FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Wang, H
Whittaker-Brooks, L
Fleming, GR
AF Wang, He
Whittaker-Brooks, Luisa
Fleming, Graham R.
TI Exciton and Free Charge Dynamics of Methylammonium Lead Iodide
Perovskites Are Different in the Tetragonal and Orthorhombic Phases
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID SOLAR-CELLS; CARRIER MOBILITY; EFFICIENCY; CH3NH3PBI3; SEMICONDUCTORS;
RECOMBINATION; TEMPERATURE; LENGTHS; FILMS; BR
AB The small exciton binding energy of perovskite suggests that the long-lived photoluminescence and slow recovery of the ground state bleaching of the tetragonal phase at room temperature results primarily from the decay of free charges rather than the decay of the initially created excitons. Here we demonstrate the ground state bleaching recovery of the orthorhombic phase of methylammonium lead iodide (CH3NH3PbI3) is much faster than that of the tetragonal phase using temperature dependent transient absorption spectroscopy. The distribution in orientation of the methylammonium group which is disordered in the tetragonal phase and ordered in the orthorhombic phase results in smaller dielectric constant and larger exciton binding energy in the latter phase. We observe the recovery of the ground state bleaching in the orthorhombic phase to be comprised of decays of both excitons and free charges. Our findings suggest CH3NH3PbI3 behaves like a nonexcitonic semiconductor in the tetragonal phase and an excitonic semiconductor in the orthorhombic phase.
C1 [Wang, He; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Wang, He; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Wang, He; Fleming, Graham R.] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.
[Wang, He; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Whittaker-Brooks, Luisa] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA.
RP Fleming, GR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
EM fleming@cchem.berkeley.edu
FU National Science Foundation (NSF) [CHE-1012168, CHE-1362830]
FX This work was supported by the National Science Foundation (NSF) under
Awards CHE-1012168 and CHE-1362830.
NR 32
TC 19
Z9 19
U1 2
U2 72
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD AUG 27
PY 2015
VL 119
IS 34
BP 19590
EP 19595
DI 10.1021/acs.jpcc.5b04403
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA CQ2FP
UT WOS:000360415700003
ER
PT J
AU Hopper, EM
Perret, E
Ingram, BJ
You, H
Chang, KC
Baldo, PM
Fuoss, PH
Eastman, JA
AF Hopper, E. Mitchell
Perret, Edith
Ingram, Brian J.
You, Hoydoo
Chang, Kee-Chul
Baldo, Peter M.
Fuoss, Paul H.
Eastman, Jeffrey A.
TI Oxygen Exchange in La0.6Sr0.4Co0.2Fe0.8O3-delta Thin-Film
Heterostructures under Applied Electric Potential
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID DOPED CERIUM OXIDE; DOUBLE-LAYER CATHODES; SURFACE EXCHANGE; CGO
ELECTROLYTES; PART I; REDUCTION; DIFFUSION; KINETICS; MODEL; LSCF
AB In situ synchrotron X-ray diffraction was used to investigate oxygen surface exchange behavior in La0.6Sr0.4Co0.2Fe0.8O3-delta/Gd2O3-doped CeO2/Y2O3-stabilized ZrO2 (LSCF/GDC/YSZ) epitaxial thin-film heterostructures. Applying electrical potentials across the heterostructure under high temperature and controlled oxygen partial pressure conditions resulted in significant changes in oxygen vacancy concentrations due to differing rates of oxygen transport across the LSCF/air surface and LSCF/GDC buried interface. These changes in stoichiometry were correlated with time-dependent out-of-plane LSCF lattice parameter changes. An electrochemical reaction rate analysis was used to determine that the rate constant associated with oxygen exchange at the LSCF/air surface dominates the behavior of the sample as a whole and that the rate of oxygen transport across the LSCF/air surface is smaller than or equal to the rate of oxygen transport across the buried LSCF/GDC interface.
C1 [Hopper, E. Mitchell; Perret, Edith; You, Hoydoo; Chang, Kee-Chul; Baldo, Peter M.; Fuoss, Paul H.; Eastman, Jeffrey A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Ingram, Brian J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Ingram, BJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM ingram@anl.gov
RI You, Hoydoo/A-6201-2011
OI You, Hoydoo/0000-0003-2996-9483
FU Solid State Energy Conversion Alliance (SECA) program; Fossil Energy
Program of the U.S. Department of Energy; Basic Energy Sciences,
Materials Sciences and Engineering Division, U.S. Department of Energy;
DOE Office of Science [DE-AC02-06CH11357]
FX This work was supported by the Solid State Energy Conversion Alliance
(SECA) program and Fossil Energy Program of the U.S. Department of
Energy (E.M.H., K-C.C., B.J.I.), as well as by Basic Energy Sciences,
Materials Sciences and Engineering Division, U.S. Department of Energy
(P.M.B., E.P., J.A.E., P.H.F., H.Y.). This research used resources of
the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of
Science User Facility operated for the DOE Office of Science by Argonne
National Laboratory under Contract No. DE-AC02-06CH11357.
NR 30
TC 1
Z9 1
U1 5
U2 20
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD AUG 27
PY 2015
VL 119
IS 34
BP 19915
EP 19921
DI 10.1021/acs.jpcc.5b05505
PG 7
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA CQ2FP
UT WOS:000360415700041
ER
PT J
AU Henderson, MA
AF Henderson, Michael A.
TI Photochemical Outcomes of Adsorbed Oxygen: Desorption, Dissociation, and
Passivation by Coadsorbed Water
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; RUTILE TIO2(110); O-2 PHOTODESORPTION;
LEED CRYSTALLOGRAPHY; SURFACE-STRUCTURE; TITANIUM-DIOXIDE; OXIDE
SURFACES; ADSORPTION; FE3O4(111); OXIDATION
AB A mixed Fe + Cr oxide surface was used to explore the photochemical fate of adsorbed O-2 under ultra-high-vacuum conditions. The mixed oxide surface possessed a magnetite-like (111) structure based on low-energy electron diffraction, with its chemical behavior resembling that of Fe3O4(111). Oxygen adsorption at 40 K resulted in two chemisorption states, a strongly bound form desorbing in temperature-programmed desorption (TPD) at 230 K and a weakly bound form evolving at 100 K. The former was assigned to charge transfer adsorption at Fe2+ sites and the latter to electrostatic binding at Fe" sites. A minority state was also detected at similar to 160 K and tentatively assigned to adsorption at Cr3+ sites. The 230 K O-2 state was the focus of photochemical studies employing four wavelengths of light from the red to the UV. Irrespective of wavelength, O-2 molecules in the 230 K state preferentially photodesorbed when irradiated, with comparable rates across the visible and an order of magnitude higher in the UV. Approximately 10% of adsorbed O-2 irreversibly photodissociated, irrespective of wavelength, with the resulting fragments blocking access to both Fe3+ and Fe2+ sites for subsequent O-2 adsorption. Preadsorbed water also blocked O-2 adsorption, but postadsorbed water stabilized O-2 at Fe2+ sites in TPD to 285 K. The water-stabilized O-2 molecules were insensitive to photodesorption. O-2 photodissociation and photopassivation both represent potentially adverse outcomes in the release of O-2 during the heterogeneous water photooxidation reaction.
C1 Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA.
RP Henderson, MA (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,MS K8-87, Richland, WA 99352 USA.
EM ma.henderson@pnnl.gov
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences Biosciences;
Department of Energy's Office of Biological and Environmental Research
FX The author thanks Drs. Sara Chamberlin and Scott Chambers for supplying
the film used in this work. This work was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences & Biosciences.
Pacific Northwest National Laboratory (PNNL) is a multiprogram national
laboratory operated for the DOE by Battelle. The research reported here
was performed using EMSL, a national scientific user facility sponsored
by the Department of Energy's Office of Biological and Environmental
Research and located at Pacific Northwest National Laboratory.
NR 67
TC 4
Z9 4
U1 4
U2 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD AUG 27
PY 2015
VL 119
IS 34
BP 19976
EP 19986
DI 10.1021/acs.jpcc.5b05972
PG 11
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA CQ2FP
UT WOS:000360415700049
ER
PT J
AU Bottoni, S
Leoni, S
Fornal, B
Raabe, R
Rusek, K
Benzoni, G
Bracco, A
Crespi, FCL
Morales, AI
Bednarczyk, P
Cieplicka-Orynczak, N
Krolas, W
Maj, A
Szpak, B
Callens, M
Bouma, J
Elseviers, J
De Witte, H
Flavigny, F
Orlandi, R
Reiter, P
Seidlitz, M
Warr, N
Siebeck, B
Hellgartner, S
Mucher, D
Pakarinen, J
Vermeulen, M
Bauer, C
Georgiev, G
Janssens, RVF
Balabanski, D
Sferrazza, M
Kowalska, M
Rapisarda, E
Voulot, D
Benito, ML
Wenander, F
AF Bottoni, S.
Leoni, S.
Fornal, B.
Raabe, R.
Rusek, K.
Benzoni, G.
Bracco, A.
Crespi, F. C. L.
Morales, A. I.
Bednarczyk, P.
Cieplicka-Orynczak, N.
Krolas, W.
Maj, A.
Szpak, B.
Callens, M.
Bouma, J.
Elseviers, J.
De Witte, H.
Flavigny, F.
Orlandi, R.
Reiter, P.
Seidlitz, M.
Warr, N.
Siebeck, B.
Hellgartner, S.
Muecher, D.
Pakarinen, J.
Vermeulen, M.
Bauer, C.
Georgiev, G.
Janssens, R. V. F.
Balabanski, D.
Sferrazza, M.
Kowalska, M.
Rapisarda, E.
Voulot, D.
Benito, M. Lozano
Wenander, F.
TI Cluster-transfer reactions with radioactive beams: A spectroscopic tool
for neutron-rich nuclei
SO PHYSICAL REVIEW C
LA English
DT Article
ID REX-ISOLDE; FUSION; LI-6,LI-7; BREAKUP
AB An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions Li-7(Rb-98, alpha xn) and Li-7(Rb-98, txn) were studied through particle-gamma coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cluster-transfer reactions can be described well as a direct process and that they can be an efficient method to investigate the structure of neutron-rich nuclei at medium-high excitation energies and spins.
C1 [Bottoni, S.; Leoni, S.; Bracco, A.; Crespi, F. C. L.] Univ Milan, I-20133 Milan, Italy.
[Bottoni, S.; Leoni, S.; Benzoni, G.; Bracco, A.; Crespi, F. C. L.; Morales, A. I.; Cieplicka-Orynczak, N.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Bottoni, S.; Raabe, R.; Callens, M.; Bouma, J.; Elseviers, J.; De Witte, H.; Flavigny, F.; Orlandi, R.] Katholieke Univ Leuven, Inst Kern Stralingsfys, B-3001 Leuven, Belgium.
[Fornal, B.; Bednarczyk, P.; Cieplicka-Orynczak, N.; Krolas, W.; Maj, A.; Szpak, B.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland.
[Rusek, K.] Univ Warsaw, Heavy Ion Lab, PL-02093 Warsaw, Poland.
[Flavigny, F.] Univ Paris 11, Inst Phys Nucl Orsay, CNRS, IN2P3, F-91406 Orsay, France.
[Orlandi, R.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan.
[Reiter, P.; Seidlitz, M.; Warr, N.; Siebeck, B.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany.
[Hellgartner, S.; Muecher, D.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany.
[Pakarinen, J.] Univ Jyvaskyla, FIN-40014 Jyvaskyla, Finland.
[Vermeulen, M.] Univ York, Dept Phys, Nucl Phys Grp, York YO10 5DD, N Yorkshire, England.
[Bauer, C.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
[Georgiev, G.] Univ Paris 11, CSNSM, IN2P3, CNRS,UMR8609, F-91405 Orsay, France.
[Janssens, R. V. F.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Balabanski, D.] Hora Hulubei Natl Inst Phys & Nucl Engn, ELI NP, Magurele 077125, Romania.
[Sferrazza, M.] Univ Libre Bruxelles, Dept Phys, B-1050 Brussels, Belgium.
[Kowalska, M.; Rapisarda, E.; Voulot, D.; Benito, M. Lozano; Wenander, F.] CERN, CH-1211 Geneva 23, Switzerland.
RP Leoni, S (reprint author), Univ Milan, I-20133 Milan, Italy.
EM silvia.leoni@mi.infn.it
RI Morales Lopez, Ana Isabel/A-2445-2017; Georgiev, Georgi/C-5110-2008
OI Morales Lopez, Ana Isabel/0000-0002-6665-0925; benzoni,
giovanna/0000-0002-7938-0338; Pakarinen, Janne/0000-0001-8944-8757;
Georgiev, Georgi/0000-0003-1467-1764
FU Istituto Nazionale di Fisica Nucleare (INFN-Italy); FWO-Vlaanderen
(Belgium); BOF KU Leuven [GOA/2010/010]; Interuniversity Attraction
Poles Programme initiated by the Belgian Science Policy Office [P7/12];
Polish Ministry of Science and Higher Education [N-N202-263238];
European Commission [RII3-CT-2010-262010]; German BMBF [06K-167,
06KY205I, 05P09PKCI5, 05P12PKFNE]; US Department of Energy, Office of
Science, Office of Nuclear Physics [DE-AC02-06CH11357]; European
Commission through the Marie Curie Actions [PIEFGA-2011-30096]
FX This work was funded by Istituto Nazionale di Fisica Nucleare
(INFN-Italy), by FWO-Vlaanderen (Belgium), by Grant No. GOA/2010/010
(BOF KU Leuven), by the Interuniversity Attraction Poles Programme
initiated by the Belgian Science Policy Office (BriX network P7/12), by
the Polish Ministry of Science and Higher Education under Contract No.
N-N202-263238, by the European Commission within the Seventh Framework
Programme through I3-ENSAR (Contract No. RII3-CT-2010-262010), by the
German BMBF (Contracts No. 06K-167, No. 06KY205I, No. 05P09PKCI5, and
No. 05P12PKFNE), by the US Department of Energy, Office of Science,
Office of Nuclear Physics under Contract No. DE-AC02-06CH11357, and by
the European Commission through the Marie Curie Actions Contract No.
PIEFGA-2011-30096.
NR 45
TC 1
Z9 1
U1 2
U2 20
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD AUG 27
PY 2015
VL 92
IS 2
AR 024322
DI 10.1103/PhysRevC.92.024322
PG 8
WC Physics, Nuclear
SC Physics
GA CP8EA
UT WOS:000360123600001
ER
PT J
AU Wang, BS
Norman, EB
Scielzo, ND
Smith, AR
Thomas, KJ
Wender, SA
AF Wang, B. S.
Norman, E. B.
Scielzo, N. D.
Smith, A. R.
Thomas, K. J.
Wender, S. A.
TI Cosmogenic-neutron activation of TeO2 and implications for neutrinoless
double-beta decay experiments
SO PHYSICAL REVIEW C
LA English
DT Article
ID PARTIAL CROSS-SECTIONS; ENERGY NUCLEAR-REACTIONS; RAY INDUCED NEUTRONS;
ASTROPHYSICAL APPLICATIONS; GERMANIUM DETECTOR; SPECTRUM; SIMULATION;
TELLURIUM; TARGETS; YIELDS
AB Flux-averaged cross sections for cosmogenic-neutron activation of natural tellurium were measured using a neutron beam containing neutrons of kinetic energies up to similar to 800 MeV and having an energy spectrum similar to that of cosmic-ray neutrons at sea level. Analysis of the radioisotopes produced reveals that Ag-110m will be a dominant contributor to the cosmogenic-activation background in experiments searching for neutrinoless double-beta decay of Te-130, such as the Cryogenic Underground Observatory for Rare Events (CUORE) and the Sudbury Neutrino Observatory Plus (SNO+). An estimate of the cosmogenic-activation background in the CUORE experiment has been obtained using the results of this measurement and cross-section measurements of proton activation of tellurium. Additionally, the measured cross sections in this work are also compared with results from semiempirical cross-section calculations.
C1 [Wang, B. S.; Norman, E. B.; Thomas, K. J.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA.
[Norman, E. B.; Scielzo, N. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Smith, A. R.; Thomas, K. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Wender, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Wang, BS (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA.
OI Wender, Stephen/0000-0002-2446-5115
FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos
National Laboratory [DE-AC52- 06NA25396]; Lawrence Berkeley National
Laboratory [DE-AC02-05CH11231]; U.S. Department of Energy Office of
Defense Nuclear Nonproliferation [NA-22]; U.S. Department of Energy
National Nuclear Security Administration [DE-NA0000979]; Nuclear
Forensics Graduate Fellowship from the U.S. Department of Homeland
Security [2012-DN-130-NF0001-02]
FX We gratefully acknowledge the many valuable discussions with Maura Pavan
and Silvia Capelli from the CUORE Collaboration. This work was supported
by Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344, Los Alamos National Laboratory under Contract No.
DE-AC52- 06NA25396, Lawrence Berkeley National Laboratory under Contract
No. DE-AC02-05CH11231, the U.S. Department of Energy Office of Defense
Nuclear Nonproliferation (NA-22), the U.S. Department of Energy National
Nuclear Security Administration under Award No. DE-NA0000979, and the
Nuclear Forensics Graduate Fellowship from the U.S. Department of
Homeland Security under Grant Award No. 2012-DN-130-NF0001-02. The views
and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the U.S. Department of
Homeland Security.
NR 42
TC 3
Z9 3
U1 2
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD AUG 27
PY 2015
VL 92
IS 2
AR 024620
DI 10.1103/PhysRevC.92.024620
PG 11
WC Physics, Nuclear
SC Physics
GA CP8EA
UT WOS:000360123600004
ER
PT J
AU Song, YS
Taruya, A
Linder, E
Koyama, K
Sabiu, CG
Zhao, GB
Bernardeau, F
Nishimichi, T
Okumura, T
AF Song, Yong-Seon
Taruya, Atsushi
Linder, Eric
Koyama, Kazuya
Sabiu, Cristiano G.
Zhao, Gong-Bo
Bernardeau, Francis
Nishimichi, Takahiro
Okumura, Teppei
TI Consistent modified gravity analysis of anisotropic galaxy clustering
using BOSS DR11
SO PHYSICAL REVIEW D
LA English
DT Article
ID OSCILLATION SPECTROSCOPIC SURVEY; DIGITAL SKY SURVEY; REDSHIFT-SPACE
DISTORTIONS; SDSS-III; GROWTH; EXPANSION; UNIVERSE; SAMPLE; BIAS
AB We analyze the clustering of a cosmic large scale structure using a consistent modified gravity perturbation theory, accounting for anisotropic effects along and transverse to the line of sight. The growth factor has a particular scale dependence in f(R) gravity and we fit for the shape parameter f(R0) simultaneously with the distance and the large scale (general relativity) limit of the growth function. Using more than 690,000 galaxies in the baryon oscillation spectroscopy survey data release 11, we find no evidence for extra scale dependence, with the 95% confidence upper limit vertical bar f(R0)vertical bar < 8 x 10(-4). Future clustering data, such as from the dark energy spectroscopic instrument, can use this consistent methodology to impose tighter constraints.
C1 [Song, Yong-Seon; Sabiu, Cristiano G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea.
[Taruya, Atsushi] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan.
[Taruya, Atsushi; Bernardeau, Francis; Nishimichi, Takahiro; Okumura, Teppei] Univ Tokyo, Univ Tokyo Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan.
[Taruya, Atsushi; Bernardeau, Francis; Nishimichi, Takahiro; Okumura, Teppei] Univ Tokyo, Todai Inst Adv Study, Kavli Inst Phys & Math, Kashiwa, Chiba 2778583, Japan.
[Linder, Eric] Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94720 USA.
[Linder, Eric] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA.
[Koyama, Kazuya; Zhao, Gong-Bo] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Zhao, Gong-Bo] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China.
[Bernardeau, Francis; Nishimichi, Takahiro] CNRS, F-75014 Paris, France.
[Bernardeau, Francis; Nishimichi, Takahiro] UPMC, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France.
[Nishimichi, Takahiro] JST, CREST, Kawaguchi, Saitama 3320012, Japan.
RP Song, YS (reprint author), Korea Astron & Space Sci Inst, Taejon 305348, South Korea.
EM ysong@kasi.re.kr
FU U.S. DOE [DE-SC-0007867, DE-AC02-05CH11231]; Science and Technology
Facilities Council [K00090X/1]; Japan Society for the Promotion of
Science (JSPS) [26887012]; Strategic Priority Research Program "The
Emergence of Cosmological Structures" of the Chinese Academy of Sciences
[XDB09000000]; University of Portsmouth; Alfred P. Sloan Foundation;
National Science Foundation; U.S. Department of Energy Office of Science
FX Numerical calculations were performed by using a high performance
computing cluster in the Korea Astronomy and Space Science Institute. E.
L. was supported in part by U.S. DOE Grants No. DE-SC-0007867 and No.
DE-AC02-05CH11231. K. K. is supported by the Science and Technology
Facilities Council (Grant No. K00090X/1). T. N. was supported by JSPS
Postdoctoral Fellowships for Research Abroad. T. O. was supported by
Grant-in-Aid for Young Scientists (Start-up) from the Japan Society for
the Promotion of Science (JSPS) (No. 26887012). G. B. Z. is supported by
the Strategic Priority Research Program "The Emergence of Cosmological
Structures" of the Chinese Academy of Sciences Grant No. XDB09000000,
and by University of Portsmouth. We thank Marc Manera for providing the
mock simulations. Funding for SDSS-III has been provided by the Alfred
P. Sloan Foundation, the Participating Institutions, the National
Science Foundation, and the U.S. Department of Energy Office of Science.
The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by
the Astrophysical Research Consortium for the Participating Institutions
of the SDSS-III Collaboration including the University of Arizona, the
Brazilian Participation Group, Brookhaven National Laboratory, Carnegie
Mellon University, University of Florida, the French Participation
Group, the German Participation Group, Harvard University, the Instituto
de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA
Participation Group, Johns Hopkins University, Lawrence Berkeley
National Laboratory, Max Planck Institute for Astrophysics, Max Planck
Institute for Extraterrestrial Physics, New Mexico State University, New
York University, Ohio State University, Pennsylvania State University,
University of Portsmouth, Princeton University, the Spanish
Participation Group, University of Tokyo, University of Utah, Vanderbilt
University, University of Virginia, University of Washington, and Yale
University.
NR 59
TC 9
Z9 9
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD AUG 27
PY 2015
VL 92
IS 4
AR 043522
DI 10.1103/PhysRevD.92.043522
PG 13
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA CP8EY
UT WOS:000360126200001
ER
PT J
AU Bragg, AD
Ireland, PJ
Collins, LR
AF Bragg, Andrew D.
Ireland, Peter J.
Collins, Lance R.
TI Mechanisms for the clustering of inertial particles in the inertial
range of isotropic turbulence
SO PHYSICAL REVIEW E
LA English
DT Article
ID HOMOGENEOUS TURBULENCE; PLANETESIMAL FORMATION; AEROSOL-PARTICLES;
HEAVY-PARTICLES; STATISTICS; VELOCITY; COLLISION; FLOW
AB In this paper, we consider the physical mechanism for the clustering of inertial particles in the inertial range of isotropic turbulence. We analyze the exact, but unclosed, equation governing the radial distribution function (RDF) and compare the mechanisms it describes for clustering in the dissipation and inertial ranges. We demonstrate that in the limit St(r) << 1, where St(r) is the Stokes number based on the eddy turnover time scale at separation r, the clustering in the inertial range can be understood to be due to the preferential sampling of the coarse-grained fluid velocity gradient tensor at that scale. When St(r) greater than or similar to O(1) this mechanism gives way to a nonlocal clustering mechanism. These findings reveal that the clustering mechanisms in the inertial range are analogous to the mechanisms that we identified for the dissipation regime [see New J. Phys. 16, 055013 (2014)]. Further, we discuss the similarities and differences between the clustering mechanisms we identify in the inertial range and the "sweep-stick" mechanism developed by Coleman and Vassilicos [Phys. Fluids 21, 113301 (2009)]. We show that the idea that initial particles are swept along with acceleration stagnation points is only approximately true because there always exists a finite difference between the velocity of the acceleration stagnation points and the local fluid velocity. This relative velocity is sufficient to allow particles to traverse the average distance between the stagnation points within the correlation time scale of the acceleration field. We also show that the stick part of the mechanism is only valid for St(r) << 1 in the inertial range. We emphasize that our clustering mechanism provides the more fundamental explanation since it, unlike the sweep-stick mechanism, is able to explain clustering in arbitrary spatially correlated velocity fields. We then consider the closed, model equation for the RDF given in Zaichik and Alipchenkov [Phys. Fluids 19, 113308 (2007)] and use this, together with the results from our analysis, to predict the analytic form of the RDF in the inertial range for St(r) << 1, which, unlike that in the dissipation range, is not scale invariant. The results are in good agreement with direct numerical simulations, provided the separations are well within the inertial range.
C1 [Bragg, Andrew D.; Ireland, Peter J.; Collins, Lance R.] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA.
RP Bragg, AD (reprint author), Los Alamos Natl Lab, Appl Math & Plasma Phys Grp, POB 1663, Los Alamos, NM 87545 USA.
EM adbragg265@gmail.com
RI Bragg, Andrew/K-6099-2015
OI Bragg, Andrew/0000-0001-7068-8048
FU National Science Foundation [CBET-0967349]; National Science Foundation
FX The authors acknowledge financial support from the National Science
Foundation through Grant No. CBET-0967349 and through the Graduate
Research Fellowship awarded to P.J.I. Computational simulations were
performed on Yellow-stone [41] (ark:/85065/d7wd3xhc) at the US National
Center for Atmospheric Research through its Computational and
Information Systems Laboratory (sponsored by the National Science
Foundation).
