. Brazhkin for stimulating discussions. This work was partly supported by the Russian Scientific Foundation (grant RNF 14-12-01185) and by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division (VV), the work by V. R. is partly supported by the Russian Foundation for Basic Research (Grant 14-22-00093). NR 26 TC 0 Z9 0 U1 4 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 21 PY 2015 VL 5 AR 18600 DI 10.1038/srep18600 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ4KV UT WOS:000367072900001 PM 26688102 ER PT J AU Guzik, SM Gao, XF Owen, LD McCorquodale, P Colella, P AF Guzik, Stephen M. Gao, Xinfeng Owen, Landon D. McCorquodale, Peter Colella, Phillip TI A freestream-preserving fourth-order finite-volume method in mapped coordinates with adaptive-mesh refinement SO COMPUTERS & FLUIDS LA English DT Article DE High-order finite-volume method; Freestream-preserving; Mapped grids; Adaptive-mesh refinement; Finite-volume method; Hyperbolic conservation laws ID ESSENTIALLY NONOSCILLATORY SCHEMES; HYPERBOLIC CONSERVATION-LAWS; NAVIER-STOKES EQUATIONS; NUMERICAL-SIMULATION; UNSTRUCTURED GRIDS; COMPRESSIBLE FLOW; EULER EQUATIONS; GEOMETRIES; ACCURACY; SYSTEMS AB A fourth-order accurate finite-volume method is presented for solving time-dependent hyperbolic systems of conservation laws on mapped grids that are adaptively refined in space and time. Novel considerations for formulating the semi-discrete system of equations in computational space are combined with detailed mechanisms for accommodating the adapting grids. These considerations ensure that conservation is maintained and that the divergence of a constant vector field is always zero (freestream-preservation property). The solution in time is advanced with a fourth-order Runge-Kutta method. A series of tests verifies that the expected accuracy is achieved in smooth flows and the solution of a Mach reflection problem demonstrates the effectiveness of the algorithm in resolving strong discontinuities. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Guzik, Stephen M.; Gao, Xinfeng; Owen, Landon D.] Colorado State Univ, Computat Fluid Dynam & Prop Lab, Ft Collins, CO 80525 USA. [McCorquodale, Peter; Colella, Phillip] Lawrence Berkeley Natl Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA. RP Gao, XF (reprint author), Colorado State Univ, Computat Fluid Dynam & Prop Lab, Ft Collins, CO 80525 USA. EM Xinfeng.Gao@colostate.edu FU U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Advanced Scientific Computing Research of the US Department of Energy [DE-AC02-05CH11231]; DOE [DE-EE0006086] FX This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344 and by DOE contracts from the ASCR Applied Math Program. Research at the Lawrence Berkeley National Laboratory was supported by the Office of Advanced Scientific Computing Research of the US Department of Energy under contract number DE-AC02-05CH11231. Research at the Colorado State University was supported by DOE under contract number DE-EE0006086. The authors would also like to thank Louis Howell and Milo Dorr for providing comments on notation and notes that were included into the appendix. NR 34 TC 3 Z9 3 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD DEC 21 PY 2015 VL 123 BP 202 EP 217 DI 10.1016/j.compfluid.2015.10.001 PG 16 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA CX0DQ UT WOS:000365367500016 ER PT J AU Gonzalez-Diaz, D Alvarez, V Borges, FIG Camargo, M Carcel, S Cebrian, S Cervera, A Conde, CAN Dafni, T Diaz, J Esteve, R Fernandes, LMP Ferrari, P Ferreira, AL Freitas, EDC Gehmani, VM Goldschmidt, A Gomez-Cadenas, JJ Gutierrez, RM Hauptman, J Morata, JAH Herrera, DC Irastorza, IG Labarga, L Laing, A Liubarsky, I Lopez-March, N Lorca, D Losada, M Luzon, G Mari, A Martin-Albo, J Martinez-Lema, G Martinez, A Miller, T Monrabal, F Monserrate, M Monteiro, CMB Mora, FJ Moutinho, LM Vidal, JM Nebot-Guinot, M Nygren, D Oliveira, CAB Perez, J Aparicio, JLP Querol, M Renner, J Ripoll, L Rodriguez, J Santos, FP dos Santos, JMF Serra, L Shuman, D Simon, A Sofka, C Sorel, M Toledo, JF Torrent, J Tsamalaidze, Z Veloso, JFCA Villar, JA Webb, R White, JT Yahlali, N Azevedo, C Aznarab, F Calvet, D Castel, J Ferrer-Ribas, E Garcia, JA Giomataris, I Gomez, H Iguaz, FJ Lagraba, A Le Coguie, A Mols, JP Sahin, O Rodriguez, A Ruiz-Choliz, E Segui, L Tomas, A Veenhof, R AF Gonzalez-Diaz, Diego Alvarez, V. Borges, F. I. G. Camargo, M. Carcel, S. Cebrian, S. Cervera, A. Conde, C. A. N. Dafni, T. Diaz, J. Esteve, R. Fernandes, L. M. P. Ferrari, P. Ferreira, A. L. Freitas, E. D. C. Gehmani, V. M. Goldschmidt, A. Gomez-Cadenas, J. J. Gutierrez, R. M. Hauptman, J. Hernando Morata, J. A. Herrera, D. C. Irastorza, I. G. Labarga, L. Laing, A. Liubarsky, I. Lopez-March, N. Lorca, D. Losada, M. Luzon, G. Mari, A. Martin-Albo, J. Martinez-Lema, G. Martinez, A. Miller, T. Monrabal, F. Monserrate, M. Monteiro, C. M. B. Mora, F. J. Moutinho, L. M. Munoz Vidal, J. Nebot-Guinot, M. Nygren, D. Oliveira, C. A. B. Perez, J. Perez Aparicio, J. L. Querol, M. Renner, J. Ripoll, L. Rodriguez, J. Santos, F. P. dos Santos, J. M. F. Serra, L. Shuman, D. Simon, A. Sofka, C. Sorel, M. Toledo, J. F. Torrent, J. Tsamalaidze, Z. Veloso, J. F. C. A. Villar, J. A. Webb, R. White, J. T. Yahlali, N. Azevedo, C. Aznarab, F. Calvet, D. Castel, J. Ferrer-Ribas, E. Garcia, J. A. Giomataris, I. Gomez, H. Iguaz, F. J. Lagraba, A. Le Coguie, A. Mols, J. P. Sahin, O. Rodriguez, A. Ruiz-Choliz, E. Segui, L. Tomas, A. Veenhof, R. TI Accurate gamma and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Double-beta decay; Gamma and electron detection; Microbulk micromegas; Time projection chamber; High pressure Xenon-Trimehylamine; Penning-Fluorescent mixtures ID EXCITED TRIMETHYLAMINE; RELAXATION PROCESSES; MICROMEGAS; GAS; FLUCTUATIONS; DETECTORS; CHAMBERS; READOUT AB We report the performance of a 10 atm Xenon/trimethylamine time projection chamber (TPC) for the detection of X-rays (30 keV) and gamma-rays (0.511-1.275 MeV) in conjunction with the accurate tracking of the associated electrons. When operated at such a high pressure and in similar to 1%-admixtures, trimethylamine (TMA) endows Xenon with an extremely low electron diffusion (1.3 +/- 0.13 mm-sigma (longitudinal), 0.95 +/- 0.20 mm-sigma (transverse) along 1 m drift) besides forming a convenient Penning-Fluorescent' mixture. The TPC, that houses 1.1 kg of gas in its fiducial volume, operated continuously for 100 live-days in charge amplification mode. The readout was performed through the recently introduced microbulk Micromegas technology and the AFTER chip, providing a 3D voxelization of 8 mm x 8 mm x 1.2 mm for approximately 10 cm/MeV-long electron tracks. Resolution in energy (epsilon) at full width half maximum (R) inside the fiducial volume ranged from R = 14.6% (30 keV) to R = 4.6% (1.275 MeV). This work was developed as part of the R&D program of the NEXT collaboration for future detector upgrades in the search of the neutrino-less double beta decay (beta beta 0 nu) in Xe-136, specifically those based on novel gas mixtures. Therefore we ultimately focus on the calorimetric and topological properties of the reconstructed MeV-electron tracks. In particular, the obtained energy resolution has been decomposed in its various contributions and improvements towards achieving the R =1.4%root MeV/epsilon levels obtained in small sensors are discussed. (C) 2015 Elsevier BY. All rights reserved. C1 [Gonzalez-Diaz, Diego; Cebrian, S.; Dafni, T.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Villar, J. A.; Aznarab, F.; Castel, J.; Garcia, J. A.; Gomez, H.; Iguaz, F. J.; Lagraba, A.; Rodriguez, A.; Ruiz-Choliz, E.; Segui, L.; Tomas, A.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, Zaragoza, Spain. [Gonzalez-Diaz, Diego; Cebrian, S.; Cervera, A.; Dafni, T.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Villar, J. A.; Aznarab, F.; Castel, J.; Garcia, J. A.; Gomez, H.; Iguaz, F. J.; Rodriguez, A.; Ruiz-Choliz, E.; Segui, L.; Tomas, A.] Lab Subterraneo Canfranc, Canfranc, Spain. [Gonzalez-Diaz, Diego; Veenhof, R.] CERN, Geneva, Switzerland. [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrari, P.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.; Azevedo, C.] CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain. [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrari, P.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.; Azevedo, C.] Univ Valencia, Valencia, Spain. [Borges, F. I. G.; Conde, C. A. N.; Fernandes, L. M. P.; Freitas, E. D. C.; Monteiro, C. M. B.; Santos, F. P.; dos Santos, J. M. F.] Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal. [Camargo, M.; Gutierrez, R. M.; Losada, M.] Univ Antonio Narino, Ctr Invest Ciencias Basicas & Aplicadas, Bogota, Colombia. [Esteve, R.; Mari, A.; Mora, F. J.; Toledo, J. F.] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, E-46022 Valencia, Spain. [Ferreira, A. L.; Moutinho, L. M.; Veloso, J. F. C. A.; Azevedo, C.] Univ Aveiro, Inst Nanostruct Nanomodelling & Nanofabricat i3N, P-3800 Aveiro, Portugal. [Gehmani, V. M.; Goldschmidt, A.; Miller, T.; Nygren, D.; Oliveira, C. A. B.; Querol, M.; Renner, J.; Shuman, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Hernando Morata, J. A.; Martinez-Lema, G.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Labarga, L.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Perez, J.] UAM CSIC, IFT, Madrid, Spain. [Perez Aparicio, J. L.] Univ Politecn Valencia, Dpto Mecan Medios Continuos & Teoria Estruct, E-46022 Valencia, Spain. [Ripoll, L.; Torrent, J.] Univ Girona, Escola Politecn Super, Girona, Spain. [Sofka, C.; Webb, R.; White, J. T.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [Sahin, O.; Veenhof, R.] Uludag Univ, Dept Phys, Bursa, Turkey. [Calvet, D.; Ferrer-Ribas, E.; Giomataris, I.; Le Coguie, A.; Mols, J. P.] CEA, IRFU, Saclay, France. RP Gonzalez-Diaz, D (reprint author), Univ Zaragoza, Lab Fis Nucl & Astroparticulas, Zaragoza, Spain. EM Diego.Gonzalez.Diaz@cern.ch; gomez@mail.cern.ch RI Dafni, Theopisti/J-9646-2012; Monrabal, Francesc/A-5880-2015; Diaz, Jose/B-3454-2012; Irastorza, Igor/B-2085-2012; Gonzalez Diaz, Diego/K-7265-2014; Fernandes, Luis/E-2372-2011; AMADE Research Group, AMADE/B-6537-2014; Villar, Jose Angel/K-6630-2014; veloso, joao/J-4478-2013; Moutinho, Luis/J-6021-2013; Lopez March, Neus/P-4411-2014; Iguaz Gutierrez, Francisco Jose/F-4117-2016; OI dos Santos, Joaquim Marques Ferreira/0000-0002-8841-6523; Dafni, Theopisti/0000-0002-8921-910X; Monrabal, Francesc/0000-0002-4047-5620; Munoz Vidal, Javier/0000-0002-9649-2251; Martin-Albo, Justo/0000-0002-7318-1469; Diaz, Jose/0000-0002-7239-223X; Irastorza, Igor/0000-0003-1163-1687; Gonzalez Diaz, Diego/0000-0002-6809-5996; Fernandes, Luis/0000-0002-7061-8768; AMADE Research Group, AMADE/0000-0002-5778-3291; Villar, Jose Angel/0000-0003-0228-7589; Moutinho, Luis/0000-0001-9074-4449; Lopez March, Neus/0000-0001-6586-0675; Iguaz Gutierrez, Francisco Jose/0000-0001-6327-9369; Monteiro, Cristina Maria Bernardes/0000-0002-1912-2804 FU European Research Council [339787-NEXT, 240054-TREX]; Spanish Ministerio de Economia y Competitividad [CSD2008-0037 (CUP), CSD2007-00042 (CPAN), FPA2008-03456, FPA2009-13697]; Portuguese Fundacao para a Ciencia e a Tecnologia; European FEDER [PPTDC/FIS/103860/2008]; US Department Of Energy [DE-AC02-05CH11231] FX The NEXT collaboration acknowledges funding support from the following agencies and institutions: European Research Council under Advanced Grant 339787-NEXT and Starting Grant 240054-TREX, Spanish Ministerio de Economia y Competitividad under grants Consolider-Ingenio 2010 CSD2008-0037 (CUP) and CSD2007-00042 (CPAN), contracts FPA2008-03456 and FPA2009-13697; Portuguese Fundacao para a Ciencia e a Tecnologia; European FEDER under grant PPTDC/FIS/103860/2008; US Department Of Energy under contract DE-AC02-05CH11231. NR 51 TC 4 Z9 4 U1 5 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 21 PY 2015 VL 804 BP 8 EP 24 DI 10.1016/j.nima.2015.08.033 PG 17 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CV3BR UT WOS:000364133700002 ER PT J AU Wang, JB Byrum, K Demarteau, M Elam, J Mane, A May, E Wagner, R Walters, D Xia, L Xie, JQ Zhao, HY AF Wang, Jingbo Byrum, Karen Demarteau, Marcel Elam, Jeffrey Mane, Anil May, Edward Wagner, Robert Walters, Dean Xia, Lei Xie, Junqi Zhao, Huyue TI Development and testing of cost-effective, 6 cm x 6 cm MCP-based photodetectors for fast timing applications SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Photodetector; Micro-channel plate; MCP-PMT; Single photoelectron; Time resolution; Position resolution ID ATOMIC LAYER DEPOSITION; MICROCHANNEL PLATES; DETECTORS; PERFORMANCE; PMT AB Micro-channel plate (MCP)-based photodetectors are capable of picosecond level time resolution and sub-mm level position resolution, which makes them a perfect candidate for the next generation large area photodetectors. The large-area picosecond photodetector (LAPPD) collaboration is developing new techniques for making large-area photodetectors based on new MCP fabrication and functionalization methods. A small single tube processing system (SmSTPS) was constructed at Argonne National Laboratory (ANL) for developing scalable, cost-effective, glass-body, 6 cm x 6 cm, picosecond photodetectors based on MCPs functionalized by Atomic Layer Deposition (ALD). Recently, a number of fully processed and hermitically sealed prototypes made of MCPs with 20 pm pores have been fabricated. This is a significant milestone for the LAPPD project. These prototypes were characterized with a pulsed laser test facility. Without optimization, the prototypes have shown excellent results: