FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Li, J Overall, CC Johnson, RC Jones, MB McDermott, JE Heffron, F Adkins, JN Cambronne, ED AF Li, Jie Overall, Christopher C. Johnson, Rudd C. Jones, Marcus B. McDermott, Jason E. Heffron, Fred Adkins, Joshua N. Cambronne, Eric D. TI ChIP-Seq Analysis of the sigma(E) Regulon of Salmonella enterica Serovar Typhimurium Reveals New Genes Implicated in Heat Shock and Oxidative Stress Response SO PLOS ONE LA English DT Article ID ESCHERICHIA-COLI; VIRULENCE FACTORS; PROTEIN; TRANSCRIPTION; BIOSYNTHESIS; METABOLISM; EXPRESSION; NETWORK; SYSTEM; RPOS AB The alternative sigma factor sigma(E) functions to maintain bacterial homeostasis and membrane integrity in response to extracytoplasmic stress by regulating thousands of genes both directly and indirectly. The transcriptional regulatory network governed by sigma(E) in Salmonella and E. coli has been examined using microarray, however a genome-wide analysis of sigma(E)-binding sites in Salmonella has not yet been reported. We infected macrophages with Salmonella Typhimurium over a select time course. Using chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq), 31 sigma(E)-binding sites were identified. Seventeen sites were new, which included outer membrane proteins, a quorum-sensing protein, a cell division factor, and a signal transduction modulator. The consensus sequence identified for sigma(E) in vivo binding was similar to the one previously reported, except for a conserved G and A between the -35 and -10 regions. One third of the sigma(E)-binding sites did not contain the consensus sequence, suggesting there may be alternative mechanisms by which sigma(E) modulates transcription. By dissecting direct and indirect modes of sigma(E)-mediated regulation, we found that sigma(E) activates gene expression through recognition of both canonical and reversed consensus sequence. New sigma(E) regulated genes (greA, luxS, ompA and ompX) are shown to be involved in heat shock and oxidative stress responses. C1 [Li, Jie; Johnson, Rudd C.; Heffron, Fred; Cambronne, Eric D.] Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR 97201 USA. [Overall, Christopher C.; McDermott, Jason E.; Adkins, Joshua N.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Jones, Marcus B.] J Craig Venter Inst, Dept Infect Dis, Rockville, MD USA. RP Cambronne, ED (reprint author), Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR 97201 USA. EM cambronn@ohsu.edu FU National Institutes of Health [GM094623, Y1-AI-8401] FX This research was funded in part by a grant from the National Institutes of Health GM094623 and Y1-AI-8401. NR 38 TC 0 Z9 0 U1 1 U2 17 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 21 PY 2015 VL 10 IS 9 AR e0138466 DI 10.1371/journal.pone.0138466 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CS0ZM UT WOS:000361791000030 PM 26389830 ER PT J AU Palmisano, V Weidner, E Boon-Brett, L Bonato, C Harskamp, F Moretto, P Post, MB Burgess, R Rivkin, C Buttner, WJ AF Palmisano, V. Weidner, E. Boon-Brett, L. Bonato, C. Harskamp, F. Moretto, P. Post, M. B. Burgess, R. Rivkin, C. Buttner, W. J. TI Selectivity and resistance to poisons of commercial hydrogen sensors SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT 20th World Hydrogen Energy Conference CY JUN 15-20, 2014 CL Gwangju City, SOUTH KOREA DE Hydrogen sensors; Hydrogen safety; Cross-sensitivity; Poisons; Inhibitors; Interferents ID CATALYST DEACTIVATION; SULFUR; PLATINUM; METAL AB The resistance of several models of catalytic, workfunction-based metal-oxide-semiconductor and electrochemical hydrogen sensors to chemical contaminants such as SO2, H2S, NO2 and hexamethyldisiloxane (HMDS) has been investigated. These sensor platforms are among the most commonly used for the detection of hydrogen. The evaluation protocols were based on the methods recommended in the ISO 26142:2010 standard. Permanent alteration of the sensor response to the target analyte (H-2) following exposure to potential poisons at the concentrations specified in ISO 26142 was rarely observed. Although a shift in the baseline response was often observed during exposure to the potential poisons, only in a few cases did this shift persist after removal of the contaminants. Overall, the resistance of the sensors to poisoning was good. However, a change in sensitivity to hydrogen was observed in the electrochemical platform after exposure to NO2 and for a catalytic sensor during exposure to SO2. The siloxane resistance test prescribed in ISO 26142, based on exposure to 10 ppm HMDS, may possibly not properly reflect sensor robustness to siloxanes. Further evaluation of the resistance of sensors to other Si-based contaminants and other exposure profiles (e.g., concentration, exposure times) is needed. Copyright (C) 2015, The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications, LLC. This is an open access article under the CC BY-NC-SA license C1 [Palmisano, V.; Weidner, E.; Boon-Brett, L.; Bonato, C.; Harskamp, F.; Moretto, P.] European Commiss, DG Joint Res Ctr, Inst Energy & Transport, Energy Convers & Storage Unit, NL-1755 ZG Petten, Netherlands. [Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W. J.] Natl Renewable Energy Lab, Transportat & Hydrogen Syst Ctr, Golden, CO 80401 USA. RP Weidner, E (reprint author), European Commiss, DG Joint Res Ctr, Inst Energy & Transport, Energy Convers & Storage Unit, Westerduinweg 3,POB 2, NL-1755 ZG Petten, Netherlands. EM eveline.weidner@ec.europa.eu RI Palmisano, Valerio/N-9727-2016; OI Palmisano, Valerio/0000-0003-1080-3096; Post, Matthew/0000-0002-2855-8394 FU FCH JU project H2Sense [325326]; Hyindoor for CAT sensors [278534]; DOE-EERE Fuel Cell Technologies Office FX This work was performed as part of an on-going collaboration between NREL and JRC and supported by the FCH JU project H2Sense, GA number 325326 and Hyindoor for CAT sensors, GA number 278534. The NREL Sensor Laboratory is supported by DOE-EERE Fuel Cell Technologies Office. NR 25 TC 0 Z9 0 U1 4 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD SEP 21 PY 2015 VL 40 IS 35 BP 11740 EP 11747 DI 10.1016/j.ijhydene.2015.02.120 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA CR5SO UT WOS:000361404500052 ER PT J AU Ballester, M Jeanbart, L de Titta, A Nembrini, C Marsland, BJ Hubbell, JA Swartz, MA AF Ballester, Marie Jeanbart, Laura de Titta, Alexandre Nembrini, Chiara Marsland, Benjamin J. Hubbell, Jeffrey A. Swartz, Melody A. TI Nanoparticle conjugation enhances the immunomodulatory effects of intranasally delivered CpG in house dust mite-allergic mice SO SCIENTIFIC REPORTS LA English DT Article ID VIRUS-LIKE PARTICLES; EOSINOPHILIC AIRWAY INFLAMMATION; MURINE MODEL; CELL-POPULATIONS; TH2 RESPONSES; LYMPH-NODES; IMMUNOTHERAPY; OLIGODEOXYNUCLEOTIDES; ASTHMA; RHINITIS AB An emerging strategy in preventing and treating airway allergy consists of modulating the immune response induced against allergens in the lungs. CpG oligodeoxynucleotides have been investigated in airway allergy studies, but even if promising, efficacy requires further substantiation. We investigated the effect of pulmonary delivery of nanoparticle (NP)-conjugated CpG on lung immunity and found that NP-CpG led to enhanced recruitment of activated dendritic cells and to Th1 immunity compared to free CpG. We then evaluated if pulmonary delivery of NP-CpG could prevent and treat house dust mite-induced allergy by modulating immunity directly in lungs. When CpG was administered as immunomodulatory therapy prior to allergen sensitization, we found that NP-CpG significantly reduced eosinophilia, IgE levels, mucus production and Th2 cytokines, while free CpG had only a moderate effect on these parameters. In a therapeutic setting where CpG was administered after allergen sensitization, we found that although both free CpG and NP-CpG reduced eosinophilia and IgE levels to the same extent, NP conjugation of CpG significantly enhanced reduction of Th2 cytokines in lungs of allergic mice. Taken together, these data highlight benefits of NP conjugation and the relevance of NP-CpG as allergen-free therapy to modulate lung immunity and treat airway allergy. C1 [Ballester, Marie; Jeanbart, Laura; de Titta, Alexandre; Nembrini, Chiara; Hubbell, Jeffrey A.; Swartz, Melody A.] Ecole Polytech Fed Lausanne, Inst Bioengn, CH-1015 Lausanne, Switzerland. [Jeanbart, Laura; Swartz, Melody A.] Ecole Polytech Fed Lausanne, Swiss Inst Expt Canc Res ISREC, CH-1015 Lausanne, Switzerland. [Hubbell, Jeffrey A.; Swartz, Melody A.] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland. [Marsland, Benjamin J.] Univ Lausanne, Fac Biol & Med, CH-1015 Lausanne, Switzerland. [Hubbell, Jeffrey A.; Swartz, Melody A.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Hubbell, Jeffrey A.] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. RP Swartz, MA (reprint author), Ecole Polytech Fed Lausanne, Inst Bioengn, CH-1015 Lausanne, Switzerland. EM melody.swartz@epfl.ch RI Swartz, Melody/F-9563-2011 FU European Research Council; Swiss National Science Foundation [CR2312_143754]; Bill and Melinda Gates Foundation FX The authors would like to thank Xavier Quaglia, Giacomo Diaceri, Aurelien Trompette and Manuel Kulagin for technical assistance with the HDM model, Sylvie Hauert for providing materials, Olivier Burri from EPFL's Bioimaging and Optics Core Facility for assistance with image quantification, and Nicola Harris for IgE ELISA reagents. This work was funded in part by the European Research Council project NanoImmune, the Swiss National Science Foundation (CR2312_143754), the Bill and Melinda Gates Foundation. NR 56 TC 6 Z9 6 U1 5 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD SEP 21 PY 2015 VL 5 AR 14274 DI 10.1038/srep14274 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CR6NC UT WOS:000361463200001 PM 26387548 ER PT J AU van Daalen, MP Schaye, J AF van Daalen, Marcel P. Schaye, Joop TI The contributions of matter inside and outside of haloes to the matter power spectrum SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: haloes; cosmology: theory; large-scale structure of Universe ID LARGE-SCALE BIAS; N-BODY SIMULATIONS; DARK-MATTER; MASS FUNCTION; PRECISION COSMOLOGY; GALAXY FORMATION; ANALYTIC MODEL; LAMBDA-CDM; CLUSTERS; PHYSICS AB Halo-based models have been successful in predicting the clustering of matter. However, the validity of the postulate that the clustering is fully determined by matter inside haloes remains largely untested, and it is not clear a priori whether non-virialized matter might contribute significantly to the non-linear clustering signal. Here, we investigate the contribution of haloes to the matter power spectrum as a function of both scale and halo mass by combining a set of cosmological N-body simulations to calculate the contributions of different spherical overdensity regions, Friends-of-Friends (FoF) groups and matter outside haloes to the power spectrum. We find that matter inside spherical overdensity regions of size R-200,R-mean cannot account for all power for 1 less than or similar to k <= 100 h Mpc(-1), regardless of the minimum halomass. At most, it accounts for 95 per cent of the power (k greater than or similar to 20 h Mpc(-1)). For 2 less than or similar to k less than or similar to 10 h Mpc(-1), haloes with mass M-200,M-mean less than or similar to 1011 h(-1) M-circle dot contribute negligibly to the power spectrum, and our results appear to be converged with decreasing halo mass. When haloes are taken to be regions of size R-200,R-crit, the amount of power unaccounted for is larger on all scales. Accounting also for matter inside FoF groups but outside R-200,R-mean increases the contribution of halo matter on most scales probed here by 5-15 per cent. Matter inside FoF groups with M-200,M-mean > 10(9) h(-1) M-circle dot accounts for essentially all power for 3 < k < 100 h Mpc(-1). We therefore expect halo models that ignore the contribution of matter outside R-200,R-mean to overestimate the contribution of haloes of any mass to the power on small scales (k greater than or similar to 1 h Mpc(-1)). C1 [van Daalen, Marcel P.; Schaye, Joop] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [van Daalen, Marcel P.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [van Daalen, Marcel P.] Univ Calif Berkeley, Theoret Astrophys Ctr, Dept Astron, Berkeley, CA 94720 USA. [van Daalen, Marcel P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP van Daalen, MP (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. EM marcel@berkeley.edu OI Schaye, Joop/0000-0002-0668-5560 FU STFC; BIS; Durham University; European Research Council under the European Union's Seventh Framework Programme (FP7) / ERC [278594-GasAroundGalaxies] FX We thank Simon White for useful discussions, Ian McCarthy for giving us access to and help with the collisionless Cosmo-OWLS simulations, and the OWLS team for running the smaller simulation volumes used here. It is our pleasure to thank the referee, John Peacock, for useful comments that lead to the improvement of this manuscript. The simulations presented here were run on the Cosmology Machine at the Institute for Computational Cosmology in Durham (which is part of the DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS, and Durham University) as part of the Virgo Consortium research programme. We gratefully acknowledge support from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement 278594-GasAroundGalaxies. NR 59 TC 9 Z9 9 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2015 VL 452 IS 3 BP 2247 EP 2257 DI 10.1093/mnras/stv1456 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CQ8JQ UT WOS:000360854200003 ER PT J AU Li, PS McKee, CF Klein, RI AF Li, Pak Shing McKee, Christopher F. Klein, Richard I. TI Magnetized interstellar molecular clouds - I. Comparison between simulations and Zeeman observations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE magnetic fields; MHD-stars: formation; ISM: kinematics and dynamics; ISM: magnetic fields ID SUPER-ALFVENIC MODEL; MHD TURBULENCE SIMULATIONS; ADAPTIVE MESH REFINEMENT; REGULATED STAR-FORMATION; ABSORPTION-LINE SURVEY; AMBIPOLAR DIFFUSION; MAGNETOHYDRODYNAMIC TURBULENCE; FIELD; CORES; MASS AB The most accurate measurements of magnetic fields in star-forming gas are based on the Zeeman observations analysed by Crutcher et al. We show that their finding that the 3D magnetic field scales approximately as density(0.65) can also be obtained from analysis of the observed line-of-sight fields. We present two large-scale adaptive-mesh-refinement magneto-hydrodynamic simulations of several thousand M-circle dot of turbulent, isothermal, self-gravitating gas, one with a strong initial magnetic field (Alfven Mach number M-A 0 = 1) and one with a weak initial field (M-A 0 = 10). We construct samples of the 100 most massive clumps in each simulation and show that they exhibit a power-law relation between field strength and density ((n) over bar (H)) in excellent agreement with the observed one. Our results imply that the average field in molecular clumps in the interstellar medium (ISM) is < B-tot((n) over bar (H)) approximate to 42 (n) over bar (-0.65)(H, 4) mu G. Furthermore, the median value of the ratio of the line-of-sight field to density(0.65) in the simulations is within a factor of about (1.3, 1.7) of the observed value for the strong-and weak-field cases, respectively. The median value of the mass-to-flux ratio, normalized to the critical value, is 70 per cent of the line-of-sight value. This is larger than the 50 per cent usually cited for spherical clouds because the actual mass-to-flux ratio depends on the volume-weighted field, whereas the observed one depends on the mass-weighted field. Our results indicate that the typical molecular clump in the ISM is significantly supercritical (similar to factor of 3). The results of our strong-field model are in very good quantitative agreement with the observations of Li et al., which show a strong correlation in field orientation between small and large scales. Because there is a negligible correlation in the weak-field model, we conclude that molecular clouds form from strongly magnetized (although magnetically supercritical) gas, in agreement with the conclusion of Li et al. C1 [Li, Pak Shing; McKee, Christopher F.; Klein, Richard I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [McKee, Christopher F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Klein, Richard I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Li, PS (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM psli@berkeley.edu; cmckee@astro.berkeley.edu; klein@astron.berkeley.edu FU NASA through NASA ATP [NNX13AB84G]; US Department of Energy at the Lawrence Livermore National Laboratory [DE-AC52-07NA 27344]; NSF [AST-1211729]; National Center of Supercomputing Application under the Extreme Science and Engineering Discovery Environment (XSEDE) - National Science Foundation [TG-MCA00N020, OCI-1053575]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We would like to thank R. Crutcher for his many helpful comments on this work. We also thank E. Falgarone, C. Heiles, and T. Troland for discussions on Zeeman measurement observations, C. Hull for comments on field orientations, and both R. Klessen and the referee for a number of helpful comments on our work. We thank Philip Stark for discussing statistical methods for fitting data with large uncertainties. Support for this research was provided by NASA through NASA ATP grant NNX13AB84G (RIK, CFM, and PSL), the US Department of Energy at the Lawrence Livermore National Laboratory under contract DE-AC52-07NA 27344 (RIK), and the NSF through grant AST-1211729 (CFM and RIK). This research was also supported by grants of high performance computing resources from the National Center of Supercomputing Application through grant TG-MCA00N020, under the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575, the computing resources provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center, and the computing resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 56 TC 11 Z9 11 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2015 VL 452 IS 3 BP 2500 EP 2527 DI 10.1093/mnras/stv1437 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CQ8JQ UT WOS:000360854200021 ER PT J AU Stroe, A Oosterloo, T Rottgering, HJA Sobral, D van Weeren, R Dawson, W AF Stroe, Andra Oosterloo, Tom Rottgering, Huub J. A. Sobral, David van Weeren, Reinout Dawson, William TI Neutral hydrogen gas, past and future star formation in galaxies in and around the 'Sausage' merging galaxy cluster SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE shock waves; galaxies: active; galaxies: clusters: individual: CIZA J2242.8+5301; radio continuum: galaxies; radio lines: galaxies ID ALPHA LUMINOSITY FUNCTION; SIMILAR-TO 1; CIZA J2242.8+5301; VIRGO CLUSTER; H-I; FORMING GALAXIES; SPIRAL GALAXIES; FORMATION RATES; NEARBY GALAXIES; RADIO-EMISSION AB CIZA J2242.8+5301 (z=0.188, nicknamed 'Sausage') is an extremely massive (M-200 similar to 2.0 x 10(15) M-circle dot), merging cluster with shock waves towards its outskirts, which was found to host numerous emission line galaxies. We performed extremely deep Westerbork Synthesis Radio Telescope HI observations of the 'Sausage' cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission line galaxies in the 'Sausage' cluster have, on average, as much HI gas as field galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large HI reservoirs are expected to be consumed within similar to 0.75-1.0 Gyr by the vigorous SF and active galactic nuclei activity and/or driven out by the outflows we observe. We find that the star formation rate (SFR) in a large fraction of Ha emission line cluster galaxies correlates well with the radio broad-band emission, tracing supernova remnant emission. This suggests that the cluster galaxies, all located in post-shock regions, may have been undergoing sustained SFR for at least 100 Myr. This fully supports the interpretation proposed by Stroe et al. and Sobral et al. that gas-rich cluster galaxies have been triggered to form stars by the passage of the shock. C1 [Stroe, Andra; Rottgering, Huub J. A.; Sobral, David] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Oosterloo, Tom] Netherlands Fdn Res Astron, NL-7990 AA Dwingeloo, Netherlands. [Oosterloo, Tom] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Sobral, David] Univ Lisbon, Observ Astron Lisboa, Inst Astrois & Ciencias Espaco, P-1359018 Lisbon, Portugal. [Sobral, David] Univ Lisbon, Fac Ciencias, Dept Fis, P-1748016 Lisbon, Portugal. [van Weeren, Reinout] Harvard Smithsonian Ctr Astrophys, CfA, SAO, Cambridge, MA 02138 USA. [Dawson, William] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Stroe, A (reprint author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. EM astroe@strw.leidenuniv.nl RI Sobral, David/C-7919-2014; OI Sobral, David/0000-0001-8823-4845; van Weeren, Reinout/0000-0002-0587-1660 FU NWO [614.001.006]; US DOE [DE-AC52-07NA27344]; Netherlands Organisation for Scientific Research (NWO); FCT [F/01154/2012/CP0189/CT0010, PEst-OE/FIS/UI2751/2014]; NASA - Chandra X-ray Center [PF2-130104]; NASA [NAS8-03060]; W.M. Keck Foundation FX We would like to thank the referee for comments which greatly improved the clarity of the paper. We also thank Leah Morabito for useful discussions. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of NASA's Astrophysics Data System. AS and HJAR acknowledge financial support from an NWO top subsidy (614.001.006). Part of this work performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. DS acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO) through a Veni fellowship, from FCT through a FCT Investigator Starting Grant and Start-up Grant (IF/01154/2012/CP0189/CT0010) and from FCT grant PEst-OE/FIS/UI2751/2014. RvW is supported by NASA through the Einstein Postdoctoral grant number PF2-130104 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. The Westerbork Synthesis Radio Telescope is operated by the Netherlands Institute for Radio Astronomy (ASTRON) with support from the Netherlands Foundation for Scientific Research (NWO). The Isaac Newton and William Herschel telescopes are operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based in part on observations from the Karl G. Jansky Very Large Array, operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. NR 86 TC 4 Z9 4 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2015 VL 452 IS 3 BP 2731 EP 2744 DI 10.1093/mnras/stv1462 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CQ8JQ UT WOS:000360854200038 ER PT J AU Yuan, F Lidman, C Davis, TM Childress, M Abdalla, FB Banerji, M Buckley-Geer, E Rosell, AC Carollo, D Castander, FJ D'Andrea, CB Diehl, HT Cunha, CE Foley, RJ Frieman, J Glazebrook, K Gschwend, J Hinton, S Jouvel, S Kessler, R Kim, AG King, AL Kuehn, K Kuhlmann, S Lewis, GF Lin, H Martini, P McMahon, RG Mould, J Nichol, RC Norris, RP O'Neill, CR Ostrovski, F Papadopoulos, A Parkinson, D Reed, S Romer, AK Rooney, PJ Rozo, E Rykoff, ES Sako, M Scalzo, R Schmidt, BP Scolnic, D Seymour, N Sharp, R Sobreira, F Sullivan, M Thomas, RC Tucker, D Uddin, SA Wechsler, RH Wester, W Wilcox, H Zhang, B Abbott, T Allam, S Bauer, AH Benoit-Levy, A Bertin, E Brooks, D Burke, DL Kind, MC Covarrubias, R Crocce, M da Costa, LN Depoy, DL Desai, S Doel, P Eifler, TF Evrard, AE Neto, A Flaugher, B Fosalba, P Gaztanaga, E Gerdes, D Gruen, D Gruendl, RA Honscheid, K James, D Kuropatkin, N Lahav, O Li, TS Maia, MAG Makler, M Marshall, J Miller, CJ Miquel, R Ogando, R Plazas, AA Roodman, A Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Suchyta, E Swanson, MEC Tarle, G Thaler, J Walker, AR AF Yuan, Fang Lidman, C. Davis, T. M. Childress, M. Abdalla, F. B. Banerji, M. Buckley-Geer, E. Carnero Rosell, A. Carollo, D. Castander, F. J. D'Andrea, C. B. Diehl, H. T. Cunha, C. E. Foley, R. J. Frieman, J. Glazebrook, K. Gschwend, J. Hinton, S. Jouvel, S. Kessler, R. Kim, A. G. King, A. L. Kuehn, K. Kuhlmann, S. Lewis, G. F. Lin, H. Martini, P. McMahon, R. G. Mould, J. Nichol, R. C. Norris, R. P. O'Neill, C. R. Ostrovski, F. Papadopoulos, A. Parkinson, D. Reed, S. Romer, A. K. Rooney, P. J. Rozo, E. Rykoff, E. S. Sako, M. Scalzo, R. Schmidt, B. P. Scolnic, D. Seymour, N. Sharp, R. Sobreira, F. Sullivan, M. Thomas, R. C. Tucker, D. Uddin, S. A. Wechsler, R. H. Wester, W. Wilcox, H. Zhang, B. Abbott, T. Allam, S. Bauer, A. H. Benoit-Levy, A. Bertin, E. Brooks, D. Burke, D. L. Kind, M. Carrasco Covarrubias, R. Crocce, M. da Costa, L. N. DePoy, D. L. Desai, S. Doel, P. Eifler, T. F. Evrard, A. E. Fausti Neto, A. Flaugher, B. Fosalba, P. Gaztanaga, E. Gerdes, D. Gruen, D. Gruendl, R. A. Honscheid, K. James, D. Kuropatkin, N. Lahav, O. Li, T. S. Maia, M. A. G. Makler, M. Marshall, J. Miller, C. J. Miquel, R. Ogando, R. Plazas, A. A. Roodman, A. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Walker, A. R. TI OzDES multifibre spectroscopy for the Dark Energy Survey: first-year operation and results SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: spectroscopic; surveys; supernovae: general; galaxies: active; cosmology: observations ID ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; SUPERNOVA LEGACY SURVEY; BLACK-HOLE MASS; INFRARED EXTRAGALACTIC FIELD; IA SUPERNOVAE; HOST GALAXIES; RADIO OBSERVATIONS; HUBBLE RESIDUALS; STAR-FORMATION AB The Australian Dark Energy Survey (OzDES) is a five-year, 100-night, spectroscopic survey on the Anglo-Australian Telescope, whose primary aim is to measure redshifts of approximately 2500 Type Ia supernovae host galaxies over the redshift range 0.1 < z < 1.2, and derive reverberation-mapped black hole masses for approximately 500 active galactic nuclei and quasars over 0.3 < z < 4.5. This treasure trove of data forms a major part of the spectroscopic follow-up for the Dark Energy Survey for which we are also targeting cluster galaxies, radio galaxies, strong lenses, and unidentified transients, as well as measuring luminous red galaxies and emission line galaxies to help calibrate photometric redshifts. Here, we present an overview of the OzDES programme and our first-year results. Between 2012 December and 2013 December, we observed over 10 000 objects and measured more than 6 000 redshifts. Our strategy of retargeting faint objects across many observing runs has allowed us to measure redshifts for galaxies as faint as m(r) = 25 mag. We outline our target selection and observing strategy, quantify the redshift success rate for different types of targets, and discuss the implications for our main science goals. Finally, we highlight a few interesting objects as examples of the fortuitous yet not totally unexpected discoveries that can come from such a large spectroscopic survey. C1 [Yuan, Fang; Childress, M.; Scalzo, R.; Schmidt, B. P.; Sharp, R.; Zhang, B.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Yuan, Fang; Lidman, C.; Davis, T. M.; Childress, M.; Hinton, S.; O'Neill, C. R.; Scalzo, R.; Schmidt, B. P.; Uddin, S. A.; Zhang, B.] ARC Ctr Excellence All Sky Astrophys CAASTRO, Redfern, NSW, Australia. [Lidman, C.; Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Davis, T. M.; Hinton, S.; King, A. L.; O'Neill, C. R.; Parkinson, D.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Abdalla, F. B.; Jouvel, S.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Banerji, M.; McMahon, R. G.; Ostrovski, F.; Reed, S.] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Banerji, M.; McMahon, R. G.; Ostrovski, F.; Reed, S.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Buckley-Geer, E.; Diehl, H. T.; Frieman, J.; Lin, H.; Sobreira, F.; Tucker, D.; Wester, W.; Allam, S.; Flaugher, B.; Kuropatkin, N.; Scarpine, V.; Soares-Santos, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carnero Rosell, A.; Gschwend, J.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; Gschwend, J.; Sobreira, F.; da Costa, L. N.; Fausti Neto, A.; Maia, M. A. G.; Ogando, R.] Lab Interinst & Astron LIneA, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carollo, D.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Carollo, D.] Univ Notre Dame, JINA Ctr Evolut Elements, Notre Dame, IN 46556 USA. [Carollo, D.] INAF, Astrophys Observ Turin, I-10025 Pino Torinese, Italy. [Castander, F. J.; Bauer, A. H.; Crocce, M.; Fosalba, P.; Gaztanaga, E.] CSIC, Fac Ciencies, IEEC, Inst Ciencies Espai, E-08193 Barcelona, Spain. [D'Andrea, C. B.; Nichol, R. C.; Papadopoulos, A.; Wilcox, H.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Cunha, C. E.; Wechsler, R. H.; Burke, D. L.; Roodman, A.] Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Foley, R. J.; Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Foley, R. J.; Thaler, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Frieman, J.; Kessler, R.; Scolnic, D.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Glazebrook, K.; Mould, J.; Uddin, S. A.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Kim, A. G.; Thomas, R. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [King, A. L.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Kuhlmann, S.] Argonne Natl Lab, Lemont, IL 60439 USA. [Lewis, G. F.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Martini, P.; Honscheid, K.; Suchyta, E.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Norris, R. P.] CSIRO, Astron & Space Sci, Epping, NSW 1710, Australia. [Ostrovski, F.] Minist Educ Brazil, CAPES Fdn, BR-70040020 Brasilia, DF, Brazil. [Romer, A. K.; Rooney, P. J.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Rozo, E.; Rykoff, E. S.; Wechsler, R. H.; Burke, D. L.; Roodman, A.] SLAC, Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rozo, E.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Sako, M.; Eifler, T. F.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Seymour, N.] Curtin Univ, Int Ctr Radio Astron Res, Perth, WA 6845, Australia. [Sullivan, M.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Wechsler, R. H.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Abbott, T.; James, D.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, La Serena, Chile. [Bertin, E.] Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, France. [Bertin, E.] CNRS, UMR7095, F-75014 Paris, France. [Kind, M. Carrasco; Covarrubias, R.; Gruendl, R. A.; Swanson, M. E. C.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [DePoy, D. L.; Li, T. S.; Marshall, J.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [DePoy, D. L.; Li, T. S.; Marshall, J.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Desai, S.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Evrard, A. E.; Gerdes, D.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gruen, D.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. Univ Observ Munich, D-81679 Munich, Germany. [Honscheid, K.; Suchyta, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Makler, M.] Ctr Brasileiro Pesquisas Fis, ICRA, BR-22290 Rio De Janeiro, RJ, Brazil. [Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Miquel, R.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Plazas, A. A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, E-28040 Madrid, Spain. RP Yuan, F (reprint author), Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. EM fang.yuan@anu.edu.au RI Glazebrook, Karl/N-3488-2015; Makler, Martin/G-2639-2012; Ogando, Ricardo/A-1747-2010; Sanchez, Eusebio/H-5228-2015; Fosalba Vela, Pablo/I-5515-2016; Sobreira, Flavia/F-4168-2015; Parkinson, David/E-1183-2013; Davis, Tamara/A-4280-2008; Gaztanaga, Enrique/L-4894-2014; OI Tucker, Douglas/0000-0001-7211-5729; Suchyta, Eric/0000-0002-7047-9358; Seymour, Nicholas/0000-0003-3506-5536; Norris, Ray/0000-0002-4597-1906; Schmidt, Brian/0000-0001-6589-1287; McMahon, Richard/0000-0001-8447-8869; Banerji, Manda/0000-0002-0639-5141; Scalzo, Richard/0000-0003-3740-1214; Abdalla, Filipe/0000-0003-2063-4345; Sullivan, Mark/0000-0001-9053-4820; Glazebrook, Karl/0000-0002-3254-9044; Makler, Martin/0000-0003-2206-2651; Ogando, Ricardo/0000-0003-2120-1154; Sanchez, Eusebio/0000-0002-9646-8198; Sobreira, Flavia/0000-0002-7822-0658; Parkinson, David/0000-0002-7464-2351; Davis, Tamara/0000-0002-4213-8783; Gaztanaga, Enrique/0000-0001-9632-0815; Reed, Sophie/0000-0002-4422-0553; Carrasco Kind, Matias/0000-0002-4802-3194; Yuan, Fang/0000-0001-8315-4176 FU Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]; PAPDRJ CAPES/FAPERJ Fellowship; US Department of Energy [DE-AC02-76SF00515]; Australian Research Council Laureate Fellowship [LF0992131]; Australian Research Council Future Fellowship; CAPES [3171-13-2]; Australian Astronomical Observatory (AAO) [A/2012B/11, A/2013B/12, NOAO/0278]; US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia e Tecnologia; Deutsche Forschungsgemeinschaft; Dark Energy Survey; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Union; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Edinburgh; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; The Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University FX Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. ACR acknowledges financial support provided by the PAPDRJ CAPES/FAPERJ Fellowship. This work was supported in part by the US Department of Energy contract to SLAC No. DE-AC02-76SF00515. BPS acknowledges support from the Australian Research Council Laureate Fellowship Grant LF0992131. NS is the recipient of an Australian Research Council Future Fellowship. FS acknowledges financial support provided by CAPES under contract No. 3171-13-2; The data in this paper were based on observations obtained at the Australian Astronomical Observatory (AAO programs A/2012B/11 and A/2013B/12, and NOAO program NOAO/0278). The authors would like to thank Marguerite Pierre and the XMM-XXL collaboration for allowing them to use a couple of hours of their time on the AAT to target the DES C3 field.; Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia e Tecnologia, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.; The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds from the European Union.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. NR 64 TC 17 Z9 17 U1 2 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 21 PY 2015 VL 452 IS 3 BP 3047 EP 3063 DI 10.1093/mnras/stv1507 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CQ8JQ UT WOS:000360854200062 ER PT J AU Derenzo, SE Choong, WS Moses, WW AF Derenzo, Stephen E. Choong, Woon-Seng Moses, William W. TI Monte Carlo calculations of PET coincidence timing: single and double-ended readout SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article DE positron emission tomography; time of flight; scintillator; coincidence resolving time; Monte Carlo; lower bound ID POSITRON-EMISSION-TOMOGRAPHY; OF-FLIGHT PET; TIME-RESOLUTION; SCINTILLATION DETECTORS; BAF2 CRYSTALS; PHOTON; LUMINESCENCE; PERFORMANCE; SIMULATION; SYSTEMS AB We present Monte Carlo computational methods for estimating the coincidence resolving time (CRT) of scintillator detector pairs in positron emission tomography (PET) and present results for Lu2SiO5 : Ce (LSO), LaBr3 : Ce, and a hypothetical ultra-fast scintillator with a 1 ns decay time. The calculations were applied to both single-ended and double-ended photodetector readout with constant-fraction triggering. They explicitly include (1) the intrinsic scintillator properties (luminosity, rise time, decay time, and index of refraction), (2) the exponentially distributed depths of interaction, (3) the optical photon transport efficiency, delay, and time dispersion, (4) the photodetector properties (fill factor, quantum efficiency, transit time jitter, and single electron response), and (5) the determination of the constant fraction trigger level that minimizes the CRT. The calculations for single-ended readout include the delayed photons from the opposite reflective surface. The calculations for double-ended readout include (1) the simple average of the two photodetector trigger times, (2) more accurate estimators of the annihilation photon entrance time using the pulse height ratio to estimate the depth of interaction and correct for annihilation photon, optical photon, and trigger delays, and (3) the statistical lower bound for interactions at the center of the crystal. For time-of-flight (TOF) PET we combine stopping power and TOF information in a figure of merit equal to the sensitivity gain relative to whole-body non-TOF PET using LSO. For LSO crystals 3 mm x 3 mm x 30 mm, a decay time of 37 ns, a total photoelectron count of 4000, and a photodetector with 0.2 ns full-width at half-maximum (fwhm) timing jitter, single-ended readout has a CRT of 0.16 ns fwhm and double-ended readout has a CRT of 0.111 ns fwhm. For LaBr3 : Ce crystals 3 mm x 3 mm x 30 mm, a rise time of 0.2 ns, a decay time of 18 ns, and a total of 7600 photoelectrons the CRT numbers are 0.14 ns and 0.072 ns fwhm, respectively. For a hypothetical ultra-fast scintillator 3 mm x 3 mm x 30 mm, a decay time of 1 ns, and a total of 4000 photoelectrons, the CRT numbers are 0.070 and 0.020 ns fwhm, respectively. Over a range of examples, values for double-ended readout are about 10% larger than the statistical lower bound. C1 [Derenzo, Stephen E.; Choong, Woon-Seng; Moses, William W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Derenzo, SE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM sederenzo@lbl.gov FU Public Health Service [R01EB012524, R01EB006085, R01EB016104]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We thank S Seifert for helpful discussions. This work was supported by Public Health Service grants R01EB012524, R01EB006085 and R01EB016104, and was carried out at the Lawrence Berkeley National Laboratory under Contract no DE-AC02-05CH11231. NR 44 TC 1 Z9 1 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 EI 1361-6560 J9 PHYS MED BIOL JI Phys. Med. Biol. PD SEP 21 PY 2015 VL 60 IS 18 BP 7309 EP 7338 DI 10.1088/0031-9155/60/18/7309 PG 30 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA CR1ZL UT WOS:000361124000018 PM 26350162 ER PT J AU Emery, JM Field, RV Foulk, JW Karlson, KN Grigoriu, MD AF Emery, John M. Field, Richard V., Jr. Foulk, James W., III Karlson, Kyle N. Grigoriu, Mircea D. TI Predicting laser weld reliability with stochastic reduced-order models SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE laser welds; structural reliability; stochastic reduced-order models; Monte Carlo simulation ID PARTIAL-DIFFERENTIAL-EQUATIONS; RANDOM INPUT DATA; COLLOCATION METHOD; STAINLESS-STEEL; DECOMPOSITION AB Laser welds are prevalent in complex engineering systems and they frequently govern failure. The weld process often results in partial penetration of the base metals, leaving sharp crack-like features with a high degree of variability in the geometry and material properties of the welded structure. Accurate finite element predictions of the structural reliability of components containing laser welds requires the analysis of a large number of finite element meshes with very fine spatial resolution, where each mesh has different geometry and/or material properties in the welded region to address variability. Traditional modeling approaches cannot be efficiently employed. To this end, a method is presented for constructing a surrogate model, based on stochastic reduced-order models, and is proposed to represent the laser welds within the component. Here, the uncertainty in weld microstructure and geometry is captured by calibrating plasticity parameters to experimental observations of necking as, because of the ductility of the welds, necking - and thus peak load - plays the pivotal role in structural failure. The proposed method is exercised for a simplified verification problem and compared with the traditional Monte Carlo simulation with rather remarkable results. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [Emery, John M.; Field, Richard V., Jr.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Foulk, James W., III; Karlson, Kyle N.] Sandia Natl Labs, Livermore, CA USA. [Grigoriu, Mircea D.] Cornell Univ, Ithaca, NY USA. RP Emery, JM (reprint author), POB 5800 MS 0346, Albuquerque, NM 87185 USA. EM jmemery@sandia.gov OI Emery, John /0000-0001-6671-4952 FU Lockheed Martin Company; US Department of Energy National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 26 TC 2 Z9 2 U1 0 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0029-5981 EI 1097-0207 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD SEP 21 PY 2015 VL 103 IS 12 BP 914 EP 936 DI 10.1002/nme.4935 PG 23 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA CP2LH UT WOS:000359708000003 ER PT J AU Adams, BW Elagin, A Frisch, HJ Obaid, R Oberla, E Vostrikov, A Wagner, RG Wang, J Wetstein, M AF Adams, B. W. Elagin, A. Frisch, H. J. Obaid, R. Oberla, E. Vostrikov, A. Wagner, R. G. Wang, J. Wetstein, M. TI Timing characteristics of Large Area Picosecond Photodetectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE MCP; TTS; LAPPD; Picosecond; Large area; Photodetector ID MCP-BASED PHOTODETECTORS; DETECTORS; PMT; RESOLUTION AB The LAPPD Collaboration was formed to develop ultralast large-area imaging photodetectors based on new methods for fabricating microchannel plates (MCPs). In this paper we characterize the time response using a pulsed, sub picosecond laser. We observe single photoelectron time resolutions of a 20 cm x 20 cm MCP consistently below 70 ps, spatial resolutions of roughly 500 pm, and median gains higher than 10(7). The RMS measured at one particular point on an LAPPD detector is 58 ps, with in of 47 ps. The differential time resolution between the signal reaching the two ends of the delay line anode is measured to be 5.1 ps for large signals, with an asymptotic limit falling below 2 ps as noise-over-signal approaches zero. (C) 2015 Elsevier B.V. All rights reserved. C1 [Adams, B. W.; Wagner, R. G.; Wang, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Elagin, A.; Frisch, H. J.; Oberla, E.; Vostrikov, A.; Wetstein, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Obaid, R.] Univ Connecticut, Storrs, CT USA. RP Wetstein, M (reprint author), Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. EM matt.wetstein@gmail.com FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics [DE-ACO2-06CH11357]; University of Chicago by the Department of Energy tinder Contract [DE-SC-0008172]; National Science Foundation [PHY-1066014]; Grainger Foundation FX This work could not have been done without the talent and dedication of Joe Gregar of the ANL Glass Shop, Rich Northrop and Robert Metz of the UC Engineering Center, Mary Heintz and Mark Zaskowski of the UC Electronics Development Group. We thank Harold Gibson and Haidan Wen of the ANL Advanced Photon Source for laser and electronics support at the APS testing lab. We thank Jeffrey Elam and Anil Mane (ANL), and Neal Sullivan (Arradiance) for their critical role in providing the ALD functionalized MCPs used in this paper. We are grateful to Gary Drake for his help in mitigating the electronics noise and Dean Walters with advice on vacuum-related matters. We thank Jason McPhate and Oswald Siegmund for advice and encouragement. Finally, we would like to thank lncom Inc. for providing the 8 in, substrates, technical assistance with glass parts, and helpful discussions. The activities at Argonne National Laboratory were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics under Contract DE-ACO2-06CH11357, and at the University of Chicago by the Department of Energy tinder Contract DE-SC-0008172 and the National Science Foundation under Grant PHY-1066014. Matthew Wetstein is grateful for support from the Grainger Foundation. NR 19 TC 8 Z9 8 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 1 EP 11 DI 10.1016/j.nima.2015.05.027 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300001 ER PT J AU Ronzhin, A Los, S Ramberg, E Apresyan, A Xie, S Spiropulu, M Kim, H AF Ronzhin, A. Los, S. Ramberg, E. Apresyan, A. Xie, S. Spiropulu, M. Kim, H. TI Direct tests of micro channel plates as the active element of a new shower maximum detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Time resolution or TR; Microchannel plate or MCP; Shower maximum or SM AB We continue the study of micro channel plates (MCP) as the active element of a shower maximum (SM) detector. We present below test beam results obtained with MCPs detecting directly secondary particles of an electromagnetic shower. The MCP efficiency to shower particles is close to 100%. The time resolution obtained for this new type of the SM detector is at the level of 40 ps. Published by Elsevier B.V. C1 [Ronzhin, A.; Los, S.; Ramberg, E.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Apresyan, A.; Xie, S.; Spiropulu, M.] CALTECH, Pasadena, CA 91125 USA. [Kim, H.] Univ Chicago, Chicago, IL 60637 USA. RP Ronzhin, A (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. EM ronzhin@fnal.gov RI Xie, Si/O-6830-2016 OI Xie, Si/0000-0003-2509-5731 FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States Department of Energy; California Institute of Technology High Energy Physics [DE-SC0011925] FX We would like to thank Henry Frisch for useful discussions, Aria Soha and Eugene Smith for the good beam delivery and control, Ewa Skup for good working Cherenkov counter and Leo Bellantoni for using gap in his beam time This work is supported by funding from Fermi Research Alliance, LLC under Contract no. DE-AC02-07CH11359 with the United States Department of Energy and from California Institute of Technology High Energy Physics under Contract DE-SC0011925 with the United States Department of Energy. NR 12 TC 4 Z9 4 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 52 EP 57 DI 10.1016/j.nima.2015.05.029 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300007 ER PT J AU Qiang, J AF Qiang, Ji TI Wide energy bandwidth superconducting accelerating cavities SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Superconducting cavities; Recirculating proton linac; Transit time factor ID PHYSICS DESIGN; PHASE-SHIFTER; LINAC AB Superconducting cavities have been widely used in high intensity proton accelerators. In this paper, we discuss parameters that affect energy bandwidth of the accelerating cavity and propose a new energy averaged transit time factor to help choose transition energy between different sections and cavity geometry parameters in the linac design. These wide energy bandwidth superconducting cavities can potentially be used to accelerate a proton beam multiple times. A time-pass condition is defined to attain fixed RF phases during multiple passes of the beam. Such a superconducting recirculating proton linac could significantly reduce the number of RF cavities in the accelerator and lower construction and operational costs of the facility. (C) 2015 Elsevier B.V. All rights reserved, C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Qiang, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jqiang@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX We thank some useful discussions with Drs. J. Byrd and G. Huang about RF control. This research used computer resources at the National Energy Research Scientific Computing Center and was was supported by the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 24 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 77 EP 81 DI 10.1016/j.nima.2015.05.056 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300011 ER PT J AU Yakimov, M Oktyabrsky, S Murat, P AF Yakimov, M. Oktyabrsky, S. Murat, P. TI Picosecond UV single photon detectors with lateral drift field: Concept and technologies SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Fast UV photodetectors; Picosecond photodetectors; UV-sensitive detectors; III-V semiconductors; Lateral field ID SEMICONDUCTOR-METAL PHOTODETECTORS; AVALANCHE PHOTODIODES; LARGE-AREA; SILICON PHOTOMULTIPLIERS; MULTIPLICATION REGION; FAST SCINTILLATORS; TIMING PROPERTIES; BUFFER LAYERS; TOF PET; GAAS AB Group III-V semiconductor materials arc being considered as a Si replacement fur advanced logic devices for quite some time. Advances in III-V processing technologies, such as interface and surface passivation, large area deep submicron lithography with high-aspect ratio etching primarily driven by the metaloxide-semiconductor field-effect transistor development can also be used for other applications. In this paper we will focus on photodetectors with the drift field parallel to the surface. We compare the proposed concept to the state-of-the-art Si-based technology and discuss requirements which need to be satisfied for such detectors to be used in a single photon counting mode in blue and ultraviolet spectral region with about 10 ps photon timing resolution essential for numerous applications ranging from high-energy physics to medical imaging. Published by Elsevier B.V. C1 [Yakimov, M.; Oktyabrsky, S.] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. [Murat, P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Murat, P (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM murat@fnal.gov NR 56 TC 1 Z9 1 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 100 EP 108 DI 10.1016/j.nima.2015.05.037 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300015 ER PT J AU Chu, PH Peng, JC AF Chu, Ping-Han Peng, Jen-Chieh TI Simultaneous pi/2 rotation of two spin species of different gyromagnetic ratios SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE pi/2 Rotation; Magnetic resonance; Neutron electric dipole moment ID HE-3 AB We examine the characteristics of the pi/2 pulse for simultaneously rotating two spin species of different gyromagnetic ratios with the same sign. For a pi/2 pulse using a rotating magnetic held, we derive an equation relating the frequency and strength of the pulse to the gyromagnetic ratios of the two particles and the strength of the constant holding held. For a pi/2 pulse using a linear oscillatory magnetic held, we obtain the solutions numerically, and compare them with the solutions for the rotating pi/2 pulse. Application of this analysis to the specific case of rotating neutrons and He-3 atoms simultaneously with a pi/2 pulse, proposed for a neutron electric dipole moment experiment, is also presented. Published by Elsevier B.V C1 [Chu, Ping-Han] Duke Univ, Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Chu, Ping-Han] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Chu, Ping-Han; Peng, Jen-Chieh] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Chu, PH (reprint author), Los Alamos Natl Lab, POB 1663,H803, Los Alamos, NM 87544 USA. EM pchu@lanl.gov OI Chu, Pinghan/0000-0003-1372-2910 FU U.S. National Science Foundation; Department of Energy FX We gratefully acknowledge valuable discussions with Bradley W. Filippone and Riccardo Schmid, This work was supported by the U.S. National Science Foundation and the Department of Energy. NR 10 TC 0 Z9 0 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 128 EP 131 DI 10.1016/j.nima.2015.05.062 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300019 ER PT J AU Hans, S Rosero, R Hu, L Chkvorets, O Chan, WT Guan, S Beriguete, W Wright, A Ford, R Chen, MC Biller, S Yeh, M AF Hans, S. Rosero, R. Hu, L. Chkvorets, O. Chan, W. T. Guan, S. Beriguete, W. Wright, A. Ford, R. Chen, M. C. Biller, S. Yeh, M. TI Purification of telluric acid for SNO plus neutrinoless double-beta decay search SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Tellurium; Purification; Metal-loaded liquid scintillator; Double beta decay; Neutrino ID ACTIVATION AB Tellurium 130 has the highest natural abundance of any double beta decay isotopes. Recently it has been developed as a promising candidate for loading in liquid scintillator to explore the Majorana or Dirac nature of the neutrino through a search for neutrinoless double beta decay (ov beta beta). To this end, procedures have been developed to transfer tellurium ions into the organic liquid by a water based loading technology. However, traces of naturally occurring radioactivity and cosmic ray induced isotopes introduced into the sciraillator with tellurium could produce undesirable contaminations in the Te-130 ov beta beta region. Measurements using various elemental spikes prepared from different chemical forms indicate that the uses of self scavenging as well as acid and thermal recrystallization prior to the preparation of a tellurium loaded liquid scintillator can deplete U and Th and several cosmic activated isotopes from Te feedstock by a factor of 10(2)-10(3) in a single pass. The process is also found to improve the optical transmission in the blue region, sensible to the photomultiplier tube, by removing traces of colored impurities. In addition to the scintillator-based experiments, this cleansing scheme has potential applications to the production of radiopure tellurium crystals for other rare-event experiments. (C) 2015 Published by Elsevier B.V. C1 [Hans, S.; Rosero, R.; Hu, L.; Chan, W. T.; Guan, S.; Beriguete, W.; Yeh, M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Chkvorets, O.] Laurentian Univ, Sudbury, ON P3E 2C6, Canada. [Ford, R.] SNOLAB, Sudbury, ON, Canada. [Wright, A.; Chen, M. C.] Queen Univ, Kingston, ON, Canada. [Biller, S.] Univ Oxford, Oxford OX1 3RH, England. RP Yeh, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM yeh@bnl.gov FU United States Department of Energy [DE-AC02-98CH10886]; Natural Sciences and Engineering Research Council of Canada; Canadian Institute for Advanced Research; Science Technology and Facilities Council of the United kingdom FX The work is supported in part by the United States Department of Energy under contract DE-AC02-98CH10886, the Natural Sciences and Engineering Research Council of Canada and the Canadian Institute for Advanced Research, and the Science Technology and Facilities Council of the United kingdom. NR 18 TC 4 Z9 4 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 132 EP 139 DI 10.1016/j.nima.2015.05.045 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300020 ER PT J AU Sekine, M Ikeda, S Romanelli, M Kumaki, M Fuwa, Y Kanesue, T Hayashizaki, N Lambiase, R Okamura, M AF Sekine, M. Ikeda, S. Romanelli, M. Kumaki, M. Fuwa, Y. Kanesue, T. Hayashizaki, N. Lambiase, R. Okamura, M. TI Plasma shape control by pulsed solenoid on laser ion source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Heavy ion source; Laser ion source; Laser ablation plasma; Plasma shape control AB A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS. (C) 2015 Elsevier B.V. All rights reserved. C1 [Sekine, M.; Hayashizaki, N.] Tokyo Inst Technol, Meguro Ku, Tokyo 152, Japan. [Ikeda, S.] Tokyo Inst Technol, Yokohama, Kanagawa 2268502, Japan. [Sekine, M.; Ikeda, S.; Kumaki, M.; Fuwa, Y.; Okamura, M.] RIKEN, Wako, Saitama 3510198, Japan. [Romanelli, M.] Cornell Univ, Ithaca, NY 14850 USA. [Kumaki, M.] Waseda Univ, Shinjuku Ku, Tokyo 1690072, Japan. [Fuwa, Y.] Kyoto Univ, Uji, Kyoto 6110011, Japan. [Kanesue, T.; Lambiase, R.; Okamura, M.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Ikeda, S (reprint author), Tokyo Inst Technol, Yokohama, Kanagawa 2268502, Japan. FU NASA; DOE of the US [DE-SC0012704]; RIKEN Junior Research Associate Program FX This research was supported by NASA, DOE (DE-SC0012704) of the US and RIKEN Junior Research Associate Program, and their supports are gratefully acknowledged. NR 17 TC 0 Z9 0 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 151 EP 155 DI 10.1016/j.nima.2015.05.030 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300023 ER PT J AU Cooper, RJ Amman, M Luke, PN Vetter, K AF Cooper, R. J. Amman, M. Luke, P. N. Vetter, K. TI A prototype High Purity Germanium detector for high resolution gamma-ray spectroscopy at high count rates SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Gamma-ray detectors; High-Purity Germanium; Amorphous semiconductors; High count rate ID DRIFT VELOCITY; CONTACTS; PERFORMANCE; ELECTRON AB Where energy resolution is paramount, High Purity Germanium (HPGe) detectors continue to provide the optimum solution for gamma-ray detection and spectroscopy. Conventional large-volume HPGe detectors are typically limited to count rates on the order of ten thousand counts per second, however, limiting their effectiveness for high count rate applications. To address this limitation, we have developed a novel prototype HPGe detector designed to be capable of achieving fine energy resolution and high event throughput at count rates in excess of one million counts per second. We report here on the concept, design, and initial performance of the first prototype device. (C) 2015 Elsevier B.V. All rights reserved. C1 [Cooper, R. J.; Amman, M.; Luke, P. N.; Vetter, K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Vetter, K.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Cooper, RJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM rjcooper@lbl.gov FU US Department of Energy by Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; US Department of Energy, National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation Research and Development (DNN RD) FX The authors thank James Fast for useful discussions throughout the design process. This work was performed under the auspices of the US Department of Energy by Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231. The project was funded by the US Department of Energy, National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D). NR 27 TC 1 Z9 1 U1 2 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 167 EP 173 DI 10.1016/j.nima.2015.05.053 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300026 ER PT J AU Budden, BS Stonehill, LC Warniment, A Michel, J Storms, S Dallmann, N Coupland, DDS Stein, P Weller, S Borges, L Proicou, M Duran, G Kamto, J AF Budden, B. S. Stonehill, L. C. Warniment, A. Michel, J. Storms, S. Dallmann, N. Coupland, D. D. S. Stein, P. Weller, S. Borges, L. Proicou, M. Duran, G. Kamto, J. TI Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Elpasolite; CLYC; Handheld; Pulse shape discrimination; Scintillator ID CRYSTALS AB A new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in, photomultiplier tube for readout of the scintillator. The unit is highly configurable to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results. (C) 2015 Elsevier B.V. All rights reserved. C1 [Budden, B. S.; Stonehill, L. C.; Warniment, A.; Michel, J.; Storms, S.; Dallmann, N.; Coupland, D. D. S.; Stein, P.; Weller, S.; Borges, L.; Proicou, M.; Duran, G.; Kamto, J.] Los Alamos Natl Lab, Intelligence & Space Res Div, Los Alamos, NM 87545 USA. [Kamto, J.] Praire View A&M Univ, Elect & Comp Engn Dept, Prairie View, TX 77446 USA. RP Budden, BS (reprint author), Los Alamos Natl Lab, Intelligence & Space Res Div, POB 1663, Los Alamos, NM 87545 USA. EM bbudden@lanl.gov FU United States Defense Threat Reduction Agency [DTRA10027-5888-B, DTRA10027-7646-B]; NNSA's Minority Serving Institutions Partnership Program (MSIPP) FX This work was supported by the United States Defense Threat Reduction Agency through Interagency Agreements DTRA10027-5888-B and DTRA10027-7646-B.; J. Kampto would like to thank NNSA's Minority Serving Institutions Partnership Program (MSIPP) for funding. NR 18 TC 2 Z9 2 U1 5 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 213 EP 218 DI 10.1016/j.nima.2015.06.004 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300033 ER PT J AU Venturini, M Penn, G AF Venturini, M. Penn, G. TI A non-conventional ERL configuration for high-power EUV FELs SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Free Electron Laser (FEL); Energy Recovery Linac (ERL); EUV lithography ID DESIGN AB We show that a standard Linac configuration (consisting of accelerating sections, linearizing section, and magnetic chicane compressor) currently used in drivers for single-pass EUV/x-ray FELs is compatible with energy recovery, provided that certain timing constraints are met. By circulating the spent, rather than the fresh beam as in a conventional high-power ERL FEL design, the beam brightness can be more easily preserved thus facilitating lasing at short wavelength. As in a conventional ERL, the proposed design allows for energy-spread compression, enabling low-energy beam dumping and high energy-recovery efficiency. Results from numerical simulations presented in this paper show that this configuration could, in principle, support the generation of multi-kW average radiation power required for high-volume production EUV lithography. Published by Elsevier B.V. C1 [Venturini, M.; Penn, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94709 USA. RP Venturini, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94709 USA. EM mventurini@lbl.gov FU Department of Energy [DE-AC02-05CH11231] FX Work supported in part by Department of Energy Contract no. DE-AC02-05CH11231. We acknowledge C. Papadopulous for the APEX injector simulations. NR 37 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 219 EP 227 DI 10.1016/j.nima.2015.05.069 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300034 ER PT J AU Ronzhin, A Los, S Ramberg, E Apresyan, A Xie, S Spiropulu, M Kim, H AF Ronzhin, A. Los, S. Ramberg, E. Apresyan, A. Xie, S. Spiropulu, M. Kim, H. TI Study of the timing performance of micro-channel plate photomultiplier for use as an active layer in a shower maximum detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Microchannel plate photomultiplier or; MCP-PMT; Shower maximum or SM; Time resolution or TR AB We continue the study of micro-channel plate photomultiplier (MCP-PMT) as the active element of a shower maximum (SM) detector. We present test beam results obtained with Photek 240 and Photonis XP85011 MCP-PMTs devices. For proton beams, we obtained a time resolution of 9.6 ps, representing a significant improvement over past results using the same time of flight system. For electron beams, the time resolution obtained for this new type of SM detector is measured to be at the level of 13 ps when WC use Photek 240 as the active element of the SM. Using the Photonis XP85011 MCP-PMT as the active element of the SM, we performed time resolution measurements with pixel readout, and achieved a TR better than 30 ps, The pixel readout was observed to improve upon the TR compared to the case where the individual channels were summed. (C) 2015 Elsevier B.V. All rights reserved C1 [Ronzhin, A.; Los, S.; Ramberg, E.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Apresyan, A.; Xie, S.; Spiropulu, M.] CALTECH, Pasadena, CA 91126 USA. [Kim, H.] Univ Chicago, Chicago, IL 60637 USA. RP Ronzhin, A (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. EM ronzhin@fnal.gov RI Xie, Si/O-6830-2016 OI Xie, Si/0000-0003-2509-5731 FU Fermi Research Alliance, LLC [DE-ACO2-07C1-111359]; United States Department of Energy; California Institute of Technology High Energy Physics [DE-SC0011925] FX We thank the Fermilab crew for all their help during these test beam measurements. We thank in particular Aria Soha and Eugene Smith for the good beam delivery and control, Ewa Skup for the well working Cherenkov counter and Leo Bellantoni for providing us beam time. This work is supported by funding from Fermi Research Alliance, LLC under Contract no. DE-ACO2-07C1-111359 with the United States Department of Energy and from California Institute of Technology High Energy Physics under Contract DE-SC0011925 with the United States Department of Energy. NR 8 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 288 EP 292 DI 10.1010/j.nima.2015.06.006 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300041 ER PT J AU Monterial, M Marleau, P Clarke, S Pozzi, S AF Monterial, Mateusz Marleau, Peter Clarke, Shaun Pozzi, Sara TI Application of Bayes' theorem for pulse shape discrimination SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Pulse shape discrimination; Liquid scintillator; Bayes' theorem; Expectation-maximization ID NEUTRON; SPECTROSCOPY AB A Bayesian approach is proposed for pulse shape discrimination of photons and neutrons in liquid organic scinitillators. Instead of drawing a decision boundary, each pulse is assigned a photon or neutron confidence probability. This allows for photon and neutron classification on an event-by-event basis. The sum of those confidence probabilities is used to estimate the number of photon and neutron instances in the data. An iterative scheme, similar to an expectation-maximization algorithm for Gaussian mixtures, is used to infer the ratio of photons-to-neutrons in each measurement. Therefore, the probability space adapts to data with varying photon-to-neutron ratios. A time-correlated measurement of Am-Be and separate measurements of Cs-137, Co-60 and Th-232 photon sources were used to construct libraries of neutrons and photons. These libraries were then used to produce synthetic data sets with varying ratios of photons-to-neutrons. Probability weighted method that we implemented was found to maintain neutron acceptance rate of up to 90% up to photon-to-neutron ratio 2000, and performed 9% better than the decision boundary approach. Furthermore, the iterative approach appropriately changed the probability space with an increasing number of photons which kept the neutron population estimate from unrealistically increasing. (C) 2015 Elsevier B.V. All rights reserved. C1 [Monterial, Mateusz; Clarke, Shaun; Pozzi, Sara] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Marleau, Peter] Sandia Natl Labs, Radiat & Nucl Detect Syst Div, Livermore, CA 94551 USA. RP Monterial, M (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. EM mateuszm@umich.edu FU U.S. Department of Homeland Security [2012-DN-130-NF0001]; Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000, 2015-1190 J] FX This material is based upon work supported by the U.S. Department of Homeland Security under Grant award no. 2012-DN-130-NF0001. the views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.; Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000 (SAND no. 2015-1190 J), NR 15 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 318 EP 324 DI 10.1016/j.nima.2015.06.014 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300046 ER PT J AU Rogers, AM Sanetullaev, A Lynch, WG Tsang, MB Lee, J Bazin, D Coupland, D Henzl, V Henzlova, D Kilburn, M Wallace, MS Youngs, M Delaunay, F Famiano, M Shapira, D Jones, KL Schmitt, KT Sun, ZY AF Rogers, A. M. Sanetullaev, A. Lynch, W. G. Tsang, M. B. Lee, J. Bazin, D. Coupland, D. Henzl, V. Henzlova, D. Kilburn, M. Wallace, M. S. Youngs, M. Delaunay, F. Famiano, M. Shapira, D. Jones, K. L. Schmitt, K. T. Sun, Z. Y. TI Tracking rare-isotope beams with microchannel plates SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Microchanncl Plates; Rare-isotope beams; Tracking detector; Transfer reactions ID PROJECTILE FRAGMENT SEPARATOR; SECONDARY-ELECTRON EMISSION; MEAN FREE PATHS; STOPPING POWERS; NUCLEAR BEAMS; HEAVY-IONS; POSITION; DETECTORS; FACILITY; SYSTEM AB A system of two microchannel-plate detectors has been successfully implemented for tracking projectile-fragmentation beams. The detectors provide interaction positions, angles, and arrival Limes of ions at the reaction target. The current design is an adaptation of an assembly used for low-energy beams (similar to 1.4 MeV/nucleon). In order to improve resolution in tracking high-energy heavy-ion beams, the magnetic field strength between the secondary-electron accelerating foil and the microchannel plate had to be increased substantially. Results from an experiment using a 37-MeV/nucleon Ni-56 beam show that the tracking system can achieve sub-nanosecond timing resolution and a position resolution of similar to 1 mm for beam intensities up to 5 x 10(5) pps. (C) 2015 Elsevier B.V. All rights reserved, C1 [Rogers, A. M.; Sanetullaev, A.; Lynch, W. G.; Tsang, M. B.; Lee, J.; Bazin, D.; Coupland, D.; Henzl, V.; Henzlova, D.; Kilburn, M.; Wallace, M. S.; Youngs, M.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Rogers, A. M.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Delaunay, F.] Univ Caen, CNRS, IN2P3, LPC Caen,ENSICAEN, F-14032 Caen, France. [Famiano, M.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Shapira, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jones, K. L.; Schmitt, K. T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Sun, Z. Y.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 73000, Peoples R China. RP Rogers, AM (reprint author), Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. EM Andrew_Rogers@uml.edu RI Sun, Zhiyu/B-3922-2012; Jones, Katherine/B-8487-2011 OI Sun, Zhiyu/0000-0002-7667-3178; Jones, Katherine/0000-0001-7335-1379 FU National Science Foundation [PHY-0606007, PHY-0855013, PHY-1064280]; Department of Energy Office of Science [DE-R011065245, DE-FG02-96ER40983] FX We wish to acknowledge the support of the National Science Foundation, Grants nos. PHY-0606007, PHY-0855013, and PHY-1064280 and Department of Energy Office of Science (DE-R011065245 and DE-FG02-96ER40983). NR 43 TC 1 Z9 1 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 325 EP 334 DI 10.1016/j.nima.2015.05.070 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300047 ER PT J AU Fujii, Y Hashimoto, O Miyoshi, T Nakamura, SN Ohtani, A Okayasu, Y Oyamada, M Yamamoto, Y Kato, S Matsui, J Sako, K Brindza, P AF Fujii, Yuu Hashimoto, Osamu Miyoshi, Toshinobu Nakamura, Satoshi N. Ohtani, Atsushi Okayasu, Yuichi Oyamada, Masamichi Yamamoto, Yosuke Kato, Seigo Matsui, Jumei Sako, Katsuhisa Brindza, Paul TI High-precision three-dimensional field mapping of a high resolution magnetic spectrometer for hypernuclear spectroscopy at JLab SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Field mapping; Quadrupole; Dipole; Magnetic field measurement; Magnetic spectrometer; Hall probe AB The High Resolution Kaon Spectrometer (HKS), which consists of two quadrupole magnets and one dipole magnet, was designed and constructed for high-resolution spectroscopy of hypernuclei using the (e,e'K+ I reaction in Hall C, Jefferson Lab (1 Lab). It was used to analyze momenta of around 1.2 GeV/c K+ s with a resolution of 2 x 10(-4) (FWHM). To achieve the target resolution, a full three-dimensional magnetic field measurement of each magnet was successfully performed, and a full three-dimensional magnetic field map of the HKS magnets was reconstructed. Using the measured field map, the initial reconstruction function was generated. The target resolution would be achieved via careful tuning of the reconstruction function of HKS with the p(e, e'K+)Lambda, Sigma(0) and C-12 (e,e'K+)Lambda(12) B-g.s. reactions. After tuning of the initial reconstruction function generated from the measured map, the estimated HKS momentum resolution was 2.2 x 10(-4) (FWHM). (C) 2015 Elsevier B.V. All rights reserved C1 [Fujii, Yuu; Hashimoto, Osamu; Miyoshi, Toshinobu; Nakamura, Satoshi N.; Ohtani, Atsushi; Okayasu, Yuichi; Oyamada, Masamichi; Yamamoto, Yosuke] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Kato, Seigo] Yamagata Univ, Fac Sci, Dept Phys, Yamagata 9908560, Japan. [Matsui, Jumei; Sako, Katsuhisa] Mitsubishi Electr Corp, Energy & Ind Syst Ctr, Kobe, Hyogo 6528555, Japan. [Brindza, Paul] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Fujii, Y (reprint author), Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. EM fujii@lambda.phys.tohoku.ac.jp RI Fujii, Yu/D-3413-2015 OI Fujii, Yu/0000-0001-6625-2241 FU MEXT, Japan [12002001, 16GS0201, 15684005]; US-Japan Collaboration Research Program; JSPS Core-to-Core Program [21002]; JSPS [R2201] FX We would like to thank the JLab staff for their support. Further, we would like to extend our gratitude to Prot T. Hasegawa of Kitasato University for his insightful suggestions on the three-dimensional field mapping, based on his extensive experience. In addition, we would like to thank N. Chiga for preparing the figures. This program is supported by the Specially Promoted Program (12002001), the Creative Research Program (16GS0201), a Grant-in-Aid from MEXT (15684005), Japan, US-Japan Collaboration Research Program, the JSPS Core-to-Core Program (21002), and the Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation (R2201) by JSPS. NR 14 TC 2 Z9 2 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 351 EP 363 DI 10.1016/j.nima.2015.06.010 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300050 ER PT J AU Favalli, A Croft, S Santi, P AF Favalli, Andrea Croft, Stephen Santi, Peter TI Point model equations for neutron correlation counting: Extension of Bohnel's equations to any order SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Point model equations; Neutron multiplicity counting; Neutron coincidence counting; Time con elation analysis ID ASSAY AB Various methods of autocorrelation neutron analysis may be used to extract information about a measurement item containing spontaneously fissioning material. The two predominant approaches being the time correlation analysis (that make use of a coincidence gate) methods of multiplicity shift register logic and Feynman sampling. The common feature is that the correlated nature of the pulse train can be described by a vector of reduced factorial multiplet rates. We call these singlets, doublets, triplets etc. Within the point reactor model the multiplet rates may be related to the properties of the item, the parameters of the detector, and basic nuclear data constants by a series of coupled algebraic equations the so called point model equations. Solving, or inverting, the point model equations using experimental calibration model parameters is how assays of unknown items is performed. Currently only the first three multiplets are routinely used. In this work we develop the point model equations to higher order multiplets using the probability generating functions approach combined with the general derivative chain rule, the so called Faa di Bruno Formula. Explicit expression up to 5th order are provided, as well the general iterative formula to calculate any order. This work represents the first necessary step towards determining if higher order multiplets can add value to nondestructive measurement practice for nuclear materials control and accountancy. (C) 2015 Published by Elsevier B.V. C1 [Favalli, Andrea; Santi, Peter] Los Alamos Natl Lab, Nonproliferat & Nucl Engn Div, Safeguards Sci & Technol Grp, Los Alamos, NM 87545 USA. [Croft, Stephen] Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, Safeguards & Secur Technol, Oak Ridge, TN 37831 USA. RP Favalli, A (reprint author), Los Alamos Natl Lab, Nonproliferat & Nucl Engn Div, Safeguards Sci & Technol Grp, MS E540, Los Alamos, NM 87545 USA. EM afavalli@lanl.gov FU US Department of Energy National Nuclear Security Administration (NNSA) Office of Non-proliferation and International Security FX We acknowledge the US Department of Energy National Nuclear Security Administration (NNSA) Office of Non-proliferation and International Security for supporting our research. NR 14 TC 2 Z9 2 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 370 EP 375 DI 10.1016/j.nima.2015.06.009 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300052 ER PT J AU Barbosa, F Hutton, C Sitnikov, A Somov, A Somov, S Tolstukhin, I AF Barbosa, F. Hutton, C. Sitnikov, A. Somov, A. Somov, S. Tolstukhin, I. TI Pair spectrometer hodoscope for Hall D at Jefferson Lab SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Scintillator detector; Pair spectrometer; Silicon photomultiplier ID LINEARLY POLARIZED PHOTONS; COHERENT BREMSSTRAHLUNG; BEAM AB We present the design of the pair spectrometer hodoscope fabricated at Jefferson Lab and installed in the experimental Hall D. The hocloscope consists of thin scintillaLor tiles; the light from each tile is collected using wave length shifting fibers and detected using a Hamamatsu silicon photomultiplier. Light collection was measured using relativistic electrons produced in the tagger area of the experimental Hall B. (C) 2015 Elsevier B.V. All rights reserved. C1 [Barbosa, F.; Hutton, C.; Sitnikov, A.; Somov, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Somov, S.; Tolstukhin, I.] Natl Res Nucl Univ MEPhI, Moscow, Russia. RP Somov, A (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM somov@jlab.org FU Department of Energy, Jefferson Science Associates, LLC operated Thomas Jefferson National Accelerator Facility for the United States Department of Energy [DE-AC05-06OR23177] FX This work was supported by the Department of Energy, Jefferson Science Associates, LLC operated Thomas Jefferson National Accelerator Facility for the United States Department of Energy under Contract DE-AC05-06OR23177. We would like to thank the CLAS Collaboration for an opportunity to conduct the beam test at Hall B and especially Eugene Pasyuk and Sergey Boyarinov for the assistance in the beam test. We are also thankful to Slava Razmyslovich for his help in preparing some technical drawings for the hodoscope. NR 14 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 21 PY 2015 VL 795 BP 376 EP 380 DI 10.1016/j.nima.2015.06.012 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CM7RQ UT WOS:000357894300053 ER PT J AU Aartsen, MG Abraham, K Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Anderson, T Archinger, M Arguelles, C Arlen, TC Auffenberg, J Bai, X Barwick, SW Baum, V Bay, R Beatty, JJ Tjus, JB Becker, KH Beiser, E BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Bessonu, DZ Binder, G Bindig, D Bissok, M Blaueuss, E Blumenthal, J Boersma, DJ Bohm, C Borner, M Bos, F Bose, D Boser, S Botner, O Braun, J Brayeur, L Bretz, HP Brown, AM Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Christy, B Clark, K Classen, L Coenders, S Cowen, DF Silva, AHC Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C Dembinski, H De Ridder, S Desiati, P de Vries, KD de Wasseige, G de With, M DeYoung, T Diaz-Velez, JC Dumm, JP Dunkman, M Eagan, R Eberhardt, B Ehrhardt, T Eichmann, B Euler, S Evenson, PA Fadiran, O Fahey, S Fazely, AR Fedynitch, A Feintzeig, J Felde, J Filimonov, K Finley, C Fischer-Wasels, T Flis, S Fuchs, T Glagla, M Gaisser, TK Gator, R Gallagher, J Gerhardt, L Ghorbani, K Gier, D Gladstone, L Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Gora, D Grant, D Gretskov, P Groh, JC Gross, A Ha, C Haack, C Ismail, AH Hallgren, A Halzen, F Hansmann, B Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hellwig, D Hickford, S Hignight, J Hill, GC Hoffman, KD Hoffmann, R Holzapfe, K Homeier, A Hoshina, K Huang, F Huber, M Huelsnitz, W Hulth, PO Hultqvist, K In, S Ishihara, A Jacobi, E Japaridze, GS Jero, K Jurkovic, M Kaminsky, B Kappes, A Karg, T Karle, A Kauer, M Keivani, A Kelley, JL Kemp, J Kheirandish, A Kiryluk, J Klas, J Klein, SR Kohnen, G Koirala, R Kolanoski, H Konietz, R Koob, A Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krings, K Kroll, G Kroll, M Kunnen, J Kurahashi, N Kuwabara, T Labare, M Lanfranchi, JL Larson, MJ Lesiak-Bzdak, M Leuermann, M Leuner, J Lunemann, J Madsen, J Maggi, G Mahn, KBM Maruyama, R Mase, K Matis, HS Maunu, R McNally, F Meagher, K Medici, M Meli, A Menne, T Merino, G Meures, T Miarecki, S Middell, E Middlemas, E Miller, J Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Niederhausen, H Nowicki, SC Nygre, DR Obertacke, A Olivas, A Omairat, A O'Murchadha, A Palczewski, T Pandya, H Paul, L Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Putz, J Quinnan, M Radel, L Rameez, M Rawlins, K Redl, P Reimann, R Relich, M Resconi, E Rhode, W Richman, M Richter, S Riedel, B Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Saba, SM Sabbatini, L Sander, HG Sandrock, A Sandroos, J Sarkar, S Schatto, K Scheriau, F Schimp, M Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonwald, A Schukraft, A Schulte, L Seckel, D Seunarine, S Shanidze, R Smith, MWE Soldin, D Spiczak, GM Ering, C Stahlberg, M Stamatikos, M Stanev, T Stanisha, NA Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahlers, EA Strom, R Strotjohann, NL Suwvan, GW Sutherland, M Taavola, H Taboada, I Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Tosi, D Tselengidou, M Turcati, A Unger, E Usner, M Vallecorsa, S van Eundhoven, N Vandenbroucke, J van Santen, J Vanheule, S Veenkamp, J Vehring, M Voge, M Vraeghe, M Walck, C Wallraff, M Wandkowsky, N Weaver, C Wendt, C Westerhoff, S Whelan, BJ Whitehorn, N Wichary, C Wiebe, K Wiebusch, CH Wille, L Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Xu, Y Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Zoll, M Ofek, EO Kasliwal, MM Nugent, PE Arcavi, I Bloom, JS Kulkarni, SR Perley, DA Barlow, T Horesh, A Gal-Yam, A Howell, DA Dilday, B Evans, PA Kennea, JA Burgett, WS Chambers, KC Kaiser, N Waters, C Flewelling, H Tonry, JL Rest, A Smartt, SJ AF Aartsen, M. G. Abraham, K. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Anderson, T. Archinger, M. Arguelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Tjus, J. Becker Becker, K. -H. Beiser, E. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Bessonu, D. Z. Binder, G. Bindig, D. Bissok, M. Blaueuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Boerner, M. Bos, F. Bose, D. Boeser, S. Botner, O. Braun, J. Brayeur, L. Bretz, H. -P. Brown, A. M. Buzinsky, N. Casey, J. Casier, M. Cheung, E. Chirkin, D. Christov, A. Christy, B. Clark, K. Classen, L. Coenders, S. Cowen, D. F. Silva, A. H. Cruz Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. Dembinski, H. De Ridder, S. Desiati, P. de Vries, K. D. de Wasseige, G. de With, M. DeYoung, T. Diaz-Velez, J. C. Dumm, J. P. Dunkman, M. Eagan, R. Eberhardt, B. Ehrhardt, T. Eichmann, B. Euler, S. Evenson, P. A. Fadiran, O. Fahey, S. Fazely, A. R. Fedynitch, A. Feintzeig, J. Felde, J. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Fuchs, T. Glagla, M. Gaisser, T. K. Gator, R. Gallagher, J. Gerhardt, L. Ghorbani, K. Gier, D. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Gora, D. Grant, D. Gretskov, P. Groh, J. C. Gross, A. Ha, C. Haack, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hansmann, B. Hanson, K. Hebecker, D. Heereman, D. Helbing, K. Hellauer, R. Hellwig, D. Hickford, S. Hignight, J. Hill, G. C. Hoffman, K. D. Hoffmann, R. Holzapfe, K. Homeier, A. Hoshina, K. Huang, F. Huber, M. Huelsnitz, W. Hulth, P. O. Hultqvist, K. In, S. Ishihara, A. Jacobi, E. Japaridze, G. S. Jero, K. Jurkovic, M. Kaminsky, B. Kappes, A. Karg, T. Karle, A. Kauer, M. Keivani, A. Kelley, J. L. Kemp, J. Kheirandish, A. Kiryluk, J. Klaes, J. Klein, S. R. Kohnen, G. Koirala, R. Kolanoski, H. Konietz, R. Koob, A. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krings, K. Kroll, G. Kroll, M. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Lanfranchi, J. L. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Leuner, J. Luenemann, J. Madsen, J. Maggi, G. Mahn, K. B. M. Maruyama, R. Mase, K. Matis, H. S. Maunu, R. McNally, F. Meagher, K. Medici, M. Meli, A. Menne, T. Merino, G. Meures, T. Miarecki, S. Middell, E. Middlemas, E. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Niederhausen, H. Nowicki, S. C. Nygre, D. R. Obertacke, A. Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Pandya, H. Paul, L. Pepper, J. A. de los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Puetz, J. Quinnan, M. Raedel, L. Rameez, M. Rawlins, K. Redl, P. Reimann, R. Relich, M. Resconi, E. Rhode, W. Richman, M. Richter, S. Riedel, B. Robertson, S. Rongen, M. Rott, C. Ruhe, T. Ryckbosch, D. Saba, S. M. Sabbatini, L. Sander, H. -G. Sandrock, A. Sandroos, J. Sarkar, S. Schatto, K. Scheriau, F. Schimp, M. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schukraft, A. Schulte, L. Seckel, D. Seunarine, S. Shanidze, R. Smith, M. W. E. Soldin, D. Spiczak, G. M. Ering, C. Stahlberg, M. Stamatikos, M. Stanev, T. Stanisha, N. A. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahlers, E. A. Strom, R. Strotjohann, N. L. Suwvan, G. W. Sutherland, M. Taavola, H. Taboada, I. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Tosi, D. Tselengidou, M. Turcati, A. Unger, E. Usner, M. Vallecorsa, S. van Eundhoven, N. Vandenbroucke, J. van Santen, J. Vanheule, S. Veenkamp, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallraff, M. Wandkowsky, N. Weaver, Ch. Wendt, C. Westerhoff, S. Whelan, B. J. Whitehorn, N. Wichary, C. Wiebe, K. Wiebusch, C. H. Wille, L. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Xu, Y. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Zoll, M. Ofek, Eran O. Kasliwal, Mansi M. Nugent, Peter E. Arcavi, Iair Bloom, Joshua S. Kulkarni, Shrinivas R. Perley, Daniel A. Barlow, Tom Horesh, Assaf Gal-Yam, Avishay Howell, D. A. Dilday, Ben Evans, Phil A. Kennea, Jamie A. Burgett, W. S. Chambers, K. C. Kaiser, N. Waters, C. Flewelling, H. Tonry, J. L. Rest, A. Smartt, S. J. CA IceCube Collaboration PTF Collaboration Swift Collaboration Pan-STARRSi Sci Consortium TI THE DETECTION OF A SN IIn IN OPTICAL FOLLOW-UP OBSERVATIONS OF ICECUBE NEUTRINO EVENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; galaxies: dwarf; neutrinos; shock waves; supernovae: individual (PTF12csy, SN 2010jl) ID DIGITAL SKY SURVEY; HIGH-ENERGY NEUTRINOS; GAMMA-RAY BURSTS; EXTREMELY LUMINOUS SUPERNOVA; CORE-COLLAPSE SUPERNOVAE; SDSS-III; LIGHT CURVES; PAN-STARRS; TELESCOPE; EMISSION AB The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0.degrees 54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2 sigma within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis. C1 [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Whelan, B. J.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfe, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.] Tech Univ Munich, D-85748 Garching, Germany. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Kowalski, M.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Ering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Adams, J.; Brown, A. M.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Aguilar, J. A.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [Ahlers, M.; Arguelles, C.; Beiser, E.; BenZvi, S.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fadiran, O.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wille, L.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; Beiser, E.; BenZvi, S.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fadiran, O.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wille, L.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Anderson, T.; Arlen, T. C.; Cowen, D. F.; Dunkman, M.; Eagan, R.; Groh, J. C.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Quinnan, M.; Smith, M. W. E.; Stanisha, N. A.; Tesic, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Archinger, M.; Baum, V.; Boeser, S.; Eberhardt, B.; Ehrhardt, T.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Glagla, M.; Gier, D.; Gretskov, P.; Haack, C.; Hansmann, B.; Hellwig, D.; Kemp, J.; Konietz, R.; Koob, A.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schukraft, A.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Ctr Cosmol & Astroparticle, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Tjus, J. Becker; Bos, F.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Berley, D.; Blaueuss, E.; Cheung, E.; Christy, B.; Felde, J.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Redl, P.; Schmidt, T.; Suwvan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Bessonu, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygre, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Nugent, Peter E.; Bloom, Joshua S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; de los Heros, C. Perez; Strom, R.; Taavola, H.; Unger, E.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Boerner, M.; Fuchs, T.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Scheriau, F.; Schmitz, M.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Bose, D.; In, S.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de Wasseige, G.; Golup, G.; Kunnen, J.; Maggi, G.; Miller, J.; Strahlers, E. A.; van Eundhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Buzinsky, N.; Grant, D.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Casey, J.; Daughhetee, J.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Clark, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Cowen, D. F.; Kennea, Jamie A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [de Andre, J. P. A. M.; DeYoung, T.; Hignight, J.; Mahn, K. B. M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, DeVment Phys, Baton Rouge, LA 70813 USA. [Gator, R.; Ishihara, A.; Kuwabara, T.; Mase, K.; Relich, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Homeier, A.; Schulte, L.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Hoshina, K.] Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, Tokyo 1130032, Japan. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xu, Y.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Koskinen, D. J.; Larson, M. J.; Medici, M.; Sandroos, J.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Kurahashi, N.; Richman, M.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ofek, Eran O.; Horesh, Assaf; Gal-Yam, Avishay; Howell, D. A.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Kasliwal, Mansi M.] Carnegie Inst Sci, Pasadena, CA 91101 USA. [Nugent, Peter E.; Bloom, Joshua S.] Univ Calif Berkeley, Dept Astronomy, Berkeley, CA 94720 USA. [Arcavi, Iair] Las Cumbres Observ Global Telescope, Santa Barbara, CA 93111 USA. [Arcavi, Iair] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Kulkarni, Shrinivas R.; Perley, Daniel A.; Barlow, Tom] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Dilday, Ben] North Idaho Coll, Coeur Dalene, ID 83814 USA. [Evans, Phil A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Waters, C.; Flewelling, H.; Tonry, J. L.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Smartt, S. J.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. RP Voge, M (reprint author), Univ Bonn, Inst Phys, Nussallee 12, D-53115 Bonn, Germany. EM voge@physik.uni-bonn.de RI Tjus, Julia/G-8145-2012; Maruyama, Reina/A-1064-2013; Beatty, James/D-9310-2011; Horesh, Assaf/O-9873-2016; Wiebusch, Christopher/G-6490-2012; Koskinen, David/G-3236-2014; OI Maruyama, Reina/0000-0003-2794-512X; Beatty, James/0000-0003-0481-4952; Horesh, Assaf/0000-0002-5936-1156; Wiebusch, Christopher/0000-0002-6418-3008; Koskinen, David/0000-0002-0514-5917; Maunu, Ryan/0000-0002-5755-3437; Perez de los Heros, Carlos/0000-0002-2084-5866; Sarkar, Subir/0000-0002-3542-858X; Arguelles Delgado, Carlos/0000-0003-4186-4182 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI); Natural Sciences and Engineering Research Council of Canada; WestGrid; Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF); W. M. Keck Foundation; Willner Family Leadership Institute Ilan Gluzman (Secaucus NJ); Israeli Ministry of Science; Israel Science Foundation; Minerva and the I-CORE Program of the Planning and Budgeting Committee; UK Space Agency; UK Swift Science Data Centre at the University of Leicester; National Aeronautics and Space Administration [NNX08AR22G]; National Science Foundation [AST-1238877]; ERC [291222]; Alfred P. Sloan Foundation; Participating Institutions; National Science Foundation; U.S. Department of Energy Office of Science FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF).; This paper is based on observations obtained with the Samuel Oschin Telescope as part of the Palomar Transient Factory project, a scientific collaboration between the California Institute of Technology, Columbia University, Las Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We are grateful for excellent staff assistance at Palomar, Lick, and Keck Observatories. E.O.O. is incumbent of the Arye Dissentshik career development chair and is grateful to support by grants from the Willner Family Leadership Institute Ilan Gluzman (Secaucus NJ), Israeli Ministry of Science, Israel Science Foundation, Minerva and the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation.; P. A. E. Acknowledges support from the UK Space Agency. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester.; The Pan-STARRS1 Surveys (PS1) have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE).; S.J.S. acknowledges (FP7/2007-2013)/ERC grant agreement no [291222].; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. NR 89 TC 6 Z9 6 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2015 VL 811 IS 1 AR 52 DI 10.1088/0004-637X/811/1/52 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4BR UT WOS:000363471600053 ER PT J AU Millar-Blanchaer, MA Graham, JR Pueyo, L Kalas, P Dawson, RI Wang, J Perrin, MD Moon, DS Macintosh, B Ammons, SM Barman, T Cardwell, A Chen, CH Chiang, E Chilcote, J Cotten, T De Rosa, RJ Draper, ZH Dunn, J Duchene, G Esposito, TM Fitzgerald, MP Follette, KB Goodsell, SJ Greenbaum, AZ Hartung, M Hibon, P Hinkley, S Ingraham, P Jensen-Clem, R Konopacky, Q Larkin, JE Long, D Maire, J Marchis, F Marley, MS Marois, C Morzinski, KM Nielsen, EL Palmer, DW Oppenheimer, R Poyneer, L Rajan, A Rantakyro, FT Ruffio, JB Sadakuni, N Saddlemyer, L Schneider, AC Sivaramakrishnan, A Soummer, R Thomas, S Vasisht, G Vega, D Wallace, JK Ward-Duong, K Wiktorowicz, SJ Wolff, SG AF Millar-Blanchaer, Maxwell A. Graham, James R. Pueyo, Laurent Kalas, Paul Dawson, Rebekah I. Wang, Jason Perrin, Marshall D. Moon, Dae-Sik Macintosh, Bruce Ammons, S. Mark Barman, Travis Cardwell, Andrew Chen, Christine H. Chiang, Eugene Chilcote, Jeffrey Cotten, Tara De Rosa, Robert J. Draper, Zachary H. Dunn, Jennifer Duchene, Gaspard Esposito, Thomas M. Fitzgerald, Michael P. Follette, Katherine B. Goodsell, Stephen J. Greenbaum, Alexandra Z. Hartung, Markus Hibon, Pascale Hinkley, Sasha Ingraham, Patrick Jensen-Clem, Rebecca Konopacky, Quinn Larkin, James E. Long, Douglas Maire, Jerome Marchis, Franck Marley, Mark S. Marois, Christian Morzinski, Katie M. Nielsen, Eric L. Palmer, David W. Oppenheimer, Rebecca Poyneer, Lisa Rajan, Abhijith Rantakyroe, Fredrik T. Ruffio, Jean-Baptiste Sadakuni, Naru Saddlemyer, Leslie Schneider, Adam C. Sivaramakrishnan, Anand Soummer, Remi Thomas, Sandrine Vasisht, Gautam Vega, David Wallace, J. Kent Ward-Duong, Kimberly Wiktorowicz, Sloane J. Wolff, Schuyler G. TI beta PICTORIS' INNER DISK IN POLARIZED LIGHT AND NEW ORBITAL PARAMETERS FOR beta PICTORIS b SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrometry; planet-disk interactions; planets and satellites: individual (beta Pic b); techniques: polarimetric ID GEMINI PLANET IMAGER; DEBRIS DISK; IMAGING POLARIMETRY; CIRCUMSTELLAR DISK; GIANT PLANET; MOVING GROUP; 1ST LIGHT; DUST DISK; SYSTEM; BODIES AB We present H-band observations of beta Pic with the Gemini Planet Imager's (GPI's) polarimetry mode that reveal the debris disk between similar to 0 ''.3 (6AU) and similar to 1 ''.7 (33 AU), while simultaneously detecting beta Pic b. The polarized disk image was fit with a dust density model combined with a Henyey-Greenstein scattering phase function. The best-fit model indicates a disk inclined to the line of sight (phi = 85 degrees.27(-0.19)(+0.26)) with a position angle (PA) theta(PA) = 30 degrees.35(-0.28)(+0.29) (slightly offset from the main outer disk, theta(PA) approximate to 29 degrees), that extends from an inner disk radius of 23.6(-0.6)(+0.9) AU to well outside GPI's field of view. In addition, we present an updated orbit for beta Pic b based on new astrometric measurements taken in GPI's spectroscopic mode spanning 14 months. The planet has a semimajor axis of a = 9.2(-0.4)(+1.5) AU, with an eccentricity e <= 0.26. The PA of the ascending node is Omega = 31 degrees.75 +/- 0 degrees.15, offset from both the outer main disk and the inner disk seen in the GPI image. The orbital fit constrains the stellar mass of beta Pic to 1.60 +/- 0.05 M-circle dot. Dynamical sculpting by beta Pic b cannot easily account for the following three aspects of the inferred disk properties: (1) the modeled inner radius of the disk is farther out than expected if caused by beta Pic b; (2) the mutual inclination of the inner disk and beta Pic b is similar to 4 degrees, when it is expected to be closer to zero; and (3) the aspect ratio of the disk (h(0) = 0.137(-0.006)(+0.005)) is larger than expected from interactions with beta Pic b or self-stirring by the disk's parent bodies. C1 [Millar-Blanchaer, Maxwell A.; Moon, Dae-Sik] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M55 3H4, Canada. [Graham, James R.; Kalas, Paul; Dawson, Rebekah I.; Wang, Jason; Chiang, Eugene; De Rosa, Robert J.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Perrin, Marshall D.; Chen, Christine H.; Long, Douglas; Sivaramakrishnan, Anand; Soummer, Remi] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Macintosh, Bruce; Follette, Katherine B.; Nielsen, Eric L.; Ruffio, Jean-Baptiste] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ammons, S. Mark; Palmer, David W.; Poyneer, Lisa] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Barman, Travis] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Cardwell, Andrew; Hartung, Markus; Hibon, Pascale; Rantakyroe, Fredrik T.] Gemini Observ, La Serena, Chile. [Chilcote, Jeffrey; Maire, Jerome] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M55 3H4, Canada. [Cotten, Tara] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Draper, Zachary H.] Univ Victoria, Victoria, BC V8P 5C2, Canada. [Draper, Zachary H.; Dunn, Jennifer; Marois, Christian; Saddlemyer, Leslie] Natl Res Council Canada Herzberg, Victoria, BC V9E 2E7, Canada. [Duchene, Gaspard] Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France. [Esposito, Thomas M.; Fitzgerald, Michael P.; Larkin, James E.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Goodsell, Stephen J.] Gemini Observ, Hilo, HI 96720 USA. [Greenbaum, Alexandra Z.; Wolff, Schuyler G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Hinkley, Sasha] Univ Exeter, Coll Engn Math & Phys Sci, Sch Phys, Exeter EX4 4QL, Devon, England. [Ingraham, Patrick; Thomas, Sandrine] Large Synopt Survey Telescope, Tucson, AZ 85719 USA. [Jensen-Clem, Rebecca] CALTECH, Dept Astrophys, Pasadena, CA 91101 USA. [Konopacky, Quinn] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Marchis, Franck; Nielsen, Eric L.; Vega, David] Carl Sagan Ctr, SETI Inst, Mountain View, CA 94043 USA. [Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Morzinski, Katie M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Pueyo, Laurent; Oppenheimer, Rebecca] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Rajan, Abhijith; Ward-Duong, Kimberly] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Sadakuni, Naru] Univ Space Res Assoc, Stratospher Observ Infrared Astron, NASA, Armstrong Flight Res Ctr, Palmdale, CA 93550 USA. [Schneider, Adam C.] Univ Toledo, Toledo, OH 43606 USA. [Vasisht, Gautam; Wallace, J. Kent] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Vega, David] Calif State Polytech Univ Pomona, Dept Phys & Astron, Pomona, CA 91768 USA. [Wiktorowicz, Sloane J.] UC Santa Cruz, Dept Astron, Santa Cruz, CA 95064 USA. RP Millar-Blanchaer, MA (reprint author), Univ Toronto, Dept Astron & Astrophys, Toronto, ON M55 3H4, Canada. EM maxmb@astro.utoronto.ca OI Oppenheimer, Rebecca/0000-0001-7130-7681; Marley, Mark/0000-0002-5251-2943; Morzinski, Katie/0000-0002-1384-0063; Wang, Jason/0000-0003-0774-6502; Greenbaum, Alexandra/0000-0002-7162-8036 FU NASA [NNX15AD95G, NASA NNX11AD21G, NSF AST-0909188]; University of California [LFRP-118057]; UC Berkeley Miller Institute for Basic Research; NASA ATP program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NSF [AST1-413718, DGE-1232825]; NASA FX The results presented herein are based on observations carried out during the commissioning of GPI as well as observations from the general observing program GS-2014B-Q-48. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). This research was supported in part by NASA cooperative agreement NNX15AD95G, NASA NNX11AD21G, NSF AST-0909188, and the University of California LFRP-118057. R.I.D gratefully acknowledges funding by the UC Berkeley Miller Institute for Basic Research. M.S.M. acknowledges the support of the NASA ATP program. S.M.A.'s work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. M.P.F.'s and G.D.'s work was carried out with contributions from NSF grant AST1-413718. S. Wiktorowicz's work was performed (in part) under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. The work of A. G. is supported by the NSF Graduate Research Fellowship Program under grant No. DGE-1232825. Portions of D.W.P.'s work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. All posterior distribution plots have been created with the Triangle33 python plotting package (Foreman-Mackey et al. 2014). NR 78 TC 26 Z9 26 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 20 PY 2015 VL 811 IS 1 AR 18 DI 10.1088/0004-637X/811/1/18 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CU4BR UT WOS:000363471600019 ER PT J AU Kweon, H Yiacoumi, S Tsouris, C AF Kweon, Hyojin Yiacoumi, Sotira Tsouris, Costas TI The role of electrostatic charge in the adhesion of spherical particles onto planar surfaces in atmospheric systems SO COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS LA English DT Article DE Adhesive force; Electrostatic charge; Relative humidity; Particle adhesion ID ATOMIC-FORCE MICROSCOPY; ELECTRICAL APPLIANCES; RADIOACTIVE AEROSOLS; VAPOR ADSORPTION; CAPILLARY FORCE; SPORE ADHESION; SILICA SURFACE; MICA; EMISSION; DISTRIBUTIONS AB The influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorption on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems. (C) 2015 Elsevier B.V. All rights reserved. C1 [Kweon, Hyojin; Yiacoumi, Sotira; Tsouris, Costas] Georgia Inst Technol, Atlanta, GA 30332 USA. [Tsouris, Costas] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tsouris, C (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. EM tsourisc@ornl.gov RI Tsouris, Costas/C-2544-2016 OI Tsouris, Costas/0000-0002-0522-1027 FU Defense Threat Reduction Agency [HDTRA1-08-10-BRCWMD-BAA]; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the Defense Threat Reduction Agency under grant number HDTRA1-08-10-BRCWMD-BAA. The manuscript has been co-authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. NR 37 TC 2 Z9 2 U1 10 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-7757 EI 1873-4359 J9 COLLOID SURFACE A JI Colloid Surf. A-Physicochem. Eng. Asp. PD SEP 20 PY 2015 VL 481 BP 583 EP 590 DI 10.1016/j.colsurfa.2015.06.030 PG 8 WC Chemistry, Physical SC Chemistry GA CQ2CT UT WOS:000360407700071 ER PT J AU Zhang, C Santhanagopalan, S Sprague, MA Pesaran, AA AF Zhang, Chao Santhanagopalan, Shriram Sprague, Michael A. Pesaran, Ahmad A. TI Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium-ion battery; Short circuit; Multi-physics simulation; Mechanical crush; Representative sandwich model ID INTERCALATION-INDUCED STRESS; FINITE-ELEMENT SIMULATION; BATTERY CATHODE PARTICLES; MULTI-PHYSICS; BEHAVIOR; SEPARATOR; COMPRESSION AB In order to better understand the behavior of lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, electrical and thermal response is presented for predicting short-circuit under external crush. The combined mechanical-electrical-thermal response is simulated in a commercial finite element software LS-DYNA (R) using a representative-sandwich finite-element model, where electrical-thermal modeling is conducted after an instantaneous mechanical crush. The model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under quasi-static indentation. Model predictions show good agreement with experiments: the fracture of the battery structure under an indentation test is accurately predicted. The electrical-thermal simulation predicts the current density and temperature distribution in a reasonable manner. Whereas previously reported models consider the mechanical response exclusively, we use the electrical contact between active materials following the failure of the separator as a criterion for short-circuit. These results are used to build a lumped representative sandwich model that is computationally efficient and captures behavior at the cell level without resolving the individual layers. (C) 2015 Elsevier B.V. All rights reserved. C1 [Zhang, Chao; Sprague, Michael A.] Natl Renewable Energy Lab, Computat Sci Ctr, Golden, CO 80401 USA. [Santhanagopalan, Shriram; Pesaran, Ahmad A.] Natl Renewable Energy Lab, Transportat & Hydrogen Syst Ctr, Golden, CO 80401 USA. RP Santhanagopalan, S (reprint author), Natl Renewable Energy Lab, Transportat & Hydrogen Syst Ctr, 15013 Denver West Pkwy,M-S 1633, Golden, CO 80401 USA. EM shriram.santhanagopalan@nrel.gov RI Zhang, Chao/H-3397-2013 FU Vehicle Technologies Office, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy [WBS1.1.2.406]; Department of Energy's Office of Energy Efficiency and Renewable Energy, located at the National Renewable Energy Laboratory FX This study was supported by the Vehicle Technologies Office, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy under contact number WBS1.1.2.406. The authors would like to thank Dr. Elham Sahraei Esfahani and Prof. Thomasz Wierzbicki at the Impact and Crashworthiness Laboratory, Massachusetts Institute of Technology, for their insights and discussion of the data presented in their earlier work [8-9]. The research was performed using computational resources sponsored by the Department of Energy's Office of Energy Efficiency and Renewable Energy, located at the National Renewable Energy Laboratory. NR 27 TC 8 Z9 8 U1 10 U2 68 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD SEP 20 PY 2015 VL 290 BP 102 EP 113 DI 10.1016/j.jpowsour.2015.04.162 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CK9HJ UT WOS:000356550900012 ER PT J AU Mutlu, E Nash, DG King, C Krantz, TQ Preston, WT Kooter, IM Higuchi, M DeMarini, D Linak, WP Gilmour, MI AF Mutlu, Esra Nash, David G. King, Charly Krantz, Todd Q. Preston, William T. Kooter, Ingeborg M. Higuchi, Mark DeMarini, David Linak, William P. Gilmour, M. Ian TI Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies SO INHALATION TOXICOLOGY LA English DT Article DE Biodiesel; chemistry; combustion; emissions; health; inhalation; lung; petroleum diesel ID BIOASSAY-DIRECTED FRACTIONATION; EXHAUST PARTICLES; IMMUNE-RESPONSES; AIR-POLLUTION; OIL; CARDIOPULMONARY; MUTAGENICITY; BLEND AB Biodiesel made from the transesterification of plant- and animal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more limited. To this end, a program at the U.S. EPA assessed health effects of biodiesel emissions in rodent inhalation models. Commercially obtained soybean biodiesel (B100) and a 20% blend with petroleum diesel (B20) were compared to pure petroleum diesel (B0). Rats and mice were exposed independently for 4h/day, 5days/week for up to 6weeks. Exposures were controlled by dilution air to obtain low (50 mu g/m(3)), medium (150 mu g/m(3)) and high (500 mu g/m(3)) diesel particulate mass (PM) concentrations, and compared to filtered air. This article provides details on facilities, fuels, operating conditions, emission factors and physico-chemical characteristics of the emissions used for inhalation exposures and in vitro studies. Initial engine exhaust PM concentrations for the B100 fuel (19.7 +/- 0.7mg/m(3)) were 30% lower than those of the B0 fuel (28.0 +/- 1.5mg/m(3)). When emissions were diluted with air to control equivalent PM mass concentrations, B0 exposures had higher CO and slightly lower NO concentrations than B100. Organic/elemental carbon ratios and oxygenated methyl esters and organic acids were higher for the B100 than B0. Both the B0 and B100 fuels produced unimodal-accumulation mode particle-size distributions, with B0 producing lower concentrations of slightly larger particles. Subsequent papers in this series will describe the effects of these atmospheres on cardiopulmonary responses and in vitro genotoxicity studies. C1 [Mutlu, Esra; King, Charly; Krantz, Todd Q.; Higuchi, Mark; DeMarini, David; Gilmour, M. Ian] US EPA, Natl Hlth & Environm Effects Res Lab, Res Triangle Pk, NC 27711 USA. [Mutlu, Esra] Univ N Carolina, Ctr Environm Med Asthma & Lung Biol, Chapel Hill, NC USA. [Nash, David G.; Linak, William P.] US EPA, Natl Risk Management Res Lab, Res Triangle Pk, NC 27711 USA. [Nash, David G.] ORISE, Oak Ridge, TN USA. [Preston, William T.] ARCADIS US Inc, Durham, NC USA. [Kooter, Ingeborg M.] TNO, Dept Appl Environm Chem, Utrecht, Netherlands. RP Gilmour, MI (reprint author), US EPA, NHEERL, EPHD, B105-02, Res Triangle Pk, NC 27711 USA. EM gilmour.ian@epa.gov FU EPA/DOE interagency agreement [DW-89-92298301]; Oak Ridge Institute for Science and Education (ORISE) FX Portions of this work were sponsored under the EPA/DOE interagency agreement DW-89-92298301 with Oak Ridge Institute for Science and Education (ORISE). The authors report no declarations of interest. NR 36 TC 8 Z9 8 U1 5 U2 12 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0895-8378 EI 1091-7691 J9 INHAL TOXICOL JI Inhal. Toxicol. PD SEP 19 PY 2015 VL 27 IS 11 BP 515 EP 532 DI 10.3109/08958378.2015.1076910 PG 18 WC Toxicology SC Toxicology GA DD2HG UT WOS:000369742700002 PM 26514780 ER PT J AU Brown, BL LePrell, RV Franklin, RB Rivera, MC Cabral, FM Eaves, HL Gardiakos, V Keegan, KP King, TL AF Brown, Bonnie L. LePrell, Rebecca V. Franklin, Rima B. Rivera, Maria C. Cabral, Francine M. Eaves, Hugh L. Gardiakos, Vicki Keegan, Kevin P. King, Timothy L. TI Metagenomic analysis of planktonic microbial consortia from a non-tidal urban-impacted segment of James River SO STANDARDS IN GENOMIC SCIENCES LA English DT Article DE James River; Virginia; Temperate urban river ecosystem; Industry; Pathogen; Water-borne disease ID GRAM-NEGATIVE BACTERIA; ANTIBIOTIC-RESISTANCE; DELFTIA-ACIDOVORANS; UNITED-STATES; HUDSON RIVER; WATER; COMMUNITY; CONTAMINATION; GENERATION; SEQUENCES AB Knowledge of the diversity and ecological function of the microbial consortia of James River in Virginia, USA, is essential to developing a more complete understanding of the ecology of this model river system. Metagenomic analysis of James River's planktonic microbial community was performed for the first time using an unamplified genomic library and a 16S rDNA amplicon library prepared and sequenced by Ion PGM and MiSeq, respectively. From the 0.46-Gb WGS library (GenBank:SRR1146621; MG-RAST:4532156.3), 4 x 10(6) reads revealed > 3 x 10(6) genes, 240 families of prokaryotes, and 155 families of eukaryotes. From the 0.68-Gb 16S library (GenBank:SRR2124995; MG-RAST:4631271.3; EMB:2184), 4 x 10(6) reads revealed 259 families of eubacteria. Results of the WGS and 16S analyses were highly consistent and indicated that more than half of the bacterial sequences were Proteobacteria, predominantly Comamonadaceae. The most numerous genera in this group were Acidovorax (including iron oxidizers, nitrotolulene degraders, and plant pathogens), which accounted for 10 % of assigned bacterial reads. Polaromonas were another 6 % of all bacterial reads, with many assignments to groups capable of degrading polycyclic aromatic hydrocarbons. Albidiferax (iron reducers) and Variovorax (biodegraders of a variety of natural biogenic compounds as well as anthropogenic contaminants such as polycyclic aromatic hydrocarbons and endocrine disruptors) each accounted for an additional 3 % of bacterial reads. Comparison of these data to other publically-available aquatic metagenomes revealed that this stretch of James River is highly similar to the upper Mississippi River, and that these river systems are more similar to aquaculture and sludge ecosystems than they are to lakes or to a pristine section of the upper Amazon River. Taken together, these analyses exposed previously unknown aspects of microbial biodiversity, documented the ecological responses of microbes to urban effects, and revealed the noteworthy presence of 22 human-pathogenic bacterial genera (e.g., Enterobacteriaceae, pathogenic Pseudomonadaceae, and 'Vibrionales') and 6 pathogenic eukaryotic genera (e.g., Trypanosomatidae and Vahlkampfiidae). This information about pathogen diversity may be used to promote human epidemiological studies, enhance existing water quality monitoring efforts, and increase awareness of the possible health risks associated with recreational use of James River. C1 [Brown, Bonnie L.; Franklin, Rima B.; Rivera, Maria C.] Virginia Commonwealth Univ, Dept Biol, Richmond, VA 23284 USA. [LePrell, Rebecca V.] Virginia Dept Hlth, Environm Epidemiol Div, Richmond, VA 23219 USA. [Cabral, Francine M.] Virginia Commonwealth Univ, Dept Microbiol & Immunol, Richmond, VA 23298 USA. [Eaves, Hugh L.] Virginia Commonwealth Univ, Sch Life Sci, Richmond, VA 23284 USA. [Gardiakos, Vicki] Virginia Dept Conservat Recreat Soil & Water Cons, Richmond, VA 23219 USA. [Keegan, Kevin P.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [King, Timothy L.] US Geol Survey, Aquat Ecol Branch, Leetown Sci Ctr, Kearneysville, WV 25430 USA. RP Brown, BL (reprint author), Virginia Commonwealth Univ, Dept Biol, 1000 W Cary St, Richmond, VA 23284 USA. EM blbrown@vcu.edu FU Virginia Commonwealth University Department of Biology; GenEco, LLC, Richmond, Virginia; Aquatic Ecology Branch of the US Geological Survey's Leetown Science Center; Jeffress Trust Awards in Interdisciplinary Research FX This work was supported by the Virginia Commonwealth University Department of Biology and by GenEco, LLC, Richmond, Virginia. Partial funding for 16S sequencing was provided by the Aquatic Ecology Branch of the US Geological Survey's Leetown Science Center. This paper is contribution #56 from the VCU Rice Rivers Center. The Jeffress Trust Awards in Interdisciplinary Research partially supported the contribution of M.C. Rivera. The authors acknowledge Arthur Butt and Roger Stewart of Virginia Department of Environmental Quality for responding to our Freedom of Information Act request and providing data relating to James River and its uses, Blair Krusz of Virginia Department of Conservation and Recreation for assistance with mapping, and Robin Johnson of US Geological Survey Leetown Science Center for sequencing support. The authors thank Michael Sadowsky, Christopher Staley, and Trevor Gould for sharing Mississippi River sequence accessions. The authors also appreciate the valuable insight provided by two anonymous reviewers, and acknowledge John Miller and Aaron Aunins at the US Geological Survey, Leetown Science Center for critical review of this report. Use of trade, product, or firm names does not imply endorsement by the U.S. Government. NR 52 TC 0 Z9 0 U1 10 U2 34 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1944-3277 J9 STAND GENOMIC SCI JI Stand. Genomic Sci. PD SEP 19 PY 2015 VL 10 AR 65 DI 10.1186/s40793-015-0062-5 PG 14 WC Genetics & Heredity; Microbiology SC Genetics & Heredity; Microbiology GA DA7PW UT WOS:000367997400003 PM 26388969 ER PT J AU De Meyer, SE Tian, R Seshadri, R Ivanova, N Pati, A Markowitz, V Woyke, T Yates, R Howieson, J Kyrpides, N Reeve, W AF De Meyer, Sofie E. Tian, Rui Seshadri, Rekha Ivanova, Natalia Pati, Amrita Markowitz, Victor Woyke, Tanja Yates, Ron Howieson, John Kyrpides, Nikos Reeve, Wayne TI High-quality permanent draft genome sequence of the Lebeckia - nodulating Burkholderia dilworthii strain WSM3556(T) SO STANDARDS IN GENOMIC SCIENCES LA English DT Article DE Root-nodule bacteria; Nitrogen fixation; Betaproteobacteria; South Africa; Lebeckia; GEBA-RNB ID AMBIGUA ROOT-NODULES; SP-NOV.; MICROBIAL GENOMES; SYSTEM; BACTERIA; DATABASE; ACID AB Burkholderia dilworthii strain WSM3556(T) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective N-2-fixing root nodule of Lebeckia ambigua collected near Grotto Bay Nature Reserve, in the Western Cape of South Africa, in October 2004. This plant persists in infertile and deep sandy soils with acidic pH, and is therefore an ideal candidate for a perennial based agriculture system in Western Australia. WSM3556(T) thus represents a potential inoculant quality strain for L. ambigua for which we describe the general features, together with genome sequence and annotation. The 7,679,067 bp high-quality permanent draft genome is arranged in 140 scaffolds of 141 contigs, contains 7,059 protein-coding genes and 64 RNA-only encoding genes, and is part of the GEBA-RNB project proposal. C1 [De Meyer, Sofie E.; Tian, Rui; Yates, Ron; Howieson, John; Reeve, Wayne] Murdoch Univ, Ctr Rhizobium Studies, Murdoch, WA 6150, Australia. [Seshadri, Rekha; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Kyrpides, Nikos] DOE Joint Genome Inst, Walnut Creek, CA USA. [Markowitz, Victor] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Biol Data Management & Technol Ctr, Berkeley, CA 94720 USA. [Yates, Ron] Dept Agr & Food, S Perth, WA, Australia. [Kyrpides, Nikos] King Abdulaziz Univ, Fac Sci, Dept Biol Sci, Jeddah, Saudi Arabia. RP Reeve, W (reprint author), Murdoch Univ, Ctr Rhizobium Studies, Murdoch, WA 6150, Australia. EM W.Reeve@murdoch.edu.au RI Kyrpides, Nikos/A-6305-2014; Fac Sci, KAU, Biol Sci Dept/L-4228-2013; Faculty of, Sciences, KAU/E-7305-2017; OI Kyrpides, Nikos/0000-0002-6131-0462; Ivanova, Natalia/0000-0002-5802-9485 FU US Department of Energy Office of Science, Biological and Environmental Research Program; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; University of California, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; University of California, Los Alamos National Laboratory [DE-AC02-06NA25396] FX This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. NR 36 TC 0 Z9 0 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1944-3277 J9 STAND GENOMIC SCI JI Stand. Genomic Sci. PD SEP 19 PY 2015 VL 10 AR 64 DI 10.1186/s40793-015-0048-3 PG 6 WC Genetics & Heredity; Microbiology SC Genetics & Heredity; Microbiology GA DA7PW UT WOS:000367997400002 PM 26388968 ER PT J AU Graham, EJS Jakle, AC Martin, FD AF Graham, Enid J. Sullivan Jakle, Anne C. Martin, F. David TI Reuse of oil and gas produced water in south-eastern New Mexico: resource assessment, treatment processes, and policy SO WATER INTERNATIONAL LA English DT Article DE produced water; hydraulic fracturing; drought; water reuse; Permian Basin AB The Permian Basin of south-eastern New Mexico in the United States exemplifies the combination of rapidly expanding oil and gas production with freshwater shortages and aquifer stress. Reuse of saline produced water can provide a stable supply of water for drilling, fracturing and completion and minimize consumptive use of freshwater. We discuss water withdrawals and use by the oil and gas industry in this region, processes for reuse and recycling of produced water in place of freshwater, and operational and policy changes to help improve maximal use of all available water resources in this arid region. C1 [Graham, Enid J. Sullivan] Los Alamos Natl Lab, Chem Diagnost & Engn Grp, Los Alamos, NM 87545 USA. [Jakle, Anne C.; Martin, F. David] New Mexico Energy Minerals & Nat Resources Dept, Santa Fe, NM USA. RP Graham, EJS (reprint author), Los Alamos Natl Lab, Chem Diagnost & Engn Grp, Los Alamos, NM 87545 USA. EM ejs@lanl.gov NR 22 TC 2 Z9 2 U1 7 U2 19 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND SN 0250-8060 EI 1941-1707 J9 WATER INT JI Water Int. PD SEP 19 PY 2015 VL 40 IS 5-6 SI SI BP 809 EP 823 DI 10.1080/02508060.2015.1096126 PG 15 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA CT8FF UT WOS:000363049700006 ER PT J AU Ding, HL Black, CL Ball, S Donahue, S Fink, RV Williams, WW Kennedy, ED Bridges, CB Lu, PJ Kahn, KE Dean, AK Grohskopf, LA Ahluwalia, IB Devlin, R DiSogra, C Walker, DK Greby, SM AF Ding, Helen Black, Carla L. Ball, Sarah Donahue, Sara Fink, Rebecca V. Williams, Walter W. Kennedy, Erin D. Bridges, Carolyn B. Lu, Peng-Jun Kahn, Katherine E. Dean, Anna K. Grohskopf, Lisa A. Ahluwalia, Indu B. Devlin, Rebecca DiSogra, Charles Walker, Deborah K. Greby, Stacie M. TI Influenza Vaccination Coverage Among Pregnant Women - United States, 2014-15 Influenza Season SO MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT LA English DT Article C1 [Ding, Helen] LLC, Eagle Med Serv, San Antonio, TX 78248 USA. [Black, Carla L.; Williams, Walter W.; Kennedy, Erin D.; Bridges, Carolyn B.; Lu, Peng-Jun; Dean, Anna K.; Greby, Stacie M.] CDC, Immunizat Serv Div, Natl Ctr Immunizat & Resp Dis, Cambridge, MA USA. [Ball, Sarah; Donahue, Sara; Fink, Rebecca V.; Walker, Deborah K.] ABT Associates Inc, Cambridge, MA 02138 USA. [Kahn, Katherine E.] Leidos, Atlanta, GA USA. [Dean, Anna K.] CDC, Oak Ridge Inst Sci & Educ, New York, NY USA. [Grohskopf, Lisa A.] CDC, Influenza Div, Natl Ctr Immunizat & Resp Dis, New York, NY USA. [Ahluwalia, Indu B.] CDC, Div Reprod Hlth, Natl Ctr Chron Dis Prevent & Hlth Promot, New York, NY USA. [Devlin, Rebecca; DiSogra, Charles] Abt SRBI, New York, NY USA. RP Ding, HL (reprint author), LLC, Eagle Med Serv, San Antonio, TX 78248 USA. EM hding@cdc.gov NR 9 TC 11 Z9 11 U1 1 U2 3 PU CENTERS DISEASE CONTROL PI ATLANTA PA 1600 CLIFTON RD, ATLANTA, GA 30333 USA SN 0149-2195 EI 1545-861X J9 MMWR-MORBID MORTAL W JI MMWR-Morb. Mortal. Wkly. Rep. PD SEP 18 PY 2015 VL 64 IS 36 BP 1000 EP 1005 PG 6 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA CS5DB UT WOS:000362095400002 PM 26390253 ER PT J AU Lahr, RM Mack, SM Heroux, A Blagden, SP Bousquet-Antonelli, C Deragon, JM Berman, AJ AF Lahr, Roni M. Mack, Seshat M. Heroux, Annie Blagden, Sarah P. Bousquet-Antonelli, Cecile Deragon, Jean-Marc Berman, Andrea J. TI The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5 ' TOP sequence SO NUCLEIC ACIDS RESEARCH LA English DT Article ID MESSENGER-RNA TRANSLATION; HEPATOCELLULAR-CARCINOMA; STRUCTURAL-ANALYSIS; GENE-EXPRESSION; EARLY-STAGE; MTOR; LARP1; MOTIF; INHIBITION; RECOGNITION AB La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 angstrom resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. A putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. These studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis. C1 [Lahr, Roni M.; Mack, Seshat M.; Berman, Andrea J.] Univ Pittsburgh, Dept Biol Sci, Pittsburgh, PA 15260 USA. [Heroux, Annie] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Blagden, Sarah P.] Univ Oxford, Dept Oncol, Churchill Hosp, Oxford OX3 7LE, England. [Bousquet-Antonelli, Cecile; Deragon, Jean-Marc] CNRS, UMR5096, LGDP, F-66860 Perpignan, France. [Bousquet-Antonelli, Cecile; Deragon, Jean-Marc] Univ Perpignan, UMR5096, LGDP, F-66860 Perpignan, France. RP Berman, AJ (reprint author), Univ Pittsburgh, Dept Biol Sci, Pittsburgh, PA 15260 USA. EM ajb190@pitt.edu FU University of Pittsburgh Dietrich School of Arts and Sciences; Magee Womens Research Institute at the University of Pittsburgh Medical Center (MWRIF) [8059]; CNRS; University of Perpignan; NSLS [DE-AC02-98CH10886]; [NIH/NIGMS 8P41GM103473-16]; [DOE/BER FWP BO-70] FX The University of Pittsburgh Dietrich School of Arts and Sciences; the Magee Womens Cancer Research and Education Funding Committee from the Magee Womens Research Institute at the University of Pittsburgh Medical Center (MWRIF 8059); the CNRS; the University of Perpignan supported this research; A. H. is supported by NIH/NIGMS 8P41GM103473-16 and DOE/BER FWP BO-70. NSLS funding for X25 beamline DOE/BES No. DE-AC02-98CH10886. NR 52 TC 4 Z9 4 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD SEP 18 PY 2015 VL 43 IS 16 BP 8077 EP 8088 DI 10.1093/nar/gkv748 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CS4WW UT WOS:000362077900039 PM 26206669 ER PT J AU McGuinness, LR Wilkins, MJ Williams, KH Long, PE Kerkhof, LJ AF McGuinness, Lora R. Wilkins, Michael J. Williams, Kenneth H. Long, Philip E. Kerkhof, Lee J. TI Identification of Bacteria Synthesizing Ribosomal RNA in Response to Uranium Addition During Biostimulation at the Rifle, CO Integrated Field Research Site SO PLOS ONE LA English DT Article ID SULFATE-REDUCING BACTERIA; CONTAMINATED AQUIFER; MICROBIAL COMMUNITY; GROWTH-RATE; REDUCTION; BIOREMEDIATION; ACETATE; U(VI); IRON; GROUNDWATER AB Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this study, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate. The active microbes in the planktonic phase were deduced by monitoring ribosomes production via RT-PCR. The results indicated several microorganisms were synthesizing ribosomes in proportion with uranium amendment up to 2 mu M. Concentrations of U (VI) > 2 mu M were generally found to inhibit ribosome synthesis. Two active bacteria responding to uranium addition in the field were close relatives of Desulfobacter postgateii and Geobacter bemidjiensis. Since RNA content often increases with growth rate, our findings suggest it is possible to rapidly elucidate active bacteria responding to the addition of uranium in field samples and provides a more targeted approach to stimulate specific populations to enhance radionuclide reduction in contaminated sites. C1 [McGuinness, Lora R.; Kerkhof, Lee J.] Rutgers State Univ, Dept Marine & Coastal Sci, New Brunswick, NJ 08903 USA. [Wilkins, Michael J.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Williams, Kenneth H.; Long, Philip E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Kerkhof, LJ (reprint author), Rutgers State Univ, Dept Marine & Coastal Sci, New Brunswick, NJ 08903 USA. EM lkerkhof@rutgers.edu RI Wilkins, Michael/A-9358-2013; Williams, Kenneth/O-5181-2014; Long, Philip/F-5728-2013 OI Williams, Kenneth/0000-0002-3568-1155; Long, Philip/0000-0003-4152-5682 FU Subsurface Biogeochemical Research (SBR) program, Biological and Environmental Research, Office of Science, U.S. Department of Energy [DE-AC06-76RLO-1830] FX The Rifle IFC is funded by the Subsurface Biogeochemical Research (SBR) program, Biological and Environmental Research, Office of Science, U.S. Department of Energy (Contract Number DE-AC06-76RLO-1830). NR 35 TC 0 Z9 0 U1 2 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 18 PY 2015 VL 10 IS 9 AR e0137270 DI 10.1371/journal.pone.0137270 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CS0ZE UT WOS:000361790200018 PM 26382047 ER PT J AU Heuer, A Menzel, R Milonni, PW AF Heuer, A. Menzel, R. Milonni, P. W. TI Complementarity in biphoton generation with stimulated or induced coherence SO PHYSICAL REVIEW A LA English DT Article ID 2-PHOTON DOWN-CONVERSION; INTERFERENCE; INDISTINGUISHABILITY; PHOTONS AB Coherence can be induced or stimulated in parametric down-conversion using two or three crystals when, for example, the idler modes of the crystals are aligned. Previous experiments with induced coherence [Phys. Rev. Lett. 114, 053601 (2015)] focused on which-path information and the role of vacuum fields in realizing complementarity via reduced visibility in single-photon interference. Here we describe experiments comparing induced and stimulated coherence. Different single-photon interference experiments were performed by blocking one of the pump beams in a three-crystal setup. Each counted photon is emitted from one of two crystals and which-way information may or not be available, depending on the setup. Distinctly different results are obtained in the induced and stimulated cases, especially when a variable transmission filter is inserted between the crystals. A simplified theoretical model accounts for all the experimental results and is also used to address the question of whether the phases of the signal and idler fields in parametric down-conversion are correlated. C1 [Heuer, A.; Menzel, R.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Milonni, P. W.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Milonni, P. W.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. RP Heuer, A (reprint author), Univ Potsdam, Inst Phys & Astron, Carl Liebknecht Str 24-25, D-14476 Potsdam, Germany. NR 17 TC 2 Z9 2 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD SEP 18 PY 2015 VL 92 IS 3 AR 033834 DI 10.1103/PhysRevA.92.033834 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CR5GJ UT WOS:000361368500009 ER PT J AU Neupane, M Alidoust, N Belopolski, I Bian, G Xu, SY Kim, DJ Shibayev, PP Sanchez, DS Zheng, H Chang, TR Jeng, HT Riseborough, PS Lin, H Bansil, A Durakiewicz, T Fisk, Z Hasan, MZ AF Neupane, Madhab Alidoust, Nasser Belopolski, Ilya Bian, Guang Xu, Su-Yang Kim, Dae-Jeong Shibayev, Pavel P. Sanchez, Daniel S. Zheng, Hao Chang, Tay-Rong Jeng, Horng-Tay Riseborough, Peter S. Lin, Hsin Bansil, Arun Durakiewicz, Tomasz Fisk, Zachary Hasan, M. Zahid TI Fermi surface topology and hot spot distribution in the Kondo lattice system CeB6 SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; PHASE; SEMICONDUCTORS; PHOTOEMISSION; TRANSITION; HEXABORIDE; METALS; STATES; SMB6 AB Rare-earth hexaborides have attracted considerable attention recently in connection to a variety of correlated phenomena including heavy fermions, superconductivity, and low-temperature magnetic phases. Here, we present high-resolution angle-resolved photoemission spectroscopy studies of trivalent CeB6 and divalent BaB6 rare-earth hexaborides. We find that the Fermi surface electronic structure of CeB6 consists of large oval-shaped pockets around the X points of the Brillouin zone, whereas the states around the zone center Gamma point are strongly renormalized. Our first-principles calculations agree with our experimental results around the X points but not around the Gamma point, indicating areas of strong renormalization located near Gamma. The Ce quasiparticle states participate in the formation of hot spots at the Fermi surface, whereas the incoherent f states hybridize and lead to the emergence of dispersive features absent in the non-f counterpart BaB6. Our results provide an understanding of the electronic structure in rare-earth hexaborides, which will be useful in elucidating the nature of the exotic low-temperature phases in these materials. C1 [Neupane, Madhab; Alidoust, Nasser; Belopolski, Ilya; Bian, Guang; Xu, Su-Yang; Shibayev, Pavel P.; Sanchez, Daniel S.; Zheng, Hao; Hasan, M. Zahid] Princeton Univ, Joseph Henry Labs, Dept Phys, Princeton, NJ 08544 USA. [Neupane, Madhab; Durakiewicz, Tomasz] Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, Los Alamos, NM 87545 USA. [Kim, Dae-Jeong; Fisk, Zachary] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Chang, Tay-Rong; Jeng, Horng-Tay] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Jeng, Horng-Tay] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Riseborough, Peter S.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Lin, Hsin] Natl Univ Singapore, Dept Phys, Graphene Res Ctr, Singapore 117542, Singapore. [Bansil, Arun] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Hasan, M. Zahid] Princeton Univ, Princeton Ctr Complex Mat, Princeton, NJ 08544 USA. RP Neupane, M (reprint author), Princeton Univ, Joseph Henry Labs, Dept Phys, Princeton, NJ 08544 USA. EM mneupane@lanl.gov; mzhasan@princeton.edu RI Riseborough, Peter/D-4689-2011; zheng, hao/H-8636-2015; Bian, Guang/C-5182-2016; Lin, Hsin/F-9568-2012; Chang, Tay-Rong/K-3943-2015 OI zheng, hao/0000-0002-6495-874X; Bian, Guang/0000-0001-7055-2319; Lin, Hsin/0000-0002-4688-2315; Chang, Tay-Rong/0000-0003-1222-2527 FU U.S. National Science Foundation [NSF-DMR-1006492]; Gordon and Betty Moore Foundations EPiQS Initiative [GBMF4547]; LANL LDRD program; NSF IR/D program; DOE, Office of Science, Basic Energy Sciences [DE-FG02-07ER46352]; Northeastern University's Advanced Scientific Computation Center (ASCC); NERSC supercomputing center through DOE [DE-AC02-05CH11231]; Singapore National Research Foundation under NRF [NRF-NRFF2013-03]; National Science Council, Taiwan; U.S. Department of Energy, Office of Basic Energy Sciences [DEFG02-01ER45872] FX Work at Princeton University is supported by the U.S. National Science Foundation Grant, NSF-DMR-1006492 and partial instrumentation support is provided by the Gordon and Betty Moore Foundations EPiQS Initiative through Grant No. GBMF4547 (M.Z.H.). M.N. at LANL acknowledges support from the LANL LDRD program. T.D. acknowledges support from the NSF IR/D program. The work at Northeastern University was supported by the DOE, Office of Science, Basic Energy Sciences Grant No. DE-FG02-07ER46352 and benefited from Northeastern University's Advanced Scientific Computation Center (ASCC) and the NERSC supercomputing center through DOE Grant No. DE-AC02-05CH11231. H.L. acknowledges the Singapore National Research Foundation for support under NRF Award No. NRF-NRFF2013-03. T.-R.C. and H.-T.J. are supported by the National Science Council, Taiwan. H.-T.J. also thanks NCHC, CINC-NTU, and NCTS, Taiwan, for technical support. P.S.R. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences through Award No. DEFG02-01ER45872. We thank J.D. Denlinger for beamline assistance at the Advanced Light Source (ALS-LBNL) in Berkeley. M.Z.H. acknowledges Visiting Scientist support from LBNL, Princeton University, and the A. P.Sloan Foundation. NR 40 TC 4 Z9 4 U1 9 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 18 PY 2015 VL 92 IS 10 AR 104420 DI 10.1103/PhysRevB.92.104420 PG 6 WC Physics, Condensed Matter SC Physics GA CR5GT UT WOS:000361369700001 ER PT J AU Idini, A Potel, G Barranco, F Vigezzi, E Broglia, RA AF Idini, A. Potel, G. Barranco, F. Vigezzi, E. Broglia, R. A. TI Interweaving of elementary modes of excitation in superfluid nuclei through particle-vibration coupling: Quantitative account of the variety of nuclear structure observables SO PHYSICAL REVIEW C LA English DT Article ID PHONON INTERACTION; STATES; ISOTOPES; SYSTEMS; SN-119 AB A complete characterization of the structure of nuclei can be obtained by combining information arising from inelastic scattering, Coulomb excitation, and gamma-decay, together with one- and two-particle transfer reactions. In this way it is possible to probe both the single-particle and collective components of the nuclear many-body wave function resulting from the coupling of these modes and, as a result, diagonalizing the low-energy Hamiltonian. We address the question of how accurately such a description can account for experimental observations in the case of superfluid nuclei. Our treatment goes beyond the traditional approach, in which these properties are calculated separately, and most often for systems near closed shells, based on perturbative approximations (weak coupling). It is concluded that renormalizing empirically and on equal footing bare single-particle and collective motion of open-shell nuclei in terms of self-energy (mass) and vertex corrections (screening), as well as particle-hole and pairing interactions through particle-vibration coupling (PVC), leads to a detailed, quantitative account of the data, constraining the possible values of the k mass, of the S-1(0) bare N N interaction, and of the PVC strengths within a rather narrow window. C1 [Idini, A.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Potel, G.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Potel, G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barranco, F.] Univ Seville, Escuela Super Ingenieros, Dept Fis Aplicada 3, Seville, Spain. [Vigezzi, E.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Broglia, R. A.] Univ Milan, Dipartmento Fis, I-20133 Milan, Italy. [Broglia, R. A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. RP Idini, A (reprint author), Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. EM andrea.idini@gmail.com; gregory.potel@gmail.com; barranco@us.es; vigezzi@mi.infn.it; broglia@mi.infn.it FU Academy of Finland and University of Jyvaskyla within the FIDIPRO program; Helmholtz Association through the Nuclear Astrophysics Virtual Institute [VH-VI-417]; Helmholtz International Center for FAIR within the framework of the LOEWE program launched by the State of Hesse FX Suggestions and insight provided by P. F. Bortignon are gratefully acknowledged. This work has been supported by the Academy of Finland and University of Jyvaskyla within the FIDIPRO program and by the Helmholtz Association through the Nuclear Astrophysics Virtual Institute (VH-VI-417) and the Helmholtz International Center for FAIR within the framework of the LOEWE program launched by the State of Hesse. NR 47 TC 7 Z9 7 U1 5 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD SEP 18 PY 2015 VL 92 IS 3 AR 031304 DI 10.1103/PhysRevC.92.031304 PG 7 WC Physics, Nuclear SC Physics GA CR5HJ UT WOS:000361371400001 ER PT J AU Potel, G Nunes, FM Thompson, IJ AF Potel, G. Nunes, F. M. Thompson, I. J. TI Establishing a theory for deuteron-induced surrogate reactions SO PHYSICAL REVIEW C LA English DT Article ID INCLUSIVE BREAKUP REACTIONS; REACTION CROSS-SECTIONS; FUSION DESCRIPTION; INCOMPLETE FUSION AB Background: Deuteron-induced reactions serve as surrogates for neutron capture into compound states. Although these reactions are of great applicability, no theoretical efforts have been invested in this direction over the last decade. Purpose: The goal of this work is to establish on firm grounds a theory for deuteron-induced neutron-capture reactions. This includes formulating elastic and inelastic breakup in a consistent manner. Method: We describe this process both in post-and prior-form distorted wave Born approximation following previous works and discuss the differences in the formulation. While the convergence issues arising in the post formulation can be overcome in the prior formulation, in this case one still needs to take into account additional terms due to nonorthogonality. Results: We apply our method to the Nb-93(d, p)X at E-d = 15 and 25 MeV and are able to obtain a good description of the data. We look at the various partial wave contributions, as well as elastic versus inelastic contributions. We also connect our formulation with transfer to neutron bound states. Conclusions: Our calculations demonstrate that the nonorthogonality term arising in the prior formulation is significant and is at the heart of the long-standing controversy between the post and the prior formulations of the theory. We also show that the cross sections for these reactions are angular-momentum dependent and therefore the commonly used Weisskopf limit is inadequate. Finally, we make important predictions for the relative contributions of elastic breakup and nonelastic breakup and call for elastic-breakup measurements to further constrain our model. C1 [Potel, G.; Nunes, F. M.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Potel, G.; Thompson, I. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Nunes, F. M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Potel, G (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. FU National Science Foundation [PHY-1403906]; Department of Energy, Office of Science, Office of Nuclear Physics [DE-FG52-08NA28552]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We are grateful to Jutta Escher for useful discussions. This work was supported by the National Science Foundation under Grant No. PHY-1403906, by the Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-FG52-08NA28552, and by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 20 TC 13 Z9 13 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD SEP 18 PY 2015 VL 92 IS 3 AR 034611 DI 10.1103/PhysRevC.92.034611 PG 10 WC Physics, Nuclear SC Physics GA CR5HJ UT WOS:000361371400003 ER PT J AU Zhao, PW Zhang, SQ Meng, J AF Zhao, P. W. Zhang, S. Q. Meng, J. TI Impact of pairing correlations on the orientation of the nuclear spin SO PHYSICAL REVIEW C LA English DT Article ID TILTED-AXIS CRANKING; HARTREE-BOGOLIUBOV THEORY; MAGNETIC ROTATION; SHEARS MECHANISM; ATOMIC-NUCLEI; ND-135; BANDS; MODEL AB For the first time, the tilted axis cranking covariant density functional theory with pairing correlations has been formulated and implemented in a fully self-consistent and microscopic way to investigate the evolution of the spin axis and the pairing effects in rotating triaxial nuclei. The measured energy spectrum and transition probabilities for the Nd-135 yrast band are reproduced well without any ad hoc renormalization factors when pairing effects are taken into account. A transition from collective to chiral rotation has been demonstrated. It is found that pairing correlations introduce additional admixtures in the single-particle orbitals, and, thus, influence the structure of tilted axis rotating nuclei by reducing the magnitude of the proton and neutron angular momenta while merging their direction. C1 [Zhao, P. W.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Zhao, P. W.; Zhang, S. Q.; Meng, J.] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Meng, J.] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China. [Meng, J.] Univ Stellenbosch, Dept Phys, ZA-7602 Stellenbosch, South Africa. RP Zhao, PW (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM pwzhao@pku.edu.cn RI Meng, Jie/B-8548-2009; Zhao, Pengwei/F-9107-2010; Zhang, ShuangQuan/B-3838-2012 OI Meng, Jie/0000-0002-0977-5318; Zhao, Pengwei/0000-0001-8243-2381; Zhang, ShuangQuan/0000-0002-9590-1818 FU U.S. Department of Energy (DOE), Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357]; Chinese Major State 973 Program [2013CB834400]; NSFC [11175002, 11105005, 11335002, 11375015, 11461141002] FX The authors are grateful to R. V. F. Janssens for helpful discussions and a careful reading of the manuscript. This work is supported by U.S. Department of Energy (DOE), Office of Science, Office of Nuclear Physics, under contract no. DE-AC02-06CH11357, by the Chinese Major State 973 Program No. 2013CB834400, and by the NSFC (Grants No. 11175002, 11105005, 11335002, 11375015, 11461141002). It used the computing resources of the Laboratory Computing Resource Center at Argonne National Laboratory. NR 37 TC 10 Z9 10 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD SEP 18 PY 2015 VL 92 IS 3 AR 034319 DI 10.1103/PhysRevC.92.034319 PG 5 WC Physics, Nuclear SC Physics GA CR5HJ UT WOS:000361371400002 ER PT J AU Huang, B Yoon, M Sumpter, BG Wei, SH Liu, F AF Huang, Bing Yoon, Mina Sumpter, Bobby G. Wei, Su-Huai Liu, Feng TI Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in Transition-Metal Dichalcogenides SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOLYBDENUM-DISULFIDE; PHOTOLUMINESCENCE; TRANSPORT; LAYERS AB Developing practical approaches to effectively reduce the amount of deep defect levels in semiconductors is critical for their use in electronic and optoelectronic devices, but this still remains a very challenging task. In this Letter, we propose that specific alloying can provide an effective means to suppress the deep defect levels in semiconductors while maintaining their basic electronic properties. Specifically, we demonstrate that for transition-metal dichalcogenides, such as MoSe2 and WSe2, where anion vacancies are the most abundant defects that can induce deep levels, the deep levels can be effectively suppressed in Mo1-xWxSe2 alloys at low W concentrations. This surprising phenomenon is associated with the fact that the band edge energies can be substantially tuned by the global alloy concentration, whereas the defect level is controlled locally by the preferred locations of Se vacancies around W atoms. Our findings illustrate a concept of alloy engineering and provide a promising approach to control the defect properties of semiconductors. C1 [Huang, Bing] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China. [Huang, Bing; Liu, Feng] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. [Huang, Bing; Yoon, Mina; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Huang, B (reprint author), Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China. RI Sumpter, Bobby/C-9459-2013; Yoon, Mina/A-1965-2016; Huang, Bing/D-8941-2011 OI Sumpter, Bobby/0000-0001-6341-0355; Yoon, Mina/0000-0002-1317-3301; Huang, Bing/0000-0001-6735-4637 FU Chinese Youth 1000 Talents Program; U.S. Department of Energy [DE-FG02-04ER46148] FX B. H. acknowledges support from the Chinese Youth 1000 Talents Program. The work at Oak Ridge National Laboratory was conducted at the Center for Nanophase Materials Sciences, a DOE office of science user facility. The research at Utah and National Renewable Energy Laboratory was supported by the U.S. Department of Energy (Grant No. DE-FG02-04ER46148). NR 30 TC 7 Z9 7 U1 12 U2 65 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 18 PY 2015 VL 115 IS 12 AR 126806 DI 10.1103/PhysRevLett.115.126806 PG 5 WC Physics, Multidisciplinary SC Physics GA CR5JB UT WOS:000361376200009 PM 26431007 ER PT J AU Takhistov, V Abe, K Haga, Y Hayato, Y Ikeda, M Iyogi, K Kameda, J Kishimoto, Y Miura, M Moriyama, S Nakahata, M Nakajima, T Nakano, Y Nakayama, S Orii, A Sekiya, H Shiozawa, M Takeda, A Tanaka, H Tomura, T Wendell, RA Irvine, T Kajita, T Kametani, I Kaneyuki, K Nishimura, Y Richard, E Okumura, K Labarga, L Fernandez, P Gustafson, J Kachulis, C Kearns, E Raaf, JL Stone, JL Sulak, LR Berkman, S Nantais, CM Tanaka, HA Tobayama, S Goldhaber, M Carminati, G Kropp, WR Mine, S Weatherly, P Renshaw, A Smy, MB Sobel, HW Ganezer, KS Hartfiel, BL Hill, J Hong, N Kim, JY Lim, IT Himmel, A Li, Z Scholberg, K Walter, CW Wongjirad, T Ishizuka, T Tasaka, S Jang, JS Learned, JG Matsuno, S Smith, SN Friend, M Hasegawa, T Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Oyama, Y Sakashita, K Sekiguchi, T Tsukamoto, T Suzuki, AT Takeuchi, Y Yano, T Hirota, S Huang, K Ieki, K Kikawa, T Minamino, A Nakaya, T Suzuki, K Takahashi, S Fukuda, Y Choi, K Itow, Y Suzuki, T Mijakowski, P Frankiewicz, K Hignight, J Imber, J Jung, CK Li, X Palomino, JL Wilking, MJ Yanagisawa, C Ishino, H Kayano, T Kibayashi, A Koshio, Y Mori, T Sakuda, M Kuno, Y Tacik, R Kim, SB Okazawa, H Choi, Y Nishijima, K Koshiba, M Suda, Y Totsuka, Y Yokoyama, M Bronner, C Hartz, M Martens, K Marti, L Suzuki, Y Vagins, MR Martin, JF de Perio, P Konaka, A Chen, S Zhang, Y Wilkes, RJ AF Takhistov, V. Abe, K. Haga, Y. Hayato, Y. Ikeda, M. Iyogi, K. Kameda, J. Kishimoto, Y. Miura, M. Moriyama, S. Nakahata, M. Nakajima, T. Nakano, Y. Nakayama, S. Orii, A. Sekiya, H. Shiozawa, M. Takeda, A. Tanaka, H. Tomura, T. Wendell, R. A. Irvine, T. Kajita, T. Kametani, I. Kaneyuki, K. Nishimura, Y. Richard, E. Okumura, K. Labarga, L. Fernandez, P. Gustafson, J. Kachulis, C. Kearns, E. Raaf, J. L. Stone, J. L. Sulak, L. R. Berkman, S. Nantais, C. M. Tanaka, H. A. Tobayama, S. Goldhaber, M. Carminati, G. Kropp, W. R. Mine, S. Weatherly, P. Renshaw, A. Smy, M. B. Sobel, H. W. Ganezer, K. S. Hartfiel, B. L. Hill, J. Hong, N. Kim, J. Y. Lim, I. T. Himmel, A. Li, Z. Scholberg, K. Walter, C. W. Wongjirad, T. Ishizuka, T. Tasaka, S. Jang, J. S. Learned, J. G. Matsuno, S. Smith, S. N. Friend, M. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Oyama, Y. Sakashita, K. Sekiguchi, T. Tsukamoto, T. Suzuki, A. T. Takeuchi, Y. Yano, T. Hirota, S. Huang, K. Ieki, K. Kikawa, T. Minamino, A. Nakaya, T. Suzuki, K. Takahashi, S. Fukuda, Y. Choi, K. Itow, Y. Suzuki, T. Mijakowski, P. Frankiewicz, K. Hignight, J. Imber, J. Jung, C. K. Li, X. Palomino, J. L. Wilking, M. J. Yanagisawa, C. Ishino, H. Kayano, T. Kibayashi, A. Koshio, Y. Mori, T. Sakuda, M. Kuno, Y. Tacik, R. Kim, S. B. Okazawa, H. Choi, Y. Nishijima, K. Vagins, M. R. Suda, Y. Totsuka, Y. Yokoyama, M. Bronner, C. Hartz, M. Martens, K. Marti, Ll. Suzuki, Y. Vagins, M. R. Martin, J. F. de Perio, P. Konaka, A. Chen, S. Zhang, Y. Wilkes, R. J. CA Super-Kamiokande Collaboration TI Search for Nucleon and Dinucleon Decays with an Invisible Particle and a Charged Lepton in the Final State at the Super-Kamiokande Experiment SO PHYSICAL REVIEW LETTERS LA English DT Article ID HYDROGEN-ANTIHYDROGEN OSCILLATIONS; WATER CHERENKOV DETECTOR; GRAND UNIFIED THEORIES; BARYON NUMBER; PROTON-DECAY; LIFETIME; LIMITS; CONSERVATION; SYMMETRY; HADRONS AB Search results for nucleon decays p -> e(+)X, p -> mu X+, n -> nu gamma (where X is an invisible, massless particle) as well as dinucleon decays np -> e(+)nu, np -> mu(+)nu, and np -> tau(+)nu in the Super-Kamiokande experiment are presented. Using single-ring data from an exposure of 273.4 kton . yr, a search for these decays yields a result consistent with no signal. Accordingly, lower limits on the partial lifetimes of tau(p -> e+X) > 7.9 x 10(32) yr, tau(p ->mu+X) > 4.1 x 10(32) yr, tau(n ->nu gamma) > 5.5 x 10(32) yr, tau(np -> e+mu) > 2.6 x 10(32) yr, tau(np ->mu+nu) > 2.2 x 10(32) yr, and tau(np ->tau+nu) > 2.9 x 10(31) yr at a 90% confidence level are obtained. Some of these searches are novel. C1 [Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tanaka, H.; Tomura, T.; Wendell, R. A.] Univ Tokyo, Kamioka Observ, Inst Cosm Ray Res, Kamioka, Gifu 5061205, Japan. [Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Nishimura, Y.; Richard, E.; Okumura, K.] Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Kashiwa, Chiba 2778582, Japan. [Labarga, L.; Fernandez, P.] Univ Autonoma Madrid, Dept Theoret Phys, E-28049 Madrid, Spain. [Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Berkman, S.; Nantais, C. M.; Tanaka, H. A.; Tobayama, S.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Takhistov, V.; Carminati, G.; Kropp, W. R.; Mine, S.; Weatherly, P.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Vagins, M. R.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ganezer, K. S.; Hartfiel, B. L.; Hill, J.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. [Hong, N.; Kim, J. Y.; Lim, I. T.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Himmel, A.; Li, Z.; Scholberg, K.; Walter, C. W.; Wongjirad, T.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Ishizuka, T.] Fukuoka Inst Technol, Jr Coll, Fukuoka, Fukuoka 8110295, Japan. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu, Gifu 5011193, Japan. [Jang, J. S.] Gwangju Inst Sci & Technol, GIST Coll, Kwangju 500712, South Korea. [Learned, J. G.; Matsuno, S.; Smith, S. N.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Suzuki, A. T.; Takeuchi, Y.; Yano, T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Hirota, S.; Huang, K.; Ieki, K.; Kikawa, T.; Minamino, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.] Kyoto Univ, Dept Phys, Kyoto, Kyoto 6068502, Japan. [Fukuda, Y.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Choi, K.; Itow, Y.; Suzuki, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648602, Japan. [Mijakowski, P.; Frankiewicz, K.] Natl Ctr Nucl Res, PL-00681 Warsaw, Poland. [Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Wilking, M. J.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, New York, NY 11794 USA. [Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.] Okayama Univ, Dept Phys, Okayama, Okayama 7008530, Japan. [Kuno, Y.] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Tacik, R.] Univ Regina, Dept Phys, Regina, SK S4S OA2, Canada. [Kim, S. B.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Okazawa, H.] Shizuoka Univ Welf, Dept Informat Social Welf, Yaizu, Shizuoka 4258611, Japan. [Choi, Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Nishijima, K.] Tokai Univ, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. [Vagins, M. R.; Suda, Y.; Totsuka, Y.; Yokoyama, M.] Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan. [Abe, K.; Hayato, Y.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tomura, T.; Wendell, R. A.; Kajita, T.; Kaneyuki, K.; Okumura, K.; Kearns, E.; Stone, J. L.; Smy, M. B.; Sobel, H. W.; Scholberg, K.; Walter, C. W.; Nakamura, K.; Takeuchi, Y.; Nakaya, T.; Vagins, M. R.; Yokoyama, M.; Bronner, C.; Hartz, M.; Martens, K.; Marti, Ll.; Suzuki, Y.] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778582, Japan. [Martin, J. F.; de Perio, P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Tacik, R.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Konaka, A.; Chen, S.; Zhang, Y.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Takhistov, V (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RI Yokoyama, Masashi/A-4458-2011; Ishino, Hirokazu/C-1994-2015; Kibayashi, Atsuko/K-7327-2015; Koshio, Yusuke/C-2847-2015; Nakano, Yuuki/S-2684-2016 OI Yokoyama, Masashi/0000-0003-2742-0251; Ishino, Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505; FU Japanese Ministry of Education, Culture, Sports, Science and Technology; U.S. Department of Energy; U.S. National Science Foundation FX We gratefully acknowledge the cooperation of the Kamioka Mining and Smelting Company. The Super-Kamiokande experiment was built and has been operated with funding from the Japanese Ministry of Education, Culture, Sports, Science and Technology, the U.S. Department of Energy, and the U.S. National Science Foundation. NR 42 TC 2 Z9 2 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 18 PY 2015 VL 115 IS 12 AR 121803 DI 10.1103/PhysRevLett.115.121803 PG 6 WC Physics, Multidisciplinary SC Physics GA CR5JB UT WOS:000361376200004 PM 26430987 ER PT J AU Ni, XJ Wong, ZJ Mrejen, M Wang, Y Zhang, X AF Ni, Xingjie Wong, Zi Jing Mrejen, Michael Wang, Yuan Zhang, Xiang TI An ultrathin invisibility skin cloak for visible light SO SCIENCE LA English DT Article ID BROAD-BAND; PLASMONIC METASURFACES; META-SURFACES; REFLECTION; METAMATERIALS; WAVELENGTHS; FREQUENCIES; EFFICIENCY; HOLOGRAMS AB Metamaterial-based optical cloaks have thus far used volumetric distribution of the material properties to gradually bend light and thereby obscure the cloaked region. Hence, they are bulky and hard to scale up and, more critically, typical carpet cloaks introduce unnecessary phase shifts in the reflected light, making the cloaks detectable. Here, we demonstrate experimentally an ultrathin invisibility skin cloak wrapped over an object. This skin cloak conceals a three-dimensional arbitrarily shaped object by complete restoration of the phase of the reflected light at 730-nanometer wavelength. The skin cloak comprises a metasurface with distributed phase shifts rerouting light and rendering the object invisible. In contrast to bulky cloaks with volumetric index variation, our device is only 80 nanometer (about one-ninth of the wavelength) thick and potentially scalable for hiding macroscopic objects. C1 [Ni, Xingjie; Wong, Zi Jing; Mrejen, Michael; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Zhang, Xiang] King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Ni, Xingjie/I-2235-2012; Wang, Yuan/F-7211-2011; Zhang, Xiang/F-6905-2011 OI Ni, Xingjie/0000-0001-7405-5678; FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231] FX The work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05CH11231. NR 45 TC 80 Z9 84 U1 53 U2 273 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD SEP 18 PY 2015 VL 349 IS 6254 BP 1310 EP 1314 DI 10.1126/science.aac9411 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CR5CR UT WOS:000361357700042 PM 26383946 ER PT J AU Laanait, N Callagon, EBR Zhang, Z Sturchio, NC Lee, SS Fenter, P AF Laanait, Nouamane Callagon, Erika B. R. Zhang, Zhan Sturchio, Neil C. Lee, Sang Soo Fenter, Paul TI X-ray-driven reaction front dynamics at calcite-water interfaces SO SCIENCE LA English DT Article ID DISSOLUTION KINETICS; ELECTRON-MICROSCOPY; LIQUID; SYSTEMS; PHASE AB The interface between minerals and aqueous solutions hosts globally important biogeochemical processes such as the growth and dissolution of carbonate minerals. Understanding such processes requires spatially and temporally resolved observations and experimental controls that precisely manipulate the interfacial thermodynamic state. Using the intense radiation fields of a focused synchrotron x-ray beam, we drove dissolution at the calcite/water interface and simultaneously probed the dynamics of the propagating reaction fronts using surface x-ray microscopy. Evolving surface structures were controlled by the time-dependent solution composition, as characterized by a kinetic reaction model. At extreme disequilibria, we observed the onset of reaction front instabilities with velocities of > 30 nanometers per second. These instabilities serve as a signature of transport-limited dissolution of calcite under extreme disequilibrium. C1 [Laanait, Nouamane; Lee, Sang Soo; Fenter, Paul] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Laanait, Nouamane; Callagon, Erika B. R.