NR 41
TC 4
Z9 4
U1 2
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
EI 1550-2376
J9 PHYS REV E
JI Phys. Rev. E
PD AUG 27
PY 2015
VL 92
IS 2
AR 023029
DI 10.1103/PhysRevE.92.023029
PG 10
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA CP8FI
UT WOS:000360127200007
PM 26382525
ER
PT J
AU Aad, G
Abbott, B
Abdallah, J
Abdinov, O
Aben, R
Abolins, M
AbouZeid, OS
Abramowicz, H
Abreu, H
Abreu, R
Abulaiti, Y
Acharya, BS
Adamczyk, L
Adams, DL
Adelman, J
Adomeit, S
Adye, T
Affolder, AA
Agatonovic-Jovin, T
Aguilar-Saavedra, JA
Agustoni, M
Ahlen, SP
Ahmadov, F
Aielli, G
Akerstedt, H
Akesson, TP
Akimoto, G
Akimov, AV
Alberghi, GL
Albert, J
Albrand, S
Verzini, MJA
Aleksa, M
Aleksandrov, IN
Alexa, C
Alexander, G
Alexopoulos, T
Alhroob, M
Alimonti, G
Alio, L
Alison, J
Alkire, SP
Allbrooke, BMM
Allport, PP
Aloisio, A
Alonso, A
Alonso, F
Alpigiani, C
Altheimer, A
Gonzalez, BA
Piqueras, DA
Alviggi, MG
Amako, K
Coutinho, YA
Amelung, C
Amidei, D
Dos Santos, SPA
Amorim, A
Amoroso, S
Amram, N
Amundsen, G
Anastopoulos, C
Ancu, LS
Andari, N
Andeen, T
Anders, CF
Anders, G
Anderson, KJ
Andreazza, A
Andrei, V
Angelidakis, S
Angelozzi, I
Anger, P
Angerami, A
Anghinolfi, F
Anisenkov, AV
Anjos, N
Annovi, A
Antonelli, M
Antonov, A
Antos, J
Anulli, F
Aoki, M
Bella, LA
Arabidze, G
Arai, Y
Araque, JP
Arce, ATH
Arduh, FA
Arguin, JF
Argyropoulos, S
Arik, M
Armbruster, AJ
Arnaez, O
Arnal, V
Arnold, H
Arratia, M
Arslan, O
Artamonov, A
Artoni, G
Asai, S
Asbah, N
Ashkenazi, A
Asman, B
Asquith, L
Assamagan, K
Astalos, R
Atkinson, M
Atlay, NB
Auerbach, B
Augsten, K
Aurousseau, M
Avolio, G
Axen, B
Ayoub, MK
Azuelos, G
Baak, MA
Baas, AE
Bacci, C
Bachacou, H
Bachas, K
Backes, M
Backhaus, M
Badescu, E
Bagiacchi, P
Bagnaia, P
Bai, Y
Bain, T
Baines, JT
Baker, OK
Balek, P
Balestri, T
Balli, F
Banas, E
Banerjee, S
Bannoura, AAE
Bansil, HS
Barak, L
Barberio, EL
Barberis, D
Barbero, M
Barillari, T
Barisonzi, M
Barklow, T
Barlow, N
Barnes, SL
Barnett, BM
Barnett, RM
Barnovska, Z
Baroncelli, A
Barone, G
Barr, AJ
Barreiro, F
da Costa, JBG
Bartoldus, R
Barton, AE
Bartos, P
Bassalat, A
Basye, A
Bates, RL
Batista, SJ
Batley, JR
Battaglia, M
Bauce, M
Bauer, F
Bawa, HS
Beacham, JB
Beattie, MD
Beau, T
Beauchemin, PH
Beccherle, R
Bechtle, P
Beck, HP
Becker, K
Becker, M
Becker, S
Beckingham, M
Becot, C
Beddall, AJ
Beddall, A
Bednyakov, VA
Bee, CP
Beemster, LJ
Beermann, TA
Begel, M
Behr, JK
Belanger-Champagne, C
Bell, WH
Bella, G
Bellagamba, L
Bellerive, A
Bellomo, M
Belotskiy, K
Beltramello, O
Benary, O
Benchekroun, D
Bender, M
Bendtz, K
Benekos, N
Benhammou, Y
Noccioli, EB
Garcia, JAB
Benjamin, DP
Bensinger, JR
Bentvelsen, S
Beresford, L
Beretta, M
Berge, D
Kuutmann, EB
Berger, N
Berghaus, F
Beringer, J
Bernard, C
Bernard, NR
Bernius, C
Bernlochner, FU
Berry, T
Berta, P
Bertella, C
Bertoli, G
Bertolucci, F
Bertsche, C
Bertsche, D
Besana, MI
Besjes, GJ
Bylund, OB
Bessner, M
Besson, N
Betancourt, C
Bethke, S
Bevan, AJ
Bhimji, W
Bianchi, RM
Bianchini, L
Bianco, M
Biebel, O
Bieniek, SP
Biglietti, M
De Mendizabal, JB
Bilokon, H
Bindi, M
Binet, S
Bingul, A
Bini, C
Black, CW
Black, JE
Black, KM
Blackburn, D
Blair, RE
Blanchard, JB
Blanco, JE
Blazek, T
Bloch, I
Blocker, C
Blum, W
Blumenschein, U
Bobbink, GJ
Bobrovnikov, VS
Bocchetta, SS
Bocci, A
Bock, C
Boehler, M
Bogaerts, JA
Bogdanchikov, AG
Bohm, C
Boisvert, V
Bold, T
Boldea, V
Boldyrev, AS
Bomben, M
Bona, M
Boonekamp, M
Borisov, A
Borissov, G
Borroni, S
Bortfeldt, J
Bortolotto, V
Bos, K
Boscherini, D
Bosman, M
Boudreau, J
Bouffard, J
Bouhova-Thacker, EV
Boumediene, D
Bourdarios, C
Bousson, N
Boveia, A
Boyd, J
Boyko, IR
Bozic, I
Bracinik, J
Brandt, A
Brandt, G
Brandt, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Brazzale, SF
Brendlinger, K
Brennan, AJ
Brenner, L
Brenner, R
Bressler, S
Bristow, K
Bristow, TM
Britton, D
Britzger, D
Brochu, FM
Brock, I
Brock, R
Bronner, J
Brooijmans, G
Brooks, T
Brooks, WK
Brosamer, J
Brost, E
Brown, J
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Bruni, A
Bruni, G
Bruschi, M
Bryngemark, L
Buanes, T
Buat, Q
Buchholz, P
Buckley, AG
Buda, SI
Budagov, IA
Buehrer, F
Bugge, L
Bugge, MK
Bulekov, O
Burckhart, H
Burdin, S
Burghgrave, B
Burke, S
Burmeister, I
Busato, E
Buscher, D
Buscher, V
Bussey, P
Buszello, CP
Butler, JM
Butt, AI
Buttar, CM
Butterworth, JM
Butti, P
Buttinger, W
Buzatu, A
Buzykaev, R
Urban, SC
Caforio, D
Cakir, O
Calafiura, P
Calandri, A
Calderini, G
Calfayan, P
Caloba, LP
Calvet, D
Calvet, S
Toro, RC
Camarda, S
Cameron, D
Caminada, LM
Armadans, RC
Campana, S
Campanelli, M
Campoverde, A
Canale, V
Canepa, A
Bret, MC
Cantero, J
Cantrill, R
Cao, T
Garrido, MDMC
Caprini, I
Caprini, M
Capua, M
Caputo, R
Cardarelli, R
Carli, T
Carlino, G
Carminati, L
Caron, S
Carquin, E
Carrillo-Montoya, GD
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Casolino, M
Castaneda-Miranda, E
Castelli, A
Gimenez, VC
Castro, NF
Catastini, P
Catinaccio, A
Catmore, JR
Cattai, A
Caudron, J
Cavaliere, V
Cavalli, D
Cavalli-Sforza, M
Cavasinni, V
Ceradini, F
Cerio, BC
Cerny, K
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cerv, M
Cervelli, A
Cetin, SA
Chafaq, A
Chakraborty, D
Chalupkova, I
Chang, P
Chapleau, B
Chapman, JD
Charlton, DG
Chau, CC
Barajas, CAC
Cheatham, S
Chegwidden, A
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Chen, K
Chen, L
Chen, S
Chen, X
Chen, Y
Cheng, HC
Cheng, Y
Cheplakov, A
Cheremushkina, E
El Moursli, RC
Chernyatin, V
Cheu, E
Chevalier, L
Chiarella, V
Childers, JT
Chiodini, G
Chisholm, AS
Chislett, RT
Chitan, A
Chizhov, MV
Choi, K
Chouridou, S
Chow, BKB
Christodoulou, V
Chromek-Burckhart, D
Chu, ML
Chudoba, J
Chuinard, AJ
Chwastowski, JJ
Chytka, L
Ciapetti, G
Ciftci, AK
Cinca, D
Cindro, V
Cioara, IA
Ciocio, A
Citron, ZH
Ciubancan, M
Clark, A
Clark, BL
Clark, PJ
Clarke, RN
Cleland, W
Clement, C
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Coffey, L
Cogan, JG
Cole, B
Cole, S
Colijn, AP
Collot, J
Colombo, T
Compostella, G
Muino, PC
Coniavitis, E
Connell, SH
Connelly, IA
Consonni, SM
Consorti, V
Constantinescu, S
Conta, C
Conti, G
Conventi, F
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Copic, K
Cornelissen, T
Corradi, M
Corriveau, F
Corso-Radu, A
Cortes-Gonzalez, A
Cortiana, G
Costa, G
Costa, MJ
Costanzo, D
Cote, D
Cottin, G
Cowan, G
Cox, BE
Cranmer, K
Cree, G
Crepe-Renaudin, S
Crescioli, F
Cribbs, WA
Ortuzar, MC
Cristinziani, M
Croft, V
Crosetti, G
Donszelmann, TC
Cummings, J
Curatolo, M
Cuthbert, C
Czirr, H
Czodrowski, P
D'Auria, S
D'Onofrio, M
De Sousa, MJDCS
Da Via, C
Dabrowski, W
Dafinca, A
Dai, T
Dale, O
Dallaire, F
Dallapiccola, C
Dam, M
Dandoy, JR
Daniells, AC
Danninger, M
Hoffmann, MD
Dao, V
Darbo, G
Darmora, S
Dassoulas, J
Dattagupta, A
Davey, W
David, C
Davidek, T
Davies, E
Davies, M
Davison, P
Davygora, Y
Dawe, E
Dawson, I
Daya-Ishmukhametova, RK
De, K
de Asmundis, R
De Castro, S
De Cecco, S
De Groot, N
de Jong, P
De la Torre, H
De Lorenzi, F
De Nooij, L
De Pedis, D
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBDV
Dearnaley, WJ
Debbe, R
Debenedetti, C
Dedovich, DV
Deigaard, I
Del Peso, J
Del Prete, T
Delgove, D
Deliot, F
Delitzsch, CM
Deliyergiyev, M
Dell'Acqua, A
Dell'Asta, L
Dell'Orso, M
Della Pietra, M
della Volpe, D
Delmastro, M
Delsart, PA
Deluca, C
DeMarco, DA
Demers, S
Demichev, M
Demilly, A
Denisov, SP
Derendarz, D
Derkaoui, JE
Derue, F
Dervan, P
Desch, K
Deterre, C
Deviveiros, PO
Dewhurst, A
Dhaliwal, S
Di Ciaccio, A
Di Ciaccio, L
Di Domenico, A
Di Donato, C
Di Girolamo, A
Di Girolamo, B
Di Mattia, A
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Di Valentino, D
Diaconu, C
Diamond, M
Dias, FA
Diaz, MA
Diehl, EB
Dietrich, J
Diglio, S
Dimitrievska, A
Dingfelder, J
Dita, P
Dita, S
Dittus, F
Djama, F
Djobava, T
Djuvsland, JI
do Vale, MAB
Dobos, D
Dobre, M
Doglioni, C
Dohmae, T
Dolejsi, J
Dolezal, Z
Dolgoshein, BA
Donadelli, M
Donati, S
Dondero, P
Donini, J
Dopke, J
Doria, A
Dova, MT
Doyle, AT
Drechsler, E
Dris, M
Dubreuil, E
Duchovni, E
Duckeck, G
Ducu, OA
Duda, D
Dudarev, A
Duflot, L
Duguid, L
Duhrssen, M
Dunford, M
Yildiz, HD
Duren, M
Durglishvili, A
Duschinger, D
Dyndal, M
Eckardt, C
Ecker, KM
Edson, W
Edwards, NC
Ehrenfeld, W
Eifert, T
Eigen, G
Einsweiler, K
Ekelof, T
El Kacimi, M
Ellert, M
Elles, S
Ellinghaus, F
Elliot, AA
Ellis, N
Elmsheuser, J
Elsing, M
Emeliyanov, D
Enari, Y
Endner, OC
Endo, M
Engelmann, R
Erdmann, J
Ereditato, A
Ernis, G
Ernst, J
Ernst, M
Errede, S
Ertel, E
Escalier, M
Esch, H
Escobar, C
Esposito, B
Etienvre, AI
Etzion, E
Evans, H
Ezhilov, A
Fabbri, L
Facini, G
Fakhrutdinov, RM
Falciano, S
Falla, RJ
Faltova, J
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farooque, T
Farrell, S
Farrington, SM
Farthouat, P
Fassi, F
Fassnacht, P
Fassouliotis, D
Giannelli, MF
Favareto, A
Fayard, L
Federic, P
Fedin, OL
Fedorko, W
Feigl, S
Feligioni, L
Feng, C
Feng, EJ
Feng, H
Fenyuk, AB
Martinez, PF
Perez, SF
Ferrag, S
Ferrando, J
Ferrari, A
Ferrari, P
Ferrari, R
de Lima, DEF
Ferrer, A
Ferrere, D
Ferretti, C
Parodi, AF
Fiascaris, M
Fiedler, F
Filipcic, A
Filipuzzi, M
Filthaut, F
Fincke-Keeler, M
Finelli, KD
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, A
Fischer, C
Fischer, J
Fisher, WC
Fitzgerald, EA
Flechl, M
Fleck, I
Fleischmann, P
Fleischmann, S
Fletcher, GT
Fletcher, G
Flick, T
Floderus, A
Castillo, LRF
Flowerdew, MJ
Formica, A
Forti, A
Fournier, D
Fox, H
Fracchia, S
Francavilla, P
Franchini, M
Francis, D
Franconi, L
Franklin, M
Fraternali, M
Freeborn, D
French, ST
Friedrich, F
Froidevaux, D
Frost, JA
Fukunaga, C
Torregrosa, EF
Fulsom, BG
Fuster, J
Gabaldon, C
Gabizon, O
Gabrielli, A
Gabrielli, A
Gadatsch, S
Gadomski, S
Gagliardi, G
Gagnon, P
Galea, C
Galhardo, B
Gallas, EJ
Gallop, BJ
Gallus, P
Galster, G
Gan, KK
Gao, J
Gao, Y
Gao, YS
Walls, FMG
Garberson, F
Garcia, C
Navarro, JEG
Garcia-Sciveres, M
Gardner, RW
Garelli, N
Garonne, V
Gatti, C
Gaudiello, A
Gaudio, G
Gaur, B
Gauthier, L
Gauzzi, P
Gavrilenko, IL
Gay, C
Gaycken, G
Gazis, EN
Ge, P
Gecse, Z
Gee, CNP
Geerts, DAA
Geich-Gimbel, C
Geisler, MP
Gemme, C
Genest, MH
Gentile, S
George, M
George, S
Gerbaudo, D
Gershon, A
Ghazlane, H
Giacobbe, B
Giagu, S
Giangiobbe, V
Giannetti, P
Gibbard, B
Gibson, SM
Gilchriese, M
Gillam, TPS
Gillberg, D
Gilles, G
Gingrich, DM
Giokaris, N
Giordani, MP
Giorgi, FM
Giorgi, FM
Giraud, PF
Giromini, P
Giugni, D
Giuliani, C
Giulini, M
Gjelsten, BK
Gkaitatzis, S
Gkialas, I
Gkougkousis, EL
Gladilin, LK
Glasman, C
Glatzer, J
Glaysher, PCF
Glazov, A
Goblirsch-Kolb, M
Goddard, JR
Godlewski, J
Goldfarb, S
Golling, T
Golubkov, D
Gomes, A
Gonalo, R
Da Costa, JGPF
Gonella, L
de la Hoz, SG
Parra, GG
Gonzalez-Sevilla, S
Goossens, L
Gorbounov, PA
Gordon, HA
Gorelov, I
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Goshaw, AT
Gossling, C
Gostkin, MI
Goujdami, D
Goussiou, AG
Govender, N
Grabas, HMX
Graber, L
Grabowska-Bold, I
Grafstrom, P
Grahn, KJ
Gramling, J
Gramstad, E
Grancagnolo, S
Grassi, V
Gratchev, V
Gray, HM
Graziani, E
Greenwood, ZD
Gregersen, K
Gregor, IM
Grenier, P
Griffiths, J
Grillo, AA
Grimm, K
Grinstein, S
Gris, P
Grivaz, JF
Grohs, JP
Grohsjean, A
Gross, E
Grosse-Knetter, J
Grossi, GC
Grout, ZJ
Guan, L
Guenther, J
Guescini, F
Guest, D
Gueta, O
Guido, E
Guillemin, T
Guindon, S
Gul, U
Gumpert, C
Guo, J
Gupta, S
Gutierrez, P
Ortiz, NGG
Gutschow, C
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haber, C
Hadavand, HK
Haddad, N
Haefner, P
Hagebock, S
Hajduk, Z
Hakobyan, H
Haleem, M
Haley, J
Hall, D
Halladjian, G
Hallewell, GD
Hamacher, K
Hamal, P
Hamano, K
Hamer, M
Hamilton, A
Hamilton, S
Hamity, GN
Hamnett, PG
Han, L
Hanagaki, K
Hanawa, K
Hance, M
Haney, B
Hanke, P
Hanna, R
Hansen, JB
Hansen, JD
Hansen, MC
Hansen, PH
Hara, K
Hard, AS
Harenberg, T
Hariri, F
Harkusha, S
Harrington, RD
Harrison, PF
Hartjes, F
Hasegawa, M
Hasegawa, S
Hasegawa, Y
Hasib, A
Hassani, S
Haug, S
Hauser, R
Hauswald, L
Havranek, M
Hawkes, CM
Hawkings, RJ
Hawkins, AD
Hayashi, T
Hayden, D
Hays, CP
Hays, JM
Hayward, HS
Haywood, SJ
Head, SJ
Heck, T
Hedberg, V
Heelan, L
Heim, S
Heim, T
Heinemann, B
Heinrich, L
Hejbal, J
Helary, L
Hellman, S
Hellmich, D
Helsens, C
Henderson, J
Henderson, RCW
Heng, Y
Hengler, C
Henrichs, A
Correia, AMH
Henrot-Versille, S
Herbert, GH
Jimenez, YH
Herrberg-Schubert, R
Herten, G
Hertenberger, R
Hervas, L
Hesketh, GG
Hessey, NP
Hetherly, JW
Hickling, R
Higon-Rodriguez, E
Hill, E
Hill, JC
Hiller, KH
Hillier, SJ
Hinchliffe, I
Hines, E
Hinman, RR
Hirose, M
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoenig, F
Hohlfeld, M
Hohn, D
Holmes, TR
Hong, TM
van Huysduynen, LH
Hopkins, WH
Horii, Y
Horton, AJ
Hostachy, JY
Hou, S
Hoummada, A
Howard, J
Howarth, J
Hrabovsky, M
Hristova, I
Hrivnac, J
Hryn'ova, T
Hrynevich, A
Hsu, C
Hsu, PJ
Hsu, SC
Hu, D
Hu, Q
Hu, X
Huang, Y
Hubacek, Z
Hubaut, F
Huegging, F
Huffman, TB
Hughes, EW
Hughes, G
Huhtinen, M
Hulsing, TA
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibragimov, I
Iconomidou-Fayard, L
Ideal, E
Idrissi, Z
Iengo, P
Igonkina, O
Iizawa, T
Ikegami, Y
Ikematsu, K
Ikeno, M
Ilchenko, Y
Iliadis, D
Ilic, N
Inamaru, Y
Ince, T
Ioannou, P
Iodice, M
Iordanidou, K
Ippolito, V
Quiles, AI
Isaksson, C
Ishino, M
Ishitsuka, M
Ishmukhametov, R
Issever, C
Istin, S
Ponce, JMI
Iuppa, R
Ivarsson, J
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jabbar, S
Jackson, B
Jackson, M
Jackson, P
Jaekel, MR
Jain, V
Jakobs, K
Jakobsen, S
Jakoubek, T
Jakubek, J
Jamin, DO
Jana, DK
Jansen, E
Jansky, RW
Janssen, J
Janus, M
Jarlskog, G
Javadov, N
Javurek, T
Jeanty, L
Jejelava, J
Jeng, GY
Jennens, D
Jenni, P
Jentzsch, J
Jeske, C
Jezequel, S
Ji, H
Jia, J
Jiang, Y
Jiggins, S
Pena, JJ
Jin, S
Jinaru, A
Jinnouchi, O
Joergensen, MD
Johansson, P
Johns, KA
Jon-And, K
Jones, G
Jones, RWL
Jones, TJ
Jongmanns, J
Jorge, PM
Joshi, KD
Jovicevic, J
Ju, X
Jung, CA
Jussel, P
Rozas, AJ
Kaci, M
Kaczmarska, A
Kado, M
Kagan, H
Kagan, M
Kahn, SJ
Kajomovitz, E
Kalderon, CW
Kama, S
Kamenshchikov, A
Kanaya, N
Kaneda, M
Kaneti, S
Kantserov, VA
Kanzaki, J
Kaplan, B
Kapliy, A
Kar, D
Karakostas, K
Karamaoun, A
Karastathis, N
Kareem, MJ
Karnevskiy, M
Karpov, SN
Karpova, ZM
Karthik, K
Kartvelishvili, V
Karyukhin, AN
Kashif, L
Kass, RD
Kastanas, A
Kataoka, Y
Katre, A
Katzy, J
Kawagoe, K
Kawamoto, T
Kawamura, G
Kazama, S
Kazanin, VF
Kazarinov, MY
Keeler, R
Kehoe, R
Keller, JS
Kempster, JJ
Keoshkerian, H
Kepka, O
Kersevan, BP
Kersten, S
Keyes, RA
Khalil-Zada, F
Khandanyan, H
Khanov, A
Kharlamov, AG
Khoo, TJ
Khovanskiy, V
Khramov, E
Khubua, J
Kim, HY
Kim, H
Kim, SH
Kim, Y
Kimura, N
Kind, OM
King, BT
King, M
King, RSB
King, SB
Kirk, J
Kiryunin, AE
Kishimoto, T
Kisielewska, D
Kiss, F
Kiuchi, K
Kivernyk, O
Kladiva, E
Klein, MH
Klein, M
Klein, U
Kleinknecht, K
Klimek, P
Klimentov, A
Klingenberg, R
Klinger, JA
Klioutchnikova, T
Klok, PF
Kluge, EE
Kluit, P
Kluth, S
Kneringer, E
Knoops, EBFG
Knue, A
Kobayashi, D
Kobayashi, T
Kobel, M
Kocian, M
Kodys, P
Koffas, T
Koffeman, E
Kogan, LA
Kohlmann, S
Kohout, Z
Kohriki, T
Koi, T
Kolanoski, H
Koletsou, I
Komar, AA
Komori, Y
Kondo, T
Kondrashova, N
Koneke, K
Konig, AC
Konig, S
Kono, T
Konoplich, R
Konstantinidis, N
Kopeliansky, R
Koperny, S
Kopke, L
Kopp, AK
Korcyl, K
Kordas, K
Korn, A
Korol, AA
Korolkov, I
Korolkova, EV
Kortner, O
Kortner, S
Kosek, T
Kostyukhin, VV
Kotov, VM
Kotwal, A
Kourkoumeli-Charalampidi, A
Kourkoumelis, C
Kouskoura, V
Koutsman, A
Kowalewski, R
Kowalski, TZ
Kozanecki, W
Kozhin, AS
Kramarenko, VA
Kramberger, G
Krasnopevtsev, D
Krasznahorkay, A
Kraus, JK
Kravchenko, A
Kreiss, S
Kretz, M
Kretzschmar, J
Kreutzfeldt, K
Krieger, P
Krizka, K
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Krueger, H
Krumnack, N
Krumshteyn, ZV
Kruse, A
Kruse, MC
Kruskal, M
Kubota, T
Kucuk, H
Kuday, S
Kuehn, S
Kugel, A
Kuger, F
Kuhl, A
Kuhl, T
Kukhtin, V
Kulchitsky, Y
Kuleshov, S
Kuna, M
Kunigo, T
Kupco, A
Kurashige, H
Kurochkin, YA
Kurumida, R
Kus, V
Kuwertz, ES
Kuze, M
Kvita, J
Kwan, T
Kyriazopoulos, D
La Rosa, A
Navarro, JLLR
La Rotonda, L
Lacasta, C
Lacava, F
Lacey, J
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Lambourne, L
Lammers, S
Lampen, CL
Lampl, W
Lanon, E
Landgraf, U
Landon, MPJ
Lang, VS
Lange, JC
Lankford, AJ
Lanni, F
Lantzsch, K
Laplace, S
Lapoire, C
Laporte, JF
Lari, T
Manghi, FL
Lassnig, M
Laurelli, P
Lavrijsen, W
Law, AT
Laycock, P
Le Dortz, O
Le Guirriec, E
Le Menedeu, E
LeBlanc, M
LeCompte, T
Ledroit-Guillon, F
Lee, CA
Lee, SC
Lee, L
Lefebvre, G
Lefebvre, M
Legger, F
Leggett, C
Lehan, A
Miotto, GL
Lei, X
Leight, WA
Leisos, A
Leister, AG
Leite, MAL
Leitner, R
Lellouch, D
Lemmer, B
Leney, KJC
Lenz, T
Lenzi, B
Leone, R
Leone, S
Leonidopoulos, C
Leontsinis, S
Leroy, C
Lester, CG
Levchenko, M
Leveque, J
Levin, D
Leone, S
Levy, M
Lewis, A
Leyko, AM
Leyton, M
Li, B
Li, H
Li, HL
Li, L
Li, L
Li, S
Li, Y
Liang, Z
Liao, H
Liberti, B
Liblong, A
Lichard, P
Lie, K
Liebal, J
Liebig, W
Limbach, C
Limosani, A
Lin, SC
Lin, TH
Linde, F
Lindquist, BE
Linnemann, JT
Lipeles, E
Lipniacka, A
Lisovyi, M
Liss, TM
Lissauer, D
Lister, A
Litke, AM
Liu, B
Liu, D
Liu, J
Liu, JB
Liu, K
Liu, L
Liu, M
Liu, M
Liu, Y
Livan, M
Lleres, A
Merino, JL
Lloyd, SL
Lo Sterzo, F
Lobodzinska, E
Loch, P
Lockman, WS
Loebinger, FK
Loevschall-Jensen, AE
Loginov, A
Lohse, T
Lohwasser, K
Lokajicek, M
Long, BA
Long, JD
Long, RE
Looper, KA
Lopes, L
Mateos, DL
Paredes, BL
Paz, IL
Lorenz, J
Martinez, NL
Losada, M
Loscutoff, P
Losel, PJ
Lou, X
Lounis, A
Love, J
Love, PA
Lu, N
Lubatti, HJ
Luci, C
Lucotte, A
Luehring, F
Lukas, W
Luminari, L
Lundberg, O
Lund-Jensen, B
Lungwitz, M
Lynn, D
Lysak, R
Lytken, E
Ma, H
Ma, LL
Maccarrone, G
Macchiolo, A
Macdonald, CM
Miguens, JM
Macina, D
Madaffari, D
Madar, R
Maddocks, HJ
Mader, WF
Madsen, A
Maeland, S
Maeno, T
Maevskiy, A
Magradze, E
Mahboubi, K
Mahlstedt, J
Maiani, C
Maidantchik, C
Maier, AA
Maier, T
Maio, A
Majewski, S
Makida, Y
Makovec, N
Malaescu, B
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Malone, C
Maltezos, S
Malyshev, VM
Malyukov, S
Mamuzic, J
Mancini, G
Mandelli, B
Mandelli, L
Mandic, I
Mandrysch, R
Maneira, J
Manfredini, A
Filho, LMDA
Ramos, JM
Mann, A
Manning, PM
Manousakis-Katsikakis, A
Mansoulie, B
Mantifel, R
Mantoani, M
Mapelli, L
March, L
Marchiori, G
Marcisovsky, M
Marino, CP
Marjanovic, M
Marroquim, F
Marsden, SP
Marshall, Z
Marti, LF
Marti-Garcia, S
Martin, B
Martin, TA
Martin, VJ
Latour, BMD
Martinez, M
Martin-Haugh, S
Martoiu, VS
Martyniuk, AC
Marx, M
Marzano, F
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Massa, I
Massa, L
Massol, N
Mastrandrea, P
Mastroberardino, A
Masubuchi, T
Maetttig, P
Mattmann, J
Maurer, J
Maxfield, SJ
Maximov, DA
Mazini, R
Mazza, SM
Mazzaferro, L
Mc Goldrick, G
Mc Kee, SP
McCarn, A
McCarthy, RL
McCarthy, TG
McCubbin, NA
McFarlane, KW
Mcfayden, JA
Mchedlidze, G
McMahon, SJ
McPherson, RA
Medinnis, M
Meehan, S
Mehlhase, S
Mehta, A
Meier, K
Meineck, C
Meirose, B
Garcia, BRM
Meloni, F
Mengarelli, A
Menke, S
Meoni, E
Mercurio, KM
Mergelmeyer, S
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Messina, A
Metcalfe, J
Mete, AS
Meyer, C
Meyer, C
Meyer, JP
Meyer, J
Middleton, RP
Miglioranzi, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikuz, M
Milesi, M
Milic, A
Miller, DW
Mills, C
Milov, A
Milstead, DA
Minaenko, AA
Minami, Y
Minashvili, IA
Mincer, AI
Mindur, B
Mineev, M
Ming, Y
Mir, LM
Mitani, T
Mitrevski, J
Mitsou, VA
Miucci, A
Miyagawa, PS
Mjornmark, JU
Moa, T
Mochizuki, K
Mohapatra, S
Mohr, W
Molander, S
Moles-Valls, R
Monig, K
Monini, C
Monk, J
Monnier, E
Berlingen, JM
Monticelli, F
Monzani, S
Moore, RW
Morange, N
Moreno, D
Llacer, MM
Morettini, P
Morgenstern, M
Morii, M
Morinaga, M
Morisbak, V
Moritz, S
Morley, AK
Mornacchi, G
Morris, JD
Mortensen, SS
Morton, A
Morvaj, L
Mosidze, M
Moss, J
Motohashi, K
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Muanza, S
Mudd, RD
Mueller, F
Mueller, J
Mueller, K
Mueller, RSP
Mueller, T
Muenstermann, D
Mullen, P
Munwes, Y
Quijada, JAM
Murray, WJ
Musheghyan, H
Musto, E
Myagkov, AG
Myska, M
Nackenhorst, O
Nadal, J
Nagai, K
Nagai, R
Nagai, Y
Nagano, K
Nagarkar, A
Nagasaka, Y
Nagata, K
Nagel, M
Nagy, E
Nairz, AM
Nakahama, Y
Nakamura, K
Nakamura, T
Nakano, I
Namasivayam, H
Garcia, RFN
Narayan, R
Naumann, T
Navarro, G
Nayyar, R
Neal, HA
Nechaeva, PY
Neep, TJ
Nef, PD
Negri, A
Negrini, M
Nektarijevic, S
Nellist, C
Nelson, A
Nemecek, S
Nemethy, P
Nepomuceno, AA
Nessi, M
Neubauer, MS
Neumann, M
Neves, RM
Nevski, P
Newman, PR
Nguyen, DH
Nickerson, RB
Nicolaidou, R
Nicquevert, B
Nielsen, J
Nikiforou, N
Nikiforov, A
Nikolaenko, V
Nikolic-Audit, I
Nikolopoulos, K
Nilsen, JK
Nilsson, P
Ninomiya, Y
Nisati, A
Nisius, R
Nobe, T
Nomachi, M
Nomidis, I
Nooney, T
Norberg, S
Nordberg, M
Novgorodova, O
Nowak, S
Nozaki, M
Nozka, L
Ntekas, K
Hanninger, GN
Nunnemann, T
Nurse, E
Nuti, F
O'Brien, BJ
O'grady, F
O'Neil, DC
O'Shea, V
Oakham, FG
Oberlack, H
Obermann, T
Ocariz, J
Ochi, A
Ochoa, I
Ochoa-Ricoux, JP
Oda, S
Odaka, S
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohman, H
Oide, H
Okamura, W
Okawa, H
Okumura, Y
Okuyama, T
Olariu, A
Pino, SAO
Damazio, DO
Garcia, EO
Olszewski, A
Olszowska, J
Onofre, A
Onyisi, PUE
Oram, CJ
Oreglia, MJ
Oren, Y
Orestano, D
Orlando, N
Barrera, CO
Orr, RS
Osculati, B
Ospanov, R
Garzon, GOY
Otono, H
Ouchrif, M
Ouellette, EA
Ould-Saada, F
Ouraou, A
Oussoren, KP
Ouyang, Q
Ovcharova, A
Owen, M
Owen, RE
Ozcan, VE
Ozturk, N
Pachal, K
Pages, AP
Aranda, CP
Pagacova, M
Griso, SP
Paganis, E
Pahl, C
Paige, F
Pais, P
Pajchel, K
Palacino, G
Palestini, S
Palka, M
Pallin, D
Palma, A
Pan, YB
Panagiotopoulou, E
Pandini, CE
Vazquez, JGP
Pani, P
Panitkin, S
Pantea, D
Paolozzi, L
Papadopoulou, TD
Papageorgiou, K
Paramonov, A
Hernandez, DP
Parker, MA
Parker, KA
Parodi, F
Parsons, JA
Parzefall, U
Pasqualucci, E
Passaggio, S
Pastore, F
Pastore, F
Pasztor, G
Pataraia, S
Patel, ND
Pater, JR
Pauly, T
Pearce, J
Pearson, B
Pedersen, LE
Pedersen, M
Lopez, SP
Pedro, R
Peleganchuk, SV
Pelikan, D
Peng, H
Penning, B
Penwell, J
Perepelitsa, DV
Codina, EP
Garcia-Estan, MTP
Perini, L
Pernegger, H
Perrella, S
Peschke, R
Peshekhonov, VD
Peters, K
Peters, RFY
Petersen, BA
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petrolo, E
Petrucci, F
Pettersson, NE
Pezoa, R
Phillips, PW
Piacquadio, G
Pianori, E
Picazio, A
Piccaro, E
Piccinini, M
Pickering, MA
Piegaia, R
Pignotti, DT
Pilcher, JE
Pilkington, AD
Pina, J
Pinamonti, M
Pinfold, JL
Pingel, A
Pinto, B
Pires, S
Pitt, M
Pizio, C
Plazak, L
Pleier, MA
Pleskot, V
Plotnikova, E
Plucinski, P
Pluth, D
Poettgen, R
Poggioli, L
Pohl, D
Polesello, G
Policicchio, A
Polifka, R
Polini, A
Pollard, CS
Polychronakos, V
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciu, GA
Popovic, DS
Poppleton, A
Pospisil, S
Potamianos, K
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Pozdnyakov, V
Pralavorio, P
Pranko, A
Prasad, S
Prell, S
Price, D
Price, LE
Primavera, M
Prince, S
Proissl, M
Prokofiev, K
Prokoshin, F
Protopapadaki, E
Protopopescu, S
Proudfoot, J
Przybycien, M
Ptacek, E
Puddu, D
Pueschel, E
Puldon, D
Purohit, M
Puzo, P
Qian, J
Qin, G
Qin, Y
Quadt, A
Quarrie, DR
Quayle, WB
Queitsch-Maitland, M
Quilty, D
Raddum, S
Radeka, V
Radescu, V
Radhakrishnan, SK
Radloff, P
Rados, P
Ragusa, F
Rahal, G
Rajagopalan, S
Rammensee, M
Rangel-Smith, C
Rauscher, F
Rave, S
Ravenscroft, T
Raymond, M
Read, AL
Readioff, NP
Rebuzzi, DM
Redelbach, A
Redlinger, G
Reece, R
Reeves, K
Rehnisch, L
Reisin, H
Relich, M
Rembser, C
Ren, H
Renaud, A
Rescigno, M
Resconi, S
Rezanova, OL
Reznicek, P
Rezvani, R
Richter, R
Richter, S
Richter-Was, E
Ricken, O
Ridel, M
Rieck, P
Riegel, CJ
Rieger, J
Rijssenbeek, M
Rimoldi, A
Rinaldi, L
Ristic, B
Ritsch, E
Riu, I
Rizatdinova, F
Rizvi, E
Robertson, SH
Robichaud-Veronneau, A
Robinson, D
Robinson, JEM
Robson, A
Roda, C
Roe, S
Rohne, O
Rolli, S
Romaniouk, A
Romano, M
Saez, SMR
Adam, ER
Rompotis, N
Ronzani, M
Roos, L
Ros, E
Rosati, S
Rosbach, K
Rose, P
Rosendahl, PL
Rosenthal, O
Rossetti, V
Rossi, E
Rossi, LP
Rosten, R
Rotaru, M
Roth, I
Rothberg, J
Rousseau, D
Royon, CR
Rozanov, A
Rozen, Y
Ruan, X
Rubbo, F
Rubinskiy, I
Rud, VI
Rudolph, C
Rudolph, MS
Ruhr, F
Ruiz-Martinez, A
Rurikova, Z
Rusakovich, NA
Ruschke, A
Russell, HL
Rutherfoord, JP
Ruthmann, N
Ryabov, YF
Rybar, M
Rybkin, G
Ryder, NC
Saavedra, AF
Sabato, G
Sacerdoti, S
Saddique, A
Sadrozinski, HFW
Sadykov, R
Tehrani, FS
Saimpert, M
Sakamoto, H
Sakurai, Y
Salamanna, G
Salamon, A
Saleem, M
Salek, D
De Bruin, PHS
Salihagic, D
Salnikov, A
Salt, J
Salvatore, D
Salvatore, F
Salvucci, A
Salzburger, A
Sampsonidis, D
Sanchez, A
Sanchez, J
Martinez, VS
Sandaker, H
Sandbach, RL
Sander, HG
Sanders, MP
Sandhoff, M
Sandoval, C
Sandstroem, R
Sankey, DPC
Sannino, M
Sansoni, A
Santoni, C
Santonico, R
Santos, H
Castillo, IS
Sapp, K
Sapronov, A
Saraiva, JG
Sarrazin, B
Sasaki, O
Sasaki, Y
Sato, K
Sauvage, G
Sauvan, E
Savage, G
Savard, P
Sawyer, C
Sawyer, L
Saxon, J
Sbarra, C
Sbrizzi, A
Scanlon, T
Scannicchio, DA
Scarcella, M
Scarfone, V
Schaarschmidt, J
Schacht, P
Schaefer, D
Schaefer, R
Schaeffer, J
Schaepe, S
Schaetzel, S
Schaefer, U
Schaffer, AC
Schaile, D
Schamberger, RD
Scharf, V
Schegelsky, VA
Scheirich, D
Schernau, M
Schiavi, C
Schillo, C
Schioppa, M
Schlenker, S
Schmidt, E
Schmieden, K
Schmitt, C
Schmitt, S
Schmitt, S
Schneider, B
Schnellbach, YJ
Schnoor, U
Schoeffel, L
Schoening, A
Schoenrock, BD
Schopf, E
Schorlemmer, ALS
Schott, M
Schouten, D
Schovancova, J
Schramm, S
Schreyer, M
Schroeder, C
Schuh, N
Schultens, MJ
Schultz-Coulon, HC
Schulz, H
Schumacher, M
Schumm, BA
Schune, P
Schwanenberger, C
Schwartzman, A
Schwarz, TA
Schwegler, P
Schwemling, P
Schwienhorst, R
Schwindling, J
Schwindt, T
Schwoerer, M
Sciacca, FG
Scifo, E
Sciolla, G
Scuri, F
Scutti, F
Searcy, J
Sedov, G
Sedykh, E
Seema, P
Seidel, SC
Seiden, A
Seifert, F
Seixas, JM
Sekhniaidze, G
Sekula, SJ
Selbach, KE
Seliverstov, DM
Semprini-Cesari, N
Serfon, C
Serin, L
Serkin, L
Serre, T
Seuster, R
Severini, H
Sfiligoj, T
Sforza, F
Sfyrla, A
Shabalina, E
Shamim, M
Shan, LY
Shang, R
Shank, JT
Shapiro, M
Shatalov, PB
Shaw, K
Shaw, SM
Shcherbakova, A
Shehu, CY
Sherwood, P
Shi, L
Shimizu, S
Shimmin, CO
Shimojima, M
Shiyakova, M
Shmeleva, A
Saadi, DS
Shochet, MJ
Shojaii, S
Shrestha, S
Shulga, E
Shupe, MA
Shushkevich, S
Sicho, P
Sidiropoulou, O
Sidorov, D
Sidoti, A
Siegert, F
Sijacki, D
Silva, J
Silver, Y
Silverstein, SB
Simak, V
Simard, O
Simic, L
Simion, S
Simioni, E
Simmons, B
Simon, D
Simoniello, R
Sinervo, P
Sinev, NB
Siragusa, G
Sisakyan, AN
Sivoklokov, SY
Sjolin, J
Sjursen, TB
Skinner, MB
Skottowe, HP
Skubic, P
Slater, M
Slavicek, T
Slawinska, M
Sliwa, K
Smakhtin, V
Smart, BH
Smestad, L
Smirnov, SY
Smirnov, Y
Smirnova, LN
Smirnova, O
Smith, MNK
Smizanska, M
Smolek, K
Snesarev, AA
Snidero, G
Snyder, S
Sobie, R
Socher, F
Soffer, A
Soh, DA
Solans, CA
Solar, M
Solc, J
Soldatov, EY
Soldevila, U
Solodkov, AA
Soloshenko, A
Solovyanov, OV
Solovyev, V
Sommer, P
Song, HY
Soni, N
Sood, A
Sopczak, A
Sopko, B
Sopko, V
Sorin, V
Sosa, D
Sosebee, M
Sotiropoulou, CL
Soualah, R
Soueid, P
Soukharev, AM
South, D
Spagnolo, S
Spalla, M
Spano, F
Spearman, WR
Spettel, F
Spighi, R
Spigo, G
Spiller, LA
Spousta, M
Spreitzer, T
Denis, RDS
Staerz, S
Stahlman, J
Stamen, R
Stamm, S
Stanecka, E
Stanescu, C
Stanescu-Bellu, M
Stanitzki, MM
Stapnes, S
Starchenko, EA
Stark, J
Staroba, P
Starovoitov, P
Staszewski, R
Stavina, P
Steinberg, P
Stelzer, B
Stelzer, HJ
Stelzer-Chilton, O
Stenzel, H
Stern, S
Stewart, GA
Stillings, JA
Stockton, MC
Stoebe, M
Stoicea, G
Stolte, P
Stonjek, S
Stradling, AR
Straessner, A
Stramaglia, ME
Strandberg, J
Strandberg, S
Strandlie, A
Strauss, E
Strauss, M
Strizenec, P
Strohmer, R
Strom, DM
Stroynowski, R
Strubig, A
Stucci, SA
Stugu, B
Styles, NA
Su, D
Su, J
Subramaniam, R
Succurro, A
Sugaya, Y
Suhr, C
Suk, M
Sulin, VV
Sultansoy, S
Sumida, T
Sun, S
Sun, X
Sundermann, JE
Suruliz, K
Susinno, G
Sutton, MR
Suzuki, S
Suzuki, Y
Svatos, M
Swedish, S
Swiatlowski, M
Sykora, I
Sykora, T
Ta, D
Taccini, C
Tackmann, K
Taenzer, J
Taffard, A
Tafirout, R
Taiblum, N
Takai, H
Takashima, R
Takeda, H
Takeshita, T
Takubo, Y
Talby, M
Talyshev, AA
Tam, JYC
Tan, KG
Tanaka, J
Tanaka, R
Tanaka, S
Tanaka, S
Tannenwald, BB
Tannoury, N
Tapprogge, S
Tarem, S
Tarrade, F
Tartarelli, GF
Tas, P
Tasevsky, M
Tashiro, T
Tassi, E
Delgado, AT
Tayalati, Y
Taylor, FE
Taylor, GN
Taylor, W
Teischinger, FA
Castanheira, MTD
Teixeira-Dias, P
Temming, KK
Ten Kate, H
Teng, PK
Teoh, JJ
Tepel, F
Terada, S
Terashi, K
Terron, J
Terzo, S
Testa, M
Teuscher, RJ
Therhaag, J
Theveneaux-Pelzer, T
Thomas, JP
Thomas-Wilsker, J
Thompson, EN
Thompson, PD
Thompson, RJ
Thompson, AS
Thomsen, LA
Thomson, E
Thomson, M
Thun, RP
Tibbetts, MJ
Torres, RET
Tikhomirov, VO
Tikhonov, YA
Timoshenko, S
Tiouchichine, E
Tipton, P
Tisserant, S
Todorov, T
Todorova-Nova, S
Tojo, J
Tokar, S
Tokushuku, K
Tollefson, K
Tolley, E
Tomlinson, L
Tomoto, M
Tompkins, L
Toms, K
Torrence, E
Torres, H
Pastor, ET
Toth, J
Touchard, F
Tovey, DR
Trefzger, T
Tremblet, L
Tricoli, A
Trigger, IM
Trincaz-Duvoid, S
Tripiana, MF
Trischuk, W
Trocme, B
Troncon, C
Trottier-McDonald, M
Trovatelli, M
True, P
Trzebinski, M
Trzupek, A
Tsarouchas, C
Tseng, JCL
Tsiareshka, PV
Tsionou, D
Tsipolitis, G
Tsirintanis, N
Tsiskaridze, S
Tsiskaridze, V
Tskhadadze, EG
Tsukerman, II
Tsulaia, V
Tsuno, S
Tsybychev, D
Tudorache, A
Tudorache, V
Tuna, AN
Tupputi, SA
Turchikhin, S
Turecek, D
Turra, R
Turvey, AJ
Tuts, PM
Tykhonov, A
Tylmad, M
Tyndel, M
Ueda, I
Ueno, R
Ughetto, M
Ugland, M
Uhlenbrock, M
Ukegawa, F
Unal, G
Undrus, A
Unel, G
Ungaro, FC
Unno, Y
Unverdorben, C
Urban, J
Urquijo, P
Urrejola, P
Usai, G
Usanova, A
Vacavant, L
Vacek, V
Vachon, B
Valderanis, C
Valencic, N
Valentinetti, S
Valero, A
Valery, L
Valkar, S
Gallego, EV
Vallecorsa, S
Ferrer, JAV
Van Den Wollenberg, W
Van Der Deijl, PC
van der Geer, R
van der Graaf, H
Van Der Leeuw, R
van Eldik, N
van Gemmeren, P
Van Nieuwkoop, J
van Vulpen, I
van Woerden, MC
Vanadia, M
Vandelli, W
Vanguri, R
Vaniachine, A
Vannucci, F
Vardanyan, G
Vari, R
Varnes, EW
Varol, T
Varouchas, D
Vartapetian, A
Varvell, KE
Vazeille, F
Schroeder, TV
Veatch, J
Veloso, F
Velz, T
Veneziano, S
Ventura, A
Ventura, D
Venturi, M
Venturi, N
Venturini, A
Vercesi, V
Verducci, M
Verkerke, W
Vermeulen, JC
Vest, A
Vetterli, MC
Viazlo, O
Vichou, I
Vickey, T
Boeriu, OEV
Viehhauser, GHA
Viel, S
Vigne, R
Villa, M
Perez, MV
Vilucchi, E
Vincter, MG
Vinogradov, VB
Vivarelli, I
Vaque, FV
Vlachos, S
Vladoiu, D
Vlasak, M
Vogel, M
Vokac, P
Volpi, G
Volpi, M
von der Schmitt, H
von Radziewski, H
von Toerne, E
Vorobel, V
Vorobev, K
Vos, M
Voss, R
Vossebeld, JH
Vranjes, N
Milosavljevic, MV
Vrba, V
Vreeswijk, M
Vuillermet, R
Vukotic, I
Vykydal, Z
Wagner, P
Wagner, W
Wahlberg, H
Wahrmund, S
Wakabayashi, J
Walder, J
Walker, R
Walkowiak, W
Wang, C
Wang, F
Wang, H
Wang, H
Wang, J
Wang, J
Wang, K
Wang, R
Wang, SM
Wang, T
Wang, X
Wanotayaroj, C
Warburton, A
Ward, CP
Wardrope, DR
Warsinsky, M
Washbrook, A
Wasicki, C
Watkins, PM
Watson, AT
Watson, IJ
Watson, MF
Watts, G
Watts, S
Waugh, BM
Webb, S
Weber, MS
Weber, SW
Webster, JS
Weidberg, AR
Weinert, B
Weingarten, J
Weiser, C
Weits, H
Wells, PS
Wenaus, T
Wengler, T
Wenig, S
Wermes, N
Werner, M
Werner, P
Wessels, M
Wetter, J
Whalen, K
Wharton, AM
White, A
White, MJ
White, R
White, S
Whiteson, D
Wickens, FJ
Wiedenmann, W
Wielers, M
Wienemann, P
Wiglesworth, C
Wiik-Fuchs, LAM
Wildauer, A
Wilkens, HG
Williams, HH
Williams, S
Willis, C
Willocq, S
Wilson, A
Wilson, JA
Wingerter-Seez, I
Winklmeier, F
Winter, BT
Wittgen, M
Wittkowski, J
Wollstadt, SJ
Wolter, MW
Wolters, H
Wosiek, BK
Wotschack, J
Woudstra, MJ
Wozniak, KW
Wu, M
Wu, M
Wu, SL
Wu, X
Wu, Y
Wyatt, TR
Wynne, BM
Xella, S
Xu, D
Xu, L
Yabsley, B
Yacoob, S
Yakabe, R
Yamada, M
Yamaguchi, Y
Yamamoto, A
Yamamoto, S
Yamanaka, T
Yamauchi, K
Yamazaki, Y
Yan, Z
Yang, H
Yang, H
Yang, Y
Yao, L
Yao, WM
Yasu, Y
Yatsenko, E
Wong, KHY
Ye, J
Ye, S
Yeletskikh, I
Yen, AL
Yildirim, E
Yorita, K
Yoshida, R
Yoshihara, K
Young, C
Young, CJS
Youssef, S
Yu, DR
Yu, J
Yu, JM
Yu, J
Yuan, L
Yurkewicz, A
Yusuff, I
Zabinski, B
Zaidan, R
Zaitsev, AM
Zalieckas, J
Zaman, A
Zambito, S
Zanello, L
Zanzi, D
Zeitnitz, C
Zeman, M
Zemla, A
Zengel, K
Zenin, O
Zenis, T
Zerwas, D
Zhang, D
Zhang, F
Zhang, J
Zhang, L
Zhang, R
Zhang, X
Zhang, Z
Zhao, X
Zhao, Y
Zhao, Z
Zhemchugov, A
Zhong, J
Zhou, B
Zhou, C
Zhou, L
Zhou, L
Zhou, N
Zhu, CG
Zhu, H
Zhu, J
Zhu, Y
Zhuang, X
Zhukov, K
Zibell, A
Zieminska, D
Zimine, NI
Zimmermann, C
Zimmermann, R
Zimmermann, S
Zinonos, Z
Zinser, M
Ziolkowski, M
Zivkovic, L
Zobernig, G
Zoccoli, A
Nedden, MZ
Zurzolo, G
Zwalinski, L
AF Aad, G.