the time resolution is similar to 57 ps for single photoelectron mode and similar to 15 ps for multi-photoelectron mode; the best position resolution is <= 0.8 mm for large pulses. In this paper, the tube processing system, the detector assembly, experimental setup, data analysis and the key performance will be presented. (C) 2015 Elsevier B.V. All rights reserved. C1 [Wang, Jingbo; Byrum, Karen; Demarteau, Marcel; May, Edward; Wagner, Robert; Walters, Dean; Xia, Lei; Xie, Junqi; Zhao, Huyue] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Elam, Jeffrey; Mane, Anil] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Wang, JB (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM wjingbo@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We would like to thank Ronald Kmak (ANL) for the design of the vacuum chamber. We also thank Joe Gregar (ANL) of the Argonne glass shop, for his talent work on the frit seal. We are deeply grateful to Matthew Wetstein (University of Chicago) and Bernhard Adams (ANL) for their advice on detector testing. Work at ANL was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics under contract DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. NR 23 TC 2 Z9 2 U1 3 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 21 PY 2015 VL 804 BP 84 EP 93 DI 10.1016/j.nima.2015.09.020 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CV3BR UT WOS:000364133700011 ER PT J AU Bahng, J Qiang, J Kim, ES AF Bahng, Jungbae Qiang, Ji Kim, Eun-San TI Design study of low-energy beam transport for multi-charge beams at RAON SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Low-energy beam transport; Heavy ion accelerator; Multi-harmonic buncher ID SIMULATION AB The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90 dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system. (C) 2015 Elsevier B.V. All rights reserved. C1 [Bahng, Jungbae] Kyungpook Natl Univ, Dept Phys, Daegu 41566, South Korea. [Qiang, Ji] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kim, Eun-San] Korea Univ, Grad Sch, Dept Accelerator Sci, Sejong 30019, South Korea. RP Kim, ES (reprint author), Korea Univ, Grad Sch, Dept Accelerator Sci, Sejong Campus, Sejong 30019, South Korea. EM eskim1@korea.ac.kr FU Ministry of Science, ICT and Future Planning (MSIP); Ministry of Technology; National Research Foundation (NRF) of the Republic of Korea [2011-0032011] FX This work was made possible by the support of the Ministry of Science, ICT and Future Planning (MSIP), the Ministry of Technology, and the National Research Foundation (NRF) of the Republic of Korea under Contract 2011-0032011. NR 27 TC 0 Z9 0 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 21 PY 2015 VL 804 BP 99 EP 107 DI 10.1016/j.nima.2015.09.041 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CV3BR UT WOS:000364133700013 ER PT J AU Armstrong, WR Choi, S Kaczanowicz, E Lukhanin, A Meziani, ZE Sawatzky, B AF Armstrong, Whitney R. Choi, Seonho Kaczanowicz, Ed Lukhanin, Alexander Meziani, Zein-Eddine Sawatzky, Brad TI A threshold gas Cherenkov detector for the Spin Asymmetries of the Nucleon Experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Threshold gas Cherenkov detector; SANE; Particle identification ID DEUTERON; PROTON; G(2) AB We report on the design, construction, commissioning, and performance of a threshold gas Cherenkov counter in an open configuration, which operates in a high luminosity environment and produces a high photo-electron yield. Part of a unique open geometry detector package called the Big Electron Telescope Array (BETA), this Cherenkov counter served to identify scattered electrons and reject produced pions in an inclusive scattering experiment known as the Spin Asymmetries of the Nucleon Experiment (SANE), E07-003 at Jefferson Lab. The experiment consisted of a measurement of double spin asymmetries A(parallel to) and Lambda(perpendicular to) of a polarized electron beam impinging on a polarized ammonia target. The Cherenkov counter's performance is characterised by a yield of about 20 photoelectrons per electron or positron track. Thanks to this large number of photoelectrons per track, the Cherenkov counter had enough resolution to identify electron-positron pairs from the conversion of photons resulting mainly from pi(0) decays. (C) 2015 Elsevier B.V. All rights reserved. C1 [Armstrong, Whitney R.; Kaczanowicz, Ed; Lukhanin, Alexander; Meziani, Zein-Eddine; Sawatzky, Brad] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Choi, Seonho] Seoul Natl Univ, Seoul 151747, South Korea. [Sawatzky, Brad] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Armstrong, WR (reprint author), Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. EM whit@jlab.org FU DOE [DE-FG02-94ER4084] FX This work is supported by DOE grant DE-FG02-94ER4084. NR 14 TC 0 Z9 0 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 21 PY 2015 VL 804 BP 118 EP 126 DI 10.1016/j.nima.2015.09.050 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CV3BR UT WOS:000364133700016 ER PT J AU Rusev, G Roman, AR Daum, JK Springs, RK Bond, EM Jandel, M Baramsai, B Bredeweg, TA Couture, A Favalli, A Ianakiev, KD Iliev, ML Mosby, S Ullmann, JL Walker, CL AF Rusev, G. Roman, A. R. Daum, J. K. Springs, R. K. Bond, E. M. Jandel, M. Baramsai, B. Bredeweg, T. A. Couture, A. Favalli, A. Ianakiev, K. D. Iliev, M. L. Mosby, S. Ullmann, J. L. Walker, C. L. TI Fission-fragment detector for DANCE based on thin scintillating films SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Thin scintillating films; Neutron-induced fission; Fission-fragment detector ID N,GAMMA AB A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 pi detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the U-235 (n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. (C) 2015 Elsevier B.V. All rights reserved. C1 [Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Walker, C. L.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Daum, J. K.; Springs, R. K.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Couture, A.; Mosby, S.; Ullmann, J. L.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Favalli, A.; Ianakiev, K. D.; Iliev, M. L.] Los Alamos Natl Lab, Nucl Engn & Nonproliferat Div, Los Alamos, NM 87545 USA. RP Rusev, G (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM rusev@lanl.gov OI Rusev, Gencho/0000-0001-7563-1518; Ianakiev, Kiril/0000-0002-5074-0715 FU U.S. Department of Energy through the LANL/LDRD Program; U.S. Department of Energy, Office of Science, Nuclear Physics under Early Career Award [LANL20135009]; US Department of Energy by Los Alamos National Security, LLC [DE-AC52-06NA25396]; Department of Homeland Security; Glenn T. Seaborg Institute FX This work has been supported by the U.S. Department of Energy through the LANL/LDRD Program and the U.S. Department of Energy, Office of Science, Nuclear Physics under Early Career Award no. LANL20135009.; This work benefited from the use of the LANSCE facility at the Los Alamos National Laboratory. This work was performed under the auspices of the US Department of Energy by Los Alamos National Security, LLC, under Contract no. DE-AC52-06NA25396.; J.K.D. and R.K.S. acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program, the Department of Homeland Security and the Glenn T. Seaborg Institute for this work. NR 9 TC 0 Z9 0 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 21 PY 2015 VL 804 BP 207 EP 211 DI 10.1016/j.nima.2015.09.078 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CV3BR UT WOS:000364133700029 ER PT J AU Giaz, A Hull, G Fossati, V Cherepy, N Camera, F Blasi, N Brambilla, S Coelli, S Million, B Riboldi, S AF Giaz, A. Hull, G. Fossati, V. Cherepy, N. Camera, F. Blasi, N. Brambilla, S. Coelli, S. Million, B. Riboldi, S. TI Preliminary investigation of scintillator materials properties: SrI2:Eu, CeBr3 and GYGAG:Ce for gamma rays up to 9 MeV SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Scitillator detectors; Gamma raysy; Gamma Spectroscopy ID DETECTORS; LABR3-CE; CRYSTALS; CONTAMINATION; SPECTROSCOPY AB In this work we measured the performance of a 2 '' x 2 '' cylindrical tapered crystal of SrI2:Eu, a 2 '' x 3 '' cylindrical sample of CeBr3 and a 2 '' x 0.3 '' cylindrical sample of GYGAG:Ce. These scintillators are prototypes in volume or material and were provided by the Lawrence Livermore National Laboratory and by the Institut de Physique Nucleaire d'Orsay. The gamma-ray energy resolution was measured in the energy range of 0.1-9 MeV using different sources. Each scintillator was scanned along x, y and z axes, using a 400 MBq collimated Cs-137 source. Owing to the GYGAG:Ce thickness, it was not possible to obtain the value of the energy resolution at 9 MeV and to scan the crystal along the z axis. The 662 keV full energy peak position and its FWHM were measured relative to the full energy peaks positions produced by a non-collimated Y-88 source. The signals of the detectors were additionally digitized and compared, up to 9 MeV, using a 12 bit LeCroy 600 MHz oscilloscope. (C) 2015 Elsevier B.V. All rights reserved. C1 [Giaz, A.; Camera, F.; Blasi, N.; Brambilla, S.; Coelli, S.; Million, B.; Riboldi, S.] INFN Milano, I-20133 Milan, Italy. [Hull, G.] Inst Phys Nucl Orsay, F-91406 Orsay, France. [Fossati, V.; Camera, F.; Riboldi, S.] Univ Milan, Dept Phys, I-20133 Milan, Italy. [Cherepy, N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Giaz, A (reprint author), INFN Milano, Via Celoria 16, I-20133 Milan, Italy. EM agnese.giaz@mi.infn.it RI Cherepy, Nerine/F-6176-2013 OI Cherepy, Nerine/0000-0001-8561-923X FU U.S. DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US Department of Homeland Security, Domestic Nuclear Detection Office [IAA HSHQDC-12-X-00149]; US DOE National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development [DE-AC03-76SF00098]; NuPNET-ERA-NET within the theNuPNET GANAS project [202914]; European Union, within the "7th Framework Program" FP7 [262010 ENSAR-INDESYS] FX We would like to acknowledge Rastgo Hawrami and RMD Inc. for growing the SrI2:Eu crystal, Patrick Beck (LLNL) for characterizing it after encapsulation at LLNL, and Zachary Seeley (LLNL) for fabrication of the GYGAG:Ce ceramic. The LLNL effort was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and has been supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded IAA HSHQDC-12-X-00149, and the US DOE National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development under Contract no. DE-AC03-76SF00098. This support does not constitute an express or implied endorsement on the part of the Government.; This work was also supported by NuPNET-ERA-NET within the theNuPNET GANAS project, under Grant agreement no. 202914 and from the European Union, within the "7th Framework Program" FP7/2007-2013, under Grant agreement no. 262010 ENSAR-INDESYS. NR 35 TC 5 Z9 5 U1 1 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 21 PY 2015 VL 804 BP 212 EP 220 DI 10.1016/j.nima.2015.09.065 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CV3BR UT WOS:000364133700030 ER PT J AU Abeysekara, AU Archambault, S Archer, A Aune, T Barnacka, A Benbow, W Bird, R Biteau, J Buckley, JH Bugaev, V Cardenzana, JV Cerruti, M Chen, X Christiansen, JL Ciupik, L Connolly, MP Coppi, P Cui, W Dickinson, HJ Dumm, J Eisch, JD Errando, M Falcone, A Feng, Q Finley, JP Fleischhack, H Flinders, A Fortin, P Fortson, L Furniss, A Gillanders, GH Griffin, S Grube, J Gyuk, G Hutten, M Hakansson, N Hanna, D Holder, J Humensky, TB Johnson, CA Kaaret, P Kar, P Kelley-Hoskins, N Khassen, Y Kieda, D Krause, M Krennrich, F Kumar, S Lang, MJ Maier, G McArthur, S McCann, A Meagher, K Moriarty, P Mukherjee, R Nieto, D De Bhroithe, AO Ong, RA Otte, AN Park, N Perkins, JS Petrashyk, A Pohl, M Popkow, A Pueschel, E Quinn, J Ragan, K Ratliff, G Reynolds, PT Richards, GT Roache, E Rousselle, J Santander, M Sembroski, GH Shahinyan, K Smith, AW Staszak, D Telezhinsky, I Todd, NW Tucci, JV Tyler, J Vassiliev, VV Vincent, S Wakely, SP Weiner, OM Weinstein, A Wilhelm, A Williams, DA Zitzer, B Smith, PS Holoien, TWS Prieto, JL Kochanek, CS Stanek, KZ Shappee, B Hovatta, T Max-Moerbeck, W Pearson, TJ Reeves, RA Richards, JL Readhead, ACS Madejski, GM Djorgovski, SG Drake, AJ Graham, MJ Mahabal, A AF Abeysekara, A. U. Archambault, S. Archer, A. Aune, T. Barnacka, A. Benbow, W. Bird, R. Biteau, J. Buckley, J. H. Bugaev, V. Cardenzana, J. V. Cerruti, M. Chen, X. Christiansen, J. L. Ciupik, L. Connolly, M. P. Coppi, P. Cui, W. Dickinson, H. J. Dumm, J. Eisch, J. D. Errando, M. Falcone, A. Feng, Q. Finley, J. P. Fleischhack, H. Flinders, A. Fortin, P. Fortson, L. Furniss, A. Gillanders, G. H. Griffin, S. Grube, J. Gyuk, G. Huetten, M. Hakansson, N. Hanna, D. Holder, J. Humensky, T. B. Johnson, C. A. Kaaret, P. Kar, P. Kelley-Hoskins, N. Khassen, Y. Kieda, D. Krause, M. Krennrich, F. Kumar, S. Lang, M. J. Maier, G. McArthur, S. McCann, A. Meagher, K. Moriarty, P. Mukherjee, R. Nieto, D. De Bhroithe, A. O'Faolain Ong, R. A. Otte, A. N. Park, N. Perkins, J. S. Petrashyk, A. Pohl, M. Popkow, A. Pueschel, E. Quinn, J. Ragan, K. Ratliff, G. Reynolds, P. T. Richards, G. T. Roache, E. Rousselle, J. Santander, M. Sembroski, G. H. Shahinyan, K. Smith, A. W. Staszak, D. Telezhinsky, I. Todd, N. W. Tucci, J. V. Tyler, J. Vassiliev, V. V. Vincent, S. Wakely, S. P. Weiner, O. M. Weinstein, A. Wilhelm, A. Williams, D. A. Zitzer, B. Smith, P. S. Holoien, T. W. -S. Prieto, J. L. Kochanek, C. S. Stanek, K. Z. Shappee, B. Hovatta, T. Max-Moerbeck, W. Pearson, T. J. Reeves, R. A. Richards, J. L. Readhead, A. C. S. Madejski, G. M. Djorgovski, S. G. Drake, A. J. Graham, M. J. Mahabal, A. CA VERITAS SPOL ASAS-SN OVRO NuSTAR CRTS TI GAMMA-RAYS FROM THE QUASAR PKS 1441+25: STORY OF AN ESCAPE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: observations; diffuse radiation; gamma rays: galaxies; quasars: individual (PKS 1441+25-VER J1443+250); radiation mechanisms: non-thermal ID EXTRAGALACTIC BACKGROUND LIGHT; COMPLETE SAMPLE; FERMI BLAZARS; SPECTRA; VARIABILITY; TELESCOPE; RADIATION; EMISSION; MISSION; ABSORPTION AB Outbursts from gamma-ray quasars provide insights on the relativistic jets of active galactic nuclei and constraints on the diffuse radiation fields that fill the universe. The detection of significant emission above 100 GeV from a distant quasar would show that some of the radiated gamma-rays escape pair-production interactions with low-energy photons, be it the extragalactic background light (EBL), or the radiation near the supermassive black hole lying at the jet's base. VERITAS detected gamma-ray emission up to similar to 200 GeV from PKS 1441+25 (z = 0.939) during 2015 April, a period of high activity across all wavelengths. This observation of PKS 1441+25 suggests that the emission region is located thousands of Schwarzschild radii away from the black hole. The gamma-ray detection also sets a stringent upper limit on the near-ultraviolet to near-infrared EBL intensity, suggesting that galaxy surveys have resolved most, if not all, of the sources of the EBL at these wavelengths. C1 [Abeysekara, A. U.; Flinders, A.; Kar, P.; Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Archer, A.; Buckley, J. H.; Bugaev, V.; Errando, M.; Todd, N. W.