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Callagon, Erika B. R.] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL USA. [Zhang, Zhan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Sturchio, Neil C.] Univ Delaware, Dept Geol Sci, Newark, DE USA. RP Laanait, N (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM laanaitn@ornl.gov; fenter@anl.gov RI Laanait, Nouamane/A-2498-2016; Zhang, Zhan/A-9830-2008 OI Laanait, Nouamane/0000-0001-7100-4250; Zhang, Zhan/0000-0002-7618-6134 FU Geosciences Research Program of the Office of Basic Energy Sciences, U.S. Department of Energy (DOE), at Argonne National Laboratory (ANL); University of Illinois at Chicago; University of Delaware FX This work was supported by the Geosciences Research Program of the Office of Basic Energy Sciences, U.S. Department of Energy (DOE), at Argonne National Laboratory (ANL), the University of Illinois at Chicago, and the University of Delaware. The x-ray data were collected at the Advanced Photon Source (33-ID-D), a U.S. DOE Office of Science User Facility at ANL. A portion of this research was performed by N.L. as a staff member at the Center for Nanophase Materials Sciences, a U.S DOE Office of Science User Facility at Oak Ridge National Laboratory. Primary data for this report are uncompressed video files that are available upon request from N.L and P.F. N.L. and P.F. designed the research and wrote the manuscript with input from all authors. N.L. analyzed the x-ray data and performed modeling and computations. E.B.C. and P.F. prepared the samples. All authors participated in x-ray imaging experiments. NR 20 TC 8 Z9 8 U1 18 U2 79 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD SEP 18 PY 2015 VL 349 IS 6254 BP 1330 EP 1334 DI 10.1126/science.aab3272 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CR5CR UT WOS:000361357700047 PM 26383950 ER PT J AU Hernandez-Garcia, C San Roman, J Plaja, L Picon, A AF Hernandez-Garcia, C. San Roman, J. Plaja, L. Picon, A. TI Quantum-path signatures in attosecond helical beams driven by optical vortices SO NEW JOURNAL OF PHYSICS LA English DT Article DE helical attosecond beams; orbital angular momentum; high-order harmonic generation ID ORBITAL ANGULAR-MOMENTUM; HIGH-HARMONIC-GENERATION; HIGH-ORDER HARMONICS; VORTEX BEAM; PULSES; PHASE; LIGHT; SOFT; MANIPULATION; IONIZATION AB High-order harmonic generation (HHG) driven by beams carrying orbital angular momentum has been recently demonstrated as a unique process to generate spatio-temporal coherent extreme ultraviolet (XUV)/x-ray radiation with attosecond helical structure. We explore the details of the mapping of the driving vortex to its harmonic spectrum. In particular we show that the geometry of the harmonic vortices is complex, arising from the superposition of the contribution from the short and long quantum paths responsible of HHG. Transversal phase-matching and quantum path interferences provide an explanation of the dramatic changes in the XUV vortex structure generated at different relative positions of the target respect to the laser beam focus. Finally, we show how to take advantage of transversal phase-matching to select helical attosecond beams generated from short or long quantum paths, exhibiting positive or negative temporal chirp respectively. C1 [Hernandez-Garcia, C.; San Roman, J.; Plaja, L.] Univ Salamanca, Grp Invest Opt Extrema, E-37008 Salamanca, Spain. [Hernandez-Garcia, C.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Picon, A.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Hernandez-Garcia, C (reprint author), Univ Salamanca, Grp Invest Opt Extrema, E-37008 Salamanca, Spain. EM carloshergar@usal.es RI Hernandez-Garcia, Carlos/G-3681-2011; San Roman, Julio/K-7218-2012; Plaja, Luis/K-8701-2014 OI Hernandez-Garcia, Carlos/0000-0002-6153-2647; San Roman, Julio/0000-0002-2645-7039; Plaja, Luis/0000-0001-8709-7295 FU Marie Curie International Outgoing Fellowship within EU [328334]; Junta de Castilla y Leon [SA116U13]; MINECO [FIS2013-44174-P]; US Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357] FX CH-G acknowledges fruitful discussions with Mette B Gaarde and support from the Marie Curie International Outgoing Fellowship within the EU Seventh Framework Programme for Research and Technological Development (2007-2013), under REA grant Agreement No 328334 CH-G, JSR and LP acknowledge support from Junta de Castilla y Leon (Project SA116U13) and MINECO (FIS2013-44174-P). AP acknowledges financial support of the US Department of Energy, Basic Energy Sciences, Office of Science, under contract No DE-AC02-06CH11357. NR 49 TC 4 Z9 4 U1 3 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD SEP 17 PY 2015 VL 17 AR 093029 DI 10.1088/1367-2630/17/9/093029 PG 10 WC Physics, Multidisciplinary SC Physics GA CZ8PV UT WOS:000367362500002 ER PT J AU Kranzusch, PJ Wilson, SC Lee, ASY Berger, JM Doudna, JA Vance, RE AF Kranzusch, Philip J. Wilson, Stephen C. Lee, Amy S. Y. Berger, James M. Doudna, Jennifer A. Vance, Russell E. TI Ancient Origin of cGAS-STING Reveals Mechanism of Universal 2 ',3 ' cGAMP Signaling SO MOLECULAR CELL LA English DT Article ID CYCLIC-DI-GMP; I INTERFERON RESPONSE; CYTOSOLIC DNA SENSOR; AMP SYNTHASE; INNATE IMMUNITY; STRUCTURAL-ANALYSIS; IMMUNOGENIC TUMORS; ACTIVATION; DINUCLEOTIDE; RECOGNITION AB In humans, the cGAS-STING immunity pathway signals in response to cytosolic DNA via 20,30 cGAMP, a cyclic dinucleotide (CDN) second messenger containing mixed 2'-5' and 3'-5' phosphodiester bonds. Prokaryotes also produce CDNs, but these are exclusively 3' linked, and thus the evolutionary origins of human 2',3' cGAMP signaling are unknown. Here we illuminate the ancient origins of human cGAMP signaling by discovery of a functional cGAS-STING pathway in Nematostella vectensis, an anemone species >500 million years diverged from humans. Anemone cGAS appears to produce a 3',3' CDN that anemone STING recognizes through nucleobase-specific contacts not observed in human STING. Nevertheless, anemone STING binds mixed-linkage 2',3' cGAMP indistinguishably from human STING, trapping a unique structural conformation not induced by 3',3' CDNs. These results reveal that human mixed-linkage cGAMP achieves universal signaling by exploiting a deeply conserved STING conformational intermediate, providing critical insight for therapeutic targeting of the STING pathway. C1 [Kranzusch, Philip J.; Lee, Amy S. Y.; Doudna, Jennifer A.; Vance, Russell E.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Wilson, Stephen C.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Lee, Amy S. Y.; Doudna, Jennifer A.] Univ Calif Berkeley, Ctr RNA Syst Biol, Berkeley, CA 94720 USA. [Berger, James M.] Johns Hopkins Univ, Dept Biophys, Sch Med, Baltimore, MD 21205 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA. [Vance, Russell E.] Univ Calif Berkeley, Canc Res Lab, Berkeley, CA 94720 USA. [Kranzusch, Philip J.; Doudna, Jennifer A.; Vance, Russell E.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM doudna@berkeley.edu; rvance@berkeley.edu FU HHMI; NIH [P01 AI063302]; G. Harold and Leila Y. Mathers Foundation; NIGMS Center for RNA Systems Biology; HHMI Fellow of the Life Sciences Research Foundation; American Cancer Society Fellow [PF-14-108-01-RMC] FX X-ray data were collected at the Lawrence Berkeley National Lab Advanced Light Source (beamline 8.3.1). The authors are grateful to D. Burdette, E. Diner, and M. Raulet for assistance with initial identification of animal STING homologs; A. Whiteley for phosphodiesterase advice; J. Holton, G. Meigs, and A. Gonzalez for technical assistance with data collection and processing; R. Wilson for advice on ITC experiments; and members of the J.M.B., J.A.D., and R.E.V. labs for helpful comments and discussion. This work was funded by HHMI (R.E.V. and J.A.D.), NIH P01 AI063302 (R.E.V.), G. Harold and Leila Y. Mathers Foundation (J.M.B.), and NIGMS Center for RNA Systems Biology (A.S.Y.L. and J.A.D.). P.J.K. is supported as an HHMI Fellow of the Life Sciences Research Foundation, and A.S.Y.L. is supported as an American Cancer Society Fellow (PF-14-108-01-RMC). J.A.D. and R.E.V. are HHMI Investigators. NR 54 TC 14 Z9 19 U1 0 U2 18 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 EI 1097-4164 J9 MOL CELL JI Mol. Cell PD SEP 17 PY 2015 VL 59 IS 6 BP 891 EP 903 DI 10.1016/j.molcel.2015.07.022 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA CW7GQ UT WOS:000365166500004 PM 26300263 ER PT J AU Cheng, MJ Kwon, Y Head-Gordon, M Bell, AT AF Cheng, Mu-Jeng Kwon, Youngkook Head-Gordon, Martin Bell, Alexis T. TI Tailoring Metal-Porphyrin-Like Active Sites on Graphene to Improve the Efficiency and Selectivity of Electrochemical CO2 Reduction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INITIO MOLECULAR-DYNAMICS; FORMIC-ACID DECOMPOSITION; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; CU ALLOY ELECTRODES; OXYGEN REDUCTION; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; HYDROGEN STORAGE; AQUEOUS-MEDIA AB Density functional theory (DFT) calculations are performed to investigate the energetics of the CO2 electrochemical reduction on metal (M) porphyrin-like motifs incorporated into graphene layers. The objective is to develop strategies that enhance CO2 reduction while suppressing the competitive hydrogen evolution reaction (HER). We find that there exists a scaling relation between the binding energy of the catalyst to hydrogen and that to COOH, a key intermediate in the reduction of CO2 to CO; however, the M-H bond is stronger than the M-COOH bond, driving the reaction toward the HER rather than the reduction of CO2 to CO. This scaling relation holds even with axial ligation to the metal cation coordinated to the porphyrin ring. When 4f lanthanide or 5f actinide elements are used as the reactive center, the scaling relation still holds but the M-COOH bond is stronger than the M-H bond, and the reaction favors the reduction of CO2 to CO. By contrast, there is no scaling relation between the binding energy of the catalyst to H and that to OCHO, the key intermediate in CO2 reduction to formic acid. Interestingly, we find that coordination of a ligand to an unoccupied axial site can make the M-OCHO bond stronger than the M-H bond, resulting in preferential formic acid formation. This means that the axial ligand effectively enhances CO2 reduction to formic acid and suppresses the HER. Our DFT calculations have also identified several promising electrocatalysts for CO2 reduction to HCOOH with almost zero overpotentials. C1 [Cheng, Mu-Jeng; Kwon, Youngkook; Head-Gordon, Martin; Bell, Alexis T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Cheng, Mu-Jeng; Kwon, Youngkook; Bell, Alexis T.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, 1 Cydotron Rd, Berkeley, CA 94720 USA. EM mhg@cchem.berkeley.edu; alexbell@berkeley.edu OI Cheng, Mu-Jeng/0000-0002-8121-0485 FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This material is based on work performed in the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. NR 58 TC 6 Z9 6 U1 29 U2 137 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 17 PY 2015 VL 119 IS 37 BP 21345 EP 21352 DI 10.1021/acs.jpcc.5b05518 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CS1ZU UT WOS:000361868400008 ER PT J AU Kemper, TW Larsen, RE Gennett, T AF Kemper, Travis W. Larsen, Ross E. Gennett, Thomas TI Density of States and the Role of Energetic Disorder in Charge Transport in an Organic Radical Polymer in the Solid State SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTRONIC DEVICES; CONJUGATED POLYMERS; SOLAR-CELLS; FORCE-FIELD; SIMULATION; FLUIDS; RELAXATION; BATTERIES AB On the basis of atomistic simulations of the stable organic radical polymer material poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) (PTMA), various material properties relating to charge transport were evaluated in terms of the Marcus charge-transfer rates between radical sites. The reorganization energy of the PTMA monomer unit was calculated using density functional theory to provide an approximate value to enter into the Marcus charge-transfer rate. The role of energetic disorder in the charge transfer between sites caused by the different local environments seen by radical sites is examined in terms of both steric and electrostatic effects. The electronic coupling between sites was examined in terms of the intersite network, morphological features, and energetic disorder. Energetic disorder was found to result in both sites that act as traps and paired sites that were highly coupled to each other and would act as a single site for transport purposes. C1 [Kemper, Travis W.; Larsen, Ross E.] Natl Renewable Energy Lab, Computat Sci Ctr, Golden, CO 80401 USA. [Gennett, Thomas] Natl Renewable Energy Lab, Chem & Nano Sci Ctr, Golden, CO 80401 USA. RP Larsen, RE (reprint author), Natl Renewable Energy Lab, Computat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Ross.Larsen@nrel.gov FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC36-08GO28308]; Department of Energy's Office of Energy Efficiency and Renewable Energy, located at the National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under Contract DE-AC36-08GO28308. The research was performed using resources sponsored by the Department of Energy's Office of Energy Efficiency and Renewable Energy, located at the National Renewable Energy Laboratory. NR 34 TC 5 Z9 5 U1 3 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 17 PY 2015 VL 119 IS 37 BP 21369 EP 21375 DI 10.1021/acs.jpcc.5b06368 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CS1ZU UT WOS:000361868400011 ER PT J AU Cannella, CB Goldman, N AF Cannella, Christopher B. Goldman, Nir TI Carbyne Fiber Synthesis within Evaporating Metallic Liquid Carbon SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID EXTREME THERMODYNAMIC CONDITIONS; INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; TIGHT-BINDING METHOD; EXTENDED BASIS-SET; SEMICONDUCTOR TRANSITION; QM/MD SIMULATIONS; 3-BODY REPULSION; CHAINS; HYDROGEN AB Carbyne (e.g., linear chains of sp-bonded carbon) has been the subject of intense research focus due to its presence in astrophysical bodies, as well as its potential for use as a nanoelectronic device and superhard material. In this work, we discuss the formation of carbyne fiber bundles over a nanosecond time scale in laser pulse melting studies, using a previously determined density functional tight binding model for carbon coupled with a new correction for the dispersion energy. We determine our dispersion energy model by optimizing a modified Lennard-Jones potential to an experimentally determined equation of state for graphite, yielding excellent results for the bulk modulus and density under ambient conditions. We then simulate previous experiments by heating graphite to high temperature, followed by expanding the ensuing liquid phase to low density. Our results indicate that the initial, hot liquid phase mainly consists of sp(2)-bonded carbon atoms, which form a system of sp-bonded strands bound together via dispersion interactions upon achieving low density and temperature. The high computational efficiency of our approach allows for direct comparison with experiments that span a wide range of thermodynamic conditions and can help determine parameters for synthesis of carbon-based materials with potentially exotic properties. C1 [Cannella, Christopher B.; Goldman, Nir] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Goldman, N (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM ngoldman@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344]; Laboratory Directed Research and Development [12-ERD-052] FX The authors thank Richard Saykally for helpful discussions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by Laboratory Directed Research and Development grant # 12-ERD-052. Computations were performed at LLNL using the Aztec massively parallel computer. NR 63 TC 5 Z9 5 U1 7 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 17 PY 2015 VL 119 IS 37 BP 21605 EP 21611 DI 10.1021/acs.jpcc.5b03781 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CS1ZU UT WOS:000361868400036 ER PT J AU Faraji, M Fonseca, LL Escamilla-Trevino, L Dixon, RA Voit, EO AF Faraji, Mojdeh Fonseca, Luis L. Escamilla-Trevino, Luis Dixon, Richard A. Voit, Eberhard O. TI Computational inference of the structure and regulation of the lignin pathway in Panicum virgatum SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Biochemical systems theory; Lignin biosynthesis; Panicum virgatum; Pathway analysis; Recalcitrance; Switchgrass ID BIOCHEMICAL SYSTEMS ANALYSIS; POPULUS-TRICHOCARPA; SYRINGYL LIGNIN; PHENYLPROPANOID BIOSYNTHESIS; MONOLIGNOL BIOSYNTHESIS; O-METHYLTRANSFERASE; BIOFUEL PRODUCTION; METABOLIC FLUX; SWITCHGRASS; ACID AB Background: Switchgrass is a prime target for biofuel production from inedible plant parts and has been the subject of numerous investigations in recent years. Yet, one of the main obstacles to effective biofuel production remains to be the major problem of recalcitrance. Recalcitrance emerges in part from the 3-D structure of lignin as a polymer in the secondary cell wall. Lignin limits accessibility of the sugars in the cellulose and hemicellulose polymers to enzymes and ultimately decreases ethanol yield. Monolignols, the building blocks of lignin polymers, are synthesized in the cytosol and translocated to the plant cell wall, where they undergo polymerization. The biosynthetic pathway leading to monolignols in switchgrass is not completely known, and difficulties associated with in vivo measurements of these intermediates pose a challenge for a true understanding of the functioning of the pathway. Results: In this study, a systems biological modeling approach is used to address this challenge and to elucidate the structure and regulation of the lignin pathway through a computational characterization of alternate candidate topologies. The analysis is based on experimental data characterizing stem and tiller tissue of four transgenic lines (knockdowns of genes coding for key enzymes in the pathway) as well as wild-type switchgrass plants. These data consist of the observed content and composition of monolignols. The possibility of a G-lignin specific metabolic channel associated with the production and degradation of coniferaldehyde is examined, and the results support previous findings from another plant species. The computational analysis suggests regulatory mechanisms of product inhibition and enzyme competition, which are well known in biochemistry, but so far had not been reported in switchgrass. By including these mechanisms, the pathway model is able to represent all observations. Conclusions: The results show that the presence of the coniferaldehyde channel is necessary and that product inhibition and competition over cinnamoyl-CoA-reductase (CCR1) are essential for matching the model to observed increases in H-lignin levels in 4-coumarate:CoA-ligase (4CL) knockdowns. Moreover, competition for 4-coumarate: CoA-ligase (4CL) is essential for matching the model to observed increases in the pathway metabolites in caffeic acid O-methyltransferase (COMT) knockdowns. As far as possible, the model was validated with independent data. C1 [Faraji, Mojdeh; Fonseca, Luis L.; Voit, Eberhard O.] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA. [Faraji, Mojdeh; Fonseca, Luis L.; Voit, Eberhard O.] Emory Univ, Atlanta, GA 30332 USA. [Faraji, Mojdeh; Fonseca, Luis L.; Escamilla-Trevino, Luis; Dixon, Richard A.; Voit, Eberhard O.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. [Escamilla-Trevino, Luis; Dixon, Richard A.] Univ N Texas, Dept Biol Sci, Denton, TX 76203 USA. RP Voit, EO (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. EM Eberhard.Voit@bme.gatech.edu RI Fonseca, Luis/B-2265-2009 OI Fonseca, Luis/0000-0002-7902-742X FU DOE-BESC grant [DE-AC05-00OR22725]; Office of Biological and Environmental Research in the DOE Office of Science FX This work was supported by DOE-BESC grant DE-AC05-00OR22725 (PI: Paul Gilna). BESC, the BioEnergy Science Center, is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 41 TC 1 Z9 1 U1 3 U2 24 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD SEP 17 PY 2015 VL 8 AR 151 DI 10.1186/s13068-015-0334-8 PG 17 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CR8FU UT WOS:000361587300003 PM 26388938 ER PT J AU Jurado-Oller, JL Dubini, A Galvan, A Fernandez, E Gonzalez-Ballester, D AF Luis Jurado-Oller, Jose Dubini, Alexandra Galvan, Aurora Fernandez, Emilio Gonzalez-Ballester, David TI Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Acetate; Algae; Biofuels; Biomass; Chlamydomonas; DCMU; Hydrogen; Low light; Oxygen ID SUSTAINED HYDROGEN PHOTOPRODUCTION; PYRUVATE FERREDOXIN OXIDOREDUCTASE; REINHARDTII CULTURES; GREEN-ALGA; FERMENTATIVE METABOLISM; H-2 PHOTOPRODUCTION; PLASTOQUINONE REDUCTION; ELECTRON-TRANSPORT; PHOTOSYSTEM-II; SULFUR AB Background: Currently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of photosynthetic microorganisms able to produce hydrogen, the green algae Chlamydomonas reinhardtii is the model organism widely used to study hydrogen production. Despite the well-known fact that acetate-containing medium enhances hydrogen production in this algae, little is known about the precise role of acetate during this process. Results: We have examined several physiological aspects related to acetate assimilation in the context of hydrogen production metabolism. Measurements of oxygen and CO2 levels, acetate uptake, and cell growth were performed under different light conditions, and oxygenic regimes. We show that oxygen and light intensity levels control acetate assimilation and modulate hydrogen production. We also demonstrate that the determination of the contribution of the PSII-dependent hydrogen production pathway in mixotrophic cultures, using the photosynthetic inhibitor DCMU, can lead to dissimilar results when used under various oxygenic regimes. The level of inhibition of DCMU in hydrogen production under low light seems to be linked to the acetate uptake rates. Moreover, we highlight the importance of releasing the hydrogen partial pressure to avoid an inherent inhibitory factor on the hydrogen production. Conclusion: Low levels of oxygen allow for low acetate uptake rates, and paradoxically, lead to efficient and sustained production of hydrogen. Our data suggest that acetate plays an important role in the hydrogen production process, during non-stressed conditions, other than establishing anaerobiosis, and independent of starch accumulation. Potential metabolic pathways involved in hydrogen production in mixotrophic cultures are discussed. Mixotrophic nutrient-replete cultures under low light are shown to be an alternative for the simultaneous production of hydrogen and biomass. C1 [Luis Jurado-Oller, Jose; Galvan, Aurora; Fernandez, Emilio; Gonzalez-Ballester, David] Univ Cordoba, Fac Ciencias, Dept Bioquim & Biol Mol, Cordoba 14071, Spain. [Dubini, Alexandra] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Gonzalez-Ballester, D (reprint author), Univ Cordoba, Fac Ciencias, Dept Bioquim & Biol Mol, Campus Rabanales,Edif Severo Ochoa, Cordoba 14071, Spain. EM q62gobad@uco.es RI dubini, alexandra /A-7252-2016; Gonzalez-Ballester, David/M-5551-2013; OI dubini, alexandra /0000-0001-8825-3915; Gonzalez-Ballester, David/0000-0003-0024-1886; Galvan Cejudo, Aurora/0000-0002-7564-2281 FU MINECO (Ministerio de Economia y Competitividad, Spain) - European "Fondo Europeo de Desarrollo Regional (FEDER)" program [BFU2011-29338]; Plan E program [CONV 188/09]; Ramon y Cajal program [RYC-2011-07671]; Junta de Andalucia grants [P08-CVI-04157, BIO-502]; Plan Propio de la Universidad de Cordoba; U. S. Department of Energy, Office of Biological and Environmental Research (BER) FX Authors thanks Maria Ghirardi and Michael Seibert (National Renewable Energy Laboratory, CO, USA) for their critical reading of the manuscript; and Maribel Macias and Rocio Onieva (Universidad de Cordoba) for their technical support. This work was funded by the MINECO (Ministerio de Economia y Competitividad, Spain, Grant no. BFU2011-29338 [granted to EF and G]), supported by the European "Fondo Europeo de Desarrollo Regional (FEDER)" program, the Plan E program (CONV 188/09 [granted to EF]), the Ramon y Cajal program (RYC-2011-07671 [granted to DG-B]), the Junta de Andalucia grants (P08-CVI-04157 and BIO-502 [granted to AG and EF]), the Plan Propio de la Universidad de Cordoba (granted to EF and AG), and the U. S. Department of Energy, Office of Biological and Environmental Research (BER) (granted to AD). NR 58 TC 0 Z9 0 U1 8 U2 29 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD SEP 17 PY 2015 VL 8 AR 149 DI 10.1186/s13068-015-0341-9 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CR8FU UT WOS:000361587300001 PM 26388936 ER PT J AU Firrincieli, A Otillar, R Salamov, A Schmutz, J Khan, Z Redman, RS Fleck, ND Lindquist, E Grigoriev, IV Doty, SL AF Firrincieli, Andrea Otillar, Robert Salamov, Asaf Schmutz, Jeremy Khan, Zareen Redman, Regina S. Fleck, Neil D. Lindquist, Erika Grigoriev, Igor V. Doty, Sharon L. TI Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1 SO FRONTIERS IN MICROBIOLOGY LA English DT Editorial Material DE symbiosis; endophytes; populus; plant-microbe interactions; endophytic yeast; endophyte genomics; microbiome; phytobiome ID 1000 FUNGAL GENOMES; CRYPTOCOCCUS-NEOFORMANS; MICROBE INTERACTIONS; GENE; METABOLISM; PREDICTION; ACID; IDENTIFICATION; ANNOTATION; RESOURCE C1 [Firrincieli, Andrea] Univ Tuscia, Dept Innovat Biol Agro Food & Forest Syst, Tuscia, Italy. [Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Lindquist, Erika; Grigoriev, Igor V.] US Dept Energy Joint Genome Inst, Walnut Creek, CA USA. [Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL USA. [Khan, Zareen; Fleck, Neil D.; Doty, Sharon L.] Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA. [Redman, Regina S.] Adapt Symbiot Technol, Seattle, WA USA. RP Doty, SL (reprint author), Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA. EM sldoty@u.washington.edu OI Doty, Sharon/0000-0002-9546-315X NR 68 TC 3 Z9 3 U1 2 U2 12 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD SEP 17 PY 2015 VL 6 AR 978 DI 10.3389/fmicb.2015.00978 PG 6 WC Microbiology SC Microbiology GA CR7OW UT WOS:000361541200001 PM 26441909 ER PT J AU Bishop, MM Velisavljevic, N Chellappa, R Vohra, YK AF Bishop, Matthew M. Velisavljevic, Nenad Chellappa, Raja Vohra, Yogesh K. TI High Pressure-Temperature Phase Diagram of 1,1-Diamino-2,2-dinitroethylene (FOX-7) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article; Proceedings Paper CT 70th International Symposium on Molecular Spectroscopy CY JUN 22-26, 2015 CL Champaign, IL ID ENERGY DENSITY MATERIAL; CRYSTALS AB The pressure-temperature (P-T) phase diagram of 1,1-diamino-2,2-dinitroethylene (FOX-7) was determined by in situ synchrotron infrared radiation spectroscopy with the resistively heated diamond anvil cell (DAC) technique. The stability of high-P-T FOX-7 polymorphs is established from ambient pressure up to 10 GPa and temperatures until decomposition. The phase diagram indicates two near isobaric phase boundaries at similar to 2 GPa (alpha -> I) and similar to 5 GPa (I -> II) that persists from 25 degrees C until the, onset of decomposition at similar to 300 degrees C. In addition, the ambient pressure, high-temperature alpha -> beta phase transition (similar to 111 degrees C) lies along a steep boundary (similar to 100 degrees C/GPa) with a alpha-beta-delta triple point at GPa and 300 degrees C. A 0.9 GPa isobaric temperature ramping measurement indicates a limited stability range for the gamma-phase between 0.5 and 0.9 GPa and 180 and 260 degrees C, terminating in a beta-gamma-delta triple point. With increasing pressure, the delta-phase exhibited a small negative dT/dP slope (up to similar to 0.2 GPa) before turning over to a positive 70 degrees C/GPa slope, at higher pressures. The decomposition boundary (similar to 55 degrees C/GPa) was identified through the emergence of spectroscopic signatures of the characteristic decomposition products as well as trapped inclusions within the solid KBr pressure media. C1 [Bishop, Matthew M.; Velisavljevic, Nenad] Los Alamos Natl Lab, Shock & Detonat Phys Grp, Los Alamos, NM 87545 USA. [Chellappa, Raja] Los Alamos Natl Lab, Mat Sci Radiat & Dynam Extremes Grp, Los Alamos, NM 87545 USA. [Bishop, Matthew M.] Univ Alabama Birmingham, Dept Chem, Birmingham, AL 35294 USA. [Vohra, Yogesh K.] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. EM nenad@lanl.gov FU U.S. DOE [DE-AC52-06NA25396]; Science Campaign 2 Program; DOE/NNSA [DE-NA0002014]; Science Campaign 2 under the HE Science Program; DOE Office of Science, Office of Basic Energy Science [DE-AC02-98CH10886]; Consortium for Materials Properties Research in Earth Science (COMPRES), under NSF [EAR01-35554]; U.S. DOE (CDAC) [DEFC03-03N00144] FX Los Alamos National Laboratory LANL is operated by LANS, LLC, for the DOE/NNSA. This work was, in part, supported by the U.S. DOE under contract #DE-AC52-06NA25396 and Science Campaign 2 Program. M.M.B. is supported by the DOE/NNSA under award number DE-NA0002014, and the Science Campaign 2 under the HE Science Program. We thank the Swedish Defense Research Agency (FOI) for the synthesis of the sample. Use of the National Synchrotron Light Source is supported by DOE Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-98CH10886. Beamline U2A is supported by the Consortium for Materials Properties Research in Earth Science (COMPRES), under NSF Cooperative Agreement Grant No. EAR01-35554 and the U.S. DOE (CDAC, Contract No. DEFC03-03N00144). NR 20 TC 7 Z9 7 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 17 PY 2015 VL 119 IS 37 BP 9739 EP 9747 DI 10.1021/acs.jpca.5b07811 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CS1ZL UT WOS:000361867500021 PM 26317366 ER PT J AU Brorsen, KR Willow, SY Xantheas, SS Gordont, MS AF Brorsen, Kurt R. Willow, Soohaeng Yoo Xantheas, Sotiris S. Gordont, Mark S. TI The Melting Temperature of Liquid Water with the Effective Fragment Potential SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL METHOD; 1ST PRINCIPLES SIMULATIONS; LENNARD-JONES SYSTEM; COEXISTENCE PROPERTIES; VIRIAL-COEFFICIENT; ENERGY SURFACE; TRIPLE-POINT; ICE; MODELS AB The direct simulation of the solid liquid water interface with the effective fragment potential (EPP) via the constant enthalpy and pressure (NPH) ensemble was used to estimate the melting temperature (T-m) of ice-I-h. Initial configurations and velocities, taken from equilibrated constant pressure and temperature (NPT) simulations at P = 1 atm and T = 305 K, 325 K and 399 K, respectively, yielded corresponding T., values of 378 +/- 16 K, 382 +/- 14 K and 384 +/- 15 K. These estimates are consistently higher than experiment, albeit to the same degree as previously reported estimates using density functional theory (DFT)-based Born-Oppenheimer simulations with the Becke-Lee-Yang-Parr functional plus dispersion corrections (BLYP-D). C1 [Brorsen, Kurt R.; Gordont, Mark S.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Brorsen, Kurt R.; Gordont, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Willow, Soohaeng Yoo] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Gordont, MS (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM mark@si.msg.chemiastate.edu OI Xantheas, Sotiris/0000-0002-6303-1037 FU Department of Energy; U.S. National Science Foundation [ACI - 1047772]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences FX K.R.B. was supported by a Computational Science Graduate Fellowship from the Department of Energy. M.S.G. was supported by a U.S. National Science Foundation Software Infrastructure (SI2) grant (ACI - 1047772). S.S.X. acknowledges support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. NR 64 TC 2 Z9 2 U1 2 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 17 PY 2015 VL 6 IS 18 BP 3555 EP 3559 DI 10.1021/acs.jpclett.5b01702 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CS1WF UT WOS:000361858800008 PM 26722723 ER PT J AU McCloskey, BD AF McCloskey, Bryan D. TI ocrExpanding the Ragone Plot: Pushing the Limits of Energy Storage SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Editorial Material ID LITHIUM; CAPACITORS; BATTERIES C1 [McCloskey, Bryan D.] Univ Calif Berkeley, Dept Biomol & Chem Engn, Berkeley, CA 94720 USA. [McCloskey, Bryan D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP McCloskey, BD (reprint author), Univ Calif Berkeley, Dept Biomol & Chem Engn, Berkeley, CA 94720 USA. RI McCloskey, Bryan/A-6556-2015 OI McCloskey, Bryan/0000-0001-6599-2336 NR 12 TC 6 Z9 6 U1 4 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 17 PY 2015 VL 6 IS 18 BP 3592 EP 3593 DI 10.1021/acs.jpclett.5b01813 PG 2 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CS1WF UT WOS:000361858800013 PM 26722728 ER PT J AU Smith, RS May, RA Kay, BD AF Smith, R. Scott May, R. Alan Kay, Bruce D. TI Probing Toluene and Ethylbenzene Stable Glass Formation Using Inert Gas Permeation SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID SUPERCOOLED LIQUIDS; VAPOR-DEPOSITION; KINETIC STABILITY; TRANSITION; TEMPERATURE; ENERGY; FILMS AB Inert gas permeation is used to investigate the formation of stable glasses of toluene and ethylbenzene. The effect of deposition temperature (T-dep) on the kinetic stability of the vapor deposited glasses is determined using Kr desorption spectra from within sandwich layers of either toluene or ethylbenzene. The results for toluene show that the most stable glass is formed at T-dep = 0.92 T-g, although glasses with a kinetic stability within 50% of the most stable glass were found with deposition temperatures from 0.85 to 0.95 T-g. Similar results were found for ethylbenzene, which formed its most stable glass at 0.91 T-g and formed stable glasses from 0.81 to 0.96 T-g. These results are consistent with recent calorimetric studies and demonstrate that the inert gas permeation technique provides a direct method to observe the onset of molecular translation motion that accompanies the glass to supercooled liquid transition. C1 [Smith, R. Scott; May, R. Alan; Kay, Bruce D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Smith, RS (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RI Smith, Scott/G-2310-2015 OI Smith, Scott/0000-0002-7145-1963 FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; DOE's Office of Biological and Environmental Research FX This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The research was performed using EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle for the DOE. NR 40 TC 4 Z9 4 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 17 PY 2015 VL 6 IS 18 BP 3639 EP 3644 DI 10.1021/acs.jpclett.5b01611 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CS1WF UT WOS:000361858800020 PM 26722735 ER PT J AU Lowe, R Overhoff, MG Ramagopalanl, SV Garbe, JC Koh, J Stampfer, MR Beach, DH Rakyan, VK Bishop, CL AF Lowe, Robert Overhoff, Marita G. Ramagopalanl, Sreeram V. Garbe, James C. Koh, James Stampfer, Martha R. Beach, David H. Rakyan, Vardhman K. Bishop, Cleo L. TI The senescent methylome and its relationship with cancer, ageing and germline genetic variation in humans SO GENOME BIOLOGY LA English DT Article ID MAMMARY EPITHELIAL-CELLS; GENOME-WIDE ASSOCIATION; DNA METHYLATION; CELLULAR SENESCENCE; FIBROBLASTS; SUPPRESSION; P16(INK4A); EPIGENOME; REVERSAL; ARREST AB Background: Cellular senescence is a stable arrest of proliferation and is considered a key component of processes associated with carcinogenesis and other ageing-related phenotypes. Here, we perform methylome analysis of actively dividing and deeply senescent normal human epithelial cells. Results: We identify senescence-associated differentially methylated positions (senDMPs) from multiple experiments using cells from one donor. We find that human senDMP epigenetic signatures are positively and significantly correlated with both cancer and ageing-associated methylation dynamics. We also identify germline genetic variants, including those associated with the p16INK4A locus, which are associated with the presence of in vivo senDMP signatures. Importantly, we also demonstrate that a single senDMP signature can be effectively reversed in a newly-developed protocol of transient senescence reversal. Conclusions: The senDMP signature has significant potential for understanding some of the key (epi) genetic etiological factors that may lead to cancer and age-related diseases in humans. C1 [Lowe, Robert; Overhoff, Marita G.; Ramagopalanl, Sreeram V.; Beach, David H.; Rakyan, Vardhman K.; Bishop, Cleo L.] Queen Mary Univ London, Blizard Inst, Barts & London Sch Med & Dent, London EL 2AT, England. [Garbe, James C.; Stampfer, Martha R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. [Koh, James] Duke Univ, Sch Med, Dept Surg, Div Surg Sci, Durham, NC 27710 USA. RP Rakyan, VK (reprint author), Queen Mary Univ London, Blizard Inst, Barts & London Sch Med & Dent, 4 Newark St, London EL 2AT, England. EM v.rakyan@qmul.ac.uk; c.l.ishop@qmul.ac.uk FU QMUL Research-IT; EPSRC grant [EP/K000128/1]; EU-FP7 "BLUEPRINT" program [282510] FX This research utilised Queen Mary's MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. RL and VK are supported by the EU-FP7 "BLUEPRINT" program (282510). NR 38 TC 3 Z9 3 U1 2 U2 10 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1465-6906 EI 1474-760X J9 GENOME BIOL JI Genome Biol. PD SEP 17 PY 2015 VL 16 AR 194 DI 10.1186/s13059-015-0748-4 PG 15 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA CR6JH UT WOS:000361452100001 PM 26381124 ER PT J AU Fu, ZQ Chen, WP Wen, HM Morgan, S Chen, F Zheng, BL Zhou, YZ Zhang, LM Lavernia, EJ AF Fu, Zhiqiang Chen, Weiping Wen, Haiming Morgan, Sam Chen, Fei Zheng, Baolong Zhou, Yizhang Zhang, Lianmeng Lavernia, Enrique J. TI Microstructure and mechanical behavior of a novel Co20Ni20Fe20Al20Ti20 alloy fabricated by mechanical alloying and spark plasma sintering SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE High-entropy alloys; Intermetallics; Alloy design; Microstructure; Solid solution ID HIGH-ENTROPY ALLOY; SOLID-SOLUTION PHASE; MULTICOMPONENT ALLOYS; STRENGTHENING MECHANISMS; IN-SITU; CONSOLIDATION; COMPOSITES; STABILITY; ELEMENTS; FIELD AB A novel equiatomic Co20Ni20Fe20Al20Ti20 (at%) alloy was designed and synthesized to study the effect of high atomic concentrations of Al and Ti elements on the microstructure, phase composition and mechanical behavior of high-entropy alloys (HEAs) fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Following the MA process, the Co20Ni20Fe20Al20Ti20 alloy was composed of a primary body-centered cubic (BCC) supersaturated solid solution and a face-centered cubic (FCC) supersaturated solid solution. However, following SPS, a primary FCC solid-solution phase, a BCC solid-solution phase and a trace amount of Al3Ti intermetallics were observed. Transmission electron microscopy (TEM) results confirmed the presence of the FCC solid-solution phase, the BCC (B2-type) solid-solution phase and Al3Ti intermetallics in the bulk alloy. The FCC and B2-type phases are ultrafine-grained, and Al3Ti intermetallics is nano/ultrafine-grained. Our results suggest that consideration of a single existing empirical design criterion is inadequate to explain phase formation in the Co20Ni20Fe20Al20Ti20 alloy. Solid-solution strengthening, grain-boundary strengthening, twin-boundary strengthening, the presence of the strong B2-type BCC phase, and precipitate strengthening due to the presence of a trace amount of Al3Ti are responsible for the ultra-high compressive strength of similar to 2988 MPa and hardness of similar to 704 Hv. The strain-to-failure of similar to 5.8% with visible ductility is dominated by the FCC solid-solution phase. (C) 2015 Elsevier B.V. All rights reserved. C1 [Fu, Zhiqiang; Chen, Weiping] S China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Guangdong, Peoples R China. [Fu, Zhiqiang; Morgan, Sam; Zheng, Baolong; Zhou, Yizhang; Lavernia, Enrique J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Wen, Haiming] Idaho Natl Lab, Characterizat Dept, Idaho Falls, ID 83415 USA. [Chen, Fei; Zhang, Lianmeng] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China. [Lavernia, Enrique J.] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA USA. RP Fu, ZQ (reprint author), S China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Guangdong, Peoples R China. EM kopyhit@163.com; lavernia@uci.edu RI Wen, Haiming/B-3250-2013 OI Wen, Haiming/0000-0003-2918-3966 FU Fundamental Research Funds for the Central Universities, SCUT [2013ZZ014]; Specialized Research Fund for the Doctoral Program of Higher Education [20130172120027]; China Scholarship Council (CSC); US Army Research Office [W911NF-14-1-0627] FX The authors acknowledge the financial support from Fundamental Research Funds for the Central Universities, SCUT (2013ZZ014), from Specialized Research Fund for the Doctoral Program of Higher Education (20130172120027), from the China Scholarship Council (CSC), and from the US Army Research Office (W911NF-14-1-0627). H.M. Wen utilized his private time to perform related work. NR 39 TC 0 Z9 0 U1 15 U2 51 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD SEP 17 PY 2015 VL 644 BP 10 EP 16 DI 10.1016/j.msea.2015.07.052 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA CR3UI UT WOS:000361258200002 ER PT J AU Meng, FQ Rosalie, JM Singh, A Tsuchiya, K AF Meng, Fanqiang Rosalie, Julian M. Singh, Alok Tsuchiya, Koichi TI Precipitation behavior of an ultra-fine grained Mg-Zn alloy processed by high-pressure torsion SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE High pressure torsion; Mg alloy; Ultra-fine grained structure; Ageing treatment; Precipitation ID SEVERE PLASTIC-DEFORMATION; MECHANICAL-PROPERTIES; MAGNESIUM ALLOY; Y ALLOY; DIFFUSION; SUPERPLASTICITY AB Precipitation behavior in severely plastically deformed Mg-3.4 at%Zn was studied by ageing treatment at 348 and 423 K. Microstructural observations reveal two kinds of precipitates: one from the dynamic precipitation during high-pressure torsion processing and the other from the ageing treatment. Precipitates formed from annealing treatment are observed inside of grains after 4 h of annealing at 423 K, while they were not observed at 348 K. Effect of precipitation hardening is balanced by the grain growth and formatidn of precipitates free zones at ageing temperature of 423 K, resulting in the absence of age-hardening effect in ultra-fine grained MgZn prepared by severe plastic deformation. Published by Elsevier B.V. C1 [Meng, Fanqiang; Singh, Alok; Tsuchiya, Koichi] Natl Inst Mat Sci, Struct Mat Unit, Res Ctr Strateg Mat, Tsukuba, Ibaraki 3050047, Japan. [Meng, Fanqiang] Iowa State Univ, Div Mat Sci & Engn, Ames Lab, US DOE, Ames, IA 50010 USA. [Rosalie, Julian M.] Austrian Acad Sci, Erich Schmid Inst Mat Sci, A-8700 Leoben, Austria. [Tsuchiya, Koichi] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058577, Japan. RP Meng, FQ (reprint author), Iowa State Univ, Div Mat Sci & Engn, Ames Lab, US DOE, Ames, IA 50010 USA. EM mengfq@ameslab.gov RI Meng, Fanqiang/C-7211-2015 OI Meng, Fanqiang/0000-0002-8677-8985 FU MEXT, Japan [22102004] FX The authors would like to thank Dr. H. Somekawa (National Institute for Materials Science, Japan) for supplying the extruded materials used in the investigation. This work was supported in part by a Grant-in-Aid for Scientific Research on Innovative Area, "Bulk Nanostructured Metals", through MEXT, Japan (Contract no. 22102004). NR 22 TC 2 Z9 2 U1 8 U2 29 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD SEP 17 PY 2015 VL 644 BP 386 EP 391 DI 10.1016/j.msea.2015.07.086 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA CR3UI UT WOS:000361258200044 ER PT J AU Doherty, DT Woods, PJ Seweryniak, D Albers, M Ayangeakaa, AD Carpenter, MP Chiara, CJ David, HM Harker, JL Janssens, RVF Kankainen, A Lederer, C Zhu, S AF Doherty, D. T. Woods, P. J. Seweryniak, D. Albers, M. Ayangeakaa, A. D. Carpenter, M. P. Chiara, C. J. David, H. M. Harker, J. L. Janssens, R. V. F. Kankainen, A. Lederer, C. Zhu, S. TI Structure of resonances in the Gamow burning window for the Al-25(p, gamma)Si-26 reaction in novae SO PHYSICAL REVIEW C LA English DT Article ID MASSIVE STARS; NUCLEOSYNTHESIS AB A gamma-ray spectroscopy study of excited states in Si-26 has been performed by using the Mg-24(He-3,n) reaction at a beam energy of 10 MeV. In particular, states have been studied above the proton threshold relevant for burning in the Al-25(p,gamma)Si-26 reaction in novae. This reaction influences the amount of Al-26 injected into the interstellar medium by novae, which contributes to the overall flux of cosmic gamma-ray emission from Al-26 observed in satellite missions. The present results point strongly to the existence of a 0(+) state at an excitation energy of 5890 keV lying within the Gamow burning window, which raises questions about the existence and properties of another, higher-lying state reported in previous experimental work. The existence of two such states within this excitation energy region cannot be understood within the framework of sd-shell-model calculations. C1 [Doherty, D. T.; Woods, P. J.; Kankainen, A.; Lederer, C.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Doherty, D. T.] CEA, Ctr Saclay, IRFU Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Seweryniak, D.; Albers, M.; Ayangeakaa, A. D.; Carpenter, M. P.; Chiara, C. J.; David, H. M.; Harker, J. L.; Janssens, R. V. F.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.; Harker, J. L.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Doherty, DT (reprint author), Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. RI Carpenter, Michael/E-4287-2015; Kankainen, Anu/K-3448-2014 OI Carpenter, Michael/0000-0002-3237-5734; Kankainen, Anu/0000-0003-1082-7602 FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-O6CH11357]; STFC; Austrian Science Fund [(FWF): J3503]; DoE [DE-FG02-94ER40834] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-O6CH11357. This research used resources of ANL's ATLAS facility which is a DOE office of Science User Facility. D.T.D., P.J.W., A.K., and C.L. would like to thank the STFC for support, C.L. acknowledges support from the Austrian Science Fund (FWF): J3503. UMCP personnel acknowledge support from DoE Grant No. DE-FG02-94ER40834. P.J.W. would like to thank Alex Brown for many stimulating remarks on issues raised in this paper. NR 26 TC 4 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD SEP 17 PY 2015 VL 92 IS 3 AR 035808 DI 10.1103/PhysRevC.92.035808 PG 6 WC Physics, Nuclear SC Physics GA CR4LB UT WOS:000361302400005 ER PT J AU Vogt, R AF Vogt, R. TI Shadowing effects on J/psi and Upsilon production at energies available at the CERN Large Hadron Collider SO PHYSICAL REVIEW C LA English DT Article ID PROTON-NUCLEUS COLLISIONS; EXPECTATIONS VS. DATA; HEAVY-ION COLLISIONS; PLUS PB COLLISIONS; PARTON DISTRIBUTIONS; QUARKONIUM PRODUCTION; FIXED-TARGET; LHC; TEV; PREDICTIONS AB Background: Proton-nucleus collisions have been used as a intermediate baseline for the determination of cold-medium effects. They lie between proton-proton collisions in vacuum and nucleus-nucleus collisions which are expected to be dominated by hot-matter effects. Modifications of the quark densities in nuclei relative to those of the proton are well established, although those of the gluons in the nucleus are not well understood. The effect of these modifications on quarkonium production are studied in proton-lead collisions at the CERN Large Hadron Collider (LHC) at a center-of-mass energy of 5.02 TeV. Purpose: The possibility of whether the LHC proton-lead data can be described by nuclear modifications of the parton densities, referred to as shadowing, alone is examined. The results are compared to the nuclear modification factor and to the forward-backward ratio, as a function of both transverse momentum, p(T), and rapidity, y. Methods: The color evaporation model of quarkonium production is employed at next-to-leading order (NLO) in the total cross section and leading order in the transverse momentum dependence. The EPS09 NLO modifications are used as a standard of comparison. The effect of the proton parton density and the choice of shadowing parametrization on the p(T) and rapidity dependence of the result is studied. The consistency of the shadowing calculations at LO and NLO are checked. The size of the mass and scale uncertainties relative to the uncertainty on the shadowing parametrization is also investigated. Finally, whether the expected cold-matter effect in nucleus-nucleus collisions can be modeled as the product of proton-nucleus results at forward and backward rapidity is studied. Results: The rapidity and pT dependence of the nuclear modification factor is found to be generally consistent with the NLO calculations in the color evaporation model. The forward-backward ratio is more difficult to describe with shadowing alone. The LO and NLO calculations are inconsistent for EPS09, while other available parametrizations are consistent. The mass and scale uncertainties on quarkonium production are larger than those of the nuclear parton densities. Conclusions: While shadowing is consistent with the nuclear suppression factors within the uncertainties, it is not consistent with the measured forward-backward asymmetry, especially as a function of transverse momentum. Data from p + p collisions at the same energy are needed. C1 [Vogt, R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU U.S. Department of Energy, Lawrence Livermore National Laboratory, Office of Science, Office of Nuclear Physics (Nuclear Theory) [DE-AC52-07NA27344, SCW1541] FX The numerical values of the ratios shown in this paper are available from the author. I thank R. Arnaldi, W. Brooks, K. J. Eskola, and E. Scomparin for discussions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Office of Science, Office of Nuclear Physics (Nuclear Theory) Field Work Proposal No. SCW1541. NR 68 TC 8 Z9 8 U1 2 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD SEP 17 PY 2015 VL 92 IS 3 AR 034909 DI 10.1103/PhysRevC.92.034909 PG 34 WC Physics, Nuclear SC Physics GA CR4LB UT WOS:000361302400003 ER PT J AU Adamson, P Anghel, I Ashby, N Aurisano, A Barr, G Bishai, M Blake, A Bock, GJ Bogert, D Bumgarner, R Cao, SV Castromonte, CM Childress, S Coelho, JAB Corwin, L Cronin-Hennessy, D de Jong, JK Devan, AV Devenish, NE Diwan, MV Escobar, CO Evans, JJ Falk, E Feldman, GJ Fonville, B Frohne, MV Gallagher, HR Gomes, RA Goodman, MC Gouffon, P Graf, N Gran, R Grzelak, K Habig, A Hahn, SR Hartnell, J Hatcher, R Hirschauer, J Holin, A Huang, J Hylen, J Irwin, GM Isvan, Z James, C Jefferts, SR Jensen, D Kafka, T Kasahara, SMS Koizumi, G Kordosky, M Kreymer, A Lang, K Ling, J Litchfield, PJ Lucas, P Mann, WA Marshak, ML Matsakis, D Mayer, N McKinley, A McGivern, C Medeiros, MM Mehdiyev, R Meier, JR Messier, MD Miller, WH Mishra, SR Mitchell, S Sher, SM Moore, CD Mualem, L Musser, J Naples, D Nelson, JK Newman, HB Nichol, RJ Nowak, JA O'Connor, J Orchanian, M Pahlka, RB Paley, J Parker, TE Patterson, RB Pawloski, G Perch, A Phan-Budd, S Plunkett, RK Poonthottathil, N Powers, E Qiu, X Radovic, A Rebel, B Ridl, K Romisch, S Rosenfeld, C Rubin, HA Sanchez, MC Schneps, J Schreckenberger, A Schreiner, P Sharma, R Sousa, A Tagg, N Talaga, RL Thomas, J Thomson, MA Tian, X Timmons, A Tognini, SC Toner, R Torretta, D Urheim, J Vahle, P Viren, B Weber, A Webb, RC White, C Whitehead, L Whitehead, LH Wojcicki, SG Wright, J Zhang, V Zwaska, R AF Adamson, P. Anghel, I. Ashby, N. Aurisano, A. Barr, G. Bishai, M. Blake, A. Bock, G. J. Bogert, D. Bumgarner, R. Cao, S. V. Castromonte, C. M. Childress, S. Coelho, J. A. B. Corwin, L. Cronin-Hennessy, D. de Jong, J. K. Devan, A. V. Devenish, N. E. Diwan, M. V. Escobar, C. O. Evans, J. J. Falk, E. Feldman, G. J. Fonville, B. Frohne, M. V. Gallagher, H. R. Gomes, R. A. Goodman, M. C. Gouffon, P. Graf, N. Gran, R. Grzelak, K. Habig, A. Hahn, S. R. Hartnell, J. Hatcher, R. Hirschauer, J. Holin, A. Huang, J. Hylen, J. Irwin, G. M. Isvan, Z. James, C. Jefferts, S. R. Jensen, D. Kafka, T. Kasahara, S. M. S. Koizumi, G. Kordosky, M. Kreymer, A. Lang, K. Ling, J. Litchfield, P. J. Lucas, P. Mann, W. A. Marshak, M. L. Matsakis, D. Mayer, N. McKinley, A. McGivern, C. Medeiros, M. M. Mehdiyev, R. Meier, J. R. Messier, M. D. Miller, W. H. Mishra, S. R. Mitchell, S. Sher, S. Moed Moore, C. D. Mualem, L. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Nowak, J. A. O'Connor, J. Orchanian, M. Pahlka, R. B. Paley, J. Parker, T. E. Patterson, R. B. Pawloski, G. Perch, A. Phan-Budd, S. Plunkett, R. K. Poonthottathil, N. Powers, E. Qiu, X. Radovic, A. Rebel, B. Ridl, K. Roemisch, S. Rosenfeld, C. Rubin, H. A. Sanchez, M. C. Schneps, J. Schreckenberger, A. Schreiner, P. Sharma, R. Sousa, A. Tagg, N. Talaga, R. L. Thomas, J. Thomson, M. A. Tian, X. Timmons, A. Tognini, S. C. Toner, R. Torretta, D. Urheim, J. Vahle, P. Viren, B. Weber, A. Webb, R. C. White, C. Whitehead, L. Whitehead, L. H. Wojcicki, S. G. Wright, J. Zhang, V. Zwaska, R. CA MINOS Collaboration NIST USNO TI Precision measurement of the speed of propagation of neutrinos using the MINOS detectors SO PHYSICAL REVIEW D LA English DT Article ID BURST AB We report a two-detector measurement of the propagation speed of neutrinos over a baseline of 734 km. The measurement was made with the NuMI beam at Fermilab between the near and far MINOS detectors. The fractional difference between the neutrino speed and the speed of light is determined to be (v/c - 1) = (1.0 +/- 1.1) x 10(-6), consistent with relativistic neutrinos. C1 [Anghel, I.; Goodman, M. C.; Paley, J.; Phan-Budd, S.; Sanchez, M. C.; Schreiner, P.; Talaga, R. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bishai, M.; Diwan, M. V.; Isvan, Z.; Ling, J.; Viren, B.; Whitehead, L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Mualem, L.; Newman, H. B.; Orchanian, M.; Patterson, R. B.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. [Blake, A.; Thomson, M. A.; Toner, R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Coelho, J. A. B.; Escobar, C. O.] Univ Estadual Campinas, IFGW UNICAMP, BR-13083970 Campinas, SP, Brazil. [Aurisano, A.; Sousa, A.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Adamson, P.; Bock, G. J.; Bogert, D.; Childress, S.; Hahn, S. R.; Hatcher, R.; Hylen, J.; James, C.; Jensen, D.; Koizumi, G.; Kreymer, A.; Lucas, P.; Sher, S. Moed; Moore, C. D.; Pahlka, R. B.; Plunkett, R. K.; Poonthottathil, N.; Rebel, B.; Sharma, R.; Torretta, D.; Zwaska, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Castromonte, C. M.; Gomes, R. A.; Medeiros, M. M.; Tognini, S. C.] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil. [Feldman, G. J.; Sousa, A.; Toner, R.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Frohne, M. V.] Coll Holy Cross, Notre Dame, IN 46556 USA. [Whitehead, L.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Graf, N.; Rubin, H. A.; White, C.] IIT, Dept Phys, Chicago, IL 60616 USA. [Corwin, L.; Mayer, N.; Messier, M. D.; Musser, J.; Urheim, J.] Indiana Univ, Bloomington, IN 47405 USA. [Anghel, I.; Sanchez, M. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Holin, A.; Nichol, R. J.; O'Connor, J.; Perch, A.; Thomas, J.; Whitehead, L. H.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Evans, J. J.; Timmons, A.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Cronin-Hennessy, D.; Kasahara, S. M. S.; Litchfield, P. J.; Marshak, M. L.; Meier, J. R.; Miller, W. H.; Nowak, J. A.; Pawloski, G.; Schreckenberger, A.] Univ Minnesota, Minneapolis, MN 55455 USA. [Gran, R.; Habig, A.; Ridl, K.] Univ Minnesota, Dept Phys & Astron, Duluth, MN 55812 USA. [Tagg, N.] Otterbein Coll, Westerville, OH 43081 USA. [Barr, G.; de Jong, J. K.; Weber, A.] Univ Oxford, Subdept Particle Phys, Oxford OX1 3RH, England. [Isvan, Z.; McGivern, C.; Naples, D.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Litchfield, P. J.; Weber, A.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Gouffon, P.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil. [Mishra, S. R.; Rosenfeld, C.; Tian, X.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Irwin, G. M.; Pawloski, G.; Qiu, X.; Wojcicki, S. G.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Devenish, N. E.; Falk, E.; Hartnell, J.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Webb, R. C.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Cao, S. V.; Huang, J.; Lang, K.; Mehdiyev, R.; Schreckenberger, A.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Coelho, J. A. B.; Gallagher, H. R.; Kafka, T.; Mann, W. A.; Mayer, N.; Schneps, J.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Grzelak, K.] Univ Warsaw, Dept Phys, PL-02093 Warsaw, Poland. [Devan, A. V.; Kordosky, M.; Nelson, J. K.; Radovic, A.; Vahle, P.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Ashby, N.; Jefferts, S. R.; Parker, T. E.; Roemisch, S.; Zhang, V.] NIST, Div Time & Frequency, Boulder, CO 80305 USA. [Bumgarner, R.; Fonville, B.; Hirschauer, J.; Matsakis, D.; McKinley, A.; Mitchell, S.; Powers, E.; Wright, J.] US Naval Observ, Washington, DC 20392 USA. RP Adamson, P (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Inst. of Physics, Gleb Wataghin/A-9780-2017; Gomes, Ricardo/B-6899-2008; Castromonte Flores, Cesar Manuel/O-6177-2014; Evans, Justin/P-4981-2014; Gouffon, Philippe/I-4549-2012; Nowak, Jaroslaw/P-2502-2016; Ling, Jiajie/I-9173-2014 OI Cao, Son/0000-0002-9046-5324; Weber, Alfons/0000-0002-8222-6681; Tagg, Nathaniel/0000-0001-5820-643X; Corwin, Luke/0000-0001-7143-3821; Hartnell, Jeffrey/0000-0002-1744-7955; Gomes, Ricardo/0000-0003-0278-4876; Castromonte Flores, Cesar Manuel/0000-0002-9559-3704; Evans, Justin/0000-0003-4697-3337; Gouffon, Philippe/0000-0001-7511-4115; Nowak, Jaroslaw/0000-0001-8637-5433; Ling, Jiajie/0000-0003-2982-0670 FU U.S. DOE; United Kingdom STFC; U.S. NSF; State and University of Minnesota; Brazil FAPESP; Brazil CNPq; Brazil CAPES; U.S. Department of Energy [De-AC02-07CH11359] FX This work was supported by the U.S. DOE; the United Kingdom STFC; the U.S. NSF; the State and University of Minnesota; Brazil's FAPESP, CNPq, and CAPES. We are grateful to the Minnesota Department of Natural Resources and the personnel of the Soudan Laboratory, Fermilab, and USNO. We thank the Texas Advanced Computing Center at The University of Texas at Austin for the provision of computing resources. Fermilab is operated by the Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the U.S. Department of Energy. NR 33 TC 2 Z9 2 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD SEP 17 PY 2015 VL 92 IS 5 AR 052005 DI 10.1103/PhysRevD.92.052005 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CR4LI UT WOS:000361303200002 ER PT J AU Kronenbitter, B Heck, M Goldenzweig, P Kuhr, T Abdesselam, A Adachi, I Aihara, H Al Said, S Arinstein, K Asner, DM Aushev, T Ayad, R Aziz, T Bakich, AM Bansal, V Barberio, E Bhardwaj, V Bondar, A Bonvicini, G Bozek, A Bracko, M Browder, TE Cervenkov, D Chekelian, V Chen, A Cheon, BG Chilikin, K Chistov, R Cho, K Chobanova, V Choi, Y Cinabro, D Dalseno, J Danilov, M Dingfelder, J Dolezal, Z Drasal, Z Drutskoy, A Dutta, D Eidelman, S Epifanov, D Farhat, H Fast, JE Ferber, T Frost, O Fulsom, BG Gaur, V Gabyshev, N Garmash, A Getzkow, D Gillard, R Glattauer, R Golob, B Grygier, J Hayasaka, K Hayashii, H He, XH Heider, M Heller, A Horiguchi, T Huschle, M Iijima, T Inami, K Ishikawa, A Itoh, R Iwasaki, Y Jaegle, I Joo, KK Julius, T Kang, KH Kato, E Kim, DY Kim, HJ Kim, JB Kim, JH Kim, KT Kim, MJ Kim, SH Kim, YJ Kinoshita, K Ko, BR Kodys, P Krizan, P Krokovny, P Kuzmin, A Kwon, YJ Lange, JS Lee, DH Lee, IS Lewis, P Gioi, LL Libby, J Liventsev, D Lukin, P Matvienko, D Miyata, H Mizuk, R Mohanty, GB Mohanty, S Moll, A Moon, HK Mussa, R Nakano, E Nakao, M Nanut, T Natkaniec, Z Nayak, M Nisar, NK Nishida, S Okuno, S Olsen, SL Ostrowicz, W Oswald, C Pakhlov, P Pakhlova, G Park, H Pedlar, TK Pesantez, L Pestotnik, R Petric, M Piilonen, LE Pulvermacher, C Ribezl, E Ritter, M Rostomyan, A Ryu, S Sakai, Y Santelj, L Sanuki, T Sato, Y Savinov, V Schneider, O Schnell, G Schram, M Schwanda, C Schwartz, AJ Senyo, K Seon, O Sevior, ME Shebalin, V Shibata, TA Shiu, JG Shwartz, B Sibidanov, A Simon, F Sohn, YS Sokolov, A Solovieva, E Stanic, S Staric, M Steder, M Sumiyoshi, T Tamponi, U Teramoto, Y Trabelsi, K Uchida, M Uehara, S Uglov, T Unno, Y Uno, S Urquijo, P Usov, Y Van Hulse, C Vanhoefer, P Varner, G Vinokurova, A Vossen, A Wagner, MN Wang, CH Wang, MZ Wang, P Watanabe, M Watanabe, Y Williams, KM Won, E Yamamoto, H Yashchenko, S Yook, Y Zhang, ZP Zhilich, V Zhulanov, V Ziegler, M Zupanc, A AF Kronenbitter, B. Heck, M. Goldenzweig, P. Kuhr, T. Abdesselam, A. Adachi, I. Aihara, H. Al Said, S. Arinstein, K. Asner, D. M. Aushev, T. Ayad, R. Aziz, T. Bakich, A. M. Bansal, V. Barberio, E. Bhardwaj, V. Bondar, A. Bonvicini, G. Bozek, A. Bracko, M. Browder, T. E. Cervenkov, D. Chekelian, V. Chen, A. Cheon, B. G. Chilikin, K. Chistov, R. Cho, K. Chobanova, V. Choi, Y. Cinabro, D. Dalseno, J. Danilov, M. Dingfelder, J. Dolezal, Z. Drasal, Z. Drutskoy, A. Dutta, D. Eidelman, S. Epifanov, D. Farhat, H. Fast, J. E. Ferber, T. Frost, O. Fulsom, B. G. Gaur, V. Gabyshev, N. Garmash, A. Getzkow, D. Gillard, R. Glattauer, R. Golob, B. Grygier, J. Hayasaka, K. Hayashii, H. He, X. H. Heider, M. Heller, A. Horiguchi, T. Huschle, M. Iijima, T. Inami, K. Ishikawa, A. Itoh, R. Iwasaki, Y. Jaegle, I. Joo, K. K. Julius, T. Kang, K. H. Kato, E. Kim, D. Y. Kim, H. J. Kim, J. B. Kim, J. H. Kim, K. T. Kim, M. J. Kim, S. H. Kim, Y. J. Kinoshita, K. Ko, B. R. Kodys, P. Krizan, P. Krokovny, P. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Lee, D. H. Lee, I. S. Lewis, P. Gioi, L. Li Libby, J. Liventsev, D. Lukin, P. Matvienko, D. Miyata, H. Mizuk, R. Mohanty, G. B. Mohanty, S. Moll, A. Moon, H. K. Mussa, R. Nakano, E. Nakao, M. Nanut, T. Natkaniec, Z. Nayak, M. Nisar, N. K. Nishida, S. Okuno, S. Olsen, S. L. Ostrowicz, W. Oswald, C. Pakhlov, P. Pakhlova, G. Park, H. Pedlar, T. K. Pesantez, L. Pestotnik, R. Petric, M. Piilonen, L. E. Pulvermacher, C. Ribezl, E. Ritter, M. Rostomyan, A. Ryu, S. Sakai, Y. Santelj, L. Sanuki, T. Sato, Y. Savinov, V. Schneider, O. Schnell, G. Schram, M. Schwanda, C. Schwartz, A. J. Senyo, K. Seon, O. Sevior, M. E. Shebalin, V. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Sibidanov, A. Simon, F. Sohn, Y. -S. Sokolov, A. Solovieva, E. Stanic, S. Staric, M. Steder, M. Sumiyoshi, T. Tamponi, U. Teramoto, Y. Trabelsi, K. Uchida, M. Uehara, S. Uglov, T. Unno, Y. Uno, S. Urquijo, P. Usov, Y. Van Hulse, C. Vanhoefer, P. Varner, G. Vinokurova, A. Vossen, A. Wagner, M. N. Wang, C. H. Wang, M. -Z Wang, P. Watanabe, M. Watanabe, Y. Williams, K. M. Won, E. Yamamoto, H. Yashchenko, S. Yook, Y. Zhang, Z. P. Zhilich, V. Zhulanov, V. Ziegler, M. Zupanc, A. CA Belle Collaboration TI Measurement of the branching fraction of B+ -> tau(+)nu(tau) decays with the semileptonic tagging method SO PHYSICAL REVIEW D LA English DT Article ID DETECTOR; PACKAGE AB We report a measurement of the branching fraction of B+ -> tau(+) nu(tau) decays using a data sample of 772 x 10(6) B (B) over bar pairs, collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. We reconstruct the accompanying B meson in a semileptonic decay and detect the recoiling B candidate in the decay channel B+ -> tau(+) nu(tau). We obtain a branching fraction of B(B+ -> tau(+) nu(tau)) = [1.25 +/- 0.28(stat.) +/- 0.27(syst.)] x 10-(4). This result is in good agreement with previous measurements and the expectation from the calculation based on the Standard Model. C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country UPV EHU, Bilbao 48080, Spain. [Dingfelder, J.; Oswald, C.; Pesantez, L.] Univ Bonn, D-53115 Bonn, Germany. [Arinstein, K.; Bondar, A.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Usov, Y.; Vinokurova, A.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Cervenkov, D.; Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Joo, K. K.] Chonnam Natl Univ, Kwangju 660701, South Korea. [Kinoshita, K.; Schwartz, A. J.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Frost, O.; Rostomyan, A.; Steder, M.; Yashchenko, S.] DESY, D-22607 Hamburg, Germany. [Getzkow, D.; Lange, J. S.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Adachi, I.; Itoh, R.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K.; Uehara, S.; Uno, S.] Grad Univ Adv Studies, Hayama 2400193, Japan. [Cheon, B. G.; Kim, S. H.; Lee, I. S.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Jaegle, I.; Lewis, P.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Itoh, R.; Iwasaki, Y.; Liventsev, D.; Nakao, M.; Nishida, S.; Sakai, Y.; Santelj, L.; Trabelsi, K.; Uehara, S.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Schnell, G.] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain. [Dutta, D.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Libby, J.; Nayak, M.] Indian Inst Technol Madras, Madras 600036, Tamil Nadu, India. [Vossen, A.] Indiana Univ, Bloomington, IN 47408 USA. [Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Glattauer, R.; Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Sokolov, A.] Inst High Energy Phys, Protvino 142281, Russia. [Mussa, R.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Aushev, T.; Chilikin, K.; Chistov, R.; Danilov, M.; Drutskoy, A.; Mizuk, R.; Pakhlov, P.; Pakhlova, G.; Solovieva, E.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Golob, B.; Krizan, P.; Nanut, T.; Pestotnik, R.; Petric, M.; Ribezl, E.; Staric, M.; Zupanc, A.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Kronenbitter, B.; Heck, M.; Goldenzweig, P.; Grygier, J.; Heider, M.; Heller, A.; Huschle, M.; Pulvermacher, C.; Ziegler, M.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Al Said, S.] King Abdulaziz Univ, Fac Sci, Dept Phys, Jeddah 21589, Saudi Arabia. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kim, J. B.; Kim, K. T.; Ko, B. R.; Lee, D. H.; Moon, H. K.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Kang, K. H.; Kim, H. J.; Kim, M. J.; Park, H.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Kuhr, T.] Univ Munich, D-80539 Munich, Germany. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Chekelian, V.; Chobanova, V.; Dalseno, J.; Gioi, L. Li; Moll, A.; Ritter, M.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barberio, E.; Julius, T.; Sevior, M. E.; Urquijo, P.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Danilov, M.; Drutskoy, A.; Mizuk, R.; Pakhlov, P.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Aushev, T.; Pakhlova, G.; Uglov, T.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Iijima, T.; Inami, K.; Sato, Y.; Seon, O.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Hayasaka, K.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Bhardwaj, V.; Hayashii, H.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Shiu, J. -G.; Wang, M. -Z] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Natkaniec, Z.; Ostrowicz, W.] H Niewodniczanski Inst Nucl Phys, Krakow 31342, Poland. [Miyata, H.; Watanabe, M.] Niigata Univ, Niigata 9502181, Japan. [Stanic, S.] Univ Nova Gor, Nova Gorica 5000, Slovenia. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Bansal, V.; Fast, J. E.; Fulsom, B. G.; Schram, M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [He, X. H.] Peking Univ, Beijing 100871, Peoples R China. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Olsen, S. L.; Ryu, S.] Seoul Natl Univ, Seoul 151742, South Korea. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Choi, Y.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.; Sibidanov, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdesselam, A.; Al Said, S.; Ayad, R.] Univ Tabuk, Fac Sci, Dept Phys, Tabuk 71451, Saudi Arabia. [Aziz, T.; Mohanty, G. B.; Mohanty, S.; Nisar, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Horiguchi, T.; Ishikawa, A.; Kato, E.; Sanuki, T.; Yamamoto, H.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Aihara, H.; Epifanov, D.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Tamponi, U.] Univ Turin, I-10124 Turin, Italy. [Mohanty, S.] Utkal Univ, Bhubaneswar 751004, Orissa, India. [Liventsev, D.; Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Bonvicini, G.; Cinabro, D.; Farhat, H.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Kwon, Y. -J.; Sohn, Y. -S.; Yook, Y.] Yonsei Univ, Seoul 120749, South Korea. [Arinstein, K.; Bondar, A.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Usov, Y.; Vinokurova, A.; Zhilich, V.; Zhulanov, V.] RAS, SB, Budker Inst Nucl Phys, Novosibirsk 630090, Russia. RP Kronenbitter, B (reprint author), Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. RI Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016; Cervenkov, Daniel/D-2884-2017; Faculty of, Sciences, KAU/E-7305-2017; Aihara, Hiroaki/F-3854-2010; Pakhlova, Galina/C-5378-2014; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Chilikin, Kirill/B-4402-2014; EPFL, Physics/O-6514-2016; Solovieva, Elena/B-2449-2014 OI Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422; Cervenkov, Daniel/0000-0002-1865-741X; Aihara, Hiroaki/0000-0002-1907-5964; Pakhlova, Galina/0000-0001-7518-3022; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667; Chilikin, Kirill/0000-0001-7620-2053; Solovieva, Elena/0000-0002-5735-4059 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; Japan Society for the Promotion of Science (JSPS); Tau-Lepton Physics Research Center of Nagoya University; Australian Research Council; Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund [P 22742-N16, P 26794-N20]; National Natural Science Foundation of China [10575109, 10775142, 10875115, 11175187, 11475187]; Ministry of Education, Youth and Sports of the Czech Republic [LG14034]; Carl Zeiss Foundation; Deutsche Forschungsgemeinschaft; VolkswagenStiftung; Department of Science and Technology of India; Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea [2011-0029457, 2012-0008143, 2012R1A1A2008330, 2013R1A1A3007772, 2014R1A2A2A01005286, 2014R1A2A2A01002734, 2014R1A1A2006456]; Basic Research Lab program under NRF [KRF-2011-0020333, KRF-2011-0021196]; Center for Korean J-PARC [NRF-2013K1A3A7A06056592]; Brain Korea 21-Plus program; Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information; Polish Ministry of Science and Higher Education; National Science Center; Ministry of Education and Science of the Russian Federation; Russian Foundation for Basic Research; Slovenian Research Agency; Basque Foundation for Science (IKERBASQUE) (Spain); Euskal Herriko Unibertsitatea (UPV/EHU) (Spain) [UFI 11/55]; Swiss National Science Foundation; National Science Council; Ministry of Education of Taiwan; U.S. Department of Energy; National Science Foundation; MEXT; JSPS FX We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; Austrian Science Fund under Grant No. P 22742-N16 and P 26794-N20; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10875115, No. 11175187, and No. 11475187; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LG14034; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2011-0029457, No. 2012-0008143, No. 2012R1A1A2008330, No. 2013R1A1A3007772, No. 2014R1A2A2A01005286, No. 2014R1A2A2A01002734, and No. 2014R1A1A2006456; the Basic Research Lab program under NRF Grants No. KRF-2011-0020333 and No. KRF-2011-0021196, Center for Korean J-PARC Users, No. NRF-2013K1A3A7A06056592; the Brain Korea 21-Plus program and the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Research; the Slovenian Research Agency; the Basque Foundation for Science (IKERBASQUE) and the Euskal Herriko Unibertsitatea (UPV/EHU) under program UFI 11/55 (Spain); the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area ("New Development of Flavor Physics") and from JSPS for Creative Scientific Research ("Evolution of Tau-lepton Physics"). NR 22 TC 14 Z9 14 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD SEP 17 PY 2015 VL 92 IS 5 AR 051102 DI 10.1103/PhysRevD.92.051102 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CR4LI UT WOS:000361303200001 ER PT J AU Backes, D Macia, F Bonetti, S Kukreja, R Ohldag, H Kent, AD AF Backes, D. Macia, F. Bonetti, S. Kukreja, R. Ohldag, H. Kent, A. D. TI Direct Observation of a Localized Magnetic Soliton in a Spin-Transfer Nanocontact SO PHYSICAL REVIEW LETTERS LA English DT Article ID CIRCULAR-DICHROISM; DROPLET SOLITONS; NANO-OSCILLATORS; TORQUE; WAVES AB We report the direct observation of a localized magnetic soliton in a spin-transfer nanocontact using scanning transmission x-ray microscopy. Experiments are conducted on a lithographically defined 150 nm diameter nanocontact to an ultrathin ferromagnetic multilayer with perpendicular magnetic anisotropy. Element-resolved x-ray magnetic circular dichroism images show an abrupt onset of a magnetic soliton excitation localized beneath the nanocontact at a threshold current. However, the amplitude of the excitation similar or equal to 25 degrees at the contact center is far less than that predicted (<= 180 degrees), showing that the spin dynamics is not described by existing models. C1 [Backes, D.; Macia, F.; Ohldag, H.; Kent, A. D.] NYU, Dept Phys, New York, NY 10003 USA. [Macia, F.] Univ Barcelona, Dept Fis Fonamental, Grp Magnetisme, E-08028 Barcelona, Spain. [Bonetti, S.; Kukreja, R.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Bonetti, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Kukreja, R.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Ohldag, H.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Backes, D (reprint author), NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. EM dirk.backes@web.de RI Bonetti, Stefano/A-9737-2009; Backes, Dirk/K-3570-2012; Macia, Ferran/B-6457-2014; Ohldag, Hendrik/F-1009-2014 OI Bonetti, Stefano/0000-0001-9352-2411; Backes, Dirk/0000-0002-1019-3323; Macia, Ferran/0000-0001-5972-4810; FU European Commission [MC-IOF 253214]; Catalan Government COFUND-FP7; Spanish Government [MAT2011-23698]; Knut and Alice Wallenberg Foundation; U.S. Army Research Office ARO-MURI [W911NF-08-1-0317]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-AC02-76SF00515]; [NSF-DMR-1309202] FX We thank Mark Hoefer for his discussions of and comments on this manuscript. F. M. acknowledges support from the European Commission (Grant No. MC-IOF 253214), from Catalan Government COFUND-FP7, and from the Spanish Government (Grant No. MAT2011-23698.) S. B. gratefully acknowledges support from the Knut and Alice Wallenberg Foundation. This research was supported by NSF-DMR-1309202 and in part by U.S. Army Research Office ARO-MURI Grant No. W911NF-08-1-0317. STNOs were fabricated at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886. Experiments at the Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory are supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. NR 22 TC 7 Z9 7 U1 4 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 17 PY 2015 VL 115 IS 12 AR 127205 DI 10.1103/PhysRevLett.115.127205 PG 5 WC Physics, Multidisciplinary SC Physics GA CR4QC UT WOS:000361320400006 PM 26431016 ER PT J AU Sanford, J Brewer, W Smith, F Baumgardner, J AF Sanford, John Brewer, Wesley Smith, Franzine Baumgardner, John TI The waiting time problem in a model hominin population SO THEORETICAL BIOLOGY AND MEDICAL MODELLING LA English DT Article DE Biological information; Text strings; Nucleotide strings; Waiting time; Functional threshold; Evolution; Mutation density; Numerical simulation; Mendel's Accountant ID BENEFICIAL MUTATIONS; EVOLUTION; SEQUENCES; RATES AB Background: Functional information is normally communicated using specific, context-dependent strings of symbolic characters. This is true within the human realm (texts and computer programs), and also within the biological realm (nucleic acids and proteins). In biology, strings of nucleotides encode much of the information within living cells. How do such information-bearing nucleotide strings arise and become established? Methods: This paper uses comprehensive numerical simulation to understand what types of nucleotide strings can realistically be established via the mutation/selection process, given a reasonable timeframe. The program Mendel's Accountant realistically simulates the mutation/selection process, and was modified so that a starting string of nucleotides could be specified, and a corresponding target string of nucleotides could be specified. We simulated a classic pre-human hominin population of at least 10,000 individuals, with a generation time of 20 years, and with very strong selection (50 % selective elimination). Random point mutations were generated within the starting string. Whenever an instance of the target string arose, all individuals carrying the target string were assigned a specified reproductive advantage. When natural selection had successfully amplified an instance of the target string to the point of fixation, the experiment was halted, and the waiting time statistics were tabulated. Using this methodology we tested the effect of mutation rate, string length, fitness benefit, and population size on waiting time to fixation. Results: Biologically realistic numerical simulations revealed that a population of this type required inordinately long waiting times to establish even the shortest nucleotide strings. To establish a string of two nucleotides required on average 84 million years. To establish a string of five nucleotides required on average 2 billion years. We found that waiting times were reduced by higher mutation rates, stronger fitness benefits, and larger population sizes. However, even using the most generous feasible parameters settings, the waiting time required to establish any specific nucleotide string within this type of population was consistently prohibitive. Conclusion: We show that the waiting time problem is a significant constraint on the macroevolution of the classic hominin population. Routine establishment of specific beneficial strings of two or more nucleotides becomes very problematic. C1 [Sanford, John] Cornell Univ, Dept Hort, NYSAES, Geneva, NY 14456 USA. [Brewer, Wesley] Fluid Phys Int, Houston, TX 77266 USA. [Brewer, Wesley] FMS Fdn Inc, Waterloo, NY 13165 USA. [Baumgardner, John] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sanford, J (reprint author), Cornell Univ, Dept Hort, NYSAES, Geneva, NY 14456 USA. EM jcs21@cornell.edu NR 38 TC 0 Z9 0 U1 2 U2 7 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4682 J9 THEOR BIOL MED MODEL JI Theor. Biol. Med. Model. PD SEP 17 PY 2015 VL 12 AR 18 DI 10.1186/s12976-015-0016-z PG 28 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA CR4FV UT WOS:000361288200001 PM 26376851 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, SP Allbrooke, BMM Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balestri, T Balli, F Banas, E Banerjee, S Bannoura, AAE Bansil, HS Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, M Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Childers, JT Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chu, ML Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, PJ Clarke, RN Cleland, W Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDCS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duehrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Fraternali, M Freeborn, D French, ST Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goujdami, D Goussiou, AG Govender, N Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-Zada, F Khandanyan, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kim, Y Kimura, N Kind, OM King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koeneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarrod, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Le Dortz, O Le Guirriec, E Le Menedeu, E LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Loesel, PJ Lou, X Lounis, A Love, J Love, PA Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macdonald, CM Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Maettig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morton, A Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, RSP Mueller, T Muenstermann, D Mullen, P Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruehr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Saimpert, M Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schaefer, U Schaffer, AC Schaile, D Schamberger, RD Scharfa, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Selbach, KE Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simoniello, R Sinervo, P Sinev, NB Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soueid, P Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T St Denis, RD Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Truong, L Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Aben, R. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Piqueras, D. Alvarez Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balestri, T. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansil, H. S. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Caminada, L. M. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Childers, J. T. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, P. J. Clarke, R. N. Cleland, W. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Fraternali, M. Freeborn, D. French, S. T. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Geisler, M. P. Gemme, C. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goujdami, D. Goussiou, A. G. Govender, N. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Jiggins, S. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-Zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kim, Y. Kimura, N. Kind, O. M. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Koenig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarrod, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morton, A. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Garzon, G. Otero Y. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saimpert, M. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharfa, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simoniello, R. Sinervo, P. Sinev, N. B. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Truong, L. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Search for heavy lepton resonances decaying to a Z boson and a lepton in pp collisions at root s=8 TeV with the ATLAS detector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID ANNIHILATION; DISCOVERY; COLLIDER; MODEL; LHC AB A search for heavy leptons decaying to a Z boson and an electron or a muon is presented. The search is based on pp collision data taken at root s = 8TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb(-1). Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a Z boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances are derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114-176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100-468 GeV are excluded. C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Carrillo-Montoya, G. D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Armadans, R. Caminal; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Rosendahl, P. L.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Aloisio, A.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Obermann, T.; Pohl, D.; Ricken, O.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uhlenbrock, M.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau] Univ Bonn, Inst Phys, Bonn, Germany. [Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz de Fora, Brazil. Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Navarrod, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Garzon, G. Otero Y.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Rembser, C.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Carquin, E.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Diaz, M. A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Vogel, M.; Zanello, L.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Brooks, W. K.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuleshov, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Pezoa, R.; Prokoshin, F.; Vanadia, M.; Verducci, M.; White, R.; Zanello, L.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Di Ciaccio, A.; Gao, J.; Guan, L.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Chen, S.; Guo, J.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing 210008, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jian, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Dept Phys & Astron, Shanghai 200030, Peoples R China. [Chen, X.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Dubreuil, E.; Gilles, G.; Liao, H.; Pallin, D.; Santoni, C.; Simon, D.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Madar, R.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Capua, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Ancu, L. S.; Barone, G.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Paolozzi, L.; Picazio, A.; Ristic, B.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Kareem, M. J.; Kawamura, G.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Scharfa, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Lisovyi, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Castillo, L. R. Flores] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, S.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Allport, P. P.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bevan, A. J.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Richter, S.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Vartapetian, A.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Vartapetian, A.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Vartapetian, A.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjoernmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Becker, M.; Bertella, C.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Hohlfeld, M.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Poettgen, R.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Schweiger, H.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Hu, X.; Levin, D.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Napoli, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Koenig, A. C.; Nektarijevic, S.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Bousson, N.; Haley, J.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] CNRS IN2P3, Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickering, M. A.; Ryder, N. C.; Sawyer, C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, P-1000 Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Fac Sci Ain Chock, Reseau Univ Phys Hautes Energies, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] Commissariat Energie Atom & Energies Alternat, CEA Saclay, IRFU, DSM, Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Horton, A. J.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Mount, R.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.; Meehan, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Govender, N.; Lee, C. A.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. [Aloisio, A.; Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Astron & Chem, Stony Brook, NY 11794 USA. [Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Hsu, P. J.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Munwes, Y.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Connell, S. H.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Jovicevic, J.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] INFN, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Brazzale, S. F.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Neubauer, M. S.; Rybar, M.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IFIC, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IMB, CNM, Valencia, Spain. [Piqueras, D. Alvarez; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Pena, J. Jimenez; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Beermann, T. A.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Thomsen, L. A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.; Ochoa-Ricoux, J. P.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anisenkov, A. V.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.] Aix Marseille Univ, CPPM, Marseille, France. [Chen, L.] CNRS IN2P3, Marseille, France. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Li, B.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Li, Y.] Univ Paris 11, LAL, Orsay, France. [Li, Y.] CNRS IN2P3, Orsay, France. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, B.] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Snesarev, Andrey/H-5090-2013; Kantserov, Vadim/M-9761-2015; Villa, Mauro/C-9883-2009; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Staroba, Pavel/G-8850-2014; Gavrilenko, Igor/M-8260-2015; Gauzzi, Paolo/D-2615-2009; Tripiana, Martin/H-3404-2015; Mitsou, Vasiliki/D-1967-2009; Smirnova, Oxana/A-4401-2013; Doyle, Anthony/C-5889-2009; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Boyko, Igor/J-3659-2013; Vranjes Milosavljevic, Marija/F-9847-2016; Chekulaev, Sergey/O-1145-2015; spagnolo, stefania/A-6359-2012; Buttar, Craig/D-3706-2011; Livan, Michele/D-7531-2012; Brooks, William/C-8636-2013; Di Domenico, Antonio/G-6301-2011; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Carvalho, Joao/M-4060-2013; White, Ryan/E-2979-2015; Mashinistov, Ruslan/M-8356-2015; Warburton, Andreas/N-8028-2013; Maleev, Victor/R-4140-2016; Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Gutierrez, Phillip/C-1161-2011; Fabbri, Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Tikhomirov, Vladimir/M-6194-2015; Kuday, Sinan/C-8528-2014 OI SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Kantserov, Vadim/0000-0001-8255-416X; Villa, Mauro/0000-0002-9181-8048; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Gauzzi, Paolo/0000-0003-4841-5822; Mitsou, Vasiliki/0000-0002-1533-8886; Smirnova, Oxana/0000-0003-2517-531X; Doyle, Anthony/0000-0001-6322-6195; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Boyko, Igor/0000-0002-3355-4662; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; spagnolo, stefania/0000-0001-7482-6348; Livan, Michele/0000-0002-5877-0062; Brooks, William/0000-0001-6161-3570; Di Domenico, Antonio/0000-0001-8078-2759; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Carvalho, Joao/0000-0002-3015-7821; White, Ryan/0000-0003-3589-5900; Mashinistov, Ruslan/0000-0001-7925-4676; Warburton, Andreas/0000-0002-2298-7315; Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Tikhomirov, Vladimir/0000-0002-9634-0581; Kuday, Sinan/0000-0002-0116-5494 FU CERN; ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC Canada; CFI, Canada; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; RGC, Hong Kong SAR, China; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia; NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.; We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 54 TC 8 Z9 8 U1 8 U2 48 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD SEP 16 PY 2015 IS 9 AR 108 DI 10.1007/JHEP09(2015)108 PG 38 WC Physics, Particles & Fields SC Physics GA CU4ZD UT WOS:000363539700001 ER PT J AU Rohan, JG Carhuatanta, KA McInturf, SM Miklasevich, MK Jankord, R AF Rohan, Joyce G. Carhuatanta, Kim A. McInturf, Shawn M. Miklasevich, Molly K. Jankord, Ryan TI Modulating Hippocampal Plasticity with In Vivo Brain Stimulation SO JOURNAL OF NEUROSCIENCE LA English DT Article DE brain stimulation; extracellular recording; hippocampus; long term potentiation; rat; tDCS ID LONG-TERM POTENTIATION; HUMAN MOTOR CORTEX; WORKING-MEMORY; SYNAPTIC PLASTICITY; POLARIZING CURRENTS; CONTROLLED-TRIAL; CA3-CA1 SYNAPSE; RAT HIPPOCAMPUS; CEREBRAL CORTEX; BEHAVING MICE AB Investigations into the use of transcranial direct current stimulation (tDCS) in relieving symptoms of neurological disorders and enhancing cognitive or motor performance have exhibited promising results. However, the mechanisms by which tDCS effects brain function remain under scrutiny. We have demonstrated that in vivo tDCS in rats produced a lasting effect on hippocampal synaptic plasticity, as measured using extracellular recordings. Ex vivo preparations of hippocampal slices from rats that have been subjected to tDCS of 0.10 or 0.25 mA for 30 min followed by 30 min of recovery time displayed a robust twofold enhancement in long-term potentiation (LTP) induction accompanied by a 30% increase in paired-pulse facilitation (PPF). The magnitude of the LTP effect was greater with 0.25 mA compared with 0.10 mA stimulations, suggesting a dose-dependent relationship between tDCS intensity and its effect on synaptic plasticity. To test the persistence of these observed effects, animals were stimulated in vivo for 30 min at 0.25 mA and then allowed to return to their home cage for 24 h. Observation of the enhanced LTP induction, but not the enhanced PPF, continued 24 h after completion of 0.25 mA of tDCS. Addition of the NMDA blocker AP-5 abolished LTP in both control and stimulated rats but maintained the PPF enhancement in stimulated rats. The observation of enhanced LTP and PPF after tDCS demonstrates that non-invasive electrical stimulation is capable of modifying synaptic plasticity. C1 [Rohan, Joyce G.; McInturf, Shawn M.; Miklasevich, Molly K.] Naval Med Res Unit Dayton, Environm Hlth Effects Directorate, Wright Patterson AFB, OH 45433 USA. [Carhuatanta, Kim A.; Jankord, Ryan] Air Force Res Lab, Wright Patterson AFB, OH 45433 USA. [Rohan, Joyce G.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Miklasevich, Molly K.] CAMRIS Int, Bethesda, MD 20814 USA. RP Rohan, JG (reprint author), Naval Med Res Unit Dayton, Area B,Bldg 837,2729 R St, Wright Patterson AFB, OH 45433 USA. EM Joyce.Rohan.ctr@us.af.mil FU Air Force Office of Scientific Research award [13RH14C0R]; National Research Council FX This work was supported by the Air Force Office of Scientific Research award #13RH14C0R, a postdoctoral fellowship award from the National Research Council, and an appointment to the Postgraduate Research Participation Program at the Naval Medical Research Unit-Dayton (NAMRU-D) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and NAMRU-D. We thank Naomi Bechmann, Raquel Moore, Kevin Schmidt, Saline Hughes, and Justin Stafford for their contribution to this work. NR 57 TC 13 Z9 13 U1 2 U2 14 PU SOC NEUROSCIENCE PI WASHINGTON PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA SN 0270-6474 J9 J NEUROSCI JI J. Neurosci. PD SEP 16 PY 2015 VL 35 IS 37 BP 12824 EP 12832 DI 10.1523/JNEUROSCI.2376-15.2015 PG 9 WC Neurosciences SC Neurosciences & Neurology GA CU6RC UT WOS:000363659500019 PM 26377469 ER PT J AU Li, W Thorne, RM Bortnik, J Baker, DN Reeves, GD Kanekal, SG Spence, HE Green, JC AF Li, W. Thorne, R. M. Bortnik, J. Baker, D. N. Reeves, G. D. Kanekal, S. G. Spence, H. E. Green, J. C. TI Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID WHISTLER-MODE CHORUS; VAN ALLEN PROBES; RELATIVISTIC ELECTRONS; MAGNETIC STORMS; GEOMAGNETIC STORMS; SEED POPULATION; PC5 WAVES; MAGNETOSPHERE; EVENT; ZONE AB Determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward B-z, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration. C1 [Li, W.; Thorne, R. M.; Bortnik, J.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Baker, D. N.] Univ Colorado, Lab Atmospher & Space Res, Boulder, CO 80309 USA. [Reeves, G. D.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Kanekal, S. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Green, J. C.] Space Hazard Applicat LLC, Golden, CO USA. RP Li, W (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM moonli@atmos.ucla.edu RI Reeves, Geoffrey/E-8101-2011 OI Reeves, Geoffrey/0000-0002-7985-8098 FU JHU/APL under NASA [967399, 921647, NAS5-01072]; ECT [13-041]; NASA [NNX11AD75G, NNX14AN85G, NNX11AR64G, NNX13AI61G]; Air Force Young Investigator program [FA9550-15-1-0158] FX This work was supported by JHU/APL contracts 967399 and 921647 under NASA's prime contract NAS5-01072. The analysis at UCLA was supported by the ECT subaward 13-041, NASA grants NNX11AD75G, NNX14AN85G, NNX11AR64G, and NNX13AI61G, and the Air Force Young Investigator program FA9550-15-1-0158. We acknowledge the Van Allen Probes data from the REPT and MagEIS instruments obtained from http://www.rbsp-ect.lanl.gov/data_pub/. We greatly appreciate the NOAA POES data obtained from http://satdat.ngdc.noaa.gov/sem/poes/data/ and the NOAA POES team for providing helpful advice. We also thank the World Data Center for Geomagnetism, Kyoto for providing SYM-H and AL indices (http://wdc.kugi.kyoto-u.ac.jp/aeasy/index.html), and the Space Physics Data Facility at the NASA Goddard Space Flight Center for providing the OMNI2 data (ftp://spdf.gsfc.nasa.gov/pub/data/omni/omni_c-daweb/). NR 56 TC 6 Z9 6 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 16 PY 2015 VL 42 IS 17 BP 6906 EP 6915 DI 10.1002/2015GL065342 PG 10 WC Geosciences, Multidisciplinary SC Geology GA CU3GB UT WOS:000363411200005 ER PT J AU MacMartin, DG Kravitz, B Rasch, PJ AF MacMartin, Douglas G. Kravitz, Ben Rasch, Philip J. TI On solar geoengineering and climate uncertainty SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID RADIATION MANAGEMENT; MODEL AB Uncertain climate system response has been raised as a concern regarding solar geoengineering. We explore the effects of geoengineering on one source of climate system uncertainty by evaluating the intermodel spread across 12 climate models participating in the Geoengineering Model Intercomparison project. The model spread in simulations of climate change and the model spread in the response to solar geoengineering are not additive but rather partially cancel. That is, the model spread in regional temperature and precipitation changes is reduced with CO2 and a solar reduction, in comparison to the case with increased CO2 alone. Furthermore, differences between models in their efficacy ( the relative global mean temperature effect of solar versus CO2 radiative forcing) explain most of the regional differences between models in their response to an increased CO2 concentration that is offset by a solar reduction. These conclusions are important for clarifying geoengineering risks regarding uncertainty. C1 [MacMartin, Douglas G.] CALTECH, Comp & Math Sci, Pasadena, CA 91125 USA. [Kravitz, Ben; Rasch, Philip J.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP MacMartin, DG (reprint author), CALTECH, Comp & Math Sci, Pasadena, CA 91125 USA. EM macmardg@cds.caltech.edu RI MacMartin, Douglas/A-6333-2016 OI MacMartin, Douglas/0000-0003-1987-9417 FU U.S. Department of Energy [DE-AC05-76RL01830] FX We thank all of the climate modeling groups for conducting the GeoMIP simulations and making their output available through the Earth System Grid Framework, accessible at http://pcmdi9.llnl.gov/esgf-web-fe/. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 30 TC 3 Z9 3 U1 4 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 16 PY 2015 VL 42 IS 17 BP 7156 EP 7161 DI 10.1002/2015GL065391 PG 6 WC Geosciences, Multidisciplinary SC Geology GA CU3GB UT WOS:000363411200036 ER PT J AU Gao, Y Lu, J Leung, R Yang, Q Hagos, S Qian, Y AF Gao, Yang Lu, Jian Leung, Ruby Yang, Qing Hagos, Samson Qian, Yun TI Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLIMATE-CHANGE; EXTREME PRECIPITATION; WINTER PRECIPITATION; HYDROLOGICAL CYCLE; COAST; CALIFORNIA; MODEL; CIRCULATION; SATELLITE; FREQUENCY AB This study examines future changes of landfalling atmospheric rivers (ARs) over western North America using outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The result reveals a strikingly large increase of AR days by the end of the 21st century in the RCP8.5 scenario, with fractional increases between 50% and 600%, depending on the seasons and landfall locations. These increases are predominantly controlled by the super-Clausius-Clapeyron rate of increase of atmospheric water vapor with warming, while changes of winds that transport moisture in the ARs, or dynamical effect, mostly counter the thermodynamical effect of increasing water vapor, limiting the increase of AR events in the future. The consistent negative effect of wind changes on AR days during spring and fall can be linked to the robust poleward shift of the subtropical jet in the North Pacific basin. C1 [Gao, Yang; Lu, Jian; Leung, Ruby; Yang, Qing; Hagos, Samson; Qian, Yun] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Leung, R (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM ruby.leung@pnnl.gov RI qian, yun/E-1845-2011 FU U.S. Department of Energy Office of Science Biological and Environmental Research (BER) as part of the Regional and Global Climate Modeling program; DOE [DE-AC05-76RL01830] FX This study was supported by the U.S. Department of Energy Office of Science Biological and Environmental Research (BER) as part of the Regional and Global Climate Modeling program. PNNL is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling for CMIP and the climate modeling groups for producing and making available their model output. NR 36 TC 10 Z9 10 U1 3 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 16 PY 2015 VL 42 IS 17 BP 7179 EP 7186 DI 10.1002/2015GL065435 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CU3GB UT WOS:000363411200039 ER PT J AU Parmentier, FJW Zhang, WX Mi, YJ Zhu, XD van Huissteden, J Hayes, DJ Zhuang, QL Christensen, TR McGuire, AD AF Parmentier, Frans-Jan W. Zhang, Wenxin Mi, Yanjiao Zhu, Xudong van Huissteden, Jacobus Hayes, Daniel J. Zhuang, Qianlai Christensen, Torben R. McGuire, A. David TI Rising methane emissions from northern wetlands associated with sea ice decline SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TERRESTRIAL ECOSYSTEMS; GREENHOUSE-GAS; CARBON BALANCE; ARCTIC TUNDRA; MODEL; CLIMATE; EXTENT; AMPLIFICATION; SENSITIVITY; THICKNESS AB The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tg CH4 yr(-1) higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions. C1 [Parmentier, Frans-Jan W.; Zhang, Wenxin; Christensen, Torben R.] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden. [Parmentier, Frans-Jan W.; Christensen, Torben R.] Aarhus Univ, Arctic Res Ctr, Aarhus, Denmark. [Mi, Yanjiao; van Huissteden, Jacobus] Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands. [Mi, Yanjiao] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA. [Zhu, Xudong; Zhuang, Qianlai] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Zhu, Xudong; Zhuang, Qianlai] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. [Hayes, Daniel J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [McGuire, A. David] Univ Alaska Fairbanks, Alaska Cooperat Fish & Wildlife Res Unit, US Geol Survey, Fairbanks, AK USA. RP Parmentier, FJW (reprint author), Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden. EM frans-jan.parmentier@nateko.lu.se RI Parmentier, Frans-Jan/D-9022-2013 OI Parmentier, Frans-Jan/0000-0003-2952-7706 FU Nordic Centre of Excellence-DEFROST; European FP7 project Page21; European FP7 project Interact; Lund University Centre for Studies of Carbon Cycle and Climate Interactions (LUCCI); European Community [238366, 262693, 282700]; U.S. Department of Energy [DE-SC0007007]; Permafrost Carbon Vulnerability Research Coordination Network - National Science Foundation FX This research has been funded by the Nordic Centre of Excellence-DEFROST, the European FP7 projects Page21 and Interact, and the Lund University Centre for Studies of Carbon Cycle and Climate Interactions (LUCCI). The research leading to these results has received funding from the (European Community's) Seventh Framework Programme (FP7 2007-2013) under grant agreements 238366, 262693, and 282700. Q.Z. and X.Z. are supported by the U.S. Department of Energy with project DE-SC0007007. This study was also supported by the Permafrost Carbon Vulnerability Research Coordination Network, which is funded by the National Science Foundation. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This study is a contribution to the strategic research area Modelling the Regional and Global Earth System (MERGE). The model data underlying this research can be made available by the authors upon request. Finally, we would like to acknowledge Paul A. Miller for incorporating the WHyMe methane module into LPJ-GUESS, and Ben Smith for his involvement in the original development of the LPJ-GUESS model. NR 31 TC 3 Z9 3 U1 5 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP 16 PY 2015 VL 42 IS 17 BP 7214 EP 7222 DI 10.1002/2015GL065013 PG 9 WC Geosciences, Multidisciplinary SC Geology GA CU3GB UT WOS:000363411200044 ER PT J AU Terai, CR Wood, R Kubar, TL AF Terai, C. R. Wood, R. Kubar, T. L. TI Satellite estimates of precipitation susceptibility in low-level marine stratiform clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOUTHEAST PACIFIC STRATOCUMULUS; RADIATIVE PROPERTIES; BOUNDARY-LAYER; CONDENSATION NUCLEI; DRIZZLE FORMATION; WARM RAIN; AEROSOL; MICROPHYSICS; VARIABILITY; OCEAN AB Quantifying the sensitivity of warm rain to aerosols is important for constraining climate model estimates of aerosol indirect effects. In this study, the precipitation sensitivity to cloud droplet number concentration (N-d) in satellite retrievals is quantified by applying the precipitation susceptibility metric to a combined CloudSat/Moderate Resolution Imaging Spectroradiometer data set of stratus and stratocumulus clouds that cover the tropical and subtropical Pacific Ocean and Gulf of Mexico. Consistent with previous observational studies of marine stratocumulus, precipitation susceptibility decreases with increasing liquid water path (LWP), and the susceptibility of the mean precipitation rate R is nearly equal to the sum of the susceptibilities of precipitation intensity and of probability of precipitation. Consistent with previous modeling studies, the satellite retrievals reveal that precipitation susceptibility varies not only with LWP but also with N-d. Puzzlingly, negative values of precipitation susceptibility are found at low LWP and high N-d. There is marked regional variation in precipitation susceptibility values that cannot simply be explained by regional variations in LWP and N-d. This suggests other controls on precipitation apart from LWP and N-d and that precipitation susceptibility will need to be quantified and understood at the regional scale when relating to its role in controlling possible aerosol-induced cloud lifetime effects. C1 [Terai, C. R.; Wood, R.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Terai, C. R.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Kubar, T. L.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. RP Terai, CR (reprint author), Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. EM terai1@llnl.gov RI Wood, Robert/A-2989-2008; Terai, Christopher/E-6477-2016 OI Wood, Robert/0000-0002-1401-3828; Terai, Christopher/0000-0002-2433-0472 FU NSF [AGS-1242639]; NASA [NNX13AQ35G]; Lawrence Livermore National Laboratory (LLNL); U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Funding for this work was provided by NSF grant AGS-1242639 and NASA grant NNX13AQ35G (CloudSat and CALIPSO Science Team). The authors would like to thank Chris Bretherton and Sandra Yuter for valuable feedback on earlier versions of the manuscript. The authors would also like to thank the three anonymous reviewers for constructive comments that have substantially helped focus and improve the manuscript. C.R.T.'s work at LLNL was supported by the Lawrence Livermore National Laboratory (LLNL) Institutional Postdoctoral Program and conducted under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The MODIS MAC06S0 product may be obtained from the Goddard Earth Science Data and Information Services Center (http://disc.sci.gsfc.nasa.gov/datacollection/MAC06S0_v2.html), whereas the CloudSat 2B-GEOPROF product may be obtained from the CloudSat Data Processing Center (http://www.cloudsat.cira.colostate.edu/). Specific data displayed in figures and data may be obtained by contacting the corresponding author (terai1@llnl.gov). NR 39 TC 2 Z9 2 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 16 PY 2015 VL 120 IS 17 BP 8878 EP 8889 DI 10.1002/2015JD023319 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CU3LB UT WOS:000363425600018 ER PT J AU Yan, HP Qian, Y Zhao, C Wang, HL Wang, MH Yang, B Liu, XH Fu, Q AF Yan, Huiping Qian, Yun Zhao, Chun Wang, Hailong Wang, Minghuai Yang, Ben Liu, Xiaohong Fu, Qiang TI A new approach to modeling aerosol effects on East Asian climate: Parametric uncertainties associated with emissions, cloud microphysics, and their interactions SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; BLACK CARBON AEROSOLS; GENERAL-CIRCULATION MODEL; SUMMER MONSOON; CHEMISTRY/AEROSOL MODEL; ANTHROPOGENIC AEROSOLS; ABSORBING AEROSOLS; SULFATE AEROSOLS; GCM SIMULATIONS; TIBETAN PLATEAU AB In this study, we adopt a parametric sensitivity analysis framework that integrates the quasi-Monte Carlo parameter sampling approach and a surrogate model to examine aerosol effects on the East Asian Monsoon climate simulated in the Community Atmosphere Model (CAM5). A total number of 256 CAM5 simulations are conducted to quantify the model responses to the uncertain parameters associated with cloud microphysics parameterizations and aerosol (e.g., sulfate, black carbon (BC), and dust) emission factors and their interactions. Results show that the interaction terms among parameters are important for quantifying the sensitivity of fields of interest, especially precipitation, to the parameters. The relative importance of cloud microphysics parameters and emission factors (strength) depends on evaluation metrics or the model fields we focused on, and the presence of uncertainty in cloud microphysics imposes an additional challenge in quantifying the impact of aerosols on cloud and climate. Due to their different optical and microphysical properties and spatial distributions, sulfate, BC, and dust aerosols have very different impacts on East Asian Monsoon through aerosol-cloud-radiation interactions. The climatic effects of aerosol do not always have a monotonic response to the change of emission factors. The spatial patterns of both sign and magnitude of aerosol-induced changes in radiative fluxes, cloud, and precipitation could be different, depending on the aerosol types, when parameters are sampled in different ranges of values. We also identify the different cloud microphysical parameters that show the most significant impact on climatic effect induced by sulfate, BC, and dust, respectively, in East Asia. C1 [Yan, Huiping; Fu, Qiang] Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China. [Yan, Huiping; Qian, Yun; Zhao, Chun; Wang, Hailong; Yang, Ben] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, Minghuai; Yang, Ben] Nanjing Univ, Inst Climate & Global Change Res, Nanjing 210008, Jiangsu, Peoples R China. [Wang, Minghuai; Yang, Ben] Nanjing Univ, Sch Atmospher Sci, Nanjing 210008, Jiangsu, Peoples R China. [Wang, Minghuai] Jiangsu Collaborat Innovat Ctr Climate Change, Nanjing, Jiangsu, Peoples R China. [Liu, Xiaohong] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. [Fu, Qiang] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. RP Qian, Y (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Yun.Qian@pnnl.gov; qfu@atmos.washington.edu RI qian, yun/E-1845-2011; Liu, Xiaohong/E-9304-2011; Wang, Hailong/B-8061-2010; Yang, Ben/O-8548-2015; Wang, Minghuai/E-5390-2011; Zhao, Chun/A-2581-2012 OI Liu, Xiaohong/0000-0002-3994-5955; Wang, Hailong/0000-0002-1994-4402; Wang, Minghuai/0000-0002-9179-228X; Zhao, Chun/0000-0003-4693-7213 FU U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research as part of the Regional and Global Climate Modeling Program; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX This study is based on work supported by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research as part of the Regional and Global Climate Modeling Program. The Pacific Northwest National Laboratory (PNNL) is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. The National Energy Research Scientific Computing Center (NERSC) provided computational resources. All model results are stored at a PNNL cluster and available upon request. Please contact Yun Qian (yun.qian@pnnl.gov). NR 73 TC 5 Z9 5 U1 6 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 16 PY 2015 VL 120 IS 17 BP 8905 EP 8924 DI 10.1002/2015JD023442 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CU3LB UT WOS:000363425600019 ER PT J AU Chandra, AS Zhang, CD Klein, SA Ma, HY AF Chandra, Arunchandra S. Zhang, Chidong Klein, Stephen A. Ma, Hsi-Yen TI Low-cloud characteristics over the tropical western Pacific from ARM observations and CAM5 simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SGP SITE; CLIMATE SIMULATIONS; RADAR OBSERVATIONS; MODEL; RADIATION; ECMWF; CONVECTION; SHALLOW; PRECIPITATION; VARIABILITY AB This study evaluates the ability of the Community Atmospheric Model version 5 (CAM5) to reproduce low clouds observed by the Atmospheric Radiation Measurement (ARM) cloud radar at Manus Island of the tropical western Pacific during the Years of Tropical Convection. Here low clouds are defined as clouds with their tops below the freezing level and bases within the boundary layer. Low-cloud statistics in CAM5 simulations and ARM observations are compared in terms of their general occurrence, mean vertical profiles, fraction of precipitating versus nonprecipitating events, diurnal cycle, and monthly time series. Other types of clouds are included to put the comparison in a broader context. The comparison shows that the model overproduces total clouds and their precipitation fraction but underestimates low clouds in general. The model, however, produces excessive low clouds in a thin layer between 954 and 930 hPa, which coincides with excessive humidity near the top of the mixed layer. This suggests that the erroneously excessive low clouds stem from parameterization of both cloud and turbulence mixing. The model also fails to produce the observed diurnal cycle in low clouds, not exclusively due to the model coarse grid spacing that does not resolve Manus Island. This study demonstrates the utility of ARM long-term cloud observations in the tropical western Pacific in verifying low clouds simulated by global climate models, illustrates issues of using ARM observations in model validation, and provides an example of severe model biases in producing observed low clouds in the tropical western Pacific. C1 [Chandra, Arunchandra S.; Zhang, Chidong] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Klein, Stephen A.; Ma, Hsi-Yen] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA USA. RP Chandra, AS (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM achandra@rsmas.miami.edu RI Ma, Hsi-Yen/K-1019-2013; Klein, Stephen/H-4337-2016 OI Klein, Stephen/0000-0002-5476-858X FU U.S. Department of Energy Atmospheric Science Research program [DE-SC0006808] FX The authors thank Louise Nuijens and two anonymous reviewers for their comments and suggestions on the earlier version of this manuscript. We would also like to thank Karen Johnson from Brookhaven National Laboratory and Connor Flynn from Pacific Northwest National Laboratory for sharing the details on ARSCL missing data at Manus site. This study was supported by the U.S. Department of Energy Atmospheric Science Research program through grant DE-SC0006808. The observational data are available from the U.S. Department of Energy SGP ARM Climate Research Facility (http://www.archive.arm.gov). The CAM5 simulations were performed under the Department of Energy Cloud-Associated Parameterizations Testbed (CAPT: http://www-pcmdi.llnl.gov/projects/capt/index.php) protocol. Their data are available on request from CAPT coinvestigators Stephen A. Klein, klein21@llnl.gov, and Hsi-Yen Ma, ma21@llnl.gov. NR 58 TC 2 Z9 2 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP 16 PY 2015 VL 120 IS 17 BP 8953 EP 8970 DI 10.1002/2015JD023369 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CU3LB UT WOS:000363425600022 ER PT J AU Mok, JW Lin, YH Yager, KG Mohite, AD Nie, WY Darling, SB Lee, Y Gomez, E Gosztola, D Schaller, RD Verduzco, R AF Mok, Jorge W. Lin, Yen-Hao Yager, Kevin G. Mohite, Aditya D. Nie, Wanyi Darling, Seth B. Lee, Youngmin Gomez, Enrique Gosztola, David Schaller, Richard D. Verduzco, Rafael TI Linking Group Influences Charge Separation and Recombination in All-Conjugated Block Copolymer Photovoltaics SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID POLYMER SOLAR-CELLS; MOLECULAR-WEIGHT; PHASE-SEPARATION; REAL-TIME; BLENDS; PERFORMANCE; GENERATION; MORPHOLOGY; ACCEPTOR; EFFICIENCY AB All-conjugated block copolymers bring together hole-and electron-conductive polymers and can be used as the active layer of solution-processed photovoltaic devices, but it remains unclear how molecular structure, morphology, and electronic properties influence performance. Here, the role of the chemical linker is investigated through analysis of two donor-linker-acceptor block copolymers that differ in the chemistry of the linking group. Device studies show that power conversion efficiencies differ by a factor of 40 between the two polymers, and ultrafast transient absorption measurements reveal charge separation only in block copolymers that contain a wide bandgap monomer at the donor-acceptor interface. Optical measurements reveal the formation of a low-energy excited state when donor and acceptor blocks are directly linked without this wide bandgap monomer. For both samples studied, it is found that the rate of charge recombination in these systems is faster than in poly mer-polymer and polymer-fullerene blends. This work demonstrates that the linking group chemistry influences charge separation in all-conjugated block copolymer systems, and further improvement of photovoltaic performance may be possible through optimization of the linking group. These results also suggest that all-conjugated block copolymers can be used as model systems for the donor-acceptor interface in bulk heterojunction blends. C1 [Mok, Jorge W.; Lin, Yen-Hao; Verduzco, Rafael] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA. [Yager, Kevin G.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Mohite, Aditya D.; Nie, Wanyi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Darling, Seth B.; Gosztola, David; Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Darling, Seth B.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Lee, Youngmin; Gomez, Enrique] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. [Schaller, Richard D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Verduzco, Rafael] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. RP Mok, JW (reprint author), Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA. EM rafaelv@rice.edu RI Gosztola, David/D-9320-2011 OI Gosztola, David/0000-0003-2674-1379 FU National Science Foundation [DMR-1352099, CBET-1264703]; Office of Naval Research [N000141410532]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences in the Institute for Molecular Engineering at Argonne National Laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886, 08SPCE973]; LANL LDRD program [XW11]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX J.W.M., Y.H.L., and R.V. acknowledge the support of the National Science Foundation CAREER award (DMR-1352099) and CBET-1264703. Y.L. and E.D.G. acknowledge support from the Office of Naval Research under Grant No. N000141410532. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences in the Institute for Molecular Engineering at Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The work at Los Alamos National Laboratory (LANL) was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Work Proposal 08SPCE973 (W.N. and A.D.M.) and by the LANL LDRD program XW11 (A.D.M). This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 43 TC 8 Z9 8 U1 4 U2 30 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD SEP 16 PY 2015 VL 25 IS 35 BP 5578 EP 5585 DI 10.1002/adfm.201502623 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CT0WB UT WOS:000362517300001 ER PT J AU Kang, M Wakeham, N Ni, N Bauer, ED Kim, J Ronning, F AF Kang, Mingu Wakeham, N. Ni, Ni Bauer, E. D. Kim, Jeehoon Ronning, F. TI Thermal and transport properties of U2PtxIr1-xC2 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE spin triplet superconductor; antiferromagnetism; quantum critical point; uranium based compounds ID HEAVY FERMIONS; KONDO-LATTICE; SUPERCONDUCTIVITY; SYSTEMS; U2PTC2; FERROMAGNETISM; CARBIDES; DIAGRAM; UBE13 AB We report thermal and transport properties of U2PtxIr1-xC2 from which a magnetic phase diagram is obtained. Pure U2IrC2 is an antiferromagnet at 6.5 K, whose Neel temperature initially rises to 13.2 K at x = 0.2 and subsequently is suppressed to zero temperature with increasing Pt content near x = 0.6. Heat capacity divided by temperature at x = 0.6 shows an upturn at low temperature, consistent with the expectations of enhanced quantum fluctuations in the presence of an underlying quantum critical point. The entropy after the phonon contribution has been subtracted has a value of 0.24 Rln2 at the Neel temperature of U2IrC2, revealing an itinerant nature of the 5 f electrons in this compound. On the Pt rich side of the phase diagram, superconductivity is suppressed by x = 0.85. The residual resistivity increases by a factor of 10 from pure Pt (x = 1) to x = 0.85 where superconductivity is suppressed to zero. By comparing the phase diagram of Ir doped U2PtC2 with the phase diagram of pressure tuned and Rh doped U2PtC2 we demonstrate the role of electronic tuning in this system. C1 [Kang, Mingu; Kim, Jeehoon] Inst for Basic Sci Korea, CALDES, Pohang 790784, Gyeongbuk, South Korea. [Kang, Mingu; Kim, Jeehoon] Pohang Univ Sci & Technol POSTECH Pohang, Dept Phys, Gyeongbuk 790784, South Korea. [Kang, Mingu; Wakeham, N.; Bauer, E. D.; Ronning, F.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Ni, Ni] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. RP Kang, M (reprint author), Inst for Basic Sci Korea, CALDES, Pohang 790784, Gyeongbuk, South Korea. OI Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937; Kang, Min Gu/0000-0001-6991-0481 FU Institute of Basic Science [IBS-R015-D1]; U.S. DOE FX We thank J D Thompson and Tuson Park for valuable discussion. Work at Los Alamos National Laboratory was performed under the auspices of the U.S. DOE. Work at POSTECH was supported in part by Institute of Basic Science: Project Code (IBS-R015-D1). NR 31 TC 0 Z9 0 U1 5 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD SEP 16 PY 2015 VL 27 IS 36 AR 365702 DI 10.1088/0953-8984/27/36/365702 PG 7 WC Physics, Condensed Matter SC Physics GA CT1HF UT WOS:000362548400008 PM 26302330 ER PT J AU Galindo, JF Atas, E Altan, A Kuroda, DG Fernandez-Aberti, S Tretiak, S Roitberg, AE Kleiman, VD AF Galindo, Johan F. Atas, Evrim Altan, Aysun Kuroda, Daniel G. Fernandez-Aberti, Sebastian Tretiak, Sergei Roitberg, Adrian E. Kleiman, Valeria D. TI Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHENYLENE ETHYNYLENE DENDRIMER; FLUORESCENCE UP-CONVERSION; LIGHT-HARVESTING SYSTEM; EXCITED-STATE DYNAMICS; MOLECULAR-DYNAMICS; PHENYLACETYLENE DENDRIMERS; POLYPHENYLENE DENDRIMERS; PHOTOPHYSICAL PROPERTIES; ELECTRONIC EXCITATIONS; ANTENNA SUPERMOLECULES AB Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials. C1 [Fernandez-Aberti, Sebastian] Univ Nacl Quilmes, Bernal, Argentina. [Tretiak, Sergei] Los Alamos Natl Lab, CNLS, Div Theoret, Los Alamos, NM 87545 USA. [Tretiak, Sergei] Los Alamos Natl Lab, CINT, Los Alamos, NM 87545 USA. [Galindo, Johan F.; Atas, Evrim; Roitberg, Adrian E.; Kleiman, Valeria D.] Univ Florida, Dept Chem, Gainesville, FL 32611 USA. RP Roitberg, AE (reprint author), Univ Florida, Dept Chem, Gainesville, FL 32611 USA. EM roitberg@ufl.edu; kleiman@ufl.edu RI Tretiak, Sergei/B-5556-2009 OI Tretiak, Sergei/0000-0001-5547-3647 FU CONICET; UNQ ANPCyT [PICT-2010-2375]; National Science Foundation [CHE-1058638]; U.S. Department of Energy; Los Alamos LDRD funds FX This work was partially supported by CONICET, UNQ ANPCyT (Grant PICT-2010-2375), National Science Foundation Grant CHE-1058638, and U.S. Department of Energy and Los Alamos LDRD funds. We acknowledge the University of Florida Research Computing for providing computational resources and support that have contributed to the research results reported in this publication, and the computer time allocated through NSF XSEDE MCA01S027. We also acknowledge Z. Peng at University of Missouri-Kansas City for providing us with the samples used in these experiments. NR 84 TC 9 Z9 9 U1 6 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 16 PY 2015 VL 137 IS 36 BP 11637 EP 11644 DI 10.1021/jacs.5b04075 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA CR7BL UT WOS:000361502800023 PM 26122872 ER PT J AU Chakraborty, S Babanova, S Rocha, RC Desireddy, A Artyushkova, K Boncella, AE Atanassov, P Martinez, JS AF Chakraborty, Saumen Babanova, Sofia Rocha, Reginaldo C. Desireddy, Anil Artyushkova, Kateryna Boncella, Amy E. Atanassov, Plamen Martinez, Jennifer S. TI A Hybrid DNA-Templated Gold Nanocluster For Enhanced Enzymatic Reduction of Oxygen SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; MONOLAYER-PROTECTED CLUSTERS; GLASSY-CARBON ELECTRODES; BIOFUEL CELLS; BILIRUBIN OXIDASE; ELECTROCATALYTIC ACTIVITY; INFRARED LUMINESCENCE; METAL NANOCLUSTERS; ICOSAHEDRAL AU-13; AU-25 CLUSTERS AB We report the synthesis and characterization of a new DNA-templated gold nanocluster (AuNC) of similar to 1 nm in diameter and possessing similar to 7 Au atoms. When integrated with bilirubin oxidase (BOD) and single walled carbon nanotubes (SWNTs), the AuNC acts as an enhancer of electron transfer (ET) and lowers the overpotential of electrocatalytic oxygen reduction reaction (ORR) by similar to 15 mV as compared to the enzyme alone. In addition, the presence of AuNC causes significant enhancements in the electrocatalytic current densities at the electrode. Control experiments show that such enhancement of ORR by the AuNC is specific to nanoclusters and not to plasmonic gold particles. Rotating ring disk electrode (RRDE) measurements confirm 4(e)(-) reduction of O-2 to H2O with minimal production of H2O2, suggesting that the presence of AuNC does not perturb the mechanism of ORR catalyzed by the enzyme. This unique role of the AuNC as enhancer of ET at the enzyme-electrode interface makes it a potential candidate for the development of cathodes in enzymatic fuel cells, which often suffer from poor electronic communication between the electrode surface and the enzyme active site. Finally, the AuNC displays phosphorescence with large Stokes shift and microsecond lifetime. C1 [Chakraborty, Saumen; Rocha, Reginaldo C.; Desireddy, Anil; Boncella, Amy E.; Martinez, Jennifer S.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Martinez, Jennifer S.] Los Alamos Natl Lab, Inst Mat Sci, Los Alamos, NM 87545 USA. [Babanova, Sofia; Artyushkova, Kateryna; Atanassov, Plamen] Univ New Mexico, Ctr Microengn Mat CMEM, Albuquerque, NM 87106 USA. [Babanova, Sofia; Artyushkova, Kateryna; Atanassov, Plamen] Univ New Mexico, Adv Mat Lab, Dept Chem & Biol Engn, Albuquerque, NM 87106 USA. RP Atanassov, P (reprint author), Univ New Mexico, Ctr Microengn Mat CMEM, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. EM plamen@unm.edu; jenm@lanl.gov RI Artyushkova, Kateryna/B-4709-2008 OI Artyushkova, Kateryna/0000-0002-2611-0422 FU Laboratory Directed Research and Development (LDRD) by the Basic Energy Sciences, Biomolecular Materials Program, Division of Materials Science Engineering; Air Force Office of Scientific Research [FA9550-12-1-0112]; ARO-Multi-University Research Initiative [W911NF-14-1-0263]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX The authors would like to acknowledge financial support by the Laboratory Directed Research and Development (LDRD) program for EDX and TEM (A.D.), synthesis, photophysics, and electrochemistry by the Basic Energy Sciences, Biomolecular Materials Program, Division of Materials Science & Engineering (S.C., R.C.R., J.S.M.). P.A. thanks the Air Force Office of Scientific Research (Grant FA9550-12-1-0112) and ARO-Multi-University Research Initiative grant W911NF-14-1-0263 to University of Utah for funding this collaborative project. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. The authors thank Dr. Darrick Williams for helping with EDX data collection, and Timothy Sanchez for helping with MALDI data collection. NR 114 TC 14 Z9 14 U1 29 U2 184 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD SEP 16 PY 2015 VL 137 IS 36 BP 11678 EP 11687 DI 10.1021/jacs.5b05338 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA CR7BL UT WOS:000361502800027 PM 26288369 ER PT J AU Zheng, D Qu, DY Yang, XQ Lee, HS Qu, DY AF Zheng, Dong Qu, Deyu Yang, Xiao-Qing Lee, Hung-Sui Qu, Deyang TI Preferential Solvation of Lithium Cations and Impacts on Oxygen Reduction in Lithium-Air Batteries SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE superoxide; solvation; lithium ion; ESI-MS; oxygen reduction ID ORGANIC ELECTROLYTE-SOLUTIONS; IONIZATION-MASS-SPECTROSCOPY; DIMETHYL-SULFOXIDE; CATALYTIC DISPROPORTIONATION; ELECTROCHEMICAL REDUCTION; STABILITY; SOLVENTS; IONS; INTERMEDIATE; SALTS AB The solvation of Li+ with 11 nonaqueous solvents commonly used as electrolytes for lithium batteries was studied. The solvation preferences of different solvents were compared by means of electrospray mass spectrometry and collision-induced dissociation. The relative strength of the solvent for the solvation of Li + was determined. The Lewis acidity of the solvated Li+ cations was determined by the preferential solvation of the solvent in the solvation shell. The kinetics of the catalytic disproportionation of the O-2(center dot-) depends on the relative Lewis acidity of the solvated Li + ion. The impact of the solvated Li+ cation on the O-2 redox reaction was also investigated. C1 [Zheng, Dong; Qu, Deyang] Univ Wisconsin, Coll Engn & Appl Sci, Dept Mech Engn, Milwaukee, WI 53211 USA. [Qu, Deyu] Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Dept Chem, Wuhan 430070, Hubei, Peoples R China. [Yang, Xiao-Qing; Lee, Hung-Sui] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Qu, DY (reprint author), Univ Wisconsin, Coll Engn & Appl Sci, Dept Mech Engn, Milwaukee, WI 53211 USA. EM qud@uwm.edu RI Zheng, Dong/J-9975-2015 OI Zheng, Dong/0000-0002-5824-3270 FU U.S. Department of Energy, Office of Vehicle Technologies [DE-SC0012704] FX This work was supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under Contract Number DE-SC0012704. NR 25 TC 1 Z9 1 U1 4 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD SEP 16 PY 2015 VL 7 IS 36 BP 19923 EP 19929 DI 10.1021/acsami.5b04005 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CR7BA UT WOS:000361501700009 PM 26301499 ER PT J AU He, B Zhang, BA Liu, F Navarro, A Fernandez-Liencres, MP Lu, R Lo, K Chen, TL Russell, TP Liu, Y AF He, Bo Zhang, Benjamin A. Liu, Feng Navarro, Amparo Paz Fernandez-Liencres, M. Lu, Ryan Lo, Kelvin Chen, Teresa L. Russell, Thomas P. Liu, Yi TI Electronic and Morphological Studies of Conjugated Polymers Incorporating a Disk-Shaped Polycyclic Aromatic Hydrocarbon Unit SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE charge transport; morphology; organic semiconductors; polycyclic aromatic hydrocarbon; thienoazacoronene; time-dependent density functional theory ID FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; HETEROJUNCTION SOLAR-CELLS; DISCOTIC LIQUID-CRYSTALS; HIGH-PERFORMANCE; N-TYPE; ORGANIC SEMICONDUCTORS; CARRIER MOBILITY; CHARGE-TRANSPORT; SIDE-CHAINS AB As more research findings have shown the correlation between ordering in organic semiconductor thin films and device performance, it is becoming more essential to exercise control of the ordering through structural tuning. Many recent studies have focused on the influence of side chain engineering on polymer packing orientation in thin films. However, the impact of the size and conformation of aromatic surfaces on thin film ordering has not been investigated in great detail. Here we introduce a disk-shaped polycyclic aromatic hydrocarbon building block with a large pi surface, namely, thienoazacoronenes (TACs), as a donor monomer for conjugated polymers. A series of medium bandgap conjugated polymers have been synthesized by copolymerizing TAC with electron donating monomers of varying size. The incorporation of the TAC unit in such semiconducting polymers allows a systematic investigation, both experimentally and theoretically, of the relationships between polymer conformation, electronic structure, thin film morphology, and charge transport properties. Field effect transistors based on these polymers have shown good hole mobilities and photoresponses, proving that TAC is a promising building block for high performance optoelectronic materials. C1 [He, Bo; Zhang, Benjamin A.; Lu, Ryan; Lo, Kelvin; Chen, Teresa L.; Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Liu, Feng; Russell, Thomas P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Benjamin A.; Lo, Kelvin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Navarro, Amparo; Paz Fernandez-Liencres, M.] Univ Jaen, Fac Expt Sci, Dept Phys & Analyt Chem, E-23071 Jaen, Spain. RP Liu, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, One Cyclotron Rd, Berkeley, CA 94720 USA. EM yliu@lbl.gov RI He, Bo/B-7478-2015; Zhang, Benjamin/P-7571-2015; Liu, yi/A-3384-2008; Foundry, Molecular/G-9968-2014; Fernandez-Liencres, Maria Paz/F-5364-2016; Liu, Feng/J-4361-2014 OI He, Bo/0000-0003-1444-4625; Zhang, Benjamin/0000-0001-8840-367X; Liu, yi/0000-0002-3954-6102; Fernandez-Liencres, Maria Paz/0000-0003-3831-3427; Liu, Feng/0000-0002-5572-8512 FU Self-Assembly of Organic/Inorganic Nanocomposite Materials program; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Polymer-Based Materials for Harvesting Solar Energy (PHaSE), an Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001087]; Junta de Andalucia [FQM337] FX This work was performed at the Molecular Foundry, partly supported by Self-Assembly of Organic/Inorganic Nanocomposite Materials program (B.H. and Y.L.), with the X-ray experiment conducted at the Advanced Light Source (AILS), Lawrence Berkeley National Laboratory, all supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. F.L. and T.P.R. were supported by Polymer-Based Materials for Harvesting Solar Energy (PHaSE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under award number DE-SC0001087. We thank David Hanifi at Stanford for providing the substrates for BGBC devices. Financial support from Junta de Andalucia (FQM337) and Computational resources supplied by the Centro de Servicios de Informatica y Redes de Comunicaciones (CSIRC-Universidad de Granada, Spain) are acknowledged. NR 62 TC 2 Z9 2 U1 2 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD SEP 16 PY 2015 VL 7 IS 36 BP 20034 EP 20045 DI 10.1021/acsami.5b04907 PG 12 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CR7BA UT WOS:000361501700021 PM 26302772 ER PT J AU Gilbert, I Chern, GW Fore, B Lao, YY Zhang, S Nisoli, C Schiffer, P AF Gilbert, Ian Chern, Gia-Wei Fore, Bryce Lao, Yuyang Zhang, Sheng Nisoli, Cristiano Schiffer, Peter TI Direct visualization of memory effects in artificial spin ice SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC MONOPOLES; FRUSTRATION; IRREVERSIBILITY; HYSTERESIS; NANOSCALE; AVALANCHE; HO2TI2O7; PHASE AB We experimentally demonstrate that arrays of interacting nanoscale ferromagnetic islands, known as artificial spin ice, develop reproducible microstates upon cycling an applied magnetic field. The onset of this memory effect is determined by the strength of the applied field relative to the array coercivity. Specifically, when the applied field strength is almost exactly equal to the array coercivity, several training cycles are required before the array achieves a nearly completely repeatable microstate, whereas when the applied field strength is stronger or weaker than the array coercivity, a repeatable microstate is achieved after the first minor loop. We show through experiment and simulation that this memory exhibited by artificial spin ice is due to a ratchet effect on interacting, magnetically charged defects in the island moment configuration and to the complexity of the network of strings of reversed moments that forms during magnetization reversal. C1 [Gilbert, Ian; Fore, Bryce; Lao, Yuyang; Schiffer, Peter] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Gilbert, Ian; Fore, Bryce; Lao, Yuyang; Schiffer, Peter] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Chern, Gia-Wei; Nisoli, Cristiano] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chern, Gia-Wei; Nisoli, Cristiano] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Zhang, Sheng] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Zhang, Sheng] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Zhang, Sheng] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Schiffer, P (reprint author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA. EM pschiffe@illinois.edu OI Gilbert, Ian/0000-0001-8259-0697; Schiffer, Peter/0000-0002-6430-6549; Nisoli, Cristiano/0000-0003-0053-1023 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-SC0010778]; National Nanotechnology Infrastructure Network; U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA253962] FX This paper was primarily funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Grant No. DE-SC0010778. Electron beam lithography was supported by the National Nanotechnology Infrastructure Network. The work of G.-W. Chern and C. Nisoli was carried out under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA253962. We thank Liam O'Brien for assistance with sample fabrication and Karin Dahmen and James Sethna for useful discussions. NR 55 TC 6 Z9 6 U1 6 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 16 PY 2015 VL 92 IS 10 AR 104417 DI 10.1103/PhysRevB.92.104417 PG 10 WC Physics, Condensed Matter SC Physics GA CR4KH UT WOS:000361300400004 ER PT J AU Zhang, RF Legut, D Fu, ZH Veprek, S Zhang, QF Mao, HK AF Zhang, R. F. Legut, D. Fu, Z. H. Veprek, S. Zhang, Q. F. Mao, H. K. TI Mechanical strength and electronic instabilities in ultra-incompressible platinum dinitrides SO PHYSICAL REVIEW B LA English DT Article ID SUPERHARD MATERIALS; TUNGSTEN TETRABORIDE; OSMIUM DIBORIDE; HARD MATERIAL; NITRIDE; PRESSURE; CRYSTAL AB The mechanical properties and electronic structure of recently synthesized PtN2, proposed as a potential candidate for superhard materials, have been investigated by means of density functional theory. Although it shows a clear band gap indicating a covalent bonding nature, the calculated shear moduli and ideal strengths of both proposed PtN2 polymorphs are much lower than those of ReB2, suggesting that it should be weaker than ReB2, whose load-invariant hardness is less than 30 GPa. The anisotropic strength of the pyrite PtN2 polymorph is significantly higher than that of the fluorite polymorph due to a larger covalent contribution. The shear instability for both polymorphs occurs in a cleavagelike mode between the weakly bonded crystal planes. This behavior is different from transition-metal (TM) diborides where the TM-TM or TM-B bonds are the carriers of the shear instability. C1 [Zhang, R. F.; Fu, Z. H.; Zhang, Q. F.] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China. [Zhang, R. F.; Fu, Z. H.; Zhang, Q. F.] Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China. [Zhang, R. F.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Legut, D.] Tech Univ Ostrava, Ctr IT4Innovat, CZ-70833 Ostrava, Czech Republic. [Veprek, S.] Tech Univ Munich, Dept Chem, D-85747 Garching, Germany. [Mao, H. K.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Mao, H. K.] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China. RP Zhang, RF (reprint author), Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China. EM zrf@buaa.edu.cn RI Veprek, Stan/C-1248-2008 OI Veprek, Stan/0000-0002-6016-3093 FU National Natural Science Foundation of China [51471018]; Fundamental Research Funds for the Central Universities; National Thousand Young Talents Program of China; IT4Innovations Centre of Excellence Project [CZ.1.05/1.1.00/02.0070]; European Regional Development Fund; national budget of the Czech Republic (Project Large Research, Development and Innovations Infrastructures Project) [LM2011033]; SHM Company FX R.F.Z. is supported by the Fundamental Research Funds for the Central Universities, National Natural Science Foundation of China (Grant No. 51471018), and National Thousand Young Talents Program of China. D.L. acknowledges financial and computational support by the IT4Innovations Centre of Excellence Project (Project No. CZ.1.05/1.1.00/02.0070), funded by the European Regional Development Fund, and the national budget of the Czech Republic (Project Large Research, Development and Innovations Infrastructures Project No. LM2011033). We would like to thank Professor G. Kresse for valuable advice for the application of VASP and Dr. M. Veprek-Heijman for a critical reading of the paper. S.V. thanks the SHM Company for financial support of his work. NR 54 TC 5 Z9 5 U1 4 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 16 PY 2015 VL 92 IS 10 AR 104107 DI 10.1103/PhysRevB.92.104107 PG 6 WC Physics, Condensed Matter SC Physics GA CR4KH UT WOS:000361300400002 ER PT J AU Wang, EH Lemasson, A Hamilton, JH Ramayya, AV Hwang, JK Eldridge, JM Navin, A Rejmund, M Bhattacharyya, S Liu, SH Brewer, NT Luo, YX Rasmussen, JO Liu, HL Zhou, H Liu, YX Li, HJ Sun, Y Xu, FR Zhu, SJ Ter-Akopian, GM Oganessian, YT Caamano, M Clement, E Delaune, O Farget, F de France, G Jacquot, B AF Wang, E. H. Lemasson, A. Hamilton, J. H. Ramayya, A. V. Hwang, J. K. Eldridge, J. M. Navin, A. Rejmund, M. Bhattacharyya, S. Liu, S. H. Brewer, N. T. Luo, Y. X. Rasmussen, J. O. Liu, H. L. Zhou, H. Liu, Y. X. Li, H. J. Sun, Y. Xu, F. R. Zhu, S. J. Ter-Akopian, G. M. Oganessian, Yu. Ts. Caamano, M. Clement, E. Delaune, O. Farget, F. de France, G. Jacquot, B. TI Identification of new transitions and mass assignments of levels in Pr143-153 SO PHYSICAL REVIEW C LA English DT Article ID GAMMA-RAY SPECTROMETER; EXCITED-LEVELS; NEUTRON-RICH; OCTUPOLE CORRELATIONS; PR ISOTOPES; BETA-DECAY; FISSION; NUCLEI; BANDS; INTENSITY AB Background: The previously reported levels assigned to Pr-151,Pr-152,Pr-153 have recently been called into question regarding their mass assignment. Purpose: We clarify the above questioned level assignments by measuring gamma transitions tagged with A and Z in an in-beam experiment in addition to the measurements from Cf-252 spontaneous fission (SF) and establish new spectroscopic information from N = 84 to N = 94 in the Pr isotopic chain. Methods: The isotopic chain Pr143-153 has been studied from the spontaneous fission of Cf-252 by using Gammasphere and also from the measurement of the prompt gamma rays in coincidence with isotopically identified fission fragments using VAMOS++ and EXOGAM at Grand Accelerateur National d'Ions Lourds (GANIL). The latter were produced using U-238 beams on a Be-9 target at energies around the Coulomb barrier. The gamma-gamma-gamma-gamma data from 252Cf (SF) and those from the GANIL in-beam A- and Z-gated spectra were combined to unambiguously assign the various transitions and levels in Pr-151,Pr-152,Pr-153 and other isotopes. Results: A band of 3 new transitions added to the known level in Pr-145, 9 new transitions in two new bands in Pr-147, 6 new transitions in a new level scheme for Pr-148, two new bands with 17 new transitions in Pr-149, and two new bands with 11 new transitions in Pr-150 were identified by using gamma-gamma-gamma and gamma-gamma-gamma-gamma coincidences and A and Z-gated gamma-gamma spectra. The transitions and levels previously assigned to Pr-151,Pr-153 have been confirmed by the (A, Z)-gated spectra. Small changes have been made to their original level schemes. The transitions previously assigned to Pr-152 are now assigned to Pr-151 on the basis of the (A, Z)-gated spectra. Two new bands with 20 new transitions in Pr-152 and one new band with 7 new transitions in Pr-153 are identified from the gamma-gamma-gamma-gamma coincidence spectra and the (A, Z)-gated spectrum. In addition, new gamma rays are also reported in Pr143-146. Conclusions: New levels of Pr-145,Pr-147-153 have been established, reliable mass assignments of the levels in Pr-151,Pr-152,Pr-153 have been given in the present work, and new transitions have been identified in Pr143-146 showing the new avenues that are opened by combining the two experimental approaches. C1 [Wang, E. H.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Eldridge, J. M.; Liu, S. H.; Brewer, N. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Lemasson, A.; Navin, A.; Rejmund, M.; Delaune, O.; Farget, F.; de France, G.; Jacquot, B.] CEA DSM, CNRS IN2P3, GANIL, F-14076 Caen 5, France. [Bhattacharyya, S.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Rasmussen, J. O.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Liu, H. L.] Xi An Jiao Tong Univ, Dept Phys, Xian 710049, Peoples R China. [Zhou, H.; Xu, F. R.] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Liu, Y. X.] Huzhou Univ, Dept Phys, Huzhou 313000, Peoples R China. [Li, H. J.; Zhu, S. J.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Sun, Y.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China. [Ter-Akopian, G. M.; Oganessian, Yu. Ts.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Caamano, M.] Univ Santiago de Compostela, USC, E-15706 Santiago De Compostela, Spain. RP Wang, EH (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM enhong.wang@vanderbilt.edu RI Xu, Furong/K-4178-2013; caamano, manuel/A-1832-2013; Sun, Yang/P-2417-2015 OI caamano, manuel/0000-0002-5045-003X; FU U.S. Department of Energy [DE-FG05-88ER40407, DE-AC03-76SF00098]; National Natural Science Foundation of China [11175095]; Russian Foundation for Basic Research Grant [08-02-00089]; INTAS [2003-51-4496]; LIA France-India FX The work at Vanderbilt University and Lawrence Berkeley National Laboratory are supported by the U.S. Department of Energy under Grant No. DE-FG05-88ER40407 and Contract No. DE-AC03-76SF00098. The work at Tsinghua University was supported by the National Natural Science Foundation of China under Grant No. 11175095. The work at JINR was partly supported by the Russian Foundation for Basic Research Grant No. 08-02-00089 and by the INTAS Grant No. 2003-51-4496. One of us (S.B.) acknowledges partial financial support through the LIA France-India agreement. We would like to thank J. Goupil, G. Fremont, L. Menager, J. Ropert, C. Spitaels, and the GANIL accelerator staff for their technical contributions. NR 44 TC 2 Z9 2 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD SEP 16 PY 2015 VL 92 IS 3 AR 034317 DI 10.1103/PhysRevC.92.034317 PG 16 WC Physics, Nuclear SC Physics GA CR4KZ UT WOS:000361302200002 ER PT J AU Abdesselam, A Adachi, I Adametz, A Adye, T Ahmed, H Aihara, H Akar, S Alam, MS Albert, J Al Said, S Andreassen, R Angelini, C Anulli, F Arinstein, K Arnaud, N Asner, DM Aston, D Aulchenko, V Aushev, T Ayad, R Babu, V Badhrees, I Bahinipati, S Bakich, AM Band, HR Banerjee, S Barberio, E Bard, DJ Barlow, RJ Batignani, G Beaulieu, A Bellis, M Ben-Haim, E Bernard, D Bernlochner, FU Bettarini, S Bettoni, D Bevan, AJ Bhardwaj, V Bhuyan, B Bianchi, F Biasini, M Biswal, J Blinov, VE Bloom, PC Bobrov, A Bomben, M Bondar, A Bonneaud, GR Bonvicini, G Bozek, A Bozzi, C Bracko, M Briand, H Browder, TE Brown, DN Brown, DN Bunger, C Burchat, PR Buzykaev, AR Calabrese, R Calcaterra, A Calderini, G Carpinelli, M Cartaro, C Casarosa, G Cenci, R Cervenkov, D Chang, P Chao, DS Chauveau, J Cheaib, R Chekelian, V Chen, A Chen, C Cheng, CH Cheon, BG Chilikin, K Chistov, R Cho, K Chobanova, V Choi, HHF Choi, SK Chrzaszcz, M Cibinetto, G Cinabro, D Cochran, J Coleman, JP Contri, R Convery, MR Cowan, G Cowan, R Cremaldi, L Dalseno, J Dasu, S Davier, M Davis, CL De Mori, F De Nardo, G Denig, AG Derkach, D de Sangro, R Dey, B Di Lodovico, F Dingfelder, J Dittrich, S Dolezal, Z Dorfan, J Drasal, Z Drutskoy, A Druzhinin, VP Dubois-Felsmann, GP Dunwoodie, W Dutta, D Ebert, M Echenard, B Eidelman, S Eigen, G Eisner, AM Emery, S Ernst, JA Faccini, R Farhat, H Fast, JE Feindt, M Ferber, T Ferrarotto, F Ferroni, F Field, RC Filippi, A Finocchiaro, G Fioravanti, E Flood, KT Ford, WT Forti, F Sevilla, MF Fritsch, M Fry, JR Fulsom, BG Gabathuler, E Gabyshev, N Gamba, D Garmash, A Gary, JW Garzia, I Gaspero, M Gaur, V Gaz, A Gershon, TJ Getzkow, D Gillard, R Li Gioi, L Giorgi, MA Glattauer, R Godang, R Goh, YM Goldenzweig, P Golob, B Golubev, VB Gorodeisky, R Gradl, W Graham, MT Grauges, E Griessinger, K Gritsan, AV Grosdidier, G Grunberg, O Guttman, N Haba, J Hafner, A Hamilton, B Hara, T Harrison, PF Hast, C Hayasaka, K Hayashii, H Hearty, C He, XH Hess, M Hitlin, DG Hong, TM Honscheid, K Hou, WS Hsiung, YB Huard, Z Hutchcroft, DE Iijima, T Inguglia, G Innes, WR Ishikawa, A Itoh, R Iwasaki, Y Izen, JM Jaegle, I Jawahery, A Jessop, CP Joffe, D Joo, KK Julius, T Kang, KH Kass, R Kawasaki, T Kerth, LT Khan, A Kiesling, C Kim, DY Kim, JB Kim, JH Kim, KT Kim, P Kim, SH Kim, YJ King, GJ Kinoshita, K Ko, BR Koch, H Kodys, P Kolomensky, YG Korpar, S Kovalskyi, D Kowalewski, R Kravchenko, EA Krizan, P Krokovny, P Kuhr, T Kumar, R Kuzmin, A Kwon, YJ Lacker, HM Lafferty, GD Lanceri, L Lange, DJ Lankford, AJ Latham, TE Leddig, T Le Diberder, F Lee, DH Lee, IS Lee, MJ Lees, JP Leith, DWGS Leruste, P Lewczuk, MJ Lewis, P Libby, J Lockman, WS Long, O Pegna, DL LoSecco, JM Lou, XC Lueck, T Luitz, S Lukin, P Luppi, E Lusiani, A Luth, V Lutz, AM Lynch, G MacFarlane, DB Malaescu, B Mallik, U Manoni, E Marchiori, G Margoni, M Martellotti, S Martinez-Vidal, F Masuda, M Mattison, TS Matvienko, D McKenna, JA Meadows, BT Miyabayashi, K Miyashita, TS Miyata, H Mizuk, R Mohanty, GB Moll, A Monge, MR Moon, HK Morandin, M Muller, DR Mussa, R Nakano, E Nakazawa, H Nakao, M Nanut, T Nayak, M Neal, H Neri, N Nisar, NK Nishida, S Nugent, IM Oberhof, B Ocariz, J Ogawa, S Okuno, S Olaiya, EO Olsen, J Ongmongkolkul, P Onorato, G Onuchin, AP Onuki, Y Ostrowicz, W Oyanguren, A Pakhlova, G Pakhlov, P Palano, A Pal, B Palombo, F Pan, Y Vazquez, WP Paoloni, E Park, CW Park, H Passaggio, S Patel, PM Patrignani, C Patteri, P Payne, DJ Pedlar, TK Peimer, DR Peruzzi, IM Pesantez, L Pestotnik, R Petric, M Piccolo, M Piemontese, L Piilonen, LE Pilloni, A Piredda, G Playfer, S Poireau, V Porter, FC Posocco, M Prasad, V Prell, S Prepost, R Puccio, EMT Pulliam, T Purohit, MV Pushpawela, BG Rama, M Randle-Conde, A Ratcliff, BN Raven, G Ribezl, E Richman, JD Ritchie, JL Rizzo, G Roberts, DA Robertson, SH Rohrken, M Roney, JM Roodman, A Rossi, A Rostomyan, A Rotondo, M Roudeau, P Sacco, R Sakai, Y Sandilya, S Santelj, L Santoro, V Sanuki, T Sato, Y Savinov, V Schindler, RH Schneider, O Schnell, G Schroeder, T Schubert, KR Schumm, BA Schwanda, C Schwartz, AJ Schwitters, RF Sciacca, C Seiden, A Sekula, SJ Senyo, K Seon, O Serednyakov, SI Sevior, ME Shapkin, M Shebalin, V Shen, CP Shibata, TA Shiu, JG Simard, M Simi, G Simon, F Simonetto, F Skovpen, YI Smith, AJS Smith, JG Snyder, A So, RY Sobie, RJ Soffer, A Sohn, YS Sokoloff, MD Sokolov, A Solodov, EP Solovieva, E Spaan, B Spanier, SM Staric, M Stocchi, A Stroili, R Stugu, B Su, D Sullivan, MK Sumihama, M Sumisawa, K Sumiyoshi, T Summers, DJ Sun, L Tamponi, U Taras, P Tasneem, N Teramoto, Y Tisserand, V Todyshev, KY Toki, WH Touramanis, C Trabelsi, K Tsuboyama, T Uchida, M Uglov, T Unno, Y Uno, S Usov, Y Uwer, U Vahsen, SE Van Hulse, C Vanhoefer, P Varner, G Vasseur, G Va'vra, J Verderi, M Vinokurova, A Vitale, L Vorobyev, V Voss, C Wagner, MN Wagner, SR Waldi, R Walsh, JJ Wang, CH Wang, MZ Wang, P Watanabe, Y West, CA Williams, KM Wilson, FF Wilson, JR Wisniewski, WJ Won, E Wormser, G Wright, DM Wu, SL Wulsin, HW Yamamoto, H Yamaoka, J Yashchenko, S Yuan, CZ Yusa, Y Zallo, A Zhang, CC Zhang, ZP Zhilich, V Zhulanov, V Zupanc, A AF Abdesselam, A. Adachi, I. Adametz, A. Adye, T. Ahmed, H. Aihara, H. Akar, S. Alam, M. S. Albert, J. Al Said, S. Andreassen, R. Angelini, C. Anulli, F. Arinstein, K. Arnaud, N. Asner, D. M. Aston, D. Aulchenko, V. Aushev, T. Ayad, R. Babu, V. Badhrees, I. Bahinipati, S. Bakich, A. M. Band, H. R. Banerjee, Sw. Barberio, E. Bard, D. J. Barlow, R. J. Batignani, G. Beaulieu, A. Bellis, M. Ben-Haim, E. Bernard, D. Bernlochner, F. U. Bettarini, S. Bettoni, D. Bevan, A. J. Bhardwaj, V. Bhuyan, B. Bianchi, F. Biasini, M. Biswal, J. Blinov, V. E. Bloom, P. C. Bobrov, A. Bomben, M. Bondar, A. Bonneaud, G. R. Bonvicini, G. Bozek, A. Bozzi, C. Bracko, M. Briand, H. Browder, T. E. Brown, D. N. Brown, D. N. Buenger, C. Burchat, P. R. Buzykaev, A. R. Calabrese, R. Calcaterra, A. Calderini, G. Carpinelli, M. Cartaro, C. Casarosa, G. Cenci, R. Cervenkov, D. Chang, P. Chao, D. S. Chauveau, J. Cheaib, R. Chekelian, V. Chen, A. Chen, C. Cheng, C. H. Cheon, B. G. Chilikin, K. Chistov, R. Cho, K. Chobanova, V. Choi, H. H. F. Choi, S-K. Chrzaszcz, M. Cibinetto, G. Cinabro, D. Cochran, J. Coleman, J. P. Contri, R. Convery, M. R. Cowan, G. Cowan, R. Cremaldi, L. Dalseno, J. Dasu, S. Davier, M. Davis, C. L. De Mori, F. De Nardo, G. Denig, A. G. Derkach, D. de Sangro, R. Dey, B. Di Lodovico, F. Dingfelder, J. Dittrich, S. Dolezal, Z. Dorfan, J. Drasal, Z. Drutskoy, A. Druzhinin, V. P. Dubois-Felsmann, G. P. Dunwoodie, W. Dutta, D. Ebert, M. Echenard, B. Eidelman, S. Eigen, G. Eisner, A. M. Emery, S. Ernst, J. A. Faccini, R. Farhat, H. Fast, J. E. Feindt, M. Ferber, T. Ferrarotto, F. Ferroni, F. Field, R. C. Filippi, A. Finocchiaro, G. Fioravanti, E. Flood, K. T. Ford, W. T. Forti, F. Sevilla, M. Franco Fritsch, M. Fry, J. R. Fulsom, B. G. Gabathuler, E. Gabyshev, N. Gamba, D. Garmash, A. Gary, J. W. Garzia, I. Gaspero, M. Gaur, V. Gaz, A. Gershon, T. J. Getzkow, D. Gillard, R. Li Gioi, L. Giorgi, M. A. Glattauer, R. Godang, R. Goh, Y. M. Goldenzweig, P. Golob, B. Golubev, V. B. Gorodeisky, R. Gradl, W. Graham, M. T. Grauges, E. Griessinger, K. Gritsan, A. V. Grosdidier, G. Gruenberg, O. Guttman, N. Haba, J. Hafner, A. Hamilton, B. Hara, T. Harrison, P. F. Hast, C. Hayasaka, K. Hayashii, H. Hearty, C. He, X. H. Hess, M. Hitlin, D. G. Hong, T. M. Honscheid, K. Hou, W-S. Hsiung, Y. B. Huard, Z. Hutchcroft, D. E. Iijima, T. Inguglia, G. Innes, W. R. Ishikawa, A. Itoh, R. Iwasaki, Y. Izen, J. M. Jaegle, I. Jawahery, A. Jessop, C. P. Joffe, D. Joo, K. K. Julius, T. Kang, K. H. Kass, R. Kawasaki, T. Kerth, L. T. Khan, A. Kiesling, C. Kim, D. Y. Kim, J. B. Kim, J. H. Kim, K. T. Kim, P. Kim, S. H. Kim, Y. J. King, G. J. Kinoshita, K. Ko, B. R. Koch, H. Kodys, P. Kolomensky, Yu. G. Korpar, S. Kovalskyi, D. Kowalewski, R. Kravchenko, E. A. Krizan, P. Krokovny, P. Kuhr, T. Kumar, R. Kuzmin, A. Kwon, Y. -J. Lacker, H. M. Lafferty, G. D. Lanceri, L. Lange, D. J. Lankford, A. J. Latham, T. E. Leddig, T. Le Diberder, F. Lee, D. H. Lee, I. S. Lee, M. J. Lees, J. P. Leith, D. W. G. S. Leruste, Ph. Lewczuk, M. J. Lewis, P. Libby, J. Lockman, W. S. Long, O. Pegna, D. Lopes LoSecco, J. M. Lou, X. C. Lueck, T. Luitz, S. Lukin, P. Luppi, E. Lusiani, A. Luth, V. Lutz, A. M. Lynch, G. MacFarlane, D. B. Malaescu, B. Mallik, U. Manoni, E. Marchiori, G. Margoni, M. Martellotti, S. Martinez-Vidal, F. Masuda, M. Mattison, T. S. Matvienko, D. McKenna, J. A. Meadows, B. T. Miyabayashi, K. Miyashita, T. S. Miyata, H. Mizuk, R. Mohanty, G. B. Moll, A. Monge, M. R. Moon, H. K. Morandin, M. Muller, D. R. Mussa, R. Nakano, E. Nakazawa, H. Nakao, M. Nanut, T. Nayak, M. Neal, H. Neri, N. Nisar, N. K. Nishida, S. Nugent, I. M. Oberhof, B. Ocariz, J. Ogawa, S. Okuno, S. Olaiya, E. O. Olsen, J. Ongmongkolkul, P. Onorato, G. Onuchin, A. P. Onuki, Y. Ostrowicz, W. Oyanguren, A. Pakhlova, G. Pakhlov, P. Palano, A. Pal, B. Palombo, F. Pan, Y. Vazquez, W. Panduro Paoloni, E. Park, C. W. Park, H. Passaggio, S. Patel, P. M. Patrignani, C. Patteri, P. Payne, D. J. Pedlar, T. K. Peimer, D. R. Peruzzi, I. M. Pesantez, L. Pestotnik, R. Petric, M. Piccolo, M. Piemontese, L. Piilonen, L. E. Pilloni, A. Piredda, G. Playfer, S. Poireau, V. Porter, F. C. Posocco, M. Prasad, V. Prell, S. Prepost, R. Puccio, E. M. T. Pulliam, T. Purohit, M. V. Pushpawela, B. G. Rama, M. Randle-Conde, A. Ratcliff, B. N. Raven, G. Ribezl, E. Richman, J. D. Ritchie, J. L. Rizzo, G. Roberts, D. A. Robertson, S. H. Roehrken, M. Roney, J. M. Roodman, A. Rossi, A. Rostomyan, A. Rotondo, M. Roudeau, P. Sacco, R. Sakai, Y. Sandilya, S. Santelj, L. Santoro, V. Sanuki, T. Sato, Y. Savinov, V. Schindler, R. H. Schneider, O. Schnell, G. Schroeder, T. Schubert, K. R. Schumm, B. A. Schwanda, C. Schwartz, A. J. Schwitters, R. F. Sciacca, C. Seiden, A. Sekula, S. J. Senyo, K. Seon, O. Serednyakov, S. I. Sevior, M. E. Shapkin, M. Shebalin, V. Shen, C. P. Shibata, T-A. Shiu, J-G. Simard, M. Simi, G. Simon, F. Simonetto, F. Skovpen, Yu. I. Smith, A. J. S. Smith, J. G. Snyder, A. So, R. Y. Sobie, R. J. Soffer, A. Sohn, Y. -S. Sokoloff, M. D. Sokolov, A. Solodov, E. P. Solovieva, E. Spaan, B. Spanier, S. M. Staric, M. Stocchi, A. Stroili, R. Stugu, B. Su, D. Sullivan, M. K. Sumihama, M. Sumisawa, K. Sumiyoshi, T. Summers, D. J. Sun, L. Tamponi, U. Taras, P. Tasneem, N. Teramoto, Y. Tisserand, V. Todyshev, K. Yu. Toki, W. H. Touramanis, C. Trabelsi, K. Tsuboyama, T. Uchida, M. Uglov, T. Unno, Y. Uno, S. Usov, Y. Uwer, U. Vahsen, S. E. Van Hulse, C. Vanhoefer, P. Varner, G. Vasseur, G. Va'vra, J. Verderi, M. Vinokurova, A. Vitale, L. Vorobyev, V. Voss, C. Wagner, M. N. Wagner, S. R. Waldi, R. Walsh, J. J. Wang, C. H. Wang, M-Z. Wang, P. Watanabe, Y. West, C. A. Williams, K. M. Wilson, F. F. Wilson, J. R. Wisniewski, W. J. Won, E. Wormser, G. Wright, D. M. Wu, S. L. Wulsin, H. W. Yamamoto, H. Yamaoka, J. Yashchenko, S. Yuan, C. Z. Yusa, Y. Zallo, A. Zhang, C. C. Zhang, Z. P. Zhilich, V. Zhulanov, V. Zupanc, A. CA BaBar Collaboration Belle Collaboration TI First Observation of CP Violation in (B)over-bar(0) -> D(CP)((*))h(0) Decays by a Combined Time-Dependent Analysis of BABAR and Belle Data SO PHYSICAL REVIEW LETTERS LA English DT Article ID DETECTOR; PHYSICS AB We report a measurement of the time-dependent CP asymmetry of (B) over bar (0) -> D(CP)((*))h(0) decays, where the light neutral hadron h(0) is a pi(0), eta , or omega meson, and the neutral D meson is reconstructed in the CP eigenstates K+K-, K-S(0)pi(0) or K-S(0)omega. The measurement is performed combining the final data samples collected at the Upsilon(4S) resonance by the BABAR and Belle experiments at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain (471 +/- 3) x 10(6) B (B) over bar pairs recorded by the BABAR detector and (772 +/- 11) x 10(6) B (B) over bar pairs recorded by the Belle detector. We measure the CP asymmetry parameters -eta S-f = +0.66 +/- 0.10(stat) +/- 0.06(syst) and C = -0.02 +/- 0.07(stat) +/- 0.03(syst). These results correspond to the first observation of CP violation in (B) over bar (0) -> D(CP)((*))h(0) decays. The hypothesis of no mixing-induced CP violation is excluded in these decays at the level of 5.4 standard deviations. C1 [Lee, M. J.; Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, Lab Annecy le Vieux Phys Particules LAPP, CNRS IN2P3, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Schnell, G.; Van Hulse, C.] Univ Basque Country, UPV EHU, Bilbao 48080, Spain. [Shen, C. P.] Beihang Univ, Beijing 100191, Peoples R China. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Dingfelder, J.; Pesantez, L.] Univ Bonn, D-53115 Bonn, Germany. [Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Arinstein, K.; Aulchenko, V.; Blinov, V. E.; Bobrov, A.; Bondar, A.; Buzykaev, A. R.; Druzhinin, V. P.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Golubev, V. B.; Kravchenko, E. A.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Onuchin, A. P.; Serednyakov, S. I.; Shebalin, V.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Usov, Y.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Arinstein, K.; Aulchenko, V.; Blinov, V. E.; Bobrov, A.; Bondar, A.; Druzhinin, V. P.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Golubev, V. B.; Kravchenko, E. A.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Onuchin, A. P.; Serednyakov, S. I.; Shebalin, V.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Usov, Y.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Blinov, V. E.; Onuchin, A. P.] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia. [Lankford, A. J.] Univ Calif Irvine, Irvine, CA 92697 USA. [Dey, B.; Gary, J. W.; Long, O.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sevilla, M. Franco; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Lockman, W. S.; Vazquez, W. Panduro; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Roehrken, M.] CALTECH, Pasadena, CA 91125 USA. [Cervenkov, D.; Dolezal, Z.; Drasal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Joo, K. K.] Chonnam Natl Univ, Kwangju 660701, South Korea. [Andreassen, R.; Huard, Z.; Kinoshita, K.; Meadows, B. T.; Pal, B.; Pushpawela, B. G.; Schwartz, A. J.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Ferber, T.; Inguglia, G.; Rostomyan, A.; Yashchenko, S.] DESY, D-22607 Hamburg, Germany. [Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS IN2P3, F-91128 Palaiseau, France. [Piredda, G.; Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Sez Terra, I-44122 Ferrara, Italy. [Calcaterra, A.; de Sangro, R.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Monge, M. R.; Passaggio, S.; Patrignani, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Getzkow, D.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Palano, A.; Sumihama, M.] Gifu Univ, Gifu 5011193, Japan. [Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Nakao, M.; Nishida, S.; Sakai, Y.; Sumisawa, K.; Trabelsi, K.; Uno, S.] Grad Univ Adv Studies, SOKENDAI, Hayama 2400193, Japan. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Choi, S-K.] Gyeongsang Natl Univ, Chinju 660701, South Korea. [Cheon, B. G.; Goh, Y. M.; Kim, S. H.; Lee, I. S.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Jaegle, I.; Lewis, P.; Vahsen, S. E.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adametz, A.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Iwasaki, Y.; Nakao, M.; Nishida, S.; Sakai, Y.; Santelj, L.; Sumisawa, K.; Trabelsi, K.; Tsuboyama, T.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Schnell, G.] Basque Fdn Sci, IKERBASQUE, Bilbao 48013, Spain. [Bahinipati, S.; Schnell, G.] Indian Inst Technol, Bhubaneswar 751007, Orissa, India. [Libby, J.; Nayak, M.] Indian Inst Technol Madras, Chennai 600036, Tamil Nadu, India. [Wang, P.; Yuan, C. Z.; Zhang, C. C.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Glattauer, R.; Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Shapkin, M.; Sokolov, A.] Inst High Energy Phys, Protvino 142281, Russia. [Aushev, T.; Chilikin, K.; Chistov, R.; Drutskoy, A.; Mizuk, R.; Pakhlova, G.; Pakhlov, P.; Solovieva, E.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Prell, S.] Iowa State Univ, Ames, IA 50011 USA. [Biswal, J.; Bracko, M.; Golob, B.; Korpar, S.; Krizan, P.; Nanut, T.; Pestotnik, R.; Petric, M.; Ribezl, E.; Staric, M.; Zupanc, A.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Ahmed, H.] Jazan Univ, Phys Dept, Jazan 22822, Saudi Arabia. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Feindt, M.; Goldenzweig, P.; Roehrken, M.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Joffe, D.] Kennesaw State Univ, Kennesaw, GA 30144 USA. [Badhrees, I.] King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia. [Al Said, S.] King Abdulaziz Univ, Fac Sci, Dept Phys, Jeddah 21589, Saudi Arabia. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Kim, J. B.; Kim, K. T.; Ko, B. R.; Lee, D. H.; Moon, H. K.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Kang, K. H.; Park, H.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Kuhr, T.] Univ Munich, D-80539 Munich, Germany. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Cowan, R.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Chekelian, V.; Chobanova, V.; Dalseno, J.; Li Gioi, L.; Kiesling, C.; Moll, A.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Cheaib, R.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Barberio, E.; Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Neri, N.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Phys Particules, Montreal, PQ H3C 3J7, Canada. [Drutskoy, A.; Mizuk, R.; Pakhlov, P.] Moscow Phys Engn Inst, Moscow 115409, Russia. [Pakhlova, G.; Uglov, T.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Iijima, T.; Sato, Y.; Seon, O.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Hayasaka, K.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [De Nardo, G.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.; Nakazawa, H.] Natl Cent Univ, Chungli 32054, Taiwan. [Raven, G.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Chang, P.; Hou, W-S.; Hsiung, Y. B.; Shiu, J-G.; Wang, M-Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Ostrowicz, W.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Kawasaki, T.; Miyata, H.; Yusa, Y.] Niigata Univ, Niigata 9502181, Japan. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Fast, J. E.; Fulsom, B. G.; Yamaoka, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Margoni, M.; Simi, G.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.] Univ Paris 07, Univ Paris 06, IN2P3 CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [He, X. H.] Peking Univ, Beijing 100871, Peoples R China. [Biasini, M.; Manoni, E.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Biasini, M.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Kumar, R.] Punjab Agr Univ, Ludhiana 141004, Punjab, India. [Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Pilloni, A.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.; Pilloni, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Dittrich, S.; Gruenberg, O.; Hess, M.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Vasseur, G.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Aston, D.; Bard, D. J.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; Luth, V.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Wulsin, H. W.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Bhardwaj, V.; Purohit, M. V.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Park, C. W.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdesselam, A.; Al Said, S.; Ayad, R.; Badhrees, I.] Univ Tabuk, Fac Sci, Dept Phys, Tabuk 71451, Saudi Arabia. [Babu, V.; Dutta, D.; Gaur, V.; Mohanty, G. B.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Ishikawa, A.; Sanuki, T.; Yamamoto, H.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Masuda, M.] Univ Tokyo, Earthquake Res Inst, Tokyo 1130032, Japan. [Aihara, H.; Onuki, Y.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T-A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Mussa, R.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; De Mori, F.; Gamba, D.; Tamponi, U.] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Beaulieu, A.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Bonvicini, G.; Cinabro, D.; Farhat, H.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Kwon, Y. -J.; Sohn, Y. -S.] Yonsei Univ, Seoul 120749, South Korea. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Abdesselam, A (reprint author), Univ Tabuk, Fac Sci, Dept Phys, Tabuk 71451, Saudi Arabia. RI Chilikin, Kirill/B-4402-2014; EPFL, Physics/O-6514-2016; Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016; Calcaterra, Alessandro/P-5260-2015; Cervenkov, Daniel/D-2884-2017; Faculty of, Sciences, KAU/E-7305-2017; Solovieva, Elena/B-2449-2014; Lusiani, Alberto/N-2976-2015; Forti, Francesco/H-3035-2011; Aihara, Hiroaki/F-3854-2010; Patrignani, Claudia/C-5223-2009; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Pakhlova, Galina/C-5378-2014; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Kravchenko, Evgeniy/F-5457-2015; Di Lodovico, Francesca/L-9109-2016 OI Chilikin, Kirill/0000-0001-7620-2053; Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422; Calcaterra, Alessandro/0000-0003-2670-4826; Cervenkov, Daniel/0000-0002-1865-741X; Solovieva, Elena/0000-0002-5735-4059; Lusiani, Alberto/0000-0002-6876-3288; Forti, Francesco/0000-0001-6535-7965; Aihara, Hiroaki/0000-0002-1907-5964; Patrignani, Claudia/0000-0002-5882-1747; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Pakhlova, Galina/0000-0001-7518-3022; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Krokovny, Pavel/0000-0002-1236-4667; Di Lodovico, Francesca/0000-0003-3952-2175 FU ARC (Australia); DIISR (Australia); FWF (Austria); NSERC (Canada); NSFC (China); MSMT (Czechia); CEA (France); CNRS-IN2P3 (France); BMBF (Germany); CZF (Germany); DFG (Germany); VS (Germany); DST (India); INFN (Italy); MEXT (Japan); JSPS (Japan); Nagoya TLPRC (Japan); MOE; MSIP; NRF; GSDC of KISTI; BK21Plus (Korea); FOM (The Netherlands); NFR (Norway); MNiSW (Poland); NCN (Poland); MES (Russian Federation); RFAAE (Russian Federation); ARRS (Slovenia); IKERBASQUE (Spain); MINECO (Spain); UPV/EHU (Spain); SNSF (Switzerland); NSC (Taiwan); MOE (Taiwan); STFC (United Kingdom); BSF (USA-Israel); DOE (USA); NSF (USA); Marie Curie EIF (European Union); A. P. Sloan Foundation (USA) FX We thank the PEP-II and KEKB groups for the excellent operation of the accelerators, and the computing organizations that support BABAR and Belle. The Belle experiment wishes to acknowledge the KEK cryogenics group for efficient solenoid operations. This work was supported by ARC and DIISR (Australia); FWF (Austria); NSERC (Canada); NSFC (China); MSMT (Czechia); CEA and CNRS-IN2P3 (France); BMBF, CZF, DFG, and VS (Germany); DST (India); INFN (Italy); MEXT, JSPS and Nagoya TLPRC (Japan); MOE, MSIP, NRF, GSDC of KISTI, and BK21Plus (Korea); FOM (The Netherlands); NFR (Norway); MNiSW and NCN (Poland); MES and RFAAE (Russian Federation); ARRS (Slovenia); IKERBASQUE, MINECO and UPV/EHU (Spain); SNSF (Switzerland); NSC and MOE (Taiwan); STFC (United Kingdom); BSF (USA-Israel); and DOE and NSF (USA). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation (USA). NR 44 TC 5 Z9 5 U1 1 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 16 PY 2015 VL 115 IS 12 AR 121604 DI 10.1103/PhysRevLett.115.121604 PG 10 WC Physics, Multidisciplinary SC Physics GA CR4PA UT WOS:000361316500005 PM 26430984 ER PT J AU Gupta, S Stellbrink, J Zaccarelli, E Likos, CN Camargo, M Holmqvist, P Allgaier, J Willner, L Richter, D AF Gupta, Sudipta Stellbrink, Joerg Zaccarelli, Emanuela Likos, Christos N. Camargo, Manuel Holmqvist, Peter Allgaier, Juergen Willner, Lutz Richter, Dieter TI Validity of the Stokes-Einstein Relation in Soft Colloids up to the Glass Transition SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYNAMIC-LIGHT-SCATTERING; SUPERCOOLED LIQUIDS; FORMING LIQUIDS; PHASE-DIAGRAM; SUSPENSIONS; DIFFUSION; SPHERES; BEHAVIOR; HETEROGENEITIES; VIOLATION AB We investigate the dynamics of kinetically frozen block copolymer micelles of different softness across a wide range of particle concentrations, from the fluid to the onset of glassy behavior, through a combination of rheology, dynamic light scattering, and pulsed field gradient NMR spectroscopy. We additionally perform Brownian dynamics simulations based on an ultrasoft coarse- grained potential, which are found to be in quantitative agreement with experiments, capturing even the very details of dynamic structure factors S(Q, t) on approaching the glass transition. We provide evidence that for these systems the Stokes-Einstein relation holds up to the glass transition; given that it is violated for dense suspensions of hard colloids, our findings suggest that its validity is an intriguing signature of ultrasoft interactions. C1 [Gupta, Sudipta; Stellbrink, Joerg; Allgaier, Juergen; Willner, Lutz; Richter, Dieter] Forschungszentrum Julich, JCNS 1, D-52425 Julich, Germany. [Gupta, Sudipta; Stellbrink, Joerg; Allgaier, Juergen; Willner, Lutz; Richter, Dieter] Forschungszentrum Julich, ICS 1, D-52425 Julich, Germany. [Gupta, Sudipta] Oak Ridge Natl Lab, JCNS SNS, Oak Ridge, TN 37831 USA. [Zaccarelli, Emanuela] Univ Roma La Sapienza, CNR ISC, I-00185 Rome, Italy. [Zaccarelli, Emanuela] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Likos, Christos N.] Univ Vienna, Fac Phys, A-1090 Vienna, Austria. [Camargo, Manuel] Univ Antonio Narino, Ctr Invest Ciencias Basicas & Aplicadas, Santiago De Cali 760030, Colombia. [Holmqvist, Peter] Lund Univ, Div Phys Chem, S-22100 Lund, Sweden. RP Camargo, M (reprint author), Univ Antonio Narino, Ctr Invest Ciencias Basicas & Aplicadas, Km 18 Via Cali Jamundi, Santiago De Cali 760030, Colombia. EM manuel.camargo@uan.edu.co RI Richter, Dieter/H-3701-2013; Likos, Christos/F-7984-2012; Emanuela, Zaccarelli/K-4695-2013; Camargo, Manuel/F-4874-2013; Stellbrink, Jorg/K-3351-2013; Gupta, Sudipta/I-7960-2015 OI Richter, Dieter/0000-0003-0719-8470; Likos, Christos/0000-0003-3550-4834; Emanuela, Zaccarelli/0000-0003-0032-8906; Camargo, Manuel/0000-0003-0276-2650; Stellbrink, Jorg/0000-0001-6183-3901; FU International Helmholtz Research School (IHRS) Bio-Soft; DFG [SFB-TR6]; MIUR-FIRB ANISOFT [RBFR125H0M]; FPIT (Banco de la Republica, Convenio) [201312]; ETN-COLLDENSE [H2020-MCSA-ITN-2014, 642774] FX S. G. and J. S. acknowledge financial support from the International Helmholtz Research School (IHRS) Bio-Soft and the DFG within the SFB-TR6, E. Z. from the MIUR-FIRB ANISOFT (RBFR125H0M), and M. C. from FPIT (Banco de la Republica, Convenio 201312). E. Z. and C. N. L. acknowledge financial support from ETN-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774). NR 52 TC 9 Z9 9 U1 6 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 16 PY 2015 VL 115 IS 12 AR 128302 DI 10.1103/PhysRevLett.115.128302 PG 5 WC Physics, Multidisciplinary SC Physics GA CR4PA UT WOS:000361316500017 PM 26431020 ER PT J AU Maghrebi, MF Gullans, MJ Bienias, P Choi, S Martin, I Firstenberg, O Lukin, MD Buchler, HP Gorshkov, AV AF Maghrebi, M. F. Gullans, M. J. Bienias, P. Choi, S. Martin, I. Firstenberg, O. Lukin, M. D. Buechler, H. P. Gorshkov, A. V. TI Coulomb Bound States of Strongly Interacting Photons SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTROMAGNETICALLY INDUCED TRANSPARENCY; RYDBERG BLOCKADE; ATOMS; CRYSTALLIZATION; OPTICS; LIGHT; GAS AB We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasibound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wave function resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms. C1 [Maghrebi, M. F.; Gullans, M. J.; Gorshkov, A. V.] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA. [Maghrebi, M. F.; Gullans, M. J.; Gorshkov, A. V.] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD 20742 USA. [Bienias, P.; Buechler, H. P.] Univ Stuttgart, Inst Theoret Phys 3, D-70550 Stuttgart, Germany. [Choi, S.; Lukin, M. D.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Martin, I.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Firstenberg, O.] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel. RP Maghrebi, MF (reprint author), Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA. EM magrebi@umd.edu; michael.gullans@nist.gov RI Gorshkov, Alexey/A-9848-2008 OI Gorshkov, Alexey/0000-0003-0509-3421 FU ARL; NSF PFC at the JQI; NRC; NSF PIF; CUA; AFOSR; ARO; AFOSR MURI; Center for Integrated Quantum Science and Technology (IQST); Deutsche Forschungsgemeinschaft (DFG) within SFB TRR 21; EU Marie Curie ITN COHERENCE; DARPA QUINESS; Packard Foundation; National Science Foundation; U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division FX We thank D. Chang, R. Qi, and Y. Wang for discussions. This work was supported by ARL, NSF PFC at the JQI, the NRC, NSF PIF, CUA, AFOSR, ARO, AFOSR MURI, Center for Integrated Quantum Science and Technology (IQST), the Deutsche Forschungsgemeinschaft (DFG) within SFB TRR 21, the EU Marie Curie ITN COHERENCE, DARPA QUINESS, Packard Foundation, and the National Science Foundation. The work of I. M. was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. NR 63 TC 14 Z9 14 U1 4 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 16 PY 2015 VL 115 IS 12 AR 123601 DI 10.1103/PhysRevLett.115.123601 PG 6 WC Physics, Multidisciplinary SC Physics GA CR4PA UT WOS:000361316500008 PM 26430994 ER PT J AU Zhao, YF Liu, HW Zhang, CL Wang, HC Wang, JF Lin, ZQ Xing, Y Lu, H Liu, J Wang, Y Brombosz, SM Xiao, ZL Jia, S Xie, XC Wang, J AF Zhao, Yanfei Liu, Haiwen Zhang, Chenglong Wang, Huichao Wang, Junfeng Lin, Ziquan Xing, Ying Lu, Hong Liu, Jun Wang, Yong Brombosz, Scott M. Xiao, Zhili Jia, Shuang Xie, X. C. Wang, Jian TI Anisotropic Fermi Surface and Quantum Limit Transport in High Mobility Three-Dimensional Dirac Semimetal Cd3As2 SO PHYSICAL REVIEW X LA English DT Article ID TOPOLOGICAL INSULATORS; OSCILLATIONS; GRAPHENE; BI2TE3; PHASE AB Three-dimensional topological Dirac semimetals have a linear dispersion in 3D momentum space and are viewed as the 3D analogues of graphene. Here, we report angle-dependent magnetotransport on the newly revealed Cd3As2 single crystals and clearly show how the Fermi surface evolves with crystallographic orientations. Remarkably, when the magnetic field lies in the [112] or [44 (1) over bar] axis, magnetoresistance oscillations with only single period are present. However, the oscillation shows double periods when the field is applied along the [1 (1) over bar0] direction. Moreover, aligning the magnetic field at certain directions also gives rise to double period oscillations. We attribute the observed anomalous oscillation behavior to the sophisticated geometry of Fermi surface and illustrate a complete 3D Fermi surface with two nested anisotropic ellipsoids around the Dirac points. Additionally, a submillimeter mean-free path at 6 K is found in Cd3As2 crystals, indicating ballistic transport in this material. By measuring the magnetoresistance up to 60 T, we reach the quantum limit (n = 1 Landau level) at about 43 T. These results improve the knowledge of the Dirac semimetal material Cd3As2 and also pave the way for proposing new electronic applications based on 3D Dirac materials. C1 [Zhao, Yanfei; Liu, Haiwen; Zhang, Chenglong; Wang, Huichao; Xing, Ying; Lu, Hong; Jia, Shuang; Xie, X. C.; Wang, Jian] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. [Zhao, Yanfei; Liu, Haiwen; Zhang, Chenglong; Wang, Huichao; Xing, Ying; Lu, Hong; Jia, Shuang; Xie, X. C.; Wang, Jian] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. [Wang, Junfeng; Lin, Ziquan] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China. [Liu, Jun; Wang, Yong] Zhejiang Univ, Dept Mat Sci & Engn, Ctr Electron Microscopy, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China. [Brombosz, Scott M.; Xiao, Zhili] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Xiao, Zhili] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Zhao, YF (reprint author), Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. EM gwljiashuang@pku.edu.cn; xcxie@pku.edu.cn; jianwangphysics@pku.edu.cn RI Wang, Yong/A-7766-2010 OI Wang, Yong/0000-0002-9893-8296 FU National Basic Research Program of China [2013CB934600, 2015CB921102, 2012CB921300]; National Natural Science Foundation of China [11222434, 11534001, 11174007]; Research Fund for the Doctoral Program of Higher Education (RFDP) of China; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX We acknowledge Chong Wang, Yuan Li, Tian Qian, and Hong Ding for their help in Laue measurements and we thank Liang Li and Zhengcai Xia for helpful discussions about the pulsed magnetic field measurements. This work was financially supported by National Basic Research Program of China (Grants No. 2013CB934600, No. 2015CB921102, and No. 2012CB921300), the National Natural Science Foundation of China (No. 11222434, No. 11534001, and No. 11174007), and the Research Fund for the Doctoral Program of Higher Education (RFDP) of China. S. M. B. and Z. L. X. at Argonne was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 35 TC 31 Z9 31 U1 14 U2 77 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD SEP 16 PY 2015 VL 5 IS 3 AR 031037 DI 10.1103/PhysRevX.5.031037 PG 9 WC Physics, Multidisciplinary SC Physics GA CR4OL UT WOS:000361314200002 ER PT J AU Cosimbescu, L Wei, XL Vijayakumar, M Xu, W Helm, ML Burton, SD Sorensen, CM Liu, J Sprenkle, V Wang, W AF Cosimbescu, Lelia Wei, Xiaoliang Vijayakumar, M. Xu, Wu Helm, Monte L. Burton, Sarah D. Sorensen, Christina M. Liu, Jun Sprenkle, Vincent Wang, Wei TI Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds SO SCIENTIFIC REPORTS LA English DT Article ID REDOX-FLOW BATTERY; ORGANIC ELECTRODE MATERIALS; ELECTRICAL ENERGY-STORAGE; RESEARCH-AND-DEVELOPMENT; PROGRESS; MIXTURES; DENSITY; SOLVENT; METAL AB We report a series of ionically modified ferrocene compounds for hybrid lithium-organic non-aqueous redox flow batteries, based on the ferrocene/ferrocenium redox couple as the active catholyte material. Tetraalkylammonium ionic moieties were incorporated into the ferrocene structure, in order to enhance the solubility of the otherwise relatively insoluble ferrocene. The effect of various counter anions of the tetraalkylammonium ionized species appended to the ferrocene, such as bis(trifluoromethanesulfonyl)imide, hexafluorophosphate, perchlorate, tetrafluoroborate, and dicyanamide on the solubility of the ferrocene was investigated. The solution chemistry of the ferrocene species was studied, in order to understand the mechanism of solubility enhancement. Finally, the electrochemical performance of these ionized ferrocene species was evaluated and shown to have excellent cell efficiency and superior cycling stability. C1 [Cosimbescu, Lelia; Wei, Xiaoliang; Xu, Wu; Liu, Jun; Sprenkle, Vincent; Wang, Wei] Energy & Environm Directorate, Richland, WA 99352 USA. [Vijayakumar, M.; Helm, Monte L.] Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Sorensen, Christina M.] Natl Secur Directorate, Richland, WA 99352 USA. [Burton, Sarah D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Cosimbescu, L (reprint author), Energy & Environm Directorate, Richland, WA 99352 USA. EM lelia.cosimbescu@pnnl.gov; wei.wang@pnnl.gov RI Wang, Wei/F-4196-2010; OI Wang, Wei/0000-0002-5453-4695; Xu, Wu/0000-0002-2685-8684 FU U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) [57558]; DOE [DE-AC05-76RL01830]; Laboratory-Directed Research and Development Program (LDRD) of the Pacific Northwest National Laboratory (PNNL) [DE-AC05-76RL01830] FX The authors would like to acknowledge financial support primarily from the U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) (under Contract No. 57558) and support from the Laboratory-Directed Research and Development Program (LDRD) of the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated by Battelle for DOE under Contract DE-AC05-76RL01830. Funding Sources: U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) (under Contract No. 57558) and the Laboratory-Directed Research and Development Program (LDRD) of the Pacific Northwest National Laboratory (PNNL) under Contract DE-AC05-76RL01830 provided financial support for this work. NR 32 TC 9 Z9 9 U1 8 U2 57 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD SEP 16 PY 2015 VL 5 AR 14117 DI 10.1038/srep14117 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CR4IB UT WOS:000361294300002 PM 26374254 ER PT J AU Berry, J Buonassisi, T Egger, DA Hodes, G Kronik, L Loo, YL Lubomirsky, I Marder, SR Mastai, Y Miller, JS Mitzi, DB Paz, Y Rappe, AM Riess, I Rybtchinski, B Stafsudd, O Stevanovic, V Toney, MF Zitoun, D Kahn, A Ginley, D Cahen, D AF Berry, Joseph Buonassisi, Tonio Egger, David A. Hodes, Gary Kronik, Leeor Loo, Yueh-Lin Lubomirsky, Igor Marder, Seth R. Mastai, Yitzhak Miller, Joel S. Mitzi, David B. Paz, Yaron Rappe, Andrew M. Riess, Ilan Rybtchinski, Boris Stafsudd, Oscar Stevanovic, Vladan Toney, Michael F. Zitoun, David Kahn, Antoine Ginley, David Cahen, David TI Hybrid Organic-Inorganic Perovskites (HOIPs): Opportunities and Challenges SO ADVANCED MATERIALS LA English DT Article DE hybrid perovskites; photovoltaic; solar cell ID LEAD HALIDE PEROVSKITES; DEFECT-TOLERANT SEMICONDUCTORS; SOLAR-CELLS; HIGH-PERFORMANCE; PHOTOVOLTAIC APPLICATIONS; CH3NH3PBI3 PEROVSKITES; SEQUENTIAL DEPOSITION; ANOMALOUS HYSTERESIS; DOPANT DIFFUSION; SINGLE-CRYSTALS C1 [Berry, Joseph; Stevanovic, Vladan; Ginley, David] Natl Renewable Energy Lab, Mat & Chem Sci & Technol, Golden, CO 80401 USA. [Buonassisi, Tonio] MIT, Photovolta Res Lab, Cambridge, MA 02139 USA. [Egger, David A.; Hodes, Gary; Kronik, Leeor; Lubomirsky, Igor; Rybtchinski, Boris; Cahen, David] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel. [Egger, David A.; Hodes, Gary; Kronik, Leeor; Lubomirsky, Igor; Rybtchinski, Boris; Cahen, David] Weizmann Inst Sci, Dept Organ Chem, IL-76100 Rehovot, Israel. [Loo, Yueh-Lin] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. [Marder, Seth R.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Mastai, Yitzhak; Zitoun, David] Bar Ilan Univ, Dept Chem, IL-5290002 Ramat Gan, Israel. [Miller, Joel S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. [Mitzi, David B.] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. [Paz, Yaron; Riess, Ilan] Technion Israel Inst Technol, Fac Chem Engn, IL-3200003 Haifa, Israel. [Paz, Yaron; Riess, Ilan] Technion Israel Inst Technol, Fac Phys, IL-3200003 Haifa, Israel. [Rappe, Andrew M.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Stafsudd, Oscar] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Toney, Michael F.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Kahn, Antoine] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. RP Kahn, A (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. EM kahn@princeton.edu; David.Ginley@nrel.gov; david.cahen@weizmann.ac.il RI Egger, David/M-8926-2015 FU CBET Energy for Sustainability Program of the National Science Foundation [CBET-1448886]; US-Israel Binational Science Foundation; Israel Ministry of National Infrastructure, Energy and Water resources FX This article presents the broad conclusions issued from the NSF-BSF Workshop on Hybrid Organic-Inorganic Perovskites held at the Weizmann Institute of Science, Israel, on Feb. 22-23, 2015. Support of the US component of the workshop by the CBET Energy for Sustainability Program of the National Science Foundation (CBET-1448886), and of the Israeli component by the US-Israel Binational Science Foundation and the Israel Ministry of National Infrastructure, Energy and Water resources, is gratefully acknowledged. NR 91 TC 75 Z9 75 U1 42 U2 279 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD SEP 16 PY 2015 VL 27 IS 35 BP 5102 EP 5112 DI 10.1002/adma.201502294 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CR3BQ UT WOS:000361205700001 PM 26223962 ER PT J AU Zhang, KHL Du, YG Papadogianni, A Bierwagen, O Sallis, S Piper, LFJ Bowden, ME Shutthanandan, V Sushko, PV Chambers, SA AF Zhang, Kelvin H. L. Du, Yingge Papadogianni, Alexandra Bierwagen, Oliver Sallis, Shawn Piper, Louis F. J. Bowden, Mark E. Shutthanandan, Vaithiyalingam Sushko, Peter V. Chambers, Scott A. TI Perovskite Sr-Doped LaCrO3 as a New p-Type Transparent Conducting Oxide SO ADVANCED MATERIALS LA English DT Article DE complex oxides; p-type semiconductors; transparent conducting oxides ID THIN-FILMS; ELECTRICAL-CONDUCTION; SOLAR-CELLS; SEMICONDUCTOR; FABRICATION; DESIGN; DIODES; CUALO2 C1 [Zhang, Kelvin H. L.; Sushko, Peter V.; Chambers, Scott A.] Pacific NW Natl Lab, Div Phys Sci, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Du, Yingge; Bowden, Mark E.; Shutthanandan, Vaithiyalingam] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Papadogianni, Alexandra; Bierwagen, Oliver] Paul Drude Inst Festkorperelekt, DE-10117 Berlin, Germany. [Sallis, Shawn; Piper, Louis F. J.] Binghamton Univ, Mat Sci & Engn, Binghamton, NY 13902 USA. RP Chambers, SA (reprint author), Pacific NW Natl Lab, Div Phys Sci, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM sa.chambers@pnnl.gov RI Piper, Louis/C-2960-2011; Sushko, Peter/F-5171-2013 OI Piper, Louis/0000-0002-3421-3210; Sushko, Peter/0000-0001-7338-4146 FU U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering [10122]; Department of Energy's Office of Biological and Environmental Research; National Science Foundation [DMR 1409912]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DEAC02-98CH10886] FX This work was supported by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering, under Award No. 10122. The work was performed in the Environmental Molecular Sciences Laboratory, a national science-user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The computational work was supported in part by the PNNL Laboratory Directed Research and Development program. L.F.J.P. acknowledges support from the National Science Foundation under DMR 1409912. The authors thank Drs. Arena (U4b) and Woicik (X24a) for access and assistance at their end stations. Use of the National Synchrotron Light Source Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-98CH10886. Beamline X24a is supported by the National Institute of Standards and Technology. NR 44 TC 16 Z9 16 U1 30 U2 184 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD SEP 16 PY 2015 VL 27 IS 35 BP 5191 EP 5195 DI 10.1002/adma.201501959 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CR3BQ UT WOS:000361205700012 PM 26248327 ER PT J AU Bunker, JJ Flynn, TM Koval, JC Shaw, DG Meisel, M McDonald, BD Ishizuka, IE Dent, AL Wilson, PC Jabri, B Antonopoulos, DA Bendelac, A AF Bunker, Jeffrey J. Flynn, Theodore M. Koval, Jason C. Shaw, Dustin G. Meisel, Marlies McDonald, Benjamin D. Ishizuka, Isabel E. Dent, Alexander L. Wilson, Patrick C. Jabri, Bana Antonopoulos, Dionysios A. Bendelac, Albert TI Innate and Adaptive Humoral Responses Coat Distinct Commensal Bacteria with Immunoglobulin A SO IMMUNITY LA English DT Article ID INTESTINAL IGA; CELLS; GUT; HOMEOSTASIS; IMMUNITY; GENERATION; ROLES AB Immunoglobulin A (IgA) is prominently secreted at mucosal surfaces and coats a fraction of the intestinal microbiota. However, the commensal bacteria bound by IgA are poorly characterized and the type of humoral immunity they elicit remains elusive. We used bacterial flow cytometry coupled with 16S rRNA gene sequencing (IgA-Seq) in murine models of immunodeficiency to identify IgA-bound bacteria and elucidate mechanisms of commensal IgA targeting. We found that residence in the small intestine, rather than bacterial identity, dictated induction of specific IgA. Most commensals elicited strong T-independent (TI) responses that originated from the orphan B1b lineage and from B2 cells, but excluded natural antibacterial B1a specificities. Atypical commensals including segmented filamentous bacteria and Mucispirillum evaded TI responses but elicited T-dependent IgA. These data demonstrate exquisite targeting of distinct commensal bacteria by multiple layers of humoral immunity and reveal a specialized function of the B1b lineage in TI mucosal IgA responses. C1 [Bunker, Jeffrey J.; Meisel, Marlies; McDonald, Benjamin D.; Ishizuka, Isabel E.; Wilson, Patrick C.; Jabri, Bana; Bendelac, Albert] Univ Chicago, Comm Immunol, Chicago, IL 60637 USA. [Bunker, Jeffrey J.; McDonald, Benjamin D.; Ishizuka, Isabel E.; Bendelac, Albert] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA. [Flynn, Theodore M.; Koval, Jason C.; Antonopoulos, Dionysios A.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Flynn, Theodore M.; Antonopoulos, Dionysios A.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Shaw, Dustin G.; Meisel, Marlies; Wilson, Patrick C.; Jabri, Bana; Antonopoulos, Dionysios A.] Univ Chicago, Dept Med, Chicago, IL 60637 USA. [Dent, Alexander L.] Indiana Univ Sch Med, Dept Microbiol & Immunol, Indianapolis, IN 46202 USA. [Antonopoulos, Dionysios A.] Univ Chicago, Inst Genom & Syst Biol, Chicago, IL 60637 USA. RP Bendelac, A (reprint author), Univ Chicago, Comm Immunol, Chicago, IL 60637 USA. EM abendela@bsd.uchicago.edu OI Flynn, Theodore/0000-0002-1838-8942 FU NIH Medical Scientist Training Program [T32GM007281]; FWF Austrian Science Fund [J3418-B19]; NIH [R01AI038339, R01AI108643, R01GM106173, R01HL118092, 1R21AI099825, R01DK067180, R01DK098435]; University of Chicago DDRCC, NIDDK [P30DK42086] FX We thank the University of Chicago Flow Cytometry Core for assistance with cell sorting, S. Owens and S. Greenwald in the Next Generation Sequencing Core at Argonne National Laboratory for assistance with amplicon sequencing, and B. Casterline for providing B. fragilis cultures. J.J.B and B.D.M. were supported by an NIH Medical Scientist Training Program grant T32GM007281 and M.M. by FWF Austrian Science Fund grant J3418-B19. This work was supported by NIH grants R01AI038339, R01AI108643, R01GM106173, and R01HL118092 to A.B., NIH grant 1R21AI099825 to A.L.D., NIH grants to R01DK067180 and R01DK098435 to B.J., and support to D.A.A. from the University of Chicago DDRCC, NIDDK P30DK42086. NR 35 TC 34 Z9 34 U1 8 U2 13 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1074-7613 EI 1097-4180 J9 IMMUNITY JI Immunity PD SEP 15 PY 2015 VL 43 IS 3 BP 541 EP 553 DI 10.1016/j.immuni.2015.08.007 PG 13 WC Immunology SC Immunology GA DE9NY UT WOS:000370965900006 PM 26320660 ER PT J AU de Vries, KJ Bagnaschi, EA Buchmueller, O Cavanaugh, R Citron, M De Roeck, A Dolan, MJ Ellis, JR Flacher, H Heinemeyer, S Isidori, G Malik, S Marrouche, J Santos, DM Olive, KA Sakurai, K Weiglein, G AF de Vries, K. J. Bagnaschi, E. A. Buchmueller, O. Cavanaugh, R. Citron, M. De Roeck, A. Dolan, M. J. Ellis, J. R. Flaecher, H. Heinemeyer, S. Isidori, G. Malik, S. Marrouche, J. Martinez Santos, D. Olive, K. A. Sakurai, K. Weiglein, G. TI The pMSSM10 after LHC run 1 SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID SUPERSYMMETRIC DARK-MATTER; NONUNIVERSAL HIGGS MASSES; LARGE TAN-BETA; RELIC DENSITY; PP COLLISIONS; MUON G-2; MINIMAL SUPERGRAVITY; PARTICLE PHYSICS; EXCLUSION BOUNDS; PARAMETER SPACE AB We present a frequentist analysis of the parameter space of the pMSSM10, in which the following ten soft SUSY-breaking parameters are specified independently at the mean scalar top mass scale M-SUSY equivalent to root m((t) over tilde1)m((t) over tilde2) : the gaugino masses M-1,M-2,M-3, the first-and second-generation squark masses m((q) over tilde1) = m((q) over tilde2), the third-generation squark mass m((q) over tilde3), a common slepton mass m((l) over tilde) and a common trilinear mixing parameter A, as well as the Higgs mixing parameter mu, the pseudoscalar Higgs mass M-A and tan beta, the ratio of the two Higgs vacuum expectation values. We use the MultiNest sampling algorithm with similar to 1.2 x10(9) points to sample the pMSSM10 parameter space. A dedicated study shows that the sensitivities to strongly interacting sparticle masses of ATLAS and CMS searches for jets, leptons + E-T signals depend only weakly on many of the other pMSSM10 parameters. With the aid of the Atom and Scorpion codes, we also implement the LHC searches for electroweakly interacting sparticles and light stops, so as to confront the pMSSM10 parameter space with all relevant SUSY searches. In addition, our analysis includes Higgs mass and rate measurements using the HiggsSignals code, SUSY Higgs exclusion bounds, the measurements of BR(B-s -> mu(+)mu(-)) by LHCb and CMS, other B-physics observables, electroweak precision observables, the cold dark matter density and the XENON100 and LUX searches for spin-independent dark matter scattering, assuming that the cold dark matter is mainly provided by the lightest neutralino (chi) over tilde (0)(1). We show that the pMSSM10 is able to provide a supersymmetric interpretation of (g - 2)(mu), unlike the CMSSM, NUHM1 and NUHM2. As a result, we find (omitting Higgs rates) that the minimum chi(2) = 20.5 with 18 degrees of freedom (d. o. f.) in the pMSSM10, corresponding to a chi(2) probability of 30.8 %, to be compared with chi(2)/d.o.f. = 32.8/24 (31.1/23) (30.3/22) in the CMSSM (NUHM1) (NUHM2). We display the one-dimensional likelihood functions for sparticle masses, and we show that they may be significantly lighter in the pMSSM10 than in the other models, e. g., the gluino may be as light as similar to 1250 GeV at the 68 % CL, and squarks, stops, electroweak gauginos and sleptons may be much lighter than in the CMSSM, NUHM1 and NUHM2. We discuss the discovery potential of future LHC runs, e(+)e(-) colliders and direct detection experiments. C1 [de Vries, K. J.; Buchmueller, O.; Citron, M.; Malik, S.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, High Energy Phys Grp, London SW7 2AZ, England. [Bagnaschi, E. A.; Weiglein, G.] DESY, D-22607 Hamburg, Germany. [Cavanaugh, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Cavanaugh, R.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [De Roeck, A.; Ellis, J. R.; Marrouche, J.] CERN, Dept Phys, CH-1211 Geneva 23, Switzerland. [De Roeck, A.] Univ Antwerp, B-2610 Antwerp, Belgium. [Dolan, M. J.] SLAC Natl Accelerator Lab, Theory Grp, Menlo Pk, CA 94025 USA. [Dolan, M. J.] Univ Melbourne, Sch Phys, ARC Ctr Excellence Particle Phys Terascale, Melbourne, Vic 3010, Australia. [Ellis, J. R.; Sakurai, K.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England. [Flaecher, H.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Heinemeyer, S.] CSIC UC, Inst Fis Cantabria, Santander 39005, Spain. [Isidori, G.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. [Martinez Santos, D.] Vrije Univ Amsterdam, Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Martinez Santos, D.] Univ Santiago de Compostela, Santiago De Compostela 15706, Spain. [Olive, K. A.] Univ Minnesota, Sch Phys & Astron, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. RP de Vries, KJ (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, High Energy Phys Grp, Prince Consort Rd, London SW7 2AZ, England. EM Sven.Heinemeyer@cern.ch OI DOLAN, MATTHEW/0000-0003-3420-8718; Bagnaschi, Emanuele Angelo/0000-0002-6827-5022 FU London Centre for Terauniverse Studies (LCTS); European Research Council [267352, BSMFLEET 639068]; National Science Foundation [PHY-1151640]; Fennilab [De-AC02-07CH11359]; United States Department of Energy; Australia Research Council; STFC (UK) [ST/J002798/1, ST/L000326/1]; CICYT [EPA 2013-40715-P]; Spanish MICINN [CSD200900064]; FOM; DOE [DE-SC0011842]; European Commission [PITN-GA-2012-316704]; [Collaborative Research Center SFB676 of the DFG] FX The, work of K.j.dV, O.B., J.E., S.M., K.A.O. and K.S. is supported in part by the London Centre for Terauniverse Studies (LCTS), using funding from the European Research Council via the Advanced Investigator Grant 267352. The work of R.C. is supported in part by the National Science Foundation under Grant No. PHY-1151640 at the University of Illinois Chicago and in part by Fennilab, operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. This work of M.J.D. is supported in part by the Australia Research Council. The work of J.E. is also supported in part by STFC (UK) via the research grants ST/J002798/1 and ST/L000326/1. The work of S.H. is supported in part by CICYT (grant EPA 2013-40715-P) and by the Spanish MICINN's Consolider-Ingenio 2010 Program under grant MultiDark CSD200900064. The work of D.M.-S. is supported by FOM (NL) and by the European Research Council via Grant BSMFLEET 639068. The work of K.A.O. is supported in part by DOE grant DE-SC0011842 at the University of Minnesota. The work of G.W. is supported in part by the Collaborative Research Center SFB676 of the DFG, "Particles, Stings and the early Universe", and by the European Commission through the "HiggsTools" Initial Training Network PITN-GA-2012-316704. NR 145 TC 21 Z9 21 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD SEP 15 PY 2015 VL 75 IS 9 AR 422 DI 10.1140/epjc/s10052-015-3599-y PG 34 WC Physics, Particles & Fields SC Physics GA CU2CX UT WOS:000363331300002 ER PT J AU Adam, J Adamova, D Aggarwal, MM Rinella, GA Agnello, M Agrawal, N Ahammed, Z Ahn, SU Aimo, I Aiola, S Ajaz, M Akindinov, A Alam, SN Aleksandrov, D Alessandro, B Alexandre, D Molina, RA Alici, A Alkin, A Alme, J Alt, T Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anielski, J Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arcelli, S Armesto, N Arnaldi, R Aronsson, T Arsene, IC Arslandok, M Augustinus, A Averbeck, R Azmi, MD Bach, M Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Baldisseri, A Pedrosa, FBDS Baral, RC Barbano, AM Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartalini, P Barth, K Bartke, J Bartsch, E Basile, M Bastid, N Basu, S Bathen, B Batigne, G Camejo, AB Batyunya, B Batzing, PC Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Martinez, HB Bellwied, R Belmont, R Belmont-Moreno, E Belyaev, V Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Biswas, R Biswas, S Bjelogrlic, S Blanco, F Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Borri, M Bossu, F Botje, M Botta, E Bottger, S Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Brucken, EJ Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Buxton, JT Caffarri, D Cai, X Caines, H Diaz, LC Caliva, A Villar, EC Camerini, P Carena, F Carena, W Castellanos, JC Castro, AJ Casula, EAR Cavicchioli, C Sanchez, CC Cepila, J Cerello, P Chang, B Chapeland, S Chartier, M Charvet, JL Chattopadhyay, S Chattopadhyay, S Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Chochula, P Choi, K Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Chunhui, Z Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Maldonado, IC Cortese, P Cosentino, MR Costa, F Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dahms, T Dainese, A Danu, A Das, D Das, I Das, S Dash, A Dash, S De, S De Caro, A De Cataldo, G de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S Deisting, A Deloff, A Denes, E D'Erasmo, G Di Bari, D Di Mauro, A Di Nezza, P Corchero, MAD Dietel, T Dillenseger, P Divia, R Djuvsland, O Dobrin, A Dobrowolski, T Gimenez, DD Donigus, B Dordic, O Dubey, AK Dubla, A Ducroux, L Dupieux, P Ehlers, RJ Elia, D Engel, H Erazmus, B Erhardt, F Eschweiler, D Espagnon, B Estienne, M Esumi, S Eum, J Evans, D Evdokimov, S Eyyubova, G Fabbietti, L Fabris, D Faivre, J Fantoni, A Fasel, M Feldkamp, L Felea, D Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Fleck, MG Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Furs, A Girard, MF Gaardhoje, JJ Gagliardi, M Gago, AM Gallio, M Gangadharan, DR Ganoti, P Gao, C Garabatos, C Garcia-Solis, E Gargiulo, C Gasik, P Germain, M Gheata, A Gheata, M Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Giubilato, P Gladysz-Dziadus, E Glassel, P Ramirez, AG Gonzalez-Zamora, P Gorbunov, S Gorlich, L Gotovac, S Grabski, V Graczykowski, LK Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Gulbrandsen, K Gulkanyan, H Gunji, T Gupta, A Gupta, R Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hanratty, LD Hansen, A Harris, JW Hartmann, H Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hilden, TE Hillemanns, H Hippolyte, B Hristov, P Huang, M Humanic, TJ Hussain, N Hussain, T Hutter, D Hwang, DS Ilkaev, R Ilkiv, I Inaba, M Ionita, C Ippolitov, M Irfan, M Ivanov, M Ivanov, V Izucheev, V Jacobs, PM Jahnke, C Jang, HJ Janik, MA Jayarathna, PHSY Jena, C Jena, S Bustamante, RTJ Jones, PG Jung, H Jusko, A Kalinak, P Kalweit, A Kamin, J Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karpechev, E Kebschull, U Keidel, R Keijdener, DLD Keil, M Khan, KH Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, B Kim, DW Kim, DJ Kim, H Kim, JS Kim, M Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, C Klein, J Klein-Bosing, C Kluge, A Knichel, ML Knospe, AG Kobayashi, T Kobdaj, C Kofarago, M Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Kondratyuk, E Konevskikh, A Kouzinopoulos, C Kovalenko, O Kovalenko, V Kowalski, M Kox, S Meethaleveedu, GK Kral, J Kralik, I Kravcakova, A Krelina, M Kretz, M Krivda, M Krizek, F Kryshen, E Krzewicki, M Kubera, AM Kucera, V Kugathasan, T Kuhn, C Kuijer, PG Kulakov, I Kumar, J Kumar, L Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, S Kweon, MJ Kwon, Y La Pointe, SL La Rocca, P Fernandes, CL Lakomov, I Langoy, R Lara, C Lardeux, A Lattuca, A Laudi, E Lea, R Leardini, L Lee, GR Lee, S Legrand, I Lemmon, RC Lenti, V Leogrande, E Monzon, IL Leoncino, M Levai, P Li, S Li, X Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loggins, VR Loginov, V Loizides, C Lopez, X Torres, EL Lowe, A Luettig, P Lunardon, M Luparello, G Luz, PHFND Maevskaya, A Mager, M Mahajan, S Mahmood, SM Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Manko, V Manso, F Manzari, V Marchisone, M Mares, J Margagliotti, GV Margotti, A Margutti, J Marin, A Markert, C Marquard, M Martin, NA Blanco, JM Martinengo, P Martinez, MI Garcia, GM Pedreira, MM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Masui, H Matyja, A Mayer, C Mazer, J Mazzoni, MA Mcdonald, D Meddi, F Menchaca-Rocha, A Meninno, E Perez, JM Meres, M Miake, Y Mieskolainen, MM Mikhaylov, K Milano, L Milosevic, J Minervini, LM Mischke, A Mishra, AN Miskowiec, D Mitra, J Mitu, CM Mohammadi, N Mohanty, B Molnar, L Zetina, LM Montes, E Morando, M De Godoy, DAM Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muhlheim, D Muhuri, S Mukherjee, M Muller, H Mulligan, JD Munhoz, MG Murray, S Musa, L Musinsky, J Nandi, BK Nania, R Nappi, E Naru, MU Nattrass, C Nayak, K Nayak, TK Nazarenko, S Nedosekin, A Nellen, L Ng, F Nicassio, M Niculescu, M Niedziela, J Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Noferini, F Nomokonov, P Nooren, G Norman, J Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Ohlson, A Okatan, A Okubo, T Olah, L Oleniacz, J Da Silva, ACO Oliver, MH Onderwaater, J Oppedisano, C Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Ozdemir, M Pachmayer, Y Pagano, P Paic, G Pajares, C Pal, SK Pan, J Pandey, AK Pant, D Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Paticchio, V Patra, RN Paul, B Peitzmann, T Da Costa, HP Oliveira, EPD Peresunko, D Lara, CEPE Peskov, V Pestov, Y Petracek, V Petrov, V Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pinazzal, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polichtchouk, B Poljak, N Poonsawat, W Pop, A Porteboeuf-Houssais, S Porter, J Pospisil, J Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puccio, M Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rajput, S Rak, J Rakotozafindrabe, A Ramello, L Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Read, KF Real, JS Redlich, K Reed, RJ Rehman, A Reichelt, P Reidt, F Ren, X Renfordt, R Reolon, AR Reshetin, A Rettig, F Revoll, JP Reygers, K Riabov, V Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Ristea, C Rivettill, A Rocco, E Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohrich, D Rarich, D Romita, R Ronchetti, F Ronflette, L Rosnet, P Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Ryabov, Y Rybicki, A Sadovsky, S Safarik, K Sahlmuller, B Sahoo, P Sahoo, R Sahoo, S Sahu, PK Saini, J Sakai, S Saleh, MA Salgado, CA Salzwedel, J Sambyal, S Samsonov, V Castro, XS Sandor, L Sandoval, A Sano, M Santagati, G Sarkar, D Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schuchmann, S Schukraft, J Schulc, M Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Seeder, KS Seger, JE Sekiguchi, Y Selyuzhenkov, I Senosi, K Seas, J Serradilla, E Sevcenco, A Shabanov, A Shabetai, A Shadura, . Shahoyan, R Shangaraev, A Sharma, A Sharma, N Shigaki, K Shtejer, K Sibiriak, Y Siddhanta, S Sielewicz, KM Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Simonetti, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Skjerdal, K Slupecki, M Smirnov, N Snellings, RJM Snellman, TW Sogaard, C Soltz, R Song, J Song, M Song, Z Soramel, F Sorensen, S Spacek, M Spiriti, E Sputowska, I Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Steinpreis, M Stenlund, E Steyn, G Stiller, JH Stocco, D Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Sultanov, R Sumbera, M Symons, TJM Szabo, A de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Takahashi, J Tanaka, N Tangaro, MA Takaki, JDT Peloni, AT Tariq, M Tarzila, MG Tauro, A Munoz, GT Telesca, A Terasaki, K Terrevoli, C Teyssier, B Thader, J Thomas, D Tieulent, R Timmins, AR Toia, A Trogolo, S Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ullaland, K Uras, A Usai, GL Utrobicic, A Vajzer, M Vala, M Palomo, LV Vallero, S Van der Maarel, J Van Hoorne, JW van Leeuwen, M Vanat, T Vyvre, PV Varga, D Vargas, A Vargyas, M Varma, R Vasileiou, M Vasiliev, A Vauthier, A Vechernin, V Veen, AM Veldhoen, M Velure, A Venaruzzo, M Vercellin, E Limon, SV Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Vislavicius, V Viyogi, YP Vodopyanov, A Volkl, MA Voloshin, K Voloshin, SA Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, B Wagner, J Wane, H Wang, M Wang, Y Watanabe, D Weber, M Weber, SG Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, G Wilkinson, J Williams, MCS Windelband, B Winn, M Yaldo, CG Yamaguchi, Y Yang, H Yang, P Yano, S Yin, Z Yokoyama, H Yoo, IK Yurchenko, V Yushmanov, I Zaborowska, A Zaccolo, V Zaman, A Zampolli, C Zanoli, HJC Zaporozhets, S Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhao, C Zhigareva, N Zhou, D Zhou, Y Zhou, Z Zhu, H Zhu, J Zhu, X Zichichi, A Zimmermann, A Zimmermann, MB Zinovjev, G Zyzak, M AF Adam, J. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agrawal, N. Ahammed, Z. Ahn, S. U. Aimo, I. Aiola, S. Ajaz, M. Akindinov, A. Alam, S. N. Aleksandrov, D. Alessandro, B. Alexandre, D. Molina, R. Alfaro Alici, A. Alkin, A. Alme, J. Alt, T. Altinpinar, S. Altsybeev, I. Garcia Prado, C. Alves Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arcelli, S. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Arslandok, M. Augustinus, A. Averbeck, R. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Baldisseri, A. Pedrosa, F. Baltasar Dos Santos Baral, R. C. Barbano, A. M. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartalini, P. Barth, K. Bartke, J. Bartsch, E. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Camejo, A. Batista Batyunya, B. Batzing, P. C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Martinez, H. Bello Bellwied, R. Belmont, R. Belmont-Moreno, E. Belyaev, V. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Biswas, R. Biswas, S. Bjelogrlic, S. Blanco, F. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Borri, M. Bossu, F. Botje, M. Botta, E. Boettger, S. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Brucken, E. J. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Buxton, J. T. Caffarri, D. Cai, X. Caines, H. Diaz, L. Calero Caliva, A. Villar, E. Calvo Camerini, P. Carena, F. Carena, W. Castellanos, J. Castillo Castro, A. J. Casula, E. A. R. Cavicchioli, C. Sanchez, C. Ceballos Cepila, J. Cerello, P. Chang, B. Chapeland, S. Chartier, M. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Choi, K. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Chunhui, Z. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Maldonado, I. Cortes Cortese, P. Cosentino, M. R. Costa, F. Crochet, P. Albino, R. Cruz Cuautle, E. Cunqueiro, L. Dahms, T. Dainese, A. Danu, A. Das, D. Das, I. Das, S. Dash, A. Dash, S. De, S. De Caro, A. De Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. Deisting, A. Deloff, A. Denes, E. D'Erasmo, G. Di Bari, D. Di Mauro, A. Di Nezza, P. Corchero, M. A. Diaz Dietel, T. Dillenseger, P. Divia, R. Djuvsland, O. Dobrin, A. Dobrowolski, T. Gimenez, D. Domenicis Doenigus, B. Dordic, O. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Ehlers, R. J. Elia, D. Engel, H. Erazmus, B. Erhardt, F. Eschweiler, D. Espagnon, B. Estienne, M. Esumi, S. Eum, J. Evans, D. Evdokimov, S. Eyyubova, G. Fabbietti, L. Fabris, D. Faivre, J. Fantoni, A. Fasel, M. Feldkamp, L. Felea, D. Feliciello, A. Feofilov, G. Ferencei, J. Tellez, A. Fernandez Ferreiro, E. G. Ferretti, A. Festanti, A. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Fleck, M. G. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Furs, A. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gallio, M. Gangadharan, D. R. Ganoti, P. Gao, C. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Gasik, P. Germain, M. Gheata, A. Gheata, M. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Giubilato, P. Gladysz-Dziadus, E. Glaessel, P. Ramirez, A. Gomez Gonzalez-Zamora, P. Gorbunov, S. Goerlich, L. Gotovac, S. Grabski, V. Graczykowski, L. K. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Gulbrandsen, K. Gulkanyan, H. Gunji, T. Gupta, A. Gupta, R. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hanratty, L. D. Hansen, A. Harris, J. W. Hartmann, H. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Corral, G. Herrera Hess, B. A. Hetland, K. F. Hilden, T. E. Hillemanns, H. Hippolyte, B. Hristov, P. Huang, M. Humanic, T. J. Hussain, N. Hussain, T. Hutter, D. Hwang, D. S. Ilkaev, R. Ilkiv, I. Inaba, M. Ionita, C. Ippolitov, M. Irfan, M. Ivanov, M. Ivanov, V. Izucheev, V. Jacobs, P. M. Jahnke, C. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, C. Jena, S. Bustamante, R. T. Jimenez Jones, P. G. Jung, H. Jusko, A. Kalinak, P. Kalweit, A. Kamin, J. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karpechev, E. Kebschull, U. Keidel, R. Keijdener, D. L. D. Keil, M. Khan, K. H. Khan, M. M. Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, B. Kim, D. W. Kim, D. J. Kim, H. Kim, J. S. Kim, M. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, C. Klein, J. Klein-Boesing, C. Kluge, A. Knichel, M. L. Knospe, A. G. Kobayashi, T. Kobdaj, C. Kofarago, M. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Kondratyuk, E. Konevskikh, A. Kouzinopoulos, C. Kovalenko, O. Kovalenko, V. Kowalski, M. Kox, S. Meethaleveedu, G. Koyithatta Kral, J. Kralik, I. Kravcakova, A. Krelina, M. Kretz, M. Krivda, M. Krizek, F. Kryshen, E. Krzewicki, M. Kubera, A. M. Kucera, V. Kugathasan, T. Kuhn, C. Kuijer, P. G. Kulakov, I. Kumar, J. Kumar, L. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, S. Kweon, M. J. Kwon, Y. La Pointe, S. L. La Rocca, P. Fernandes, C. Lagana Lakomov, I. Langoy, R. Lara, C. Lardeux, A. Lattuca, A. Laudi, E. Lea, R. Leardini, L. Lee, G. R. Lee, S. Legrand, I. Lemmon, R. C. Lenti, V. Leogrande, E. Monzon, I. Leon Leoncino, M. Levai, P. Li, S. Li, X. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loggins, V. R. Loginov, V. Loizides, C. Lopez, X. Torres, E. Lopez Lowe, A. Luettig, P. Lunardon, M. Luparello, G. Luz, P. H. F. N. D. Maevskaya, A. Mager, M. Mahajan, S. Mahmood, S. M. Maire, A. Majka, R. D. Malaev, M. Cervantes, I. Maldonado Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Manko, V. Manso, F. Manzari, V. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Margutti, J. Marin, A. Markert, C. Marquard, M. Martin, N. A. Blanco, J. Martin Martinengo, P. Martinez, M. I. Garcia, G. Martinez Pedreira, M. Martinez Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Masui, H. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Mcdonald, D. Meddi, F. Menchaca-Rocha, A. Meninno, E. Perez, J. Mercado Meres, M. Miake, Y. Mieskolainen, M. M. Mikhaylov, K. Milano, L. Milosevic, J. Minervini, L. M. Mischke, A. Mishra, A. N. Miskowiec, D. Mitra, J. Mitu, C. M. Mohammadi, N. Mohanty, B. Molnar, L. Zetina, L. Montano Montes, E. Morando, M. De Godoy, D. A. Moreira Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muehlheim, D. Muhuri, S. Mukherjee, M. Mueller, H. Mulligan, J. D. Munhoz, M. G. Murray, S. Musa, L. Musinsky, J. Nandi, B. K. Nania, R. Nappi, E. Naru, M. U. Nattrass, C. Nayak, K. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nellen, L. Ng, F. Nicassio, M. Niculescu, M. Niedziela, J. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Noferini, F. Nomokonov, P. Nooren, G. Norman, J. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Ohlson, A. Okatan, A. Okubo, T. Olah, L. Oleniacz, J. Da Silva, A. C. Oliveira Oliver, M. H. Onderwaater, J. Oppedisano, C. Velasquez, A. Ortiz Oskarsson, A. Otwinowski, J. Oyama, K. Ozdemir, M. Pachmayer, Y. Pagano, P. Paic, G. Pajares, C. Pal, S. K. Pan, J. Pandey, A. K. Pant, D. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Paticchio, V. Patra, R. N. Paul, B. Peitzmann, T. Da Costa, H. Pereira Pereira De Oliveira Filho, E. Peresunko, D. Lara, C. E. Perez Peskov, V. Pestov, Y. Petracek, V. Petrov, V. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polichtchouk, B. Poljak, N. Poonsawat, W. Pop, A. Porteboeuf-Houssais, S. Porter, J. Pospisil, J. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puccio, M. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rajput, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Raniwala, R. Raniwala, S. Rasanen, S. S. Rascanu, B. T. Rathee, D. Read, K. F. Real, J. S. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reidt, F. Ren, X. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revoll, J. -P. Reygers, K. Riabov, V. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Ristea, C. Rivettill, A. Rocco, E. Cahuantzi, M. Rodriguez Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohrich, D. Rarich, D. Romita, R. Ronchetti, F. Ronflette, L. Rosnet, P. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Montero, A. J. Rubio Rui, R. Russo, R. Ryabinkin, E. Ryabov, Y. Rybicki, A. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, P. Sahoo, R. Sahoo, S. Sahu, P. K. Saini, J. Sakai, S. Saleh, M. A. Salgado, C. A. Salzwedel, J. Sambyal, S. Samsonov, V. Castro, X. Sanchez Sandor, L. Sandoval, A. Sano, M. Santagati, G. Sarkar, D. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schuchmann, S. Schukraft, J. Schulc, M. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Seeder, K. S. Seger, J. E. Sekiguchi, Y. Selyuzhenkov, I. Senosi, K. Seas, J. Serradilla, E. Sevcenco, A. Shabanov, A. Shabetai, A. Shadura, . Shahoyan, R. Shangaraev, A. Sharma, A. Sharma, N. Shigaki, K. Shtejer, K. Sibiriak, Y. Siddhanta, S. Sielewicz, K. M. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Simonetti, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Slupecki, M. Smirnov, N. Snellings, R. J. M. Snellman, T. W. Sogaard, C. Soltz, R. Song, J. Song, M. Song, Z. Soramel, F. Sorensen, S. Spacek, M. Spiriti, E. Sputowska, I. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Steinpreis, M. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Sultanov, R. Sumbera, M. Symons, T. J. M. Szabo, A. de Toledo, A. Szanto Szarka, I. Szczepankiewicz, A. Szymanski, M. Takahashi, J. Tanaka, N. Tangaro, M. A. Takaki, J. D. Tapia Peloni, A. Tarantola Tariq, M. Tarzila, M. G. Tauro, A. Munoz, G. Tejeda Telesca, A. Terasaki, K. Terrevoli, C. Teyssier, B. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Toia, A. Trogolo, S. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ullaland, K. Uras, A. Usai, G. L. Utrobicic, A. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. Van der Maarel, J. Van Hoorne, J. W. van Leeuwen, M. Vanat, T. Vyvre, P. Vande Varga, D. Vargas, A. Vargyas, M. Varma, R. Vasileiou, M. Vasiliev, A. Vauthier, A. Vechernin, V. Veen, A. M. Veldhoen, M. Velure, A. Venaruzzo, M. Vercellin, E. Limon, S. Vergara Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Vislavicius, V. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, B. Wagner, J. Wane, H. Wang, M. Wang, Y. Watanabe, D. Weber, M. Weber, S. G. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilkinson, J. Williams, M. C. S. Windelband, B. Winn, M. Yaldo, C. G. Yamaguchi, Y. Yang, H. Yang, P. Yano, S. Yin, Z. Yokoyama, H. Yoo, I. K. Yurchenko, V. Yushmanov, I. Zaborowska, A. Zaccolo, V. Zaman, A. Zampolli, C. Zanoli, H. J. C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhao, C. Zhigareva, N. Zhou, D. Zhou, Y. Zhou, Z. Zhu, H. Zhu, J. Zhu, X. Zichichi, A. Zimmermann, A. Zimmermann, M. B. Zinovjev, G. Zyzak, M. CA The ALICE Collaboration TI Coherent rho(0) photoproduction in ultra-peripheral Pb-Pb collisions at root s(NN)=2.76 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID J/PSI PHOTOPRODUCTION; DISSOCIATION; MASS; HERA AB We report the first measurement at the LHC of coherent photoproduction of rho(0) mesons in ultra-peripheral Pb-Pb collisions. The invariant mass and transverse momentum distributions for rho(0) production are studied in the pi(+)pi(-) decay channel at mid-rapidity. The production cross section in the rapidity range vertical bar y vertical bar < 0.5 is found to be d sigma/dy = 425 +/- 10 (stat.) (+42)(-50) (sys.) mb. Coherent rho(0) production is studied with and without requirement of nuclear breakup, and the fractional yields for various breakup scenarios are presented. The results are compared with those from lower energies and with model predictions. C1 [Grigoryan, A.; Gulkanyan, H.; Papikyan, V.] Yerevan Phys Inst, AI Alikhanyan Natl Sci Lab, Yerevan 375036, Armenia. [Martinez, H. Bello; Maldonado, I. Cortes; Tellez, A. Fernandez; Martinez, M. I.; Cahuantzi, M. Rodriguez; Munoz, G. Tejeda; Vargas, A.; Limon, S. Vergara] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Martynov, Y.; Shadura, .; Trubnikov, V.; Yurchenko, V.; Zinovjev, G.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Biswas, R.; Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, Dept Phys, Kolkata, India. [Biswas, R.; Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, CAPSS, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Bartalini, P.; Cai, X.; Gao, C.; Li, S.; Ren, X.; Song, Z.; Wang, M.; Yang, P.; Yin, Z.; Zhang, H.; Zhang, Y.; Zhou, D.; Zhu, H.; Zhu, J.; Zhu, X.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] Ctr Calcul IN2P3, Villeurbanne, France. [Sanchez, C. Ceballos; Torres, E. Lopez; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Blanco, F.; Corchero, M. A. Diaz; Gonzalez-Zamora, P.; Montes, E.; Serradilla, E.] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain. [Contreras, J. G.; Albino, R. Cruz; Corral, G. Herrera; Zetina, L. Montano] Ctr Invest Estudios Avanzados CINVESTAV, Mexico City, DF, Mexico. [Contreras, J. G.; Albino, R. Cruz; Corral, G. Herrera; Zetina, L. Montano] Ctr Invest Estudios Avanzados CINVESTAV, Merida, Mexico. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Revoll, J. -P.; Zichichi, A.] Ctr Fermi Museo Storico Fis & Ctr Studi & Ric En, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Li, X.] China Inst Atom Energy, Beijing, Peoples R China. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Lardeux, A.; Da Costa, H. Pereira; Rakotozafindrabe, A.] IRFU, Commissariat Energie Atom, Saclay, France. [Ajaz, M.; Khan, K. H.; Naru, M. U.; Suleymanov, M.; Zaman, A.] CIIT Ctr Hlth Res, Islamabad, Pakistan. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago Compostela, IGFAE, Santiago De Compostela, Spain. [Altinpinar, S.; Djuvsland, O.; Haaland, O.; Huang, M.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Rarich, D.; Skjerdal, K.; Ullaland, K.; Velure, A.; Wagner, B.; Zhang, H.; Zhou, Z.; Zhu, H.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Azmi, M. D.; Hussain, T.; Irfan, M.; Khan, M. M.; Tariq, M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Buxton, J. T.; Humanic, T. J.; Kubera, A. M.; Lisa, M. A.; Salzwedel, J.; Steinpreis, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Arsene, I. C.; Batzing, P. C.; Dordic, O.; Lindal, S.; Mahmood, S. M.; Milosevic, J.; Qvigstad, H.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Dept Phys, Oslo, Norway. [Minervini, L. M.] Dipartimento Elettrotecn Elettron, Bari, Italy. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Meddi, F.] Sez INFN Rome, Rome, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Puddu, G.; Terrevoli, C.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; Cicalo, C.; Collu, A.; De Falco, A.; Masoni, A.; Puddu, G.; Siddhanta, S.; Terrevoli, C.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Camerini, P.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Rui, R.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Camerini, P.; Fragiacomo, E.; Grion, N.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Russo, R.; Shtejer, K.; Vallero, S.; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy. [Agnello, M.; Aimo, I.; Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Barbano, A. M.; Bedda, C.; Beole, S.; Berzano, D.; Bianchi, L.; Botta, E.; Bruna, E.; Bufalino, S.; Cerello, P.; Morales, Y. Corrales; De Marco, N.; Feliciello, A.; Ferretti, A.; Gagliardi, M.; Gallio, M.; La Pointe, S. L.; Lattuca, A.; Leoncino, M.; Manceau, L.; Marchisone, M.; Masera, M.; Oppedisano, C.; Prino, F.; Puccio, M.; Rivettill, A.; Russo, R.; Scomparin, E.; Shtejer, K.; Trogolo, S.; Vallero, S.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Colocci, M.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Cindolo, F.; Colocci, M.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Barbera, R.; La Rocca, P.; Petta, C.; Riggi, F.; Santagati, G.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Badala, A.; Barbera, R.; La Rocca, P.; Pappalardo, G. S.; Petta, C.; Riggi, F.; Santagati, G.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Festanti, A.; Francescon, A.; Giubilato, P.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Viesti, G.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy. [Antinori, F.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Giubilato, P.; Lunardon, M.; Morando, M.; Moretto, S.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Turrisi, R.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Univ Salerno, Dipartimento Fis, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Grp Coll INFN, Salerno, Italy. [Cortese, P.; Ramello, L.; Richter, M.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz, Alessandria, Italy. [Cortese, P.; Ramello, L.; Richter, M.; Sitta, M.] Grp Coll INFN, Alessandria, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; D'Erasmo, G.; Di Bari, D.; Fiore, E. M.; Mastroserio, A.; Tangaro, M. A.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; De Cataldo, G.; D'Erasmo, G.; Di Bari, D.; Elia, D.; Fionda, F. M.; Fiore, E. M.; Lenti, V.; Manzari, V.; Mastroserio, A.; Minervini, L. M.; Nappi, E.; Paticchio, V.; Tangaro, M. A.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Ljunggren, H. M.; Oskarsson, A.; Richert, T.; Silvermyr, D.; Sogaard, C.; Stenlund, E.; Vislavicius, V.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Rinella, G. Aglieri; Augustinus, A.; Pedrosa, F. Baltasar Dos Santos; Barth, K.; Berzano, D.; Betev, L.; Bufalino, S.; Buncic, P.; Caffarri, D.; Carena, F.; Carena, W.; Cavicchioli, C.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Costa, F.; Cunqueiro, L.; Di Mauro, A.; Divia, R.; Erazmus, B.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Grosso, R.; Hillemanns, H.; Hristov, P.; Ionita, C.; Kalweit, A.; Keil, M.; Kluge, A.; Kofarago, M.; Kouzinopoulos, C.; Kryshen, E.; Kugathasan, T.; Lakomov, I.; Laudi, E.; Legrand, I.; Mager, M.; Manzari, V.; Martinengo, P.; Pedreira, M. Martinez; Milano, L.; Morsch, A.; Mueller, H.; Musa, L.; Niculescu, M.; Niedziela, J.; Ohlson, A.; Pinazza, O.; Preghenella, R.; Reidt, F.; Riedler, P.; Riegler, W.; Rossi, A.; Safarik, K.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Sielewicz, K. M.; Simonetti, G.; Szczepankiewicz, A.; Tauro, A.; Telesca, A.; Van Hoorne, J. W.; Vyvre, P. Vande; Volpe, G.; von Haller, B.; Vranic, D.; Weber, M.; Zimmermann, M. B.] European Org Nucl Res CERN, Geneva, Switzerland. [Alme, J.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szabo, A.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Broz, M.; Cepila, J.; Contreras, J. G.; Eyyubova, G.; Krelina, M.; Petracek, V.; Schulc, M.; Spacek, M.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bombara, M.; Kravcakova, A.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Langoy, R.; Lien, J.] Buskerud & Vestfold Univ Coll, Fac Technol, Vestfold, Norway. [Alt, T.; Bach, M.; de Cuveland, J.; Eschweiler, D.; Gorbunov, S.; Hartmann, H.; Hutter, D.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Krzewicki, M.; Kulakov, I.; Lindenstruth, V.; Rettig, F.; Rohrich, D.; Zyzak, M.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Baek, Y. W.; Jung, H.; Kim, D. W.; Kim, J. S.; Kim, M.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Bhattacharjee, B.; Hussain, N.] Gauhati Univ, Dept Phys, Gauhati, India. [Brucken, E. J.; Hilden, T. E.; Mieskolainen, M. M.; Rasanen, S. S.] HIP, Helsinki, Finland. [Okubo, T.; Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Agrawal, N.; Behera, N. K.; Dash, S.; Meethaleveedu, G. Koyithatta; Kumar, J.; Nandi, B. K.; Pandey, A. K.; Pant, D.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [Behera, N. K.; Mishra, A. N.; Pareek, P.; Roy, A.; Sahoo, P.; Sahoo, R.] Indian Inst Technol, Indore, Madhya Pradesh, India. [Kweon, M. J.] Inha Univ, Inchon, South Korea. [del Valle, Z. Conesa; Das, I.; Espagnon, B.; Hadjidakis, C.; Lakomov, I.; Suire, C.; Takaki, J. D. Tapia] Univ Paris 11, CNRS IN2P3, IPNO, Orsay, France. [Boettger, S.; Breitner, T.; Engel, H.; Ramirez, A. Gomez; Kebschull, U.; Lara, C.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshaeuser, H.; Arslandok, M.; Bailhache, R.; Bartsch, E.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Dillenseger, P.; Doenigus, B.; Heckel, S. T.; Kamin, J.; Klein, C.; Luettig, P.; Marquard, M.; Ozdemir, M.; Peskov, V.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Peloni, A. Tarantola; Toia, A.] Goethe Univ Frankfurt, Inst Kernphys, D-60054 Frankfurt, Germany. [Anielski, J.; Bathen, B.; Feldkamp, L.; Haake, R.; Heide, M.; Klein-Boesing, C.; Muehlheim, D.; Passfeld, A.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Zimmermann, M. B.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Belikov, I.; Hippolyte, B.; Kuhn, C.; Maire, A.; Molnar, L.; Roy, C.; Castro, X. Sanchez] Univ Strasbourg, CNRS IN2P3, IPHC, Strasbourg, France. [Finogeev, D.; Furs, A.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.; Shabanov, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Bertens, R. A.; Bianchin, C.; Bjelogrlic, S.; Caliva, A.; Chunhui, Z.; Dobrin, A.; Dubla, A.; Grelli, A.; Keijdener, D. L. D.; Leogrande, E.; Lodato, D. F.; Margutti, J.; Mischke, A.; Mohammadi, N.; Nooren, G.; Peitzmann, T.; Rocco, E.; Snellings, R. J. M.; Van der Maarel, J.; van Leeuwen, M.; Veen, A. M.; Veldhoen, M.; Wane, H.; Yang, H.; Zhou, Y.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Baral, R. C.; Sahoo, S.; Sahu, P. K.; Sharma, N.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Danu, A.; Felea, D.; Gheata, M.; Haiduc, M.; Mitu, C. M.; Niculescu, M.; Ristea, C.; Sevcenco, A.; Stan, I.; Zgura, I. S.] ISS, Bucharest, Romania. [Cuautle, E.; Cervantes, I. Maldonado; Nellen, L.; Velasquez, A. Ortiz; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Molina, R. Alfaro; Belmont-Moreno, E.; Grabski, V.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Bossu, F.; Buthelezi, Z.; Foertsch, S.; Murray, S.; Senosi, K.; Steyn, G.] Natl Res Fdn, IThemba LABS, Somerset West, South Africa. [Batyunya, B.; Grigoryan, S.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Oh, S. K.; Seas, J.] Konkuk Univ, Seoul, South Korea. [Ahn, S. U.; Jang, H. J.; Kim, D. W.] Korea Inst Sci & Technol Informat, Daejeon, South Korea. [Uysal, A. Karasu; Okatan, A.] KTO Karatay Univ, Konya, Turkey. [Barret, V.; Bastid, N.; Camejo, A. Batista; Crochet, P.; Dupieux, P.; Li, S.; Lopez, X.; Manso, F.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Clermont Ferrand, Clermont Univ, CNRS IN2P3, LPC, Clermont Ferrand, France. [Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Kox, S.; Real, J. S.; Silvestre, C.; Vauthier, A.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, Grenoble, France. [Bianchi, N.; Diaz, L. Calero; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Sakai, S.; Spiriti, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ricci, R. A.; Venaruzzo, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Bock, F.; Fasel, M.; Gangadharan, D. R.; Jacobs, P. M.; Loizides, C.; Ploskon, M.; Porter, J.; Symons, T. J. M.; Thaeder, J.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Belyaev, V.; Bogdanov, A.; Grigoriev, V.; Ippolitov, M.; Kaplin, V.; Kondratyeva, N.; Loginov, V.; Peresunko, D.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kovalenko, O.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Herghelegiu, A.; Petrovici, M.; Pop, A.; Schiaua, C.; Tarzila, M. G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Biswas, S.; Kumar, L.; Mohanty, B.; Nayak, K.; Singh, R.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Zaccolo, V.; Zhou, Y.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Botje, M.; Christakoglou, P.; Dobrin, A.; Kuijer, P. G.; Lara, C. E. Perez; Manso, A. Rodriguez] Nikhef, Natl Inst Subat Phys, Amsterdam, Netherlands. [Adamova, D.