Abbott, B.
Abdallah, J.
Abdinov, O.
Aben, R.
Abolins, M.
AbouZeid, O. S.
Abramowicz, H.
Abreu, H.
Abreu, R.
Abulaiti, Y.
Acharya, B. S.
Adamczyk, L.
Adams, D. L.
Adelman, J.
Adomeit, S.
Adye, T.
Affolder, A. A.
Agatonovic-Jovin, T.
Aguilar-Saavedra, J. A.
Agustoni, M.
Ahlen, S. P.
Ahmadov, F.
Aielli, G.
Akerstedt, H.
Akesson, T. P.
Akimoto, G.
Akimov, A. V.
Alberghi, G. L.
Albert, J.
Albrand, S.
Alconada Verzini, M. J.
Aleksa, M.
Aleksandrov, I. N.
Alexa, C.
Alexander, G.
Alexopoulos, T.
Alhroob, M.
Alimonti, G.
Alio, L.
Alison, J.
Alkire, S. P.
Allbrooke, B. M. M.
Allport, P. P.
Aloisio, A.
Alonso, A.
Alonso, F.
Alpigiani, C.
Altheimer, A.
Gonzalez, B. Alvarez
Alvarez Piqueras, D.
Alviggi, M. G.
Amako, K.
Amaral Coutinho, Y.
Amelung, C.
Amidei, D.
Amor Dos Santos, S. P.
Amorim, A.
Amoroso, S.
Amram, N.
Amundsen, G.
Anastopoulos, C.
Ancu, L. S.
Andari, N.
Andeen, T.
Anders, C. F.
Anders, G.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Angelidakis, S.
Angelozzi, I.
Anger, P.
Angerami, A.
Anghinolfi, F.
Anisenkov, A. V.
Anjos, N.
Annovi, A.
Antonelli, M.
Antonov, A.
Antos, J.
Anulli, F.
Aoki, M.
Bella, L. Aperio
Arabidze, G.
Arai, Y.
Araque, J. P.
Arce, A. T. H.
Arduh, F. A.
Arguin, J-F.
Argyropoulos, S.
Arik, M.
Armbruster, A. J.
Arnaez, O.
Arnal, V.
Arnold, H.
Arratia, M.
Arslan, O.
Artamonov, A.
Artoni, G.
Asai, S.
Asbah, N.
Ashkenazi, A.
Asman, B.
Asquith, L.
Assamagan, K.
Astalos, R.
Atkinson, M.
Atlay, N. B.
Auerbach, B.
Augsten, K.
Aurousseau, M.
Avolio, G.
Axen, B.
Ayoub, M. K.
Azuelos, G.
Baak, M. A.
Baas, A. E.
Bacci, C.
Bachacou, H.
Bachas, K.
Backes, M.
Backhaus, M.
Badescu, E.
Bagiacchi, P.
Bagnaia, P.
Bai, Y.
Bain, T.
Baines, J. T.
Baker, O. K.
Balek, P.
Balestri, T.
Balli, F.
Banas, E.
Banerjee, Sw.
Bannoura, A. A. E.
Bansil, H. S.
Baranov, S. P.
Barberio, E. L.
Barberis, D.
Barbero, M.
Barillari, T.
Barisonzi, M.
Barklow, T.
Barlow, N.
Barnes, S. L.
Barnett, B. M.
Barnett, R. M.
Barnovska, Z.
Baroncelli, A.
Barone, G.
Barr, A. J.
Barreiro, F.
da Costa, J. Barreiro Guimaraes
Bartoldus, R.
Barton, A. E.
Bartos, P.
Bassalat, A.
Basye, A.
Bates, R. L.
Batista, S. J.
Batley, J. R.
Battaglia, M.
Bauce, M.
Bauer, F.
Bawa, H. S.
Beacham, J. B.
Beattie, M. D.
Beau, T.
Beauchemin, P. H.
Beccherle, R.
Bechtle, P.
Beck, H. P.
Becker, K.
Becker, M.
Becker, S.
Beckingham, M.
Becot, C.
Beddall, A. J.
Beddall, A.
Bednyakov, V. A.
Bee, C. P.
Beemster, L. J.
Beermann, T. A.
Begel, M.
Behr, J. K.
Belanger-Champagne, C.
Bell, W. H.
Bella, G.
Bellagamba, L.
Bellerive, A.
Bellomo, M.
Belotskiy, K.
Beltramello, O.
Benary, O.
Benchekroun, D.
Bender, M.
Bendtz, K.
Benekos, N.
Benhammou, Y.
Noccioli, E. Benhar
Garcia, J. A. Benitez
Benjamin, D. P.
Bensinger, J. R.
Bentvelsen, S.
Beresford, L.
Beretta, M.
Berge, D.
Kuutmann, E. Bergeaas
Berger, N.
Berghaus, F.
Beringer, J.
Bernard, C.
Bernard, N. R.
Bernius, C.
Bernlochner, F. U.
Berry, T.
Berta, P.
Bertella, C.
Bertoli, G.
Bertolucci, F.
Bertsche, C.
Bertsche, D.
Besana, M. I.
Besjes, G. J.
Bylund, O. Bessidskaia
Bessner, M.
Besson, N.
Betancourt, C.
Bethke, S.
Bevan, A. J.
Bhimji, W.
Bianchi, R. M.
Bianchini, L.
Bianco, M.
Biebel, O.
Bieniek, S. P.
Biglietti, M.
De Mendizabal, J. Bilbao
Bilokon, H.
Bindi, M.
Binet, S.
Bingul, A.
Bini, C.
Black, C. W.
Black, J. E.
Black, K. M.
Blackburn, D.
Blair, R. E.
Blanchard, J. -B.
Blanco, J. E.
Blazek, T.
Bloch, I.
Blocker, C.
Blum, W.
Blumenschein, U.
Bobbink, G. J.
Bobrovnikov, V. S.
Bocchetta, S. S.
Bocci, A.
Bock, C.
Boehler, M.
Bogaerts, J. A.
Bogdanchikov, A. G.
Bohm, C.
Boisvert, V.
Bold, T.
Boldea, V.
Boldyrev, A. S.
Bomben, M.
Bona, M.
Boonekamp, M.
Borisov, A.
Borissov, G.
Borroni, S.
Bortfeldt, J.
Bortolotto, V.
Bos, K.
Boscherini, D.
Bosman, M.
Boudreau, J.
Bouffard, J.
Bouhova-Thacker, E. V.
Boumediene, D.
Bourdarios, C.
Bousson, N.
Boveia, A.
Boyd, J.
Boyko, I. R.
Bozic, I.
Bracinik, J.
Brandt, A.
Brandt, G.
Brandt, O.
Bratzler, U.
Brau, B.
Brau, J. E.
Braun, H. M.
Brazzale, S. F.
Brendlinger, K.
Brennan, A. J.
Brenner, L.
Brenner, R.
Bressler, S.
Bristow, K.
Bristow, T. M.
Britton, D.
Britzger, D.
Brochu, F. M.
Brock, I.
Brock, R.
Bronner, J.
Brooijmans, G.
Brooks, T.
Brooks, W. K.
Brosamer, J.
Brost, E.
Brown, J.
de Renstrom, P. A. Bruckman
Bruncko, D.
Bruneliere, R.
Bruni, A.
Bruni, G.
Bruschi, M.
Bryngemark, L.
Buanes, T.
Buat, Q.
Buchholz, P.
Buckley, A. G.
Buda, S. I.
Budagov, I. A.
Buehrer, F.
Bugge, L.
Bugge, M. K.
Bulekov, O.
Burckhart, H.
Burdin, S.
Burghgrave, B.
Burke, S.
Burmeister, I.
Busato, E.
Buescher, D.
Buescher, V.
Bussey, P.
Buszello, C. P.
Butler, J. M.
Butt, A. I.
Buttar, C. M.
Butterworth, J. M.
Butti, P.
Buttinger, W.
Buzatu, A.
Buzykaev, R.
Cabrera Urban, S.
Caforio, D.
Cakir, O.
Calafiura, P.
Calandri, A.
Calderini, G.
Calfayan, P.
Caloba, L. P.
Calvet, D.
Calvet, S.
Toro, R. Camacho
Camarda, S.
Cameron, D.
Caminada, L. M.
Caminal Armadans, R.
Campana, S.
Campanelli, M.
Campoverde, A.
Canale, V.
Canepa, A.
Bret, M. Cano
Cantero, J.
Cantrill, R.
Cao, T.
Garrido, M. D. M. Capeans
Caprini, I.
Caprini, M.
Capua, M.
Caputo, R.
Cardarelli, R.
Carli, T.
Carlino, G.
Carminati, L.
Caron, S.
Carquin, E.
Carrillo-Montoya, G. D.
Carter, J. R.
Carvalho, J.
Casadei, D.
Casado, M. P.
Casolino, M.
Castaneda-Miranda, E.
Castelli, A.
Castillo Gimenez, V.
Castro, N. F.
Catastini, P.
Catinaccio, A.
Catmore, J. R.
Cattai, A.
Caudron, J.
Cavaliere, V.
Cavalli, D.
Cavalli-Sforza, M.
Cavasinni, V.
Ceradini, F.
Cerio, B. C.
Cerny, K.
Cerqueira, A. S.
Cerri, A.
Cerrito, L.
Cerutti, F.
Cerv, M.
Cervelli, A.
Cetin, S. A.
Chafaq, A.
Chakraborty, D.
Chalupkova, I.
Chang, P.
Chapleau, B.
Chapman, J. D.
Charlton, D. G.
Chau, C. C.
Barajas, C. A. Chavez
Cheatham, S.
Chegwidden, A.
Chekanov, S.
Chekulaev, S. V.
Chelkov, G. A.
Chelstowska, M. A.
Chen, C.
Chen, H.
Chen, K.
Chen, L.
Chen, S.
Chen, X.
Chen, Y.
Cheng, H. C.
Cheng, Y.
Cheplakov, A.
Cheremushkina, E.
Cherkaoui El Moursli, R.
Chernyatin, V.
Cheu, E.
Chevalier, L.
Chiarella, V.
Childers, J. T.
Chiodini, G.
Chisholm, A. S.
Chislett, R. T.
Chitan, A.
Chizhov, M. V.
Choi, K.
Chouridou, S.
Chow, B. K. B.
Christodoulou, V.
Chromek-Burckhart, D.
Chu, M. L.
Chudoba, J.
Chuinard, A. J.
Chwastowski, J. J.
Chytka, L.
Ciapetti, G.
Ciftci, A. K.
Cinca, D.
Cindro, V.
Cioara, I. A.
Ciocio, A.
Citron, Z. H.
Ciubancan, M.
Clark, A.
Clark, B. L.
Clark, P. J.
Clarke, R. N.
Cleland, W.
Clement, C.
Coadou, Y.
Cobal, M.
Coccaro, A.
Cochran, J.
Coffey, L.
Cogan, J. G.
Cole, B.
Cole, S.
Colijn, A. P.
Collot, J.
Colombo, T.
Compostella, G.
Conde Muino, P.
Coniavitis, E.
Connell, S. H.
Connelly, I. A.
Consonni, S. M.
Consorti, V.
Constantinescu, S.
Conta, C.
Conti, G.
Conventi, F.
Cooke, M.
Cooper, B. D.
Cooper-Sarkar, A. M.
Copic, K.
Cornelissen, T.
Corradi, M.
Corriveau, F.
Corso-Radu, A.
Cortes-Gonzalez, A.
Cortiana, G.
Costa, G.
Costa, M. J.
Costanzo, D.
Cote, D.
Cottin, G.
Cowan, G.
Cox, B. E.
Cranmer, K.
Cree, G.
Crepe-Renaudin, S.
Crescioli, F.
Cribbs, W. A.
Ortuzar, M. Crispin
Cristinziani, M.
Croft, V.
Crosetti, G.
Donszelmann, T. Cuhadar
Cummings, J.
Curatolo, M.
Cuthbert, C.
Czirr, H.
Czodrowski, P.
D'Auria, S.
D'Onofrio, M.
Da Cunha Sargedas De Sousa, M. J.
Da Via, C.
Dabrowski, W.
Dafinca, A.
Dai, T.
Dale, O.
Dallaire, F.
Dallapiccola, C.
Dam, M.
Dandoy, J. R.
Daniells, A. C.
Danninger, M.
Hoffmann, M. Dano
Dao, V.
Darbo, G.
Darmora, S.
Dassoulas, J.
Dattagupta, A.
Davey, W.
David, C.
Davidek, T.
Davies, E.
Davies, M.
Davison, P.
Davygora, Y.
Dawe, E.
Dawson, I.
Daya-Ishmukhametova, R. K.
De, K.
de Asmundis, R.
De Castro, S.
De Cecco, S.
De Groot, N.
de Jong, P.
De la Torre, H.
De Lorenzi, F.
De Nooij, L.
De Pedis, D.
De Salvo, A.
De Sanctis, U.
De Santo, A.
De Regie, J. B. De Vivie
Dearnaley, W. J.
Debbe, R.
Debenedetti, C.
Dedovich, D. V.
Deigaard, I.
Del Peso, J.
Del Prete, T.
Delgove, D.
Deliot, F.
Delitzsch, C. M.
Deliyergiyev, M.
Dell'Acqua, A.
Dell'Asta, L.
Dell'Orso, M.
Della Pietra, M.
della Volpe, D.
Delmastro, M.
Delsart, P. A.
Deluca, C.
DeMarco, D. A.
Demers, S.
Demichev, M.
Demilly, A.
Denisov, S. P.
Derendarz, D.
Derkaoui, J. E.
Derue, F.
Dervan, P.
Desch, K.
Deterre, C.
Deviveiros, P. O.
Dewhurst, A.
Dhaliwal, S.
Di Ciaccio, A.
Di Ciaccio, L.
Di Domenico, A.
Di Donato, C.
Di Girolamo, A.
Di Girolamo, B.
Di Mattia, A.
Di Micco, B.
Di Nardo, R.
Di Simone, A.
Di Sipio, R.
Di Valentino, D.
Diaconu, C.
Diamond, M.
Dias, F. A.
Diaz, M. A.
Diehl, E. B.
Dietrich, J.
Diglio, S.
Dimitrievska, A.
Dingfelder, J.
Dita, P.
Dita, S.
Dittus, F.
Djama, F.
Djobava, T.
Djuvsland, J. I.
do Vale, M. A. B.
Dobos, D.
Dobre, M.
Doglioni, C.
Dohmae, T.
Dolejsi, J.
Dolezal, Z.
Dolgoshein, B. A.
Donadelli, M.
Donati, S.
Dondero, P.
Donini, J.
Dopke, J.
Doria, A.
Dova, M. T.
Doyle, A. T.
Drechsler, E.
Dris, M.
Dubreuil, E.
Duchovni, E.
Duckeck, G.
Ducu, O. A.
Duda, D.
Dudarev, A.
Duflot, L.
Duguid, L.
Duehrssen, M.
Dunford, M.
Yildiz, H. Duran
Dueren, M.
Durglishvili, A.
Duschinger, D.
Dyndal, M.
Eckardt, C.
Ecker, K. M.
Edson, W.
Edwards, N. C.
Ehrenfeld, W.
Eifert, T.
Eigen, G.
Einsweiler, K.
Ekelof, T.
El Kacimi, M.
Ellert, M.
Elles, S.
Ellinghaus, F.
Elliot, A. A.
Ellis, N.
Elmsheuser, J.
Elsing, M.
Emeliyanov, D.
Enari, Y.
Endner, O. C.
Endo, M.
Engelmann, R.
Erdmann, J.
Ereditato, A.
Ernis, G.
Ernst, J.
Ernst, M.
Errede, S.
Ertel, E.
Escalier, M.
Esch, H.
Escobar, C.
Esposito, B.
Etienvre, A. I.
Etzion, E.
Evans, H.
Ezhilov, A.
Fabbri, L.
Facini, G.
Fakhrutdinov, R. M.
Falciano, S.
Falla, R. J.
Faltova, J.
Fang, Y.
Fanti, M.
Farbin, A.
Farilla, A.
Farooque, T.
Farrell, S.
Farrington, S. M.
Farthouat, P.
Fassi, F.
Fassnacht, P.
Fassouliotis, D.
Giannelli, M. Faucci
Favareto, A.
Fayard, L.
Federic, P.
Fedin, O. L.
Fedorko, W.
Feigl, S.
Feligioni, L.
Feng, C.
Feng, E. J.
Feng, H.
Fenyuk, A. B.
Fernandez Martinez, P.
Perez, S. Fernandez
Ferrag, S.
Ferrando, J.
Ferrari, A.
Ferrari, P.
Ferrari, R.
de Lima, D. E. Ferreira
Ferrer, A.
Ferrere, D.
Ferretti, C.
Parodi, A. Ferretto
Fiascaris, M.
Fiedler, F.
Filipcic, A.
Filipuzzi, M.
Filthaut, F.
Fincke-Keeler, M.
Finelli, K. D.
Fiolhais, M. C. N.
Fiorini, L.
Firan, A.
Fischer, A.
Fischer, C.
Fischer, J.
Fisher, W. C.
Fitzgerald, E. A.
Flechl, M.
Fleck, I.
Fleischmann, P.
Fleischmann, S.
Fletcher, G. T.
Fletcher, G.
Flick, T.
Floderus, A.
Castillo, L. R. Flores
Flowerdew, M. J.
Formica, A.
Forti, A.
Fournier, D.
Fox, H.
Fracchia, S.
Francavilla, P.
Franchini, M.
Francis, D.
Franconi, L.
Franklin, M.
Fraternali, M.
Freeborn, D.
French, S. T.
Friedrich, F.
Froidevaux, D.
Frost, J. A.
Fukunaga, C.
Fullana Torregrosa, E.
Fulsom, B. G.
Fuster, J.
Gabaldon, C.
Gabizon, O.
Gabrielli, A.
Gabrielli, A.
Gadatsch, S.
Gadomski, S.
Gagliardi, G.
Gagnon, P.
Galea, C.
Galhardo, B.
Gallas, E. J.
Gallop, B. J.
Gallus, P.
Galster, G.
Gan, K. K.
Gao, J.
Gao, Y.
Gao, Y. S.
Walls, F. M. Garay
Garberson, F.
Garcia, C.
Garcia Navarro, J. E.
Garcia-Sciveres, M.
Gardner, R. W.
Garelli, N.
Garonne, V.
Gatti, C.
Gaudiello, A.
Gaudio, G.
Gaur, B.
Gauthier, L.
Gauzzi, P.
Gavrilenko, I. L.
Gay, C.
Gaycken, G.
Gazis, E. N.
Ge, P.
Gecse, Z.
Gee, C. N. P.
Geerts, D. A. A.
Geich-Gimbel, Ch.
Geisler, M. P.
Gemme, C.
Genest, M. H.
Gentile, S.
George, M.
George, S.
Gerbaudo, D.
Gershon, A.
Ghazlane, H.
Giacobbe, B.
Giagu, S.
Giangiobbe, V.
Giannetti, P.
Gibbard, B.
Gibson, S. M.
Gilchriese, M.
Gillam, T. P. S.
Gillberg, D.
Gilles, G.
Gingrich, D. M.
Giokaris, N.
Giordani, M. P.
Giorgi, F. M.
Giorgi, F. M.
Giraud, P. F.
Giromini, P.
Giugni, D.
Giuliani, C.
Giulini, M.
Gjelsten, B. K.
Gkaitatzis, S.
Gkialas, I.
Gkougkousis, E. L.
Gladilin, L. K.
Glasman, C.
Glatzer, J.
Glaysher, P. C. F.
Glazov, A.
Goblirsch-Kolb, M.
Goddard, J. R.
Godlewski, J.
Goldfarb, S.
Golling, T.
Golubkov, D.
Gomes, A.
Gonalo, R.
Da Costa, J. Goncalves Pinto Firmino
Gonella, L.
Gonzalez de la Hoz, S.
Gonzalez Parra, G.
Gonzalez-Sevilla, S.
Goossens, L.
Gorbounov, P. A.
Gordon, H. A.
Gorelov, I.
Gorini, B.
Gorini, E.
Gorisek, A.
Gornicki, E.
Goshaw, A. T.
Goessling, C.
Gostkin, M. I.
Goujdami, D.
Goussiou, A. G.
Govender, N.
Grabas, H. M. X.
Graber, L.
Grabowska-Bold, I.
Grafstroem, P.
Grahn, K-J.
Gramling, J.
Gramstad, E.
Grancagnolo, S.
Grassi, V.
Gratchev, V.
Gray, H. M.
Graziani, E.
Greenwood, Z. D.
Gregersen, K.
Gregor, I. M.
Grenier, P.
Griffiths, J.
Grillo, A. A.
Grimm, K.
Grinstein, S.
Gris, Ph.
Grivaz, J. -F.
Grohs, J. P.
Grohsjean, A.
Gross, E.
Grosse-Knetter, J.
Grossi, G. C.
Grout, Z. J.
Guan, L.
Guenther, J.
Guescini, F.
Guest, D.
Gueta, O.
Guido, E.
Guillemin, T.
Guindon, S.
Gul, U.
Gumpert, C.
Guo, J.
Gupta, S.
Gutierrez, P.
Ortiz, N. G. Gutierrez
Gutschow, C.
Guyot, C.
Gwenlan, C.
Gwilliam, C. B.
Haas, A.
Haber, C.
Hadavand, H. K.
Haddad, N.
Haefner, P.
Hageboeck, S.
Hajduk, Z.
Hakobyan, H.
Haleem, M.
Haley, J.
Hall, D.
Halladjian, G.
Hallewell, G. D.
Hamacher, K.
Hamal, P.
Hamano, K.
Hamer, M.
Hamilton, A.
Hamilton, S.
Hamity, G. N.
Hamnett, P. G.
Han, L.
Hanagaki, K.
Hanawa, K.
Hance, M.
Haney, B.
Hanke, P.
Hanna, R.
Hansen, J. B.
Hansen, J. D.
Hansen, M. C.
Hansen, P. H.
Hara, K.
Hard, A. S.
Harenberg, T.
Hariri, F.
Harkusha, S.
Harrington, R. D.
Harrison, P. F.
Hartjes, F.
Hasegawa, M.
Hasegawa, S.
Hasegawa, Y.
Hasib, A.
Hassani, S.
Haug, S.
Hauser, R.
Hauswald, L.
Havranek, M.
Hawkes, C. M.
Hawkings, R. J.
Hawkins, A. D.
Hayashi, T.
Hayden, D.
Hays, C. P.
Hays, J. M.
Hayward, H. S.
Haywood, S. J.
Head, S. J.
Heck, T.
Hedberg, V.
Heelan, L.
Heim, S.
Heim, T.
Heinemann, B.
Heinrich, L.
Hejbal, J.
Helary, L.
Hellman, S.
Hellmich, D.
Helsens, C.
Henderson, J.
Henderson, R. C. W.
Heng, Y.
Hengler, C.
Henrichs, A.
Correia, A. M. Henriques
Henrot-Versille, S.
Herbert, G. H.
Hernandez Jimenez, Y.
Herrberg-Schubert, R.
Herten, G.
Hertenberger, R.
Hervas, L.
Hesketh, G. G.
Hessey, N. P.
Hetherly, J. W.
Hickling, R.
Higon-Rodriguez, E.
Hill, E.
Hill, J. C.
Hiller, K. H.
Hillier, S. J.
Hinchliffe, I.
Hines, E.
Hinman, R. R.
Hirose, M.
Hirschbuehl, D.
Hobbs, J.
Hod, N.
Hodgkinson, M. C.
Hodgson, P.
Hoecker, A.
Hoeferkamp, M. R.
Hoenig, F.
Hohlfeld, M.
Hohn, D.
Holmes, T. R.
Hong, T. M.
van Huysduynen, L. Hooft
Hopkins, W. H.
Horii, Y.
Horton, A. J.
Hostachy, J-Y.
Hou, S.
Hoummada, A.
Howard, J.
Howarth, J.
Hrabovsky, M.
Hristova, I.
Hrivnac, J.
Hryn'ova, T.
Hrynevich, A.
Hsu, C.
Hsu, P. J.