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Aune, T.; Ong, R. A.; Popkow, A.; Rousselle, J.; Vassiliev, V. V.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Barnacka, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Benbow, W.; Cerruti, M.; Fortin, P.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bird, R.; Khassen, Y.; Pueschel, E.; Quinn, J.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Biteau, J.; Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Biteau, J.; Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cardenzana, J. V.; Eisch, J. D.; Krennrich, F.; Weinstein, A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Chen, X.; Hakansson, N.; Pohl, M.; Telezhinsky, I.; Wilhelm, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chen, X.; Huetten, M.; Kelley-Hoskins, N.; Krause, M.; Maier, G.; De Bhroithe, A. O'Faolain; Pohl, M.; Telezhinsky, I.; Vincent, S.; Wilhelm, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Christiansen, J. L.] DESY, D-15738 Zeuthen, Germany. [Ciupik, L.; Grube, J.; Gyuk, G.; Ratliff, G.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Connolly, M. P.; Gillanders, G. H.; Lang, M. J.; Moriarty, P.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Coppi, P.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Cui, W.; Feng, Q.; Finley, J. P.; McArthur, S.; Sembroski, G. H.; Tucci, J. V.; Richards, J. L.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Dickinson, H. J.; Dumm, J.; Fleischhack, H.; Fortson, L.; Shahinyan, K.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Errando, M.; Mukherjee, R.; Santander, M.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Falcone, A.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Holder, J.; Kumar, S.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Holder, J.; Kumar, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Humensky, T. B.; Nieto, D.; Petrashyk, A.; Weiner, O. M.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Kaaret, P.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Park, N.; Wakely, S. P.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Perkins, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Reynolds, P. T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Smith, A. W.] Cork Inst Technol, Dept Appl Sci, Cork, Ireland. [Zitzer, B.] Univ Maryland, College Pk, MD 20742 USA. [Smith, P. S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Holoien, T. W. -S.; Kochanek, C. S.; Stanek, K. Z.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Holoien, T. W. -S.; Kochanek, C. S.; Stanek, K. Z.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Prieto, J. L.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA. [Prieto, J. L.] Univ Diego Portales, Fac Ingn, Nucleo Astron, Santiago, Chile. [Shappee, B.] Millennium Inst Astrophys, Santiago, Chile. [Hovatta, T.] Carnegie Observ, Pasadena, CA 91101 USA. [Max-Moerbeck, W.] Aalto Univ, Metsahovi Radio Observ, FI-02540 Kylmala, Finland. [Pearson, T. J.; Readhead, A. C. S.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Reeves, R. A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Madejski, G. M.] Univ Concepcion, Dept Astron, CePIA, Concepcion, Chile. [Madejski, G. M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Djorgovski, S. G.; Drake, A. J.; Graham, M. J.; Mahabal, A.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. CALTECH, Pasadena, CA 91125 USA. RP Abeysekara, AU (reprint author), Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. EM jbiteau@ucsc.edu; matteo.cerruti@cfa.harvard.edu; errando@astro.columbia.edu; caajohns@ucsc.edu; mark.lang@nuigalway.ie RI Nieto, Daniel/J-7250-2015; Pearson, Timothy/N-2376-2015; OI Nieto, Daniel/0000-0003-3343-0755; Pearson, Timothy/0000-0001-5213-6231; Pueschel, Elisa/0000-0002-0529-1973; Errando, Manel/0000-0002-1853-863X; Lang, Mark/0000-0003-4641-4201; Bird, Ralph/0000-0002-4596-8563 FU U.S. Department of Energy Office of Science; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; NASA Swift GI grant [NNX15AR38G]; LCOGT; NSF [AST-1313422, AST-1413600, AST-0808050, AST-1109911]; Mt. Cuba Astronomical Foundation; OSU/CCAPP; MAS/Chile; NASA Fermi GI grant [NNX12AO93G]; NASA [NNX08AW31G, NNX11A043G] FX This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation and the Smithsonian Institution, and by NSERC in Canada, with additional support from NASA Swift GI grant NNX15AR38G. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. The VERITAS Collaboration is grateful to Trevor Weekes for his seminal contributions and leadership in the field of VHE gamma-ray astrophysics, which made this study possible.; ASAS-SN thanks LCOGT, NSF, Mt. Cuba Astronomical Foundation, OSU/CCAPP and MAS/Chile for their support.; The observations at Steward Observatory are funded through NASA Fermi GI grant NNX12AO93G.; CRTS is supported by the NSF grants AST-1313422 and AST-1413600.; The OVRO 40-m monitoring program is supported in part by NASA grants NNX08AW31G and NNX11A043G, and NSF grants AST-0808050 and AST-1109911. NR 42 TC 9 Z9 9 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 20 PY 2015 VL 815 IS 2 AR L22 DI 10.1088/2041-8205/815/2/L22 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DC2XI UT WOS:000369081700006 ER PT J AU Karakaya, C Ricote, S Albin, D Sanchez-Cortezon, E Linares-Zea, B Kee, RJ AF Karakaya, Canan Ricote, Sandrine Albin, David Sanchez-Cortezon, Emilio Linares-Zea, Belen Kee, Robert J. TI Thermogravimetric analysis of InCl3 sublimation at atmospheric pressure SO THERMOCHIMICA ACTA LA English DT Article DE Thermogravimetric analysis; Vapor pressure; Metal chloride; InCl3; CuCl; InCl3 oxidation ID ATOMIC LAYER EPITAXY; CUPROUS CHLORIDE; INDIUM OXIDE; THERMODYNAMIC PROPERTIES; THIN-FILMS; VAPOR; COPPER; IN2O3; VAPORIZATION; DEPOSITION AB This paper presents a thermogravimetric approach to evaluate the vapor pressure of low-volatility inorganic compounds such as CuCl and InCl3 under atmospheric conditions. The thermogravimetric analysis (TGA) approach is inherently more straightforward than alternatives such as torsion studies and mass spectrometry. Vapor pressures are evaluated using the Clausius-Clapeyron relationship between the vapor pressure and sublimation (or vaporization) enthalpy at a given temperature. Despite the relative simplicity of TGA, the highly hygroscopic nature of InCl3 demands some caution in the data analysis. Especially at high temperature, a solid-phase oxidation product In2O3 remains as a residual mass. Water is found to be the oxidation agent, with the residual proceeding through a solid-phase InOCl intermediate. However in the relatively low temperature range of interest oxidation is found to be negligible, with the gas-phase sublimation product being In2Cl6. This paper reports sublimation enthalpies and vapor pressures as functions of temperature in the range 570 <= T <= 640 K and atmospheric pressure. (c) 2015 Elsevier B.V. All rights reserved. C1 [Karakaya, Canan; Ricote, Sandrine; Kee, Robert J.] Colorado Sch Mines, Mech Engn, Golden, CO 80401 USA. [Albin, David] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sanchez-Cortezon, Emilio; Linares-Zea, Belen] Abengoa, Seville 41014, Spain. RP Kee, RJ (reprint author), Colorado Sch Mines, Mech Engn, Golden, CO 80401 USA. EM rjkee@mines.edu FU Abengoa Solar (Seville, Spain; Lakewood, CO); Colorado School of Mines foundation, Protonic Capital Funds FX This research was supported by Abengoa Solar (Seville, Spain; Lakewood, CO) and Colorado School of Mines foundation, Protonic Capital Funds. We gratefully acknowledge numerous insightful discussions with Mr. Joaquin Murillo (Abengoa) and Prof. Jason Porter (CSM). NR 47 TC 0 Z9 0 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-6031 EI 1872-762X J9 THERMOCHIM ACTA JI Thermochim. Acta PD DEC 20 PY 2015 VL 622 SI SI BP 55 EP 63 DI 10.1016/j.tca.2015.07.018 PG 9 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA DA0MY UT WOS:000367492400009 ER PT J AU Shi, MJ Xiao, CJ Li, QS Wang, HG Wang, XG Li, H AF Shi, M. J. Xiao, C. J. Li, Q. S. Wang, H. G. Wang, X. G. Li, H. TI OBSERVATIONS OF ALFVEN AND SLOW WAVES IN THE SOLAR WIND NEAR 1 AU SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetohydrodynamics (MHD); plasmas; solar-terrestrial relations; solar wind; turbulence; waves ID HELIOSPHERIC MAGNETIC-FIELD; ION-ACOUSTIC-WAVE; SPACECRAFT OBSERVATIONS; NONLINEAR-INTERACTION; INTERPLANETARY MEDIUM; DENSITY-FLUCTUATIONS; HYDROMAGNETIC WAVES; MAGNETOSONIC WAVE; MODE WAVES; TURBULENCE AB Magnetohydrodynamic (MHD) waves play a significant role in the processes of the solar wind acceleration and the coronal heating. Based on the in situ measurements of the. WIND spacecraft, some MHD waves in the quiet solar wind are identified with two criteria: (1) the correlation coefficients between velocity and magnetic field perturbations. (delta v and delta B) and between thermal pressure and magnetic pressure perturbations. (delta p(t) and delta p(b)), and (2) the dispersion relations of MHD waves. A preliminary statistics of those MHD modes is also achieved by selecting and analyzing the WIND data of 42,279 samples (45050.4 hr) in the 23rd solar cycle. It is found that the time fraction of Alfven waves is 8% in this period,. while the existence time of slow waves is 3.4%,. and the fast wave is rare. The statistical result also shows that the Alfven waves have a higher time fraction in fast solar wind, while the occurrence of slow waves is higher in moderate-speed. solar wind. This work will provide more clues to understanding MHD activities in the solar wind, as well as the studies of solar wind acceleration and heating. C1 [Shi, M. J.; Xiao, C. J.; Li, Q. S.; Wang, H. G.; Wang, X. G.] Peking Univ, Sch Phys, Fusion Simulat Ctr, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Wang, X. G.] Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China. [Li, H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Shi, MJ (reprint author), Peking Univ, Sch Phys, Fusion Simulat Ctr, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. EM cjxiao@pku.edu.cn FU NSFC [41421003, 41274168]; ITER-CN project [2014GB107004] FX The authors thank the WIND spacecraft team and the data websites: the CDAWeb, the OMNIWeb, and WDC-SILSO, Royal Observatory of Belgium, Brussels. This work was supported by NSFC (grants 41421003 and 41274168) and ITER-CN project (grant 2014GB107004). NR 49 TC 0 Z9 0 U1 5 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2015 VL 815 IS 2 AR 122 DI 10.1088/0004-637X/815/2/122 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CZ5OG UT WOS:000367151300042 ER PT J AU Zhang, S Hailey, CJ Mori, K Clavel, M Terrier, R Ponti, G Goldwurm, A Bauer, FE Boggs, SE Christensen, FE Craig, WW Harrison, FA Hong, J Nynka, M Soldi, S Stern, D Tomsick, JA Zhang, WW AF Zhang, Shuo Hailey, Charles J. Mori, Kaya Clavel, Maica Terrier, Regis Ponti, Gabriele Goldwurm, Andrea Bauer, Franz E. Boggs, Steven E. Christensen, Finn E. Craig, William W. Harrison, Fiona A. Hong, Jaesub Nynka, Melania Soldi, Simona Stern, Daniel Tomsick, John A. Zhang, William W. TI HARD X-RAY MORPHOLOGICAL AND SPECTRAL STUDIES OF THE GALACTIC CENTER MOLECULAR CLOUD SGR B2: CONSTRAINING PAST SGR A(star) FLARING ACTIVITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: center; ISM: clouds; X-rays: individual (Sgr B2); X-rays: ISM ID SAGITTARIUS-A-ASTERISK; SUPERMASSIVE BLACK-HOLE; 6.4 KEV LINE; CENTER REGION; STAR-FORMATION; COSMIC-RAYS; XMM-NEWTON; CHANDRA OBSERVATIONS; NONTHERMAL EMISSION; BRIGHTEST FLARE AB In 2013, NuSTAR observed the Sgr B2 region and for the first time resolved its hard X-ray emission on subarcminute scales. Two prominent features are detected above 10 keV:. a newly emerging cloud, G0.66-0.13, and the central 90 '' radius region containing two compact cores, Sgr B2(M) and Sgr B2(N), surrounded by diffuse emission. It is inconclusive whether the remaining level of Sgr. B2 emission is still decreasing or has reached a constant background level. A decreasing X-ray emission can be best explained by the X-ray reflection nebula scenario, where the cloud reprocesses a past giant outburst from Sgr A(star). In the X-ray reflection nebula (XRN) scenario, the 3-79 keV Sgr. B2 spectrum allows us to self-consistently test the XRN model using both the Fe K alpha line and the continuum emission. The peak luminosity of the past Sgr A(star) outburst is constrained to L3-79keV similar to 5 x 10(38) ergs s(-1). A newly discovered cloud feature, G0.66-0.13, shows different timing variability. We suggest that it could be a molecular clump located in the Sgr B2 envelope reflecting the same Sgr A(star) outburst. In contrast, if the Sgr. B2 X-ray emission has reached a constant background level, it would imply an origin of low-energy cosmic-ray (CR) proton bombardment. In this scenario, from the NuSTAR measurements we infer a CR ion power of dW/dt = (1 - 4) x 10(39) erg s(-1) and a CR ionization rate of zeta(H) = (6 - 10) x 10(-15) H-1 s(-1). measurements can become powerful tools to constrain the GC CR population. C1 [Zhang, Shuo; Hailey, Charles J.; Mori, Kaya; Nynka, Melania] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Clavel, Maica; Goldwurm, Andrea] CEA Saclay, Serv Astrophys, IRFU, DSM, F-91191 Gif Sur Yvette, France. [Terrier, Regis; Goldwurm, Andrea; Soldi, Simona] Unite Mixte Rech Astroparticule & Cosmol, F-75205 Paris, France. [Ponti, Gabriele] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bauer, Franz E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Bauer, Franz E.] Millennium Inst Astrophys, Santiago, Chile. [Bauer, Franz E.] Space Sci Inst, Boulder, CO 80301 USA. [Boggs, Steven E.; Craig, William W.; Tomsick, John A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Christensen, Finn E.