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Kushpil, S.; Pospisil, J.; Sumbera, M.; Vajzer, M.; Vanat, T.] Acad Sci Czech Republic, Inst Nucl Phys, Prague, Czech Republic. [Cormier, T. M.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Malaev, M.; Nikulin, V.; Riabov, V.; Ryabov, Y.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Poghosyan, M. G.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Ganoti, P.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Cleymans, J.; Dietel, T.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Bala, R.; Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Mahajan, S.; Rajput, S.; Sambyal, S.; Sharma, A.] Univ Jammu, Dept Phys, Jammu 180004, India. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Dahms, T.; Fabbietti, L.; Gasik, P.; Vorobyev, I.] Tech Univ Munich, Dept Phys, D-80290 Munich, Germany. [Anguelov, V.; Bock, F.; Busch, O.; Deisting, A.; Fleck, M. G.; Glaessel, P.; Klein, J.; Knichel, M. L.; Leardini, L.; Perez, J. Mercado; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Voelkl, M. A.; Wang, Y.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Physikal Inst, Heidelberg, Germany. [Aimo, I.] Politecn Torino, Turin, Italy. [Browning, T. A.; Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Borissov, A.; Choi, K.; Chung, S. U.; Eum, J.; Seas, J.; Song, J.; Yoo, I. K.] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Bustamante, R. T. Jimenez; Kollegger, T.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Ivanov, M.; Bustamante, R. T. Jimenez; Kollegger, T.; Krzewicki, M.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Thaeder, J.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Anticic, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNHEF, Sarov, Russia. [Blau, D.; Fokin, S.; Ippolitov, M.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yushmanov, I.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Chattopadhyay, S.; Das, D.; Das, I.; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alexandre, D.; Barnby, L. S.; Evans, D.; Hanratty, L. D.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Villar, E. Calvo; Gago, A. M.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Mazzoni, M. A.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Evdokimov, S.; Izucheev, V.; Kharlov, Y.; Kondratyuk, E.; Petrov, V.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.] NRC Kurchatov Inst, SSC IHEP, Protvino, Russia. [Aphecetche, L.; Batigne, G.; Erazmus, B.; Estienne, M.; Germain, M.; Blanco, J. Martin; Garcia, G. Martinez; Massacrier, L.; De Godoy, D. A. Moreira; Morreale, A.; Pillot, P.; Ronflette, L.; Schutz, Y.; Shabetai, A.; Stocco, D.; Wang, M.; Zhu, J.] Univ Nantes, CNRS IN2P3, Ecole Mines Nantes, SUBATECH, Nantes, France. [Kobdaj, C.; Poonsawat, W.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Goerlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Otwinowski, J.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Knospe, A. G.; Markert, C.; Thomas, D.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Monzon, I. Leon; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Garcia Prado, C. Alves; Bregant, M.; Cosentino, M. R.; De, S.; Gimenez, D. Domenicis; Jahnke, C.; Fernandes, C. Lagana; Luz, P. H. F. N. D.; Mas, A.; Munhoz, M. G.; Da Silva, A. C. Oliveira; Pereira De Oliveira Filho, E.; Seeder, K. S.; Suaide, A. A. P.; de Toledo, A. Szanto; Zanoli, H. J. C.] Univ Sao Paulo, Sao Paulo, Brazil. [Chinellato, D. D.; Dash, A.; Takahashi, J.] Univ Estadual Campinas UNICAMP, Campinas, Brazil. [Bellwied, R.; Bianchi, L.; Jayarathna, P. H. S. Y.; Jena, S.; Mcdonald, D.; Ng, F.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.] Univ Houston, Houston, TX USA. [Chang, B.; Kim, D. J.; Kral, J.; Rak, J.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Chartier, M.; Figueredo, M. A. S.; Norman, J.; Romita, R.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Castro, A. J.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN USA. [Vilakazi, Z.] Univ Witwatersrand, Johannesburg, South Africa. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Sekiguchi, Y.; Terasaki, K.; Tsuji, T.; Yamaguchi, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Busch, O.; Chujo, T.; Esumi, S.; Inaba, M.; Kobayashi, T.; Masui, H.; Miake, Y.; Sano, M.; Tanaka, N.; Watanabe, D.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Erhardt, F.; Planinic, M.; Poljak, N.; Simatovic, G.; Utrobicic, A.] Univ Zagreb, Zagreb 41000, Croatia. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Teyssier, B.; Tieulent, R.; Uras, A.] Univ Lyon 1, CNRS IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Ahammed, Z.; Alam, S. N.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mitra, J.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Patra, R. N.; Saini, J.; Sarkar, D.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Graczykowski, L. K.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pluta, J.; Szymanski, M.; Zaborowska, A.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Belmont, R.; Bianchin, C.; Loggins, V. R.; Pan, J.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Reed, R. J.; Saleh, M. A.; Verweij, M.; Voloshin, S. A.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Lowe, A.; Olah, L.; Pochybova, S.; Varga, D.; Volpe, G.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Aiola, S.; Aronsson, T.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Harris, J. W.; Majka, R. D.; Mulligan, J. D.; Oh, S.; Oliver, M. H.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Kang, J. H.; Kim, B.; Kim, H.; Kim, M.; Kim, T.; Kwon, Y.; Lee, S.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] Fachhochsch Worms, ZTT, Worms, Germany. [Takaki, J. D. Tapia] Univ Kansas, Lawrence, KS 66045 USA. RP Adam, J (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. RI Vajzer, Michal/G-8469-2014; Ferencei, Jozef/H-1308-2014; Sumbera, Michal/O-7497-2014; Adamova, Dagmar/G-9789-2014; Vechernin, Vladimir/J-5832-2013; Christensen, Christian/D-6461-2012; De Pasquale, Salvatore/B-9165-2008; Chinellato, David/D-3092-2012; Felea, Daniel/C-1885-2012; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Krizek, Filip/G-8967-2014; Natal da Luz, Hugo/F-6460-2013; Naru, Muhammad Umair/N-5547-2015; Graczykowski, Lukasz/O-7522-2015; Bielcikova, Jana/G-9342-2014; Janik, Malgorzata/O-7520-2015; Bregant, Marco/I-7663-2012; Pshenichnov, Igor/A-4063-2008; Sevcenco, Adrian/C-1832-2012; Barnby, Lee/G-2135-2010; feofilov, grigory/A-2549-2013; Kucera, Vit/G-8459-2014; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Martinez Hernandez, Mario Ivan/F-4083-2010; Ferretti, Alessandro/F-4856-2013; Kovalenko, Vladimir/C-5709-2013; Altsybeev, Igor/K-6687-2013; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Jena, Deepika/P-2873-2015; Akindinov, Alexander/J-2674-2016; Takahashi, Jun/B-2946-2012; Nattrass, Christine/J-6752-2016; Usai, Gianluca/E-9604-2015; Cosentino, Mauro/L-2418-2014; Suaide, Alexandre/L-6239-2016; Peitzmann, Thomas/K-2206-2012; Vinogradov, Leonid/K-3047-2013; Castillo Castellanos, Javier/G-8915-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Sumbera, Michal/0000-0002-0639-7323; Vechernin, Vladimir/0000-0003-1458-8055; Christensen, Christian/0000-0002-1850-0121; De Pasquale, Salvatore/0000-0001-9236-0748; Chinellato, David/0000-0002-9982-9577; Felea, Daniel/0000-0002-3734-9439; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Natal da Luz, Hugo/0000-0003-1177-870X; Naru, Muhammad Umair/0000-0001-6489-0784; Janik, Malgorzata/0000-0002-3356-3438; Pshenichnov, Igor/0000-0003-1752-4524; Sevcenco, Adrian/0000-0002-4151-1056; Barnby, Lee/0000-0001-7357-9904; feofilov, grigory/0000-0003-3700-8623; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Ferretti, Alessandro/0000-0001-9084-5784; Kovalenko, Vladimir/0000-0001-6012-6615; Altsybeev, Igor/0000-0002-8079-7026; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Jena, Deepika/0000-0003-2112-0311; Akindinov, Alexander/0000-0002-7388-3022; Takahashi, Jun/0000-0002-4091-1779; Nattrass, Christine/0000-0002-8768-6468; Usai, Gianluca/0000-0002-8659-8378; Cosentino, Mauro/0000-0002-7880-8611; Suaide, Alexandre/0000-0003-2847-6556; Peitzmann, Thomas/0000-0002-7116-899X; Vinogradov, Leonid/0000-0001-9247-6230; Castillo Castellanos, Javier/0000-0002-5187-2779; FU Grid centres; Worldwide LHC Computing Grid (WLCG) collaboration; State Committee of Science; World Federation of Scientists (WFS); Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; 'Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF); Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian Orszagos Tudomanyos Kutatasi Alappgrammok (OTKA); National Office for Research and Technology (NKTH); Department of Atomic Energy; Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT); Direccion General de Asuntos del Personal Academico (DGAPA); Mexico: Amerique Latine Formation academique - European Commission (ALFA-EC); EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics; Consiliul National al Cercetarii Stiintifice - Executive Agency for Higher Education Research Development and Innovation Funding (CNCS-UEFISCDI) - Romania; Ministry of Education and Science of Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT); E-Infrastructure shared between Europe and Latin America (EELA); Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio; Ministry of Science, Education and Sports of Croatia; Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration.; The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian Orszagos Tudomanyos Kutatasi Alappgrammok (OTKA) and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT), Direccion General de Asuntos del Personal Academico (DGAPA), Mexico: Amerique Latine Formation academique - European Commission (ALFA-EC) and the EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and Consiliul National al Cercetarii Stiintifice - Executive Agency for Higher Education Research Development and Innovation Funding (CNCS-UEFISCDI) - Romania; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia. Council of Scientific and Industrial Research (CSIR), New Delhi, India. NR 39 TC 2 Z9 2 U1 6 U2 43 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD SEP 15 PY 2015 IS 9 AR 095 DI 10.1007/JHEP09(2015)095 PG 27 WC Physics, Particles & Fields SC Physics GA CU4YZ UT WOS:000363539300001 ER PT J AU Balaji, P Xu, LS Jiang, CJ Zhou, XB AF Balaji, Pavan Xu, Lisong Jiang, Changjun Zhou, Xiaobo TI Introduction Special Section of ICCCN 2014 Conference SO COMPUTER COMMUNICATIONS LA English DT Editorial Material C1 [Balaji, Pavan] Argonne Natl Lab, Argonne, IL 60439 USA. [Xu, Lisong] Univ Nebraska, Lincoln, NE 68588 USA. [Jiang, Changjun] Tongji Univ, Shanghai 200092, Peoples R China. [Zhou, Xiaobo] Univ Colorado, Colorado Springs, CO 80906 USA. RP Balaji, P (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-3664 EI 1873-703X J9 COMPUT COMMUN JI Comput. Commun. PD SEP 15 PY 2015 VL 69 BP 38 EP 39 DI 10.1016/j.comcom.2015.09.005 PG 2 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications SC Computer Science; Engineering; Telecommunications GA CU2KJ UT WOS:000363352100003 ER PT J AU Gearba, RI Mueller, KM Veneman, PA Holliday, BJ Chan, CK Stevenson, KJ AF Gearba, Raluca I. Mueller, Kory M. Veneman, Peter A. Holliday, Bradley J. Chan, Calvin K. Stevenson, Keith J. TI Atom-scale covalent electrochemical modification of single-layer graphene on SiC substrates by diaryliodonium salts SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE Epitaxial graphene; Electrochemical modification; Functionalization; Iodonium salts; STM ID ARYL IODONIUM SALTS; BILAYER GRAPHENE; DIAZONIUM SALTS; FUNCTIONALIZATION; CARBON; REDUCTION; ELECTRODES; 4-NITROPHENYL; SPECTROSCOPY; TEMPERATURE AB Owing to its high conductivity, graphene holds promise as an electrode for energy devices such as batteries and photovoltaics. However, to this end, the work function and doping levels in graphene need to be precisely tuned. One promising route for modifying graphene's electronic properties is via controlled covalent electrochemical grafting of molecules. We show that by employing diaryliodonium salts instead of the commonly used diazonium salts, spontaneous functionalization is avoided. This allows for precise tuning of the grafting density. By employing bis(4-nitrophenyl)iodonium(III) tetrafluoroborate (DNP) salt calibration curves, the surface functionalization density (coverage) of glassy carbon was controlled using cyclic voltammetry in varying salt concentrations. These electro-grafting conditions and calibration curves translated directly over to modifying single layer epitaxial graphene substrates (grown on insulating 6H-SiC (0001)). In addition to quantifying the functionalization densities using electrochemical methods, samples with low grafting densities were characterized by low-temperature scanning tunneling microscopy (LT-STM). We show that the use of buffer-layer free graphene substrates is required for clear observation of the nitrophenyl modifications. Atomically-resolved STM images of single site modifications were obtained, showing no preferential grafting at defect sites or SiC step edges as supposed previously in the literature. Most of the grafts exhibit threefold symmetry, but occasional extended modifications (larger than 4 nm) were observed as well. (C) 2015 Elsevier B.V. All rights reserved. C1 [Gearba, Raluca I.; Mueller, Kory M.; Veneman, Peter A.; Holliday, Bradley J.; Stevenson, Keith J.] Univ Texas Austin, Dept Chem, Ctr Nano & Mol Sci & Technol, Austin, TX 78712 USA. [Chan, Calvin K.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Stevenson, KJ (reprint author), Univ Texas Austin, Dept Chem, Ctr Nano & Mol Sci & Technol, 102E 24th St, Austin, TX 78712 USA. EM stevenson@cm.utexas.edu FU Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences on "Understanding Charge Separation and Transfer at Interfaces in Energy Materials" (EFRC:CST) [DE-SC0001091]; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Welch Foundation [F-1529] FX The authors thank T. Ohta, G. Copeland, and L. Brunke for providing the graphene/(BL)/SiC substrates. This work was supported by an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences on "Understanding Charge Separation and Transfer at Interfaces in Energy Materials" (EFRC:CST, Award Number DE-SC0001091). C.K.C. also acknowledges support from Sandia National Laboratories' Laboratory Directed Research and Development Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. KJS acknowledges additional funding by the Welch Foundation (Grant F-1529). NR 41 TC 3 Z9 3 U1 6 U2 46 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 EI 1873-2569 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD SEP 15 PY 2015 VL 753 SI SI BP 9 EP 15 DI 10.1016/j.jelechem.2015.05.009 PG 7 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA CT2EL UT WOS:000362614700003 ER PT J AU Myers, KS Park, DM Beauchene, NA Kiley, PJ AF Myers, Kevin S. Park, Dan M. Beauchene, Nicole A. Kiley, Patricia J. TI Defining bacterial regulons using ChIP-seq SO METHODS LA English DT Review DE ChIP-seq; Bacterial regulons; Transcriptional regulation; Genome-wide analysis; Bioinformatics analysis of genomic data; Systems biology; Transcription factor binding sites ID FACTOR-BINDING SITES; ESCHERICHIA-COLI; GENOME BROWSER; TRANSCRIPTIONAL REGULATION; MOTIF DISCOVERY; GENE-REGULATION; READ ALIGNMENT; ANALYSIS TOOLS; DNA-BINDING; H-NS AB Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is a powerful method that identifies protein-DNA binding sites in vivo. Recent studies have illustrated the value of ChIP-seq in studying transcription factor binding in various bacterial species under a variety of growth conditions. These results show that in addition to identifying binding sites, correlation of ChIP-seq data with expression data can reveal important information about bacterial regulons and regulatory networks. In this chapter, we provide an overview of the current state of knowledge about ChIP-seq methodology in bacteria, from sample preparation to raw data analysis. We also describe visualization and various bioinformatic analyses of processed ChIP-seq data. (C) 2015 Elsevier Inc. All rights reserved. C1 [Myers, Kevin S.] Univ Wisconsin, Genet Lab, Madison, WI 53706 USA. [Myers, Kevin S.; Kiley, Patricia J.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Park, Dan M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Beauchene, Nicole A.; Kiley, Patricia J.] Univ Wisconsin, Dept Biomol Chem, Madison, WI 53706 USA. RP Kiley, PJ (reprint author), Univ Wisconsin, Dept Biomol Chem, 4204C Biochem Sci Bldg,440 Henry Mall, Madison, WI 53706 USA. EM pjkiley@wisc.edu FU NIH - United States [GM045844]; UW-Madison NIH - United States Chemistry Biology Interface Training Grant [T32GM008505]; DOE Great Lakes Bioenergy Research Center - United States (DOE Office of Science) [DE-FC02-07ER64494] FX This work was funded by a Grant from the NIH - United States to PJK (GM045844). NAB was supported by the UW-Madison NIH - United States Chemistry Biology Interface Training Grant (T32GM008505). This work was also funded in part by the DOE Great Lakes Bioenergy Research Center - United States (DOE Office of Science BER DE-FC02-07ER64494). NR 80 TC 5 Z9 5 U1 1 U2 24 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-2023 EI 1095-9130 J9 METHODS JI Methods PD SEP 15 PY 2015 VL 86 BP 80 EP 88 DI 10.1016/j.ymeth.2015.05.022 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CS4QN UT WOS:000362061100011 PM 26032817 ER PT J AU Ma, JW Zhao, QB Laurens, LLM Jarvis, EE Nagle, NJ Chen, SL Frear, CS AF Ma, Jingwei Zhao, Quan-Bao Laurens, Lieve L. M. Jarvis, Eric E. Nagle, Nick J. Chen, Shulin Frear, Craig S. TI Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Algae; Anaerobic digestion; LCFA inhibition; Calcium; Kinetic model; Microbial community ID WASTE ACTIVATED-SLUDGE; CO-DIGESTION; MODEL; ACCUMULATION; DEGRADATION; REACTORS; BIOGAS; BIODEGRADABILITY; IDENTIFICATION; ENHANCEMENT AB Background: Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a means to alleviate the LCFA inhibition. Results: Whole algal biomass of Nannochloropsis salina represents high lipid content algal biomass while lipid-extracted residue represents its low lipid counterpart. The anaerobic digestion experiments were conducted in a series of serum bottles at 35 degrees C for 20 days. A kinetic model, considering LCFA inhibition on hydrolysis, acidogenesis as well as methanogenesis steps, was developed from the observed phenomenon of inhibition factors as a function of the LCFA concentration and specific biomass content or calcium concentration. The results showed that inoculum to substrate ratio had a stronger effect on biogas production than calcium, and calcium had no effect on biogas production when inoculum concentration was extremely low. The microbial community analysis by high-throughput Illumina Miseq sequencing indicated that diversity of both bacterial and methanogenic communities decreased with elevation of lipid concentration. Hydrolytic bacteria and aceticlastic methanogens dominated bacterial and archaea communities, respectively, in both high and low LCFA concentration digesters. Conclusions: This study demonstrated that inoculum concentration has a more significant effect on alleviating LCFA inhibition than calcium concentration, while calcium only played a role when inoculum concentration met a threshold level. The model revealed that each functional microbial group was subject to different levels of LCFA inhibition. Although methanogens were the most susceptible microbes to LCFA inhibition, the inhibition factor for hydrolytic bacteria was more highly affected by inoculum concentration. The microbial community analysis indicated that the bacterial community was affected more than the methanogenic community by high LCFAs concentration. Syntrophic acetogens were sensitive to high LCFA concentrations and thus showed a decreased abundance in such an environment. C1 [Ma, Jingwei; Zhao, Quan-Bao; Chen, Shulin; Frear, Craig S.] Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA. [Laurens, Lieve L. M.; Jarvis, Eric E.; Nagle, Nick J.] Natl Renewable Energy Lab, Golden, CO USA. RP Zhao, QB (reprint author), Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA. EM zhaoquanbao@gmail.com OI MA, JINGWEI/0000-0002-8854-9756 FU DOE Grant from the Office of Science of the U.S. Department of Energy [22902]; USEPA [RD-83556701]; Water Environment Research Foundation; National Center for Research Resources [5P20RR016448-10]; National Institute of General Medical Sciences from the National Institutes of Health [8 P20 GM103397-10] FX This research was funded by DOE Grant # 22902 from the Office of Science of the U.S. Department of Energy to the National Renewable Energy Laboratory with sub-contract to Washington State University. Additional funds were supplied by USEPA grant RD-83556701 and the Water Environment Research Foundation. Its contents are solely the responsibility of the grantee and do not necessarily represent the official views of the USEPA. Further, USEPA does not endorse the purchase of any commercial products or services mentioned in the publication. The microbial community research was supported by grants from the National Center for Research Resources (5P20RR016448-10) and the National Institute of General Medical Sciences (8 P20 GM103397-10) from the National Institutes of Health. Thanks are also given to our undergraduate laboratory assistant, Cynthia Alwine, for her assistance in analytical work. NR 54 TC 10 Z9 10 U1 20 U2 67 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD SEP 15 PY 2015 VL 8 AR 141 DI 10.1186/s13068-015-0322-z PG 12 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CR8FS UT WOS:000361587100001 PM 26379773 ER PT J AU Zhou, JL Olson, DG Lanahan, AA Tian, L Murphy, SJL Lo, J Lynd, LR AF Zhou, Jilai Olson, Daniel G. Lanahan, Anthony A. Tian, Liang Murphy, Sean Jean-Loup Lo, Jonathan Lynd, Lee R. TI Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485 SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Thermoanaerobacter saccharolyticum; Pyruvate metabolism; Pyruvate ferredoxin oxidoreductase; Pyruvate formate-lyase; C1 metabolism ID END-PRODUCT PATHWAYS; CLOSTRIDIUM-THERMOCELLUM; PYROCOCCUS-FURIOSUS; LACTATE-DEHYDROGENASE; ETHANOL-PRODUCTION; METABOLISM; ACID; THERMOPHILES; ANAEROBES; BACTERIUM AB Background: Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30-70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. Results: It was found that pyruvate ferredoxin oxidoreductase enzyme (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. Conclusion: PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis. C1 [Zhou, Jilai; Olson, Daniel G.; Lanahan, Anthony A.; Tian, Liang; Murphy, Sean Jean-Loup; Lynd, Lee R.] Thayer Sch Engn, Hanover, NH 03755 USA. [Lo, Jonathan; Lynd, Lee R.] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA. [Zhou, Jilai; Olson, Daniel G.; Lanahan, Anthony A.; Tian, Liang; Murphy, Sean Jean-Loup; Lo, Jonathan; Lynd, Lee R.] BioEnergy Sci Ctr, Oak Ridge, TN 37830 USA. RP Lynd, LR (reprint author), Thayer Sch Engn, Hanover, NH 03755 USA. EM Lee.R.Lynd@dartmouth.edu FU Office of Biological and Environmental Research in the DOE Office of Science; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy [4000115284, DE-AC05-00OR22725] FX We would like to thank the Mascoma Corporation for giving us the strain LL1049 (aka M1442) as well as preliminary sequencing data of that strain. We thank Marybeth I. Maloney for preparing genomic DNA for resequencing and Dr. Johannes P. van Dijken for providing valuable suggestions and comments on the manuscript. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The genomic resequencing work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Notice: This manuscript has been authored by Dartmouth College under Subcontract No. 4000115284 and Contract No. DE-AC05-00OR22725 with U.S. Department of Energy. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable worldwide license to publish or reproduce the published form of this manuscript or allow others to do so, for US Government purposes. (End of Notice) NR 35 TC 6 Z9 6 U1 3 U2 9 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD SEP 15 PY 2015 VL 8 AR 138 DI 10.1186/s13068-015-0304-1 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA CR8GB UT WOS:000361588000001 PM 26379770 ER PT J AU Lang, CB Leskovec, L Mohler, D Prelovsek, S AF Lang, C. B. Leskovec, Luka Mohler, Daniel Prelovsek, Sasa TI Vector and scalar charmonium resonances with lattice QCD SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Lattice QCD; Heavy Quark Physics ID QUANTUM-FIELD THEORIES; SCATTERING MATRIX; GAUGE-THEORY; STATES; VOLUME AB We perform an exploratory lattice QCD simulation of D (D) over bar scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for D (D) over bar scattering in p-wave yields the well-known vector resonance psi(3770). For m(pi) = 156 MeV, the extracted resonance mass and the decay width agree with experiment within large statistical uncertainty. The scalar charmonium resonances present a puzzle, since only the ground state chi(c0) (1P) is well understood, while there is no commonly accepted candidate for its first excitation. We simulate D (D) over bar scattering in s-wave in order to shed light on this puzzle. The resulting phase shift supports the existence of a yet-unobserved narrow resonance with a mass slightly below 4 GeV. A scenario with this narrow resonance and a pole at chi(c0) (1P) agrees with the energy-dependence of our phase shift. Further lattice QCD simulations and experimental efforts are needed to resolve the puzzle of the excited scalar charmonia. C1 [Lang, C. B.] Graz Univ, Inst Phys, A-8010 Graz, Austria. [Leskovec, Luka; Prelovsek, Sasa] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Mohler, Daniel] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Prelovsek, Sasa] Univ Ljubljana, Dept Phys, Ljubljana 1000, Slovenia. [Prelovsek, Sasa] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. RP Lang, CB (reprint author), Graz Univ, Inst Phys, Univ Pl 3, A-8010 Graz, Austria. EM christian.lang@uni-graz.at; luka.leskovec@ijs.si; dmohler@fnal.gov; sasa.prelovsek@ijs.si FU Austrian Science Fund [FWF: I1313-N27]; Slovenian Resarch Agency ARRS project [N1-0020]; United States Department of Energy [De-AC02-07CG11359]; U.S. Department of Energy under Jefferson Science Associates, LLC [DE-AC05-06OR23177] FX We thank Anna Hasenfratz and the PACS-CS for providing the gauge configurations and Martin Luscher for making his DD-HMC software available. The calculations were performed on computing clusters at TRIUMF, the University of Graz (NAWI Graz) and at Jozef Stefan Institute. This work is supported in part by the Austrian Science Fund FWF: I1313-N27, by the Slovenian Resarch Agency ARRS project N1-0020. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CG11359 with the United States Department of Energy. S.P. acknowledges support from U.S. Department of Energy contract DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, manages and operates Jefferson Laboratory. NR 49 TC 4 Z9 4 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD SEP 15 PY 2015 IS 9 AR 089 DI 10.1007/JHEP09(2015)089 PG 24 WC Physics, Particles & Fields SC Physics GA CR8PA UT WOS:000361615000001 ER PT J AU Uphoff, H AF Uphoff, Heidi TI The Ottoman Endgame: War, Revolution, and the Making of the Modern Middle East, 1908-1923 SO LIBRARY JOURNAL LA English DT Book Review C1 [Uphoff, Heidi] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Uphoff, H (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD SEP 15 PY 2015 VL 140 IS 15 BP 89 EP 89 PG 1 WC Information Science & Library Science SC Information Science & Library Science GA CR5ZK UT WOS:000361422700186 ER PT J AU Uphoff, H AF Uphoff, Heidi TI The Brain Electric: The Dramatic High-Tech Race To Merge Minds and Machines SO LIBRARY JOURNAL LA English DT Book Review C1 [Uphoff, Heidi] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Uphoff, H (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD SEP 15 PY 2015 VL 140 IS 15 BP 101 EP 101 PG 1 WC Information Science & Library Science SC Information Science & Library Science GA CR5ZK UT WOS:000361422700244 ER PT J AU Qu, YY Zhang, XW Ma, Q Deng, J Deng, Y Van Nostrand, JD Wu, LY He, ZL Qin, YJ Zhou, JT Zhou, JH AF Qu, Yuanyuan Zhang, Xuwang Ma, Qiao Deng, Jie Deng, Ye Van Nostrand, Joy D. Wu, Liyou He, Zhili Qin, Yujia Zhou, Jiti Zhou, Jizhong TI Microbial Community Dynamics and Activity Link to Indigo Production from Indole in Bioaugmented Activated Sludge Systems SO PLOS ONE LA English DT Article ID DEGRADING BACTERIA; ESCHERICHIA-COLI; RIBOSOMAL-RNA; NAPHTHALENE; GENES; DEGRADATION; STRAIN; WASTE; BIOTECHNOLOGY; BIOSYNTHESIS AB Biosynthesis of the popular dyestuff indigo from indole has been comprehensively studied using pure cultures, but less has been done to characterize the indigo production by microbial communities. In our previous studies, a wild strain Comamonas sp. MQ was isolated from activated sludge and the recombinant Escherichia coli (nagAc) carrying the naphthalene dioxygenase gene (nag) from strain MQ was constructed, both of which were capable of producing indigo from indole. Herein, three activated sludge systems, G1 (non-augmented control), G2 (augmented with Comamonas sp. MQ), and G3 (augmented with recombinant E. coli (nagAc)), were constructed to investigate indigo production. After 132-day operation, G3 produced the highest yields of indigo (99.5 +/- 3.0 mg/l), followed by G2 (27.3 +/- 1.3 mg/l) and G1 (19.2 +/- 1.2 mg/l). The microbial community dynamics and activities associated with indigo production were analyzed by Illumina Miseq sequencing of 16S rRNA gene amplicons. The inoculated strain MQ survived for at least 30 days, whereas E. coli (nagAc) was undetectable shortly after inoculation. Quantitative real-time PCR analysis suggested the abundance of naphthalene dioxygenase gene (nagAc) from both inoculated strains was strongly correlated with indigo yields in early stages (0-30 days) (P < 0.001) but not in later stages (30-132 days) (P > 0.10) of operation. Based on detrended correspondence analysis (DCA) and dissimilarity test results, the communities underwent a noticeable shift during the operation. Among the four major genera (>1% on average), the commonly reported indigo-producing populations Comamonas and Pseudomonas showed no positive relationship with indigo yields (P > 0.05) based on Pearson correlation test, while Alcaligenes and Aquamicrobium, rarely reported for indigo production, were positively correlated with indigo yields (P < 0.05). This study should provide new insights into our understanding of indigo bio-production by microbial communities. C1 [Qu, Yuanyuan; Zhang, Xuwang; Ma, Qiao; Zhou, Jiti] Dalian Univ Technol, Sch Environm Sci & Technol, Minist Educ, State Key Lab Fine Chem,Key Lab Ind Ecol & Enviro, Dalian 116024, Peoples R China. [Qu, Yuanyuan; Ma, Qiao; Deng, Jie; Deng, Ye; Van Nostrand, Joy D.; Wu, Liyou; He, Zhili; Qin, Yujia; Zhou, Jizhong] Univ Oklahoma, IEG, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Qu, YY (reprint author), Dalian Univ Technol, Sch Environm Sci & Technol, Minist Educ, State Key Lab Fine Chem,Key Lab Ind Ecol & Enviro, Dalian 116024, Peoples R China. EM qyy@dlut.edu.cn RI Van Nostrand, Joy/F-1740-2016; OI Van Nostrand, Joy/0000-0001-9548-6450; ?, ?/0000-0002-7584-0632 FU National Natural Science Foundation of China [21176040]; Program for New Century Excellent Talents in University [NCET-13-0077]; Fundamental Research Funds for the Central Universities [DUT14YQ107] FX This work was supported by National Natural Science Foundation of China (No. 21176040), the Program for New Century Excellent Talents in University (No. NCET-13-0077), and the Fundamental Research Funds for the Central Universities (No. DUT14YQ107). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 48 TC 3 Z9 3 U1 7 U2 24 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 15 PY 2015 VL 10 IS 9 AR e0138455 DI 10.1371/journal.pone.0138455 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CR8LR UT WOS:000361604400070 PM 26372223 ER PT J AU Wood, JP Meyer, KM Kelly, TJ Choi, YW Rogers, JV Riggs, KB Willenberg, ZJ AF Wood, Joseph P. Meyer, Kathryn M. Kelly, Thomas J. Choi, Young W. Rogers, James V. Riggs, Karen B. Willenberg, Zachary J. TI Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores SO PLOS ONE LA English DT Article ID SOLAR UV-RADIATION; GEOBACILLUS-STEAROTHERMOPHILUS SPORES; ULTRAVIOLET-RADIATION; HYDROGEN-PEROXIDE; INACTIVATION; RESISTANCE; LIGHT; SURFACES; SURVIVAL; AGENTS AB There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log(10) reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. C1 [Wood, Joseph P.] US EPA, Off Res & Dev, Natl Homeland Secur Res Ctr, Res Triangle Pk, NC 27711 USA. [Meyer, Kathryn M.] Oak Ridge Inst Sci & Educ, Res Triangle Pk, NC USA. [Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.] Battelle Mem Inst, Columbus, OH 43201 USA. RP Wood, JP (reprint author), US EPA, Off Res & Dev, Natl Homeland Secur Res Ctr, Res Triangle Pk, NC 27711 USA. EM wood.joe@epa.gov OI Wood, Joseph/0000-0001-6316-9418 FU Battelle Memorial Institute [GS23F001L-3]; Oak Ridge Institute for Science and Education FX The US EPA funded Battelle Memorial Institute to perform this work via contract GS23F001L-3. Kathryn Meyer was funded as a postdoc through the Oak Ridge Institute for Science and Education. Joseph Wood of the EPA was the sponsor and technical director of the study, and was involved in the study design, data analysis, decision to publish, and preparation of manuscript. NR 39 TC 3 Z9 3 U1 5 U2 21 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD SEP 15 PY 2015 VL 10 IS 9 AR e0138083 DI 10.1371/journal.pone.0138083 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CR8LR UT WOS:000361604400048 PM 26372011 ER PT J AU Nichols, EM Gallagher, JJ Liu, C Su, YD Resasco, J Yu, Y Sun, YJ Yang, PD Chang, MCY Chang, CJ AF Nichols, Eva M. Gallagher, Joseph J. Liu, Chong Su, Yude Resasco, Joaquin Yu, Yi Sun, Yujie Yang, Peidong Chang, Michelle C. Y. Chang, Christopher J. TI Hybrid bioinorganic approach to solar-to-chemical conversion SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE artificial photosynthesis; solar fuels; photocatalysis; carbon dioxide fixation; water splitting ID SELECTIVE ELECTROCATALYTIC REDUCTION; CARBON-DIOXIDE; HYDROGEN EVOLUTION; ELECTROCHEMICAL REDUCTION; CO2 REDUCTION; EFFICIENT ELECTROCATALYST; MICROBIAL-PRODUCTION; VISIBLE-LIGHT; NEUTRAL WATER; NANOPARTICLES AB Natural photosynthesis harnesses solar energy to convert CO2 and water to value-added chemical products for sustaining life. We present a hybrid bioinorganic approach to solar-to-chemical conversion in which sustainable electrical and/or solar input drives production of hydrogen from water splitting using biocompatible inorganic catalysts. The hydrogen is then used by living cells as a source of reducing equivalents for conversion of CO2 to the value-added chemical product methane. Using platinum or an earth-abundant substitute, alpha-NiS, as biocompatible hydrogen evolution reaction (HER) electrocatalysts and Methanosarcina barkeri as a biocatalyst for CO2 fixation, we demonstrate robust and efficient electrochemical CO2 to CH4 conversion at up to 86% overall Faradaic efficiency for >= 7 d. Introduction of indium phosphide photocathodes and titanium dioxide photoanodes affords a fully solar-driven system for methane generation from water and CO2, establishing that compatible inorganic and biological components can synergistically couple light-harvesting and catalytic functions for solar-to-chemical conversion. C1 [Nichols, Eva M.; Liu, Chong; Su, Yude; Yu, Yi; Yang, Peidong; Chang, Michelle C. Y.; Chang, Christopher J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Nichols, Eva M.; Chang, Michelle C. Y.; Chang, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Gallagher, Joseph J.; Chang, Michelle C. Y.; Chang, Christopher J.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Liu, Chong; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Resasco, Joaquin] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Sun, Yujie] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. [Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yang, Peidong] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu; mcchang@berkeley.edu; chrischang@berkeley.edu RI Foundry, Molecular/G-9968-2014; OI Liu, Chong/0000-0001-5546-3852 FU DOE/LBNL [DE-AC02-05CH11231, FWP CH030201]; Laboratory Directed Research and Development Seed Grant from LBNL; National Science Foundation Graduate Research Fellowship Program (NSF GRFP); NIH [1 T32 GMO66698, S10RR025622]; NSF GRFP [DGE-0802270]; University of California, Berkeley Chancellor's fellowship FX We thank Dr. Zhongrui Zhou for help with HR GC-MS analysis, Dr. Hans Carlson for helpful advice on methanogen culturing, and Prof. Jonah Jurss for help with the design of electrochemical cells. This work was supported by DOE/LBNL DE-AC02-05CH11231, FWP CH030201 (to C.J.C. and M.C.Y.C.), a Laboratory Directed Research and Development Seed Grant from LBNL (to C.J.C. and M.C.Y.C.), and DOE/LBNL DE-AC02-05CH11231, PChem (to P.Y.). C.J.C. is an Investigator with the Howard Hughes Medical Institute. E.M.N. and J.J.G. gratefully acknowledge support from the National Science Foundation Graduate Research Fellowship Program (NSF GRFP). J.J.G. also acknowledges support from NIH Training Grant 1 T32 GMO66698. J.R. gratefully acknowledges the support of the NSF GRFP under Grant DGE-0802270, and the University of California, Berkeley Chancellor's fellowship. This work used the Vincent J. Proteomics/Mass Spectrometry Laboratory at University of California, Berkeley, supported in part by NIH S10 Instrumentation Grant S10RR025622. NR 75 TC 26 Z9 27 U1 30 U2 179 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 15 PY 2015 VL 112 IS 37 BP 11461 EP 11466 DI 10.1073/pnas.1508075112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CR5OW UT WOS:000361393700030 PM 26305947 ER PT J AU Luo, SS Perelson, AS AF Luo, Shishi Perelson, Alan S. TI Competitive exclusion by autologous antibodies can prevent broad HIV-1 antibodies from arising SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE human immunodeficiency virus; broadly neutralizing antibodies; coevolutionary dynamics; mathematical modeling; competitive exclusion ID NEUTRALIZING ANTIBODIES; MONOCLONAL-ANTIBODIES; AFFINITY MATURATION; FOUNDER VIRUS; IMMUNIZATION; IDENTIFICATION; INFECTION; MACAQUES; EFFICACY; DESIGN AB The past decade has seen the discovery of numerous broad and potent monoclonal antibodies against HIV type 1 (HIV-1). Eliciting these antibodies via vaccination appears to be remarkably difficult, not least because they arise late in infection and are highly mutated relative to germline antibody sequences. Here, using a computational model, we show that broad antibodies could in fact emerge earlier and be less mutated, but that they may be prevented from doing so as a result of competitive exclusion by the autologous antibody response. We further find that this competitive exclusion is weaker in infections founded by multiple distinct strains, with broadly neutralizing antibodies emerging earlier than in infections founded by a single strain. Our computational model simulates coevolving multitype virus and antibody populations. Broadly neutralizing antibodies may therefore be easier for the adaptive immune system to generate than previously thought. If less mutated broad antibodies exist, it may be possible to elicit them with a vaccine containing a mixture of diverse virus strains. C1 [Luo, Shishi; Perelson, Alan S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87544 USA. [Luo, Shishi] Los Alamos Natl Lab, Ctr Nonlinear Syst, Los Alamos, NM 87544 USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, POB 1663, Los Alamos, NM 87544 USA. EM asp@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396]; Center of Nonlinear Studies at Los Alamos National Laboratory; NIH [R01-AI028433, R01-OD011095]; Center for HIV AIDS Vaccine Immunology-Immunogen Design Grant [UM1-AI100645] FX We thank Ruy Ribeiro for comments on the manuscript. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-06NA25396 and was supported by the Center of Nonlinear Studies at Los Alamos National Laboratory, NIH Grants R01-AI028433 and R01-OD011095, and the Center for HIV AIDS Vaccine Immunology-Immunogen Design Grant UM1-AI100645. S.L. also thanks the Simons Institute for the Theory of Computing. NR 41 TC 7 Z9 7 U1 1 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 15 PY 2015 VL 112 IS 37 BP 11654 EP 11659 DI 10.1073/pnas.1505207112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CR5OW UT WOS:000361393700063 PM 26324897 ER PT J AU Chen, CM Kukkadapu, R Sparks, DL AF Chen, Chunmei Kukkadapu, Ravi Sparks, Donald L. TI Influence of Coprecipitated Organic Matter on Fe-(aq)(2+)-Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID FE(II)-INDUCED MINERALIZATION PATHWAYS; AMORPHOUS FERRIC HYDROXIDE; MOSSBAUER-SPECTROSCOPY; IRON; FE(II); REDUCTION; GOETHITE; SOIL; ADSORPTION; ASSOCIATIONS AB Aqueous Fe(II) is known to catalyze the abiotic transformation of ferrihydrite to more stable Fe minerals. However, little is known about the impacts of coprecipitated OM on Fe(II)-catalyzed ferrihydrite transformation and its consequences for C dynamics. Accordingly, we investigated the extent and pathway of Fe(II)-induced transformation of OM-ferrihydrite coprecipitates as a function of C/Fe ratios and aqueous Fe(II) concentrations, and its implications for subsequent C dynamics. The coprecipitated OM resulted in a linear decrease in ferrihydrite transformation with increasing C/Fe ratios. The secondary mineral profiles upon Fe(II) reaction with OM-ferrihydrite coprecipitates depend on Fe(II) concentrations At 0.2 mM Fe(II), OM completely inhibited goethite formation and stimulated lepidocrocite formation. At 2 mM Fe(II), whereas goethite was formed in the presence of OM, OM reduced the amount of goethite and magnetite formation and increased the formation of lepidocrocite. The solid-phase C content remained unchanged after reaction, suggesting that OM remains associated with Fe minerals following ferrihydrite transformation to more stable Fe minerals. However, C desorbability by H2PO4- from the resulting Fe minerals following reaction was enhanced. The study indicates a "lepidocrocite favoring effect" by OM and suggests that Fe(II)-catalyzed transformation of ferrihydrite may decrease OM stability in natural environments under moderately reducing conditions. C1 [Chen, Chunmei; Sparks, Donald L.] Univ Delaware, Delaware Environm Inst, Dept Plant & Soil Sci, Newark, DE 19711 USA. [Kukkadapu, Ravi] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Chen, CM (reprint author), Univ Delaware, Delaware Environm Inst, Dept Plant & Soil Sci, Newark, DE 19711 USA. EM cmchen@udel.edu FU National Science Foundation [EAR 0724971]; Department of Energy's Office of Biological and Environmental Research, at Pacific Northwest National Laboratory (PNNL); US Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO 1830]; DOE, Office of Science, Office of Basic Energy Sciences; Canadian Foundation for Innovation; Natural Sciences and Engineering Research Council of Canada; Canadian Institutes of Health Research; Province of Saskatchewan; Western Economic Diversification Canada; University of Saskatchewan FX This research is a part of the Christina River Basin Critical Zone Observatory (CRB-CZO) project that was supported by the National Science Foundation (EAR 0724971). Mossbauer spectroscopic analyses were performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research, at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the US Department of Energy by the Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. Portions of the research described in this paper were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Portions of this work were performed at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL). Use of the NSLS was supported by DOE, Office of Science, Office of Basic Energy Sciences. Part of this research was performed at the CLS, which is supported by the Canadian Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. NR 61 TC 5 Z9 5 U1 23 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 15 PY 2015 VL 49 IS 18 BP 10927 EP 10936 DI 10.1021/acs.est.5b02448 PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CR5WT UT WOS:000361415800021 PM 26260047 ER PT J AU Yang, GX Best, EPH AF Yang, Guoxiang Best, Elly P. H. TI Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework SO JOURNAL OF ENVIRONMENTAL MANAGEMENT LA English DT Article DE Best management practices; Nitrogen-loading; Wetland restoration; Buffer strips; Multi-objective optimization; Genetic algorithm; Modeling-optimization ID AGRICULTURAL WATERSHEDS; BUFFERS; METAANALYSIS; POLLUTION; WETLANDS; COST AB Best management practices (BMPs) can be used effectively to reduce nutrient loads transported from non-point sources to receiving water bodies. However, methodologies of BMP selection and placement in a cost-effective way are needed to assist watershed management planners and stakeholders. We developed a novel modeling-optimization framework that can be used to find cost-effective solutions of BMP placement to attain nutrient load reduction targets. This was accomplished by integrating a GIS-based BMP siting method, a WQM-TMDL-N modeling approach to estimate total nitrogen (TN) loading, and a multi-objective optimization algorithm. Wetland restoration and buffer strip implementation were the two BMP categories used to explore the performance of this framework, both differing greatly in complexity of spatial analysis for site identification. Minimizing TN load and BMP cost were the two objective functions for the optimization process. The performance of this framework was demonstrated in the Tippecanoe River watershed, Indiana, USA. Optimized scenario-based load reduction indicated that the wetland subset selected by the minimum scenario had the greatest N removal efficiency. Buffer strips were more effective for load removal than wetlands. The optimized solutions provided a range of trade-offs between the two objective functions for both BMPs. This framework can be expanded conveniently to a regional scale because the NHDPlus catchment serves as its spatial computational unit. The present study. demonstrated the potential of this framework to find cost-effective solutions to meet a water quality target, such as a 20% TN load reduction, under different conditions. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Yang, Guoxiang] US EPA, ORISE, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA. [Best, Elly P. H.] US EPA, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA. RP Yang, GX (reprint author), US Geol Survey, CNTS, Richmond, VA 23228 USA. EM gavin.yangme@gmail.com; elly.best@gmail.com FU ORISE Grant - U.S. EPA/ORD Safe and Sustainable Water Resources Program [92298301] FX This research was supported by ORISE Grant no 92298301, funded by the U.S. EPA/ORD Safe and Sustainable Water Resources Program. NR 26 TC 5 Z9 5 U1 7 U2 50 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0301-4797 EI 1095-8630 J9 J ENVIRON MANAGE JI J. Environ. Manage. PD SEP 15 PY 2015 VL 161 BP 252 EP 260 DI 10.1016/j.jenvman.2015.06.052 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA CR3WP UT WOS:000361264100029 PM 26188990 ER PT J AU Finster, ME Raymond, MR Scofield, MA Smith, KP AF Finster, Molly E. Raymond, Michelle R. Scofield, Marcienne A. Smith, Karen P. TI Mercury-impacted scrap metal: Source and nature of the mercury SO JOURNAL OF ENVIRONMENTAL MANAGEMENT LA English DT Review DE Mercury; Scrap metal; Metal recycling; Mercury-impacted metal; Mercury switches; Oil and gas scrap ID UNITED-STATES; SPECIATION; OIL AB The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 degrees C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent of associated releases, represent a practical research need that is essential for improving the environmental management of Hg-impacted scrap and assessing measures to protect workers from potential health and safety hazards that might be posed by mercury and Hgimpacted scrap. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Finster, Molly E.] Argonne Natl Lab, Global Secur Sci Div GSS, RISC, Lemont, IL 60439 USA. [Raymond, Michelle R.; Scofield, Marcienne A.; Smith, Karen P.] Argonne Natl Lab, Environm Sci Div EVS, Lemont, IL 60439 USA. [Raymond, Michelle R.] Bur Environm & Occupat Hlth, Wisconsin Div Publ Hlth, Madison, WI 53703 USA. [Scofield, Marcienne A.] Pacific Crest Environm, North Bend, WA 98045 USA. RP Finster, ME (reprint author), Argonne Natl Lab, Global Secur Sci Div GSS, RISC, 9700 S Cass Ave, Lemont, IL 60439 USA. EM mfinster@anl.gov FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 52 TC 0 Z9 0 U1 5 U2 29 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0301-4797 EI 1095-8630 J9 J ENVIRON MANAGE JI J. Environ. Manage. PD SEP 15 PY 2015 VL 161 BP 303 EP 308 DI 10.1016/j.jenvman.2015.05.041 PG 6 WC Environmental Sciences SC Environmental Sciences & Ecology GA CR3WP UT WOS:000361264100033 PM 26197424 ER PT J AU Harrison, KL Biedermann, LB Zavadil, KR AF Harrison, Katharine L. Biedermann, Laura B. Zavadil, Kevin R. TI Mechanical Properties Langmuir Monolayers: Article of Water-Assembled Graphene Oxide Guiding Controlled Transfer SO LANGMUIR LA English DT Article ID THIN-FILMS; CHEMICAL-STRUCTURE; BLODGETT TECHNIQUE; ENERGY-STORAGE; SHEETS; REDUCTION; SURFACE; ELECTRONICS; HYDRAZINE; SUBSTRATE AB Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir-Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10-25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of such behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. We hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials. C1 [Harrison, Katharine L.; Zavadil, Kevin R.] Sandia Natl Labs, Joint Ctr Energy Storage Res, Albuquerque, NM 87185 USA. [Harrison, Katharine L.; Biedermann, Laura B.; Zavadil, Kevin R.] Sandia Natl Labs, Mat Sci & Engn, Albuquerque, NM 87185 USA. RP Zavadil, KR (reprint author), Sandia Natl Labs, Joint Ctr Energy Storage Res, Albuquerque, NM 87185 USA. EM krzavad@sandia.gov FU Joint Center for Energy Storage Research - U.S. Department of Energy, Office of Science; LDRD program; U.S. DOE's NNSA [DE-AC04-94AL85000] FX This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science. L. Biedermann was supported under an LDRD program. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's NNSA under contract DE-AC04-94AL85000. We thank T. Lambert and D. Davis for providing one of the types of GO material used in this work, R. Grant for the SEM images, M. Brumbach for XPS analysis, and J. Fleischer for automated analysis of GO/RGO coverage. C. Sanchez, A. Hamilton, and J. Schroeder provided experimental support. T. Beechem, N. Bell, C. Brooks, A. Grillet, D. Wheeler, and S. Brozik are acknowledged for helpful discussions. NR 42 TC 3 Z9 3 U1 13 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP 15 PY 2015 VL 31 IS 36 BP 9825 EP 9832 DI 10.1021/acs.langmuir.5b01994 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CR5WU UT WOS:000361415900011 PM 26299510 ER PT J AU Skripnikov, LV Petrov, AN Titov, AV Mawhorter, RJ Baum, AL Sears, TJ Grabow, JU AF Skripnikov, L. V. Petrov, A. N. Titov, A. V. Mawhorter, R. J. Baum, A. L. Sears, T. J. Grabow, J-U TI Further investigation of g factors for the lead monofluoride ground state SO PHYSICAL REVIEW A LA English DT Article ID P-ODD; PBF AB We report the results of our theoretical study and analysis of earlier experimental data for the g-factor tensor components of the ground (2)Pi(1/2) state of the free PbF radical. The values were obtained both within the relativistic coupled-cluster method combined with the generalized relativistic effective core potential approach and with our fit of the experimental data from [R. J. Mawhorter, B. S. Murphy, A. L. Baum, T. J. Sears, T. Yang, P. M. Rupasinghe, C. P. McRaven, N. E. Shafer-Ray, L. D. Alphei, and J.-U. Grabow, Phys. Rev. A 84, 022508 (2011); A. L. Baum, B. A. thesis, Pomona College, 2011]. The obtained results agree very well with each other but contradict the previous fit performed in the cited works. Our final prediction for g factors is G(parallel to) = 0.081(5), G(perpendicular to) = -0.27(1). C1 [Skripnikov, L. V.; Petrov, A. N.; Titov, A. V.] Natl Res Ctr, Kurchatov Inst, BP Konstantinov Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Distr, Russia. [Skripnikov, L. V.; Petrov, A. N.; Titov, A. V.] St Petersburg State Univ, St Petersburg Univ, SPbSU, SPbU, St Petersburg 199034, Russia. [Mawhorter, R. J.; Baum, A. L.] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA. [Mawhorter, R. J.; Grabow, J-U] Leibniz Univ Hannover, Inst Phys Chem & Elektrochem, Lehrgebiet A, D-30167 Hannover, Germany. [Sears, T. J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Skripnikov, LV (reprint author), Natl Res Ctr, Kurchatov Inst, BP Konstantinov Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Distr, Russia. EM leonidos239@gmail.com; alexsandernp@gmail.com RI Titov, Anatoly/C-8069-2012; Petrov, Alexander/I-7865-2013; Skripnikov, Leonid/I-5135-2013; Sears, Trevor/B-5990-2013 OI Titov, Anatoly/0000-0002-9139-8258; Petrov, Alexander/0000-0003-1342-3160; Skripnikov, Leonid/0000-0002-2062-684X; Sears, Trevor/0000-0002-5559-0154 FU SPbU Fundamental Science Research [0.38.652.2013]; Russian Foundation for Basic Research [13-02-01406]; President of the Russian Federation [MK-5877.2014.2]; Deutsche Forschungsgemeinschaft; Land Niedersachsen; Pomona College Sontag Fellowship Program; U.S. Department of Energy, Office of Science [DE-SC0012704]; Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences FX The molecular calculations were partly performed at the Supercomputer "Lomonosov." This work is supported by a SPbU Fundamental Science Research grant (Federal Budget Grant No. 0.38.652.2013) and Russian Foundation for Basic Research Grant No. 13-02-01406. L.S. is also grateful for a grant from the President of the Russian Federation (Grant No. MK-5877.2014.2). J.-U.G. acknowledges funding from the Deutsche Forschungsgemeinschaft and the Land Niedersachsen, and R.J.M. and A.L.B. are grateful for research support provided by the Pomona College Sontag Fellowship Program. Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences. NR 40 TC 5 Z9 5 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD SEP 15 PY 2015 VL 92 IS 3 AR 032508 DI 10.1103/PhysRevA.92.032508 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CR4JP UT WOS:000361298400003 ER PT J AU Furrer, A Podlesnyak, A Kramer, KW AF Furrer, A. Podlesnyak, A. Kraemer, K. W. TI Extraction of exchange parameters in transition-metal perovskites SO PHYSICAL REVIEW B LA English DT Article ID SPIN-WAVES; QUANTUM-MECHANICS; EXCITATIONS; ZONE AB The extraction of exchange parameters from measured spin-wave dispersion relations has severe limitations particularly for magnetic compounds such as the transition-metal perovskites, where the nearest-neighbor exchange parameter usually dominates the couplings between the further-distant-neighbor spins. Very precise exchange parameters beyond the nearest-neighbor spins can be obtained by neutron spectroscopic investigations of the magnetic excitation spectra of isolated multimers in magnetically diluted compounds. This is exemplified for manganese trimers in the mixed three-and two-dimensional perovskite compounds KMnxZn1-xF3 and K2MnxZn1-xF4, respectively. It is shown that the small exchange couplings between the second-nearest-neighbor and the third-nearest-neighbor spins can be determined unambiguously and with equal precision as the dominating nearest-neighbor exchange coupling. C1 [Furrer, A.] Paul Scherrer Inst, Lab Neutron Scattering, CH-5232 Villigen, Switzerland. [Podlesnyak, A.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Kraemer, K. W.] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland. RP Furrer, A (reprint author), Paul Scherrer Inst, Lab Neutron Scattering, CH-5232 Villigen, Switzerland. RI Kramer, Karl/J-5021-2013; Podlesnyak, Andrey/A-5593-2013; Instrument, CNCS/B-4599-2012 OI Kramer, Karl/0000-0001-5524-7703; Podlesnyak, Andrey/0000-0001-9366-6319; FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The assistance of D. Biner (University of Bern) in the synthesis of the samples is gratefully acknowledged. Research at Oak Ridge National Laboratory's Spallation Neutron Source was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 23 TC 2 Z9 2 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 15 PY 2015 VL 92 IS 10 AR 104415 DI 10.1103/PhysRevB.92.104415 PG 6 WC Physics, Condensed Matter SC Physics GA CR4JX UT WOS:000361299300001 ER PT J AU Siegel, DA El Gabaly, F McCarty, KF Bartelt, NC AF Siegel, D. A. El Gabaly, F. McCarty, K. F. Bartelt, N. C. TI In situ characterization of the formation of a mixed conducting phase on the surface of yttria-stabilized zirconia near Pt electrodes SO PHYSICAL REVIEW B LA English DT Article ID ELECTROCHEMICAL-CELLS; OXIDE; MICROSPECTROSCOPY; REDUCTION; DEPENDENCE; BOUNDARY; FRONT; ION; YSZ AB The electrochemical reactions of solid oxide fuel cells occur in the region where gas-phase species, electrode, and electrolyte coincide. When the electrode is an ionic insulator and the electrolyte is an electronic insulator, this triple phase boundary is assumed to have atomic dimensions. Here we use photoemission electron microscopy to show that the reduced surface of the electrolyte yttria-stabilized zirconia (YSZ) has a sharp electronic metalinsulator boundary near Pt negative electrodes. The electronic conductivity of the reduced YSZ allows for oxygen reduction, allowing the reduced YSZ to behave as an extended triple phase boundary. This extended triple phase boundary can be many microns in size, depending on oxygen pressure, temperature, applied voltage, and time. C1 [Siegel, D. A.; El Gabaly, F.; McCarty, K. F.; Bartelt, N. C.] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA. RP Siegel, DA (reprint author), Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA. EM DavidASiegel@gmail.com; Bartelt@Sandia.gov FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering; US Department of Energy [DE-AC04-94AL85000] FX We would like to thank Ivan Ermanoski and Taisuke Ohta for useful conversations. The work performed at Sandia was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the US Department of Energy under Contract No. DE-AC04-94AL85000. NR 28 TC 2 Z9 2 U1 5 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD SEP 15 PY 2015 VL 92 IS 12 AR 125421 DI 10.1103/PhysRevB.92.125421 PG 4 WC Physics, Condensed Matter SC Physics GA CR4KA UT WOS:000361299700005 ER PT J AU Mumpower, MR Surman, R Fang, DL Beard, M Moller, P Kawano, T Aprahamian, A AF Mumpower, M. R. Surman, R. Fang, D. -L. Beard, M. Moeller, P. Kawano, T. Aprahamian, A. TI Impact of individual nuclear masses on r-process abundances SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-STAR MERGERS; PROCESS NUCLEOSYNTHESIS; EARLY GALAXY; PROCESS ELEMENTS; CAPTURE; EJECTA; MODEL; SIMULATIONS; SUPERNOVAE; EVOLUTION AB We have performed for the first time a comprehensive study of the sensitivity of r-process nucleosynthesis to individual nuclear masses across the chart of nuclides. Using the latest version (2012) of the Finite-Range Droplet Model, we consider mass variations of +/- 0.5 MeV and propagate each mass change to all affected quantities, including Q values, reaction rates, and branching ratios. We find such mass variations can result in up to an order of magnitude local change in the final abundance pattern produced in an r-process simulation. We identify key nuclei whose masses have a substantial impact on abundance predictions for hot, cold, and neutron star merger r-process scenarios and could be measured at future radioactive beam facilities. C1 [Mumpower, M. R.; Surman, R.; Beard, M.; Aprahamian, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Mumpower, M. R.; Surman, R.; Beard, M.; Aprahamian, A.] Univ Notre Dame, Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA. [Fang, D. -L.] Michigan State Univ, Dept Phys, E Lansing, MI 48824 USA. [Moeller, P.; Kawano, T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Mumpower, MR (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM matthew@mumpower.net OI Moller, Peter/0000-0002-5848-3565 FU National Science Foundation through the Joint Institute for Nuclear Astrophysics [PHY0822648, PHY1419765]; Department of Energy [DE-SC0013039] FX We thank Gail McLaughlin for helpful discussions. This work was supported in part by the National Science Foundation through the Joint Institute for Nuclear Astrophysics (Grants number PHY0822648 and No. PHY1419765) and the Department of Energy under Contract No. DE-SC0013039 (R.S.). NR 65 TC 7 Z9 7 U1 3 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD SEP 15 PY 2015 VL 92 IS 3 AR 035807 DI 10.1103/PhysRevC.92.035807 PG 8 WC Physics, Nuclear SC Physics GA CR4KW UT WOS:000361301900005 ER PT J AU Utyonkov, VK Brewer, NT Oganessian, YT Rykaczewski, KP Abdullin, FS Dmitriev, SN Grzywacz, RK Itkis, MG Miernik, K Polyakov, AN Roberto, JB Sagaidak, RN Shirokovsky, IV Shumeiko, MV Tsyganov, YS Voinov, AA Subbotin, VG Sukhov, AM Sabel'nikov, AV Vostokin, GK Hamilton, JH Stoyer, MA Strauss, SY AF Utyonkov, V. K. Brewer, N. T. Oganessian, Yu. Ts. Rykaczewski, K. P. Abdullin, F. Sh. Dmitriev, S. N. Grzywacz, R. K. Itkis, M. G. Miernik, K. Polyakov, A. N. Roberto, J. B. Sagaidak, R. N. Shirokovsky, I. V. Shumeiko, M. V. Tsyganov, Yu. S. Voinov, A. A. Subbotin, V. G. Sukhov, A. M. Sabel'nikov, A. V. Vostokin, G. K. Hamilton, J. H. Stoyer, M. A. Strauss, S. Y. TI Experiments on the synthesis of superheavy nuclei (284)Fl and (285)Fl in the Pu-239,Pu-240+Ca-48 reactions SO PHYSICAL REVIEW C LA English DT Article ID RANDOM PROBABILITY ANALYSIS; SPONTANEOUS-FISSION; HEAVIEST NUCLEI; MASSES; MODEL AB Irradiations of Pu-239 and Pu-240 targets with Ca-48 beams aimed at the synthesis of Z = 114 flerovium isotopes were performed at the Dubna Gas Filled Recoil Separator. A new spontaneously fissioning (SF) isotope (284)Fl was produced for the first time in the Pu-240 + Ca-48 (250 MeV) and Pu-239 + Ca-48 (245 MeV) reactions. The cross section of the Pu-239(Ca-48,3n) (284)Fl reaction channel was about 20 times lower than predicted by theoretical models and about 50 times lower than the maximum fusion-evaporation cross section for the 3n and 4n channels measured in the Pu-244 + Ca-48 reaction. In the Pu-240 + Ca-48 experiment, performed at 245 MeV in order to maximize the 3n-evaporation channel, three decay chains of (285)Fl were detected. The alpha-decay energy of (285)Fl was measured for the first time and decay properties of its descendants (281)Cn, (277)Ds, (273)Hs, (269)Sg, and (265)Rf were determined with higher accuracy. The assignment of SF events observed during the irradiation of the Pu-240 target with a 250 MeV Ca-48 beam to (284)Fl decay is presented and discussed. The cross sections at both Ca-48 energies are similar and exceed that observed in the reaction with the lighter isotope 239Pu by a factor of 10. The decay properties of the synthesized nuclei and their production cross sections indicate a rapid decrease of stability of superheavy nuclei as the neutron number decreases from the predicted magic neutron number N = 184. C1 [Utyonkov, V. K.; Oganessian, Yu. Ts.; Abdullin, F. Sh.; Dmitriev, S. N.; Itkis, M. G.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu. S.; Voinov, A. A.; Subbotin, V. G.; Sukhov, A. M.; Sabel'nikov, A. V.; Vostokin, G. K.] Joint Inst Nucl Res, Flerov Lab Nucl React, RU-141980 Dubna, Russia. [Brewer, N. T.; Rykaczewski, K. P.; Grzywacz, R. K.; Miernik, K.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Grzywacz, R. K.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Miernik, K.] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland. [Roberto, J. B.] Oak Ridge Natl Lab, Sci & Technol Partnerships Directorate, Oak Ridge, TN 37831 USA. [Hamilton, J. H.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Stoyer, M. A.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. [Strauss, S. Y.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46566 USA. RP Utyonkov, VK (reprint author), Joint Inst Nucl Res, Flerov Lab Nucl React, RU-141980 Dubna, Russia. EM utyonkov@sungns.jinr.ru FU Russian Foundation for Basic Research [13-02-12052, 13-03-12205]; Moscow Region Government [736/36-16.09.2014]; U.S. DOE Office of Nuclear Physics under DOE [DE-AC05-00OR22725]; UT-Battelle, LLC.; LDRD Program under DOE [08-ERD-030, DE-AC52-07NA27344]; Lawrence Livermore National Security, LLC.; U.S. DOE [DE-FG-05-88ER40407] FX These studies were supported by the Russian Foundation for Basic Research, including recent Grants No. 13-02-12052 and No. 13-03-12205, and by the Moscow Region Government through Grant No. 736/36-16.09.2014. Research at ORNL was supported by the U.S. DOE Office of Nuclear Physics under DOE Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. Research at LLNL was supported by LDRD Program Project No. 08-ERD-030, under DOE Contract No. DE-AC52-07NA27344 with Lawrence Livermore National Security, LLC. This work was also supported by the U.S. DOE through Grant No. DE-FG-05-88ER40407 (Vanderbilt University). NR 49 TC 19 Z9 19 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD SEP 15 PY 2015 VL 92 IS 3 AR 034609 DI 10.1103/PhysRevC.92.034609 PG 10 WC Physics, Nuclear SC Physics GA CR4KW UT WOS:000361301900003 ER PT J AU Moreno, O Donnelly, TW Van Orden, JW Ford, WP AF Moreno, O. Donnelly, T. W. Van Orden, J. W. Ford, W. P. TI Coincidence charged-current neutrino-induced deuteron disintegration SO PHYSICAL REVIEW D LA English DT Article ID ELECTRON-NUCLEUS SCATTERING; FEW-BODY PROBLEM; EQUATIONS AB Deuteron disintegration by charged-current neutrino (CC.) scattering offers the possibility to determine the energy of the incident neutrino by measuring in coincidence two of the three resulting particles: a charged lepton (usually a muon) and two protons, where we show that this channel can be isolated from all others-for instance, from those with a pion in the final state. We discuss the kinematics of the process for several detection scenarios, both in terms of kinematic variables that are natural from a theoretical point of view and others that are better matched to experimental situations. The deuteron structure is obtained from a relativistic model (involving an approximation to the Bethe-Salpeter equation) as an extension of a previous, well-tested model used in deuteron electrodisintegration. We provide inclusive and coincidence (semi-inclusive) cross sections for a variety of kinematic conditions, using the plane-wave impulse approximation, introducing final-state hadronic exchange terms (plane-wave Born approximation) and final-state hadronic interactions (distorted-wave Born approximation). C1 [Moreno, O.; Donnelly, T. W.] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA. [Moreno, O.; Donnelly, T. W.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Van Orden, J. W.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Van Orden, J. W.] Jefferson Lab, Newport News, VA 23606 USA. [Ford, W. P.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37916 USA. RP Moreno, O (reprint author), MIT, Ctr Theoret Phys, Nucl Sci Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Moreno, Oscar/J-6394-2014 OI Moreno, Oscar/0000-0002-8446-6005 FU Marie Curie International Outgoing Fellowship (ELECTROWEAK) within the 7th Framework Programme of the European Union; Office of Nuclear Physics of the U.S. Department of Energy [DE-FG02-94ER40818]; U.S. Department of Energy [DE-AC05-06OR23177, DE-AC05-84ER40150] FX O.M. acknowledges support from a Marie Curie International Outgoing Fellowship (ELECTROWEAK) within the 7th Framework Programme of the European Union. Also supported in part by the Office of Nuclear Physics of the U.S. Department of Energy under Grant Contract No. DE-FG02-94ER40818 (T.W.D.), and by the U.S. Department of Energy under Contract No. DE-AC05-06OR23177 and the U.S. Department of Energy cooperative research agreement DE-AC05-84ER40150 (J.W.V.O.). NR 32 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD SEP 15 PY 2015 VL 92 IS 5 AR 053006 DI 10.1103/PhysRevD.92.053006 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CR4LC UT WOS:000361302500003 ER PT J AU Sanchez-Vega, BL Schmitz, ER AF Sanchez-Vega, B. L. Schmitz, E. R. TI Fermionic dark matter and neutrino masses in a B - L model SO PHYSICAL REVIEW D LA English DT Article ID PROTON DECAY; L SYMMETRY; BREAKING; PHYSICS; U(1); ABUNDANCES; PARTICLES; BOSONS AB In this work we present a common framework for neutrino masses and dark matter. Specifically, we work with a local B - L extension of the standard model which has three right-handed neutrinos, n(Ri), and some extra scalars, Phi, phi(i), besides the standard model fields. The n(Ri)'s have nonstandard B - L quantum numbers and thus these couple to different scalars. This model has the attractive property that an almost automatic Z(2) symmetry acting only on a fermionic field, n(R3), is present. Taking advantage of this Z(2) symmetry, we study both the neutrino mass generation via a natural seesaw mechanism at low energy and the possibility of n(R3) being a dark matter candidate. For this last purpose, we study its relic abundance and its compatibility with the current direct detection experiments. C1 [Sanchez-Vega, B. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Schmitz, E. R.] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany. [Schmitz, E. R.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. RP Sanchez-Vega, BL (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM brucesanchez@anl.gov; ernany@th.physik.uni-bonn.de FU Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Brazil [2264-13-7]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil [201016/2014-1] FX B. L. S. V. would like to thank Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Brazil, for their financial support under Contract No. 2264-13-7 and the Argonne National Laboratory for its kind hospitality. E. R. S. would like to thank Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil, for their financial support under Process No. 201016/2014-1, and Bethe Center for Theoretical Physics and Physikalisches Institut, Universitat Bonn for its warm hospitality. NR 74 TC 2 Z9 2 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 15 PY 2015 VL 92 IS 5 AR 053007 DI 10.1103/PhysRevD.92.053007 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CR4LC UT WOS:000361302500004 ER PT J AU Kezsmaarki, I Nagel, U Bordacs, S Fishman, RS Lee, JH Yi, HT Cheong, SW Room, T AF Kezsmarki, I. Nagel, U. Bordacs, S. Fishman, R. S. Lee, J. H. Yi, Hee Taek Cheong, S. -W. Room, T. TI Optical Diode Effect at Spin-Wave Excitations of the Room-Temperature Multiferroic BiFeO3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC CONTROL; ELECTRIC-FIELD; POLARIZATION AB Multiferroics permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite, direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO3 over the gigahertz-terahertz frequency range. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. These findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field. C1 [Kezsmarki, I.; Bordacs, S.] Budapest Univ Technol & Econ, Dept Phys, H-1111 Budapest, Hungary. [Kezsmarki, I.; Bordacs, S.] MTA BME Lendulet Magnetoopt Spect Res Grp, H-1111 Budapest, Hungary. [Nagel, U.; Room, T.] NICPB, EE-12618 Tallinn, Estonia. [Fishman, R. S.; Lee, J. H.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yi, Hee Taek; Cheong, S. -W.] Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Yi, Hee Taek; Cheong, S. -W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Kezsmaarki, I (reprint author), Budapest Univ Technol & Econ, Dept Phys, H-1111 Budapest, Hungary. RI Room, Toomas/A-6412-2008; Nagel, Urmas/A-6402-2008; Bordacs, Sandor/B-3208-2013 OI Room, Toomas/0000-0002-6165-8290; Nagel, Urmas/0000-0001-5827-9495; FU Estonian Ministry of Education and Research [IUT23-03]; Estonian Science Foundation [ETF8703]; Hungarian Research Funds [OTKA K 108918, OTKA PD 111756, Bolyai 00565/14/11]; DOE, Office of Sciences, Basic Energy Sciences, Materials Sciences and Engineering Division; DOE [DE-FG02-07ER46382] FX We thank D. Szaller, S. Miyahara, N. Furukawa, and J. Vit for useful discussions. This work was supported by the Estonian Ministry of Education and Research Grant No. IUT23-03 and by the Estonian Science Foundation Grant No. ETF8703; by the Hungarian Research Funds OTKA K 108918, OTKA PD 111756, and Bolyai 00565/14/11; by the DOE, Office of Sciences, Basic Energy Sciences, Materials Sciences and Engineering Division and (crystal growth) by the DOE under Grant No. DE-FG02-07ER46382. NR 41 TC 14 Z9 14 U1 13 U2 69 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 15 PY 2015 VL 115 IS 12 AR 127203 DI 10.1103/PhysRevLett.115.127203 PG 5 WC Physics, Multidisciplinary SC Physics GA CR4OT UT WOS:000361315300007 PM 26431014 ER PT J AU Dai, YM Miao, H Xing, LY Wang, XC Wang, PS Xiao, H Qian, T Richard, P Qiu, XG Yu, W Jin, CQ Wang, Z Johnson, PD Homes, CC Ding, H AF Dai, Y. M. Miao, H. Xing, L. Y. Wang, X. C. Wang, P. S. Xiao, H. Qian, T. Richard, P. Qiu, X. G. Yu, W. Jin, C. Q. Wang, Z. Johnson, P. D. Homes, C. C. Ding, H. TI Spin-Fluctuation-Induced Non-Fermi-Liquid Behavior with Suppressed Superconductivity in LiFe1-xCoxAs SO PHYSICAL REVIEW X LA English DT Article ID QUANTUM CRITICAL-POINT; NORMAL-STATE; CRITICALITY; LIFEAS; BAFE2(AS1-XPX)(2) AB We study a series of LiFe1-xCoxAs compounds with different Co concentrations by transport, optical spectroscopy, angle-resolved photoemission spectroscopy, and nuclear magnetic resonance. We observe a Fermi-liquid to non-Fermi-liquid to Fermi-liquid (FL-NFL-FL) crossover alongside a monotonic suppression of the superconductivity with increasing Co content. In parallel to the FL-NFL-FL crossover, we find that both the low-energy spin fluctuations and Fermi surface nesting are enhanced and then diminished, strongly suggesting that the NFL behavior in LiFe1-xCoxAs is induced by low-energy spin fluctuations that are very likely tuned by Fermi surface nesting. Our study reveals a unique phase diagram of LiFe1-xCoxAs where the region of NFL is moved to the boundary of the superconducting phase, implying that they are probably governed by different mechanisms. C1 [Dai, Y. M.; Johnson, P. D.; Homes, C. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Miao, H.; Xing, L. Y.; Wang, X. C.; Xiao, H.; Qian, T.; Richard, P.; Qiu, X. G.; Jin, C. Q.; Ding, H.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Wang, P. S.; Yu, W.] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Richard, P.; Qiu, X. G.; Jin, C. Q.; Ding, H.] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China. [Wang, Z.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Yu, W.] Shanghai Jiao Tong Univ, Collaborat Innovat Ctr Adv Microstruct, Dept Phys & Astron, Shanghai 200240, Peoples R China. RP Homes, CC (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM homes@bnl.gov; dingh@iphy.ac.cn RI Richard, Pierre/F-7652-2010; Yu, Weiqiang/E-9722-2012; Dai, Yaomin/E-4259-2016 OI Richard, Pierre/0000-0003-0544-4551; Dai, Yaomin/0000-0002-2464-3161 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0012704]; CAS [XDB07000000]; MOST [2010CB923000, 2011CBA001000, 2013CB921700, 2010CB923004, 2011CBA00112]; NSFC [11234014, 11274362, 11220101003, 11474344, 1222433, 11374364]; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-FG02-99ER45747] FX We thank A. Akrap, S. Biermann, P. C. Dai, J. P. Hu, W. Ku, R. P. S. M. Lobo, A. J. Millis, A. van Roekeghem, W. G. Yin, I. Zaliznyak, and G. Q. Zheng for valuable discussion. Work at BNL was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-SC0012704. Work at IOP was supported by grants from CAS (No. XDB07000000), MOST (No. 2010CB923000, No. 2011CBA001000, and No. 2013CB921700), NSFC (No. 11234014, No. 11274362, No. 11220101003, and No. 11474344). Work at RUC was supported by grants from MOST (No. 2010CB923004 and No. 2011CBA00112) and NSFC (No. 11222433 and No. 11374364). Work at BC was supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-FG02-99ER45747. NR 33 TC 13 Z9 13 U1 14 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD SEP 15 PY 2015 VL 5 IS 3 AR 031035 DI 10.1103/PhysRevX.5.031035 PG 11 WC Physics, Multidisciplinary SC Physics GA CR4NX UT WOS:000361311600002 ER PT J AU Dixon, DA Prinja, AK Franke, BC AF Dixon, D. A. Prinja, A. K. Franke, B. C. TI A computationally efficient moment-preserving Monte Carlo electron transport method with implementation in Geant4 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Electron transport; Moment preservation; Partial-wave differential cross sections; Monte Carlo simulation ID MULTIPLE ELASTIC-SCATTERING; PLANCK; REPRESENTATION; SIMULATION; POSITRONS; TOOLKIT AB This paper presents the theoretical development and numerical demonstration of a moment-preserving Monte Carlo electron transport method. Foremost, a full implementation of the moment-preserving (MP) method within the Geant4 particle simulation toolkit is demonstrated. Beyond implementation details, it is shown that the MP method is a viable alternative to the condensed history (CH) method for inclusion in current and future generation transport codes through demonstration of the key features of the method including: systematically controllable accuracy, computational efficiency, mathematical robustness, and versatility. A wide variety of results common to electron transport are presented illustrating the key features of the MP method. In particular, it is possible to achieve accuracy that is statistically indistinguishable from analog Monte Carlo, while remaining up to three orders of magnitude more efficient than analog Monte Carlo simulations. Finally, it is shown that the MP method can be generalized to any applicable analog scattering DCS model by extending previous work on the MP method beyond analytical DCSs to the partial-wave (PW) elastic tabulated DCS data. (C) 2015 Elsevier B.V. All rights reserved. C1 [Dixon, D. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Prinja, A. K.] Univ New Mexico, Dept Nucl Engn, Albuquerque, NM 87131 USA. [Franke, B. C.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Dixon, DA (reprint author), Los Alamos Natl Lab, POB 1663,MS P365, Los Alamos, NM 87545 USA. EM ddixon@lanl.gov; prinja@unm.edu; bcfrank@sandia.gov FU AFRL; U.S. Departments of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The first two authors would like to thank the AFRL for funding the grant that supported this work and the UNM Center for Advanced Research Computing for providing the computational resources required to complete this work along with top-notch user support.; Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Departments of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 30 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 15 PY 2015 VL 359 BP 20 EP 35 DI 10.1016/j.nimb.2015.07.009 PG 16 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CQ8OW UT WOS:000360868900004 ER PT J AU Valderrama, B Henderson, HB Yablinsky, CA Gan, J Allen, TR Manuel, MV AF Valderrama, Billy Henderson, Hunter B. Yablinsky, Clarissa A. Gan, Jian Allen, Todd R. Manuel, Michele V. TI Investigation of material property influenced stoichiometric deviations as evidenced during UV laser-assisted atom probe tomography in fluorite oxides SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Field evaporation; Laser-material interactions; Stoichiometry; Uranium oxide; Cerium oxide ID URANIUM-DIOXIDE; DOPED CERIA; UO2; CEO2; ENERGY; FIELD AB Oxide materials are used in numerous applications such as thermal barrier coatings, nuclear fuels, and electrical conductors and sensors, all applications where nanometer-scale stoichiometric changes can affect functional properties. Atom probe tomography can be used to characterize the precise chemical distribution of individual species and spatially quantify the oxygen to metal ratio at the nanometer scale. However, atom probe analysis of oxides can be accompanied by measurement artifacts caused by laser-material interactions. In this investigation, two technologically relevant oxide materials with the same crystal structure and an anion to cation ratio of 2.00, pure cerium oxide (CeO2) and uranium oxide (UO2) are studied. It was determined that electronic structure, optical properties, heat transfer properties, and oxide stability strongly affect their evaporation behavior, thus altering their measured stoichiometry, with thermal conductance and thermodynamic stability being strong factors. (C) 2015 Elsevier B.V. All rights reserved. C1 [Valderrama, Billy; Henderson, Hunter B.; Manuel, Michele V.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Yablinsky, Clarissa A.; Allen, Todd R.] Univ Wisconsin, Dept Nucl Engn, Madison, WI 53706 USA. [Gan, Jian; Allen, Todd R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Manuel, MV (reprint author), Univ Florida, 152 Rhines Hall, Gainesville, FL 32611 USA. EM mmanuel@mse.ufl.edu OI Allen, Todd/0000-0002-2372-7259; Yablinsky, Clarissa/0000-0001-6162-0949 FU Center for Materials Science of Nuclear Fuel, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [FWP 1356]; U.S. Department of Energy, Office of Nuclear Energy under U.S. Department of Energy Idaho Operations Office [DE-AC07-051D14517] FX This paper is based on the work supported as part of the Center for Materials Science of Nuclear Fuel, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number FWP 1356. Use of the FIB and atom probe at the Center for Advanced Energy Studies was supported by the U.S. Department of Energy, Office of Nuclear Energy under U.S. Department of Energy Idaho Operations Office Contract DE-AC07-051D14517. The authors would also like to thank Dr. William Buyers for providing the UO2 samples. NR 54 TC 1 Z9 1 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 15 PY 2015 VL 359 BP 107 EP 114 DI 10.1016/j.nimb.2015.07.048 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CQ8OW UT WOS:000360868900017 ER PT J AU Bao, LM Zhang, GL Lei, QT Li, Y Li, XL Hwu, YK Yi, JM AF Bao, L. M. Zhang, G. L. Lei, Q. T. Li, Y. Li, X. L. Hwu, Y. K. Yi, J. M. TI Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Inhaled atmospheric particle; Transmission of influenza viruses; Transmission X-ray microscopy (TXM); Coal combustion; Metallurgic dust ID AIR-POLLUTION; HERITABLE MUTATIONS; PREVENTION; ZANAMIVIR; AEROSOL; RISK AB For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained. (C) 2015 Elsevier B.V. All rights reserved. C1 [Bao, L. M.; Zhang, G. L.; Lei, Q. T.; Li, Y.; Li, X. L.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Hwu, Y. K.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Yi, J. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Bao, LM (reprint author), Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. EM baoliangman@sinap.ac.cn; zhangguilin@sinap.ac.cn FU National Natural Science Foundation of China [11079049, 11005141]; Shanghai scientific research project [14ZR1448300] FX We acknowledge the financial support of the National Natural Science Foundation of China (11079049, 11005141) and the Shanghai scientific research project (14ZR1448300). We thank Prof. Sheng kanglong for his useful discussion about writing. NR 25 TC 1 Z9 1 U1 3 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 15 PY 2015 VL 359 BP 167 EP 172 DI 10.1016/j.nimb.2015.07.050 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CQ8OW UT WOS:000360868900025 ER PT J AU Serbin, SP Singh, A Desai, AR Dubois, SG Jablonsld, AD Kingdon, CC Kruger, EL Townsend, PA AF Serbin, Shawn P. Singh, Aditya Desai, Ankur R. Dubois, Sean G. Jablonsld, Andrew D. Kingdon, Clayton C. Kruger, Eric L. Townsend, Philip A. TI Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Activation energy; AVIRIS; Imaging spectroscopy; Canopy optical reflectance; Photosynthesis; Temperature; V-cmax; Photosynthetic metabolism ID TERRESTRIAL BIOSPHERE MODELS; BIOCHEMICALLY BASED MODEL; LEAST-SQUARES REGRESSION; EARTH SYSTEM MODELS; CHLOROPHYLL FLUORESCENCE; REFLECTANCE CHARACTERISTICS; STOMATAL CONDUCTANCE; SPECTRAL REFLECTANCE; C-3 PHOTOSYNTHESIS; OPTICAL-PROPERTIES AB To date, the utility of ecosystem and Earth system models (EESMs) has been limited by poor spatial and temporal representation of critical input parameters. For example, EESMs often rely on leaf-scale or literature-derived estimates for a key determinant of canopy photosynthesis, the maximum velocity of RuBP carboxylation (V-cmax, mu mol m(-2) s(-1)). Our recent work (Ainsworth et al., 2014; Serbin et al., 2012) showed that reflectance spectroscopy could be used to estimate V-cmax at the leaf level. Here, we present evidence that imaging spectroscopy data can be used to simultaneously predict V-cmax and its sensitivity to temperature (E-V) at the canopy scale. In 2013 and 2014, high-altitude Airborne Visible/Infrared Imaging Spectroscopy (AVIRIS) imagery and contemporaneous ground-based assessments of canopy structure and leaf photosynthesis were acquired across an array of monospecific agroecosystems in central and southern California, USA. A partial least-squares regression (PLSR) modeling approach was employed to characterize the pixel-level variation in canopy V-cmax (at a standardized canopy temperature of 30 degrees C) and E-V, based on visible and shortwave infrared AVIRIS spectra (414-2447 nm). Our approach yielded parsimonious models with strong predictive capability for V-cmax (at 30 degrees C) and E-V (R-2 of withheld data = 0.94 and 0.92, respectively), both of which varied substantially in the field (>= 1.7 fold) across the sampled crop types. The models were applied to additional AVIRIS imagery to generate maps of V-cmax and E-V, as well as their uncertainties, for agricultural landscapes in California. The spatial patterns exhibited in the maps were consistent with our in-situ observations. These findings highlight the considerable promise of airborne and, by implication, space-borne imaging spectroscopy, such as the proposed HyspIRI mission, to map spatial and temporal variation in key drivers of photosynthetic metabolism in terrestrial vegetation. (C) 2015 Elsevier Inc. All rights reserved. C1 [Serbin, Shawn P.] Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. [Singh, Aditya; Jablonsld, Andrew D.; Kingdon, Clayton C.; Kruger, Eric L.; Townsend, Philip A.] Univ Wisconsin, Dept Forest & Wildlife Ecol, Madison, WI 53706 USA. [Desai, Ankur R.; Dubois, Sean G.] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA. RP Serbin, SP (reprint author), Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. EM sserbin@bnl.gov RI Singh, Aditya/I-3628-2013; Serbin, Shawn/B-6392-2009; Townsend, Philip/B-5741-2008 OI Singh, Aditya/0000-0001-5559-9151; Serbin, Shawn/0000-0003-4136-8971; Townsend, Philip/0000-0001-7003-8774 FU NASA HyspIRI grant [NNX12AQ28G] FX This research was funded by NASA HyspIRI grant NNX12AQ28G. Thanks to Ben Spaier, Ryan Geygan, Ryan Sword, Rob Phetteplace, and Bethany Helzer for assistance with fieldwork, and Andy Ciurro with assistance in GIS data management. For facilitating this work, we also thank Mark Nickerson (Prime Time International) and staff members at the following University of California research stations: Kearney Agricultural Research and Extension Center (Chuck Boldwyn), Coachella Valley Agricultural Research Station (Vince Samons), and South Coast Research and Extension Center (Darren Haver). We gratefully acknowledge the contributions of two anonymous reviewers, which greatly improved an earlier version of this manuscript. NR 65 TC 7 Z9 7 U1 9 U2 53 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP 15 PY 2015 VL 167 SI SI BP 78 EP 87 DI 10.1016/j.rse.2015.05.024 PG 10 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CQ3OB UT WOS:000360510800008 ER PT J AU Ma, TH Li, CJ Lu, ZM Bao, QY AF Ma, Tuhua Li, Changjiang Lu, Zhiming Bao, Qiyun TI Rainfall intensity-duration thresholds for the initiation of landslides in Zhejiang Province, China SO GEOMORPHOLOGY LA English DT Article DE Shallow landslides; Rainfall thresholds; Terrain slope; Soil properties; Kriging method; Zhejiang, China ID POWER-LAW RELATIONSHIP; SHALLOW LANDSLIDES; DEBRIS FLOWS; MODEL; HAZARDS; LEVEL AB Zhejiang Province, located in the southeast coastal region of China, is highly prone to rainfall-triggered landslides because of its geologic, geomorphologic, and climatic settings. The rainfall-landslide relationship is critically important for predicting rainfall-induced landslides. This study defines landslide-triggering rainfall intensity-duration thresholds for the entire Zhejiang region; and the 62 individual areas that comprise the region, based on 1569 shallow landslides which occurred from 1990 to 2013 and their corresponding detail rainfall records from 2457 rain gauges in the region. The results indicate that the rainfall thresholds vary spatially over the region. For rainfall durations from 1 to 24 h, the threshold tends to increase from the northwestern part of Zhejiang to its southeastern coastal region; and it is lower in the central and coastal hill-basin regions than that in the western and southern mountainous regions. Variability of the threshold in space is mainly affected by the slope-forming materials and terrain slope gradients. Different soil types have different thresholds, and the thresholds for weathered rock slides are generally higher than those for soil slides. For the soil-weathered rock on slopes, the slope gradient has no obvious influence on the thresholds when the slope angle is <30 degrees; the thresholds have an obviously increasing trend with the increase of slope angles in the range of slope angles from 30 to about 40 degrees; and when slope angle is larger than about 40 degrees, the thresholds rapidly decrease with gradient on the whole. These findings will facilitate the improvement of warning systems for regional rainfall-triggered landslides. (C) 2015 Elsevier B.V. All rights reserved. C1 [Ma, Tuhua; Li, Changjiang] Zhejiang Informat Ctr Land & Resources, Hangzhou 310007, Zhejiang, Peoples R China. [Lu, Zhiming] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA. [Bao, Qiyun] Zhejiang Inst Geol & Mineral Resources, Hangzhou 310007, Zhejiang, Peoples R China. RP Li, CJ (reprint author), Zhejiang Informat Ctr Land & Resources, Hangzhou 310007, Zhejiang, Peoples R China. EM zjigmr@mail.hz.zj.cn; zhiming@lanl.gov OI Lu, Zhiming/0000-0001-5800-3368 FU Zhejiang Provincial Government, China (zjcx) [98] FX This study was partially funded by the Special Fund from Zhejiang Provincial Government, China (zjcx. 2011 No.98). We would like to thank the Editor Dr. Richard A. Marston and the two anonymous reviewers for their valuable comments and suggestions, which have improved the paper. NR 40 TC 5 Z9 6 U1 3 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-555X EI 1872-695X J9 GEOMORPHOLOGY JI Geomorphology PD SEP 15 PY 2015 VL 245 BP 193 EP 206 DI 10.1016/j.geomorph.2015.05.016 PG 14 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA CQ3OF UT WOS:000360511200014 ER PT J AU Yasuzuka, S Uji, S Terashima, T Sugii, K Isono, T Iida, Y Schlueter, JA AF Yasuzuka, Syuma Uji, Shinya Terashima, Taichi Sugii, Kaori Isono, Takayuki Iida, Yoritsugu Schlueter, John A. TI In-Plane Anisotropy of Upper Critical Field and Flux-Flow Resistivity in Layered Organic Superconductor beta ''-(ET)(2)SF5CH2CF2SO3 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article ID QUASI-PARTICLE SCATTERING; HIGH MAGNETIC-FIELDS; FERMI-SURFACE; UNCONVENTIONAL SUPERCONDUCTORS; DEPENDENT MAGNETORESISTANCE; VORTEX-STATE; ANGLE DEPENDENCE; RADICAL SALT; BEDT-TTF; CONDUCTORS AB We report the in-plane anisotropy of the upper critical field (H-c2) and the flux-flow resistivity (FFR) for a layered organic superconductor beta ''-(ET)(2)SF5CH2CF2SO3 with the incoherent nature of the interlayer transport. The in-plane angular dependence of H-c2 showed a fourfold oscillation with maxima in the directions around H parallel to b and a axes. This result is compatible with a d(x2-y2) order parameter. The determined nodal structure is consistent with theoretical predictions of superconductivity mediated by charge fluctuations. Moreover, the dependence of the FFR on in-plane field-orientation showed a fourfold symmetry with cusp-like minima in the directions around H parallel to b and a axes, which is very similar to the FFR for kappa-(ET)(2)Cu(NCS)(2) with d-wave pairing symmetry. From these results, we claim that the vortex dynamics is strongly affected by the superconducting gap structure for highly two-dimensional superconductors with d-wave pairing symmetry. C1 [Yasuzuka, Syuma] Hiroshima Inst Technol, Res Ctr Condensed Matter Phys, Hiroshima 7315193, Japan. [Uji, Shinya; Terashima, Taichi; Sugii, Kaori; Isono, Takayuki; Iida, Yoritsugu] NIMS, Tsukuba, Ibaraki 3050003, Japan. [Schlueter, John A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Yasuzuka, S (reprint author), Hiroshima Inst Technol, Res Ctr Condensed Matter Phys, Hiroshima 7315193, Japan. EM yasuzuka@cc.it-hiroshima.ac.jp FU Japan Society for the Promotion of Science (JSPS) [25400383] FX This work was partly supported by a Grant-in-Aid for Scientific Research (C) (No. 25400383) from Japan Society for the Promotion of Science (JSPS). NR 50 TC 1 Z9 1 U1 4 U2 11 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD SEP 15 PY 2015 VL 84 IS 9 AR 094709 DI 10.7566/JPSJ.84.094709 PG 7 WC Physics, Multidisciplinary SC Physics GA CQ4QX UT WOS:000360590800023 ER PT J AU Liu, X Bonifacio, C Yang, JC Ercius, P Gleeson, B AF Liu, Xu Bonifacio, Cecile Yang, Judith C. Ercius, Peter Gleeson, Brian TI Effect of environmental sulfur on the structure of alumina scales formed on Ni-base alloys SO ACTA MATERIALIA LA English DT Article DE Sulfur; Alumina; Kinetic competition; Hot corrosion; Surface enrichment ID HIGH-TEMPERATURE OXIDATION; THETA-ALUMINA; WATER-VAPOR; KANTHAL AF; 1ST STAGES; DEGREES-C; GROWTH; TRANSFORMATION; NICKEL; BEHAVIOR AB Short-term oxidation exposures of an alumina-scale forming gamma'-Ni3Al-based model alloy in air and O-2 + 0.1%SO2 at 900 degrees C revealed that the presence of sulfur can affect the kinetic competition between the theta and alpha structural isomorphs of Al2O3. After 2 h exposure, metastable theta-Al2O3 growth predominated in air alone; whereas, a much larger percentage of stable alpha-Al2O3 formed during oxidation in O-2 + 0.1%SO2. This promotion of alpha-Al2O3 establishment was due to sulfur enrichment on the alloy surface, which occurred even when samples were exposed to O-2 + 0.1%SO2 in a low-temperature, pre-test position (similar to 150 degrees C), i.e., prior to insertion into the hot zone. It was determined from XPS measurements that the sulfur was mainly in the S6+ valence state and, correspondingly, in the form of NiSO4. Cross-sectional scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) corroborated the XPS results by detecting that a similar to 20 nm zone of sulfur enrichment within the surface region of a similar to 90 nm oxygen-rich layer formed during the pre-test exposure. A systematic explanation for this intriguing observation of sulfur promoting alpha-Al2O3 establishment is provided from the perspective of kinetics competition between theta and alpha. This explanation was supported by kinetic calculations and complementary tests in a low po(2) atmosphere. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Liu, Xu; Gleeson, Brian] Univ Pittsburgh, Mat Sci & Engn, Pittsburgh, PA 15261 USA. [Bonifacio, Cecile; Yang, Judith C.] Univ Pittsburgh, Chem & Petr Engn & Phys, Pittsburgh, PA 15261 USA. [Ercius, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Liu, X (reprint author), Univ Pittsburgh, Mat Sci & Engn, Pittsburgh, PA 15261 USA. EM xul12@pitt.edu RI Foundry, Molecular/G-9968-2014 FU US Office of Naval Research [N000014-09-1-1127]; Office of Science, Office of Basic Energy Sciences (BES), of the U.S. Department of Energy (DOE) [DE-ACO2-05CH11231]; DOE BES Catalysis Science [DE-FG02-03ER15476] FX This research was mainly supported by the US Office of Naval Research, award N000014-09-1-1127 and managed by Dr. DavidShifler. The authors thank Dr. Juan Manuel Alvarado-Orozco and Dr. Stephen House for helpful discussion, Dr. Karen Bustillo for the technical assistance on the microscopes and Marissa Mancuso for the TEM sample preparation. A part of this research was performed at the National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences (BES), of the U.S. Department of Energy (DOE) under Contract No. DE-ACO2-05CH11231. CSB and JCY acknowledge funding through DOE BES Catalysis Science under Contract No. DE-FG02-03ER15476. NR 57 TC 0 Z9 0 U1 5 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP 15 PY 2015 VL 97 BP 41 EP 49 DI 10.1016/j.actamat.2015.06.031 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CP4TP UT WOS:000359875800004 ER PT J AU Jiao, ZB Luan, JH Miller, MK Liu, CT AF Jiao, Z. B. Luan, J. H. Miller, M. K. Liu, C. T. TI Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles SO ACTA MATERIALIA LA English DT Article DE NiAl and Cu co-precipitate; Precipitation; Mechanical property; Structure-property relationship; Atom probe tomography ID ATOM-PROBE TOMOGRAPHY; LOW-CARBON STEEL; FE-CU; TENSILE PROPERTIES; FERRITIC STEELS; ALLOYS; TOUGHNESS; DUCTILITY; CARBIDES AB We report on the alloy design strategies, precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by co-precipitation of nanoscale NiAl and Cu particles. The steel, developed through a computational-aided alloy design approach, exhibits a tensile strength of similar to 1.9 GPa, an elongation of similar to 10% and a reduction in area of similar to 40%. Atom probe tomography (APT) reveals an interesting type of co-precipitation mechanism of NiAl and Cu nanoparticles, in which the NiAl particles first come out of the supersaturated solid solution and the rejection of Cu solutes leads to the heterogeneous precipitation of Cu particles adjacent to the NiAl particles. The observed precipitation sequence of "supersaturated solid solution -> NiAl -> NiAl + Cu" is substantially different from the one previously reported in Cu-strengthened steels, which involves the process of "supersaturated solid solution -> Cu -> Cu + NiAl". The modulation of the precipitation sequence is attributed not only to the relatively high Ni/Cu and Al/Cu ratios but also the synergistic combination of Ni, Al, Mn and Cu additions in the steel. In addition, APT also reveals the precipitation of a small amount of nanoscale Fe-3(Mo, W)(3)C-and NbC-type carbides. The combination of the strengthening effects from the nanoscale NiAl particles, Cu particles and carbides contributes significantly to the overall ultra-high strength of the steel. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Jiao, Z. B.; Luan, J. H.; Liu, C. T.] City Univ Hong Kong, Ctr Adv Struct Mat, Coll Sci & Engn, Dept Mech & Biomed Engn, Hong Kong, Hong Kong, Peoples R China. [Miller, M. K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Liu, CT (reprint author), City Univ Hong Kong, Ctr Adv Struct Mat, Coll Sci & Engn, Dept Mech & Biomed Engn, Hong Kong, Hong Kong, Peoples R China. EM chainliu@cityu.edu.hk FU City University of Hong Kong [9380060] FX This research was supported by the internal funding from City University of Hong Kong (account No. 9380060). Atom probe tomography (M.K.M.) was conducted at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, which is a DOE Office of Science User Facility located at Oak Ridge, Tennessee, USA. NR 49 TC 13 Z9 13 U1 11 U2 68 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP 15 PY 2015 VL 97 BP 58 EP 67 DI 10.1016/j.actamat.2015.06.063 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CP4TP UT WOS:000359875800006 ER PT J AU Yang, L Gao, F Kurtz, RJ Zu, XT Peng, SM Long, XG Zhou, XS AF Yang, L. Gao, F. Kurtz, R. J. Zu, X. T. Peng, S. M. Long, X. G. Zhou, X. S. TI Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study SO ACTA MATERIALIA LA English DT Article DE Grain boundaries; Atomistic simulation; He bubble growth; Bcc iron; Dislocation loops ID ALPHA-IRON; DISLOCATION LOOPS; VACANCY CLUSTERS; INTERSTITIAL CLUSTERS; AB-INITIO; FE; IRRADIATION; MECHANISM; COPPER; HE AB The nucleation and growth of helium (He) bubbles in the bulk and at 3 < 110 >{112} and Sigma 73b < 110 >{661} grain boundaries (GBs) in bcc iron have been investigated using molecular dynamics simulations. The results show that a 1/2 < 111 >{111} dislocation loop is formed with the sequential collection of < 111 > interstitial crowdions at the periphery of the He cluster and is eventually emitted from the He cluster. Insertion of 45 He atoms into a He cluster leads to the formation of a 1/2 < 111 > dislocation loop in Sigma 3 GB. It is of interest to notice that the transition of a dislocation segment through the GB leads to the formation of a step at the GB plane following the loop formation, accounting for the formation of a residual GB defect. A 1/2 < 111 > loop, with a {110} habit plane, is emitted with further increase of the He bubble size in the Sigma 3 GB. In contrast, the sequential insertion of He atoms in Sigma 73b GB continuously emits self-interstitial atoms (SIAs), but these SIAs rearrange at the core of the inherent GB dislocation, instead of forming a dislocation loop, which leads the GB dislocation to propagate along the [1112] direction. In the bulk and Sigma 3 GB, the He bubble exhibits three-dimensionally spherical shape, but it forms longitudinal shape along the dislocation line in the Sigma 73 GB, a shape commonly observed at GBs in experiments. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Yang, L.; Zu, X. T.] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China. [Yang, L.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Gao, F.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Peng, S. M.; Long, X. G.; Zhou, X. S.] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Peoples R China. RP Yang, L (reprint author), Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China. EM yanglildk@uestc.edu.cn; fei.gao@pnnl.gov FU National Natural Science Foundation of China - NSAF [U1430109]; Science and Technology Foundation of China Academy of Engineering Physics [2010A0301011]; US Department of Energy/Office of Fusion Energy Sciences [DE-AC06-76RLO 1830] FX L. Yang and X.T. Zu are grateful for the support by the National Natural Science Foundation of China - NSAF (Grant No.: U1430109). S.M. Peng and X.G. Long and X.S. Zhou are grateful for the Science and Technology Foundation of China Academy of Engineering Physics (Grant No.: 2010A0301011). F. Gao, and R.J. Kurtz are grateful for support by the US Department of Energy/Office of Fusion Energy Sciences under Contract DE-AC06-76RLO 1830. NR 45 TC 8 Z9 8 U1 10 U2 50 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP 15 PY 2015 VL 97 BP 86 EP 93 DI 10.1016/j.actamat.2015.06.055 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CP4TP UT WOS:000359875800009 ER PT J AU Ziemann, M Chen, Y Kraft, O Bayerschen, E Wulfinghoff, S Kirchlechner, C Tamura, N Bohlke, T Walter, M Gruber, PA AF Ziemann, M. Chen, Y. Kraft, O. Bayerschen, E. Wulfinghoff, S. Kirchlechner, C. Tamura, N. Boehlke, T. Walter, M. Gruber, P. A. TI Deformation patterns in cross-sections of twisted bamboo-structured Au microwires SO ACTA MATERIALIA LA English DT Article DE Microtorsion; Strain gradients; Laue microdiffraction; Deformation patterns; Crystal plasticity; Equivalent plastic strain ID STRAIN GRADIENT PLASTICITY; COPPER WIRES; GRAIN-SIZE AB In order to investigate an almost pure extrinsic size effect we propose an experimental approach to investigate the deformation structure within single crystalline cross-sections of twisted bamboo-structured Au microwires. The cross-sections of individual < 100 > oriented grains of 25 mu m thick Au microwires have been characterized by Laue microdiffraction. The diffraction data were used to calculate the misorientation of each data point with respect to the neutral fiber in the center of the cross-section as well as the kernel average misorientation to map the global and local deformation structure as function of the imposed maximum plastic shear strain. The study is accompanied by crystal plasticity simulations which yield the equivalent plastic strain distributions in the cross-section of the wire. The global deformation structures are directly related to the activated slip systems, resulting from the real orientations of the investigated grains. When averaging the degree of deformation along ring segments, an almost continuous but non-linear increase of misorientation from the center toward the surface is observed, reflecting the overall strain gradient imposed by torsion. For the local deformation structure, pronounced and graded deformation traces are observed which often pass over the neutral fiber of the twisted wire and which are obviously reflecting domains of high geometrically necessary dislocations content. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Ziemann, M.; Chen, Y.; Kraft, O.; Walter, M.; Gruber, P. A.] Karlsruhe Inst Technol, Inst Appl Mat, D-76131 Karlsruhe, Germany. [Bayerschen, E.; Boehlke, T.] Karlsruhe Inst Technol, Inst Engn Mech, D-76131 Karlsruhe, Germany. [Wulfinghoff, S.] Rhein Westfal TH Aachen, Inst Appl Mech, D-52074 Aachen, Germany. [Kirchlechner, C.] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany. [Kirchlechner, C.] Univ Leoben, Dept Mat Phys, A-8700 Leoben, Austria. [Tamura, N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Gruber, PA (reprint author), Karlsruhe Inst Technol, Inst Appl Mat, Engelbert Arnold Str 4, D-76131 Karlsruhe, Germany. RI Wulfinghoff, Stephan/D-6584-2016; OI Kirchlechner, Christoph/0000-0003-2418-9664 FU German Research Foundation (DFG) [BO1466/5-1, GR 3677/2-1]; DFG Research Group 1650 FX The authors acknowledge the support rendered by the German Research Foundation (DFG) under Grants BO1466/5-1 and GR 3677/2-1. The funded projects "Dislocation based Gradient Plasticity Theory" and "Experimental Characterization of Micro Plasticity and Dislocation Microstructure" are part of the DFG Research Group 1650 "Dislocation based Plasticity". NR 23 TC 4 Z9 4 U1 0 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP 15 PY 2015 VL 97 BP 216 EP 222 DI 10.1016/j.actamat.2015.06.012 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CP4TP UT WOS:000359875800022 ER PT J AU McLeod, MV Giri, AK Paterson, BA Dennis, CL Zhou, L Vogel, SC Gourdon, O Reiche, HM Cho, KC Sohn, YH Shull, RD Majumdar, BS AF McLeod, M. V. Giri, A. K. Paterson, B. A. Dennis, C. L. Zhou, L. Vogel, S. C. Gourdon, O. Reiche, H. M. Cho, K. C. Sohn, Y. H. Shull, R. D. Majumdar, B. S. TI Magnetocaloric response of non-stoichiometric Ni2MnGa alloys and the influence of crystallographic texture SO ACTA MATERIALIA LA English DT Article DE Magnetocaloric; NiMnGa alloy; Polycrystalline; Preferred orientation; Twinning ID MN-GA ALLOYS; FIELD-INDUCED STRAIN; SHAPE-MEMORY ALLOYS; ENTROPY CHANGE; NITI; DEFORMATION; PHASE; DIFFRACTOMETER; TRANSFORMATION; TRANSITIONS AB Currently, there is significant interest in magnetocaloric materials for solid state refrigeration. In this work, polycrystalline Heusler alloys belonging to the Ni2+xMn1-xGa family, with x between 0.08 and 0.24, were evaluated for the purpose of finding composition(s) with an enhanced magnetocaloric effect (MCE) close to room temperature. Differential scanning calorimetry (DSC) was successfully used to screen alloy composition for simultaneous magnetic and structural phase transformations; this coupling needed for a giant MCE. The alloy with x = 0.16 showed an excellent match of transformation temperatures and exhibited the highest magnetic entropy change, Delta S-M, in the as-annealed state. Furthermore, the MCE increased by up to 84% with a 2 Tesla (T) field change when the samples were thermally cycled through the martensite to austenite transformation temperature while held under a constant mechanical load. The highest Delta S-M measured for our x = 0.16 alloy for a 2 T magnetic field change was -18 J/kg K. Texture measurements suggest that preferential orientation of martensite variants contributed to the enhanced MCE in the stress-assisted thermally cycled state. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [McLeod, M. V.; Majumdar, B. S.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Giri, A. K.] TKC Global, Herndon, VA 20171 USA. [Paterson, B. A.; Dennis, C. L.; Shull, R. D.] NIST, Gaithersburg, MD 20899 USA. [Zhou, L.; Sohn, Y. H.] Univ Cent Florida, Orlando, FL 32816 USA. [Vogel, S. C.; Gourdon, O.; Reiche, H. M.] Los Alamos Natl Lab, Lujan Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Cho, K. C.] US Army Res Lab, Aberdeen Proving Ground, MD 21005 USA. RP Majumdar, BS (reprint author), New Mexico Inst Min & Technol, Socorro, NM 87801 USA. EM majumdar@nmt.edu RI Sohn, Yongho/A-8517-2010; Zhou, Le/H-9531-2016 OI Sohn, Yongho/0000-0003-3723-4743; Zhou, Le/0000-0001-8327-6667 FU Director's Research Initiative at the US Army Research Laboratories [W911NF-11-2-0036, W911NF-11-2-0020]; DoE BES [DE-AC05-00OR22725, W-7405-ENG-36] FX Funding for this research came through the Director's Research Initiative at the US Army Research Laboratories under Cooperative Agreements W911NF-11-2-0036 to New Mexico Tech and W911NF-11-2-0020 to the University of Central Florida, respectively. The authors thank S. Claggett for help with the sectioning of the magnetometry samples. The authors also thank Dr. A. Haq of the Oak Ridge National Laboratory for the neutron diffractometer experiments on POWGEN, and LANSCE, Los Alamos National Laboratory for conducting the texture measurements on the HIPPO neutron diffractometer. The SNS site at Oak Ridge National Laboratory was supported by DoE BES under DE-AC05-00OR22725, and LANSCE by DoE BES under contract W-7405-ENG-36. BSM would like to thank EPFL, in Lausanne, Switzerland, for hosting him at the LMM in the Institute of Materials, during the review portion of this paper. NR 47 TC 3 Z9 3 U1 13 U2 66 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP 15 PY 2015 VL 97 BP 245 EP 256 DI 10.1016/j.actamat.2015.06.059 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CP4TP UT WOS:000359875800025 PM 27099566 ER PT J AU Shen, YF Jia, N Wang, YD Sun, X Zuo, L Raabe, D AF Shen, Y. F. Jia, N. Wang, Y. D. Sun, X. Zuo, L. Raabe, D. TI Suppression of twinning and phase transformation in an ultrafine grained 2 GPa strong metastable austenitic steel: Experiment and simulation SO ACTA MATERIALIA LA English DT Article DE Ultrahigh strength; Ultrafine grain; Deformation; Twin ID SEVERE PLASTIC-DEFORMATION; MOLECULAR-DYNAMICS SIMULATION; 304L STAINLESS-STEEL; C-MN STEEL; TEXTURE EVOLUTION; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; WARM DEFORMATION; TRIP STEEL; FCC METALS AB An ultrafine-grained 304 austenitic 18 wt.% Cr-8 wt.% Ni stainless steel with a grain size of similar to 270 nm was synthesized by accumulative rolling (67% total reduction) and annealing (550 degrees C, 150 s). Uniaxial tensile testing at room temperature reveals an extremely high yield strength of 1890 +/- 50 MPa and a tensile strength of 2050 +/- 30 MPa, while the elongation reaches 6 +/- 1%. Experimental characterization on samples with different grain sizes between 270 nm and 35 mu m indicates that both, deformation twinning and martensitic phase transformation are significantly retarded with increasing grain refinement. A crystal plasticity finite element model incorporating a constitutive law reflecting the grain size-controlled dislocation slip and deformation twinning captures the micromechanical behavior of the steels with different grain sizes. Comparison of simulation and experiment shows that the deformation of ultrafine-grained 304 steels is dominated by the slip of partial dislocations, whereas for coarse-grained steels dislocation slip, twinning and martensite formation jointly contribute to the shape change. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Shen, Y. F.; Jia, N.; Wang, Y. D.; Zuo, L.] Northeastern Univ, Key Lab Anisotropy & Texture Mat MOE, Shenyang 110004, Peoples R China. [Sun, X.] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [Raabe, D.] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany. RP Jia, N (reprint author), Northeastern Univ, Key Lab Anisotropy & Texture Mat MOE, Shenyang 110004, Peoples R China. EM jian@atm.neu.edu.cn; d.raabe@mpie.de RI wang, yandong/G-9404-2013; Raabe, Dierk/A-6470-2009 OI Raabe, Dierk/0000-0003-0194-6124 FU NSAF [U1430132]; National Natural Science Foundation of China [51231002]; Fundamental Research Funds for the Central Universities [N130402005, N130510001]; Program for New Century Excellent Talents in University [NCET-13-0104] FX The present research is supported by NSAF (Grant No. U1430132), the National Natural Science Foundation of China (Grant No. 51231002), the Fundamental Research Funds for the Central Universities (Nos. N130402005, N130510001), and the Program for New Century Excellent Talents in University (NCET-13-0104). NR 68 TC 6 Z9 6 U1 4 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP 15 PY 2015 VL 97 BP 305 EP 315 DI 10.1016/j.actamat.2015.06.053 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CP4TP UT WOS:000359875800030 ER PT J AU Zhang, X Shu, SP Bellon, P Averback, RS AF Zhang, Xuan Shu, Shipeng Bellon, Pascal Averback, Robert S. TI Precipitate stability in Cu-Ag-W system under high-temperature irradiation SO ACTA MATERIALIA LA English DT Article DE Self-organization; Radiation-enhanced diffusion; Radiation-enhanced precipitation; Radiation damage ID FINITE-ELEMENT SIMULATION; MICROSTRUCTURAL STABILITY; NANOSTRUCTURED METALS; POSITRON-ANNIHILATION; PHASE-SEPARATION; ION IRRADIATION; BINARY-MIXTURES; ALLOYS; COPPER; PARTICLES AB The kinetics of precipitation was investigated in the ternary Cu alloy, Cu83.5Ag15W15 during irradiation with MeV Kr ions at elevated temperatures. The alloy was prepared as a solid solution by physical vapor deposition and then irradiated at room temperature to create a high density of nano-sized W precipitates. These precipitates served as effective sinks for point defects during subsequent elevated-temperature irradiation, suppressing radiation-enhanced diffusion. As a consequence the size of the Ag precipitates formed during elevated-temperature irradiation was stabilized below 20 nm, up to temperatures in excess of 300 degrees C, thus significantly extending the regime for "compositional patterning" above 175 degrees C, found for Cu85Ag15. For higher temperature irradiations (above 400 degrees C), the role of the W precipitates in stabilizing the size of the Ag precipitates switched from simply acting as point-defect sinks to serving as pinning sites for the Ag precipitates. At 500 degrees C, the average Ag precipitate diameter is similar to 30 nm compared to similar to 300 nm in the Cu(85)AB(15) binary alloy. Rate theory calculations and kinetic Monte Carlo simulations are employed to illustrate how this transition takes place. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Zhang, Xuan; Shu, Shipeng; Bellon, Pascal; Averback, Robert S.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. RP Zhang, X (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. OI Shu, Shipeng/0000-0003-3859-5014 FU NSF [DMR-1306475] FX This research was supported by NSF under Grant Number DMR-1306475. The work was carried out in part in the Frederick-Seitz Materials Research Laboratory Central Facilities, University of Illinois at Urbana-Champaign. NR 53 TC 3 Z9 3 U1 4 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP 15 PY 2015 VL 97 BP 348 EP 356 DI 10.1016/j.actamat.2015.06.045 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CP4TP UT WOS:000359875800034 ER PT J AU Wang, WM Katipamula, S Ngo, H Underhill, R Taasevigen, D Lutes, R AF Wang, Weimin Katipamula, Srinivas Ngo, Hung Underhill, Ronald Taasevigen, Danny Lutes, Robert TI Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps SO APPLIED ENERGY LA English DT Article DE Packaged air conditioner; Packaged heat pump; Retrofit; HVAC control; Field test AB This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop air conditioner and heat pump units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand-controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the performance data collected for approximately 1 year, the normalized annual energy consumption savings ranged between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kW h/h (kW h per hour of RTU operation) and 7.21 kW h/h, with an average of 2.39 kW h/h. RTUs greater than 53 kW and runtime greater than 14 h per day had payback periods less than 3 years even at electricity price of $0.05/kW h. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald; Taasevigen, Danny; Lutes, Robert] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, WM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM weimin.wang@pnnl.gov FU Building Technologies Office of the U.S. Department of Energy; Bonneville Power Administration FX The authors would like to acknowledge the Building Technologies Office of the U.S. Department of Energy and Bonneville Power Administration for funding the study. Transformative Wave Inc. provided significant cost share and helped recruit organizations to participate in the demonstration. NR 15 TC 2 Z9 2 U1 0 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD SEP 15 PY 2015 VL 154 BP 344 EP 351 DI 10.1016/j.apenergy.2015.04.129 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CP4TI UT WOS:000359875100033 ER PT J AU Bennion, EP Ginosar, DM Moses, J Agblevor, F Quinn, JC AF Bennion, Edward P. Ginosar, Daniel M. Moses, John Agblevor, Foster Quinn, Jason C. TI Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways SO APPLIED ENERGY LA English DT Article DE Biofuel; Hydrothermal liquefaction; Life cycle assessment; Microalgae; Pyrolysis; Thermochemical ID HYDROTHERMAL LIQUEFACTION; WOODY BIOMASS; BIO-OIL; DUNALIELLA-TERTIOLECTA; BIODIESEL PRODUCTION; NANNOCHLOROPSIS SP; FUTURE-PROSPECTS; FAST PYROLYSIS; ENERGY; ALGAE AB Microalgae is being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the environmental impact of two different thermochemical conversion technologies for the microalgae-to-biofuel process through life cycle assessment. A system boundary of "well to pump" (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2-eq (MJ renewable diesel)(-1). Biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2-eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory-scale compared to industrial-scale, environmental impact sensitivity to systems engineering input parameters for future focused research and development, and a comparison of results to literature. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Bennion, Edward P.; Quinn, Jason C.] Utah State Univ, Mech & Aerosp Engn, Logan, UT 84322 USA. [Ginosar, Daniel M.] Dept Idaho Natl Lab, Biol & Chem Proc, Idaho Falls, ID USA. [Moses, John] CF Technol, Hyde Pk, MA USA. [Agblevor, Foster] Utah State Univ, Biol Engn, Logan, UT 84322 USA. RP Quinn, JC (reprint author), 4130 Old Main Hill, Logan, UT 84322 USA. EM Jason.Quinn@usu.edu FU U.S. Department of Energy, Energy Efficiency and Renewable Energy, Bioenergy Technology Office [2.13.2.6] FX Funding was provided by U.S. Department of Energy, Energy Efficiency and Renewable Energy, Bioenergy Technology Office, Project Number 2.13.2.6 Utah State University. Research contributions were provided USU bio lab, INL, ASU, and CF Technologies. The authors acknowledge support from Peter Zemke, Alok Shenoy, Buvanish, Brittany Bennion, and Danna Quinn. NR 77 TC 11 Z9 11 U1 8 U2 66 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD SEP 15 PY 2015 VL 154 BP 1062 EP 1071 DI 10.1016/j.apenergy.2014.12.009 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CP4TI UT WOS:000359875100098 ER PT J AU Wijenayaka, AR Yang, DQ Prideaux, M Ito, N Kogawa, M Anderson, PH Morris, HA Solomon, LB Loots, GG Findlay, DM Atkins, GJ AF Wijenayaka, Asiri R. Yang, Dongqing Prideaux, Matthew Ito, Nobuaki Kogawa, Masakazu Anderson, Paul H. Morris, Howard A. Solomon, Lucian B. Loots, Gabriela G. Findlay, David M. Atkins, Gerald J. TI 1 alpha,25-dihydroxyvitamin D-3 stimulates human SOST gene expression and sclerostin secretion SO MOLECULAR AND CELLULAR ENDOCRINOLOGY LA English DT Article DE Vitamin D; Vitamin D response element; SOST; Sclerostin; Osteocyte; Gene regulation; Promoter ID VAN-BUCHEM-DISEASE; VITAMIN-D-RECEPTOR; REDUCES OSTEOCYTE EXPRESSION; MESSENGER-RNA EXPRESSION; INHIBITS BONE-FORMATION; MARROW STROMAL CELLS; HUMAN OSTEOBLASTS; 1,25-DIHYDROXYVITAMIN D-3; PARATHYROID-HORMONE; MECHANICAL STIMULATION AB Sclerostin, the SOST gene product, is a negative regulator of bone formation and a positive regulator of bone resorption. In this study, treatment of human primary osteoblasts, including cells differentiated to an osteocyte-like stage, with 1 alpha,25-dihydroxyvitaminD(3) (1,25D) resulted in the dose-dependent increased expression of SOST mRNA. A similar effect was observed in human trabecular bone samples cultured ex vivo, and in osteocyte-like cultures of differentiated SAOS2 cells. Treatment of SAOS2 cells with 1,25D resulted in the production and secretion of sclerostin protein. In silica analysis of the human SOST gene revealed a single putative DR3-type vitamin D response element (VDRE) at position 6216 bp upstream of the transcription start site (TSS). This sequence was confirmed to have strong VDRE activity by luciferase reporter assays and electrophoretic mobility shift analysis (EMSA). Sequence substitution in the VDR/RXR half-sites abolished VDRE reporter activity and binding of nuclear proteins. A 63 kb fragment of the human proximal SOST promoter demonstrated responsiveness to 1,25D. The addition of the evolutionary conserved region 5 (ECR5), a known bone specific enhancer region, ahead of the 63 kb fragment increased basal promoter activity but did not increase 1,25D responsiveness. Site-specific mutagenesis abolished the responsiveness of the 6.3 kb promoter to 1,25D. We conclude that 1,25D is a direct regulator of human SOST gene and sclerostin protein expression, extending the pathways of control of sclerostin expression. At least some of this responsiveness is mediated by the identified classical VDRE however the nature of the transcriptional regulation by 1,25D warrants further investigation. (C) 2015 Elsevier Ireland Ltd. All rights reserved. C1 [Wijenayaka, Asiri R.; Yang, Dongqing; Prideaux, Matthew; Ito, Nobuaki; Kogawa, Masakazu; Solomon, Lucian B.; Findlay, David M.; Atkins, Gerald J.] Univ Adelaide, Ctr Orthopaed & Trauma Res, Adelaide, SA 5005, Australia. [Anderson, Paul H.; Morris, Howard A.] Univ S Australia, Sch Pharm & Med Sci, Adelaide, SA 5001, Australia. [Loots, Gabriela G.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. [Loots, Gabriela G.] Univ Calif Merced, Sch Nat Sci, Merced, CA USA. RP Atkins, GJ (reprint author), Univ Adelaide, Ctr Orthopaed & Trauma Res, North Terrace, Adelaide, SA 5005, Australia. EM gerald.atkins@adelaide.edu.au RI Morris, Howard/G-4564-2010 FU National Health and Medical Research Council of Australia (NHMRC) [565372]; Rebecca Cooper Foundation; University of Adelaide International Postgraduate Research Student's Scholarship; NIH [DK075730]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank Professor J.W. Pike (University of Wisconsin) for helpful advice and discussions regarding the data herein. This work was funded by a Project Grant (ID565372) from the National Health and Medical Research Council of Australia (NHMRC) and the support of the Rebecca Cooper Foundation. ARW was supported by a University of Adelaide International Postgraduate Research Student's Scholarship. GGL was supported by NIH grant DK075730 and her contribution was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 61 TC 6 Z9 6 U1 0 U2 8 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0303-7207 J9 MOL CELL ENDOCRINOL JI Mol. Cell. Endocrinol. PD SEP 15 PY 2015 VL 413 IS C BP 157 EP 167 DI 10.1016/j.mce.2015.06.021 PG 11 WC Cell Biology; Endocrinology & Metabolism SC Cell Biology; Endocrinology & Metabolism GA CP4TD UT WOS:000359874600016 PM 26112182 ER PT J AU Golden, E Attwood, PV Duff, AP Meilleur, F Vrielink, A AF Golden, Emily Attwood, Paul V. Duff, Anthony P. Meilleur, Flora Vrielink, Alice TI Production and characterization of recombinant perdeuterated cholesterol oxidase SO ANALYTICAL BIOCHEMISTRY LA English DT Article DE Flavoenzyme; Perdeuteration; Thermal stability; Protein expression; Enzyme kinetics; Protein structure ID RESOLUTION CRYSTALLOGRAPHY REVEALS; REDUCTASE-INHIBITOR COMPLEX; X-RAY-STRUCTURE; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; NEUTRON-DIFFRACTION; ALDOSE REDUCTASE; STRUCTURAL-CHARACTERIZATION; CYTOCHROME P450CAM; PROTEIN-STRUCTURE AB Cholesterol oxidase (CO) is a FAD (flavin adenine dinucleotide) containing enzyme that catalyzes the oxidization and isomerization of cholesterol. Studies directed toward elucidating the catalytic mechanism of CO will provide an important general understanding of Flavin-assisted redox catalysis. Hydrogen atoms play an important role in enzyme catalysis; however, they are not readily visualized in protein X-ray diffraction structures. Neutron crystallography is an ideal method for directly visualizing hydrogen positions at moderate resolutions because hydrogen and deuterium have comparable neutron scattering lengths to other heavy atoms present in proteins. The negative coherent and large incoherent scattering lengths of hydrogen atoms in neutron diffraction experiments can be circumvented by replacing hydrogen atoms with its isotope, deuterium. The perdeuterated form of CO was successfully expressed from minimal medium, purified, and crystallized. X-ray crystallographic structures of the enzyme in the perdeuterated and hydrogenated states confirm that there are no apparent structural differences between the two enzyme forms. Kinetic assays demonstrate that perdeuterated and hydrogenated enzymes are functionally identical. Together, structural and functional studies indicate that the perdeuterated protein is suitable for structural studies by neutron crystallography directed at understanding the role of hydrogen atoms in enzyme catalysis. (C) 2015 Elsevier Inc. All rights reserved. C1 [Golden, Emily; Attwood, Paul V.; Vrielink, Alice] Univ Western Australia, Sch Chem & Biochem, Crawley, WA 6009, Australia. [Duff, Anthony P.] Australian Nucl Sci & Technol Org, Bragg Inst, Menai, NSW 2234, Australia. [Meilleur, Flora] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Meilleur, Flora] N Carolina State Univ, Struct & Mol Biochem, Raleigh, NC 27695 USA. RP Vrielink, A (reprint author), Univ Western Australia, Sch Chem & Biochem, Crawley, WA 6009, Australia. EM alice.vrielink@uwa.edu.au NR 49 TC 2 Z9 2 U1 2 U2 21 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-2697 EI 1096-0309 J9 ANAL BIOCHEM JI Anal. Biochem. PD SEP 15 PY 2015 VL 485 BP 102 EP 108 DI 10.1016/j.ab.2015.06.008 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA CO0BK UT WOS:000358814900016 PM 26073659 ER PT J AU Dumitrache, A Eberl, HJ Allen, DG Wolfaardt, GM AF Dumitrache, Alexandru Eberl, Hermann J. Allen, D. Grant Wolfaardt, Gideon M. TI Mathematical modeling to validate on-line CO2 measurements as a metric for cellulolytic biofilm activity in continuous-flow bioreactors SO BIOCHEMICAL ENGINEERING JOURNAL LA English DT Article DE Biofilm; Cellulose; Clostridium thermocellum; CO2 on-line measurement; Dynamic modeling; Growth kinetics ID CLOSTRIDIUM-THERMOCELLUM BIOFILMS; BACTERIAL-GROWTH; IN-VITRO; KINETICS; MICROORGANISMS; DEGRADATION; DIGESTION; CULTURES AB A mathematical model for the growth of thin Clostridium thermocellum biofilms on cellulose sheets with penetration from the surface into the interior fiber matrix is formulated, and used to assess the potential of CO2 on-line measurements for activity of cellulolytic biofilms. The biofilm growth model is linked to a product formation model. It includes the processes of carbon substrate consumption, biofilm growth, biofilm upkeep, and carbon dioxide production. The mathematical description leads to a system of ordinary differential equations that is simple enough to lend itself to qualitative analysis, yet complex enough to capture the essential features of the system. Numerical fitting of the model against experimental data showed excellent quantitative agreement. The model substantiates the utility of on-line CO2 measurements as indicator of cellulose substrate colonization and consumption, which may be useful for reporting bioreactor performance. (C) 2015 Elsevier B.V. All rights reserved. C1 [Dumitrache, Alexandru] Oak Ridge Natl Lab, Bioscience Div, Oak Ridge, TN 37831 USA. [Dumitrache, Alexandru] Oak Ridge Natl Lab, Bioenergy Sci Ctr, Oak Ridge, TN 37831 USA. [Eberl, Hermann J.] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada. [Eberl, Hermann J.] Univ Guelph, Biophys Interdept Program, Guelph, ON N1G 2W1, Canada. [Allen, D. Grant] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada. [Wolfaardt, Gideon M.] Univ Stellenbosch, Dept Microbiol, ZA-7602 Stellenbosch, Matieland, South Africa. [Wolfaardt, Gideon M.] Ryerson Univ, Dept Biol & Chem, Toronto, ON M5B 2K3, Canada. RP Eberl, HJ (reprint author), Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada. EM heberl@uoguelph.ca OI Dumitrache, Alexandru/0000-0002-6359-0779 FU Genome Canada; Canada Research Chair Program; Natural Sciences and Engineering Research Council of Canada FX The experimental work was carried out while AD was a PhD student at the University of Toronto. This research was funded by grants from Genome Canada (GW), the Canada Research Chair Program (GW, HJE) and the Natural Sciences and Engineering Research Council of Canada (GW, HJE). NR 25 TC 1 Z9 1 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1369-703X EI 1873-295X J9 BIOCHEM ENG J JI Biochem. Eng. J. PD SEP 15 PY 2015 VL 101 BP 55 EP 67 DI 10.1016/j.bej.2015.04.022 PG 13 WC Biotechnology & Applied Microbiology; Engineering, Chemical SC Biotechnology & Applied Microbiology; Engineering GA CO2EV UT WOS:000358969800007 ER PT J AU Schmidt, M Hellebrandt, S Knope, KE Lee, SS Stubbs, JE Eng, PJ Soderholm, L Fenter, P AF Schmidt, Moritz Hellebrandt, Stefan Knope, Karah E. Lee, Sang Soo Stubbs, Joanne E. Eng, Peter J. Soderholm, L. Fenter, Paul TI Effects of the background electrolyte on Th(IV) sorption to muscovite mica SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID X-RAY REFLECTIVITY; CONTACT TIME; WATER-STRUCTURE; IONIC-STRENGTH; FULVIC-ACID; (001)-WATER INTERFACE; HYDRATION FORCES; FREE-ENERGY; 001 SURFACE; METAL-IONS AB The adsorption of tetravalent thorium on the muscovite mica (001) basal plane was studied by X-ray crystal truncation rod (CTR) and resonant anomalous X-ray reflectivity (RAXR) measurements and alpha spectrometry in the presence of perchlorate background electrolytes LiClO4, NaClO4, and KClO4 ([Th(IV)] = 0.1 mM, I = 0.1 M or 0.01 M, pH = 3.3 +/- 0.3). RAXR data directly reveal a strong influence of the background electrolyte on the actinide sorption. No significant Th adsorption was observed in 0.1 M NaClO4, i.e., the Th coverage theta(Th), the number of Th per unit cell area of the muscovite surface (A(UC) = 46.72 angstrom(2)), was <= 0.01 Th/A(UC), whereas limited uptake (theta(Th) similar to 0.04 Th/A(UC)) was detected at a lower ionic strength (I = 0.01 M). These results are in stark contrast to the behavior of Th in 0.1 M NaCl which showed a coverage of 0.4 Th/A(UC) (Schmidt et al., 2012a). Th uptake was also influenced by the electrolyte cation. Weak adsorption was observed in 0.1 M KClO4 (theta(Th) similar to 0.07 Th/A(UC)) similar to the results in NaClO4 at lower ionic strength. In contrast, strong adsorption was found in 0.1 M LiClO4, with theta(Th) = 4.9 Th/A(UC), a similar to 10-fold increase compared with that previously reported in NaCl. These differences are confirmed independently by ex situ alpha spectrometry, which shows no measurable Th coverage in 0.1 M NaClO4 background in contrast to a large coverage of 1.6 Th/AUC in 0.1 M LiClO4. Alpha spectrometry cannot be obtained in situ, but sample preparation requires several washing steps that may affect Th(IV) sorption, RAXR, however, is considered to reflect the in situ sorption structure. The CTR/RAXR analyses of Th-LiClO4 show the sorption structure consisting of Th species that are broadly distributed, centered at heights of 4.1 angstrom and 29 angstrom distance from the interface. Neither the very large distribution height of the second species nor the high coverage can be explained with (hydrated) ionic adsorption, suggesting that the enhanced uptake is presumably due to the formation and sorption of Th nanoparticles. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Schmidt, Moritz; Hellebrandt, Stefan] Helmholtz Zentrum Dresden Rossendorf, Inst Resource Ecol, Dresden, Germany. [Knope, Karah E.; Lee, Sang Soo; Soderholm, L.; Fenter, Paul] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Stubbs, Joanne E.; Eng, Peter J.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. RP Schmidt, M (reprint author), Helmholtz Zentrum Dresden Rossendorf, Inst Resource Ecol, Dresden, Germany. EM moritz.schmidt@hzdr.de RI Schmidt, Moritz/C-2610-2011; Stubbs, Joanne/F-9710-2013 OI Schmidt, Moritz/0000-0002-8419-0811; Stubbs, Joanne/0000-0002-8509-2009 FU Helmholtz Gemeinschaft Deutscher Forschungszentren [VH-NG-942]; United States Department of Energy [DE-AC02-06CH11357]; United States Department of Energy Office of Science BES Chemical Sciences Division [Geoscience research program]; National Science Foundation-Earth Sciences [EAR-1128799]; Department of Energy-Geosciences [DE-FG02-94ER14466]; United States Department of Energy Office of Science BES Chemical Sciences Division [Heavy Elements research program] FX This work was co-financed (M.S. and S.H.) by the Helmholtz Gemeinschaft Deutscher Forschungszentren by supporting the Helmholtz-Nachwuchsgruppe "Structures and Reactivity at the Water/Mineral Interface" (VH-NG-942). Work conducted at Argonne National Laboratory, operated by UChicago Argonne, LLC for the United States Department of Energy under contract number DE-AC02-06CH11357, is supported by the United States Department of Energy Office of Science BES Chemical Sciences Division [Geoscience (S.S.L. and P.F.) and Heavy Elements (K.E.K. and L.S.) research programs]. The X-ray data were collected at the GeoSoilEnviroCARS beamline 13-ID-C and the X-ray Operations and Research beamline 6-ID-B at the Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviro-CARS is supported by the National Science Foundation-Earth Sciences (EAR-1128799) and Department of Energy-Geosciences (DE-FG02-94ER14466) (J.E.S. and P.J.E). We thank Dr. S. Skanthakumar for his assistance in preparation of XR samples. NR 66 TC 2 Z9 2 U1 2 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 15 PY 2015 VL 165 BP 280 EP 293 DI 10.1016/j.gca.2015.05.039 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CN4VF UT WOS:000358427700018 ER PT J AU Giuffre, AJ Gagnon, AC De Yoreo, JJ Dove, PM AF Giuffre, Anthony J. Gagnon, Alexander C. De Yoreo, James J. Dove, Patricia M. TI Isotopic tracer evidence for the amorphous calcium carbonate to calcite transformation by dissolution-reprecipitation SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID CRYSTAL-GROWTH; FORAMINIFERAL CALCITE; PORCELLIO-SCABER; PRECURSOR PHASE; IN-SITU; CRYSTALLIZATION; MAGNESIUM; FRACTIONATION; BIOMINERALIZATION; PATHWAYS AB Observations that some biogenic and sedimentary calcites grow from amorphous calcium carbonate (ACC) raise the question of how this mineralization process influences composition. However, the detailed pathway and geochemical consequences of the ACC to calcite transformation are not well constrained. This experimental study investigated the formation of calcite from ACC by using magnesium and calcium stable isotope labeling to directly probe the transformation pathway and controls on composition. Four processes were considered: dissolution-reprecipitation, solid state transformation, and combinations of these end-members. To distinguish between these scenarios, ACC was synthesized from natural isotope abundance solutions and subsequently transferred to spiked solutions that were enriched in Ca-43 and Mg-25 for the transformation to calcite. Isotope measurements by NanoSIMS determined the Ca-43/Ca-40, and Mg-25/Mg-24 ratios of the resulting calcite crystals. Analysis of the data shows the transformation is best explained by a dissolution-reprecipitation process. We find that when a small amount of ACC is transferred, the isotopic signals in the resulting calcite are largely replaced by the composition of the surrounding spiked solution. When larger amounts of ACC are transferred, calcite compositions reflect a mixture between the ACC and initial solution end-member. Comparisons of the measurements to the predictions of a simple mixing model indicate that calcite compositions (1) are sensitive to relative amounts of ACC and the surrounding solution reservoir and (2) are primarily governed by the conditions at the time of ACC transformation rather than the initial ACC formation. Shifts in calcite composition over the duration of the transformation period reflect the progressive evolution of the local solution conditions. This dependence indicates the extent to which there is water available would change the end point composition on the mixing line. While these findings have significant geochemical implications, the question remains whether this transformation pathway is generally followed when biomineralization involves ACC or is particular to these inorganic experiments. Insights from this study nonetheless suggest that some types of compositional variability, such as 'vital effects', may be explained in-part by a co-evolution of reservoir and products over the duration of the transformation. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Giuffre, Anthony J.; Dove, Patricia M.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. [Gagnon, Alexander C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [De Yoreo, James J.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Giuffre, AJ (reprint author), 1425 Perry St,Geosci MC 0420, Blacksburg, VA 24061 USA. EM ajgiuffre@gmail.com; gagnon@uw.edu; james.deyoreo@pnnl.gov; dove@vt.edu RI Giuffre, Anthony/D-4192-2016; Foundry, Molecular/G-9968-2014 OI Giuffre, Anthony/0000-0001-9269-7922; FU National Science Foundation NSF [OCE-1061763]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [BES-FG02-00ER15112]; U.S. Department of Energy, Office of Basic Energy Sciences; U.S. Department of energy [DE-AC05-76RL01830]; Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of USDOE [DE-AC02-5CH11231] FX The authors thank Y. Guan (Caltech) and J.M. Eiler (Caltech) for aid in NanoSIMS analysis and providing access to facilities, G.R. Rossman (Caltech) for providing the dolomite standards, and J.D. Rimstidt (Virginia Tech) for helpful comments on this manuscript. This material is based upon work supported by the National Science Foundation NSF OCE-1061763 (to P.M.D.) and the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number BES-FG02-00ER15112 (to P.M.D.), and by the U.S. Department of Energy, Office of Basic Energy Sciences at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of energy under Contract DE-AC05-76RL01830. This work was also supported by the Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the USDOE under Contract DE-AC02-5CH11231. The opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the DOE or the NSF. NR 68 TC 6 Z9 6 U1 5 U2 77 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 15 PY 2015 VL 165 BP 407 EP 417 DI 10.1016/j.gca.2015.06.002 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CN4VF UT WOS:000358427700026 ER PT J AU Leung, B Tsai, MC Song, J Zhang, Y Xiong, KL Yuan, G Coltrin, ME Han, J AF Leung, Benjamin Tsai, Miao-Chan Song, Jie Zhang, Yu Xiong, Kanglin Yuan, Ge Coltrin, Michael E. Han, Jung TI Analysis of channel confined selective area growth in evolutionary growth of GaN on SiO2 SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Mass transport; Metalorganic chemical vapor deposition; Selective epitaxy; Nitrides ID VAPOR-PHASE EPITAXY; ALN BUFFER LAYER; LATERAL OVERGROWTH; GALLIUM NITRIDE; SILICON; MOCVD; GAAS; DYNAMICS; DEVICES AB Here, we analyze the chemical vapor deposition of semiconductor crystals by selective area growth in a non-planar geometry. Specifically, the growth process in laterally and vertically confined masks forming single crystal GaN on SiO2 by metal organic chemical vapor deposition is considered in detail. A textured AIN seed is used to initiate growth of oriented GaN selectively through the mask, allowing the reduction of degrees of freedom by the evolutionary grain selection process. As shown by measurements of growth rates within the mask, the sub micron length scale of the channel opening is comparable to the mean free path of precursors in the gas phase, resulting in transport characteristics that can be described by an intermediate flow regime between continuum and free-molecular. Mass transport is modeled through kinetic theory to explain the growth rare enhancements of more than a factor of two by changes in reactor pressure. The growth conditions that enable the modification of nucleation density within the channel are then discussed, and an measured by cleat-on-back scatter diffraction of the nucleated grains on the AIN seed. Finally, the selectivity behavior using the low fill factor masks needed in these configurations has been optimized by control of precursor flow rates and the H-2 enhanced (Aching of the polycrystalline GaN nuclei. (C) 2015 Elsevier B.V. All rights reserved. C1 [Leung, Benjamin; Song, Jie; Zhang, Yu; Xiong, Kanglin; Yuan, Ge; Han, Jung] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA. [Tsai, Miao-Chan] Natl Changhua Univ Educ, Inst Photon, Changhua 500, Taiwan. [Coltrin, Michael E.] Sandia Natl Labs, Adv Mat Sci Dept, Albuquerque, NM 87185 USA. RP Han, J (reprint author), Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA. EM jung.han@yale.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0001134]; Yale Institute for Nanoscience and Quantum Engineering; NSF MRSEC [DMR 1119826]; Solid State Lighting Science Energy Frontier Research Center; Department of Energy Office of Basic Energy Science; Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Q. Li for assistance with EBSD measurements. This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0001134, Facilities used were supported by Yale Institute for Nanoscience and Quantum Engineering and NSF MRSEC DMR 1119826. Work at Sandia National Laboratories was supported by the Solid State Lighting Science Energy Frontier Research Center, sponsored by the Department of Energy Office of Basic Energy Science, Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 38 TC 0 Z9 0 U1 9 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD SEP 15 PY 2015 VL 426 BP 95 EP 102 DI 10.1016/j.jcrysgro.2015.03.049 PG 8 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA CN9DC UT WOS:000358745700015 ER PT J AU Tang, YH Kudo, SH Bian, X Li, Z Karniadakis, GE AF Tang, Yu-Hang Kudo, Shuhei Bian, Xin Li, Zhen Karniadakis, George Em TI Multiscale Universal Interface: A concurrent framework for coupling heterogeneous solvers SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Multiscale modeling; Concurrent coupling; Multiphysics simulation; Energy-conserving DPD; SPH; FEM; Programming framework ID DISSIPATIVE PARTICLE DYNAMICS; CONTINUUM METHODS; SIMULATION; SOFTWARE; MULTIPHYSICS; TEMPERATURE; ENVIRONMENT; SYSTEMS AB Concurrently coupled numerical simulations using heterogeneous solvers are powerful tools for modeling multiscale phenomena. However, major modifications to existing codes are often required to enable such simulations, posing significant difficulties in practice. In this paper we present a C++ library, i.e. the Multiscale Universal Interface (MUI), which is capable of facilitating the coupling effort for a wide range of multiscale simulations. The library adopts a header-only form with minimal external dependency and hence can be easily dropped into existing codes. A data samplerconcept is introduced, combined with a hybrid dynamic/static typing mechanism, to create an easily customizable framework for solver-independent data interpretation. The library integrates MPI MPMD support and an asynchronous communication protocol to handle inter-solver information exchange irrespective of the solvers' own MPI awareness. Template metaprogramming is heavily employed to simultaneously improve runtime performance and code flexibility. We validated the library by solving three different multiscale problems, which also serve to demonstrate the flexibility of the framework in handling heterogeneous models and solvers. In the first example, a Couette flow was simulated using two concurrently coupled Smoothed Particle Hydrodynamics (SPH) simulations of different spatial resolutions. In the second example, we coupled the deterministic SPH method with the stochastic Dissipative Particle Dynamics (DPD) method to study the effect of surface grafting on the hydrodynamics properties on the surface. In the third example, we consider conjugate heat transfer between a solid domain and a fluid domain by coupling the particle-based energy-conserving DPD (eDPD) method with the Finite Element Method (FEM). (C) 2015 Elsevier Inc. All rights reserved. C1 [Tang, Yu-Hang; Bian, Xin; Li, Zhen; Karniadakis, George Em] Brown Univ, Div Appl Math, Providence, RI 02912 USA. [Kudo, Shuhei] Kobe Univ, Grad Sch Syst Informat, Naka Ku, Kobe, Hyogo 6578501, Japan. [Karniadakis, George Em] Pacific NW Natl Lab, Collaboratory Math Mesoscop Modeling Mat, Richland, WA 99354 USA. RP Karniadakis, GE (reprint author), Brown Univ, Div Appl Math, Providence, RI 02912 USA. EM yuhang_tang@brown.edu; shuhei-kudo@outlook.jp; xin_bian@brown.edu; zhen_li@brown.edu; george_karniadakis@brown.edu RI Li, Zhen/B-2722-2013; Bian, Xin/N-2596-2014 OI Li, Zhen/0000-0002-0936-6928; Bian, Xin/0000-0002-7641-4715 FU Department of Energy (DoE) Collaboratory on Mathematics for Mesoscopic Modeling of Materials [CM4]; Air Force Office of Scientific Research [FA9550-12-1-0463]; Oak Ridge Leadership Computing Facility through the Director Discretion project [BIP102]; Innovative and Novel Computational Impact on Theory and Experiment program [BIP118] FX This work was supported by the Department of Energy (DoE) Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) and the Air Force Office of Scientific Research (FA9550-12-1-0463). Simulations were carried out at the Oak Ridge Leadership Computing Facility through the Director Discretion project BIP102 and the Innovative and Novel Computational Impact on Theory and Experiment program BIP118. Particle simulation results were visualized with VMD [39,40]. NR 40 TC 6 Z9 6 U1 2 U2 20 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 15 PY 2015 VL 297 BP 13 EP 31 DI 10.1016/j.jcp.2015.05.004 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CM2WB UT WOS:000357541900002 ER PT J AU Gamba, IM Haack, JR Motsch, S AF Gamba, Irene M. Haack, Jeffrey R. Motsch, Sebastien TI Spectral method for a kinetic swarming model SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Spectral method; Finite Volume method; Kinetic equation; Vicsek model; Hyperbolic systems ID SELF-DRIVEN PARTICLES; BOLTZMANN-EQUATION; COLLISION OPERATOR; CONTINUUM MODEL; LIMIT; SYSTEM; FLOCKING; BEHAVIOR; SCHOOLS AB In this paper we present the first numerical method for a kinetic description of the Vicsek swarming model. The kinetic model poses a unique challenge, as there is a distribution dependent collision invariant to satisfy when computing the interaction term. We use a spectral representation linked with a discrete constrained optimization to compute these interactions. To test the numerical scheme we investigate the kinetic model at different scales and compare the solution with the microscopic and macroscopic descriptions of the Vicsek model. We observe that the kinetic model captures key features such as vortex formation and traveling waves. (C) 2015 Elsevier Inc. All rights reserved. C1 [Gamba, Irene M.] Univ Texas Austin, Dept Math, Austin, TX 78712 USA. [Gamba, Irene M.] Univ Texas Austin, ICES, Austin, TX 78712 USA. [Haack, Jeffrey R.] Los Alamos Natl Lab, Computat Phys & Methods, Los Alamos, NM 87545 USA. [Motsch, Sebastien] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA. RP Motsch, S (reprint author), Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA. EM gamba@math.utexas.edu; haack@lanl.gov; smotsch@asu.edu FU NSF RNMS (KI-Net) [11-07444, 11-07465] FX The work is supported by NSF RNMS (KI-Net) grant 11-07444 and grant 11-07465. NR 40 TC 0 Z9 0 U1 3 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 15 PY 2015 VL 297 BP 32 EP 46 DI 10.1016/j.jcp.2015.04.033 PG 15 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CM2WB UT WOS:000357541900003 ER PT J AU Taitano, WT Chacon, L Simakov, AN Molvig, K AF Taitano, W. T. Chacon, L. Simakov, A. N. Molvig, K. TI A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Conservative discretization; Fokker-Planck; Rosenbluth potentials; Fully implicit algorithms; Jacobian-free Newton-Krylov; Multigrid preconditioning ID CONSERVATIVE DIFFERENCE SCHEME; LANDAU EQUATION; ANISOTROPIC DIFFUSION; KINETIC SIMULATION; NUMERICAL SCHEME; ENTROPY; ACCURATE; PLASMA; TRANSPORT; EFFICIENT AB In this study, we demonstrate a fully implicit algorithm for the multi-species, multidimensional Rosenbluth-Fokker-Planck equation which is exactly mass-, momentum-, and energy-conserving, and which preserves positivity. Unlike most earlier studies, we base our development on the Rosenbluth (rather than Landau) form of the Fokker-Planck collision operator, which reduces complexity while allowing for an optimal fully implicit treatment. Our discrete conservation strategy employs nonlinear constraints that force the continuum symmetries of the collision operator to be satisfied upon discretization. We converge the resulting nonlinear system iteratively using Jacobian-free Newton-Krylov methods, effectively preconditioned with multigrid methods for efficiency. Single- and multi-species numerical examples demonstrate the advertised accuracy properties of the scheme, and the superior algorithmic performance of our approach. In particular, the discretization approach is numerically shown to be second-order accurate in time and velocity space and to exhibit manifestly positiveentropy production. That is, H-theorem behavior is indicated for all the examples we have tested. The solution approach is demonstrated to scale optimally with respect to grid refinement (with CPU time growing linearly with the number of mesh points), and timestep (showing very weak dependence of CPU time with time-step size). As a result, the proposed algorithm delivers several orders-of-magnitude speedup vs. explicit algorithms. Published by Elsevier Inc. C1 [Taitano, W. T.; Chacon, L.; Simakov, A. N.; Molvig, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Taitano, WT (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM taitano@lanl.gov OI Taitano, William/0000-0002-2369-0935; Simakov, Andrei/0000-0001-7064-9153; Chacon, Luis/0000-0002-4566-8763 FU Thermonuclear Burn Initiative of the Advanced Simulation and Computing Program at Los Alamos National Laboratory; LANS, LLC [DE-AC52-06NA25396] FX The authors would like to thank D.A. Knoll for useful discussions and the referees for many constructive suggestions leading to the improvement of the paper. This work was sponsored by the Thermonuclear Burn Initiative of the Advanced Simulation and Computing Program at Los Alamos National Laboratory. This work was performed under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory, managed by LANS, LLC under contract DE-AC52-06NA25396. NR 55 TC 10 Z9 10 U1 1 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 15 PY 2015 VL 297 BP 357 EP 380 DI 10.1016/j.jcp.2015.05.025 PG 24 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CM2WB UT WOS:000357541900021 ER PT J AU Meyers, MD Huang, CK Zeng, Y Yi, SA Albright, BJ AF Meyers, M. D. Huang, C. -K. Zeng, Y. Yi, S. A. Albright, B. J. TI On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Particle-in-cell; Plasma simulation; Relativistic plasma drift; Numerical dispersion relation; Numerical instability; Finite grid instability ID PIC SIMULATIONS; CHARGE CONSERVATION; PLASMA; ACCELERATORS; ALGORITHM AB The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models. Published by Elsevier Inc. C1 [Meyers, M. D.; Huang, C. -K.; Zeng, Y.; Yi, S. A.; Albright, B. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Meyers, M. D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Huang, CK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mdmeyers@physics.ucla.edu; huangck@lanl.gov OI Albright, Brian/0000-0002-7789-6525; Huang, Chengkun/0000-0002-3176-8042 FU LANL Laboratory Directed Research and Development (LDRD) [20130744ECR]; NSF [ACI-1339893]; DOE [DE-NA0001833] FX This work was performed at Los Alamos National Laboratory (LANL) and the University of California Los Angeles (UCLA). Work at LANL was performed under the auspices of the U.S. DOE by Los Alamos National Security, LLC and LANL, and was supported by the LANL Laboratory Directed Research and Development (LDRD) program project 20130744ECR. Work at UCLA was supported by NSF grant ACI-1339893 and DOE grant DE-NA0001833. We would like to acknowledge useful discussions with Warren Mori, Frank Tsung, Peicheng Yu, Adam Tableman, Zehua Guo, and Gian Luca Delzanno. NR 22 TC 2 Z9 2 U1 3 U2 20 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 15 PY 2015 VL 297 BP 565 EP 583 DI 10.1016/j.jcp.2015.05.037 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CM2WB UT WOS:000357541900031 ER PT J AU Qin, H He, Y Zhang, RL Liu, J Xiao, JY Wang, YL AF Qin, Hong He, Yang Zhang, Ruili Liu, Jian Xiao, Jianyuan Wang, Yulei TI Comment on "Hamiltonian splitting for the Vlasov-Maxwell equations" SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Editorial Material DE Splitting method; Vlasov-Maxwell system; Symplectic integrator; Poisson bracket ID SYSTEM AB The paper [1] by Crouseilles, Einkemmer, and Faou used an incorrect Poisson bracket for the Vlasov-Maxwell equations. If the correct Poisson bracket is used, the solution of one of the subsystems cannot be computed exactly in general. As a result, one cannot construct a symplectic scheme for the Vlasov-Maxwell equations using the splitting Hamiltonian method proposed in Ref.