Hsu, S. -C.
Hu, D.
Hu, Q.
Hu, X.
Huang, Y.
Hubacek, Z.
Hubaut, F.
Huegging, F.
Huffman, T. B.
Hughes, E. W.
Hughes, G.
Huhtinen, M.
Huelsing, T. A.
Huseynov, N.
Huston, J.
Huth, J.
Iacobucci, G.
Iakovidis, G.
Ibragimov, I.
Iconomidou-Fayard, L.
Ideal, E.
Idrissi, Z.
Iengo, P.
Igonkina, O.
Iizawa, T.
Ikegami, Y.
Ikematsu, K.
Ikeno, M.
Ilchenko, Y.
Iliadis, D.
Ilic, N.
Inamaru, Y.
Ince, T.
Ioannou, P.
Iodice, M.
Iordanidou, K.
Ippolito, V.
Quiles, A. Irles
Isaksson, C.
Ishino, M.
Ishitsuka, M.
Ishmukhametov, R.
Issever, C.
Istin, S.
Ponce, J. M. Iturbe
Iuppa, R.
Ivarsson, J.
Iwanski, W.
Iwasaki, H.
Izen, J. M.
Izzo, V.
Jabbar, S.
Jackson, B.
Jackson, M.
Jackson, P.
Jaekel, M. R.
Jain, V.
Jakobs, K.
Jakobsen, S.
Jakoubek, T.
Jakubek, J.
Jamin, D. O.
Jana, D. K.
Jansen, E.
Jansky, R. W.
Janssen, J.
Janus, M.
Jarlskog, G.
Javadov, N.
Javurek, T.
Jeanty, L.
Jejelava, J.
Jeng, G. -Y.
Jennens, D.
Jenni, P.
Jentzsch, J.
Jeske, C.
Jezequel, S.
Ji, H.
Jia, J.
Jiang, Y.
Jiggins, S.
Jimenez Pena, J.
Jin, S.
Jinaru, A.
Jinnouchi, O.
Joergensen, M. D.
Johansson, P.
Johns, K. A.
Jon-And, K.
Jones, G.
Jones, R. W. L.
Jones, T. J.
Jongmanns, J.
Jorge, P. M.
Joshi, K. D.
Jovicevic, J.
Ju, X.
Jung, C. A.
Jussel, P.
Juste Rozas, A.
Kaci, M.
Kaczmarska, A.
Kado, M.
Kagan, H.
Kagan, M.
Kahn, S. J.
Kajomovitz, E.
Kalderon, C. W.
Kama, S.
Kamenshchikov, A.
Kanaya, N.
Kaneda, M.
Kaneti, S.
Kantserov, V. A.
Kanzaki, J.
Kaplan, B.
Kapliy, A.
Kar, D.
Karakostas, K.
Karamaoun, A.
Karastathis, N.
Kareem, M. J.
Karnevskiy, M.
Karpov, S. N.
Karpova, Z. M.
Karthik, K.
Kartvelishvili, V.
Karyukhin, A. N.
Kashif, L.
Kass, R. D.
Kastanas, A.
Kataoka, Y.
Katre, A.
Katzy, J.
Kawagoe, K.
Kawamoto, T.
Kawamura, G.
Kazama, S.
Kazanin, V. F.
Kazarinov, M. Y.
Keeler, R.
Kehoe, R.
Keller, J. S.
Kempster, J. J.
Keoshkerian, H.
Kepka, O.
Kersevan, B. P.
Kersten, S.
Keyes, R. A.
Khalil-zada, F.
Khandanyan, H.
Khanov, A.
Kharlamov, A. G.
Khoo, T. J.
Khovanskiy, V.
Khramov, E.
Khubua, J.
Kim, H. Y.
Kim, H.
Kim, S. H.
Kim, Y.
Kimura, N.
Kind, O. M.
King, B. T.
King, M.
King, R. S. B.
King, S. B.
Kirk, J.
Kiryunin, A. E.
Kishimoto, T.
Kisielewska, D.
Kiss, F.
Kiuchi, K.
Kivernyk, O.
Kladiva, E.
Klein, M. H.
Klein, M.
Klein, U.
Kleinknecht, K.
Klimek, P.
Klimentov, A.
Klingenberg, R.
Klinger, J. A.
Klioutchnikova, T.
Klok, P. F.
Kluge, E. -E.
Kluit, P.
Kluth, S.
Kneringer, E.
Knoops, E. B. F. G.
Knue, A.
Kobayashi, D.
Kobayashi, T.
Kobel, M.
Kocian, M.
Kodys, P.
Koffas, T.
Koffeman, E.
Kogan, L. A.
Kohlmann, S.
Kohout, Z.
Kohriki, T.
Koi, T.
Kolanoski, H.
Koletsou, I.
Komar, A. A.
Komori, Y.
Kondo, T.
Kondrashova, N.
Koeneke, K.
Koenig, A. C.
Koenig, S.
Kono, T.
Konoplich, R.
Konstantinidis, N.
Kopeliansky, R.
Koperny, S.
Koepke, L.
Kopp, A. K.
Korcyl, K.
Kordas, K.
Korn, A.
Korol, A. A.
Korolkov, I.
Korolkova, E. V.
Kortner, O.
Kortner, S.
Kosek, T.
Kostyukhin, V. V.
Kotov, V. M.
Kotwal, A.
Kourkoumeli-Charalampidi, A.
Kourkoumelis, C.
Kouskoura, V.
Koutsman, A.
Kowalewski, R.
Kowalski, T. Z.
Kozanecki, W.
Kozhin, A. S.
Kramarenko, V. A.
Kramberger, G.
Krasnopevtsev, D.
Krasznahorkay, A.
Kraus, J. K.
Kravchenko, A.
Kreiss, S.
Kretz, M.
Kretzschmar, J.
Kreutzfeldt, K.
Krieger, P.
Krizka, K.
Kroeninger, K.
Kroha, H.
Kroll, J.
Kroseberg, J.
Krstic, J.
Kruchonak, U.
Krueger, H.
Krumnack, N.
Krumshteyn, Z. V.
Kruse, A.
Kruse, M. C.
Kruskal, M.
Kubota, T.
Kucuk, H.
Kuday, S.
Kuehn, S.
Kugel, A.
Kuger, F.
Kuhl, A.
Kuhl, T.
Kukhtin, V.
Kulchitsky, Y.
Kuleshov, S.
Kuna, M.
Kunigo, T.
Kupco, A.
Kurashige, H.
Kurochkin, Y. A.
Kurumida, R.
Kus, V.
Kuwertz, E. S.
Kuze, M.
Kvita, J.
Kwan, T.
Kyriazopoulos, D.
La Rosa, A.
Navarro, J. L. La Rosa
La Rotonda, L.
Lacasta, C.
Lacava, F.
Lacey, J.
Lacker, H.
Lacour, D.
Lacuesta, V. R.
Ladygin, E.
Lafaye, R.
Laforge, B.
Lagouri, T.
Lai, S.
Lambourne, L.
Lammers, S.
Lampen, C. L.
Lampl, W.
Lanon, E.
Landgraf, U.
Landon, M. P. J.
Lang, V. S.
Lange, J. C.
Lankford, A. J.
Lanni, F.
Lantzsch, K.
Laplace, S.
Lapoire, C.
Laporte, J. F.
Lari, T.
Manghi, F. Lasagni
Lassnig, M.
Laurelli, P.
Lavrijsen, W.
Law, A. T.
Laycock, P.
Le Dortz, O.
Le Guirriec, E.
Le Menedeu, E.
LeBlanc, M.
LeCompte, T.
Ledroit-Guillon, F.
Lee, C. A.
Lee, S. C.
Lee, L.
Lefebvre, G.
Lefebvre, M.
Legger, F.
Leggett, C.
Lehan, A.
Miotto, G. Lehmann
Lei, X.
Leight, W. A.
Leisos, A.
Leister, A. G.
Leite, M. A. L.
Leitner, R.
Lellouch, D.
Lemmer, B.
Leney, K. J. C.
Lenz, T.
Lenzi, B.
Leone, R.
Leone, S.
Leonidopoulos, C.
Leontsinis, S.
Leroy, C.
Lester, C. G.
Levchenko, M.
Leveque, J.
Levin, D.
Levinson, L. J.
Levy, M.
Lewis, A.
Leyko, A. M.
Leyton, M.
Li, B.
Li, H.
Li, H. L.
Li, L.
Li, L.
Li, S.
Li, Y.
Liang, Z.
Liao, H.
Liberti, B.
Liblong, A.
Lichard, P.
Lie, K.
Liebal, J.
Liebig, W.
Limbach, C.
Limosani, A.
Lin, S. C.
Lin, T. H.
Linde, F.
Lindquist, B. E.
Linnemann, J. T.
Lipeles, E.
Lipniacka, A.
Lisovyi, M.
Liss, T. M.
Lissauer, D.
Lister, A.
Litke, A. M.
Liu, B.
Liu, D.
Liu, J.
Liu, J. B.
Liu, K.
Liu, L.
Liu, M.
Liu, M.
Liu, Y.
Livan, M.
Lleres, A.
Llorente Merino, J.
Lloyd, S. L.
Lo Sterzo, F.
Lobodzinska, E.
Loch, P.
Lockman, W. S.
Loebinger, F. K.
Loevschall-Jensen, A. E.
Loginov, A.
Lohse, T.
Lohwasser, K.
Lokajicek, M.
Long, B. A.
Long, J. D.
Long, R. E.
Looper, K. A.
Lopes, L.
Mateos, D. Lopez
Paredes, B. Lopez
Paz, I. Lopez
Lorenz, J.
Martinez, N. Lorenzo
Losada, M.
Loscutoff, P.
Loesel, P. J.
Lou, X.
Lounis, A.
Love, J.
Love, P. A.
Lu, N.
Lubatti, H. J.
Luci, C.
Lucotte, A.
Luehring, F.
Lukas, W.
Luminari, L.
Lundberg, O.
Lund-Jensen, B.
Lungwitz, M.
Lynn, D.
Lysak, R.
Lytken, E.
Ma, H.
Ma, L. L.
Maccarrone, G.
Macchiolo, A.
Macdonald, C. M.
Machado Miguens, J.
Macina, D.
Madaffari, D.
Madar, R.
Maddocks, H. J.
Mader, W. F.
Madsen, A.
Maeland, S.
Maeno, T.
Maevskiy, A.
Magradze, E.
Mahboubi, K.
Mahlstedt, J.
Maiani, C.
Maidantchik, C.
Maier, A. A.
Maier, T.
Maio, A.
Majewski, S.
Makida, Y.
Makovec, N.
Malaescu, B.
Malecki, Pa.
Maleev, V. P.
Malek, F.
Mallik, U.
Malon, D.
Malone, C.
Maltezos, S.
Malyshev, V. M.
Malyukov, S.
Mamuzic, J.
Mancini, G.
Mandelli, B.
Mandelli, L.
Mandic, I.
Mandrysch, R.
Maneira, J.
Manfredini, A.
de Andrade Filho, L. Manhaes
Ramos, J. Manjarres
Mann, A.
Manning, P. M.
Manousakis-Katsikakis, A.
Mansoulie, B.
Mantifel, R.
Mantoani, M.
Mapelli, L.
March, L.
Marchiori, G.
Marcisovsky, M.
Marino, C. P.
Marjanovic, M.
Marroquim, F.
Marsden, S. P.
Marshall, Z.
Marti, L. F.
Marti-Garcia, S.
Martin, B.
Martin, T. A.
Martin, V. J.
Latour, B. Martin dit
Martinez, M.
Martin-Haugh, S.
Martoiu, V. S.
Martyniuk, A. C.
Marx, M.
Marzano, F.
Marzin, A.
Masetti, L.
Mashimo, T.
Mashinistov, R.
Masik, J.
Maslennikov, A. L.
Massa, I.
Massa, L.
Massol, N.
Mastrandrea, P.
Mastroberardino, A.
Masubuchi, T.
Maetttig, P.
Mattmann, J.
Maurer, J.
Maxfield, S. J.
Maximov, D. A.
Mazini, R.
Mazza, S. M.
Mazzaferro, L.
Mc Goldrick, G.
Mc Kee, S. P.
McCarn, A.
McCarthy, R. L.
McCarthy, T. G.
McCubbin, N. A.
McFarlane, K. W.
Mcfayden, J. A.
Mchedlidze, G.
McMahon, S. J.
McPherson, R. A.
Medinnis, M.
Meehan, S.
Mehlhase, S.
Mehta, A.
Meier, K.
Meineck, C.
Meirose, B.
Garcia, B. R. Mellado
Meloni, F.
Mengarelli, A.
Menke, S.
Meoni, E.
Mercurio, K. M.
Mergelmeyer, S.
Mermod, P.
Merola, L.
Meroni, C.
Merritt, F. S.
Messina, A.
Metcalfe, J.
Mete, A. S.
Meyer, C.
Meyer, C.
Meyer, J-P.
Meyer, J.
Middleton, R. P.
Miglioranzi, S.
Mijovic, L.
Mikenberg, G.
Mikestikova, M.
Mikuz, M.
Milesi, M.
Milic, A.
Miller, D. W.
Mills, C.
Milov, A.
Milstead, D. A.
Minaenko, A. A.
Minami, Y.
Minashvili, I. A.
Mincer, A. I.
Mindur, B.
Mineev, M.
Ming, Y.
Mir, L. M.
Mitani, T.
Mitrevski, J.
Mitsou, V. A.
Miucci, A.
Miyagawa, P. S.
Mjoernmark, J. U.
Moa, T.
Mochizuki, K.
Mohapatra, S.
Mohr, W.
Molander, S.
Moles-Valls, R.
Moenig, K.
Monini, C.
Monk, J.
Monnier, E.
Montejo Berlingen, J.
Monticelli, F.
Monzani, S.
Moore, R. W.
Morange, N.
Moreno, D.
Llacer, M. Moreno
Morettini, P.
Morgenstern, M.
Morii, M.
Morinaga, M.
Morisbak, V.
Moritz, S.
Morley, A. K.
Mornacchi, G.
Morris, J. D.
Mortensen, S. S.
Morton, A.
Morvaj, L.
Mosidze, M.
Moss, J.
Motohashi, K.
Mount, R.
Mountricha, E.
Mouraviev, S. V.
Moyse, E. J. W.
Muanza, S.
Mudd, R. D.
Mueller, F.
Mueller, J.
Mueller, K.
Mueller, R. S. P.
Mueller, T.
Muenstermann, D.
Mullen, P.
Munwes, Y.
Quijada, J. A. Murillo
Murray, W. J.
Musheghyan, H.
Musto, E.
Myagkov, A. G.
Myska, M.
Nackenhorst, O.
Nadal, J.
Nagai, K.
Nagai, R.
Nagai, Y.
Nagano, K.
Nagarkar, A.
Nagasaka, Y.
Nagata, K.
Nagel, M.
Nagy, E.
Nairz, A. M.
Nakahama, Y.
Nakamura, K.
Nakamura, T.
Nakano, I.
Namasivayam, H.
Garcia, R. F. Naranjo
Narayan, R.
Naumann, T.
Navarro, G.
Nayyar, R.
Neal, H. A.
Nechaeva, P. Yu.
Neep, T. J.
Nef, P. D.
Negri, A.
Negrini, M.
Nektarijevic, S.
Nellist, C.
Nelson, A.
Nemecek, S.
Nemethy, P.
Nepomuceno, A. A.
Nessi, M.
Neubauer, M. S.
Neumann, M.
Neves, R. M.
Nevski, P.
Newman, P. R.
Nguyen, D. H.
Nickerson, R. B.
Nicolaidou, R.
Nicquevert, B.
Nielsen, J.
Nikiforou, N.
Nikiforov, A.
Nikolaenko, V.
Nikolic-Audit, I.
Nikolopoulos, K.
Nilsen, J. K.
Nilsson, P.
Ninomiya, Y.
Nisati, A.
Nisius, R.
Nobe, T.
Nomachi, M.
Nomidis, I.
Nooney, T.
Norberg, S.
Nordberg, M.
Novgorodova, O.
Nowak, S.
Nozaki, M.
Nozka, L.
Ntekas, K.
Hanninger, G. Nunes
Nunnemann, T.
Nurse, E.
Nuti, F.
O'Brien, B. J.
O'grady, F.
O'Neil, D. C.
O'Shea, V.
Oakham, F. G.
Oberlack, H.
Obermann, T.
Ocariz, J.
Ochi, A.
Ochoa, I.
Ochoa-Ricoux, J. P.
Oda, S.
Odaka, S.
Ogren, H.
Oh, A.
Oh, S. H.
Ohm, C. C.
Ohman, H.
Oide, H.
Okamura, W.
Okawa, H.
Okumura, Y.
Okuyama, T.
Olariu, A.
Pino, S. A. Olivares
Damazio, D. Oliveira
Oliver Garcia, E.
Olszewski, A.
Olszowska, J.
Onofre, A.
Onyisi, P. U. E.
Oram, C. J.
Oreglia, M. J.
Oren, Y.
Orestano, D.
Orlando, N.
Barrera, C. Oropeza
Orr, R. S.
Osculati, B.
Ospanov, R.
Otero Y Garzon, G.
Otono, H.
Ouchrif, M.
Ouellette, E. A.
Ould-Saada, F.
Ouraou, A.
Oussoren, K. P.
Ouyang, Q.
Ovcharova, A.
Owen, M.
Owen, R. E.
Ozcan, V. E.
Ozturk, N.
Pachal, K.
Pacheco Pages, A.
Padilla Aranda, C.
Pagacova, M.
Griso, S. Pagan
Paganis, E.
Pahl, C.
Paige, F.
Pais, P.
Pajchel, K.
Palacino, G.
Palestini, S.
Palka, M.
Pallin, D.
Palma, A.
Pan, Y. B.
Panagiotopoulou, E.
Pandini, C. E.
Vazquez, J. G. Panduro
Pani, P.
Panitkin, S.
Pantea, D.
Paolozzi, L.
Papadopoulou, Th. D.
Papageorgiou, K.
Paramonov, A.
Hernandez, D. Paredes
Parker, M. A.
Parker, K. A.
Parodi, F.
Parsons, J. A.
Parzefall, U.
Pasqualucci, E.
Passaggio, S.
Pastore, F.
Pastore, Fr.
Pasztor, G.
Pataraia, S.
Patel, N. D.
Pater, J. R.
Pauly, T.
Pearce, J.
Pearson, B.
Pedersen, L. E.
Pedersen, M.
Pedraza Lopez, S.
Pedro, R.
Peleganchuk, S. V.
Pelikan, D.
Peng, H.
Penning, B.
Penwell, J.
Perepelitsa, D. V.
Codina, E. Perez
Perez Garcia-Estan, M. T.
Perini, L.
Pernegger, H.
Perrella, S.
Peschke, R.
Peshekhonov, V. D.
Peters, K.
Peters, R. F. Y.
Petersen, B. A.
Petersen, T. C.
Petit, E.
Petridis, A.
Petridou, C.
Petrolo, E.
Petrucci, F.
Pettersson, N. E.
Pezoa, R.
Phillips, P. W.
Piacquadio, G.
Pianori, E.
Picazio, A.
Piccaro, E.
Piccinini, M.
Pickering, M. A.
Piegaia, R.
Pignotti, D. T.
Pilcher, J. E.
Pilkington, A. D.
Pina, J.
Pinamonti, M.
Pinfold, J. L.
Pingel, A.
Pinto, B.
Pires, S.
Pitt, M.
Pizio, C.
Plazak, L.
Pleier, M. -A.
Pleskot, V.
Plotnikova, E.
Plucinski, P.
Pluth, D.
Poettgen, R.
Poggioli, L.
Pohl, D.
Polesello, G.
Policicchio, A.
Polifka, R.
Polini, A.
Pollard, C. S.
Polychronakos, V.
Pommes, K.
Pontecorvo, L.
Pope, B. G.
Popeneciu, G. A.
Popovic, D. S.
Poppleton, A.
Pospisil, S.
Potamianos, K.
Potrap, I. N.
Potter, C. J.
Potter, C. T.
Poulard, G.
Poveda, J.
Pozdnyakov, V.
Pralavorio, P.
Pranko, A.
Prasad, S.
Prell, S.
Price, D.
Price, L. E.
Primavera, M.
Prince, S.
Proissl, M.
Prokofiev, K.
Prokoshin, F.
Protopapadaki, E.
Protopopescu, S.
Proudfoot, J.
Przybycien, M.
Ptacek, E.
Puddu, D.
Pueschel, E.
Puldon, D.
Purohit, M.
Puzo, P.
Qian, J.
Qin, G.
Qin, Y.
Quadt, A.
Quarrie, D. R.
Quayle, W. B.
Queitsch-Maitland, M.
Quilty, D.
Raddum, S.
Radeka, V.
Radescu, V.
Radhakrishnan, S. K.
Radloff, P.
Rados, P.
Ragusa, F.
Rahal, G.
Rajagopalan, S.
Rammensee, M.
Rangel-Smith, C.
Rauscher, F.
Rave, S.
Ravenscroft, T.
Raymond, M.
Read, A. L.
Readioff, N. P.
Rebuzzi, D. M.
Redelbach, A.
Redlinger, G.
Reece, R.
Reeves, K.
Rehnisch, L.
Reisin, H.
Relich, M.
Rembser, C.
Ren, H.
Renaud, A.
Rescigno, M.
Resconi, S.
Rezanova, O. L.
Reznicek, P.
Rezvani, R.
Richter, R.
Richter, S.
Richter-Was, E.
Ricken, O.
Ridel, M.
Rieck, P.
Riegel, C. J.
Rieger, J.
Rijssenbeek, M.
Rimoldi, A.
Rinaldi, L.
Ristic, B.
Ritsch, E.
Riu, I.
Rizatdinova, F.
Rizvi, E.
Robertson, S. H.
Robichaud-Veronneau, A.
Robinson, D.
Robinson, J. E. M.
Robson, A.
Roda, C.
Roe, S.
Rohne, O.
Rolli, S.
Romaniouk, A.
Romano, M.
Saez, S. M. Romano
Romero Adam, E.
Rompotis, N.
Ronzani, M.
Roos, L.
Ros, E.
Rosati, S.
Rosbach, K.
Rose, P.
Rosendahl, P. L.
Rosenthal, O.
Rossetti, V.
Rossi, E.
Rossi, L. P.
Rosten, R.
Rotaru, M.
Roth, I.
Rothberg, J.
Rousseau, D.
Royon, C. R.
Rozanov, A.
Rozen, Y.
Ruan, X.
Rubbo, F.
Rubinskiy, I.
Rud, V. I.
Rudolph, C.
Rudolph, M. S.
Ruehr, F.
Ruiz-Martinez, A.
Rurikova, Z.
Rusakovich, N. A.
Ruschke, A.
Russell, H. L.
Rutherfoord, J. P.
Ruthmann, N.
Ryabov, Y. F.
Rybar, M.
Rybkin, G.
Ryder, N. C.
Saavedra, A. F.
Sabato, G.
Sacerdoti, S.
Saddique, A.
Sadrozinski, H. F-W.
Sadykov, R.
Tehrani, F. Safai
Saimpert, M.
Sakamoto, H.
Sakurai, Y.
Salamanna, G.
Salamon, A.
Saleem, M.
Salek, D.
De Bruin, P. H. Sales
Salihagic, D.
Salnikov, A.
Salt, J.
Salvatore, D.
Salvatore, F.
Salvucci, A.
Salzburger, A.
Sampsonidis, D.
Sanchez, A.
Sanchez, J.
Sanchez Martinez, V.
Sandaker, H.
Sandbach, R. L.
Sander, H. G.
Sanders, M. P.
Sandhoff, M.
Sandoval, C.
Sandstroem, R.
Sankey, D. P. C.
Sannino, M.
Sansoni, A.
Santoni, C.
Santonico, R.
Santos, H.
Castillo, I. Santoyo
Sapp, K.
Sapronov, A.
Saraiva, J. G.
Sarrazin, B.
Sasaki, O.
Sasaki, Y.
Sato, K.
Sauvage, G.
Sauvan, E.
Savage, G.
Savard, P.
Sawyer, C.
Sawyer, L.
Saxon, J.
Sbarra, C.
Sbrizzi, A.
Scanlon, T.
Scannicchio, D. A.
Scarcella, M.
Scarfone, V.
Schaarschmidt, J.
Schacht, P.
Schaefer, D.
Schaefer, R.
Schaeffer, J.
Schaepe, S.
Schaetzel, S.
Schaefer, U.
Schaffer, A. C.
Schaile, D.
Schamberger, R. D.
Scharf, V.
Schegelsky, V. A.
Scheirich, D.
Schernau, M.
Schiavi, C.
Schillo, C.
Schioppa, M.
Schlenker, S.
Schmidt, E.
Schmieden, K.
Schmitt, C.
Schmitt, S.
Schmitt, S.
Schneider, B.
Schnellbach, Y. J.
Schnoor, U.
Schoeffel, L.
Schoening, A.
Schoenrock, B. D.
Schopf, E.
Schorlemmer, A. L. S.
Schott, M.
Schouten, D.
Schovancova, J.
Schramm, S.
Schreyer, M.
Schroeder, C.
Schuh, N.
Schultens, M. J.
Schultz-Coulon, H. -C.
Schulz, H.
Schumacher, M.
Schumm, B. A.
Schune, Ph.
Schwanenberger, C.
Schwartzman, A.
Schwarz, T. A.
Schwegler, Ph.
Schwemling, Ph.
Schwienhorst, R.
Schwindling, J.
Schwindt, T.
Schwoerer, M.
Sciacca, F. G.
Scifo, E.
Sciolla, G.
Scuri, F.
Scutti, F.
Searcy, J.
Sedov, G.
Sedykh, E.
Seema, P.
Seidel, S. C.
Seiden, A.
Seifert, F.
Seixas, J. M.
Sekhniaidze, G.
Sekula, S. J.
Selbach, K. E.
Seliverstov, D. M.
Semprini-Cesari, N.
Serfon, C.
Serin, L.
Serkin, L.
Serre, T.
Seuster, R.
Severini, H.
Sfiligoj, T.
Sforza, F.
Sfyrla, A.
Shabalina, E.
Shamim, M.
Shan, L. Y.
Shang, R.
Shank, J. T.
Shapiro, M.
Shatalov, P. B.
Shaw, K.
Shaw, S. M.
Shcherbakova, A.
Shehu, C. Y.
Sherwood, P.
Shi, L.
Shimizu, S.
Shimmin, C. O.
Shimojima, M.
Shiyakova, M.
Shmeleva, A.
Saadi, D. Shoaleh
Shochet, M. J.
Shojaii, S.
Shrestha, S.
Shulga, E.
Shupe, M. A.
Shushkevich, S.
Sicho, P.
Sidiropoulou, O.
Sidorov, D.
Sidoti, A.
Siegert, F.
Sijacki, Dj.
Silva, J.
Silver, Y.
Silverstein, S. B.
Simak, V.
Simard, O.
Simic, Lj.
Simion, S.
Simioni, E.
Simmons, B.
Simon, D.
Simoniello, R.
Sinervo, P.
Sinev, N. B.
Siragusa, G.
Sisakyan, A. N.
Sivoklokov, S. Yu.
Sjoelin, J.
Sjursen, T. B.
Skinner, M. B.
Skottowe, H. P.
Skubic, P.
Slater, M.
Slavicek, T.
Slawinska, M.
Sliwa, K.
Smakhtin, V.
Smart, B. H.
Smestad, L.
Smirnov, S. Yu.
Smirnov, Y.
Smirnova, L. N.
Smirnova, O.
Smith, M. N. K.
Smizanska, M.
Smolek, K.
Snesarev, A. A.
Snidero, G.
Snyder, S.
Sobie, R.
Socher, F.
Soffer, A.
Soh, D. A.
Solans, C. A.
Solar, M.
Solc, J.
Soldatov, E. Yu.
Soldevila, U.
Solodkov, A. A.
Soloshenko, A.
Solovyanov, O. V.
Solovyev, V.
Sommer, P.
Song, H. Y.
Soni, N.
Sood, A.
Sopczak, A.
Sopko, B.
Sopko, V.
Sorin, V.
Sosa, D.
Sosebee, M.
Sotiropoulou, C. L.
Soualah, R.
Soueid, P.
Soukharev, A. M.
South, D.
Spagnolo, S.
Spalla, M.
Spano, F.
Spearman, W. R.
Spettel, F.
Spighi, R.
Spigo, G.
Spiller, L. A.
Spousta, M.
Spreitzer, T.
Denis, R. D. St.
Staerz, S.
Stahlman, J.
Stamen, R.
Stamm, S.
Stanecka, E.
Stanescu, C.
Stanescu-Bellu, M.
Stanitzki, M. M.
Stapnes, S.
Starchenko, E. A.
Stark, J.
Staroba, P.
Starovoitov, P.
Staszewski, R.
Stavina, P.
Steinberg, P.
Stelzer, B.
Stelzer, H. J.
Stelzer-Chilton, O.
Stenzel, H.
Stern, S.
Stewart, G. A.
Stillings, J. A.
Stockton, M. C.
Stoebe, M.
Stoicea, G.
Stolte, P.
Stonjek, S.
Stradling, A. R.
Straessner, A.
Stramaglia, M. E.
Strandberg, J.
Strandberg, S.
Strandlie, A.
Strauss, E.
Strauss, M.
Strizenec, P.
Stroehmer, R.
Strom, D. M.
Stroynowski, R.
Strubig, A.
Stucci, S. A.
Stugu, B.
Styles, N. A.
Su, D.
Su, J.
Subramaniam, R.
Succurro, A.
Sugaya, Y.
Suhr, C.
Suk, M.
Sulin, V. V.
Sultansoy, S.
Sumida, T.
Sun, S.
Sun, X.
Sundermann, J. E.
Suruliz, K.
Susinno, G.
Sutton, M. R.
Suzuki, S.
Suzuki, Y.
Svatos, M.
Swedish, S.
Swiatlowski, M.
Sykora, I.
Sykora, T.
Ta, D.
Taccini, C.
Tackmann, K.
Taenzer, J.
Taffard, A.
Tafirout, R.
Taiblum, N.
Takai, H.
Takashima, R.
Takeda, H.
Takeshita, T.
Takubo, Y.
Talby, M.
Talyshev, A. A.
Tam, J. Y. C.
Tan, K. G.
Tanaka, J.
Tanaka, R.
Tanaka, S.
Tanaka, S.
Tannenwald, B. B.
Tannoury, N.
Tapprogge, S.
Tarem, S.
Tarrade, F.
Tartarelli, G. F.
Tas, P.
Tasevsky, M.
Tashiro, T.
Tassi, E.
Tavares Delgado, A.
Tayalati, Y.
Taylor, F. E.
Taylor, G. N.
Taylor, W.
Teischinger, F. A.
Castanheira, M. Teixeira Dias
Teixeira-Dias, P.
Temming, K. K.
Ten Kate, H.
Teng, P. K.
Teoh, J. J.
Tepel, F.
Terada, S.
Terashi, K.
Terron, J.
Terzo, S.
Testa, M.
Teuscher, R. J.
Therhaag, J.
Theveneaux-Pelzer, T.
Thomas, J. P.
Thomas-Wilsker, J.
Thompson, E. N.
Thompson, P. D.
Thompson, R. J.
Thompson, A. S.
Thomsen, L. A.
Thomson, E.
Thomson, M.
Thun, R. P.
Tibbetts, M. J.
Torres, R. E. Ticse
Tikhomirov, V. O.
Tikhonov, Yu. A.
Timoshenko, S.
Tiouchichine, E.
Tipton, P.
Tisserant, S.
Todorov, T.
Todorova-Nova, S.
Tojo, J.
Tokar, S.
Tokushuku, K.
Tollefson, K.
Tolley, E.
Tomlinson, L.
Tomoto, M.
Tompkins, L.
Toms, K.
Torrence, E.
Torres, H.
Torro Pastor, E.
Toth, J.
Touchard, F.
Tovey, D. R.
Trefzger, T.
Tremblet, L.
Tricoli, A.
Trigger, I. M.
Trincaz-Duvoid, S.
Tripiana, M. F.
Trischuk, W.
Trocme, B.
Troncon, C.
Trottier-McDonald, M.
Trovatelli, M.
True, P.
Trzebinski, M.
Trzupek, A.
Tsarouchas, C.
Tseng, J. C-L.
Tsiareshka, P. V.
Tsionou, D.
Tsipolitis, G.
Tsirintanis, N.
Tsiskaridze, S.
Tsiskaridze, V.
Tskhadadze, E. G.
Tsukerman, I. I.
Tsulaia, V.
Tsuno, S.
Tsybychev, D.
Tudorache, A.
Tudorache, V.
Tuna, A. N.
Tupputi, S. A.
Turchikhin, S.
Turecek, D.
Turra, R.
Turvey, A. J.
Tuts, P. M.
Tykhonov, A.
Tylmad, M.
Tyndel, M.
Ueda, I.
Ueno, R.
Ughetto, M.
Ugland, M.
Uhlenbrock, M.
Ukegawa, F.
Unal, G.
Undrus, A.
Unel, G.
Ungaro, F. C.
Unno, Y.
Unverdorben, C.
Urban, J.
Urquijo, P.
Urrejola, P.
Usai, G.
Usanova, A.
Vacavant, L.
Vacek, V.
Vachon, B.
Valderanis, C.
Valencic, N.
Valentinetti, S.
Valero, A.
Valery, L.
Valkar, S.
Valladolid Gallego, E.
Vallecorsa, S.
Valls Ferrer, J. A.
Van Den Wollenberg, W.
Van Der Deijl, P. C.
van der Geer, R.
van der Graaf, H.
Van Der Leeuw, R.
van Eldik, N.
van Gemmeren, P.
Van Nieuwkoop, J.
van Vulpen, I.
van Woerden, M. C.
Vanadia, M.
Vandelli, W.
Vanguri, R.
Vaniachine, A.
Vannucci, F.