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Harrison, Fiona A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Hong, Jaesub] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. RP Zhang, S (reprint author), Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. EM shuo@astro.columbia.edu RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Clavel, Maica/0000-0003-0724-2742 FU NASA [NNG08FD60C]; ESA Member States; NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX13AM31]; CONICYT-Chile; Ministry of Economy, Development, and Tourism's Millennium Science Initiative; EU Marie Curie Intra European fellowship [FP-PEOPLE-2012-IEF-331095]; Bundesministerium fur Wirtschaft und Technologie/Deutsches Zentrum fur Luft-und Raumfahrt (BMWI/DLR) [FKZ 50 OR 1408]; Max Planck Society; CNES FX This work was supported under NASA Contract No. NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). This research has also made use of data obtained with XMM-Newton, an ESA science mission with instruments and contribution directly funded by ESA Member States and NASA. S.Z. is supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program-Grant "NNX13AM31." F.E.B. acknowledges support from CONICYT-Chile and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative. G.P. acknowledges support via an EU Marie Curie Intra European fellowship under contract no. FP-PEOPLE-2012-IEF-331095 and Bundesministerium fur Wirtschaft und Technologie/Deutsches Zentrum fur Luft-und Raumfahrt (BMWI/DLR, FKZ 50 OR 1408) and the Max Planck Society. M.C., A.G., R.T., and S.S. acknowledge support by CNES. NR 61 TC 7 Z9 7 U1 3 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2015 VL 815 IS 2 AR 132 DI 10.1088/0004-637X/815/2/132 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CZ5OG UT WOS:000367151300052 ER PT J AU Fung, J Aulwes, RT Bement, MT Campbell, JM Ferenbaugh, CR Jean, BA Kelley, TM Kenamond, MA Lally, BR Lovegrove, EG Nelson, EM Powell, DM AF Fung, J. Aulwes, R. T. Bement, M. T. Campbell, J. M. Ferenbaugh, C. R. Jean, B. A. Kelley, T. M. Kenamond, M. A. Lally, B. R. Lovegrove, E. G. Nelson, E. M. Powell, D. M. TI Vectorization, threading, and cache-blocking considerations for hydrocodes on emerging architectures SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE Lagrangian hydrodynamics; arbitrary Lagrangian Eulerian (ALE) methods; radiation hydrodynamics; computer science and advanced architectures AB The computational efficiency of existing hydrocodes is expected to suffer as computer architectures advance beyond the traditional parallel central processing unit (CPU) model . Concerning new computer architectures, sources of relative performance degradation might include reduced memory bandwidth per core, increased resource contention due to concurrency, increased single instruction, multiple data (SIMD) length, and increasingly complex memory hierarchies. Concerning existing codes, any performance degradation will be influenced by a lack of attention to performance in their design and implementation. This work reports on considerations for improving computational performance in preparation for current and expected changes to computer architecture. The algorithms studied will include increasingly complex prototypes for radiation hydrodynamics codes, such as gradient routines and diffusion matrix assembly (e.g., in [1-6]). The meshes considered for the algorithms are structured or unstructured meshes. The considerations applied for performance improvements are meant to be general in terms of architecture (not specifically graphical processing unit (GPUs) or multi-core machines, for example) and include techniques for vectorization, threading, tiling, and cache blocking. Out of a survey of optimization techniques on applications such as diffusion and hydrodynamics, we make general recommendations with a view toward making these techniques conceptually accessible to the applications code developer. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. C1 [Fung, J.; Bement, M. T.; Campbell, J. M.; Jean, B. A.; Kenamond, M. A.; Nelson, E. M.] Los Alamos Natl Lab, Computat Phys Div 10, Los Alamos, NM 87545 USA. [Aulwes, R. T.; Kelley, T. M.; Lally, B. R.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Ferenbaugh, C. R.] Los Alamos Natl Lab, High Performance Comp Div, Los Alamos, NM 87545 USA. [Lovegrove, E. G.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Powell, D. M.] Stanford Univ, Stanford, CA 94305 USA. RP Fung, J (reprint author), Los Alamos Natl Lab, Computat Phys Div 10, POB 1663, Los Alamos, NM 87545 USA. EM fung@lanl.gov OI Bement, Matthew/0000-0003-3577-3292; Kelley, Timothy/0000-0002-4973-4430 NR 11 TC 0 Z9 0 U1 3 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0271-2091 EI 1097-0363 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD DEC 20 PY 2015 VL 79 IS 11 BP 596 EP 613 DI 10.1002/fld.4063 PG 18 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA CV8EG UT WOS:000364511900003 ER PT J AU Patel, PP Hanumantha, PJ Velikokhatnyi, OI Datta, MK Hong, DH Gattu, B Poston, JA Manivannan, A Kumta, PN AF Patel, Prasad Prakash Hanumantha, Prashanth Jampani Velikokhatnyi, Oleg I. Datta, Moni Kanchan Hong, Daeho Gattu, Bharat Poston, James A. Manivannan, Ayyakkannu Kumta, Prashant N. TI Nitrogen and cobalt co-doped zinc oxide nanowires - Viable photoanodes for hydrogen generation via photoelectrochemical water splitting SO JOURNAL OF POWER SOURCES LA English DT Article DE Photoelectrochemical water splitting; Nanowires; Hydrothermal; Cobalt doping; Doped zinc oxide; Nitrogen doping ID VISIBLE-LIGHT IRRADIATION; SENSITIZED SOLAR-CELLS; ZNO NANOWIRE; HIGH-PERFORMANCE; ENERGY-STORAGE; NANOROD ARRAYS; PHOTOCATALYTIC ACTIVITY; OPTICAL-PROPERTIES; ELECTRON-MOBILITY; OXYGEN AB Photoelectrochemical (PEC) water splitting has been considered as a promising and environmentally benign approach for efficient and economic hydrogen generation by utilization of solar energy. Development of semiconductor materials with low band gap, high photoelectrochemical activity and stability has been of particular interest for a viable PEC water splitting system. In this study, Co doped ZnO, (Zn0.95Co0.05)O nanowires (NWs) was selected as the composition for further co-doping with nitrogen by comparing solar to hydrogen efficiency (SHE) of ZnO NWs with that of various compositions of (Zn1-xCox)O NWs (x = 0, 0.05, 0.1). Furthermore, nanostructured vertically aligned Co and N-doped ZnO, (Zn1-xCox)O:N NWs (x = 0.05) have been studied as photoanodes for PEC water splitting. An optimal SHE of 1.39% the highest reported so far to the best of our knowledge for ZnO based photoanodes was obtained for the co-doped NWs, (Zn0.95Co0.05)O:N - 600 NWs generated at 600 degrees C in ammonia atmosphere. Further, (Zn0.95Co0.05)O:N-600 NWs exhibited excellent photoelectrochemical stability under illumination compared to pure ZnO NWs. These promising results suggest the potential of (Zn0.95Co0.05) 0:N-600 NWs as a viable photoanode in PEC water splitting cell. Additionally, theoretical first principles C1 [Patel, Prasad Prakash; Gattu, Bharat; Kumta, Prashant N.] Univ Pittsburgh, Swanson Sch Engn, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Hanumantha, Prashanth Jampani; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Hong, Daeho; Kumta, Prashant N.] Univ Pittsburgh, Swanson Sch Engn, Dept Bioengn, Pittsburgh, PA 15261 USA. [Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Kumta, Prashant N.] Univ Pittsburgh, Ctr Complex Engineered Multifunct Mat, Pittsburgh, PA 15261 USA. [Poston, James A.; Manivannan, Ayyakkannu] Natl Energy Technol Lab, US Dept Energy, Morgantown, WV 26507 USA. [Kumta, Prashant N.] Univ Pittsburgh, Swanson Sch Engn, Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Kumta, Prashant N.] Univ Pittsburgh, Sch Dent Med, Pittsburgh, PA 15217 USA. RP Kumta, PN (reprint author), Dept Bioengn, 815C Benedum Hall,3700 Hara St, Pittsburgh, PA 15261 USA. EM pkumta@pitt.edu RI Jampani Hanumantha, Prashanth/A-9840-2013 OI Jampani Hanumantha, Prashanth/0000-0001-7159-1993 FU National Science Foundation, CBET [0933141]; Center for Complex Engineered Multifunctional Materials (CCEMM) FX Research in part supported by the National Science Foundation, CBET - Grant 0933141. PNK acknowledges the Edward R. Weidlein Chair Professorship funds and the Center for Complex Engineered Multifunctional Materials (CCEMM) for support of this research and also for procurement of the electrochemical equipment and facilities used in this research work. PNK also acknowledges Mr. Matt Detzel (Chemical Engineering Undergraduate Laboratory Technician/Instructor, University of Pittsburgh) for allowing the use of the UV-Vis spectrophotometer and gas chromatography (GC) system. NR 89 TC 5 Z9 5 U1 21 U2 125 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 20 PY 2015 VL 299 BP 11 EP 24 DI 10.1016/j.jpowsour.2015.08.027 PG 14 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CU9ZY UT WOS:000363907400002 ER PT J AU Fears, TM Sacci, RL Winiarz, JG Kaiser, H Taub, H Veith, GM AF Fears, Tyler M. Sacci, Robert L. Winiarz, Jeffrey G. Kaiser, Helmut Taub, Haskell Veith, Gabriel M. TI A study of perfluorocarboxylate ester solvents for lithium ion battery electrolytes SO JOURNAL OF POWER SOURCES LA English DT Article DE SEI; LiTFSI; Silicon thin-film; Fluorinated electrolyte ID SITU NEUTRON-DIFFRACTION; IN-SITU; FLUORINATED ELECTROLYTES; SILICON ELECTRODES; CHEMISTRY; ANODES; CELL; CARBONIZATION; INTERPHASE; CARBONATE AB Several high-purity methyl perfluorocarboxylates were prepared (>99.5% purity by mole) and investigated as potential fluorine-rich electrolyte solvents in Li-ion batteries. The most conductive electrolyte, 0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in dimethyl perfluoroglutarate (PF5M(2)) (ionic conductivity = 1.87 x 10(-2) mS cm(-1)), is investigated in Si thin-film half-cells. The solid-electrolyteinterphase (SEI) formed by the PF5M(2) electrolyte is composed of similar organic and inorganic moieties and at comparable concentrations as those formed by ethylene carbonate/dimethyl carbonate electrolytes containing LiPF6 and LiTFSI salts. However, the SEI formed by the PF5M(2) electrolyte undergoes reversible electrochemical defluorination, contributing to the reversible capacity of the cell and compensating in part for capacity fade in the Si electrode. While far from ideal these electrolytes provide an opportunity to further develop predictions of suitable fluorinated molecules for use in battery solvents. (C) 2015 Elsevier B.V. All rights reserved. C1 [Fears, Tyler M.; Winiarz, Jeffrey G.] Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA. [Fears, Tyler M.; Sacci, Robert L.; Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. [Kaiser, Helmut; Taub, Haskell] Univ Missouri, Univ Missouri Res Reactor, Columbia, MO 65211 USA. [Kaiser, Helmut; Taub, Haskell] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. RP Veith, GM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. EM tmf9rc@mst.edu; veithgm@ornl.gov RI Fears, Tyler/L-1338-2016 OI Fears, Tyler/0000-0001-8648-7582 FU U.S. National Science Foundation [DGE-1069091]; U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program; DOE [DE-AC05-06OR23100]; Office of Science, Office of Basic Energy Sciences (RLS - Conductivity, ATR-IR) FX Student support and materials for ester synthesis were provided by the U.S. National Science Foundation under Grant No. DGE-1069091. Student support for the electrochemical, XPS, and ATR-IR studies performed at Oak Ridge National Laboratory provided by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract number DE-AC05-06OR23100. The equipment, materials and technical guidance at ORNL was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy under contract with UT-Battelle, LLC (GMV - XPS, ATR-IR, electrochemical) and the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center funded by the Office of Science, Office of Basic Energy Sciences (RLS - Conductivity, ATR-IR). T.M.F. would also like to thank Dr. C. Sotiriou-Leventis for help in formulating the perfluorocarboxylate ester synthesis. NR 30 TC 2 Z9 2 U1 9 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 20 PY 2015 VL 299 BP 434 EP 442 DI 10.1016/j.jpowsour.2015.08.098 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CU9ZY UT WOS:000363907400053 ER PT J AU Knudsen, E Albertus, P Cho, KT Weber, AZ Kojic, A AF Knudsen, E. Albertus, P. Cho, K. T. Weber, A. Z. Kojic, A. TI Flow simulation and analysis of high-power flow batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Flow batteries; CFD; Simulation; Power density; Pressure loss ID ELECTROLYTE FUEL-CELLS; SCALE ENERGY-STORAGE; PERFORMANCE; TRANSPORT; EFFICIENCY; VISCOSITY; DESIGN; FIELDS; LAYERS; MODEL AB The cost of a flow battery system can be reduced by increasing its power density and thereby reducing its stack area. If per-pass utilizations are held constant, higher battery power densities can only be achieved using higher flow rates. Here, a 3D computational fluid dynamics model of a flow battery flow field and electrode is used to analyze the implications of increasing flow rates to high power density operating conditions. Interdigitated and serpentine designs, and cell sizes ranging from 10 cm(2) to 400 cm(2), are simulated. The results quantify the dependence of pressure loss on cell size and design, demonstrating that the details of the passages that distribute flow between individual channels and the inlet and outlet have a major impact on pressure losses in larger cells. Additionally, in-cell flow behavior is analyzed as a function of cell size and design. Flow structures are interrogated to show how and where electrode parameters influence pressure drops, and how regions where transport is slow are correlated with the presence of experimentally observed cell degradation. (C) 2015 Elsevier B.V. All rights reserved. C1 [Knudsen, E.; Kojic, A.] Bosch Res & Technol Ctr, Palo Alto, CA 94304 USA. [Albertus, P.] Adv Res Projects Agcy Energy, Washington, DC 20585 USA. [Cho, K. T.] No Illinois Univ, Dept Mech Engn, De Kalb, IL 60115 USA. [Weber, A. Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Knudsen, E (reprint author), Bosch Res & Technol Ctr, Palo Alto, CA 94304 USA. EM ewk@alumni.stanford.edu OI Weber, Adam/0000-0002-7749-1624 FU Advanced Research Projects Agency-Energy (ARPA-E) of the U.S. Department of Energy [DE-AC02-05CH11231, DE-ARDE-AR0000137] FX The authors gratefully acknowledge financial support from the Advanced Research Projects Agency-Energy (ARPA-E) of the U.S. Department of Energy under contract no. DE-AC02-05CH11231 for LBNL and DE-ARDE-AR0000137 for Robert Bosch LLC, with cost share provided by Robert Bosch LLC. NR 40 TC 4 Z9 4 U1 3 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 20 PY 2015 VL 299 BP 617 EP 628 DI 10.1016/j.jpowsour.2015.08.041 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CU9ZY UT WOS:000363907400074 ER PT J AU Gelfand, I Cui, MD Tang, JW Robertson, GP AF Gelfand, Ilya Cui, Mengdi Tang, Jianwu Robertson, G. Philip TI Short-term drought response of N2O and CO2 emissions from mesic agricultural soils in the US Midwest SO AGRICULTURE ECOSYSTEMS & ENVIRONMENT LA English DT Article DE Soil carbon; Conservation reserve program; N2O methodology; Corn; No-till ID NITROUS-OXIDE EMISSIONS; CARBON-DIOXIDE; MOISTURE; CYCLES; FLUXES; WATER; MINERALIZATION; COMPACTION; PULSES; CH4 AB Climate change is causing the intensification of both rainfall and droughts in temperate climatic zones, which will affect soil drying and rewetting cycles and associated processes such as soil greenhouse gas (GHG) fluxes. We investigated the effect of soil rewetting following a prolonged natural drought on soil emissions of nitrous oxide (N2O) and carbon dioxide (CO2) in an agricultural field recently converted from 22 years in the USDA Conservation Reserve Program (CRP). We compared responses to those in a similarly managed field with no CRP history and to a CRP reference field. We additionally compared soil GHG emissions measured by static flux chambers with off-site laboratory analysis versus in situ analysis using a portable quantum cascade laser and infrared gas analyzer. Under growing season drought conditions, average soil N2O fluxes ranged between 0.2 and 0.8 mu g N m(-2) min(-1) and were higher in former CRP soils and unaffected by nitrogen (N) fertilization. After 18 days of drought, a 50 mm rewetting event increased N2O fluxes by 34 and 24 fold respectively in the former CRP and non-CRP soils. Average soil CO2 emissions during drought ranged from 1.1 to 3.1 mg C m(-2) min(-1) for the three systems. CO2 emissions increased 2 fold after the rewetting and were higher from soils with higher C contents. Observations are consistent with the hypothesis that during drought soil N2O emissions are controlled by available C and following rewetting additionally influenced by N availability, whereas soil CO2 emissions are independent of short-term N availability. Finally, soil GHG emissions estimated by off-site and in situ methods were statistically identical. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). C1 [Gelfand, Ilya; Robertson, G. Philip] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA. [Gelfand, Ilya; Robertson, G. Philip] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Cui, Mengdi] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Cui, Mengdi; Tang, Jianwu] Marine Biol Lab, Ecosyst Ctr, Woods Hole, MA 02543 USA. [Robertson, G. Philip] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA. RP Gelfand, I (reprint author), Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA. EM igelfand@msu.edu; mengdi_cui@brown.edu; jtang@mbl.edu; robert30@msu.edu RI Tang, Jianwu/K-6798-2014; Gelfand, Ilya/J-9017-2012 OI Tang, Jianwu/0000-0003-2498-9012; Gelfand, Ilya/0000-0002-8576-0978 FU DOE Office of Science [DE-FC02-07ER64494]; Office of Energy Efficiency and Renewable Energy [DE-AC05-76RL01830]; US National Science Foundation LTER program [DEB 1027253]; MSU AgBioResearch; Brown University; Brown University-Marine Biological Laboratory graduate program in Biological and Environmental Sciences; [NSF/DBI-959333] FX We thank J. Bronson, K. Sun, and L. Tao for field assistance. We thank T. Zenone and others for thoughtful discussions and J. Schuette for helpful comments on an early version of the manuscript. We thank A. Kravchenko for help with statistical analyses. We thank Mrs. E. Marshall for access to CRP field sites. Financial support for this work was provided by the DOE Office of Science (DE-FC02-07ER64494) and Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830), the US National Science Foundation LTER program (DEB 1027253), and MSU AgBioResearch. J. Tang and M. Cui were supported additionally by NSF/DBI-959333, Brown University seed funding, and the Brown University-Marine Biological Laboratory graduate program in Biological and Environmental Sciences. NR 34 TC 2 Z9 2 U1 8 U2 173 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8809 EI 1873-2305 J9 AGR ECOSYST ENVIRON JI Agric. Ecosyst. Environ. PD DEC 20 PY 2015 VL 212 BP 127 EP 133 DI 10.1016/j.agee.2015.07.005 PG 7 WC Agriculture, Multidisciplinary; Ecology; Environmental Sciences SC Agriculture; Environmental Sciences & Ecology GA CR3VL UT WOS:000361261100013 ER PT J AU Diehl, S Rockefeller, G Fryer, CL Riethmiller, D Statler, TS AF Diehl, S. Rockefeller, G. Fryer, C. L. Riethmiller, D. Statler, T. S. TI Generating Optimal Initial Conditions for Smoothed Particle Hydrodynamics Simulations SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA LA English DT Article DE cosmology: miscellaneous; methods: numerical; supernovae: general ID CENTROIDAL VORONOI TESSELLATIONS; GLOBULAR-CLUSTER CORES; N-BODY SIMULATIONS; NEUTRON-STARS; GALACTIC-CENTER; MAJOR MERGERS; IA SUPERNOVAE; WHITE-DWARFS; DARK-MATTER; A-ASTERISK AB We review existing smoothed particle hydrodynamics setup methods and outline their advantages, limitations, and drawbacks. We present a new method for constructing initial conditions for smoothed particle hydrodynamics simulations, which may also be of interest for N-body simulations, and demonstrate this method on a number of applications. This new method is inspired by adaptive binning techniques using weighted Voronoi tessellations. Particles are placed and iteratively moved based on their proximity to neighbouring particles and the desired spatial resolution. This new method can satisfy arbitrarily complex spatial resolution requirements. C1 [Diehl, S.] Los Alamos Natl Lab, Nucl & Particle Phys Astrophys & Cosmol Grp T 2, Los Alamos, NM 87545 USA. [Diehl, S.; Rockefeller, G.; Fryer, C. L.] Los Alamos Natl Lab, Computat Phys & Methods CCS 2, Los Alamos, NM 87545 USA. [Riethmiller, D.; Statler, T. S.] Ohio Univ, Inst Astrophys, Athens, OH 45701 USA. [Statler, T. S.] Natl Sci Fdn, Arlington, VA 22230 USA. RP Diehl, S (reprint author), Los Alamos Natl Lab, Nucl & Particle Phys Astrophys & Cosmol Grp T 2, POB 1663, Los Alamos, NM 87545 USA. EM gaber@lanl.gov OI Rockefeller, Gabriel/0000-0002-9029-5097 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Three-dimensional images were created using the visit package developed at LLNL. NR 66 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1323-3580 EI 1448-6083 J9 PUBL ASTRON SOC AUST JI Publ. Astron. Soc. Aust. PD DEC 18 PY 2015 VL 32 AR e048 DI 10.1017/pasa.2015.50 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CZ7BT UT WOS:000367255600002 ER PT J AU Couturier, M Navarro, D Chevret, D Henrissat, B Piumi, F Ruiz-Duenas, FJ Martinez, AT Grigoriev, IV Riley, R Lipzen, A Berrin, JG Master, ER Rosso, MN AF Couturier, Marie Navarro, David Chevret, Didier Henrissat, Bernard Piumi, Francois Ruiz-Duenas, Francisco J. Martinez, Angel T. Grigoriev, Igor V. Riley, Robert Lipzen, Anna Berrin, Jean-Guy Master, Emma R. Rosso, Marie-Noelle TI Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Carbohydrate-active enzymes; Lignin-active enzymes; Pycnoporus coccineus; Transcriptomics; Proteomics; ToF-SIMS; White-rot ID ION MASS-SPECTROMETRY; WOOD DECAY FUNGI; PHANEROCHAETE-CHRYSOSPORIUM; CERIPORIOPSIS-SUBVERMISPORA; ENZYMATIC-HYDROLYSIS; COMPARATIVE GENOMICS; GENE-EXPRESSION; SPRUCE WOOD; ENZYMES; BIOMASS AB Background: White-rot basidiomycete fungi are potent degraders of plant biomass, with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. Deeper functional analyses are however necessary to understand the enzymatic mechanisms leading to lignocellulose breakdown. The Polyporale fungus Pycnoporus coccineus BRFM310 grows well on both coniferous and deciduous wood. In the present study, we analyzed the early response of the fungus to softwood (pine) and hardwood (aspen) feedstocks and tested the effect of the secreted enzymes on lignocellulose deconstruction. Results: Transcriptomic and proteomic analyses revealed that P. coccineus grown separately on pine and aspen displayed similar sets of transcripts and enzymes implicated in lignin and polysaccharide degradation. In particular, the expression of lignin-targeting oxidoreductases, such as manganese peroxidases, increased upon cultivation on both woods. The sets of enzymes secreted during growth on both pine and aspen were more efficient in saccharide release from pine than from aspen, and characterization of the residual solids revealed polysaccharide conversion on both pine and aspen fiber surfaces. Conclusion: The combined analysis of soluble sugars and solid residues showed the suitability of P. coccineus secreted enzymes for softwood degradation. Analyses of solubilized products and residual surface chemistries of enzyme-treated wood samples pointed to differences in fiber penetration by different P. coccineus secretomes. Accordingly, beyond the variety of CAZymes identified in P. coccineus genome, transcriptome and secretome, we discuss several parameters such as the abundance of manganese peroxidases and the potential role of cytochrome P450s and pectin degradation on the efficacy of fungi for softwood conversion. C1 [Couturier, Marie; Navarro, David; Piumi, Francois; Berrin, Jean-Guy; Rosso, Marie-Noelle] Aix Marseille Univ, Biodiversite & Biotechnol Fong UMR1163, F-13288 Marseille, France. [Couturier, Marie; Navarro, David; Piumi, Francois; Berrin, Jean-Guy; Rosso, Marie-Noelle] INRA, Biodiversite & Biotechnol Fong UMR1163, F-13288 Marseille, France. [Couturier, Marie; Navarro, David; Piumi, Francois; Berrin, Jean-Guy; Rosso, Marie-Noelle] Polytech Marseille, Biodiversite & Biotechnol Fong UMR1163, F-13288 Marseille, France. [Couturier, Marie; Master, Emma R.] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON, Canada. [Chevret, Didier] INRA, Micalis UMR1319, Plateforme Anal Prote Paris Sud Ouest, F-78352 Jouy En Josas, France. [Henrissat, Bernard] Univ Aix Marseille, CNRS UMR 7257, AFMB, F-13288 Marseille, France. [Henrissat, Bernard] King Abdulaziz Univ, Dept Biol Sci, Jeddah 21413, Saudi Arabia. [Henrissat, Bernard] INRA, USC AFMB 1408, F-13288 Marseille, France. [Ruiz-Duenas, Francisco J.; Martinez, Angel T.] CSIC, CIB, E-28040 Madrid, Spain. [Grigoriev, Igor V.; Riley, Robert; Lipzen, Anna] Joint Genome Inst JGI, US Dept Energy, Walnut Creek, CA USA. RP Couturier, M (reprint author), Aix Marseille Univ, Biodiversite & Biotechnol Fong UMR1163, 163 Ave Luminy, F-13288 Marseille, France. EM marie.couturier@univ-amu.fr RI Master, Emma/O-3554-2014; Fac Sci, KAU, Biol Sci Dept/L-4228-2013; Ruiz-Duenas, Francisco/L-9837-2015 OI berrin, jean-guy/0000-0001-7570-3745; Martinez, Angel T/0000-0002-1584-2863; Ruiz-Duenas, Francisco/0000-0002-9837-5665 FU INRA MIGALE bioinformatics platform; Marie Curie International Outgoing Fellowship within 7th European Community Framework Program; French National Research Agency (A*MIDEX project) [ANR-11-IDEX-0001-02]; French National Research Agency (ANR FUNLOCK) [ANR-13-BIME-0002-01]; Office of Science of US Department of Energy [DE-AC02-05CH11231] FX We are grateful to Valentin Loux from the INRA MIGALE bioinformatics platform (http://migale.jouy.inra.fr) for providing help and support, Mireille Haon for technical assistance and Estelle Bonnin and Jacqueline Vigouroux for substrate composition analysis. We also thank Robyn Goacher for helpful discussions. MC was funded by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Program. This study was also funded by the French National Research Agency (A*MIDEX project ANR-11-IDEX-0001-02; ANR FUNLOCK ANR-13-BIME-0002-01). The work by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. The RNA-sequencing data sets supporting the results of this article are available in the NCBI's SRA repository under accession number SRP047955. Read counts and normalized read counts are available in GEO database repository with series accession number GSE74234. NR 51 TC 6 Z9 6 U1 10 U2 29 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD DEC 18 PY 2015 VL 8 AR 216 DI 10.1186/s13068-015-0407-8 PG 16 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CZ6QZ UT WOS:000367227100004 PM 26692083 ER PT J AU Huang, K Chai, SH Mayes, RT Veith, GM Browning, KL Sakwa-Novak, MA Potter, ME Jones, CW Wu, YT Dai, S AF Huang, Kuan Chai, Song-Hai Mayes, Richard T. Veith, Gabriel M. Browning, Katie L. Sakwa-Novak, Miles A. Potter, Matthew E. Jones, Christopher W. Wu, You-Ting Dai, Sheng TI An efficient low-temperature route to nitrogen-doping and activation of mesoporous carbons for CO2 capture SO CHEMICAL COMMUNICATIONS LA English DT Article ID DOPED MICROPOROUS CARBONS; POROUS CARBONS; CATALYTIC MATERIALS; DIOXIDE CAPTURE; ALKALI AMIDES; SODIUM AMIDE; ADSORPTION; AMMONIA; PERFORMANCE; NITRIDATION AB An innovative strategy for post-synthesis nitrogen-doping of mesoporous carbons (MCs) with high yields (> 90%) at low temperatures (230-380 degrees C) by using a strong base, sodium amide (NaNH2), was developed. The as-prepared N-doped MCs exhibit a significantly enhanced CO2 adsorption performance in terms of capacity and selectivity when compared to their parent MCs. C1 [Huang, Kuan; Chai, Song-Hai; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Huang, Kuan; Wu, You-Ting] Nanjing Univ, Sch Chem & Chem Engn, Nanjing 210093, Jiangsu, Peoples R China. [Mayes, Richard T.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Veith, Gabriel M.; Browning, Katie L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Sakwa-Novak, Miles A.; Potter, Matthew E.; Jones, Christopher W.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. RP Chai, SH (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM schai@utk.edu; ytwu@nju.edu.cn; dais@ornl.gov RI Mayes, Richard/G-1499-2016; Dai, Sheng/K-8411-2015; Huang, Kuan/F-7003-2015 OI Mayes, Richard/0000-0002-7457-3261; Dai, Sheng/0000-0002-8046-3931; Huang, Kuan/0000-0003-1905-3017 FU Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, at Oak Ridge National Laboratory [DE-SC0012577]; Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, at Georgia Tech [DE-SC0012577]; National Natural Science Foundation of China [21376115]; China Scholarship Council (CSC); Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; UT-Battelle, LLC. FX This work was supported as part of the Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, at Oak Ridge National Laboratory and at Georgia Tech under DE-SC0012577. A portion of this research was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy under contract with UT-Battelle, LLC. Y. T. Wu and K Huang were sponsored by the National Natural Science Foundation of China under Agreement 21376115 and China Scholarship Council (CSC). NR 48 TC 10 Z9 10 U1 15 U2 88 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PD DEC 18 PY 2015 VL 51 IS 97 BP 17261 EP 17264 DI 10.1039/c5cc05619e PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CZ2SL UT WOS:000366954800014 PM 26460737 ER PT J AU Lou, SF Ma, YL Cheng, XQ Gao, JT Gao, YZ Zuo, PJ Du, CY Yin, GP AF Lou, Shuaifeng Ma, Yulin Cheng, Xinqun Gao, Jintong Gao, Yunzhi Zuo, Pengjian Du, Chunyu Yin, Geping TI Facile synthesis of nanostructured TiNb2O7 anode materials with superior performance for high-rate lithium ion batteries SO CHEMICAL COMMUNICATIONS LA English DT Article ID ELECTRICAL ENERGY-STORAGE; HIGH-RATE CAPABILITY; LARGE-CAPACITY; NIOBIUM OXIDE; LONG-LIFE; HYBRID; CONVERSION; INSERTION; DENSITY; FACETS AB One-dimensional nanostructured TiNb2O7 was prepared by a simple solution-based process and subsequent thermal annealing. The obtained anode materials exhibited excellent electrochemical performance with superior reversible capacity, rate capability and cyclic stability. C1 [Lou, Shuaifeng; Ma, Yulin; Cheng, Xinqun; Gao, Jintong; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping] Harbin Inst Technol, Sch Chem Engn & Technol, Inst Adv Chem Power Sources, Harbin 150001, Peoples R China. [Ma, Yulin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. RP Yin, GP (reprint author), Harbin Inst Technol, Sch Chem Engn & Technol, Inst Adv Chem Power Sources, Harbin 150001, Peoples R China. EM yingeping@hit.edu.cn FU National Natural Science Foundation of China [51472065]; Office of FreedomCAR and Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Natural Science Foundation of China (No. 51472065). We thank the Center of Analysis and Measurement of Harbin Institute of Technology. Y.M. and S.L. would like to thank Dr Guoying Chen and Marca. M. Doeff (LBNL) for discussion, and Professor Galen Leonhardy for editing assistance. We also acknowledge the support by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 34 TC 8 Z9 8 U1 29 U2 105 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PD DEC 18 PY 2015 VL 51 IS 97 BP 17293 EP 17296 DI 10.1039/c5cc07052j PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CZ2SL UT WOS:000366954800022 PM 26462454 ER PT J AU Boscolo, D Scifoni, E Carlino, A La Tessa, C Berger, T Durante, M Rosso, V Kramer, M AF Boscolo, Daria Scifoni, Emanuele Carlino, Antonio La Tessa, Chiara Berger, Thomas Durante, Marco Rosso, Valeria Kraemer, Michael TI TLD efficiency calculations for heavy ions: an analytical approach SO EUROPEAN PHYSICAL JOURNAL D LA English DT Article ID CHARGED-PARTICLES; TRACK STRUCTURE; SUPRALINEARITY; IRRADIATION; FILMS AB The use of thermoluminescent dosimeters (TLDs) in heavy charged particles' dosimetry is limited by their non-linear dose response curve and by their response dependence on the radiation quality. Thus, in order to use TLDs with particle beams, a model that can reproduce the behavior of these detectors under different conditions is needed. Here a new, simple and completely analytical algorithm for the calculation of the relative TL-efficiency depending on the ion charge Z and energy E is presented. The detector response is evaluated starting from the single ion case, where the computed effectiveness values have been compared with experimental data as well as with predictions from a different method. The main advantage of this approach is that, being fully analytical, it is computationally fast and can be efficiently integrated into treatment planning verification tools. The calculated efficiency values have been then implemented in the treatment planning code TRiP98 and dose calculations on a macroscopic target irradiated with an extended carbon ion field have been performed and verified against experimental data. C1 [Boscolo, Daria; Scifoni, Emanuele; Carlino, Antonio; Durante, Marco; Kraemer, Michael] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Boscolo, Daria; Rosso, Valeria] Univ Pisa, Dept Phys, I-56127 Pisa, Italy. [Carlino, Antonio] EBG MedAustron GmbH, A-2700 Wiener Neustadt, Austria. [Carlino, Antonio] Univ Palermo, Dept Chem & Phys, I-90133 Palermo, Italy. [La Tessa, Chiara] Brookhaven Natl Lab, Upton, NY 11973 USA. [Berger, Thomas] German Aerosp Ctr DLR, Inst Aerosp Med, D-51147 Cologne, Germany. RP Boscolo, D (reprint author), GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. EM e.scifoni@gsi.de OI Durante, Marco/0000-0002-4615-553X; Berger, Thomas/0000-0003-3319-5740 FU European Union Seventh Framework Programme [PEOPLE - ITN - ARGENT project] [608163] FX We gratefully acknowledge the help of Dr. S. Greilich and Dr. N. Bassler with numerous discussions. Part of the research leading to these results has received funding from the European Union Seventh Framework Programme [PEOPLE - 2013 - ITN - ARGENT project] under grant agreement n [608163]. NR 21 TC 2 Z9 2 U1 3 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6060 EI 1434-6079 J9 EUR PHYS J D JI Eur. Phys. J. D PD DEC 18 PY 2015 VL 69 IS 12 AR 286 DI 10.1140/epjd/e2015-60208-3 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CZ1DJ UT WOS:000366845700002 ER PT J AU Li, N Yadav, SK Wang, J Liu, XY Misra, A AF Li, Nan Yadav, Satyesh K. Wang, Jian Liu, Xiang-Yang Misra, Amit TI Growth and Stress-induced Transformation of Zinc blende AlN Layers in Al-AlN-TiN Multilayers SO SCIENTIFIC REPORTS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; IN-SITU NANOINDENTATION; CUBIC ALN; ELECTRONIC-STRUCTURE; SUPERLATTICES; STABILIZATION; THICKNESS; DEPOSITION; PRESSURE; NITRIDES AB AlN nanolayers in sputter deposited {111} Al/AlN/TiN multilayers exhibit the metastable zinc-blende-structure (z-AlN). Based on density function theory calculations, the growth of the z-AlN is ascribed to the kinetically and energetically favored nitridation of the deposited aluminium layer. In situ nanoindentation of the as-deposited {111} Al/AlN/TiN multilayers in a high-resolution transmission electron microscope revealed the z-AlN to wurzite AlN phase transformation through collective glide of Shockley partial dislocations on every two {111} planes of the z-AlN. C1 [Li, Nan] Los Alamos Natl Lab, Mat Phys & Applicat Div, MPA CINT, Los Alamos, NM 87545 USA. [Yadav, Satyesh K.; Liu, Xiang-Yang] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Wang, Jian] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA. [Misra, Amit] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Li, N (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, MPA CINT, POB 1663, Los Alamos, NM 87545 USA. EM nanli@lanl.gov; jianwang@unl.edu RI Wang, Jian/F-2669-2012; Li, Nan /F-8459-2010; Yadav, Satyesh/M-6588-2014 OI Wang, Jian/0000-0001-5130-300X; Li, Nan /0000-0002-8248-9027; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; University of Nebraska-Lincoln FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. J.W. also thanks the Start-up support provided by the University of Nebraska-Lincoln. NR 28 TC 2 Z9 2 U1 6 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 18 PY 2015 VL 5 AR 18554 DI 10.1038/srep18554 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CZ4GA UT WOS:000367060300002 PM 26681109 ER PT J AU Dicksved, J Jansson, JK Lindberg, JE AF Dicksved, Johan Jansson, Janet K. Lindberg, Jan Erik TI Fecal microbiome of growing pigs fed a cereal based diet including chicory (Cichorium intybus L.) or ribwort (Plantago lanceolata L.) forage SO JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY LA English DT Article DE Amplicon sequencing; Chicory; Microbiome; Ribwort; Uronic acid; Weaning; 16S ID GUT MICROBIOTA; NONSTARCH POLYSACCHARIDES; WEANED PIGLETS; HUMAN COLON; FIBER; BACTERIA; GROWTH; LEVEL; DIGESTIBILITY; FERMENTATION AB Background: The purpose of this study was to investigate how inclusion of chicory forage or ribwort forage in a cereal-based diet influenced the fecal microbial community (microbiome) in newly weaned (35 days of age) piglets. The piglets were fed a cereal-based diet without (B) and with inclusion (80 and 160 g/kg air-dry forage) of vegetative shoots of chicory (C) and leaves of ribwort (R) forage in a 35-day growth trial. Fecal samples were collected at the start (D0), 17 (D17) and 35 (D35) days after weaning and profiles of the microbial consortia were generated using terminal restriction fragment length polymorphism (T-RFLP). 