[1]. (C) 2015 Elsevier Inc. All rights reserved. C1 [Qin, Hong; He, Yang; Zhang, Ruili; Liu, Jian; Xiao, Jianyuan; Wang, Yulei] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China. [Qin, Hong; He, Yang; Zhang, Ruili; Liu, Jian; Xiao, Jianyuan; Wang, Yulei] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Qin, Hong] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [He, Yang; Zhang, Ruili; Liu, Jian; Xiao, Jianyuan; Wang, Yulei] Chinese Acad Sci, Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China. RP Qin, H (reprint author), Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China. EM hongqin@ustc.edu.cn FU National Natural Science Foundation of China [11271357, 11261140328, 11305171]; CAS Program for Interdisciplinary Collaboration Team; ITER-China Program [2015GB111003, 2014GB124005, 2013GB111000]; JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics [NSFC-11261140328] FX This research was supported by the National Natural Science Foundation of China (11271357, 11261140328, 11305171), the CAS Program for Interdisciplinary Collaboration Team, the ITER-China Program (2015GB111003, 2014GB124005, 2013GB111000), and the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC-11261140328). NR 8 TC 4 Z9 4 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD SEP 15 PY 2015 VL 297 BP 721 EP 723 DI 10.1016/j.jcp.2015.04.056 PG 3 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CM2WB UT WOS:000357541900039 ER PT J AU Dickson, JO Harsh, JB Flury, M Pierce, EM AF Dickson, Johnbull O. Harsh, James B. Flury, Markus Pierce, Eric M. TI Immobilization and exchange of perrhenate in sodalite and cancrinite SO MICROPOROUS AND MESOPOROUS MATERIALS LA English DT Article DE Feldspathoids; Anion selectivity; Perrhenate; Technetium-99; Ion exchange ID X-RAY-DIFFRACTION; VADOSE ZONE; WASTE; SEDIMENTS; NITRATE; CESIUM; TANKS; PRECIPITATION; PERTECHNETATE; DISSOLUTION AB Highly alkaline nuclear tank wastes containing key anionic contaminants have leaked into the subsurface at the U.S. Department of Energy's Hanford Site. Laboratory studies showed that when simulated caustic tank wastes contact subsurface sediments, mineral dissolution and precipitation result in feldspathoid formation. Feldspathoids are environmentally important for waste management and disposal purposes because of their purported potential to sequester contaminants of interest (e.g., (TcO4-)-Tc-99, Cs-137(+), Sr-90(2+)) into their structure. We investigated the incorporation of perrhenate (ReO4-), a surrogate for TcO4- in the presence of competing anions (X) including OH-, NO2-, NO3- and Cl- on feldspathoid formation and under conditions mimicking tank waste solution compositions. The resulting solids were characterized by their chemical composition, structure and morphology. Regardless of solution pH, sodalite formed in the presence of Cl- and NO2- whereas NO3- promoted either cancrinite formation in 16-mol OH-/kg (16 m) or mixed sodalite/cancrinite phases in 1-mol OH-/kg (1 m) solutions. In the presence of Cl-, NO2-, and NO3- less than 0.02 mol fraction of ReO4- was incorporated into the feldspathoid phase(s). Although, the NO2-sodalite and mixed NO3-cancrinite/sodalite phases incorporated significantly more ReO4- than NO3-cancrinite or Cl-sodalite phases, the total ReO4- fraction was similar to 1% or less of the total sites. The ReO4- immobilized in ReO4-sodalite, NO2-sodalite, mixed NO3-cancrinite/sodalite and NO3-cancrinite was resistant to ion exchange with either NO2- or NO3-. The results imply that ReO4-, and thus by analogy (TcO4-)-Tc-99, does not compete well with smaller ions for incorporation into feldspathoids, but, once sequestered, is difficult to exchange. Published by Elsevier Inc. C1 [Dickson, Johnbull O.; Harsh, James B.; Flury, Markus] Washington State Univ, Dept Crop & Soil Sci, Pullman, WA 99164 USA. [Pierce, Eric M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Dickson, JO (reprint author), Washington State Univ, Dept Crop & Soil Sci, POB 646420, Pullman, WA 99164 USA. EM j.dickson@wsu.edu RI Dickson, Johnbull/I-3637-2016; Pierce, Eric/G-1615-2011; Harsh, James/C-7455-2014 OI Dickson, Johnbull/0000-0003-2916-7368; Pierce, Eric/0000-0002-4951-1931; Harsh, James/0000-0002-0177-3342 FU Mineralogical Society of America; Bullitt Foundation; U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research, Subsurface Biogeochemical Research (SBR) Program [DE-PS02-09ER65075, DE-AC05-00OR22725] FX We thank the staff at the Franceschi Microscopy and Imaging Center at Washington State University for access to and assistance with the use of their SEM facilities. We also acknowledge the Mineralogical Society of America and the Bullitt Foundation for their support. This material is based upon work supported by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research, Subsurface Biogeochemical Research (SBR) Program, and was performed at Washington State University under contract No. DE-PS02-09ER65075 and at Oak Ridge National Laboratory under contract No. DE-AC05-00OR22725. The authors thank the two anonymous reviewers for their comments. NR 29 TC 5 Z9 5 U1 5 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-1811 EI 1873-3093 J9 MICROPOR MESOPOR MAT JI Microporous Mesoporous Mat. PD SEP 15 PY 2015 VL 214 BP 115 EP 120 DI 10.1016/j.micromeso.2015.05.011 PG 6 WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CL2BZ UT WOS:000356749900016 ER PT J AU Xie, XJ Wang, YX Pi, KF Liu, CX Li, JX Liu, YQ Wang, ZQ Duan, MY AF Xie, Xianjun Wang, Yanxin Pi, Kunfu Liu, Chongxuan Li, Junxia Liu, Yaqing Wang, Zhiqiang Duan, Mengyu TI In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Groundwater; Arsenic contamination; Iron coating; In situ immobilization ID AQUEOUS-SOLUTION; DATONG BASIN; ATR-FTIR; REMOVAL; WATER; GOETHITE; FERRIHYDRITE; ADSORPTION; SURFACE; REMEDIATION AB In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na2HAsO4) and tracer fluorescein sodiumto pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11mol As per mol Fe. In situ arsenic removal from ground water in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles. (C) 2015 Elsevier B.V. All rights reserved. C1 [Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu] China Univ Geosci, Sch Environm Studies, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China. [Liu, Chongxuan] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Xie, XJ (reprint author), China Univ Geosci, Sch Environm Studies, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China. EM xjxie@cug.edu.cn; yx.wang@cug.edu.cn RI Liu, Chongxuan/C-5580-2009 FU Ministry of Science and Technology of China [2012AA062602]; National Natural Science Foundation of China [41202168, 41372254]; Center of Hydrogeology and Environmental Survey, CGS [12120113103700]; Fundamental Research Fund for National Universities, China University of Geosciences (Wuhan) [G1323511513]; US Department of Energy, Biological and Environmental Research, Subsurface Biogeochemical Research (SBR) Program through Pacific Northwest National Laboratory SBR Science Focus Area Research Project FX The authors would like to thank the anonymous reviewers for their constructive suggestions and comments on this manuscript. This research was financially supported by the Ministry of Science and Technology of China (2012AA062602), the National Natural Science Foundation of China (Nos. 41202168 and 41372254), the Center of Hydrogeology and Environmental Survey, CGS (12120113103700) and the Fundamental Research Fund for National Universities, China University of Geosciences (Wuhan) (G1323511513). Liu C is also supported by US Department of Energy, Biological and Environmental Research, Subsurface Biogeochemical Research (SBR) Program through Pacific Northwest National Laboratory SBR Science Focus Area Research Project. NR 48 TC 3 Z9 4 U1 10 U2 88 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD SEP 15 PY 2015 VL 527 BP 38 EP 46 DI 10.1016/j.scitotenv.2015.05.002 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA CK4WY UT WOS:000356225300005 PM 25956146 ER PT J AU Calaza, FC Chen, TL Mullins, DR Xu, Y Overbury, SH AF Calaza, Florencia C. Chen, Tsung-Liang Mullins, David R. Xu, Ye Overbury, Steven H. TI Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(111) SO CATALYSIS TODAY LA English DT Article DE CeO2(111); Acetic acid adsorption; Ketonization; Surface chemistry; Oxide catalysis; DFT ID CEOX(111) THIN-FILMS; INITIO MOLECULAR-DYNAMICS; DENSITY-FUNCTIONAL THEORY; ABSORPTION FINE-STRUCTURE; CARBOXYLIC-ACIDS; CERIUM OXIDE; ELECTRONIC-STRUCTURE; MONOCLINIC ZIRCONIA; CEO2 NANOCRYSTALS; ADSORPTION AB Adsorption and reaction of acetic acid on a CeO2(1 1 1) surface was studied by a combination of ultra-high vacuum based methods including temperature desorption spectroscopy (TPD), soft X-ray photoelectron spectroscopy (sXPS), near edge X-ray absorption spectroscopy (NEXAFS) and reflection absorption IR spectroscopy (RAIRS), together with density functional theory (DFT) calculations. TPD shows that the desorption products are strongly dependent upon the initial oxidation state of the CeO2 surface, including selectivity between acetone and acetaldehyde products. The combination of sXPS and NEXAFS demonstrate that acetate forms upon adsorption at low temperature and is stable to above 500 K, above which point ketene, acetone and acetic acid desorb. DFT and RAIRS show that below 500 K, bridge bonded acetate coexists with a moiety formed by adsorption of an acetate at an oxygen vacancy, formed by water desorption. (C) 2015 Elsevier B.V. All rights reserved. C1 [Calaza, Florencia C.; Chen, Tsung-Liang; Mullins, David R.; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. [Xu, Ye] Louisiana State Univ, Dept Chem Engn, Baton Rouge, LA 70803 USA. RP Overbury, SH (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. EM overburysh@ornl.gov RI Xu, Ye/B-5447-2009; Overbury, Steven/C-5108-2016 OI Xu, Ye/0000-0002-6406-7832; Overbury, Steven/0000-0002-5137-3961 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory; Louisiana Experimental Program to Stimulate Competitive Research (EPSCor) Program - National Science Foundation; Louisiana Board of Regents Support Fund FX This research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. F.C. Calaza and T.-L. Chen were sponsored by an appointment to the Oak Ridge National Laboratory Postdoctoral Research Associates Program administered jointly by Oak Ridge Institute for Science and Education and Oak Ridge National Laboratory. Computational work performed at Louisiana State University was in part supported by the Louisiana Experimental Program to Stimulate Competitive Research (EPSCor) Program, funded by the National Science Foundation and the Louisiana Board of Regents Support Fund, and used high performance computational resources provided by Louisiana State University. F.C. Calaza would like to acknowledge Prof. Daniel Resasco for fruitful discussions regarding the reaction mechanism for ketonization. NR 57 TC 9 Z9 9 U1 10 U2 84 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD SEP 15 PY 2015 VL 253 BP 65 EP 76 DI 10.1016/j.cattod.2015.03.033 PG 12 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA CJ7NN UT WOS:000355682900008 ER PT J AU Divins, NJ Casanovas, A Xu, W Senanayake, SD Wiater, D Trovarelli, A Llorca, J AF Divins, N. J. Casanovas, A. Xu, W. Senanayake, S. D. Wiater, D. Trovarelli, A. Llorca, J. TI The influence of nano-architectured CeOx supports in RhPd/CeO2 for the catalytic ethanol steam reforming reaction SO CATALYSIS TODAY LA English DT Article DE Nanoshaped ceria; Ethanol steam reforming; Operando XRD; Ceria-supported noble metals; Water gas shift ID GAS-SHIFT REACTION; HYDROGEN-PRODUCTION; NANOSCALE CERIA; BIO-ETHANOL; REDUCTION; OXIDATION; OXYGEN; SHAPE; NANOCRYSTALS; SENSITIVITY AB The ethanol steam reforming (ESR) reaction has been tested over RhPd supported on polycrystalline ceria in comparison to structured supports composed of nanoshaped CeO2 cubes and CeO2 rods tailored toward the production of hydrogen. At 650-700 K the hydrogen yield follows the trend RhPd/CeO(2)cubes >RhPd/CeO2-rods >RhPd/CeO2-polycrystalline, whereas at temperatures higher than 800K the catalytic performance of all samples is similar and close to the thermodynamic equilibrium. The improved performance of RhPd/CeO2-cubes and RhPd/CeO2-rods for ESR at low temperature is mainly ascribed to higher water-gas shift activity and a strong interaction between the bimetallic-oxide support interaction. STEM analysis shows the existence of RhPd alloyed nanoparticles in all samples, with no apparent relationship between ESR performance and RhPd particle size. X-ray diffraction under operating conditions shows metal reorganization on {1 0 0} and {1 1 0} ceria crystallographic planes during catalyst activation and ESR, but not on {1 1 1} ceria crystallographic planes. The RhPd reconstructing and tuned activation over ceria nanocubes and nanorods is considered the main reason for better catalytic activity with respect to conventional catalysts based on polycrystalline ceria. (C) 2015 Elsevier B.V. All rights reserved. C1 [Divins, N. J.; Casanovas, A.; Llorca, J.] Univ Politecn Cataluna, Inst Energy Technol, E-08028 Barcelona, Spain. [Divins, N. J.; Casanovas, A.; Llorca, J.] Univ Politecn Cataluna, Ctr Res NanoEngn, E-08028 Barcelona, Spain. [Xu, W.; Senanayake, S. D.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Wiater, D.; Trovarelli, A.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. RP Llorca, J (reprint author), Univ Politecn Cataluna, Inst Tecn Energet, Av Diagonal 647,Ed ETSEIB, E-08028 Barcelona, Spain. EM jordi.llorca@upc.edu RI Trovarelli, Alessandro/M-4325-2015; Casanovas Grau, Albert/P-7604-2014; Senanayake, Sanjaya/D-4769-2009; Jimenez Divins, Nuria/B-7332-2015; OI Trovarelli, Alessandro/0000-0002-1396-4031; Casanovas Grau, Albert/0000-0003-3331-7330; Senanayake, Sanjaya/0000-0003-3991-4232; Jimenez Divins, Nuria/0000-0001-6010-5419; Llorca, Jordi/0000-0002-7447-9582 FU MINECO [ENE2012-36368]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and Catalysis Science [DE-AC02-98CH10886] FX This work has been funded through grant MINECO ENE2012-36368. J.L. is Serra Hunter Fellow and is grateful to ICREA Academia program. Work performed at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and Catalysis Science Program under contract No. DE-AC02-98CH10886. This work used resources of the National Synchrotron Light Source, which is a DOE Office of Science User Facility. NR 38 TC 11 Z9 11 U1 3 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD SEP 15 PY 2015 VL 253 BP 99 EP 105 DI 10.1016/j.cattod.2014.12.042 PG 7 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA CJ7NN UT WOS:000355682900012 ER PT J AU Baker, J Kumar, RS Sneed, D Connolly, A Zhang, Y Velisavljevic, N Paladugu, J Pravica, M Chen, CF Cornelius, A Zhao, YS AF Baker, Jason Kumar, Ravhi S. Sneed, Daniel Connolly, Anthony Zhang, Yi Velisavljevic, Nenad Paladugu, Jayalakshmi Pravica, Michael Chen, Changfeng Cornelius, Andrew Zhao, Yusheng TI Pressure induced structural transitions in CuSbS2 and CuSbSe2 thermoelectric compounds SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Thermoelectrics; Structural phase transition; High pressure powder diffraction ID DIAMOND-ANVIL CELLS; CHALCOPYRITE-STRUCTURE; CHALCOSTIBITE CUSBS2; PERFORMANCE; TRANSFORMATIONS; IMPROVEMENT; EMPLECTITE; CUGAS2; CUBIS2; GROWTH AB We have investigated the structural behavior of CuSbS2 and CuSbSe2 thermoelectric materials under high pressure conditions up to 80 GPa using angle dispersive X-ray diffraction in a diamond anvil cell (DAC). We have also performed high pressure Raman spectroscopy measurements up to 16 GPa. We observed a pressure-induced structural transformation from the ambient orthorhombic structure with space group Pnma to a triclinic type structure with space group P1 beginning around 8 GPa in both samples and completing at 13 GPa and 10 GPa in CuSbS2 and CuSbSe2, respectively. High pressure Raman experiments complement the transitions observed by high pressure X-ray diffraction (HPXRD). The transitions were found to be reversible on releasing the pressure to ambient in the DAC. The bulk modulus and compressibility of these materials are further discussed. (C) 2015 Elsevier B.V. All rights reserved. C1 [Baker, Jason; Kumar, Ravhi S.; Sneed, Daniel; Connolly, Anthony; Zhang, Yi; Pravica, Michael; Chen, Changfeng; Cornelius, Andrew; Zhao, Yusheng] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Baker, Jason; Kumar, Ravhi S.; Sneed, Daniel; Connolly, Anthony; Zhang, Yi; Pravica, Michael; Chen, Changfeng; Cornelius, Andrew; Zhao, Yusheng] Univ Nevada, High Pressure Sci & Engn Ctr HiPSEC, Las Vegas, NV 89154 USA. [Velisavljevic, Nenad] Los Alamos Natl Lab, Los Alamos, NM USA. [Paladugu, Jayalakshmi] Univ Nevada, Dept Elect & Comp Engn, Las Vegas, NV 89154 USA. RP Kumar, RS (reprint author), Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. EM ravhi@physics.unlv.edu FU UNLV (ALC) - U.S. Department of Energy [DESC0001982]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775]; NSF; DOE Office of Science [DE-AC02-06CH11357] FX The authors acknowledge Sergey Tkachev and COMPRESS gas loading facility at Sector 13, Advanced Photon Source (APS). Work at UNLV is supported by UNLV (ALC), funded by U.S. Department of Energy Award DESC0001982. Portions of this work were performed at HPCAT (Sector 16), APS, Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 43 TC 5 Z9 5 U1 14 U2 134 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD SEP 15 PY 2015 VL 643 BP 186 EP 194 DI 10.1016/j.jallcom.2015.04.138 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA CJ0EZ UT WOS:000355149300027 ER PT J AU Hernandez, SC Venhaus, TJ Huda, MN AF Hernandez, Sarah C. Venhaus, Thomas J. Huda, Muhammad N. TI Atomic oxygen adsorption on 3.125 at.% Ga stabilized delta-Pu (111) surface SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Electronic structure; Density functional theory; Gallium-stabilized delta-plutonium; Surface; Oxygen ID ELECTRONIC-STRUCTURE; AB-INITIO; PLUTONIUM; PHOTOEMISSION; SPECTROSCOPY; GALLIUM AB All-electron density functional theory was used to investigate atomic oxygen adsorption on a gallium stabilized delta-plutonium (111) surface. High symmetry on-surface and interstitial adsorption sites, along with local environment (as determined by the absence or presence of gallium) were explored. The calculations comprised full structural relaxations. Spin-orbit-coupling was also taken into account to assess the complexity of absorbate-substrate interactions. We observed that O adsorbate prefers to bind strongly to a gallium deficient environment, with the most stable site being the threefold hollow fcc site and associated chemisorption energy of -5.06 eV. The binding energies were least favored when gallium is a nearest neighbor to the O adsorbate, suggesting that the presence of gallium in a plutonium matrix tends to slow down the oxide layer growth. Although the oxygen coordination is the highest in the interstitial sites, the adsorption energy is less favored compared to on-surface adsorption, implying that the diffusion of oxygen from the surface layer into the subsurface layers is an activated process. The adsorption process induced non-trivial deformations of the surface. Additionally, some delocalization of the plutonium 5f and 6d partial electron density of states (PDOS) at the Fermi energy was observed. Further analysis in the PDOS indicated that gallium tends to suppress hybridization between the plutonium 5f and oxygen 2p orbitals, while the 6d orbitals hybridized with oxygen 2p orbitals. Published by Elsevier B.V. C1 [Hernandez, Sarah C.; Venhaus, Thomas J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Huda, Muhammad N.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. RP Hernandez, SC (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM hernansc@lanl.gov OI Hernandez, Sarah/0000-0002-1432-700X FU US Department of Energy through the Los Alamos National Laboratory LDRD Program; National Nuclear Security administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the US Department of Energy through the Los Alamos National Laboratory LDRD Program. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security administration of the U.S. Department of Energy (contract DE-AC52-06NA25396). S.C.H. would like to gratefully acknowledge discussions with Dr. Raymond Atta-Fynn (UTA), Dr. Edward Holby (LANL), and Dr. Chris Taylor (DNV-GL and Ohio State). Computational support from the Texas Advanced Computing Center (www.tacc.utexas.edu) and the University of Texas at Arlington supercomputing facilities are also gratefully acknowledged. NR 31 TC 4 Z9 4 U1 1 U2 19 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD SEP 15 PY 2015 VL 643 BP 253 EP 262 DI 10.1016/j.jallcom.2015.04.080 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA CJ0EZ UT WOS:000355149300036 ER PT J AU Benafan, O Garg, A Noebe, RD Bigelow, GS Padula, SA Gaydosh, DJ Vaidyanathan, R Clausen, B Vogel, SC AF Benafan, O. Garg, A. Noebe, R. D. Bigelow, G. S. Padula, S. A., II Gaydosh, D. J. Vaidyanathan, R. Clausen, B. Vogel, S. C. TI Thermomechanical behavior and microstructural evolution of a Ni(Pd)-rich Ni24.3Ti49.7Pd26 high temperature shape memory alloy SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE High temperature shape memory alloy; Neutron diffraction; NiTiPd; Actuation; Two-way shape memory effect ID TRANSMISSION ELECTRON-MICROSCOPY; SEVERE PLASTIC-DEFORMATION; TI-PD; MARTENSITIC-TRANSFORMATION; MECHANICAL-PROPERTIES; PHASE-TRANSFORMATION; CYCLIC ACTUATION; TEXTURE ANALYSIS; SITE PREFERENCE; NITI AB The effect of thermomechanical cycling on a slightly Ni(Pd)-rich Ni24.3Ti49.7Pd26 (near stochiometric Ni-Ti basis with Pd replacing Ni) high temperature shape memory alloy was investigated. Aged tensile specimens (400 degrees C/24 h/furnace cooled) were subjected to constant-stress thermal cycling in conjunction with microstructural assessment via in situ neutron diffraction and transmission electron microscopy (TEM), before and after testing. It was shown that in spite of the slightly Ni(Pd)-rich composition and heat treatment used to precipitation harden the alloy, the material exhibited dimensional instabilities with residual strain accumulation reaching 1.5% over 10 thermomechanical cycles. This was attributed to insufficient strengthening of the material (insufficient volume fraction of precipitate phase) to prevent plasticity from occurring concomitant with the martensitic transformation. In situ neutron diffraction revealed the presence of retained martensite while cycling under 300 MPa stress, which was also confirmed by transmission electron microscopy of post-cycled samples. Neutron diffraction analysis of the post-thermally-cycled samples under no-load revealed residual lattice strains in the martensite and austenite phases, remnant texture in the martensite phase, and peak broadening of the austenite phase. Texture developed in the martensite phase was composed mainly of those martensitic tensile variants observed during thermomechanical cycling. Presence of a high density of dislocations, deformation twins, and retained martensite was revealed in the austenite state via in-situ TEM in the post-cycled material, providing an explanation for the observed peak broadening in the neutron diffraction spectra. Despite the dimensional instabilities, this alloy exhibited a biased transformation strain on the order of 3% and a two-way shape memory effect (TWSME) strain of similar to 2%, at relatively high actuation temperatures. Published by Elsevier B.V. C1 [Benafan, O.; Garg, A.; Noebe, R. D.; Bigelow, G. S.; Padula, S. A., II; Gaydosh, D. J.] NASA Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA. [Garg, A.] Univ Toledo, Toledo, OH 43606 USA. [Gaydosh, D. J.] Ohio Aerosp Inst, Cleveland, OH 44142 USA. [Vaidyanathan, R.] Univ Cent Florida, Mat Sci & Engn Dept, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Clausen, B.; Vogel, S. C.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Benafan, O (reprint author), NASA Glenn Res Ctr, Struct & Mat Div, Cleveland, OH 44135 USA. EM othmane.benafan@nasa.gov RI Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X FU NASA Fundamental Aeronautics Program; Aeronautical Sciences and Transformative Aeronautics Concepts Program; Transformational Tools and Technologies Projects; Office of Basic Energy Sciences DOE; DOE [DE-AC52-06NA25396] FX Funding from the NASA Fundamental Aeronautics Program, Aeronautical Sciences and Transformative Aeronautics Concepts Program, Transformational Tools and Technologies Projects, technical lead Dale Hopkins, is gratefully acknowledged. The authors thank T.A. Sisneros and D. W. Brown at LANL for technical support and helpful discussions. The authors also thank D.F. Johnson for conducting ICP measurements. This work has benefited from the use of the SMARTS and HIPPO instruments at the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences DOE. LANL is operated by Los Alamos National Security LLC under DOE under Contract No. DE-AC52-06NA25396. NR 89 TC 1 Z9 1 U1 4 U2 43 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD SEP 15 PY 2015 VL 643 BP 275 EP 289 DI 10.1016/j.jallcom.2015.04.081 PG 15 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA CJ0EZ UT WOS:000355149300039 ER PT J AU Fox, BR Brinich, BL Male, JL Hubbard, RL Siddiqui, MN Saleh, TA Tyler, DR AF Fox, Brandy R. Brinich, Benjamin L. Male, Jonathan L. Hubbard, Robert L. Siddiqui, Mohammad N. Saleh, Tawfik A. Tyler, David R. TI Enhanced oxidative desulfurization in a film-shear reactor SO FUEL LA English DT Article DE Oxidative desulfurization; Film-shear reactor; Sulfur heterocycles; Recalcitrant thiophenes; Biphasic reaction ID DEEP DESULFURIZATION; DIESEL FUEL; SULFUR-COMPOUNDS; METAL-CARBONYLS; IONIC LIQUID; JET FUEL; HYDRODESULFURIZATION; H2O2; DIBENZOTHIOPHENE; REACTIVITIES AB A film-shear reactor was used to significantly enhance the oxidative desulfurization (ODS) of model fuels using hydrogen peroxide as the oxidant. Significant increases in the amount of sulfur removed were seen in comparison to conventionally stirred ODS reactions. For example, up to 50% desulfurization occurred in a single pass of the model fuel through the film-shear reactor at 10 degrees C. The desulfurization reactions were very fast in the reactor, occurring on the time scale of seconds to minutes. Desulfurization was studied under a variety of conditions, and a statistical design of experiment (DOE) showed that the fuel to oxidant ratio was the only statistically significant parameter to impact the extent of desulfurization: a larger amount of oxidant led to higher desulfurization. A variety of benzothiophene contaminants (benzothiophene, 2-methylbenzothiophene, 5-methylbenzothiophene, dibenzothiophene, and 4,6-dimethyldibenzothiophene) were examined, and the film-shear reactor was effective in removing all of these contaminants. The film-shear reactor was effective at both low (0.5-2.0 mL/min) and high (100-300 mL/min) flow rates. Experiments showed that oxygen in air was not an effective oxidant for ODS in the film-shear reactor. Experiments using Mo(CO)(6) as a molecular thermometer showed that "hot spots'' are not forming in the film-shear reactor, and thus the increase in the ODS rate cannot be attributed to intense thermal activation occurring within the film-shear reactor. It is suggested that superb mixing of the aqueous and fuel phases is responsible for the increased rate of ODS in the reactor. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Fox, Brandy R.; Brinich, Benjamin L.; Tyler, David R.] Dept Chem & Biochem, Eugene, OR 97403 USA. [Male, Jonathan L.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Hubbard, Robert L.] Lambda Technol Inc, Morrisville, NC 27560 USA. [Siddiqui, Mohammad N.; Saleh, Tawfik A.] King Fahd Univ Petr & Minerals, Dept Chem, Dhahran 31261, Saudi Arabia. [Siddiqui, Mohammad N.; Saleh, Tawfik A.] King Fahd Univ Petr & Minerals, Ctr Res Excellence Nanotechnol CENT, Dhahran 31261, Saudi Arabia. RP Tyler, DR (reprint author), Dept Chem & Biochem, 1253 Univ Oregon, Eugene, OR 97403 USA. EM dtyler@uoregon.edu RI saleh, tawfik/M-5606-2015 OI saleh, tawfik/0000-0002-3037-5159 FU National Science Foundation [DGE-0231997]; Army Research Laboratory [W911NF-07-2-0083]; King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM), National Science, Technology and Innovation Plan (NSTIP) [12-PET3009-04] FX The authors acknowledge Dr. Jeffrey C. Raber at KinetiChem, Inc. who provided substantial technical assistance and consultation. We are also grateful to B. Nell and A. Sun for their experimental contributions. Initial funding for this research was provided by the National Science Foundation (DGE-0231997) and the Army Research Laboratory (W911NF-07-2-0083). For funding since 2014, the authors acknowledge the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM) through project No. 12-PET3009-04 as part of the National Science, Technology and Innovation Plan (NSTIP). NR 42 TC 6 Z9 7 U1 2 U2 35 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD SEP 15 PY 2015 VL 156 BP 142 EP 147 DI 10.1016/j.fuel.2015.04.028 PG 6 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CI2JA UT WOS:000354571400017 ER PT J AU Tchapda, AH Pisupati, SV AF Tchapda, Aime H. Pisupati, Sarma V. TI Characterization of an entrained flow reactor for pyrolysis of coal and biomass at higher temperatures SO FUEL LA English DT Article DE Coal; Biomass; Pyrolysis; Pore coalescence; Reactivity; Thermal annealing ID CHAR THERMAL DEACTIVATION; GASIFICATION; DEVOLATILIZATION; CONVERSION; POROSITY; METHANE AB A laboratory-scale entrained flow reactor for gasification/pyrolysis of coal and biomass has been designed and constructed at the Pennsylvania State University. The pre-experimental numerical simulations have been used as an aid in the design of the reactor as well as understanding and explaining the experimental results. Post experimental modeling of the reactor has been carried out using the CFD package ANSYS-Fluent. Results from experiments conducted with the reactor are here presented. These initial characterization activities of the entrained flow reactor are carried out at atmospheric pressure. Modeling and experiments are conducted at three different temperatures: 1573 K, 1673 K and 1773 K. The CFD models show some particle and gas recirculation at the inlet of the reactor. The calculated residence time in the reactor is 0.5 s for biomass and 0.4 s for coal when the particles traveling distance is 0.65 m. Tar and CO are the dominant species at 1573 K in both coal and biomass conversions, however while tar reduces as the temperature increases, the CO formation increases. Fuel conversion varies significantly between coal and biomass. The minimum conversions observed during experiments were 86.7% for biomass and 56.8% for coal at 1573 K. Conversion rates as high as 90.5% were observed for biomass at 1773 K, while the maximum coal conversion observed was 64.0% at 1773 K. The BET surface area of coal chars obtained at 1573 K and 1673 K was similar and higher than that of the char obtained at 1773 K. This drop of surface area at 1773 K has been attributed to pore coalescence, following observation of the SEM images. The surface area of biomass chars does not vary significantly. The reactivity studies conducted on the chars reveal some thermal annealing at higher temperature for coal; this occurrence is observed to be less pronounced for biomass chars. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Tchapda, Aime H.; Pisupati, Sarma V.] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. [Tchapda, Aime H.; Pisupati, Sarma V.] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Pisupati, Sarma V.] US DOE, Natl Energy Technol Lab, Washington, DC 20585 USA. RP Pisupati, SV (reprint author), 126B Hosler Bldg, University Pk, PA 16802 USA. EM ant131@psu.edu; sxp17@psu.edu NR 30 TC 5 Z9 5 U1 5 U2 65 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD SEP 15 PY 2015 VL 156 BP 254 EP 266 DI 10.1016/j.fuel.2015.04.015 PG 13 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA CI2JA UT WOS:000354571400029 ER PT J AU Larsen, PE Dai, Y AF Larsen, Peter E. Dai, Yang TI Metabolome of human gut microbiome is predictive of host dysbiosis SO GIGASCIENCE LA English DT Article DE Dysbiosis; Gut microbiome; Human microbiome; Machine learning; Metabolome modeling; Metagenomics; Microbial communities ID INFLAMMATORY-BOWEL-DISEASE; OBESITY; METAGENOMICS; ASSOCIATIONS; ENVIRONMENT; MODULATION; DISORDERS; DYNAMICS; IMMUNITY; PROTEIN AB Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome's interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome-host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions. C1 [Larsen, Peter E.; Dai, Yang] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA. [Larsen, Peter E.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Larsen, PE (reprint author), Univ Illinois, Dept Bioengn, 851 South Morgan,SEO218, Chicago, IL 60607 USA. EM plarsen@anl.gov FU US Department of Energy, Office of Biological and Environmental Research (BER), BER's Genomic Science Program; US Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX We would like to thank Dr. Lawrence David at the Duke Center for Genomics and Computational Biology for generously providing data from his study of dynamics of the human microbiome. We would like to thank Danielle Larsen for a critical review of this manuscript. We also thank the reviewers for many insightful comments and recommendations. This contribution originates in part from the "Environment Sensing and Response" Scientific Focus Area (SFA) program at Argonne National Laboratory. This research was supported by the US Department of Energy, Office of Biological and Environmental Research (BER), as part of BER's Genomic Science Program. It was funded by the US Department of Energy, Office of Biological and Environmental Research, under Contract DE-AC02-06CH11357. NR 65 TC 4 Z9 4 U1 2 U2 17 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND EI 2047-217X J9 GIGASCIENCE JI GigaScience PD SEP 14 PY 2015 VL 4 AR 42 DI 10.1186/s13742-015-0084-3 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CX4KC UT WOS:000365667900002 PM 26380076 ER PT J AU Trickett, CA Gagnon, KJ Lee, S Gandara, F Burgi, HB Yaghi, OM AF Trickett, Christopher A. Gagnon, Kevin J. Lee, Seungkyu Gandara, Felipe Buergi, Hans-Beat Yaghi, Omar M. TI Definitive Molecular Level Characterization of Defects in UiO-66 Crystals SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE metal-organic frameworks; single crystals; structure elucidation; UiO-66; X-ray diffraction ID METAL-ORGANIC FRAMEWORKS; ACTIVE-SITE; MICROSCOPY; STABILITY; CHEMISTRY; GROWTH AB The identification and characterization of defects, on the molecular level, in metal-organic frameworks (MOFs) remain a challenge. With the extensive use of single-crystal Xray diffraction (SXRD),the missing linker defects in the zirconium-based MOF called UiO-66, Zr6O4(OH)(4)(C8H4O4)(6), have been identified as water molecules coordinated directly to the zirconium centers. Charge balancing is achieved by hydroxide anions, which are hydrogen bonded within the pores of the framework. Furthermore, the precise nature of the defects and their concentration can be manipulated by altering the starting materials, synthesis conditions, and post-synthetic modifications. C1 [Trickett, Christopher A.; Lee, Seungkyu; Yaghi, Omar M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Global Sci Berkeley,Div Mat Sci, Dept Chem,Kavli Energy Nanosci Inst Berkeley, Berkeley, CA 94720 USA. [Gagnon, Kevin J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Gandara, Felipe] CSIC, Mat Sci Inst Madrid, Dept New Architectures Mat Chem, E-28049 Madrid, Spain. [Buergi, Hans-Beat] Univ Zurich, Inst Chem, CH-8057 Zurich, Switzerland. [Yaghi, Omar M.] King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia. RP Yaghi, OM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Global Sci Berkeley,Div Mat Sci, Dept Chem,Kavli Energy Nanosci Inst Berkeley, Berkeley, CA 94720 USA. EM yaghi@berkeley.edu RI Gandara, Felipe/B-9198-2013; OI Gandara, Felipe/0000-0002-1671-6260; Yaghi, Omar/0000-0002-5611-3325 FU BASF SE (Ludwigshafen, Germany); U.S. Department of Defense, Defense Threat Reduction Agency [HDTRA 1-12-1-0053]; Office of Science, Office of Basic Energy Sciences, of U.S. Department of Energy [DE-AC02-05CH11231]; Juan de la Cierva program FX This work, including synthesis, characterization, and crystal structure analysis was funded by BASF SE (Ludwigshafen, Germany) and the U.S. Department of Defense, Defense Threat Reduction Agency (HDTRA 1-12-1-0053). Work performed at the Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge Y. Zhao (Yaghi group) for his assistance with electron microscopy; Dr. P. Siman (Yaghi group) for discussions; and Dr. S. Teat for the synchrotron X-ray diffraction data acquisition support at the beamline 11.3.1 (Advanced Light Source, Lawrence Berkeley National Laboratory). F.G. acknowledges the Spanish Ministry of Economy and Competitiveness for funding through the Juan de la Cierva program. NR 31 TC 30 Z9 30 U1 25 U2 144 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD SEP 14 PY 2015 VL 54 IS 38 BP 11162 EP 11167 DI 10.1002/anie.201505461 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA CU2YJ UT WOS:000363389400030 PM 26352027 ER PT J AU Jiang, J Zhang, H Lu, X Lu, Y Cuneo, MJ O'Neill, HM Urban, V Lo, CS Blankenship, RE AF Jiang, Jing Zhang, Hao Lu, Xun Lu, Yue Cuneo, Matthew J. O'Neill, Hugh M. Urban, Volker Lo, Cynthia S. Blankenship, Robert E. TI Oligomerization state and pigment binding strength of the peridinin-Chl a-protein SO FEBS LETTERS LA English DT Article DE Photosynthesis; Light-harvesting; Dinoflagellate; Symbiodinium; Chlorophyll; Peridinin; Native mass spectrometry ID SYMBIOTIC DINOFLAGELLATE SYMBIODINIUM; ANGLE NEUTRON-SCATTERING; AMPHIDINIUM-CARTERAE; MASS-SPECTROMETRY; CHLOROPHYLL-PROTEIN; PHOTOSYNTHETIC MACHINERY; CULTURED SYMBIODINIUM; ENERGY-TRANSFER; X-RAY; COMPLEX AB The peridinin-chlorophyll a-protein (PCP) is one of the major light harvesting complexes (LHCs) in photosynthetic dinoflagellates. We analyzed the oligomeric state of PCP isolated from the dinoflagellate Symbiodinium, which has received increasing attention in recent years because of its role in coral bleaching. Size-exclusion chromatography (SEC) and small angle neutron scattering (SANS) analysis indicated PCP exists as monomers. Native mass spectrometry (native MS) demonstrated two oligomeric states of PCP, with the monomeric PCP being dominant. The trimerization may not be necessary for PCP to function as a light-harvesting complex. (C) 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. C1 [Jiang, Jing; Lo, Cynthia S.] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Zhang, Hao; Lu, Yue; Blankenship, Robert E.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Lu, Xun; Cuneo, Matthew J.; O'Neill, Hugh M.; Urban, Volker] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Blankenship, Robert E.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. RP Blankenship, RE (reprint author), Washington Univ, One Brookings Dr,Campus Box 1137, St Louis, MO 63130 USA. EM blankenship@wustl.edu RI Urban, Volker/N-5361-2015; Lo, Cynthia/B-5441-2008; jiang, jing/P-9266-2016; OI Urban, Volker/0000-0002-7962-3408; Lo, Cynthia/0000-0003-2873-4869; Cuneo, Matthew/0000-0002-1475-6656; O'Neill, Hugh/0000-0003-2966-5527 FU DOE, Office of Science, Office of Basic Energy Sciences [DE-SC 0001035]; U.S. DOE, Office of Science, Office of Biological and Environmental Research [FWP ERKP291]; Scientific User Facilities Division, Basic Energy Sciences; U. S. Department of Energy (DOE) [DE-AC05-00OR22725] FX The authors would like to thank Drs. David Kramer and Atsuko Kanazawa of Michigan State University for providing the Symbiodinium culture, and Ms. Mindy Prado for helping with cell culturing. This research is from the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the DOE, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC 0001035. The Center for Structural Molecular Biology operates Bio-SANS and is supported by the U.S. DOE, Office of Science, Office of Biological and Environmental Research under FWP ERKP291. The High Flux Isotope Reactor is sponsored by the Scientific User Facilities Division, Basic Energy Sciences. Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC, for the U. S. Department of Energy (DOE) under contract No. DE-AC05-00OR22725. NR 41 TC 0 Z9 0 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0014-5793 EI 1873-3468 J9 FEBS LETT JI FEBS Lett. PD SEP 14 PY 2015 VL 589 IS 19 BP 2713 EP 2719 DI 10.1016/j.febslet.2015.07.039 PN B PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA CT2GJ UT WOS:000362619700009 PM 26241331 ER PT J AU Cao, YW Shafer, P Liu, XR Meyers, D Kareev, M Middey, S Freeland, JW Arenholz, E Chakhalian, J AF Cao, Yanwei Shafer, P. Liu, Xiaoran Meyers, D. Kareev, M. Middey, S. Freeland, J. W. Arenholz, E. Chakhalian, J. TI Magnetism and electronic structure of YTiO3 thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID X-RAY-ABSORPTION; DICHROISM SUM-RULES; OXIDE INTERFACES; CIRCULAR-DICHROISM; 2P ABSORPTION; SPECTRA; EDGES; SCATTERING; MOMENT; LAMNO3 AB High-quality (001)-oriented (pseudo-cubic notation) ferromagnetic YTiO3 thin films were epitaxially synthesized in a layer-by-layer way by pulsed laser deposition. Structural, magnetic, and electronic properties were characterized by reflection-high-energy-electron-diffraction, X-ray diffraction, vibrating sample magnetometry, and element-resolved resonant soft X-ray absorption spectroscopy. To reveal ferromagnetism of the constituent titanium ions, X-ray magnetic circular dichroism spectroscopy was carried out using four detection modes probing complementary spatial scale, which overcomes a challenge of probing ferromagnetic titanium with pure Ti3+(3d(1)). Our work provides a pathway to distinguish between the roles of titanium and A-site magnetic rare-earth cations in determining the magnetism in rare-earth titanates thin films and heterostructures. (C) 2015 AIP Publishing LLC. C1 [Cao, Yanwei; Liu, Xiaoran; Meyers, D.; Kareev, M.; Middey, S.; Chakhalian, J.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Shafer, P.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Cao, YW (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. EM yc003@uark.edu RI Middey, Srimanta/D-9580-2013; Chakhalian, Jak/F-2274-2015 OI Middey, Srimanta/0000-0001-5893-0946; FU Gordon and Betty Moore Foundation EPiQS Initiative [GBMF4534]; DOD-ARO [0402-17291]; Department of Energy [DE-SC0012375]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX The authors acknowledge the discussions with Se Young Park. J.C. and D.M. were supported by the Gordon and Betty Moore Foundation EPiQS Initiative through Grant No. GBMF4534. Y.C. and S.M. were supported by the DOD-ARO under Grant No. 0402-17291 and X.L. acknowledges the support by the Department of Energy grant DE-SC0012375. The Advanced Light Source was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 51 TC 1 Z9 1 U1 6 U2 38 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 14 PY 2015 VL 107 IS 11 AR 112401 DI 10.1063/1.4931039 PG 5 WC Physics, Applied SC Physics GA CR8YA UT WOS:000361639200030 ER PT J AU David, SN Zhai, Y van der Zande, AM O'Brien, K Huang, PY Chenet, DA Hone, JC Zhang, X Yin, XB AF David, Sabrina N. Zhai, Yao van der Zande, Arend M. O'Brien, Kevin Huang, Pinshane Y. Chenet, Daniel A. Hone, James C. Zhang, Xiang Yin, Xiaobo TI Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers SO APPLIED PHYSICS LETTERS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; MOS2 ATOMIC LAYERS; GRAIN-BOUNDARIES; MOLYBDENUM-DISULFIDE; 2ND-HARMONIC GENERATION; GRAPHENE; STRENGTH; MICROSCOPY AB Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of +/- 1 degrees with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques. (C) 2015 AIP Publishing LLC. C1 [David, Sabrina N.; Yin, Xiaobo] Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80309 USA. [Zhai, Yao; Yin, Xiaobo] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [van der Zande, Arend M.; Chenet, Daniel A.; Hone, James C.] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. [van der Zande, Arend M.; Huang, Pinshane Y.] Univ Illinois, Dept Engn Sci & Mech, Urbana, IL 61801 USA. [O'Brien, Kevin; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Uc Berkeley, CA 94720 USA. [Zhang, Xiang] King Abdulaziz Univ, Dept Phys, Jeddah 21413, Saudi Arabia. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yin, XB (reprint author), Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80309 USA. EM Xiaobo.Yin@Colorado.Edu RI van der Zande, Arend/C-1989-2016; Zhang, Xiang/F-6905-2011; Yin, Xiaobo/A-4142-2011; OI van der Zande, Arend/0000-0001-5104-9646; Huang, Pinshane/0000-0002-1095-1833 FU Soft Materials Research Center under NSF MRSEC [DMR-1420736]; University of Colorado; NSF [DMR-1124849]; Air Force Office of Scientific Research (AFOSR) [FA9550-14-1-0268]; 'Light-Material Interactions in Energy Conversion' Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH11231] FX This work was partially supported by the Soft Materials Research Center under NSF MRSEC Grant No. DMR-1420736 and the University of Colorado. A.v.d.Z., D.C., and J.H. were supported by the NSF Grant No. DMR-1124849 and by Air Force Office of Scientific Research (AFOSR) FA9550-14-1-0268. K.O. and X.Z. were supported by the 'Light-Material Interactions in Energy Conversion' Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-AC02-05CH11231. NR 31 TC 2 Z9 2 U1 10 U2 46 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 14 PY 2015 VL 107 IS 11 AR 111902 DI 10.1063/1.4930232 PG 4 WC Physics, Applied SC Physics GA CR8YA UT WOS:000361639200018 ER PT J AU Streubel, R Fischer, P Kopte, M Schmidt, OG Makarov, D AF Streubel, Robert Fischer, Peter Kopte, Martin Schmidt, Oliver G. Makarov, Denys TI Magnetization dynamics of imprinted non-collinear spin textures SO APPLIED PHYSICS LETTERS LA English DT Article ID SKYRMION; LATTICE; MOTION; STATES AB We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft-and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex-to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices. (C) 2015 AIP Publishing LLC. C1 [Streubel, Robert; Kopte, Martin; Schmidt, Oliver G.; Makarov, Denys] IFW Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany. [Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Fischer, Peter] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Schmidt, Oliver G.] Tech Univ Chemnitz, Mat Syst Nanoelect, D-09107 Chemnitz, Germany. RP Streubel, R (reprint author), IFW Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany. EM r.streubel@ifw-dresden.de; d.makarov@ifw-dresden.de RI Streubel, Robert/D-9686-2012; Fischer, Peter/A-3020-2010; Makarov, Denys/G-1025-2011 OI Fischer, Peter/0000-0002-9824-9343; FU ERC under EU/ERC [306277]; DOE BES MSED [DE-AC02-05-CH11231]; Leading Foreign Research Institute Recruitment Program through NRF of Korea - MEST [2012K1A4A3053565] FX We thank I. Fiering and I. Monch (both IFW Dresden) for metal deposition and assistance with electron beam lithography, respectively. V. P. Kravchuk (BITP Kiev) is acknowledged for fruitful discussions on the analytical treatment. This work was financed via the ERC under EU's 7th FP (FP7/2007-2013)/ERC Grant Agreement No. 306277. P.F. acknowledges support from DOE BES MSED (DE-AC02-05-CH11231) and by Leading Foreign Research Institute Recruitment Program (2012K1A4A3053565) through the NRF of Korea funded by MEST. NR 27 TC 3 Z9 3 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 14 PY 2015 VL 107 IS 11 AR 112406 DI 10.1063/1.4931101 PG 4 WC Physics, Applied SC Physics GA CR8YA UT WOS:000361639200035 ER PT J AU Terentyev, S Blank, V Polyakov, S Zholudev, S Snigirev, A Polikarpov, M Kolodziej, T Qian, J Zhou, H Shvyd'ko, Y AF Terentyev, Sergey Blank, Vladimir Polyakov, Sergey Zholudev, Sergey Snigirev, Anatoly Polikarpov, Maxim Kolodziej, Tomasz Qian, Jun Zhou, Hua Shvyd'ko, Yuri TI Parabolic single-crystal diamond lenses for coherent x-ray imaging SO APPLIED PHYSICS LETTERS LA English DT Article ID COMPOUND REFRACTIVE LENS; ADVANCED PHOTON SOURCE; MONOCHROMATOR; OPTICS; TRANSMISSION; MICROSCOPY; RANGE; BEAMS; LASER AB We demonstrate parabolic single-crystal diamond compound refractive lenses designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic with a similar or equal to 1 mu m precision and surface roughness. A compound refractive lens comprised of six lenses with a radius of curvature R = 200 mu m at the vertex of the parabola and a geometrical aperture A = 900 mu m focuses 10 keV x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of similar or equal to 20 x 90 mu m(2) with a gain factor of similar or equal to 50 - 100. (C) 2015 Author(s). C1 [Terentyev, Sergey; Blank, Vladimir; Polyakov, Sergey; Zholudev, Sergey] Technol Inst Superhard & Novel Carbon Mat, Troitsk 142190, Russia. [Snigirev, Anatoly; Polikarpov, Maxim] Immanuel Kant Balt Fed Univ, Kaliningrad 236041, Russia. [Kolodziej, Tomasz; Qian, Jun; Zhou, Hua; Shvyd'ko, Yuri] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Shvyd'ko, Y (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shvydko@aps.anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Ministry of Education and Science of the Russian Federation [RFMEF1586114X0001, 14.586.21.0001, 14.Y26.31.0002, 02.G25.31.0086] FX Yu.Sh. is grateful to Lahsen Assoufid (APS) for the discussion of the metrology data, to Bin Shi (APS) for help with metrology measurement, to Russel Woods and Matt Moore (APS) for providing the sCMOS camera with submicron resolution and support during the experiment, and to Emil Trakhtenberg for engineering drawings of the lens holder. Discussions with Christian Schroer (DESY) on the influence of microroughness are gratefully acknowledged. Work at the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Work at TISNCM and Baltic Federal University (BFU) was supported by the Ministry of Education and Science of the Russian Federation: scientific project RFMEF1586114X0001 Grant No. 14.586.21.0001 (TISNCM); Grant Nos. 14.Y26.31.0002 and 02.G25.31.0086 (BFU). NR 32 TC 11 Z9 12 U1 4 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 14 PY 2015 VL 107 IS 11 AR 111108 DI 10.1063/1.4931357 PG 5 WC Physics, Applied SC Physics GA CR8YA UT WOS:000361639200008 ER PT J AU Zhao, JK Hamilton, WA Lee, SW Robertson, JL Crow, L Kang, YW AF Zhao, Jinkui Hamilton, William A. Lee, Sung-Woo Robertson, J. L. Crow, Lowell Kang, Yoon W. TI Neutron intensity modulation and time-focusing with integrated Larmor and resonant frequency techniques SO APPLIED PHYSICS LETTERS LA English DT Article ID SPIN-ECHO; SCATTERING; SPECTROMETER AB The analysis of neutron diffraction experiments often assumes that neutrons are elastically scattered from the sample. However, there is growing evidence that a significant fraction of the detected neutrons is in fact inelastically scattered, especially from soft materials and aqueous samples. Ignoring these inelastic contributions gives rise to inaccurate experimental results. To date, there has been no simple method with broad applicability for inelastic signal separation in neutron diffraction experiments. Here, we present a simple and robust method that we believe could be suited for this purpose. We use two radio frequency resonant spin flippers integrated with a Larmor precession field to modulate the neutron intensity and to encode the inelastic scattering information into the neutron data. All three components contribute to the spin encoding. The Larmor field serves several additional purposes. Its usage facilitates neutron time-focusing, eliminates the need for stringent magnetic shielding, and allows for compact setups. The scheme is robust, simple, and flexible. We believe that, with further improvements, it has the potential of adding inelastic signal discrimination capabilities to many existing diffraction instruments in the future. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Zhao, Jinkui; Hamilton, William A.; Robertson, J. L.; Crow, Lowell] Oak Ridge Natl Lab, Spallat Neutron Source, Instrument & Source Div, Oak Ridge, TN 37831 USA. [Lee, Sung-Woo; Kang, Yoon W.] Oak Ridge Natl Lab, Spallat Neutron Source, Res Accelerator Div, Oak Ridge, TN 37831 USA. RP Zhao, JK (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Instrument & Source Div, Oak Ridge, TN 37831 USA. EM zhaoj@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725] FX This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 20 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 14 PY 2015 VL 107 IS 11 AR 113508 DI 10.1063/1.4931384 PG 4 WC Physics, Applied SC Physics GA CR8YA UT WOS:000361639200057 ER PT J AU Wallace, JB Aji, LBB Li, TT Shao, L Kucheyev, SO AF Wallace, J. B. Aji, L. B. Bayu Li, T. T. Shao, L. Kucheyev, S. O. TI Damage buildup in Ar-ion-irradiated 3C-SiC at elevated temperatures SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID BEAM-INDUCED AMORPHIZATION; SILICON-CARBIDE; IMPLANTATION; DEPENDENCE; CERAMICS; CRYSTALS; SI AB Above room temperature, the accumulation of radiation damage in 3C-SiC is strongly influenced by dynamic defect interaction processes and remains poorly understood. Here, we use a combination of ion channeling and transmission electron microscopy to study lattice disorder in 3C-SiC irradiated with 500 keV Ar ions in the temperature range of 25-250 degrees C. Results reveal sigmoidal damage buildup for all the temperatures studied. For 150 degrees C and below, the damage level monotonically increases with ion dose up to amorphization. Starting at 200 degrees C, the shape of damage-depth profiles becomes anomalous, with the damage peak narrowing and moving to larger depths and an additional shoulder forming close to the ion end of range. As a result, damage buildup curves for 200 and 250 degrees C exhibit an anomalous two-step shape, with a damage saturation stage followed by rapid amorphization above a critical ion dose, suggesting a nucleation-limited amorphization behavior. Despite their complexity, all damage buildup curves are well described by a phenomenological model based on an assumption of a linear dependence of the effective amorphization cross section on ion dose. In contrast to the results of previous studies, 3C-SiC can be amorphized by bombardment with 500 keV Ar ions even at 250 degrees C with a relatively large dose rate of similar to 2 x 10(13) cm(-2) s(-1), revealing a dominant role of defect interaction dynamics at elevated temperatures. (C) 2015 AIP Publishing LLC. C1 [Wallace, J. B.; Aji, L. B. Bayu; Li, T. T.; Kucheyev, S. O.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wallace, J. B.; Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Wallace, JB (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94550 USA. RI Foundry, Molecular/G-9968-2014; OI Li, Tian/0000-0003-2409-5799 FU Nuclear Energy Enabling Technology (NEET) Program of the U.S. DOE, Office of Nuclear Energy; U.S. DOE [DE-AC52-07NA27344]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; LGSP FX This work was funded by the Nuclear Energy Enabling Technology (NEET) Program of the U.S. DOE, Office of Nuclear Energy and performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J.B.W. would like to acknowledge the LGSP for funding. NR 33 TC 3 Z9 3 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 14 PY 2015 VL 118 IS 10 AR 105705 DI 10.1063/1.4929953 PG 7 WC Physics, Applied SC Physics GA CR8XE UT WOS:000361636900053 ER PT J AU Medders, GR Gotz, AW Morales, MA Bajaj, P Paesani, F AF Medders, Gregory R. Goetz, Andreas W. Morales, Miguel A. Bajaj, Pushp Paesani, Francesco TI On the representation of many-body interactions in water SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POTENTIAL-ENERGY SURFACE; TRANSFERABLE INTERACTION MODELS; AB-INITIO CALCULATIONS; BASIS-SET LIMIT; 1ST PRINCIPLES; LIQUID WATER; MOLECULE INTERACTIONS; ELECTRONIC-STRUCTURE; 3-BODY INTERACTIONS; VIRIAL-COEFFICIENT AB Recent work has shown that the many-body expansion of the interaction energy can be used to develop analytical representations of global potential energy surfaces (PESs) for water. In this study, the role of short-and long-range interactions at different orders is investigated by analyzing water potentials that treat the leading terms of the many-body expansion through implicit (i.e., TTM3-F and TTM4-F PESs) and explicit (i.e., WHBB and MB-pol PESs) representations. It is found that explicit short-range representations of 2-body and 3-body interactions along with a physically correct incorporation of short-and long-range contributions are necessary for an accurate representation of the water interactions from the gas to the condensed phase. Similarly, a complete many-body representation of the dipole moment surface is found to be crucial to reproducing the correct intensities of the infrared spectrum of liquid water. (C) 2015 AIP Publishing LLC. C1 [Medders, Gregory R.; Bajaj, Pushp; Paesani, Francesco] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Goetz, Andreas W.] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA. [Morales, Miguel A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Medders, GR (reprint author), Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. OI Bajaj, Pushp/0000-0003-1671-2857 FU National Science Foundation [CHE-1453204, ACI-1053575, TG-CHE110009, CHE-1416571]; Department of Education through the GAANN fellowship; Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Sciences (BES), Department of Energy (DOE); US DOE by LLNL [DE-AC52-07NA27344] FX We would like to thank Dr. Greg Schenter and Dr. Chris Mundy for several stimulating discussions on manybody effects in water, and Professor Rich Saykally for helpful discussions about the origin of the low frequency portion of the IR spectrum of liquid water. This research was supported by the National Science Foundation (Grant No. CHE-1453204) and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation (Grant No. ACI-1053575, allocation TG-CHE110009). AWG acknowledges support by the National Science Foundation (Grant No. CHE-1416571). GRM acknowledges the Department of Education for support through the GAANN fellowship program. MAM was supported through the Predictive Theory and Modeling for Materials and Chemical Science program by the Office of Basic Energy Sciences (BES), Department of Energy (DOE), and under the auspices of the US DOE by LLNL under Contract No. DE-AC52-07NA27344. NR 72 TC 25 Z9 25 U1 4 U2 31 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2015 VL 143 IS 10 AR 104102 DI 10.1063/1.4930194 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CR8AG UT WOS:000361572900025 PM 26374013 ER PT J AU Stephansen, AB King, SB Yokoi, Y Minoshima, Y Li, WL Kunin, A Takayanagi, T Neumark, DM AF Stephansen, Anne B. King, Sarah B. Yokoi, Yuki Minoshima, Yusuke Li, Wei-Li Kunin, Alice Takayanagi, Toshiyuki Neumark, Daniel M. TI Dynamics of dipole-and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; LOW-ENERGY ELECTRONS; NUCLEIC-ACID BASES; DNA-STRAND BREAKS; EXCITED-STATE DYNAMICS; THEORETICAL AB-INITIO; GAS-PHASE; AQUEOUS-SOLUTION; DEPROTONATED THYMINE; RELAXATION DYNAMICS AB Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison with calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty p-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available. (C) 2015 AIP Publishing LLC. C1 [Stephansen, Anne B.] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen O, Denmark. [King, Sarah B.; Li, Wei-Li; Kunin, Alice; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yokoi, Yuki; Minoshima, Yusuke; Takayanagi, Toshiyuki] Saitama Univ, Dept Chem, Sakura Ku, Saitama, Saitama 3388570, Japan. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Takayanagi, Toshiyuki/F-1020-2012; Neumark, Daniel/B-9551-2009; OI Neumark, Daniel/0000-0002-3762-9473; Stephansen, Anne B./0000-0001-8730-002X; Kunin, Alice/0000-0002-3002-8317 FU National Science Foundation (NSF) [CHE-1011819]; Villum Foundation; Ministry of Education, Culture, Sports, Science, and Technology of Japan [21550005] FX The work described in this paper was funded by the National Science Foundation (NSF) under Grant No. CHE-1011819. A.B.S. gratefully acknowledges support from The Villum Foundation. T.T. acknowledges support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Grant No. 21550005). NR 87 TC 5 Z9 5 U1 3 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 14 PY 2015 VL 143 IS 10 AR 104308 DI 10.1063/1.4929995 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CR8AG UT WOS:000361572900048 PM 26374036 ER PT J AU Williams, JB Lara-Curzio, E Cakmak, E Watkins, T Morelli, DT AF Williams, Jared B. Lara-Curzio, Edgar Cakmak, Ercan Watkins, Thomas Morelli, Donald T. TI Enhanced thermoelectric performance driven by high-temperature phase transition in the phase change material Ge4SbTe5 SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID DATA-STORAGE; FILMS AB Phase change materials are identified for their ability to rapidly alternate between the amorphous and crystalline phases and have large contrast in the optical/electrical properties of the respective phases. The materials are not only primarily used in memory storage applications, but also recently they have been identified as potential thermoelectric materials [D. Lencer et al., Adv. Mater. 23, 2030-2058 (2011)]. Many of the phase change materials studied today can be found on the pseudo-binary (GeTe)(1-x)(Sb2Te3) x tie-line. While many compounds on this tie-line have been recognized as thermoelectric materials, here we focus on Ge4SbTe5, a single phase compound just off of the (GeTe)(1-x)(Sb2Te3) x tie-line, which forms in a stable rocksalt crystal structure at room temperature. We find that stoichiometric and undoped Ge4SbTe5 exhibits a thermal conductivity of similar to 1.2 W/m K at high temperature and a large Seebeck coefficient of similar to 50 mu V/K. The resistivity decreases dramatically at 623 K due to a structural phase transition which leads to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. In a more general sense, the work presents evidence that phase change materials can potentially provide a new route to highly efficient thermoelectric materials for power generation at high temperature. C1 [Williams, Jared B.; Morelli, Donald T.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Lara-Curzio, Edgar; Cakmak, Ercan; Watkins, Thomas] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. [Morelli, Donald T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Morelli, DT (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. EM dmorelli@egr.msu.edu RI Watkins, Thomas/D-8750-2016 OI Watkins, Thomas/0000-0002-2646-1329 NR 23 TC 1 Z9 1 U1 4 U2 24 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD SEP 14 PY 2015 VL 30 IS 17 BP 2605 EP 2610 DI 10.1557/jmr.2015.124 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA CR8UX UT WOS:000361630700009 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, SP Allbrooke, BMM Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Aring;Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balestri, T Balli, F Banas, E Banerjee, S Bannoura, AAE Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, M Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, R Urban, SC Caforio, D Cairo, VM Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canalea, V Canepa, A Bret, MC Cantero, J Cantri, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarellia, R Carli, T Carlinoa, G Carminatia, L Caron, S Carquina, E Carrillo-Montoya, GD Carter, JR Carvalhoa, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Childers, JT Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chu, ML Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, PJ Clarke, RN Cleland, W Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Pretea, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichey, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, P Dewhurst, A Dhaliwal, S Di Claccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Martinez, PF Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Fraternali, M Freeborn, D French, ST Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gauzzia, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goujdami, D Goussiou, AG Govender, N Grabas, HMX Graber, L Grabowska-Bold, I Grafstrbom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gu, U Gumpert, C Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hama, P Hamano, K Hamer, M Hamilton, A Hamity, GN Hamnett, G Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaeke, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, RW Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-zada, F Khandanyana, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kim, Y Kimura, N Kind, M King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Koonig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Koro, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwa, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLLR La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghia, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, J Li, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macdonald, CM Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A Filho, LMDA Ramos, JM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Maettig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjoornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morton, A Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, RSP Mueller, T Muenstermann, D Mullen, P Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negria, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PE Oram, CJ Oreglia, MJ Oren, Y Orestanoa, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pah, C Paige, F Pais, P Pajche, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB Panagiotopoulou, E Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pinge, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Phuth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisi, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruehr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Saimpert, M Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Selbach, KE Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simoniello, R Sinervo, P Sinev, NB Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spalla, M Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T St Denis, RD Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Tenon, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tibbetts, MJ Torres, RET Tikhomirov, V Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Truong, L Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychey, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC Van der Geer, R Van der Graaf, H Van der Leeuw, R van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Aben, R. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J., III Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balestri, T. Balli, F. Banas, E. Banerjee, Sw Bannoura, A. A. E. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, R. Cabrera Urban, S. Caforio, D. Cairo, V. M. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canalea, V. Canepa, A. Bret, M. Cano Cantero, J. Cantri, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarellia, R. Carli, T. Carlinoa, G. Carminatia, L. Caron, S. Carquina, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalhoa, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Childers, J. T. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, P. J. Clarke, R. N. Cleland, W. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Conde Muino, P. Coniavitis, E. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Pretea, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichey, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. Dewhurst, A. Dhaliwal, S. Di Claccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Fernandez Martinez, P. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Ferretto Parodi, A. Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Flores Castillo, L. R. Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Fraternali, M. Freeborn, D. French, S. T. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gauzzia, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch Geisler, M. P. Gemme, C. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goujdami, D. Goussiou, A. G. Govender, N. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrboem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gu, U. Gumpert, C. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hama, P. Hamano, K. Hamer, M. Hamilton, A. Hamity, G. N. Hamnett, G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaeke, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. W. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khandanyana, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kim, Y. Kimura, N. Kind, . M. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Koro, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwa, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarro, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghia, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. Li, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Machado Miguens, J. Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. de Andrade Filho, L. Manhaes Ramos, J. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morton, A. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu Neep, T. J. Nef, P. D. Negria, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Pino, S. A. Olivares Damazio, D. Oliveira Oliver Garcia, E. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestanoa, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Pah, C. Paige, F. Pais, P. Pajche, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. Panagiotopoulou, E. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pinge, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Phuth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisi, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saimpert, M. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simoniello, R. Sinervo, P. Sinev, N. B. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spalla, M. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Tenon, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Truong, L. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychey, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. Van der Geer, R. Van der Graaf, H. Van der Leeuw, R. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. Nedden, M. zur Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the correlation between flow harmonics of different order in lead-lead collisions at root S-NN=2.76 TeV with the ATLAS detector SO PHYSICAL REVIEW C LA English DT Article ID RELATIVISTIC NUCLEAR COLLISIONS; EVENT-PLANE CORRELATIONS; ROOT-S(NN)=2.76 TEV; COLLECTIVE FLOW; PB COLLISIONS AB Correlations between the elliptic or triangular flow coefficients v(m) (m = 2 or 3) and other flow harmonics v(n) (n = 2 to 5) are measured using root S-NN = 2.76 TeV Pb + Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 mu b(-1). The v(m)-v(n) correlations aremeasured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v(3) is found to be anticorrelated with v(2) and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, epsilon(2) and epsilon(3). However, it is observed that v(4) increases strongly with v(2), and v(5) increases strongly with both v(2) and v(3). The trend and strength of the v(m) -v(n) correlations for n = 4 and 5 are found to disagree with epsilon(m)-epsilon(n) correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to v(n) and a nonlinear term that is a function of v(2)(2) or of v(2)v(3), as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v(4) and v(5) are found to be consistent with previously measured event-plane correlations. C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, L4PP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Carrillo-Montoya, G. D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, . M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Igonkina, O.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Novgorodova, O.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrboem, P.; Igonkina, O.; Manghia, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Novgorodova, O.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [Alberghi, G. L.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrboem, P.; Manghia, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch; Gonella, L.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uhlenbrock, M.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Igonkina, O.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; La Rosa Navarro, J. L.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Gonzalez, B. Alvarez; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J., III; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Iengo, P.; Jaeke, M. R.; Jakobsen, S.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Okumura, Y.; Onyisi, P. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquina, E.; Diaz, M. A.; Ochoa-Ricoux, J. P.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Li, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, L.; Li, Y.; Wang, C.; Yang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Guo, J.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China. [Chen, X.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Smith, M. N. K.; Thompson, E. N.; Tuts, P. M.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pinge, A.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Cosenza, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Igonkina, O.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Igonkina, O.; Katzy, J.; Keller, J. S.; Kind, . M.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Novgorodova, O.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Erdmann, J.; Esch, H.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwa, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Goessling, C.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Flechl, M.; Giuliani, C.; Herten, G.; Igonkina, O.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Mahboubi, K.; Mohr, W.; Novgorodova, O.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Ancu, L. S.; Barone, G.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Picazio, A.; Ristic, B.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Ferretto Parodi, A.; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Ferretto Parodi, A.; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Tbilisi State Univ, E Andronikashvili Inst Phys 4, GE-380086 Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Kareem, M. J.; Kawamura, G.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Igonkina, O.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA USA. [da Costa, J. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Lisovyi, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZTTI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Flores Castillo, L. R.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R. W.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Cochran, J.; De Lorenzi, F.; Krumnack, N.; Phuth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Chen, C.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichey, M.; Gostkin, M. I.; Huseynov, N.; Igonkina, O.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, S.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Org, Tsukuba, Ibaraki 305, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Allport, P. P.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bevan, A. J.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Pastore, Fr.; Savage, G.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Igonkina, O.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Tenon, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Poettgen, R.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Igonkina, O.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Hu, X.; Levin, D.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminatia, L.; Cavalli, D.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Carminatia, L.; Consonni, S. M.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V.; Zhukov, K.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Igonkina, O.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pah, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst Phys, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canalea, V.; Carlinoa, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canalea, V.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Nikhef, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Novgorodova, O.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, R.; Kazanin, V. F.; Kharlamov, A. G.; Koro, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Bousson, N.; Haley, J.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hama, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajche, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickering, M. A.; Ryder, N. C.; Sawyer, C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negria, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negria, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Lipeles, E.; Machado Miguens, J.; Meyer, C.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Annovi, A.; Becche