Vardanyan, G.
Vari, R.
Varnes, E. W.
Varol, T.
Varouchas, D.
Vartapetian, A.
Varvell, K. E.
Vazeille, F.
Schroeder, T. Vazquez
Veatch, J.
Veloso, F.
Velz, T.
Veneziano, S.
Ventura, A.
Ventura, D.
Venturi, M.
Venturi, N.
Venturini, A.
Vercesi, V.
Verducci, M.
Verkerke, W.
Vermeulen, J. C.
Vest, A.
Vetterli, M. C.
Viazlo, O.
Vichou, I.
Vickey, T.
Boeriu, O. E. Vickey
Viehhauser, G. H. A.
Viel, S.
Vigne, R.
Villa, M.
Perez, M. Villaplana
Vilucchi, E.
Vincter, M. G.
Vinogradov, V. B.
Vivarelli, I.
Vaque, F. Vives
Vlachos, S.
Vladoiu, D.
Vlasak, M.
Vogel, M.
Vokac, P.
Volpi, G.
Volpi, M.
von der Schmitt, H.
von Radziewski, H.
von Toerne, E.
Vorobel, V.
Vorobev, K.
Vos, M.
Voss, R.
Vossebeld, J. H.
Vranjes, N.
Milosavljevic, M. Vranjes
Vrba, V.
Vreeswijk, M.
Vuillermet, R.
Vukotic, I.
Vykydal, Z.
Wagner, P.
Wagner, W.
Wahlberg, H.
Wahrmund, S.
Wakabayashi, J.
Walder, J.
Walker, R.
Walkowiak, W.
Wang, C.
Wang, F.
Wang, H.
Wang, H.
Wang, J.
Wang, J.
Wang, K.
Wang, R.
Wang, S. M.
Wang, T.
Wang, X.
Wanotayaroj, C.
Warburton, A.
Ward, C. P.
Wardrope, D. R.
Warsinsky, M.
Washbrook, A.
Wasicki, C.
Watkins, P. M.
Watson, A. T.
Watson, I. J.
Watson, M. F.
Watts, G.
Watts, S.
Waugh, B. M.
Webb, S.
Weber, M. S.
Weber, S. W.
Webster, J. S.
Weidberg, A. R.
Weinert, B.
Weingarten, J.
Weiser, C.
Weits, H.
Wells, P. S.
Wenaus, T.
Wengler, T.
Wenig, S.
Wermes, N.
Werner, M.
Werner, P.
Wessels, M.
Wetter, J.
Whalen, K.
Wharton, A. M.
White, A.
White, M. J.
White, R.
White, S.
Whiteson, D.
Wickens, F. J.
Wiedenmann, W.
Wielers, M.
Wienemann, P.
Wiglesworth, C.
Wiik-Fuchs, L. A. M.
Wildauer, A.
Wilkens, H. G.
Williams, H. H.
Williams, S.
Willis, C.
Willocq, S.
Wilson, A.
Wilson, J. A.
Wingerter-Seez, I.
Winklmeier, F.
Winter, B. T.
Wittgen, M.
Wittkowski, J.
Wollstadt, S. J.
Wolter, M. W.
Wolters, H.
Wosiek, B. K.
Wotschack, J.
Woudstra, M. J.
Wozniak, K. W.
Wu, M.
Wu, M.
Wu, S. L.
Wu, X.
Wu, Y.
Wyatt, T. R.
Wynne, B. M.
Xella, S.
Xu, D.
Xu, L.
Yabsley, B.
Yacoob, S.
Yakabe, R.
Yamada, M.
Yamaguchi, Y.
Yamamoto, A.
Yamamoto, S.
Yamanaka, T.
Yamauchi, K.
Yamazaki, Y.
Yan, Z.
Yang, H.
Yang, H.
Yang, Y.
Yao, L.
Yao, W-M.
Yasu, Y.
Yatsenko, E.
Wong, K. H. Yau
Ye, J.
Ye, S.
Yeletskikh, I.
Yen, A. L.
Yildirim, E.
Yorita, K.
Yoshida, R.
Yoshihara, K.
Young, C.
Young, C. J. S.
Youssef, S.
Yu, D. R.
Yu, J.
Yu, J. M.
Yu, J.
Yuan, L.
Yurkewicz, A.
Yusuff, I.
Zabinski, B.
Zaidan, R.
Zaitsev, A. M.
Zalieckas, J.
Zaman, A.
Zambito, S.
Zanello, L.
Zanzi, D.
Zeitnitz, C.
Zeman, M.
Zemla, A.
Zengel, K.
Zenin, O.
Zenis, T.
Zerwas, D.
Zhang, D.
Zhang, F.
Zhang, J.
Zhang, L.
Zhang, R.
Zhang, X.
Zhang, Z.
Zhao, X.
Zhao, Y.
Zhao, Z.
Zhemchugov, A.
Zhong, J.
Zhou, B.
Zhou, C.
Zhou, L.
Zhou, L.
Zhou, N.
Zhu, C. G.
Zhu, H.
Zhu, J.
Zhu, Y.
Zhuang, X.
Zhukov, K.
Zibell, A.
Zieminska, D.
Zimine, N. I.
Zimmermann, C.
Zimmermann, R.
Zimmermann, S.
Zinonos, Z.
Zinser, M.
Ziolkowski, M.
Zivkovic, L.
Zobernig, G.
Zoccoli, A.
Nedden, M. zur
Zurzolo, G.
Zwalinski, L.
CA ATLAS Collaboration
TI Measurements of the Total and Differential Higgs Boson Production Cross
Sections Combining the H -> gamma gamma and H -> ZZ* -> 4l Decay
Channels at root s=8 TeV with the ATLAS Detector
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PARTON DISTRIBUTIONS; GLUON-FUSION; LHC; QUARK
AB Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb(-1) of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of root s = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H -> gamma gamma and H -> ZZ*. 4l event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be sigma(pp -> H) = 33.0 +/- 5.3 (stat) +/- 1.6 (syst) pb. The measurements are compared to state-of-the-art predictions.
C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
[Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA.
[Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
[Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey.
[Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey.
[Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey.
[Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France.
[Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie Mont Blanc, Annecy Le Vieux, France.
[Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, High Energy Phys Div, Argonne, IL 60439 USA.
[Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Vazquez, J. G. Panduro; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Brandt, A.; Carrillo-Montoya, G. D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece.
[Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Phys Dept, Zografos, Greece.
[Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Anjos, N.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.; Yildirim, E.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Anjos, N.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.; Yildirim, E.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain.
[Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia.
[Blazek, T.; Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Axen, B.; Barnett, R. M.; Beringer, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Terashi, K.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Axen, B.; Barnett, R. M.; Beringer, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Terashi, K.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany.
[Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland.
[Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey.
[Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey.
[Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Phys Engn, Gaziantep, Turkey.
[Alberghi, G. L.; Bellagamba, L.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy.
[Alberghi, G. L.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Manghi, F. Lasagni; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy.
[Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uhlenbrock, M.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.] Univ Bonn, Inst Phys, Bonn, Germany.
[Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA.
[Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil.
[Cerqueira, A. S.; de Andrade Filho, L. Manhaes] Univ Fed Juiz de Fora, Electr Circuits Dept, Juiz De Fora, Brazil.
[do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao del Rei, Brazil.
[Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
[Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Popeneciu, G. A.] Isotop & Mol Technol, Natl Inst Res & Dev, Dept Phys, Cluj Napoca, Romania.
Univ Politeh Bucharest, Bucharest, Romania.
West Univ Timisoara, Timisoara, Romania.
[Otero Y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina.
[Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Abreu, R.; Aleksa, M.; Alonso, A.; Altheimer, A.; Andari, N.; Anders, G.; Angerami, A.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Jenni, P.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Schaefer, D.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland.
[Alison, J.; Anderson, K. J.; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Carquin, E.; Diaz, M. A.; Ochoa-Ricoux, J. P.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile.
[Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile.
[Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
[Gao, J.; Guan, L.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China.
[Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
[Chen, L.; Ge, P.; Liu, B.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China.
[Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China.
[Chen, X.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France.
[Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Smith, M. N. K.; Thompson, E. N.; Tuts, P. M.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA.
[Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
[Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Cosenza, Italy.
[Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, I-87036 Arcavacata Di Rende, Italy.
[Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland.
[Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland.
[Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Phys Dept, Dallas, TX 75275 USA.
[Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Phys Dept, Richardson, TX 75083 USA.
[Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yatsenko, E.] DESY, Hamburg, Germany.
[Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yatsenko, E.] DESY, Zeuthen, Germany.
[Burmeister, I.; Erdmann, J.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.; Robson, A.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany.
[Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA.
[Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland.
[Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany.
[Ancu, L. S.; Barone, G.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Picazio, A.; Ristic, B.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy.
[Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Jejelava, J.; Tskhadadze, E. G.] Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys 4, Tbilisi, Rep of Georgia.
[Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia.
[Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany.
[Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland.
[Bindi, M.; Blumenschein, U.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Kareem, M. J.; Kawamura, G.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France.
[McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA.
[da Costa, J. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA.
[Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany.
[Anders, C. F.; Giulini, M.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Phys Inst, Heidelberg, Germany.
[Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, Inst Tech Informat, ZITI, Mannheim, Germany.
[Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan.
[Bortolotto, V.; Castillo, L. R. Flores] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China.
[Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
[Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China.
[Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Jansky, R. W.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria.
[Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA.
[Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA.
[Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia.
[Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, S.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan.
[Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan.
[Ishino, M.; Kunigo, T.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan.
[Takashima, R.] Kyoto Univ, Kyoto 612, Japan.
[Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan.
[Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina.
[Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina.
[Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England.
[Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy.
[Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy.
[Affolder, A. A.; Allport, P. P.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England.
[Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia.
[Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia.
[Alpigiani, C.; Bevan, A. J.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England.
[Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Pastore, Fr.; Savage, G.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England.
[Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England.
[Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France.
[Akesson, T. P.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjoernmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden.
[Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain.
[Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Fullana Torregrosa, E.; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Poettgen, R.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany.
[Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England.
[Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France.
[Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France.
[Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Belanger-Champagne, C.; Chapleau, B.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada.
[Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Hu, X.; Levin, D.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy.
[Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Mazza, S. M.; Pizio, C.; Ragusa, F.; Shojaii, S.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy.
[Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus.
[Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Inst Phys, Moscow, Russia.
[Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia.
[Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Adomeit, S.; Becker, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany.
[Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany.
[Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan.
[Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan.
[Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy.
[Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, A. C.; Nektarijevic, S.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands.
[Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands.
[Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands.
[Adelman, J.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia.
[Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA.
[Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan.
[Abbott, B.; Alhroob, M.; Bagiacchi, P.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Bousson, N.; Haley, J.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA.
[Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic.
[Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Brau, J. E.; Brost, E.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hopkins, W. H.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Majewski, S.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Potter, C. T.; Ptacek, E.; Puzo, P.; Radloff, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Shamim, M.; Simion, S.; Sinev, N. B.; Strom, D. M.; Tanaka, R.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA.
[Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France.
[Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] CNRS, IN2P3, F-91405 Orsay, France.
[Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan.
[Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway.
[Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pachal, K.; Pickering, M. A.; Ryder, N. C.; Sawyer, C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England.
[Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy.
[Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy.
[Brendlinger, K.; Haney, B.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Lipeles, E.; Machado Miguens, J.; Meyer, C.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
[Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia.
[Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
[Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E, Pisa, Italy.
[Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Gonalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] LIP, Lab Instrument & Fis Expt Particulas, P-1000 Lisbon, Portugal.
[Amorim, A.; Carvalho, J.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal.
[Amor Dos Santos, S. P.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal.
[Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal.
[Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal.
[Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain.
[Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain.
Univ Nova Lisboa, Dep Fis, Caparica, Portugal.
Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal.
[Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia.
[Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan.
[Anulli, F.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy.
[Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy.
[Aielli, G.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.
[Aielli, G.; Di Ciaccio, A.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy.
[Bacci, C.; Benchekroun, D.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.
[Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco.
[Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco.
[El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco.
[Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco.
[Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco.
[Cherkaoui El Moursli, R.; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco.
[Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Kozanecki, W.; Lanon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, Commissariat Energie Atom & Energies Alternat, IRFU, DSM, Gif Sur Yvette, France.
[Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England.
[Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan.
[Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany.
[Buat, Q.; Horton, A. J.; O'Neil, D. C.; Stelzer, B.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Mount, R.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA.
[Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnuclear Phys, Kosice 04353, Slovakia.
[Hamilton, A.; Meehan, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa.
[Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Govender, N.; Lee, C. A.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa.
[Bristow, K.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa.
[Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden.
[Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden.
[Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden.
[Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England.
[Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Abdallah, J.; Chu, M. L.; Hou, S.; Hsu, P. J.; Jamin, D. O.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Abreu, H.; Cheatham, S.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Israel Inst Technol, Dept Phys, Tech, Haifa, Israel.
[Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Munwes, Y.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece.
[Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan.
[Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan.
[Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Ilic, N.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Gingrich, D. M.; Jovicevic, J.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada.
[Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan.
[Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA.
[Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia.
[Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
[Acharya, B. S.; Barisonzi, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy.
[Acharya, B. S.; Barisonzi, M.; Giordani, M. P.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy.
[Brazzale, S. F.; Cobal, M.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy.
[Atkinson, M.; Basye, A.; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Kuutmann, E. Bergeaas; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; van der Geer, R.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain.
[Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; van der Geer, R.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain.
[Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; van der Geer, R.; Vos, M.] Univ Valencia, Dept Ingn Elect & Inst Microelect Barcelona IMB C, Valencia, Spain.
[Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; van der Geer, R.; Vos, M.] CSIC, Valencia, Spain.
[Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada.
[Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada.
[Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan.
[Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel.
[Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany.
[Bannoura, A. A. E.; Beermann, T. A.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Maetttig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Stroehmer, R.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C Phys, Wuppertal, Germany.
[Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA.
[Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France.
Kings Coll London, Dept Phys, London WC2R 2LS, England.
[Anisenkov, A. V.; Bobrovnikov, V. S.; Buzykaev, R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
[Bawa, H. S.; Gao, Y. S.] Calif State Univ, Dept Phys, Fresno, CA USA.
[Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland.
[Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4100 Oporto, Portugal.
[Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia.
[Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy.
[Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Toronto, ON, Canada.
[Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia.
[Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain.
[Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Taipei, Taiwan.
[Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
[Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia.
[Khubua, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia.
[Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan.
Manhattan Coll, New York, NY USA.
[Lin, S. C.] Acad Sinica, Acad Sinica Grid Comp, Inst Phys, Taipei, Taiwan.
[Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys, Dolgoprudnyi, Russia.
[Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Technol State Univ, Dolgoprudnyi, Russia.
[Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy.
[Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
[Shi, L.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China.
[Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia.
[Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary.
[Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa.
[Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia.
RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France.
RI Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday,
Sinan/C-8528-2014; Garcia, Jose /H-6339-2015; Ippolito,
Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin,
Fedor/E-2795-2012; Staroba, Pavel/G-8850-2014; Gauzzi,
Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Mindur,
Bartosz/A-2253-2017; Gutierrez, Phillip/C-1161-2011; Fabbri,
Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Zaitsev,
Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Yang,
Haijun/O-1055-2015; Doyle, Anthony/C-5889-2009; Gonzalez de la Hoz,
Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan
Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones,
Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN,
VLADIMIR/N-2793-2015; Vykydal, Zdenek/H-6426-2016; Snesarev,
Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov,
Vadim/M-9761-2015; Vanadia, Marco/K-5870-2016; Chekulaev,
Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Brooks,
William/C-8636-2013; Gorelov, Igor/J-9010-2015; Gladilin,
Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Carvalho, Joao/M-4060-2013;
Mashinistov, Ruslan/M-8356-2015; spagnolo, stefania/A-6359-2012; Buttar,
Craig/D-3706-2011; Smirnova, Oxana/A-4401-2013; Mitsou,
Vasiliki/D-1967-2009; Di Domenico, Antonio/G-6301-2011; Zhukov,
Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko,
Igor/M-8260-2015; Boldyrev, Alexey/M-9684-2015; Nechaeva,
Polina/N-1148-2015; Tikhomirov, Vladimir/M-6194-2015; Negrini,
Matteo/C-8906-2014; Boyko, Igor/J-3659-2013; Ciubancan, Liviu
Mihai/L-2412-2015; White, Ryan/E-2979-2015; Livan, Michele/D-7531-2012
OI Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207;
Kuday, Sinan/0000-0002-0116-5494; Ippolito, Valerio/0000-0001-5126-1620;
Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399;
Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611;
Fabbri, Laura/0000-0002-4002-8353; Solodkov,
Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368;
Peleganchuk, Sergey/0000-0003-0907-7592; Doyle,
Anthony/0000-0001-6322-6195; Gonzalez de la Hoz,
Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar
Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton,
Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes
Milosavljevic, Marija/0000-0003-4477-9733; SULIN,
VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672;
Ventura, Andrea/0000-0002-3368-3413; Kantserov,
Vadim/0000-0001-8255-416X; Vanadia, Marco/0000-0003-2684-276X;
Warburton, Andreas/0000-0002-2298-7315; Brooks,
William/0000-0001-6161-3570; Gorelov, Igor/0000-0001-5570-0133;
Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489;
Carvalho, Joao/0000-0002-3015-7821; Mashinistov,
Ruslan/0000-0001-7925-4676; spagnolo, stefania/0000-0001-7482-6348;
Smirnova, Oxana/0000-0003-2517-531X; Mitsou,
Vasiliki/0000-0002-1533-8886; Di Domenico, Antonio/0000-0001-8078-2759;
Tikhomirov, Vladimir/0000-0002-9634-0581; Negrini,
Matteo/0000-0003-0101-6963; Boyko, Igor/0000-0002-3355-4662; Ciubancan,
Liviu Mihai/0000-0003-1837-2841; White, Ryan/0000-0003-3589-5900; Livan,
Michele/0000-0002-5877-0062
FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF,
Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil;
NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS,
China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech
Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark;
DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union;
ERC, European Union; NSRF, European Union; IN2P3-CNRS, France;
CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF,
Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF,
Greece; RGC, China; Hong Kong SAR, China; ISF, Israel; MINERVA, Israel;
GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT,
Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands;
BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal;
FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC
KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS,
Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC,
Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF,
Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK,
Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme
Trust, United Kingdom; DOE, United States of America; NSF, United States
of America
FX We thank CERN for the very successful operation of the LHC, as well as
the support staff from our institutions without whom ATLAS could not be
operated efficiently. We acknowledge the support of ANPCyT, Argentina;
YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS,
Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI,
Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS,
Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and
Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union;
IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and
AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR,
China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN,
Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands;
BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal;
MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR;
MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South
Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF
and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey;
STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and
NSF, United States of America. The crucial computing support from all
WLCG partners is acknowledged gratefully, in particular from CERN and
the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway,
Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy),
NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA)
and in the Tier-2 facilities worldwide.
NR 56
TC 8
Z9 8
U1 11
U2 72
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 27
PY 2015
VL 115
IS 9
AR 091801
DI 10.1103/PhysRevLett.115.091801
PG 19
WC Physics, Multidisciplinary
SC Physics
GA CP8HP
UT WOS:000360134200005
ER
PT J
AU Zeng, YN
Zhao, S
Wei, H
Tucker, MP
Himmel, ME
Mosier, NS
Meilan, R
Ding, SY
AF Zeng, Yining
Zhao, Shuai
Wei, Hui
Tucker, Melvin P.
Himmel, Michael E.
Mosier, Nathan S.
Meilan, Richard
Ding, Shi-You
TI In situ micro-spectroscopic investigation of lignin in poplar cell walls
pretreated by maleic acid
SO BIOTECHNOLOGY FOR BIOFUELS
LA English
DT Article
DE Lignin autofluorescence; Fluorescence lifetime imaging microscopy;
Stimulated Raman scattering imaging; Lignin-carbohydrate complexes
droplets
ID LIFETIME IMAGING MICROSCOPY; EXTRACTED AUTOHYDROLYSIS LIGNIN;
POPULUS-TREMULOIDES LIGNINS; RAMAN-SCATTERING MICROSCOPY; CORN STOVER;
HEMICELLULOSE HYDROLYSIS; BIOCHEMICAL PROCESSES; LABEL-FREE; WOOD;
BIOMASS
AB Background: In higher plant cells, lignin provides necessary physical support for plant growth and resistance to attack by microorganisms. For the same reason, lignin is considered to be a major impediment to the process of deconstructing biomass to simple sugars by hydrolytic enzymes. The in situ variation of lignin in plant cell walls is important for better understanding of the roles lignin play in biomass recalcitrance.
Results: A micro-spectroscopic approach combining stimulated Raman scattering microscopy and fluorescence lifetime imaging microscopy was employed to probe the physiochemical structure of lignin in poplar tracheid cell walls. Two forms of lignins were identified: loosely packed lignin, which had a long (4 ns) fluorescence lifetime and existed primarily in the secondary wall layers; and dense lignin, which had a short (0.5-1 ns) fluorescence lifetime and was present in all wall layers, including the cell corners, compound middle lamellae, and secondary wall. At low maleic acid concentration (0.025 and 0.05 M) pretreatment conditions, some of the dense lignin was modified to become more loosely packed. High acid concentration removed both dense and loosely packed lignins. These modified lignins reformed to make lignin-carbohydrate complex droplets containing either dense or loosely packed lignin (mostly from secondary walls) and were commonly observed on the cell wall surface.
Conclusions: We have identified dense and loosely packed lignins in plant cell walls. During maleic acid pretreatment, both dense lignin droplets and loosely packed lignin droplets were formed. Maleic acid pretreatment more effectively removes loosely packed lignin in secondary walls which increases enzyme accessibility for digestion.
C1 [Zeng, Yining; Zhao, Shuai; Wei, Hui; Himmel, Michael E.; Ding, Shi-You] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA.
[Tucker, Melvin P.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
[Mosier, Nathan S.] Purdue Univ, Dept Agr & Biol Engn, W Lafayette, IN 47907 USA.
[Meilan, Richard] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA.
RP Zeng, YN (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA.
EM yining.zeng@nrel.gov; sding@msu.edu
FU Center for Direct Catalytic Conversion of Biomass to Biofuels, an Energy
Frontier Research Center - US Department of Energy, Office of Science,
Basic Energy Sciences (BES) [DE-SC0000997]; BioEnergy Science Center
(BESC) - Office of Biological and Environmental Research (BER) in the
DOE Office of Science; DOE Bioenergy Research Center - Office of
Biological and Environmental Research (BER) in the DOE Office of
Science; Genomic Science Program - Office of Biological and
Environmental Research (BER) in the DOE Office of Science [ER181000]
FX We thank Kathryn Ruckman for manuscript editing. The authors acknowledge
research support from the Center for Direct Catalytic Conversion of
Biomass to Biofuels, an Energy Frontier Research Center funded by the US
Department of Energy, Office of Science, Basic Energy Sciences (BES)
under Award # DE-SC0000997 for maleic acid pretreatment methodologies
applied to biomass. Development of the micro-spectroscopy SRS method was
supported by the BioEnergy Science Center (BESC), a DOE Bioenergy
Research Center, and development of the FLIM method was supported by the
Genomic Science Program (ER181000), both funded by the Office of
Biological and Environmental Research (BER) in the DOE Office of
Science.
NR 60
TC 3
Z9 3
U1 9
U2 45
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1754-6834
J9 BIOTECHNOL BIOFUELS
JI Biotechnol. Biofuels
PD AUG 27
PY 2015
VL 8
AR 126
DI 10.1186/s13068-015-0312-1
PG 11
WC Biotechnology & Applied Microbiology; Energy & Fuels
SC Biotechnology & Applied Microbiology; Energy & Fuels
GA CP8AP
UT WOS:000360113000001
PM 26312066
ER
PT J
AU Piot, P
AF Piot, Philippe
TI PARTICLE PHYSICS Positrons ride the wave
SO NATURE
LA English
DT Editorial Material
ID PLASMA; ELECTRONS; ACCELERATION
C1 [Piot, Philippe] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Piot, Philippe] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Piot, P (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
EM ppiot@niu.edu
NR 6
TC 1
Z9 1
U1 2
U2 6
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD AUG 27
PY 2015
VL 524
IS 7566
BP 422
EP 423
PG 2
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP7LN
UT WOS:000360069300026
PM 26310761
ER
PT J
AU Young, L
AF Young, Linda
TI PHOTONICS A stable narrow-band X-ray laser
SO NATURE
LA English
DT Editorial Material
ID FREE-ELECTRON LASER; OPERATION
C1 Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
RP Young, L (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM young@anl.gov
NR 16
TC 0
Z9 0
U1 4
U2 12
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD AUG 27
PY 2015
VL 524
IS 7566
BP 424
EP 425
PG 2
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP7LN
UT WOS:000360069300028
PM 26310762
ER
PT J
AU Li, DH
Lv, CX
Liu, L
Xia, YZ
She, XL
Guo, SJ
Yang, DJ
AF Li, Daohao
Lv, Chunxiao
Liu, Long
Xia, Yanzhi
She, Xilin
Guo, Shaojun
Yang, Dongjiang
TI Egg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional
Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient
Catalysis and Energy Storage
SO ACS CENTRAL SCIENCE
LA English
DT Article
ID LITHIUM-ION BATTERIES; PERFORMANCE ANODE MATERIALS; OXYGEN REDUCTION;
BACTERIAL CELLULOSE; ELECTRODE MATERIAL; SUPERCAPACITORS; GRAPHENE;
ELECTROCATALYST; NANOCOMPOSITE; CONVERSION
AB Carbon nanomaterials with both doped heteroatom and porous structure represent a new class of carbon nanostructures for boosting electrochemical application, particularly sustainable electrochemical energy conversion and storage applications. We herein demonstrate a unique large-scale sustainable biomass conversion strategy for the synthesis of earth-abundant multifunctional carbon nanomaterials with well-defined doped heteroatom level and multimodal pores through pyrolyzing electrospinning renewable natural alginate. The key part for our chemical synthesis is that we found that the egg-box structure in cobalt alginate nanofiber can offer new opportunity to create large mesopores (similar to 10-40 nm) on the surface of nitrogen-doped carbon nanofibers. The as-prepared hierarchical carbon nanofibers with three-dimensional pathway for electron and ion transport are conceptually new as high-performance multifunctional electrochemical materials for boosting the performance of oxygen reduction reaction (ORR), lithium ion batteries (LIBs), and supercapacitors (SCs). In particular, they show amazingly the same ORR activity as commercial Pt/C catalyst and much better long-term stability and methanol tolerance for ORR than Pt/C via a four-electron pathway in alkaline electrolyte. They also exhibit a large reversible capacity of 625 mAh g(-1) at 1 A g(-1), good rate capability, and excellent cycling performance for LIBs, making them among the best in all the reported carbon nanomaterials. They also represent highly efficient carbon nanomaterials for SCs with excellent capacitive behavior of 197 F g(-1) at 1 A g(-1) and superior stability. The present work highlights the importance of biomass-derived multifunctional mesoporous carbon nanomaterials in enhancing electrochemical catalysis and energy storage.
C1 [Li, Daohao; Lv, Chunxiao; Liu, Long; Xia, Yanzhi; She, Xilin; Yang, Dongjiang] Qingdao Univ, Collaborat Innovat Ctr Marine Biomass Fibers Mat, Coll Chem & Environm Engn, Qingdao 266071, Peoples R China.
[Guo, Shaojun] Los Alamos Natl Lab, Phys Chem & Appl Spect, Los Alamos, NM 87545 USA.
[Yang, Dongjiang] Griffith Univ, QMNC, Brisbane, Qld 4111, Australia.
RP Yang, DJ (reprint author), Qingdao Univ, Collaborat Innovat Ctr Marine Biomass Fibers Mat, Coll Chem & Environm Engn, Qingdao 266071, Peoples R China.
EM xiayzh@qdu.edu.cn; sguo@lanl.gov; d.yang@griffith.edu.au
RI Guo, Shaojun/A-8449-2011; Griffith University, QMNC/I-5498-2013
OI Guo, Shaojun/0000-0002-5941-414X;
NR 47
TC 28
Z9 28
U1 64
U2 107
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 2374-7943
EI 2374-7951
J9 ACS CENTRAL SCI
JI ACS Central Sci.
PD AUG 26
PY 2015
VL 1
IS 5
BP 261
EP 269
DI 10.1021/acscentsci.5b00191
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA CX8QN
UT WOS:000365968800009
PM 27162980
ER
PT J
AU Gliga, S
Kakay, A
Heyderman, LJ
Hertel, R
Heinonen, OG
AF Gliga, Sebastian
Kakay, Attila
Heyderman, Laura J.
Hertel, Riccardo
Heinonen, Olle G.
TI Broken vertex symmetry and finite zero-point entropy in the artificial
square ice ground state
SO PHYSICAL REVIEW B
LA English
DT Article
ID SPIN-ICE
AB We study degeneracy and entropy in the ground state of artificial square ice. In theoretical models, individual nanomagnets are typically treated as single spins with only two degrees of freedom, leading to a twofold degenerate ground state with intensive entropy and thus no zero-point entropy. Here, we show that the internal degrees of freedom of the nanostructures can result, through edge bending of the magnetization and breaking of local magnetic symmetry at the vertices, in a transition to a highly degenerate ground state with finite zero-point entropy, similar to that of the pyrochlore spin ices. We find that these additional degrees of freedom have observable consequences in the resonant spectrum of the lattice, and predict the occurrence of edge "melting" above a critical temperature at which the magnetic symmetry is restored.
C1 [Gliga, Sebastian; Heyderman, Laura J.] Swiss Fed Inst Technol, Dept Mat, Lab Mesoscop Syst, CH-8093 Zurich, Switzerland.
[Gliga, Sebastian; Heyderman, Laura J.] Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland.
[Kakay, Attila] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01328 Dresden, Germany.
[Hertel, Riccardo] Univ Strasbourg, CNRS UMR 7504, Inst Phys & Chim Mat Strasbourg, F-67034 Strasbourg, France.
[Heinonen, Olle G.] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA.
[Heinonen, Olle G.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
RP Gliga, S (reprint author), Swiss Fed Inst Technol, Dept Mat, Lab Mesoscop Syst, CH-8093 Zurich, Switzerland.
EM sebastian.gliga@psi.ch
RI Heyderman, Laura/E-7959-2015; Hertel, Riccardo/H-9964-2016; Hertel,
Riccardo/P-5806-2016;
OI Hertel, Riccardo/0000-0002-0646-838X; Hertel,
Riccardo/0000-0002-0646-838X; Heinonen, Olle/0000-0002-3618-6092
FU Department of Energy, Office of Science, Materials Science and
Engineering Division
FX S.G. wishes to thank Armin Kleibert for fruitful discussions about the
experimental implications of this work and Gino Hrkac for helpful
suggestions. The work by O.G.H. was supported by the Department of
Energy, Office of Science, Materials Science and Engineering Division.
We gratefully acknowledge the computing resources provided on Blues and
Fusion, high-performance computing clusters operated by the Laboratory
Computing Resource Center at Argonne National Laboratory.
NR 23
TC 4
Z9 4
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 26
PY 2015
VL 92
IS 6
AR 060413
DI 10.1103/PhysRevB.92.060413
PG 5
WC Physics, Condensed Matter
SC Physics
GA CS6OU
UT WOS:000362200700002
ER
PT J
AU Green, J
Meinel, S
Engelhardt, M
Krieg, S
Laeuchli, J
Negele, J
Orginos, K
Pochinsky, A
Syritsyn, S
AF Green, Jeremy
Meinel, Stefan
Engelhardt, Michael
Krieg, Stefan
Laeuchli, Jesse
Negele, John
Orginos, Kostas
Pochinsky, Andrew
Syritsyn, Sergey
TI High-precision calculation of the strange nucleon electromagnetic form
factors
SO PHYSICAL REVIEW D
LA English
DT Article
ID LATTICE QCD; MAGNETIC-MOMENT; PROTON
AB We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors G(E)(s) and G(M)(s) in the kinematic range 0 <= Q(2) less than or similar to 1.2 GeV2. For the first time, both G(E)(s) and G(M)(s) are shown to be nonzero with high significance. This work uses closer to physical lattice parameters than previous calculations, and achieves an unprecedented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. We compare our results to parity-violating electron-proton scattering data and to other theoretical studies.
C1 [Green, Jeremy] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
[Meinel, Stefan] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Meinel, Stefan; Syritsyn, Sergey] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
[Engelhardt, Michael] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA.
[Krieg, Stefan] Berg Univ Wuppertal, D-42119 Wuppertal, Germany.
[Krieg, Stefan] Forschungszentrum Julich, IAS, Julich Supercomp Ctr, D-52425 Julich, Germany.
[Laeuchli, Jesse] Coll William & Mary, Dept Comp Sci, Williamsburg, VA 23187 USA.
[Negele, John; Pochinsky, Andrew] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA.
[Orginos, Kostas] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA.
[Orginos, Kostas] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
RP Green, J (reprint author), Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
EM green@kph.uni-mainz.de; smeinel@email.arizona.edu
OI Krieg, Stefan/0000-0002-8417-9823
FU Office of Science of the U.S. Department of Energy (DOE); National
Science Foundation [ACI-1053575]; U.S. Department of Energy Office of
Nuclear Physics [DE-FG02-94ER40818]; DOE Award [DE-FG02-96ER40965,
DE-FC02-12ER41890, DE-FG02-04ER41302, DE-AC05-06OR23177,
DE-AC02-05CH11231]; NSF [CCF-121834]; RIKEN Foreign Postdoctoral
Researcher Program; Deutsche Forschungsgemeinschaft [SFB-TRR 55]; PRISMA
Cluster of Excellence at the University of Mainz; RIKEN BNL Research
Center
FX Computations for this work were carried out on facilities of the USQCD
Collaboration, which are funded by the Office of Science of the U.S.
Department of Energy (DOE), and on facilities provided by XSEDE, funded
by the National Science Foundation Grant No. ACI-1053575. During this
research J. G., S. M., J. N., and A. P. were supported in part by the
U.S. Department of Energy Office of Nuclear Physics under Award No.
DE-FG02-94ER40818; M. E. was supported in part by DOE Award No.