454-FLX pyrosequencing of 16S rRNA gene amplicons was used to analyze the microbial composition in a subset of the samples already analyzed with T-RFLP. Results: The microbial clustering pattern was primarily dependent on age of the pigs, but diet effects could also be observed. Lactobacilli and enterobacteria were more abundant at D0, whereas the genera Streptococcus, Treponema, Clostridium, Clostridiaceae1 and Coprococcus were present in higher abundances at D35. Pigs fed ribwort had an increased abundance of sequences classified as Treponema and a reduction in lactobacilli. However, the abundance of Prevotellaceae increased with age in on both the chicory and the ribwort diet. Moreover, there were significant correlations between the abundance of Bacteroides and the digested amount of galactose, uronic acids and total non-starch polysaccharides, and between the abundance of Bacteroidales and the digested amount of xylose. Conclusion: This study demonstrated that both chicory and ribwort inclusion in the diet of newly weaned pigs influenced the composition of the fecal microbiota and that digestion of specific dietary components was correlated with species composition of the microbiota. Moreover, this study showed that the gut will be exposed to a dramatic shift in the microbial community structure several weeks after weaning. C1 [Dicksved, Johan; Lindberg, Jan Erik] Swedish Univ Agr Sci, Dept Anim Nutr & Management, SE-75007 Uppsala, Sweden. [Dicksved, Johan] Swedish Univ Agr Sci, Dept Microbiol, SE-75007 Uppsala, Sweden. [Jansson, Janet K.] Pacific NW Natl Lab, Div Biol Earth & Biol Sci, Richland, WA 99352 USA. RP Dicksved, J (reprint author), Swedish Univ Agr Sci, Dept Anim Nutr & Management, POB 7024, SE-75007 Uppsala, Sweden. EM johan.dicksved@slu.se FU FORMAS [2005-1608] FX This study was funded by FORMAS, project no: 2005-1608. We thank Anna-Greta Haglund for skilled laboratory assistance and Zongli Zheng at the Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Sweden, for advice and assistance in the statistical analysis. NR 36 TC 3 Z9 3 U1 4 U2 22 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2049-1891 J9 J ANIM SCI BIOTECHNO JI J. Anim. Sci. Biotechnol. PD DEC 18 PY 2015 VL 6 AR 53 DI 10.1186/s40104-015-0054-8 PG 9 WC Agriculture, Dairy & Animal Science SC Agriculture GA CZ0LA UT WOS:000366795100002 PM 26688727 ER PT J AU Fan, W Zhu, X Ke, F Chen, YB Dong, KC Ji, J Chen, B Tongay, S Ager, JW Liu, K Su, HB Wu, JQ AF Fan, Wen Zhu, Xi Ke, Feng Chen, Yabin Dong, Kaichen Ji, Jie Chen, Bin Tongay, Sefaattin Ager, Joel W. Liu, Kai Su, Haibin Wu, Junqiao TI Vibrational spectrum renormalization by enforced coupling across the van der Waals gap between MoS2 and WS2 monolayers SO PHYSICAL REVIEW B LA English DT Article ID MOLYBDENUM-DISULFIDE; TRANSITION; PHOTOLUMINESCENCE; HETEROSTRUCTURES; MOLECULES; BANDGAP AB At the few or monolayer limit, layered materials define an interesting two-dimensional system with unique electronic and phonon properties. The electron band structure of monolayers can be drastically different from multilayers despite the weak van der Waals interaction between neighboring layers. In this Rapid Communication, we demonstrate that vibrational spectra of a MoS2 monolayer and a WS2 monolayer are also renormalized when the interaction between them is artificially modulated. This is achieved by using a diamond-anvil cell to apply high pressures, up to 39 GPa onto WS2/MoS2 heterobilayers. With increasing pressure, the out-of-plane Raman frequencies of the two individual monolayers repel each other, exhibiting coherent vibrations across the van der Waals gap with an optical-like and an acousticlike interlayer vibration mode. The discovery shows a crossover in lattice vibration from a two-dimensional system toward a three-dimensional system driven by enforced interlayer coupling. C1 [Fan, Wen; Chen, Yabin; Dong, Kaichen; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Zhu, Xi; Su, Haibin] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore. [Ke, Feng; Chen, Bin] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China. [Ji, Jie] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230027, Anhui, Peoples R China. [Tongay, Sefaattin] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [Ager, Joel W.; Wu, Junqiao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Liu, Kai] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China. RP Su, HB (reprint author), Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore. EM hbsu@ntu.edu.sg; wuj@berkeley.edu RI Zhu, Xi/M-4512-2013; Liu, Kai/A-4754-2012; Wu, Junqiao/G-7840-2011; OI Liu, Kai/0000-0002-0638-5189; Wu, Junqiao/0000-0002-1498-0148; Su, Haibin/0000-0001-9760-6567 FU National Science Foundation [DMR-1306601]; COMPRES [EAR 11-57758]; Chinese Scholarship Council (CSC) [201406210211]; Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE) FX This work was supported by the National Science Foundation under Grant No. DMR-1306601. H.S. is grateful for the hospitality from Dr. J. Vasbinder at the Institute Para Limes in the early stage of this work. W.F. gratefully acknowledges Dr. J. Yan for help with the DAC setup and Professor F. Wang for useful discussions. The laser milling was supported by COMPRES (Grant No. EAR 11-57758). K.D. acknowledges the Chinese Scholarship Council (CSC, Grant No. 201406210211) for financial support. J.W., J.W.A., and Y.C. acknowledge support from the Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE). NR 27 TC 5 Z9 5 U1 5 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 18 PY 2015 VL 92 IS 24 AR 241408 DI 10.1103/PhysRevB.92.241408 PG 5 WC Physics, Condensed Matter SC Physics GA CY9MX UT WOS:000366732100002 ER PT J AU Smalley, D Iwasaki, H Navratil, P Roth, R Langhammer, J Bader, VM Bazin, D Berryman, JS Campbell, CM Dohet-Eraly, J Fallon, P Gade, A Langer, C Lemasson, A Loelius, C Macchiavelli, AO Morse, C Parker, J Quaglioni, S Recchia, F Stroberg, SR Weisshaar, D Whitmore, K Wimmer, K AF Smalley, D. Iwasaki, H. Navratil, P. Roth, R. Langhammer, J. Bader, V. M. Bazin, D. Berryman, J. S. Campbell, C. M. Dohet-Eraly, J. Fallon, P. Gade, A. Langer, C. Lemasson, A. Loelius, C. Macchiavelli, A. O. Morse, C. Parker, J. Quaglioni, S. Recchia, F. Stroberg, S. R. Weisshaar, D. Whitmore, K. Wimmer, K. TI Lifetime measurements of C-17 excited states and three-body and continuum effects SO PHYSICAL REVIEW C LA English DT Article ID HALO; DEFORMATION; REGION; TOOL AB We studied transition rates for the lowest 1/2(+) and 5/2(+) excited states of C-17 through lifetime measurements with the GRETINA array using the recoil-distance method. The present measurements provide a model-independent determination of transition strengths giving the values of B(M1; 1/2(+) -> 3/2(g.s.)(+)) = 1.04(-0.12)(+0.03) x 10(-2) mu(2)(N) and B(M1; 5/2(+) -> 3/2(g.s.)(+)) = 7.12(-0.96)(+1.27) x 10(-2) mu(2)(N). The quenched M1 transition strength for the 1/2(+) -> 3/2(g.s.)(+) transition, with respect to the 5/2(+) -> 3/2(g.s.)(+) transition, has been confirmed with greater precision. The current data are compared to importance-truncated no-core shell model calculations addressing effects due to continuum and three-body forces. C1 [Smalley, D.; Iwasaki, H.; Bader, V. M.; Bazin, D.; Berryman, J. S.; Gade, A.; Langer, C.; Loelius, C.; Morse, C.; Recchia, F.; Stroberg, S. R.; Weisshaar, D.; Whitmore, K.; Wimmer, K.] Michigan State Univ, Cyclotron Lab, Natl Superconduct, E Lansing, MI 48824 USA. [Iwasaki, H.; Bader, V. M.; Berryman, J. S.; Gade, A.; Loelius, C.; Morse, C.; Stroberg, S. R.; Whitmore, K.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Navratil, P.; Dohet-Eraly, J.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Roth, R.; Langhammer, J.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Campbell, C. M.; Fallon, P.; Macchiavelli, A. O.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Langer, C.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Lemasson, A.] CEA DSM CNRS IN2P3, Ganil, F-14076 Caen 5, France. [Parker, J.] Florida State Univ, Tallahassee, FL 32306 USA. [Quaglioni, S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Wimmer, K.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. RP Smalley, D (reprint author), Michigan State Univ, Cyclotron Lab, Natl Superconduct, E Lansing, MI 48824 USA. RI Gade, Alexandra/A-6850-2008; Langer, Christoph/L-3422-2016; Roth, Robert/B-6502-2008 OI Gade, Alexandra/0000-0001-8825-0976; FU National Science Foundation (NSF) (USA) [PHY-1102511]; Department of Energy (DOE) National Nuclear Security Administration [DE-NA0000979]; U.S. DOE Office of Science; NSF [PHY-1102511]; DOE [DE-AC02-05CH11231]; Deutsche Forschungsgemeinschaft [SFB 634]; Helmholtz International Center for FAIR (HIC for FAIR) within the LOEWE program of the State of Hesse; BMBF [06DA7047I]; NSERC [401945-2011]; National Research Council Canada; LLNL [DE-AC52-07NA27344]; DOE, Office of Science, Office of Nuclear Physics [SCW1158] FX The authors thank the beam physicists at the coupled cyclotron facility for the delivery of the radioactive beam. This work is supported by the National Science Foundation (NSF) (USA) under PHY-1102511, by the Department of Energy (DOE) National Nuclear Security Administration under award number DE-NA0000979. GRETINA was funded by the U.S. DOE Office of Science. Operation of the array at NSCL is supported by NSF under Cooperative Agreement PHY-1102511 (NSCL) and DOE under Grant No. DE-AC02-05CH11231 (LBNL). Numerical calculations have been performed at the LOEWE-CSC Frankfurt, and at the computing center of the TU Darmstadt (Lichtenberg). Computing support for this work also came in part from the LLNL institutional Computing Grand Challenge program and from an INCITE Award on the Titan supercomputer of the Oak Ridge Leadership Computing Facility (OLCF) at ORNL. Supported by the Deutsche Forschungsgemeinschaft through Contract SFB 634, by the Helmholtz International Center for FAIR (HIC for FAIR) within the LOEWE program of the State of Hesse, and the BMBF through Contract No. 06DA7047I, and from NSERC Grant No. 401945-2011. TRIUMF receives funding via a contribution through the National Research Council Canada. This work is supported in part by LLNL under Contract DE-AC52-07NA27344, and by the DOE, Office of Science, Office of Nuclear Physics, under Work Proposal No. SCW1158. NR 42 TC 2 Z9 2 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD DEC 18 PY 2015 VL 92 IS 6 AR 064314 DI 10.1103/PhysRevC.92.064314 PG 7 WC Physics, Nuclear SC Physics GA CY9NI UT WOS:000366733200001 ER PT J AU Schmittfull, M Feng, Y Beutler, F Sherwin, B Chu, MY AF Schmittfull, Marcel Feng, Yu Beutler, Florian Sherwin, Blake Chu, Man Yat TI Eulerian BAO reconstructions and N-point statistics SO PHYSICAL REVIEW D LA English DT Article ID BARYON ACOUSTIC-OSCILLATIONS; SPECTROSCOPIC GALAXY SAMPLE; REDSHIFT-SPACE; CENT DISTANCE; DATA RELEASE; GRAVITATIONAL-INSTABILITY; SCALE; MATTER; Z=0.35; PEAK AB As galaxy surveys begin to measure the imprint of baryonic acoustic oscillations (BAO) on large-scale structure at the subpercent level, reconstruction techniques that reduce the contamination from nonlinear clustering become increasingly important. Inverting the nonlinear continuity equation, we propose an Eulerian growth-shift reconstruction algorithm that does not require the displacement of any objects, which is needed for the standard Lagrangian BAO reconstruction algorithm. In real-space dark matter-only simulations the algorithm yields 95% of the BAO signal-to-noise obtained from standard reconstruction. The reconstructed power spectrum is obtained by adding specific simple 3- and 4-point statistics to the prereconstruction power spectrum, making it very transparent how additional BAO information from higher-point statistics is included in the power spectrum through the reconstruction process. Analytical models of the reconstructed density for the two algorithms agree at second order. Based on similar modeling efforts, we introduce four additional reconstruction algorithms and discuss their performance. C1 [Schmittfull, Marcel; Feng, Yu; Sherwin, Blake; Chu, Man Yat] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. [Schmittfull, Marcel; Feng, Yu; Sherwin, Blake; Chu, Man Yat] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Beutler, Florian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sherwin, Blake] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. RP Schmittfull, M (reprint author), Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. OI Beutler, Florian/0000-0003-0467-5438 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We are grateful to Uros Seljak for initial collaboration and many helpful discussions. We also thank Nikhil Padmanabhan and Martin White for useful discussions, and Martin White for providing the RunPB TreePM N-body simulations that were used for parts of this paper. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 47 TC 5 Z9 5 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC 18 PY 2015 VL 92 IS 12 AR 123522 DI 10.1103/PhysRevD.92.123522 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CY9NT UT WOS:000366734300002 ER PT J AU Yuen, A Barnard, JJ AF Yuen, Albert Barnard, John J. TI Characterization of rarefaction waves in van der Waals fluids SO PHYSICAL REVIEW E LA English DT Article ID WARM DENSE MATTER; LASER; PLASMA; SIMULATION; PULSE; BEAMS; ION AB We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015)] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy. C1 [Yuen, Albert] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Yuen, Albert] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yuen, Albert] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Barnard, John J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Yuen, A (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM albert.yuen@berkeley.edu; barnard1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Security, LLC [DE-AC52-07NA27344]; UC Berkeley [DE-FG02-04ER41289] FX The authors are pleased to acknowledge numerous valuable discussions with R. M. More, E. Startsev and I. Kaganovich. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Grant No. DE-AC52-07NA27344, and supported at UC Berkeley under Grant No. DE-FG02-04ER41289. NR 30 TC 0 Z9 0 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC 18 PY 2015 VL 92 IS 6 AR 062307 DI 10.1103/PhysRevE.92.062307 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CY9OA UT WOS:000366735000004 PM 26764692 ER PT J AU Rokhlenko, Y Gopinadhan, M Osuji, CO Zhang, K O'Hern, CS Larson, SR Gopalan, P Majewski, PW Yager, KG AF Rokhlenko, Yekaterina Gopinadhan, Manesh Osuji, Chinedum O. Zhang, Kai O'Hern, Corey S. Larson, Steven R. Gopalan, Padma Majewski, Pawel W. Yager, Kevin G. TI Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy SO PHYSICAL REVIEW LETTERS LA English DT Article ID FIELD-INDUCED ORIENTATION; NEMATIC LIQUID-CRYSTALS; OPTICAL ANISOTROPY; DIBLOCK COPOLYMERS; PERSISTENCE LENGTH; GRAIN; SUSCEPTIBILITY; BIREFRINGENCE; SCATTERING; GROWTH AB We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy,Delta chi, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Delta chi approximate to 2 x 10(-8). From field-dependent scattering data, we estimate that grains of approximate to 1.2 mu m are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers. C1 [Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O.] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06511 USA. [Zhang, Kai; O'Hern, Corey S.] Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06511 USA. [Larson, Steven R.; Gopalan, Padma] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Majewski, Pawel W.; Yager, Kevin G.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Osuji, CO (reprint author), Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06511 USA. EM chinedum.osuji@yale.edu RI Zhang, Kai/F-9188-2016; OI Osuji, Chinedum/0000-0003-0261-3065; Gopinadhan, Manesh/0000-0001-8452-6613 FU NSF [DMR-1119826, DMR-1410568]; U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]; YINQE FX This work was supported by the NSF under Grants No. DMR-1119826 and No. DMR-1410568. Facility use was supported by YINQE. Additionally, this research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. The authors thank Nitash Balsara and Zhen-Gang Wang for fruitful discussions, and Mike Degen (Rigaku Inc.) and AMI Inc. for technical support. NR 38 TC 7 Z9 7 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 18 PY 2015 VL 115 IS 25 AR 258302 DI 10.1103/PhysRevLett.115.258302 PG 5 WC Physics, Multidisciplinary SC Physics GA CY9LT UT WOS:000366729100008 PM 26722950 ER PT J AU Sun, C Robin, DS Steier, C Portmann, G AF Sun, C. Robin, D. S. Steier, C. Portmann, G. TI Characterization of pseudosingle bunch kick-and-cancel operational mode SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Pseudosingle-bunch kick-and-cancel (PSB-KAC) is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments and drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements. C1 [Sun, C.; Robin, D. S.; Steier, C.; Portmann, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Sun, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM CCSun@lbl.gov FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; ALS management FX The authors would like to thank Slawomir Kwiatkowski, James Julian, David Plate, Ray Low and Ken Baptiste who constructed the PSB kicker and pulser. We also wish to thank the ALS management for their support and encouragement of these studies. We also would like to thank ALS beam line scientists who helped us carry out tests of this new operation mode. This work is supported by the Director Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 10 TC 0 Z9 0 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC 18 PY 2015 VL 18 IS 12 AR 120702 DI 10.1103/PhysRevSTAB.18.120702 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CY9OR UT WOS:000366736700001 ER PT J AU Wehner, MF Easterling, DR AF Wehner, Michael F. Easterling, David R. TI The global warming hiatus's irrelevance SO SCIENCE LA English DT Letter ID CLIMATE RESPONSE C1 [Wehner, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Easterling, David R.] NOAA, Ctr Weather & Climate, Natl Ctr Environm Informat, Asheville, NC 28801 USA. RP Easterling, DR (reprint author), NOAA, Ctr Weather & Climate, Natl Ctr Environm Informat, Asheville, NC 28801 USA. EM David.Easterling@noaa.gov NR 9 TC 1 Z9 1 U1 8 U2 49 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 18 PY 2015 VL 350 IS 6267 BP 1482 EP 1483 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY7LY UT WOS:000366591100042 PM 26680187 ER PT J AU Mannix, AJ Zhou, XF Kiraly, B Wood, JD Alducin, D Myers, BD Liu, XL Fisher, BL Santiago, U Guest, JR Yacaman, MJ Ponce, A Oganov, AR Hersam, MC Guisinger, NP AF Mannix, Andrew J. Zhou, Xiang-Feng Kiraly, Brian Wood, Joshua D. Alducin, Diego Myers, Benjamin D. Liu, Xiaolong Fisher, Brandon L. Santiago, Ulises Guest, Jeffrey R. Yacaman, Miguel Jose Ponce, Arturo Oganov, Artem R. Hersam, Mark C. Guisinger, Nathan P. TI Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs SO SCIENCE LA English DT Article ID ATOMIC-SCALE CHARACTERIZATION; CLUSTERS; GRAPHENE; MONOLAYER; AG(111); GROWTH AB At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. C1 [Mannix, Andrew J.; Kiraly, Brian; Fisher, Brandon L.; Guest, Jeffrey R.; Guisinger, Nathan P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Mannix, Andrew J.; Kiraly, Brian; Wood, Joshua D.; Myers, Benjamin D.; Hersam, Mark C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Zhou, Xiang-Feng; Oganov, Artem R.] SUNY Stony Brook, Dept Geosci, Ctr Mat Design, Stony Brook, NY 11794 USA. [Zhou, Xiang-Feng; Oganov, Artem R.] SUNY Stony Brook, Inst Adv Computat Sci, Stony Brook, NY 11794 USA. [Zhou, Xiang-Feng] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China. [Alducin, Diego; Santiago, Ulises; Yacaman, Miguel Jose; Ponce, Arturo] Univ Texas San Antonio, Dept Phys, San Antonio, TX 78249 USA. [Myers, Benjamin D.] Northwestern Univ, NUANCE Ctr, Evanston, IL 60208 USA. [Liu, Xiaolong; Hersam, Mark C.] Northwestern Univ, Appl Phys Grad Program, Evanston, IL 60208 USA. [Oganov, Artem R.] Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, Moscow 143026, Russia. [Oganov, Artem R.] Moscow Inst Phys & Technol, Dolgoprudny City 141700, Moscow Region, Russia. [Hersam, Mark C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Oganov, AR (reprint author), Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, 5 Nobel St, Moscow 143026, Russia. EM artem.oganov@stonybrook.edu; m-hersam@northwestern.edu; nguisinger@anl.gov RI Oganov, Artem/A-1213-2008; Zhou, Xiang-Feng/A-1714-2010; Guest, Jeffrey/B-2715-2009; Hersam, Mark/B-6739-2009; jose yacaman, miguel/B-5622-2009; Ponce Pedraza, Arturo/L-4712-2013; OI Oganov, Artem/0000-0001-7082-9728; Zhou, Xiang-Feng/0000-0001-8651-9273; Guest, Jeffrey/0000-0002-9756-8801; Ponce Pedraza, Arturo/0000-0001-5529-6468; Liu, Xiaolong/0000-0002-6186-5257 FU Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility [DE-AC02-06CH11357]; International Institute for Nanotechnology, Materials Research Science and Engineering Centers [NSF DMR-1121262]; Keck Foundation; State of Illinois; Northwestern University; U.S. Department of Energy SISGR [DE-FG02-09ER16109]; Office of Naval Research [N00014-14-1-0669]; National Science Foundation Graduate Fellowship Program [DGE-1324585, DGE-0824162]; National Science Foundation of China [11174152]; National 973 Program of China [2012CB921900]; Program for New Century Excellent Talents in University [NCET-12-0278]; Defense Advanced Research Projects Agency [W31P4Q1210008]; Government of Russian Federation [14.A12.31.0003]; National Institute on Minority Health and Health Disparities (NIMHD) in the program Research Centers in Minority Institutions Program (RCMI) Nanotechnology and Human Health Core [G12MD007591]; NSF PREM DMR [DMR-0934218]; Welch Foundation [AX-1615]; Department of Defense [64756-RT-REP] FX This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357. This work was also performed, in part, at the NUANCE Center, supported by the International Institute for Nanotechnology, Materials Research Science and Engineering Centers (NSF DMR-1121262), the Keck Foundation, the State of Illinois, and Northwestern University. A.J.M., B.K., J.D.W., X.L., J.R.G, M.C.H., and N.P.G acknowledge support by the U.S. Department of Energy SISGR (contract no. DE-FG02-09ER16109), the Office of Naval Research (grant no. N00014-14-1-0669), and the National Science Foundation Graduate Fellowship Program (DGE-1324585 and DGE-0824162). X.-F.Z thanks the National Science Foundation of China (grant no. 11174152), the National 973 Program of China (grant no. 2012CB921900), and the Program for New Century Excellent Talents in University (grant no. NCET-12-0278). U.S. thanks the National Council of Science and Technology, CONACyT (proposal no. 250836). A.R.O acknowledges support from the Defense Advanced Research Projects Agency (grant no. W31P4Q1210008) and the Government of Russian Federation (no. 14.A12.31.0003). D.A., M.J.Y, and A.P. acknowledge support by the National Institute on Minority Health and Health Disparities (NIMHD) in the program Research Centers in Minority Institutions Program (RCMI) Nanotechnology and Human Health Core (grant G12MD007591), the NSF PREM DMR (grant no. DMR-0934218), the Welch Foundation (grant no. AX-1615), and the Department of Defense (grant no. 64756-RT-REP). NR 29 TC 144 Z9 145 U1 107 U2 359 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 18 PY 2015 VL 350 IS 6267 BP 1513 EP 1516 DI 10.1126/science.aad1080 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY7LY UT WOS:000366591100055 PM 26680195 ER PT J AU McMahon, KW McCarthy, MD Sherwood, OA Larsen, T Guilderson, TP AF McMahon, Kelton W. McCarthy, Matthew D. Sherwood, Owen A. Larsen, Thomas Guilderson, Thomas P. TI Millennial- scale plankton regime shifts in the subtropical North Pacific Ocean SO SCIENCE LA English DT Article ID ORGANIC-MATTER; COMMUNITY STRUCTURE; MARINE PLANKTON; CARBON; GYRE; PATTERNS; SEA; PHYTOPLANKTON; DELTA-C-13; NITROGEN AB Climate change is predicted to alter marine phytoplankton communities and affect productivity, biogeochemistry, and the efficacy of the biological pump. We reconstructed high-resolution records of changing plankton community composition in the North Pacific Ocean over the past millennium. Amino acid-specific delta C-13 records preserved in long-lived deep-sea corals revealed three major plankton regimes corresponding to Northern Hemisphere climate periods. Non-dinitrogen-fixing cyanobacteria dominated during the Medieval Climate Anomaly (950-1250 Common Era) before giving way to a new regime in which eukaryotic microalgae contributed nearly half of all export production during the Little Ice Age (similar to 1400-1850 Common Era). The third regime, unprecedented in the past millennium, began in the industrial era and is characterized by increasing production by dinitrogen-fixing cyanobacteria. This picoplankton community shift may provide a negative feedback to rising atmospheric carbon dioxide concentrations. C1 [McMahon, Kelton W.; McCarthy, Matthew D.; Guilderson, Thomas P.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [McMahon, Kelton W.; Guilderson, Thomas P.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. [Sherwood, Owen A.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Larsen, Thomas] Univ Kiel, Leibniz Lab Radiometr Dating & Stable Isotope Res, D-24118 Kiel, Germany. [Guilderson, Thomas P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP McMahon, KW (reprint author), Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. EM kemcmaho@ucsc.edu RI Larsen, Thomas/D-3105-2012 OI Larsen, Thomas/0000-0002-0311-9707 FU National Oceanic and Atmospheric Administration's National Undersea Research Program; National Geographic Society [7717-04]; U.S. Department of Energy [DE-AC52-07NA27344]; NSF [OCE-1061689]; The Future Ocean, a program - German Research Foundation FX All methods, additional figures, and source data are available in the supplementary materials. K.W.M., T.P.G., and M.D.M. conceived the project. K.W.M. prepared samples, performed bulk and compound-specific delta13C analyses, and wrote the manuscript. O.A.S. and T.L. assisted in data analysis and commented on the manuscript. T.P.G. and M.D.M. supervised this project, discussed the results, and commented on the manuscript. We thank M. Hanson, S. Fauque, and J. Liu for assistance in the laboratory. This work would not have been possible without the captain and crew of the research vessel Kaimikai-o-Kanaloa and the pilots and engineers of the Hawaii Undersea Research Laboratory's Pisces IV and V submersibles. We also thank three anonymous reviewers for valuable feedback on the manuscript. Funding for sample collection was provided by the National Oceanic and Atmospheric Administration's National Undersea Research Program and the National Geographic Society (grant 7717-04). A portion of this work was performed under the auspices of the U.S. Department of Energy (grant DE-AC52-07NA27344). The majority of the work presented here was funded by NSF (grant OCE-1061689). T.L. was supported by The Future Ocean, a program funded by the German Research Foundation. NR 29 TC 6 Z9 6 U1 13 U2 59 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 18 PY 2015 VL 350 IS 6267 BP 1530 EP 1533 DI 10.1126/science.aaa9942 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CY7LY UT WOS:000366591100059 PM 26612834 ER PT J AU McCullough, J Clippinger, AK Talledge, N Skowyra, ML Saunders, MG Naismith, TV Colf, LA Afonine, P Arthur, C Sundquist, WI Hanson, PI Frost, A AF McCullough, John Clippinger, Amy K. Talledge, Nathaniel Skowyra, Michael L. Saunders, Marissa G. Naismith, Teresa V. Colf, Leremy A. Afonine, Pavel Arthur, Christopher Sundquist, Wesley I. Hanson, Phyllis I. Frost, Adam TI Structure and membrane remodeling activity of ESCRT-III helical polymers SO SCIENCE LA English DT Article ID PLASMA-MEMBRANE; FILAMENTS; AUTOINHIBITION; FISSION; CHMP3; REVEALS; PATHWAY; VPS4 AB The endosomal sorting complexes required for transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure, and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 angstrom resolution cryogenic electron microscopy reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, charged multivesicular body protein 1B (CHMP1B) and increased sodium tolerance 1 (IST1). The inner strand comprises "open" CHMP1B subunits that interlock in an elaborate domain-swapped architecture and is encircled by an outer strand of "closed" IST1 subunits. Un