DE-FG02-96ER40965; J. L. was supported in part by DOE Award No.
DE-FC02-12ER41890 and NSF Grant No. CCF-121834; K. O. was supported in
part by DOE Award No. DE-FG02-04ER41302 and also DOE Award No.
DE-AC05-06OR23177, under which JSA operates the Thomas Jefferson
National Accelerator Facility; S. S. was supported in part by DOE Award
No. DE-AC02-05CH11231 and the RIKEN Foreign Postdoctoral Researcher
Program; and S. K. was supported in part by Deutsche
Forschungsgemeinschaft through Grant No. SFB-TRR 55. J. G. was also
supported in part by the PRISMA Cluster of Excellence at the University
of Mainz, and S. M. was also supported in part by the RHIC Physics
Fellow Program of the RIKEN BNL Research Center. Calculations were
performed with the Chroma software suite [54], using QUDA [55] with
multi-GPU support [56].
NR 56
TC 12
Z9 12
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
EI 1550-2368
J9 PHYS REV D
JI Phys. Rev. D
PD AUG 26
PY 2015
VL 92
IS 3
AR 031501
DI 10.1103/PhysRevD.92.031501
PG 7
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA CS6UI
UT WOS:000362218000001
ER
PT J
AU Wetzel, DJ
Malone, MA
Haasch, RT
Meng, YF
Vieker, H
Hahn, NT
Golzhauser, A
Zuo, JM
Zavadil, KR
Gewirth, AA
Nuzzo, RG
AF Wetzel, David J.
Malone, Marvin A.
Haasch, Richard T.
Meng, Yifei
Vieker, Henning
Hahn, Nathan T.
Goelzhaeuser, Armin
Zuo, Jian-Min
Zavadil, Kevin R.
Gewirth, Andrew A.
Nuzzo, Ralph G.
TI Passivation Dynamics in the Anisotropic Deposition and Stripping of Bulk
Magnesium Electrodes During Electrochemical Cycling
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE rechargeable magnesium battery; magnesium anode; passivation; corrosion;
columnar growth
ID RECHARGEABLE MG BATTERIES; LITHIUM DENDRITE GROWTH; CRYSTALLOGRAPHIC
ORIENTATION; PHOTOELECTRON-SPECTRA; CURRENT COLLECTORS; PITTING
CORROSION; AQUEOUS-SOLUTION; SINGLE-CRYSTALS; ELECTROLYTES; SPECTROSCOPY
AB Although rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 mu m in height. The passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.
C1 [Wetzel, David J.; Malone, Marvin A.; Gewirth, Andrew A.; Nuzzo, Ralph G.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA.
[Haasch, Richard T.; Meng, Yifei; Zuo, Jian-Min] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA.
[Meng, Yifei; Zuo, Jian-Min] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
[Vieker, Henning; Goelzhaeuser, Armin] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany.
[Hahn, Nathan T.; Zavadil, Kevin R.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Nuzzo, RG (reprint author), Univ Illinois, Dept Chem, 1209 W Calif St, Urbana, IL 61801 USA.
EM r-nuzzo@illinois.edu
RI Golzhauser, Armin/I-1270-2016
OI Golzhauser, Armin/0000-0002-0838-9028
FU Joint Center for Energy Storage Research, an Energy Innovation Hub -
U.S. Department of Energy, Office of Science, Basic Energy Sciences
FX This work was supported as part of the Joint Center for Energy Storage
Research, an Energy Innovation Hub funded by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences. This work was carried
out in part in the Frederick Seitz Materials Research Laboratory Central
Facilities, University of Illinois at Urbana-Champaign and in the
Department of Physics, Bielefeld University.
NR 44
TC 6
Z9 6
U1 11
U2 79
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD AUG 26
PY 2015
VL 7
IS 33
BP 18406
EP 18414
PG 9
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA CQ0XN
UT WOS:000360322000028
PM 26258957
ER
PT J
AU Song, J
Lim, J
Lee, D
Thambidurai, M
Kim, JY
Park, M
Song, HJ
Lee, S
Char, K
Lee, C
AF Song, Jiyun
Lim, Jaehoon
Lee, Donggu
Thambidurai, M.
Kim, Jun Young
Park, Myeongjin
Song, Hyung-Jun
Lee, Seonghoon
Char, Kookheon
Lee, Changhee
TI Nanostructured Electron-Selective Interlayer for Efficient Inverted
Organic Solar Cells
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE nanostructured extraction layer; electron-selective interlayer; electron
buffer layer; organic-inorganic hybrid solar cells; CdSe tetrapods;
bulkheterojunction
ID POWER CONVERSION EFFICIENCY; OPTICAL SPACER; ZNO; GROWTH; RECOMBINATION;
OXIDE
AB We report a unique nanostmctured electron-selective interlayer comprising of In-doped ZnO (ZnO:In) and vertically aligned CdSe tetrapods (TPs) for inverted polymer:fullerene bulkheterojunction (BHP solar cells. With dimension-controlled CdSe TPs, the direct inorganic electron transport pathway is provided, resulting in the improvement of the short circuit current and fill factor of devices. We demonstrate that the enhancement is attributed to the roles of CdSe TPs that reduce the recombination losses between the active layer and buffer layer, improve the hole-blocking as well as electron-transporting properties, and simultaneously improve charge collection characteristics. As a result, the power conversion efficiency of PTB7:PC70BM based solar cell with nanostructured CdSe TPs increases to 7.55%. We expect this approach can be extended to a general platform for improving charge extraction in organic solar cells.
C1 [Song, Jiyun; Lee, Donggu; Thambidurai, M.; Kim, Jun Young; Park, Myeongjin; Song, Hyung-Jun; Lee, Changhee] Seoul Natl Univ, Interuniv Semicond Res Ctr, Dept Elect & Comp Engn, Seoul 151744, South Korea.
[Lim, Jaehoon; Char, Kookheon] Seoul Natl Univ, WCU Program Chem Convergence Energy & Environm, Sch Chem & Biol Engn, Natl Creat Res Initiat Ctr Intelligent Hybrids, Seoul 151744, South Korea.
[Lim, Jaehoon; Song, Hyung-Jun] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Lee, Seonghoon] Seoul Natl Univ, Sch Chem, Seoul 151747, South Korea.
RP Char, K (reprint author), Seoul Natl Univ, WCU Program Chem Convergence Energy & Environm, Sch Chem & Biol Engn, Natl Creat Res Initiat Ctr Intelligent Hybrids, 1 Gwanak Ro, Seoul 151744, South Korea.
EM khchar@plaza.snu.ac.kr; chlee7@snu.ac.kr
RI Lee, Changhee/A-2471-2009; Song, Hyung-Jun/J-8091-2016
OI Lee, Changhee/0000-0003-2800-8250;
FU Human Resources Development program of Korea Institute of Energy
Technology Evaluation and Planning (KETEP) grant - Korea government
Ministry of Trade, Industry, and Energy [20124010203170]; National
Research Foundation of Korea (NRF) grant - Korea government Ministry of
Science, ICT & Future Planning (MSIP): the National Creative Research
Initiative Center for Intelligent Hybrids [2010-0018290]; WCU Program of
C2E2 [R31-10013]; Technology Development Program [NRF-2009-0093304,
NRF-2014R1A2A1A11054246, NRF-2009-0093319]; Global Frontier R&D Program
on Center for Multiscale Energy System [2011-0031567]; Brain Korea 21
Plus Project
FX This work was supported by the Human Resources Development program (No.
20124010203170) of the Korea Institute of Energy Technology Evaluation
and Planning (KETEP) grant funded by the Korea government Ministry of
Trade, Industry, and Energy. This work was also financially supported by
the National Research Foundation of Korea (NRF) grant funded by the
Korea government Ministry of Science, ICT & Future Planning (MSIP): the
National Creative Research Initiative Center for Intelligent Hybrids
(No. 2010-0018290), the WCU Program of C2E2 (R31-10013), the Technology
Development Program to Solve Climate Changes (NRF-2009-0093304,
NRF-2014R1A2A1A11054246, and NRF-2009-0093319), the Global Frontier R&D
Program on Center for Multiscale Energy System (2011-0031567), and the
Brain Korea 21 Plus Project in 2015.
NR 27
TC 0
Z9 0
U1 2
U2 36
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD AUG 26
PY 2015
VL 7
IS 33
BP 18460
EP 18466
DI 10.1021/acsami.5b04624
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA CQ0XN
UT WOS:000360322000035
PM 26238224
ER
PT J
AU Shewmon, NT
Watkins, DL
Galindo, JF
Zerdan, RB
Chen, JH
Keum, J
Roitberg, AE
Xue, JG
Castellano, RK
AF Shewmon, Nathan T.
Watkins, Davita L.
Galindo, Johan F.
Zerdan, Raghida Bou
Chen, Jihua
Keum, Jong
Roitberg, Adrian E.
Xue, Jiangeng
Castellano, Ronald K.
TI Enhancement in Organic Photovoltaic Efficiency through the Synergistic
Interplay of Molecular Donor Hydrogen Bonding and pi-Stacking
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
DE bulk heterojunctions; hydrogen bonding; organic photovoltaics;
self-assembly; supramolecular chemistry
ID HETEROJUNCTION SOLAR-CELLS; FIELD-EFFECT TRANSISTORS; OPEN-CIRCUIT
VOLTAGE; SUPRAMOLECULAR CHEMISTRY; OLIGOTHIOPHENE NANORODS; FLUORINE
SUBSTITUENTS; SELF-ORGANIZATION; CHARGE-TRANSPORT; PERFORMANCE; POLYMER
AB For organic photovoltaic (OPV) cells based on the bulk heterojunction (BHJ) structure, it remains challenging to rationally control the degree of phase separation and percolation within blends of donors and acceptors to secure optimal charge separation and transport. Reported is a bottom-up, supramolecular approach to BHJ OPVs wherein tailored hydrogen bonding (H-bonding) interactions between -conjugated electron donor molecules encourage formation of vertically aligned donor -stacks while simultaneously suppressing lateral aggregation; the programmed arrangement facilitates fine mixing with fullerene acceptors and efficient charge transport. The approach is illustrated using conventional linear or branched quaterthiophene donor chromophores outfitted with terminal functional groups that are either capable or incapable of self-complementary H-bonding. When applied to OPVs, the H-bond capable donors yield a twofold enhancement in power conversion efficiency relative to the comparator systems, with a maximum external quantum efficiency of 64%. H-bond promoted assembly results in redshifted absorption (in neat films and donor:C-60 blends) and enhanced charge collection efficiency despite disparate donor chromophore structure. Both features positively impact photocurrent and fill factor in OPV devices. Film structural characterization by atomic force microscopy, transmission electron microscopy, and grazing incidence wide angle X-ray scattering reveals a synergistic interplay of lateral H-bonding interactions and vertical -stacking for directing the favorable morphology of the BHJ.
C1 [Shewmon, Nathan T.; Xue, Jiangeng] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA.
[Watkins, Davita L.; Galindo, Johan F.; Zerdan, Raghida Bou; Roitberg, Adrian E.; Castellano, Ronald K.] Univ Florida, Dept Chem, Gainesville, FL 32611 USA.
[Chen, Jihua; Keum, Jong] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Shewmon, NT (reprint author), Univ Florida, Dept Mat Sci & Engn, POB 116400, Gainesville, FL 32611 USA.
EM jxue@mse.ufl.edu; castellano@chem.ufl.edu
RI Chen, Jihua/F-1417-2011; Keum, Jong/N-4412-2015
OI Chen, Jihua/0000-0001-6879-5936; Keum, Jong/0000-0002-5529-1373
FU National Science Foundation [CHE-1057411]; Research Corporation for
Science Advancement (Scialog Award) [20316]; University of Florida
Office of Research; DOE Office of Science User Facility [CNMS2014-286]
FX R.K.C. acknowledges financial support from the National Science
Foundation (CHE-1057411). J.X. and R.K.C. also acknowledge partial
financial support from the Research Corporation for Science Advancement
(Scialog Award No. 20316) and the University of Florida Office of
Research. The authors thank University of Florida Research Computing for
providing computational resources and support that have contributed to
the research results are reported in this paper. The authors are also
grateful to Prof. Kirk Schanze for providing access to the AFM
instrumentation, and to Danielle Fagnani for assistance with the
synthesis. TEM (J.C.) and GIWAXS (J.K.) experiments were conducted at
the Center for Nanophase Materials Sciences (user project CNMS2014-286)
at the Oak Ridge National Laboratory, which is a DOE Office of Science
User Facility.
NR 76
TC 4
Z9 4
U1 12
U2 92
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1616-301X
EI 1616-3028
J9 ADV FUNCT MATER
JI Adv. Funct. Mater.
PD AUG 26
PY 2015
VL 25
IS 32
BP 5166
EP 5177
DI 10.1002/adfm.201501815
PG 12
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CP9NX
UT WOS:000360222400010
ER
PT J
AU Fu, Q
Yang, L
Wang, WH
Han, A
Huang, J
Du, PW
Fan, ZY
Zhang, JY
Xiang, B
AF Fu, Qi
Yang, Lei
Wang, Wenhui
Han, Ali
Huang, Jian
Du, Pingwu
Fan, Zhiyong
Zhang, Jingyu
Xiang, Bin
TI Synthesis and Enhanced Electrochemical Catalytic Performance of
Monolayer WS2(1-x)Se2x with a Tunable Band Gap
SO ADVANCED MATERIALS
LA English
DT Article
DE WS2(1-x)Se2x; tunable band gap; photoluminescence; catalytic activity;
hydrogen evolution reactions
ID HYDROGEN EVOLUTION REACTION; TRANSITION-METAL DICHALCOGENIDES;
MOLYBDENUM-DISULFIDE; RAMAN-SPECTROSCOPY; SINGLE-LAYER; MOS2; WS2;
NANOSHEETS; PHOTOLUMINESCENCE; GROWTH
C1 [Fu, Qi; Yang, Lei; Wang, Wenhui; Han, Ali; Huang, Jian; Du, Pingwu; Xiang, Bin] Univ Sci & Technol China, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China.
[Fan, Zhiyong] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong 8523, Hong Kong, Peoples R China.
[Zhang, Jingyu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Xiang, Bin] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China.
RP Xiang, B (reprint author), Univ Sci & Technol China, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China.
EM binxiang@ustc.edu.cn
RI Fan, Zhiyong/C-4970-2012; Xiang, Bin/C-9192-2012;
OI Fan, Zhiyong/0000-0002-5397-0129
FU National Science Foundation of China [21373196, 11434009]; National
Program for Thousand Young Talents of China; Fundamental Research Funds
for the Central Universities [WK2060140014, WK2340000050]
FX This work was supported by the National Science Foundation of China
(21373196 and 11434009), the National Program for Thousand Young Talents
of China, and the Fundamental Research Funds for the Central
Universities (WK2060140014 and WK2340000050).
NR 46
TC 22
Z9 22
U1 28
U2 177
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0935-9648
EI 1521-4095
J9 ADV MATER
JI Adv. Mater.
PD AUG 26
PY 2015
VL 27
IS 32
BP 4732
EP 4738
DI 10.1002/adma.201500368
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CP9PW
UT WOS:000360227800010
PM 26153276
ER
PT J
AU Qu, J
Barnhill, WC
Luo, HM
Meyer, HM
Leonard, DN
Landauer, AK
Kheireddin, B
Gao, H
Papke, BL
Dai, S
AF Qu, Jun
Barnhill, William C.
Luo, Huimin
Meyer, Harry M., III
Leonard, Donovan N.
Landauer, Alexander K.
Kheireddin, Bassem
Gao, Hong
Papke, Brian L.
Dai, Sheng
TI Synergistic Effects Between Phosphonium-Alkylphosphate Ionic Liquids and
Zinc Dialkyldithiophosphate (ZDDP) as Lubricant Additives
SO ADVANCED MATERIALS
LA English
DT Article
DE ionic liquids; ZDDP; lubricant additives; synergistic effects; friction
and wear reductions
ID ANTIWEAR PERFORMANCE; NEAT LUBRICANTS; BASE OILS; STEEL; ACID;
ORGANOPHOSPHATE; TEMPERATURE; EXTRACTION; MECHANISM; ALUMINUM
C1 [Qu, Jun; Barnhill, William C.; Meyer, Harry M., III; Leonard, Donovan N.; Landauer, Alexander K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Luo, Huimin] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA.
[Kheireddin, Bassem; Gao, Hong; Papke, Brian L.] Shell Global Solut, Technol Ctr Houston, Houston, TX 77082 USA.
[Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Qu, J (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008,MS 6063, Oak Ridge, TN 37831 USA.
EM qujn@ornl.gov
RI Dai, Sheng/K-8411-2015;
OI Dai, Sheng/0000-0002-8046-3931; Qu, Jun/0000-0001-9466-3179
FU Vehicle Technologies Office, Office of Energy Efficiency and Renewable
Energy, US Department of Energy (DOE); Scientific User Facilities
Division, Office of DOE-BES; DOE Science Undergraduate Laboratory
Internships program; U.S. Department of Energy [DE-AC05-00OR22725]
FX The authors thank Dr. J. Dyck from Cytec Industries Inc. for providing
phosphonium cation feedstocks, D. W. Coffey from ORNL for TEM sample
preparation, and A. E. Marquez Rossy from ORNL for assist in
nanoindentation, respectively. This research was sponsored by the
Vehicle Technologies Office, Office of Energy Efficiency and Renewable
Energy, US Department of Energy (DOE). Electron microscopy
characterization was performed at ORNL's Center for Nanophase Materials
Sciences, sponsored by the Scientific User Facilities Division, Office
of DOE-BES. A. K. Landauer was supported by the DOE Science
Undergraduate Laboratory Internships program.; Notice: This manuscript
has been authored by UT-Battelle, LLC, under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes.
NR 35
TC 15
Z9 15
U1 12
U2 51
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0935-9648
EI 1521-4095
J9 ADV MATER
JI Adv. Mater.
PD AUG 26
PY 2015
VL 27
IS 32
BP 4767
EP 4774
DI 10.1002/adma.201502037
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CP9PW
UT WOS:000360227800015
PM 26173561
ER
PT J
AU Nanayakkara, SU
van de Lagemaat, J
Luther, JM
AF Nanayakkara, Sanjini U.
van de Lagemaat, Jao
Luther, Joseph M.
TI Scanning Probe Characterization of Heterostructured Colloidal
Nanomaterials
SO CHEMICAL REVIEWS
LA English
DT Review
ID NANOCRYSTAL QUANTUM DOTS; ATOMIC-FORCE MICROSCOPY; MULTIPLE EXCITON
GENERATION; LIGHT-EMITTING TRANSISTOR; ASSEMBLED MOLECULAR
NANOSTRUCTURE; CDSE/CDS CORE/SHELL NANOCRYSTALS; ELECTRON CHARGING
ENERGIES; FIELD-EFFECT TRANSISTORS; CORE-SHELL NANOCRYSTALS; PERMANENT
DIPOLE-MOMENT
C1 [Nanayakkara, Sanjini U.; van de Lagemaat, Jao; Luther, Joseph M.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Nanayakkara, SU (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
EM Sanjini.Nanayakkara@nrel.gov; Joey.Luther@nrel.gov
RI van de Lagemaat, Jao/J-9431-2012
FU U.S. Department of Energy Office of Science, Office of Basic Energy
Sciences; DOE [DE-AC36-08G028308]; solar photochemistry program
FX We thanks Ryan Crisp and Al Hicks for help with the figures and Mathew
Beard for helpful discussions. S.U.N. and J.M.L acknowledge the Energy
Frontier Research Centers program within the Center for Advanced Solar
Photophysics supported by the U.S. Department of Energy Office of
Science, Office of Basic Energy Sciences. J.V.D.L. acknowledges support
from the solar photochemistry program. DOE funding was provided to NREL
through contract DE-AC36-08G028308.
NR 257
TC 8
Z9 8
U1 6
U2 78
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0009-2665
EI 1520-6890
J9 CHEM REV
JI Chem. Rev.
PD AUG 26
PY 2015
VL 115
IS 16
BP 8157
EP 8181
DI 10.1021/cr500280t
PG 25
WC Chemistry, Multidisciplinary
SC Chemistry
GA CQ0XH
UT WOS:000360321300001
PM 26196958
ER
PT J
AU Zhu, CZ
Du, D
Eychmuller, A
Lin, YH
AF Zhu, Chengzhou
Du, Dan
Eychmueller, Alexander
Lin, Yuehe
TI Engineering Ordered and Nonordered Porous Noble Metal Nanostructures:
Synthesis, Assembly, and Their Applications in Electrochemistry
SO CHEMICAL REVIEWS
LA English
DT Review
ID OXYGEN-REDUCTION REACTION; ENHANCED ELECTROCATALYTIC ACTIVITY;
FORMIC-ACID OXIDATION; ONE-POT SYNTHESIS; GALVANIC REPLACEMENT REACTION;
HIGH-SURFACE-AREA; PT-RU ALLOY; CORE-SHELL NANOPARTICLES; AU-AT-PD;
MESOPOROUS PLATINUM NANOPARTICLES
C1 [Zhu, Chengzhou; Du, Dan; Lin, Yuehe] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA.
[Du, Dan] Cent China Normal Univ, Coll Chem, Key Lab Pesticide & Chem Biol, Minist Educ, Wuhan 430079, Peoples R China.
[Eychmueller, Alexander] Tech Univ Dresden, Phys Chem, D-01062 Dresden, Germany.
[Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Lin, YH (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA.
EM Yuehe.lin@wsu.edu
RI Lin, Yuehe/D-9762-2011; Zhu, Chengzhou/M-3566-2014;
OI Lin, Yuehe/0000-0003-3791-7587; Zhu, Chengzhou/0000-0003-0679-7965
FU WSU; Laboratory Directed Research and Development program at Pacific
Northwest National Laboratory (PNNL); US-DOE [DE-AC05-76RL01830];
National Natural Science Foundation of China [21275062]; Program for New
Century Excellent Talents in University [NCET-12-0871]
FX This work was supported by a start-up grant from WSU and a Laboratory
Directed Research and Development program at Pacific Northwest National
Laboratory (PNNL). PNNL is operated by Battelle for US-DOE under
Contract DE-AC05-76RL01830. C.Z. and A.E. also acknowledge the Alexander
von Humboldt Foundation. D.D. acknowledges the financial support of the
National Natural Science Foundation of China (21275062) and the Program
for New Century Excellent Talents in University (NCET-12-0871).
NR 487
TC 96
Z9 96
U1 98
U2 400
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0009-2665
EI 1520-6890
J9 CHEM REV
JI Chem. Rev.
PD AUG 26
PY 2015
VL 115
IS 16
BP 8896
EP 8943
DI 10.1021/acs.chemrev.5b00255
PG 48
WC Chemistry, Multidisciplinary
SC Chemistry
GA CQ0XH
UT WOS:000360321300016
PM 26181885
ER
PT J
AU Meng, LZ
Gruszkiewicz, MS
Deng, TL
Guo, YF
Li, D
AF Meng, Lingzong
Gruszkiewicz, Miroslaw S.
Deng, Tianlong
Guo, Yafei
Li, Dan
TI Isothermal Evaporation Process Simulation Using the Pitzer Model for the
Quinary System LiCl NaCl KCl SrCl2 H2O at 298.15 K
SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
LA English
DT Article
ID THERMODYNAMIC PROPERTIES; ISOPIESTIC MOLALITIES; ACTIVITY-COEFFICIENTS;
STRONTIUM CHLORIDE; AQUEOUS-SOLUTIONS; PHASE-EQUILIBRIA; 25-DEGREES-C;
ELECTROLYTES; TEMPERATURES; SOLUBILITY
AB The Pitzer thermodynamic model for liquid solid equilibrium in the quinary system LiCl-NaCl-KCl-SrCl2 H2O at 298.15 K was constructed by selecting the proper parameters and standard chemical potential. The solubility data and water activity data of the systems SrCl2-H2O, NaCl-SrCl2-H2O, KCl-SrCl2-H2O, LiCl-SrCl2-H2O, and NaCl-KCl-SrCl2-H2O were used to evaluate the model. Good agreement between the calculated and experimental solubility data indicates that the model is reliable. The Pitzer model for the above system at 298.15 K was then used to calculate the component solubilities and conduct computer simulation of isothermal evaporation of the mother liquor for the oilfield brine in Nanyishan region of Qaidam Basin (China). The evaporation-crystallization route and order of salt precipitation, changes in concentration and precipitation of lithium, sodium, potassium, and strontium, and water activities during the evaporation process were demonstrated. The salts crystallized from the brine in the order: KCl, NaCl, SrCl2 center dot 6H(2)O, SrCl2 center dot 2H(2)O, and LiCl center dot H2O. The entire evaporation crystallization process may consist of six stages. In each stage, the variation trends for the relationships between ion concentrations or water activities and the evaporation ratio are different. This result of the simulation of brines can be used as a theoretical reference for comprehensive exploitation and utilization of this type of brine resources.
C1 [Meng, Lingzong; Li, Dan] Linyi Univ, Sch Chem & Chem Engn, Linyi 276000, Peoples R China.
[Meng, Lingzong; Gruszkiewicz, Miroslaw S.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Deng, Tianlong; Guo, Yafei] Tianjin Univ Sci & Technol, Tianjin Key Lab Marine Resources & Chem, Tianjin 300457, Peoples R China.
RP Meng, LZ (reprint author), Linyi Univ, Sch Chem & Chem Engn, Linyi 276000, Peoples R China.
EM menglingzong@lyu.edu.cn
RI Gruszkiewicz, Miroslaw/L-2389-2016
OI Gruszkiewicz, Miroslaw/0000-0002-6551-6724
FU NNSFC [21406104, 21276194, 21306136, U1406113]; Key Laboratory of Salt
Lake Resources and Chemistry, Qinghai Institute of Salt Lake, Chinese
Academy of Sciences [KLSLRC-KF-13-HX-4]; U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, Division of Chemical
Sciences, Geosciences and Bioscience; U.S. Department of Energy
[DE-AC05-00OR22725]
FX This work was supported by the NNSFC (Nos. 21406104, 21276194, 21306136,
and U1406113), and the Key Laboratory of Salt Lake Resources and
Chemistry, Qinghai Institute of Salt Lake, Chinese Academy of Sciences
(KLSLRC-KF-13-HX-4). Efforts by M.S.G. in this work were supported by
the U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences and Biosciences.
This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The Department of
Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).
NR 26
TC 1
Z9 1
U1 4
U2 15
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0888-5885
J9 IND ENG CHEM RES
JI Ind. Eng. Chem. Res.
PD AUG 26
PY 2015
VL 54
IS 33
BP 8311
EP 8318
DI 10.1021/acs.iecr.5b01897
PG 8
WC Engineering, Chemical
SC Engineering
GA CQ0XR
UT WOS:000360322400035
ER
PT J
AU Matheu, R
Ertem, MZ
Benet-Buchholz, J
Coronado, E
Batista, VS
Sala, X
Llobet, A
AF Matheu, Roc
Ertem, Mehmed Z.
Benet-Buchholz, Jordi
Coronado, Eugenio
Batista, Victor S.
Sala, Xavier
Llobet, Antoni
TI Intramolecular Proton Transfer Boosts Water Oxidation Catalyzed by a Ru
Complex
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID MONONUCLEAR RUTHENIUM COMPLEXES; CYCLIC VOLTAMMETRY; OXYGEN EVOLUTION;
HIGHLY EFFICIENT; ONE-SITE; ELECTROCATALYSTS; LIGAND; MECHANISMS;
DIOXYGEN; KINETICS
AB We introduce a new family of complexes with the general formula [Ru-n(tda)(py)(2)](m+) (n = 2, m = 0, 1; n = 3, m = 1, 2(+); n = 4, m = 2, 3(2+)), with tda(2-) being [2,2':6',2"-terpyridine]-6,6"-dicarboxylate, including complex [Ru-IV(OH)(tda-kappa-(NO)-O-3)(py)(2)](+), 4H(+), which we find to be an impressive water oxidation catalyst, formed by hydroxo coordination to 3(2+) under basic conditions. The complexes are synthesized, isolated, and thoroughly characterized by analytical, spectroscopic (UV-vis, nuclear magnetic resonance, electron paramagnetic resonance), computational, and electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, coulometry), including solid-state monocrystal X-ray diffraction analysis. In oxidation state IV, the Ru center is seven-coordinated and diamagnetic, whereas in oxidation state II, the complex has an unbonded dangling carboxylate and is six-coordinated while still diamagnetic. With oxidation state III, the coordination number is halfway between the coordination of oxidation states II and IV. Species generated in situ have also been characterized by spectroscopic, computational, and electrochemical techniques, together with the related species derived from a different degree of protonation and oxidation states. 4H(+) can be generated potentiometrically, or voltammetrically, from 3(2+), and both coexist in solution. While complex 3(2+) is not catalytically active, the catalytic performance of complex 4H(+) is characterized by the foot of the wave analysis, giving an impressive turnover frequency record of 8000 s(-1) at pH 7.0 and 50 000 s(-1) at pH 10.0. Density functional theory calculations provide a complete description of the water oxidation catalytic cycle of 4H(+), manifesting the key functional role of the dangling carboxylate in lowering the activation free energies that lead to O-O bond formation.
C1 [Matheu, Roc; Benet-Buchholz, Jordi; Llobet, Antoni] Inst Chem Res Catalonia ICIQ, Tarragona 43007, Spain.
[Ertem, Mehmed Z.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Coronado, Eugenio] Univ Valencia, Inst Ciencia Mol ICMol, Paterna 46980, Spain.
[Batista, Victor S.] Yale Univ, Dept Chem, New Haven, CT 06520 USA.
[Sala, Xavier; Llobet, Antoni] Univ Autonoma Barcelona, Dept Quim, E-08193 Barcelona, Spain.
RP Batista, VS (reprint author), Yale Univ, Dept Chem, POB 208107, New Haven, CT 06520 USA.
EM victor.batista@yale.edu; xavier.sala@uab.cat; allobet@iciq.cat
RI Sala, Xavier/N-7363-2013; Coronado, Eugenio/E-8960-2014; Llobet,
Antoni/C-3296-2016;
OI Sala, Xavier/0000-0002-7779-6313; Llobet, Antoni/0000-0002-6176-5272;
Matheu, Roc/0000-0001-8601-5219
FU "La Caixa" foundation; Argonne-Northwestern Solar Energy 524 Research
(ANSER) Center; Energy Frontier Research Center - U.S. Department of
Energy, Office of 526 Science, Office of Basic Energy Sciences [527
DE-SC0001059]; U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences [DE-SC00112704]
FX R.M. thanks "La Caixa" foundation for a Ph.D. grant. A.L. thanks MINECO
(CTQ-2013-49075-R, SEV-2013-0319; CTQ-2014-52974-REDC) and "La Caixa"
foundation for financial support. COST actions, CM1202, and CM1205 from
the EU are also gratefully acknowledged. V.S.B. acknowledges
supercomputer time from NERSC and financial support as part of the
Argonne-Northwestern Solar Energy 524 Research (ANSER) Center, an Energy
Frontier Research Center funded by the U.S. Department of Energy, Office
of 526 Science, Office of Basic Energy Sciences under Award Number 527
DE-SC0001059. The work at BNL (M.Z.E.) was carried out under contract
DE-SC00112704 with the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences. We thank J.M. Martinez-Agudo from the
Universidad de Valencia for his assistance with the EPR measurements.
NR 57
TC 21
Z9 21
U1 13
U2 85
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 26
PY 2015
VL 137
IS 33
BP 10786
EP 10795
DI 10.1021/jacs.5b06541
PG 10
WC Chemistry, Multidisciplinary
SC Chemistry
GA CQ0XF
UT WOS:000360321100052
PM 26226390
ER
PT J
AU Hulvey, Z
Vlaisavljevich, B
Mason, JA
Tsivion, E
Dougherty, TP
Bloch, ED
Head-Gordon, M
Smit, B
Long, JR
Brown, CM
AF Hulvey, Zeric
Vlaisavljevich, Bess
Mason, Jarad A.
Tsivion, Ehud
Dougherty, Timothy P.
Bloch, Eric D.
Head-Gordon, Martin
Smit, Berend
Long, Jeffrey R.
Brown, Craig M.
TI Critical Factors Driving the High Volumetric Uptake of Methane in
Cu-3(btc)(2)
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID METAL-ORGANIC FRAMEWORKS; TOTAL-ENERGY CALCULATIONS; SITU
NEUTRON-DIFFRACTION; NANOPOROUS MATERIALS; POROUS MATERIALS; HYDROGEN
ADSORPTION; COORDINATION SITES; GAS-STORAGE; SEPARATION; DESIGN
AB A thorough experimental and computational study has been carried out to elucidate the mechanistic reasons for the high volumetric uptake of methane in the metal-organic framework Cu-3(btc)(2) (btc(3-) = 1,3,5-benzenetricarboxylate; HKUST-1). Methane adsorption data measured at several temperatures for Cu-3(btc)(2), and its isostructural analogue Cr-3(btc)(2), show that there is little difference in volumetric adsorption capacity when the metal center is changed. In situ neutron powder diffraction data obtained for both materials were used to locate four CD4 adsorption sites that fill sequentially. This data unequivocally shows that primary adsorption sites around, and within, the small octahedral cage in the structure are favored over the exposed Cu2+ or Cr2+ cations. These results are supported by an exhaustive parallel computational study, and contradict results recently reported using a time-resolved diffraction structure envelope (TRDSE) method. Moreover, the computational study reveals that strong methane binding at the open metal sites is largely due to methane-methane interactions with adjacent molecules adsorbed at the primary sites instead of an electronic interaction with the metal center. Simulated methane adsorption isotherms for Cu-3(btc)(2) are shown to exhibit excellent agreement with experimental isotherms, allowing for additional simulations that show that modifications to the metal center, ligand, or even tuning the overall binding enthalpy would not improve the working capacity for methane storage over that measured for Cu-3(btc)(2) itself.
C1 [Hulvey, Zeric; Dougherty, Timothy P.; Brown, Craig M.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Hulvey, Zeric] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
[Vlaisavljevich, Bess; Smit, Berend] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Mason, Jarad A.; Tsivion, Ehud; Bloch, Eric D.; Head-Gordon, Martin; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Tsivion, Ehud; Long, Jeffrey R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Dougherty, Timothy P.] Georgetown Univ, Dept Chem, Washington, DC 20057 USA.
[Smit, Berend] Ecole Polytech Fed Lausanne, Inst Sci & Ingn Chim, CH-1015 Lausanne, Switzerland.
[Brown, Craig M.] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA.
RP Hulvey, Z (reprint author), NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
EM zeric.hulvey@nist.gov; craig.brown@nist.gov
RI Brown, Craig/B-5430-2009; Smit, Berend/B-7580-2009; Vlaisavljevich,
Bess/Q-9737-2016
OI Brown, Craig/0000-0002-9637-9355; Smit, Berend/0000-0003-4653-8562;
Vlaisavljevich, Bess/0000-0001-6065-0732
FU Nanoporous Materials Genome Center - U.S. Department of Energy, Office
of Basic Energy Sciences, Division of Chemical Sciences, Geosciences,
and Biosciences [DE-FG02-12ER16362]; U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences [DE-SC0001015]; NIST/NSF REU
Summer Undergraduate Research Fellowship (SURF) - Center for High
Resolution Neutron Scattering (CHRNS) [DMR-09414772]; Office of Science
of the U.S. Department of Energy [DE-AC02-05CH11231]
FX We thank Prof. Efrain Rodriguez for assistance with the synthesis of
Cr3(btc)2 and Dr. Matthew Hudson for assistance
with neutron powder diffraction experiments. Gas adsorption measurements
were supported by the Nanoporous Materials Genome Center, which is
funded by the U.S. Department of Energy, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and Biosciences
under Award DE-FG02-12ER16362. Computational efforts were supported by
the Center for Gas Separations Relevant to Clean Energy Technologies, an
Energy Frontier Research Center, funded by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under Award
DE-SC0001015. T.P.D. was supported through the NIST/NSF REU Summer
Undergraduate Research Fellowship (SURF) funded through the Center for
High Resolution Neutron Scattering (CHRNS) DMR-09414772. This research
used resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 48
TC 10
Z9 10
U1 10
U2 69
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 26
PY 2015
VL 137
IS 33
BP 10816
EP 10825
DI 10.1021/jacs.5b06657
PG 10
WC Chemistry, Multidisciplinary
SC Chemistry
GA CQ0XF
UT WOS:000360321100055
PM 26263038
ER
PT J
AU Motruk, J
Grushin, AG
de Juan, F
Pollmann, F
AF Motruk, Johannes
Grushin, Adolfo G.
de Juan, Fernando
Pollmann, Frank
TI Interaction-driven phases in the half-filled honeycomb lattice: An
infinite density matrix renormalization group study
SO PHYSICAL REVIEW B
LA English
DT Article
ID TOPOLOGICAL INSULATORS; GRAPHENE; MATTER
AB The emergence of the Haldane Chern insulator state due to strong short-range repulsive interactions in the half-filled fermionic spinless honeycomb lattice model has been proposed and challenged with different methods and yet it still remains controversial. In this work we revisit the problem using the infinite density matrix renormalization group method and report numerical evidence supporting (i) the absence of the Chern insulator state, (ii) two previously unnoticed charge ordered phases, and (iii) the existence and stability of all the nontopological competing orders that were found previously within mean field. In addition, we discuss the nature of the corresponding phase transitions based on our numerical data. Our work establishes the phase diagram of the half-filled honeycomb lattice model, tilting the balance towards the absence of a Chern insulator phase for this model.
C1 [Motruk, Johannes; Grushin, Adolfo G.; Pollmann, Frank] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany.
[de Juan, Fernando] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[de Juan, Fernando] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RP Motruk, J (reprint author), Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany.
RI Grushin, Adolfo G./A-5704-2011; de Juan, Fernando/B-9392-2008; Pollmann,
Frank/L-5378-2013
OI Grushin, Adolfo G./0000-0001-7678-7100; de Juan,
Fernando/0000-0001-6852-1484;
NR 48
TC 19
Z9 19
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 26
PY 2015
VL 92
IS 8
AR 085147
DI 10.1103/PhysRevB.92.085147
PG 11
WC Physics, Condensed Matter
SC Physics
GA CP7JW
UT WOS:000360064300003
ER
PT J
AU Refaely-Abramson, S
Jain, M
Sharifzadeh, S
Neaton, JB
Kronik, L
AF Refaely-Abramson, Sivan
Jain, Manish
Sharifzadeh, Sahar
Neaton, Jeffrey B.
Kronik, Leeor
TI Solid-state optical absorption from optimally tuned time-dependent
range-separated hybrid density functional theory
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRON-HOLE EXCITATIONS; SHAM ORBITAL ENERGIES; AB-INITIO CALCULATION;
BAND-GAP PROBLEM; GREENS-FUNCTION; QUASI-PARTICLE; SEMICONDUCTORS;
EXCHANGE; SPECTRA; DESIGN
AB We present a framework for obtaining reliable solid-state charge and optical excitations and spectra from optimally tuned range-separated hybrid density functional theory. The approach, which is fully couched within the formal framework of generalized Kohn-Sham theory, allows for the accurate prediction of exciton binding energies. We demonstrate our approach through first principles calculations of one- and two-particle excitations in pentacene, a molecular semiconducting crystal, where our work is in excellent agreement with experiments and prior computations. We further show that with one adjustable parameter, set to produce the known band gap, this method accurately predicts band structures and optical spectra of silicon and lithium fluoride, prototypical covalent and ionic solids. Our findings indicate that for a broad range of extended bulk systems, this method may provide a computationally inexpensive alternative to many-body perturbation theory, opening the door to studies of materials of increasing size and complexity.
C1 [Refaely-Abramson, Sivan; Kronik, Leeor] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel.
[Jain, Manish] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India.
[Sharifzadeh, Sahar] Boston Univ, Div Mat Sci & Engn, Dept Elect & Comp Engn & Phys, Boston, MA 02215 USA.
[Neaton, Jeffrey B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Neaton, Jeffrey B.] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.
RP Refaely-Abramson, S (reprint author), Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel.
RI Jain, Manish/A-8303-2010; Neaton, Jeffrey/F-8578-2015; Foundry,
Molecular/G-9968-2014; Sharifzadeh, Sahar/P-4881-2016
OI Jain, Manish/0000-0001-9329-6434; Neaton, Jeffrey/0000-0001-7585-6135;
Sharifzadeh, Sahar/0000-0003-4215-4668
FU European Research Council; Israel Science Foundation; United States -
Israel Binational Science Foundation; Helmsley Foundation; Wolfson
Foundation; Adams fellowship of the Israel Academy of Sciences and
Humanities; Scientific Discovery through Advanced Computing (SciDAC)
Partnership program - U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research and Basic Energy Sciences
FX Work at the Weizmann Institute was supported by the European Research
Council, the Israel Science Foundation, the United States - Israel
Binational Science Foundation, the Helmsley Foundation, and the Wolfson
Foundation. S.R.A. was supported by an Adams fellowship of the Israel
Academy of Sciences and Humanities. S.S. and J.B.N were supported by the
Scientific Discovery through Advanced Computing (SciDAC) Partnership
program funded by U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research and Basic Energy Sciences. We thank the
National Energy Research Scientific Computing center for computational
resources.
NR 74
TC 18
Z9 18
U1 2
U2 20
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 26
PY 2015
VL 92
IS 8
AR 081204
DI 10.1103/PhysRevB.92.081204
PG 6
WC Physics, Condensed Matter
SC Physics
GA CP7JW
UT WOS:000360064300001
ER
PT J
AU Adamczyk, L
Adkins, JK
Agakishiev, G
Aggarwal, MM
Ahammed, Z
Alekseev, I
Alford, J
Anson, CD
Aparin, A
Arkhipkin, D
Aschenauer, EC
Averichev, GS
Banerjee, A
Beavis, DR
Bellwied, R
Bhasin, A
Bhati, AK
Bhattarai, P
Bichsel, H
Bielcik, J
Bielcikova, J
Bland, LC
Bordyuzhin, IG
Borowski, W
Bouchet, J
Brandin, AV
Brovko, SG
Bultmann, S
Bunzarov, I
Burton, TP
Butterworth, J
Caines, H
Sanchez, MCD
Campbell, JM
Cebra, D
Cendejas, R
Cervantes, MC
Chaloupka, P
Chang, Z
Chattopadhyay, S
Chen, HF
Chen, JH
Chen, L
Cheng, J
Cherney, M
Chikanian, A
Christie, W
Chwastowski, J
Codrington, MJM
Contin, G
Cramer, JG
Crawford, HJ
Cudd, AB
Cui, X
Das, S
Leyva, AD
De Silva, LC
Debbe, RR
Dedovich, TG
Deng, J
Derevschikov, AA
de Souza, RD
Dhamija, S
di Ruzza, B
Didenko, L
Dilks, C
Ding, F
Djawotho, P
Dong, X
Drachenberg, JL
Draper, JE
Du, CM
Dunkelberger, LE
Dunlop, JC
Efimov, LG
Engelage, J
Engle, KS
Eppley, G
Eun, L
Evdokimov, O
Eyser, O
Fatemi, R
Fazio, S
Fedorisin, J
Filip, P
Finch, E
Fisyak, Y
Flores, CE
Gagliardi, CA
Gangadharan, DR
Garand, D
Geurts, F
Gibson, A
Girard, M
Gliske, S
Greiner, L
Grosnick, D
Gunarathne, DS
Guo, Y
Gupta, A
Gupta, S
Guryn, W
Haag, B
Hamed, A
Han, LX
Haque, R
Harris, JW
Heppelmann, S
Hirsch, A
Hoffmann, GW
Hofman, DJ
Horvat, S
Huang, B
Huang, HZ
Huang, X
Huck, P
Humanic, TJ
Igo, G
Jacobs, WW
Jang, H
Judd, EG
Kabana, S
Kalinkin, D
Kang, K
Kauder, K
Ke, HW
Keane, D
Kechechyan, A
Kesich, A
Khan, ZH
Kikola, DP
Kisel, I
Kisiel, A
Koetke, DD
Kollegger, T
Konzer, J
Koralt, I
Kosarzewski, LK
Kotchenda, L
Kraishan, AF
Kravtsov, P
Krueger, K
Kulakov, I
Kumar, L
Kycia, RA
Lamont, MAC
Landgraf, JM
Landry, KD
Lauret, J
Lebedev, A
Lednicky, R
Lee, JH
LeVine, MJ
Li, C
Li, W
Li, X
Li, X
Li, Y
Li, ZM
Lisa, MA
Liu, F
Ljubicic, T
Llope, WJ
Lomnitz, M
Longacre, RS
Luo, X
Ma, GL
Ma, YG
Don, DMMDM
Mahapatra, DP
Majka, R
Margetis, S
Markert, C
Masui, H
Matis, HS
McDonald, D
McShane, TS
Minaev, NG
Mioduszewski, S
Mohanty, B
Mondal, MM
Morozov, DA
Mustafa, MK
Nandi, BK
Nasim, M
Nayak, TK
Nelson, JM
Nigmatkulov, G
Nogach, LV
Noh, SY
Novak, J
Nurushev, SB
Odyniec, G
Ogawa, A
Oh, K
Ohlson, A
Okorokov, V
Oldag, EW
Olvitt, DL
Pachr, M
Page, BS
Pal, SK
Pan, YX
Pandit, Y
Panebratsev, Y
Pawlak, T
Pawlik, B
Pei, H
Perkins, C
Peryt, W
Pile, P
Planinic, M
Pluta, J
Poljak, N
Poniatowska, K
Porter, J
Poskanzer, AM
Pruthi, NK
Przybycien, M
Pujahari, PR
Putschke, J
Qiu, H
Quintero, A
Ramachandran, S
Raniwala, R
Raniwala, S
Ray, RL
Riley, CK
Ritter, HG
Roberts, JB
Rogachevskiy, OV
Romero, JL
Ross, JF
Roy, A
Ruan, L
Rusnak, J
Rusnakova, O
Sahoo, NR
Sahu, PK
Sakrejda, I
Salur, S
Sandweiss, J
Sangaline, E
Sarkar, A
Schambach, J
Scharenberg, RP
Schmah, AM
Schmidke, WB
Schmitz, N
Seger, J
Seyboth, P
Shah, N
Shahaliev, E
Shanmuganathan, PV
Shao, M
Sharma, B
Shen, WQ
Shi, SS
Shou, QY
Sichtermann, EP
Singaraju, RN
Skoby, MJ
Smirnov, D
Smirnov, N
Solanki, D
Sorensen, P
Spinka, HM
Srivastava, B
Stanislaus, TDS
Stevens, JR
Stock, R
Strikhanov, M
Stringfellow, B
Sumbera, M
Sun, X
Sun, XM
Sun, Y
Sun, Z
Surrow, B
Svirida, DN
Symons, TJM
Szelezniak, MA
Takahashi, J
Tang, AH
Tang, Z
Tarnowsky, T
Thomas, JH
Timmins, AR
Tlusty, D
Tokarev, M
Trentalange, S
Tribble, RE
Tribedy, P
Trzeciak, BA
Tsai, OD
Turnau, J
Ullrich, T
Underwood, DG
Van Buren, G
Van Nieuwenhuizen, G
Vandenbroucke, M
Vanfossen, JA
Varma, R
Vasconcelos, GMS
Vasiliev, AN
Vertesi, R
Videbaek, F
Viyogi, YP
Vokal, S
Vossen, A
Wada, M
Wang, F
Wang, G
Wang, H
Wang, JS
Wang, XL
Wang, Y
Wang, Y
Webb, G
Webb, JC
Westfall, GD
Wieman, H
Wissink, SW
Witt, R
Wu, YF
Xiao, Z
Xie, W
Xin, K
Xu, H
Xu, J
Xu, N
Xu, QH
Xu, Y
Xu, Z
Yan, W
Yang, C
Yang, Y
Yang, Y
Ye, Z
Yepes, P
Yi, L
Yip, K
Yoo, IK
Yu, N
Zawisza, Y
Zbroszczyk, H
Zha, W
Zhang, JB
Zhang, JL
Zhang, S
Zhang, XP
Zhang, Y
Zhang, ZP
Zhao, F
Zhao, J
Zhong, C
Zhu, X
Zhu, YH
Zoulkarneeva, Y
Zyzak, M
AF Adamczyk, L.
Adkins, J. K.
Agakishiev, G.
Aggarwal, M. M.
Ahammed, Z.
Alekseev, I.
Alford, J.
Anson, C. D.
Aparin, A.
Arkhipkin, D.
Aschenauer, E. C.
Averichev, G. S.
Banerjee, A.
Beavis, D. R.
Bellwied, R.
Bhasin, A.
Bhati, A. K.
Bhattarai, P.
Bichsel, H.
Bielcik, J.
Bielcikova, J.
Bland, L. C.
Bordyuzhin, I. G.
Borowski, W.
Bouchet, J.
Brandin, A. V.
Brovko, S. G.
Bueltmann, S.
Bunzarov, I.
Burton, T. P.
Butterworth, J.
Caines, H.
Sanchez, M. Calderon de la Barca
Campbell, J. M.
Cebra, D.
Cendejas, R.
Cervantes, M. C.
Chaloupka, P.
Chang, Z.
Chattopadhyay, S.
Chen, H. F.
Chen, J. H.
Chen, L.
Cheng, J.
Cherney, M.
Chikanian, A.
Christie, W.
Chwastowski, J.
Codrington, M. J. M.
Contin, G.
Cramer, J. G.
Crawford, H. J.
Cudd, A. B.
Cui, X.
Das, S.
Leyva, A. Davila
De Silva, L. C.
Debbe, R. R.
Dedovich, T. G.
Deng, J.
Derevschikov, A. A.
de Souza, R. Derradi
Dhamija, S.
di Ruzza, B.
Didenko, L.
Dilks, C.
Ding, F.
Djawotho, P.
Dong, X.
Drachenberg, J. L.
Draper, J. E.
Du, C. M.
Dunkelberger, L. E.
Dunlop, J. C.
Efimov, L. G.
Engelage, J.
Engle, K. S.
Eppley, G.
Eun, L.
Evdokimov, O.
Eyser, O.
Fatemi, R.
Fazio, S.
Fedorisin, J.
Filip, P.
Finch, E.
Fisyak, Y.
Flores, C. E.
Gagliardi, C. A.
Gangadharan, D. R.
Garand, D.
Geurts, F.
Gibson, A.
Girard, M.
Gliske, S.
Greiner, L.
Grosnick, D.
Gunarathne, D. S.
Guo, Y.
Gupta, A.
Gupta, S.
Guryn, W.
Haag, B.
Hamed, A.
Han, L-X.
Haque, R.
Harris, J. W.
Heppelmann, S.
Hirsch, A.
Hoffmann, G. W.
Hofman, D. J.
Horvat, S.
Huang, B.
Huang, H. Z.
Huang, X.
Huck, P.
Humanic, T. J.
Igo, G.
Jacobs, W. W.
Jang, H.
Judd, E. G.
Kabana, S.
Kalinkin, D.
Kang, K.
Kauder, K.
Ke, H. W.
Keane, D.
Kechechyan, A.
Kesich, A.
Khan, Z. H.
Kikola, D. P.
Kisel, I.
Kisiel, A.
Koetke, D. D.
Kollegger, T.
Konzer, J.
Koralt, I.
Kosarzewski, L. K.
Kotchenda, L.
Kraishan, A. F.
Kravtsov, P.
Krueger, K.
Kulakov, I.
Kumar, L.
Kycia, R. A.
Lamont, M. A. C.
Landgraf, J. M.
Landry, K. D.
Lauret, J.
Lebedev, A.
Lednicky, R.
Lee, J. H.
LeVine, M. J.
Li, C.
Li, W.
Li, X.
Li, X.
Li, Y.
Li, Z. M.
Lisa, M. A.
Liu, F.
Ljubicic, T.
Llope, W. J.
Lomnitz, M.
Longacre, R. S.
Luo, X.
Ma, G. L.
Ma, Y. G.
Don, D. M. M. D. Madagodagettige
Mahapatra, D. P.
Majka, R.
Margetis, S.
Markert, C.
Masui, H.
Matis, H. S.
McDonald, D.
McShane, T. S.
Minaev, N. G.
Mioduszewski, S.
Mohanty, B.
Mondal, M. M.
Morozov, D. A.
Mustafa, M. K.
Nandi, B. K.
Nasim, Md.
Nayak, T. K.
Nelson, J. M.
Nigmatkulov, G.
Nogach, L. V.
Noh, S. Y.
Novak, J.
Nurushev, S. B.
Odyniec, G.
Ogawa, A.
Oh, K.
Ohlson, A.
Okorokov, V.
Oldag, E. W.
Olvitt, D. L., Jr.
Pachr, M.
Page, B. S.
Pal, S. K.
Pan, Y. X.
Pandit, Y.
Panebratsev, Y.
Pawlak, T.
Pawlik, B.
Pei, H.
Perkins, C.
Peryt, W.
Pile, P.
Planinic, M.
Pluta, J.
Poljak, N.
Poniatowska, K.
Porter, J.
Poskanzer, A. M.
Pruthi, N. K.
Przybycien, M.
Pujahari, P. R.
Putschke, J.
Qiu, H.
Quintero, A.
Ramachandran, S.
Raniwala, R.
Raniwala, S.
Ray, R. L.
Riley, C. K.
Ritter, H. G.
Roberts, J. B.
Rogachevskiy, O. V.
Romero, J. L.
Ross, J. F.
Roy, A.
Ruan, L.
Rusnak, J.
Rusnakova, O.
Sahoo, N. R.
Sahu, P. K.
Sakrejda, I.
Salur, S.
Sandweiss, J.
Sangaline, E.
Sarkar, A.
Schambach, J.
Scharenberg, R. P.
Schmah, A. M.
Schmidke, W. B.
Schmitz, N.
Seger, J.
Seyboth, P.
Shah, N.
Shahaliev, E.
Shanmuganathan, P. V.
Shao, M.
Sharma, B.
Shen, W. Q.
Shi, S. S.
Shou, Q. Y.
Sichtermann, E. P.
Singaraju, R. N.
Skoby, M. J.
Smirnov, D.
Smirnov, N.
Solanki, D.
Sorensen, P.
Spinka, H. M.
Srivastava, B.
Stanislaus, T. D. S.
Stevens, J. R.
Stock, R.
Strikhanov, M.
Stringfellow, B.
Sumbera, M.
Sun, X.
Sun, X. M.
Sun, Y.
Sun, Z.
Surrow, B.
Svirida, D. N.
Symons, T. J. M.
Szelezniak, M. A.
Takahashi, J.
Tang, A. H.
Tang, Z.
Tarnowsky, T.
Thomas, J. H.
Timmins, A. R.
Tlusty, D.
Tokarev, M.
Trentalange, S.
Tribble, R. E.
Tribedy, P.
Trzeciak, B. A.
Tsai, O. D.
Turnau, J.
Ullrich, T.
Underwood, D. G.
Van Buren, G.
Van Nieuwenhuizen, G.
Vandenbroucke, M.
Vanfossen, J. A., Jr.
Varma, R.
Vasconcelos, G. M. S.
Vasiliev, A. N.
Vertesi, R.
Videbaek, F.
Viyogi, Y. P.
Vokal, S.
Vossen, A.
Wada, M.
Wang, F.
Wang, G.
Wang, H.
Wang, J. S.
Wang, X. L.
Wang, Y.
Wang, Y.
Webb, G.
Webb, J. C.
Westfall, G. D.
Wieman, H.
Wissink, S. W.
Witt, R.
Wu, Y. F.
Xiao, Z.
Xie, W.
Xin, K.
Xu, H.
Xu, J.
Xu, N.
Xu, Q. H.
Xu, Y.
Xu, Z.
Yan, W.
Yang, C.
Yang, Y.
Yang, Y.
Ye, Z.
Yepes, P.
Yi, L.
Yip, K.
Yoo, I-K.
Yu, N.
Zawisza, Y.
Zbroszczyk, H.
Zha, W.
Zhang, J. B.
Zhang, J. L.
Zhang, S.
Zhang, X. P.
Zhang, Y.
Zhang, Z. P.
Zhao, F.
Zhao, J.
Zhong, C.
Zhu, X.
Zhu, Y. H.
Zoulkarneeva, Y.
Zyzak, M.
CA STAR Collaboration
TI Precision Measurement of the Longitudinal Double-Spin Asymmetry for
Inclusive Jet Production in Polarized Proton Collisions at root s=200
GeV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PARTON DISTRIBUTIONS; UNCERTAINTIES
AB We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, A(LL), in polarized pp collisions at center-of-mass energy root s = 200 GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC pp data. The measured asymmetries provide evidence at the 3 sigma level for positive gluon polarization in the Bjorken-x region x > 0.05.
C1 [Adamczyk, L.; Przybycien, M.] AGH Univ Sci & Technol, PL-30059 Krakow, Poland.
[Gliske, S.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England.
[Arkhipkin, D.; Aschenauer, E. C.; Beavis, D. R.; Bland, L. C.; Burton, T. P.; Christie, W.; Debbe, R. R.; di Ruzza, B.; Didenko, L.; Dunlop, J. C.; Eyser, O.; Fazio, S.; Fisyak, Y.; Guryn, W.; Huang, B.; Ke, H. W.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Ogawa, A.; Pile, P.; Ruan, L.; Schmidke, W. B.; Smirnov, D.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Wang, H.; Webb, J. C.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Crawford, H. J.; Engelage, J.; Judd, E. G.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Brovko, S. G.; Sanchez, M. Calderon de la Barca; Cebra, D.; Ding, F.; Draper, J. E.; Flores, C. E.; Haag, B.; Kesich, A.; Romero, J. L.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA.
[Dunkelberger, L. E.; Huang, H. Z.; Igo, G.; Landry, K. D.; Pan, Y. X.; Shah, N.; Trentalange, S.; Tsai, O. D.; Wang, G.; Zhao, F.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, BR-05314970 Sao Paulo, Brazil.
[Chen, L.; Huck, P.; Li, Z. M.; Liu, F.; Luo, X.; Pei, H.; Wu, Y. F.; Xu, J.; Yang, Y.; Yu, N.; Zhang, J. B.; Zhao, J.] Cent China Normal Univ HZNU, Wuhan 430079, Peoples R China.
[Evdokimov, O.; Hofman, D. J.; Kauder, K.; Khan, Z. H.; Pandit, Y.; Wang, Y.; Ye, Z.] Univ Illinois, Chicago, IL 60607 USA.
[Chwastowski, J.; Kycia, R. A.] Cracow Univ Technol, PL-31342 Krakow, Poland.
[Cherney, M.; De Silva, L. C.; Don, D. M. M. D. Madagodagettige; McShane, T. S.; Ross, J. F.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA.
[Bielcik, J.; Chaloupka, P.; Pachr, M.; Rusnakova, O.; Trzeciak, B. A.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic.
[Bielcikova, J.; Rusnak, J.; Sumbera, M.; Tlusty, D.; Vertesi, R.] Nucl Phys Inst AS CR, Rez 25068, Czech Republic.
[Kisel, I.; Kollegger, T.; Kulakov, I.; Stock, R.; Zyzak, M.] FIAS, D-60438 Frankfurt, Germany.
[Das, S.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751005, Orissa, India.
[Nandi, B. K.; Pujahari, P. R.; Sarkar, A.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India.
[Dhamija, S.; Jacobs, W. W.; Page, B. S.; Skoby, M. J.; Vossen, A.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA.
[Alekseev, I.; Bordyuzhin, I. G.; Kalinkin, D.; Svirida, D. N.] Alikhanov Inst Theoret & Expt Phys, Moscow 117218, Russia.
[Bhasin, A.; Gupta, A.; Gupta, S.] Univ Jammu, Jammu 180001, India.
[Agakishiev, G.; Aparin, A.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia.
[Alford, J.; Bouchet, J.; Keane, D.; Lomnitz, M.; Margetis, S.; Quintero, A.; Shanmuganathan, P. V.; Vanfossen, J. A., Jr.] Kent State Univ, Kent, OH 44242 USA.
[Adkins, J. K.; Fatemi, R.; Ramachandran, S.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA.
[Jang, H.; Noh, S. Y.] Korea Inst Sci & Technol, Taejon 305806, South Korea.
[Du, C. M.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.] Inst Modern Phys, Lanzhou 730000, Peoples R China.
[Contin, G.; Dong, X.; Eun, L.; Greiner, L.; Masui, H.; Matis, H. S.; Mustafa, M. K.; Odyniec, G.; Porter, J.; Poskanzer, A. M.; Qiu, H.; Ritter, H. G.; Sakrejda, I.; Salur, S.; Schmah, A. M.; Shi, S. S.; Sichtermann, E. P.; Sun, X.; Sun, X. M.; Symons, T. J. M.; Szelezniak, M. A.; Thomas, J. H.; Wieman, H.; Xu, N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Stevens, J. R.; Van Nieuwenhuizen, G.] MIT, Cambridge, MA 02139 USA.
[Schmitz, N.; Seyboth, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Novak, J.; Tarnowsky, T.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA.
[Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Nigmatkulov, G.; Okorokov, V.; Strikhanov, M.] Moscow Engn Phys Inst, Moscow 115409, Russia.
[Haque, R.; Kumar, L.; Mohanty, B.; Nasim, Md.] Natl Inst Sci Educ & Res, Bhubaneswar 751005, Orissa, India.
[Anson, C. D.; Campbell, J. M.; Gangadharan, D. R.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA.
[Bueltmann, S.; Koralt, I.] Old Dominion Univ, Norfolk, VA 23529 USA.
[Pawlik, B.; Turnau, J.] Inst Nucl Phys PAN, PL-31342 Krakow, Poland.
[Aggarwal, M. M.; Bhati, A. K.; Pruthi, N. K.; Sharma, B.] Panjab Univ, Chandigarh 160014, India.
[Cendejas, R.; Dilks, C.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA.
[Aparin, A.; Derevschikov, A. A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino 142281, Russia.
[Garand, D.; Hirsch, A.; Konzer, J.; Li, X.; Scharenberg, R. P.; Srivastava, B.; Stringfellow, B.; Wang, F.; Xie, W.; Yi, L.] Purdue Univ, W Lafayette, IN 47907 USA.
[Oh, K.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea.
[Raniwala, R.; Raniwala, S.; Solanki, D.] Univ Rajasthan, Jaipur 302004, Rajasthan, India.
[Butterworth, J.; Eppley, G.; Geurts, F.; Llope, W. J.; Roberts, J. B.; Xin, K.; Yepes, P.] Rice Univ, Houston, TX 77251 USA.
[Chen, H. F.; Cui, X.; Guo, Y.; Li, C.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Yang, C.; Zawisza, Y.; Zha, W.; Zhang, Y.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Deng, J.; Xu, Q. H.; Zhang, J. L.] Shandong Univ, Jinan 250100, Shandong, Peoples R China.
[Chen, J. H.; Han, L-X.; Li, W.; Ma, G. L.; Ma, Y. G.; Shen, W. Q.; Shou, Q. Y.; Zhang, S.; Zhong, C.; Zhu, Y. H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
[Borowski, W.; Kabana, S.] SUBATECH, Nantes, France.
[Gunarathne, D. S.; Kraishan, A. F.; Li, X.; Olvitt, D. L., Jr.; Surrow, B.; Vandenbroucke, M.] Temple Univ, Philadelphia, PA 19122 USA.
[Cervantes, M. C.; Chang, Z.; Cudd, A. B.; Djawotho, P.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Mondal, M. M.; Sahoo, N. R.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA.
[Bhattarai, P.; Codrington, M. J. M.; Leyva, A. Davila; Hoffmann, G. W.; Markert, C.; Oldag, E. W.; Ray, R. L.; Schambach, J.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA.
[Bellwied, R.; McDonald, D.; Timmins, A. R.] Univ Houston, Houston, TX 77204 USA.
[Cheng, J.; Huang, X.; Kang, K.; Li, Y.; Wang, Y.; Xiao, Z.; Yan, W.; Zhang, X. P.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China.
[Engle, K. S.; Witt, R.] US Naval Acad, Annapolis, MD 21402 USA.
[Drachenberg, J. L.; Gibson, A.; Grosnick, D.; Koetke, D. D.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA.
[Ahammed, Z.; Banerjee, A.; Chattopadhyay, S.; Cramer, J. G.; Nayak, T. K.; Pal, S. K.; Roy, A.; Singaraju, R. N.; Tribedy, P.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata 700064, India.
[Girard, M.; Kikola, D. P.; Kisiel, A.; Kosarzewski, L. K.; Pawlak, T.; Peryt, W.; Pluta, J.; Poniatowska, K.; Zbroszczyk, H.] Warsaw Univ Technol, PL-00662 Warsaw, Poland.
[Bichsel, H.] Univ Washington, Seattle, WA 98195 USA.
[Putschke, J.] Wayne State Univ, Detroit, MI 48201 USA.
[Caines, H.; Chikanian, A.; Finch, E.; Harris, J. W.; Horvat, S.; Majka, R.; Ohlson, A.; Riley, C. K.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA.
[Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia.
RP Adamczyk, L (reprint author), AGH Univ Sci & Technol, PL-30059 Krakow, Poland.
RI Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov,
Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Gunarathne,
Devika/C-4903-2017; Kycia, Radoslaw/J-4397-2015; Alekseev,
Igor/J-8070-2014; Svirida, Dmitry/R-4909-2016; Fazio, Salvatore
/G-5156-2010; Rusnak, Jan/G-8462-2014; Bielcikova, Jana/G-9342-2014;
Sumbera, Michal/O-7497-2014; Chaloupka, Petr/E-5965-2012; Takahashi,
Jun/B-2946-2012; Huang, Bingchu/H-6343-2015; Derradi de Souza,
Rafael/M-4791-2013; Xin, Kefeng/O-9195-2016; Yi, Li/Q-1705-2016
OI Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900;
Gunarathne, Devika/0000-0002-7155-7418; Ke, Hongwei/0000-0003-1463-7291;
Kycia, Radoslaw/0000-0002-6390-4627; Alekseev, Igor/0000-0003-3358-9635;
Sumbera, Michal/0000-0002-0639-7323; Takahashi, Jun/0000-0002-4091-1779;
Huang, Bingchu/0000-0002-3253-3210; Derradi de Souza,
Rafael/0000-0002-2084-7001; Xin, Kefeng/0000-0003-4853-9219; Yi,
Li/0000-0002-7512-2657
FU RHIC Operations Group and RCF at BNL; NERSC Center at LBNL; KISTI Center
in Korea; Open Science Grid consortium; Offices of NP and HEP within the
U.S. DOE Office of Science; U.S. NSF; CNRS/IN2P3; FAPESP CNPq of Brazil;
Ministry of Education and Science of the Russian Federation; NNSFC; CAS;
MoST; MoE of China; Korean Research Foundation; GA and MSMT of the Czech
Republic; FIAS of Germany; DAE; DST; CSIR of India; National Science
Centre of Poland; National Research Foundation [NRF-2012004024];
Ministry of Science, Education and Sports of the Republic of Croatia;
RosAtom of Russia
FX We would like to thank J. Blumlein, H. Bottcher, E. Leader, E. Nocera,
D. B. Stamenov, M. Stratmann, and W. Vogelsang for information regarding
their respective polarized PDF sets and their uncertainties. We thank
the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, the
KISTI Center in Korea, and the Open Science Grid consortium for
providing resources and support. This work was supported in part by the
Offices of NP and HEP within the U.S. DOE Office of Science, the U.S.
NSF, CNRS/IN2P3, FAPESP CNPq of Brazil, the Ministry of Education and
Science of the Russian Federation, NNSFC, CAS, MoST and MoE of China,
the Korean Research Foundation, GA and MSMT of the Czech Republic, FIAS
of Germany, DAE, DST, and CSIR of India, the National Science Centre of
Poland, the National Research Foundation (NRF-2012004024), the Ministry
of Science, Education and Sports of the Republic of Croatia, and RosAtom
of Russia.
NR 33
TC 16
Z9 16
U1 2
U2 45
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 26
PY 2015
VL 115
IS 9
AR 092002
DI 10.1103/PhysRevLett.115.092002
PG 7
WC Physics, Multidisciplinary
SC Physics
GA CP7KJ
UT WOS:000360065900003
PM 26371644
ER
PT J
AU Kim, SW
Liu, C
Kim, HJ
Lee, JH
Yao, YX
Ho, KM
Cho, JH
AF Kim, Sun-Woo
Liu, Chen
Kim, Hyun-Jung
Lee, Jun-Ho
Yao, Yongxin
Ho, Kai-Ming
Cho, Jun-Hyung
TI Nature of the Insulating Ground State of the 5d Postperovskite CaIrO3
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SR2IRO4; PHASE
AB The insulating ground state of the 5d transition metal oxide CaIrO3 has been classified as a Mott-type insulator. Based on a systematic density functional theory (DFT) study with local, semilocal, and hybrid exchange-correlation functionals, we reveal that the Ir t(2g) states exhibit large splittings and one-dimensional electronic states along the c axis due to a tetragonal crystal field. Our hybrid DFT calculation adequately describes the antiferromagnetic (AFM) order along the c direction via a superexchange interaction between Ir4+ spins. Furthermore, the spin-orbit coupling (SOC) hybridizes the t(2g) states to open an insulating gap. These results indicate that CaIrO3 can be represented as a spin-orbit Slater insulator, driven by the interplay between a long-range AFM order and the SOC. Such a Slater mechanism for the gap formation is also demonstrated by the DFT + dynamical mean field theory calculation, where the metal-insulator transition and the paramagnetic to AFM phase transition are concomitant with each other.
C1 [Kim, Sun-Woo; Kim, Hyun-Jung; Lee, Jun-Ho; Cho, Jun-Hyung] Hanyang Univ, Dept Phys, Seoul 133791, South Korea.
[Kim, Sun-Woo; Kim, Hyun-Jung; Lee, Jun-Ho; Cho, Jun-Hyung] Hanyang Univ, Res Inst Nat Sci, Seoul 133791, South Korea.
[Liu, Chen; Yao, Yongxin; Ho, Kai-Ming] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Liu, Chen; Yao, Yongxin; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Kim, Hyun-Jung; Ho, Kai-Ming; Cho, Jun-Hyung] Univ Sci & Technol China, HFNL, Int Ctr Quantum Design Funct Mat ICQD, Hefei 230026, Anhui, Peoples R China.
[Lee, Jun-Ho] Korea Inst Adv Study, Seoul 130722, South Korea.
RP Kim, SW (reprint author), Hanyang Univ, Dept Phys, 17 Haengdang Dong, Seoul 133791, South Korea.
EM ykent@iastate.edu; chojh@hanyang.ac.kr
RI Hyun-Jung, Kim/E-8074-2011; Cho, Jun-Hyung/R-7256-2016
OI Hyun-Jung, Kim/0000-0002-5602-1404; Cho, Jun-Hyung/0000-0002-1785-1835
FU National Research Foundation of Korea (NRF) grant - Korea Government
[2015R1A2A2A01003248]; Program of Introducing Talents of Discipline to
Universities of Ministry of Education (MOE); State Administration of
Foreign Experts Affairs of the People's Republic of China (SAFEA); NSFC
[61434002]; KISTI supercomputing center [KSC-2014-C3-011]; U.S. DOE,
Office of Basic Energy Sciences, Division of Materials Sciences and
Engineering; Iowa State University [DE-AC02-07CH11358]
FX This work was supported in part by National Research Foundation of Korea
(NRF) grant funded by the Korea Government (2015R1A2A2A01003248), by
Program of Introducing Talents of Discipline to Universities of Ministry
of Education (MOE) & the State Administration of Foreign Experts Affairs
of the People's Republic of China (SAFEA), and by NSFC (Grant No.
61434002). The calculations were performed by KISTI supercomputing
center through the strategic support program (KSC-2014-C3-011) for the
supercomputing application research. Research at Ames Laboratory was
supported by the U.S. DOE, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering. Ames Laboratory is operated for the
U.S. Department of Energy by Iowa State University under Contract No.
DE-AC02-07CH11358.
NR 41
TC 4
Z9 4
U1 11
U2 65
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 26
PY 2015
VL 115
IS 9
AR 096401
DI 10.1103/PhysRevLett.115.096401
PG 5
WC Physics, Multidisciplinary
SC Physics
GA CP7KJ
UT WOS:000360065900011
PM 26371665
ER
PT J
AU Wagner, SR
Huang, B
Park, C
Feng, JG
Yoon, M
Zhang, PP
AF Wagner, Sean R.
Huang, Bing
Park, Changwon
Feng, Jiagui
Yoon, Mina
Zhang, Pengpeng
TI Growth of Metal Phthalocyanine on Deactivated Semiconducting Surfaces
Steered by Selective Orbital Coupling
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; PHOTOELECTRON-SPECTROSCOPY; THIN-FILMS;
COBALT-PHTHALOCYANINE; EPITAXIAL GRAPHENE; ELECTRONIC STATES;
ORIENTATION; ADSORPTION; MOLECULES; AG(111)
AB Using scanning tunneling microscopy and density functional theory, we show that the molecular ordering and orientation of metal phthalocyanine molecules on the deactivated Si surface display a strong dependency on the central transition-metal ion, driven by the degree of orbital hybridization at the heterointerface via selective p -d orbital coupling. This Letter identifies a selective mechanism for modifying the molecule-substrate interaction which impacts the growth behavior of transitionmetal- incorporated organic molecules on a technologically relevant substrate for silicon-based devices.
C1 [Wagner, Sean R.; Feng, Jiagui; Zhang, Pengpeng] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Huang, Bing; Park, Changwon; Yoon, Mina] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Wagner, SR (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
EM myoon@ornl.gov; zhang@pa.msu.edu
RI Yoon, Mina/A-1965-2016; Park, Changwon/B-3417-2016; Huang,
Bing/D-8941-2011
OI Yoon, Mina/0000-0002-1317-3301; Park, Changwon/0000-0002-1788-045X;
Huang, Bing/0000-0001-6735-4637
FU U.S. Department of Energy Office of Science Early Career Research
Program through the Office of Basic Energy Sciences [DE-SC0006400]; Oak
Ridge National Laboratory by the Scientific User Facilities Division,
Office of Basic Energy Sciences, U.S. Department of Energy; Materials
Sciences and Engineering Divisions, Office of Basic Energy Sciences,
U.S. Department of Energy; Office of Science of the U.S. Department of
Energy [DE-AC02-05CH11231]
FX Experiment work was supported by the U.S. Department of Energy Office of
Science Early Career Research Program (Grant No. DE-SC0006400) through
the Office of Basic Energy Sciences. Theory work (C.P. and M.Y.) was
conducted at the Center for Nanophase Materials Sciences, which is
sponsored at Oak Ridge National Laboratory by the Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy and partly (B. H.) supported by the Materials Sciences and
Engineering Divisions, Office of Basic Energy Sciences, U.S. Department
of Energy. This research used resources of the National Energy Research
Scientific Computing Center, supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The
authors thank R. R. Lunt and C. J. Traverse for aiding in the molecular
purification process.
NR 60
TC 5
Z9 5
U1 6
U2 40
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 26
PY 2015
VL 115
IS 9
AR 096101
DI 10.1103/PhysRevLett.115.096101
PG 6
WC Physics, Multidisciplinary
SC Physics
GA CP7KJ
UT WOS:000360065900010
PM 26371664
ER
PT J
AU Morgan, TJ
Turn, SQ
George, A
AF Morgan, Trevor James
Turn, Scott Q.
George, Anthe
TI Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and
Volatiles Residence Time in a Fluidized Bed Reactor
SO PLOS ONE
LA English
DT Article
ID FLASH PYROLYSIS; ELEPHANT GRASS; BIO-OIL; SECONDARY REACTIONS; BIOMASS;
PRODUCTS; WOOD; GASIFICATION; FEATURES; CHARCOAL
AB A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600 degrees C were examined as well as four residence times between similar to 1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450 degrees C with a volatiles residence time of 1.4 s, similar to 37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are similar to 4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains similar to 56 wt% carbon which is similar to 40 wt% of the carbon present in the feedstock. The oxygen content of the 450 degrees C, 1.4 s 'dry' bio-oil is similar to 38 wt%, which accounts for similar to 33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600 degrees C and a volatiles residence time of 1.2 seconds the bio-oil yield is similar to 21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali and alkali earth metals (totaling similar to 2.8 wt% relative to the dry feedstock) which are catalytic and increase cracking reactions during pyrolysis.
C1 [Morgan, Trevor James; Turn, Scott Q.] Univ Hawaii Manoa, Hawaii Nat Energy Inst, Honolulu, HI 96822 USA.
[George, Anthe] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA.
RP Morgan, TJ (reprint author), Univ Hawaii Manoa, Hawaii Nat Energy Inst, Honolulu, HI 96822 USA.
EM morgatr@gmail.com
OI Aburto, Jorge/0000-0002-8282-6046
FU U.S. Department of Energy (Cooperative Agreement) [DE-EE0003507]
FX This work was conducted under the Hawai'i Energy Sustainability Program
with funding from the U.S. Department of Energy (Cooperative Agreement
#DE-EE0003507). The funding was received by SQT. The funders had no role
in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.
NR 45
TC 2
Z9 2
U1 3
U2 17
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD AUG 26
PY 2015
VL 10
IS 8
AR e0136511
DI 10.1371/journal.pone.0136511
PG 28
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP7LO
UT WOS:000360069400131
PM 26308860
ER
PT J
AU Choudhury, S
Aguiar, JA
Fluss, MJ
Hsiung, LL
Misra, A
Uberuaga, BP
AF Choudhury, Samrat
Aguiar, Jeffery A.
Fluss, Michael J.
Hsiung, Luke L.
Misra, Amit
Uberuaga, Blas P.
TI Non-uniform Solute Segregation at Semi-Coherent Metal/Oxide Interfaces
SO SCIENTIFIC REPORTS
LA English
DT Article
ID METAL-CERAMIC INTERFACES; HETEROPHASE INTERFACES; ADHESION; ENERGY;
SUBNANOSCALE; RESOLUTION; NANOSCALE; STABILITY; EVOLUTION; MISFIT
AB The properties and performance of metal/oxide nanocomposites are governed by the structure and chemistry of the metal/oxide interfaces. Here we report an integrated theoretical and experimental study examining the role of interfacial structure, particularly misfit dislocations, on solute segregation at a metal/oxide interface. We find that the local oxygen environment, which varies significantly between the misfit dislocations and the coherent terraces, dictates the segregation tendency of solutes to the interface. Depending on the nature of the solute and local oxygen content, segregation to misfit dislocations can change from attraction to repulsion, revealing the complex interplay between chemistry and structure at metal/oxide interfaces. These findings indicate that the solute chemistry at misfit dislocations is controlled by the dislocation density and oxygen content. Fundamental thermodynamic concepts - the Hume-Rothery rules and the Ellingham diagram - qualitatively predict the segregation behavior of solutes to such interfaces, providing design rules for novel interfacial chemistries.
C1 [Choudhury, Samrat; Aguiar, Jeffery A.; Misra, Amit; Uberuaga, Blas P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Fluss, Michael J.; Hsiung, Luke L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Choudhury, S (reprint author), Univ Idaho, Moscow, ID 83844 USA.
EM metsam4@yahoo.com
RI Choudhury, Samrat/B-4115-2009;
OI Aguiar, Jeffery/0000-0001-6101-4762
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [2008LANL1026]; Laboratory Directed Research and Development
program at Los Alamos National Laboratory (LANL) [20130118DR]; U.S.
Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; U.S. Department of Energy National Nuclear Security
Administration [DE-AC52-06NA25396]
FX The authors acknowledge the Center for Materials at Irradiation and
Mechanical Extremes (CMIME), an Energy Frontier Research Center funded
by the U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences under Award Number 2008LANL1026 for supporting the
calculations of interfacial structure and Cr segregation and funding
from the Laboratory Directed Research and Development program at Los
Alamos National Laboratory (LANL) under project number 20130118DR for
supporting the segregation calculations of the other solutes.
Experimental microscopy was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. JAA further acknowledges the Lawrence
Livermore National Laboratory graduate scholar program. One of the
authors (SC) would like to thank Dr. Christopher Taylor from Ohio State
University for helpful discussions. This research used resources
provided by the LANL Institutional Computing Program, which is supported
by the U.S. Department of Energy National Nuclear Security
Administration under Contract No. DE-AC52-06NA25396.
NR 42
TC 4
Z9 4
U1 2
U2 19
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD AUG 26
PY 2015
VL 5
AR 13086
DI 10.1038/srep13086
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP7ED
UT WOS:000360049100001
PM 26306812
ER
PT J
AU Ciovati, G
Dhakal, P
Matalevich, J
Myneni, G
Schmidt, A
Iversen, J
Matheisen, A
Singer, W
AF Ciovati, G.
Dhakal, P.
Matalevich, J.
Myneni, G.
Schmidt, A.
Iversen, J.
Matheisen, A.
Singer, W.
TI Mechanical properties of niobium radio-frequency cavities
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Strain measurement; Mechanical properties; Niobium
ID HIGH RRR NIOBIUM; SRF CAVITIES; TEXTURE
AB Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 620 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structures have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities made from ingot material with large crystals are comparable to those of cavities made of fine-grain niobium. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Ciovati, G.; Dhakal, P.; Matalevich, J.; Myneni, G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Schmidt, A.; Iversen, J.; Matheisen, A.; Singer, W.] DESY, D-22607 Hamburg, Germany.
RP Ciovati, G (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA.
EM gciovati@jlab.org
FU Jefferson Science Associates, LLC under U.S. DOE [DE-AC05-06OR23177]
FX We would like to acknowledge our colleagues from Jefferson Lab: B.
Carpenter, J. Henry, P. Kneisel, J. Mammosser, S. Yang and S. Dutton for
helping with the work on single-cell cavities and J. Spradlin for the
RRR measurements. We would also like to thank H. Roy of
Micro-Measurements for many suggestions related to strain gage
installation. This manuscript has been authored by Jefferson Science
Associates, LLC under U.S. DOE Contract no. DE-AC05-06OR23177. The U.S.
Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce this manuscript for U.S. Government
purposes.
NR 41
TC 3
Z9 3
U1 2
U2 9
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
EI 1873-4936
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD AUG 26
PY 2015
VL 642
BP 117
EP 127
DI 10.1016/j.msea.2015.06.095
PG 11
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA CO4YR
UT WOS:000359167300015
ER
PT J
AU Bud'ko, SL
Kong, T
Ma, XM
Canfield, PC
AF Bud'ko, Sergey L.
Kong, Tai
Ma, Xiaoming
Canfield, Paul C.
TI Study of Fe-57 Mossbauer effect in RFe2Zn20 (R = Lu, Yb, Gd)
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
DE Mossbauer effect; hyperfine parameters; ferromagnetism; RFe2Zn20
ID CO
AB We report measurements of Fe-57 Mossbauer spectra for RFe2Zn20 (R = Lu, Yb, Gd) from similar to 4.5 K to room temperature. The obtained isomer shift values are very similar for all three compounds, their temperature dependence was analyzed within the Debye model and resulted in an estimate of the Debye temperatures of 450-500 K. The values of quadrupole splitting at room temperature change with the cubic lattice constant a in a linear fashion. For GdFe2Zn20, ferromagnetic order is seen as an appearance of a sextet in the spectra. The Fe-57 site hyperfine field for T -> 0 was evaluated to be similar to 2.4 T.
C1 [Bud'ko, Sergey L.; Kong, Tai; Ma, Xiaoming; Canfield, Paul C.] US DOE, Ames Lab, Ames, IA 50011 USA.
[Bud'ko, Sergey L.; Kong, Tai; Ma, Xiaoming; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Ma, Xiaoming] Lanzhou Univ, Key Lab Magnetism & Magnet Mat, Minist Educ, Inst Appl Magnet, Lanzhou 730000, Gansu, Peoples R China.
RP Bud'ko, SL (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.
EM budko@ameslab.gov
OI Kong, Tai/0000-0002-5064-3464
FU US Department of Energy, Basic Energy Sciences, Division of Materials
Sciences and Engineering [DE-AC02-07CH11358]; China Scholarship Council
FX We are very grateful to D Ryan, for the critical reading of the
manuscript and many useful suggestions. We thank S Jua for synthesis of
some early samples of RFe2Zn20 and Udhara
Kaluarachchi for help in preparation of the figure 1. Work at the Ames
Laboratory was supported by the US Department of Energy, Basic Energy
Sciences, Division of Materials Sciences and Engineering under Contract
No. DE-AC02-07CH11358. XM was supported in part by the China Scholarship
Council.
NR 15
TC 3
Z9 3
U1 1
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD AUG 26
PY 2015
VL 27
IS 33
AR 336003
DI 10.1088/0953-8984/27/33/336003
PG 6
WC Physics, Condensed Matter
SC Physics
GA CO3SQ
UT WOS:000359080100016
PM 26241786
ER
PT J
AU Nakashima, K
Stoller, RE
Xu, HX
AF Nakashima, Kenichi
Stoller, Roger E.
Xu, Haixuan
TI Recombination radius of a Frenkel pair and capture radius of a
self-interstitial atom by vacancy clusters in bcc Fe
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
DE point defect recombination; bcc iron; reaction radius; kinetic Monte
Carlo
ID DAMAGE EVOLUTION; RADIATION-DAMAGE; ALPHA-IRON; SIMULATION; TEMPERATURE
AB The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in irradiated materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1.0a(0) to 3.3a(0) have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a(0) by taking the average of the recombination distances from 80 simulation cases. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.
C1 [Nakashima, Kenichi; Stoller, Roger E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Nakashima, Kenichi] Cent Res Inst Elect Power Ind, Mat Sci Res Lab, Komae, Tokyo 2018511, Japan.
[Xu, Haixuan] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Nakashima, K (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM ken-ichi@criepi.denken.or.jp
RI Xu, Haixuan/C-9841-2009
FU Center for Defect Physics, an Energy Frontier Research Center - US
Department of Energy, Office of Science, Office of Basic Energy
Sciences; Central Research Institute of Electric Power Industry
FX Research at the Oak Ridge National Laboratory was supported as part of
the Center for Defect Physics, an Energy Frontier Research Center funded
by the US Department of Energy, Office of Science, Office of Basic
Energy Sciences. KN was supported at ORNL by the Central Research
Institute of Electric Power Industry.
NR 20
TC 2
Z9 2
U1 5
U2 19
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD AUG 26
PY 2015
VL 27
IS 33
AR 335401
DI 10.1088/0953-8984/27/33/335401
PG 7
WC Physics, Condensed Matter
SC Physics
GA CO3SQ
UT WOS:000359080100004
PM 26241190
ER
PT J
AU Oh, HJ
Coh, S
Cohen, ML
AF Oh, Hyungju
Coh, Sinisa
Cohen, Marvin L.
TI Calculation of the specific heat of optimally K-doped BaFe2As2
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
DE optimally K-doped BaFe2As2; specific heat; semi-empirical density
functional theory
ID ELECTRONIC-STRUCTURE; IRON; SUPERCONDUCTIVITY; SYSTEMS; MAGNETISM;
STATES
AB The calculated specific heat of optimally K-doped BaFe2As2 in density functional theory is about five times smaller than that found in the experiment. We report that by adjusting the potential on the iron atom to be slightly more repulsive for electrons improves the calculated heat capacity as well as the electronic band structure of Ba0.6K0.4Fe2As2. In addition, structural and magnetic properties are moved in the direction of experimental values. Applying the same correction to the antiferromagnetic state, we find that the electron-phonon coupling is strongly enhanced.
C1 [Oh, Hyungju] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Oh, HJ (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM xtom97@civet.berkeley.edu
FU National Science Foundation (electronic and magnetic structure
calculation) [DMR10-1006184]; Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division, US Department of
Energy (electron-phonon calculation) [DE-AC02-05CH11231]
FX We thank Profs N E Phillips and R J Birgeneau for useful discussions.
This work was supported by National Science Foundation Grant No.
DMR10-1006184 (electronic and magnetic structure calculation) and by the
Director, Office of Science, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division, US Department of Energy under
Contract No. DE-AC02-05CH11231 (electron-phonon calculation).
Computational resources have been provided by the DOE at Lawrence
Berkeley National Laboratory's NERSC facility.
NR 38
TC 0
Z9 0
U1 4
U2 17
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD AUG 26
PY 2015
VL 27
IS 33
AR 335504
DI 10.1088/0953-8984/27/33/335504
PG 6
WC Physics, Condensed Matter
SC Physics
GA CO3SQ
UT WOS:000359080100008
PM 26241358
ER
PT J
AU Ruotsalainen, KO
Sahle, CJ
Ritschel, T
Geck, J
Hosoda, M
Bell, C
Hikita, Y
Hwang, HY
Fister, TT
Gordon, RA
Hamalainen, K
Hakala, M
Huotari, S
AF Ruotsalainen, Kari O.
Sahle, Christoph J.
Ritschel, Tobias
Geck, Jochen
Hosoda, Masayuki
Bell, Christopher
Hikita, Yasuyuki
Hwang, Harold Y.
Fister, Tim T.
Gordon, Robert A.
Hamalainen, Keijo
Hakala, Mikko
Huotari, Simo
TI Inelastic x-ray scattering in heterostructures: electronic excitations
in LaAlO3/SrTiO3
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
DE inelastic x-ray scattering; heterostructures; electronic structure
ID ENERGY-LOSS SPECTROSCOPY; SEMICONDUCTING SRTIO3; SUPERCONDUCTIVITY;
FERROMAGNETISM; INTERFACES; COEXISTENCE; DEPENDENCE; VALENCE; STATE
AB We present an investigation of the valence-electron excitation spectra including the collective plasmon modes of SrTiO3, LaAlO3 and their heterostructures with non-resonant inelastic x-ray scattering. We analyse the spectra using calculations based on first principles and atomic multiplet models. We demonstrate the feasibility of performing valence IXS experiments in a total reflection geometry. Surprisingly, we find that the plasmon, interband and semicore excitations in multilayers are well described as a superposition of bulk-compound spectra even in a superstructure composing of layers of only one atomic layer thickness.
C1 [Ruotsalainen, Kari O.; Sahle, Christoph J.; Hamalainen, Keijo; Hakala, Mikko; Huotari, Simo] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland.
[Sahle, Christoph J.] European Synchrotron Radiat Facil, F-38043 Grenoble 9, France.
[Ritschel, Tobias; Geck, Jochen] Leibniz Inst Solid State & Mat Res IFW Dresden, D-01069 Dresden, Germany.
[Hosoda, Masayuki; Bell, Christopher; Hikita, Yasuyuki; Hwang, Harold Y.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Hosoda, Masayuki] Univ Tokyo, Dept Adv Mat Sci, Kashiwa, Chiba 2778561, Japan.
[Hwang, Harold Y.] Stanford Univ, Dept Appl Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA.
[Fister, Tim T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Gordon, Robert A.] PNCSRF CLS, Argonne, IL USA.
RP Ruotsalainen, KO (reprint author), Univ Helsinki, Dept Phys, POB 64, FI-00014 Helsinki, Finland.
EM kari.ruotsalainen@helsinki.fi
RI Hamalainen, Keijo/A-3986-2010; Bell, Christopher/B-8785-2009; Yambo,
MBPT Code/O-4564-2015; Hikita, Yasuyuki/F-5600-2011
OI Hamalainen, Keijo/0000-0002-9234-9810; Bell,
Christopher/0000-0003-4732-0354; Hikita, Yasuyuki/0000-0002-7748-8329
FU Academy of Finland [1260204, 1256211, 1127462, 1259526, 1254065];
University of Helsinki Research Funds; Department of Energy's Office of
Science [DE-AC02-06CH11]; US Department of Energy-Basic Energy Sciences;
Canadian Light Source and its funding partners; University of
Washington; Advanced Photon Source; US DOE [DE-AC02-06CH11357];
Department of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering [DE-AC02-76SF00515]; German Research
Foundation through the Emmy Noether Program [GE-1647/2-1]; Research
Training Group [DFG-GRK 1621]
FX We thank M Aramini and T Talka for assistance in sample
characterization. Computational resources were provided by CSC-Centre
for Scientific Computation Espoo, Finland. Funding was provided by the
Academy of Finland (Grants 1260204, 1256211, 1127462, 1259526 and
1254065) and University of Helsinki Research Funds. T Fister was
supported by the Department of Energy's Office of Science under contract
award number DE-AC02-06CH11. PNC/XSD facilities at the Advanced Photon
Source, and research at these facilities, are supported by the US
Department of Energy-Basic Energy Sciences, the Canadian Light Source
and its funding partners, the University of Washington, and the Advanced
Photon Source. Use of the Advanced Photon Source, an Office of Science
User Facility operated for the US Department of Energy (DOE) Office of
Science by Argonne National Laboratory, was supported by the US DOE
under Contract No. DE-AC02-06CH11357. MH, CB, YH and HYH acknowledge
support from the Department of Energy, Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering, under contract
DE-AC02-76SF00515. J Geck and T Ritschel gratefully acknowledge the
support by the German Research Foundation through the Emmy Noether
Program (Grant GE-1647/2-1) and the Research Training Group DFG-GRK
1621.
NR 64
TC 1
Z9 1
U1 3
U2 35
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD AUG 26
PY 2015
VL 27
IS 33
AR 335501
DI 10.1088/0953-8984/27/33/335501
PG 10
WC Physics, Condensed Matter
SC Physics
GA CO3SQ
UT WOS:000359080100005
PM 26221981
ER
PT J
AU Glatz, A
Galda, A
Varlamov, AA
AF Glatz, A.
Galda, A.
Varlamov, A. A.
TI Effect of fluctuations on the NMR relaxation beyond the Abrikosov vortex
state
SO PHYSICAL REVIEW B
LA English
DT Article
ID HIGH-TEMPERATURE SUPERCONDUCTORS; MAGNETIC-FIELD; SPIN SUSCEPTIBILITY;
YBA2CU3O7-DELTA
AB The effect of fluctuations on the nuclear magnetic resonance (NMR) relaxation rate W = T-1(-1) is studied in a complete phase diagram of a two-dimensional superconductor above the upper critical field line H-c2(T). In the region of relatively high temperatures and low magnetic fields, the relaxation rate W is determined by two competing effects. The first one is its decrease in the result of suppression of the quasiparticle density of states (DOS) due to formation of fluctuation Cooper pairs (FCPs). The second one is a specific, purely quantum relaxation process of the Maki-Thompson (MT) type, which for low field leads to an increase of the relaxation rate. The latter describes particular fluctuation processes involving self-pairing of a single electron on self-intersecting trajectories of a size up to phase-breaking length l(phi) which becomes possible due to an electron spin-flip scattering event at a nucleus. As a result, different scenarios with either growth or decrease of the NMR relaxation rate are possible upon approaching the normal-metal-type-II superconductor transition. The character of fluctuations changes along the line H-c2(T) from the thermal long-wavelength type in weak magnetic fields to the clusters of rotating FCPs in fields comparable to H-c2(0). We find that below the well-defined temperature T-0(*) approximate to 0.6T(c0), the MT process becomes ineffective even in the absence of intrinsic pair breaking. The small scale of the FCP rotations xi(xy) in such high fields impedes formation of long (less than or similar to l(phi)) self-intersecting trajectories, causing the corresponding relaxation mechanism to lose its efficiency. This reduces the effect of superconducting fluctuations in the domain of high fields and low temperatures to just the suppression of quasiparticle DOS, analogous to the Abrikosov vortex phase below the H-c2(T) line.
C1 [Glatz, A.; Galda, A.; Varlamov, A. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60639 USA.
[Glatz, A.] Univ Illinois, Dept Phys, De Kalb, IL 60115 USA.
[Varlamov, A. A.] CNR SPIN, I-00133 Rome, Italy.
RP Glatz, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60639 USA.
FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S.
Department of Energy, Office of Science, Advanced Scientific Computing
Research and Basic Energy Sciences
FX We express our deep gratitude to A. Rigamonti and A. Lasciafari for
attracting our attention to their experiments and numerous elucidating
discussions. This work was partially supported by the Scientific
Discovery through Advanced Computing (SciDAC) program funded by U.S.
Department of Energy, Office of Science, Advanced Scientific Computing
Research and Basic Energy Sciences.
NR 25
TC 0
Z9 0
U1 1
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 25
PY 2015
VL 92
IS 5
AR 054513
DI 10.1103/PhysRevB.92.054513
PG 10
WC Physics, Condensed Matter
SC Physics
GA CS6QT
UT WOS:000362206700004
ER
PT J
AU Chen, Y
Rangasamy, E
Lang, CD
An, K
AF Chen, Yan
Rangasamy, Ezhiylmurugan
Lang, Chengdu
An, Ke
TI Origin of High Li+ Conduction in Doped Li7La3Zr2O12 Garnets
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID ION CONDUCTORS; SOLID ELECTROLYTES; CUBIC LI7LA3ZR2O12; LITHIUM GARNET;
AL; TRANSPORT; BATTERY
C1 [Chen, Yan; An, Ke] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
[Rangasamy, Ezhiylmurugan; Lang, Chengdu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP An, K (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
EM kean@ornl.gov
RI An, Ke/G-5226-2011; Chen, Yan/H-4913-2014
OI An, Ke/0000-0002-6093-429X; Chen, Yan/0000-0001-6095-1754
FU Division of Materials Sciences and Engineering, Office of Basic Energy
Sciences (BES), U.S. Department of Energy (DOE); Scientific User
Facilities Division, BES, DOE
FX This work was supported by the Division of Materials Sciences and
Engineering, Office of Basic Energy Sciences (BES), U.S. Department of
Energy (DOE). Neutron work at ORNL's Spa Ration Neutron Source was
sponsored by the Scientific User Facilities Division, BES, DOE. The
authors thank Mrs. R. Mills, Mr. M. Frost, and Mr. H. Skorpenske from
SNS for their technical support. The authors thank Mrs. G. Zhu for the
technical support.
NR 31
TC 7
Z9 7
U1 9
U2 61
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD AUG 25
PY 2015
VL 27
IS 16
BP 5491
EP 5494
DI 10.1021/acs.chemmater.5b02521
PG 4
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA CQ0YE
UT WOS:000360323700007
ER
PT J
AU Schroder, K
Avarado, J
Yersak, TA
Li, JC
Dudney, N
Webb, LJ
Meng, YS
Stevenson, KJ
AF Schroder, Kjell
Avarado, Judith
Yersak, Thomas A.
Li, Juchuan
Dudney, Nancy
Webb, Lauren J.
Meng, Ying Shirley
Stevenson, Keith J.
TI The Effect of Fluoroethylene Carbonate as an Additive on the Solid
Electrolyte Interphase on Silicon Lithium-Ion Electrodes
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID FREE GRAPHITE-ELECTRODES; BATTERY ANODES; SURFACE-CHEMISTRY; VINYLENE
CARBONATE; THERMAL-STABILITY; TOF-SIMS; ELECTROCHEMICAL PERFORMANCE;
PHOTOELECTRON-SPECTROSCOPY; REDUCTION-MECHANISMS; LAYER DEPOSITION
AB Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SET) formation on the silicon anode's surface is still not well understood. Herein, SET formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SET films. This allowed for accurate characterization of the SEI structure and composition by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increase the reactivity of the silicon surface. We conclude that the effectiveness of FEC at improving the Coulombic efficiency and capacity retention is due to fluoride ion formation from reduction of the electrolyte, which leads to the chemical attack of any silicon-oxide surface passivation layers and the formation of a kinetically stable SET comprising predominately lithium fluoride and lithium oxide.
C1 [Schroder, Kjell; Webb, Lauren J.; Stevenson, Keith J.] Univ Texas Austin, Mat Sci & Engn Program, Texas Mat Inst, Austin, TX 78712 USA.
[Schroder, Kjell; Webb, Lauren J.; Stevenson, Keith J.] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA.
[Avarado, Judith; Yersak, Thomas A.; Meng, Ying Shirley] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA.
[Li, Juchuan; Dudney, Nancy] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA.
RP Webb, LJ (reprint author), Univ Texas Austin, Mat Sci & Engn Program, Texas Mat Inst, Austin, TX 78712 USA.
EM lwebb@cm.utexas.edu; shmeng@ucsd.edu; stevenson@cm.utexas.edu
RI Li, Juchuan/A-2992-2009; Alvarado, Judith/K-6108-2016
OI Li, Juchuan/0000-0002-6587-5591;
FU program "Understanding Charge Separation and Transfer at Interfaces in
Energy Materials (EFRC:CST)", an Energy Frontier Research Center - U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-SC0001091]; Office of Vehicle Technologies, U.S. Department of
Energy [DE-AC02-05CH11231]; Advanced Battery Materials Research (BMR)
Program [7073923]; California Institute for Energy and Environment
(CIEE) Subaward from the Multiple Campus Award program of the California
Energy Commission [PODR05-S16]
FX This material is based on work supported as part of the program
"Understanding Charge Separation and Transfer at Interfaces in Energy
Materials (EFRC:CST)", an Energy Frontier Research Center funded by the
U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences under Award No. DE-SC0001091. Y.S.M. and J.A. would like to
acknowledge the support from the Assistant Secretary for Energy
Efficiency and Renewable Energy, Office of Vehicle Technologies, U.S.
Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract
No. 7073923 under the Advanced Battery Materials Research (BMR) Program
and a California Institute for Energy and Environment (CIEE) Subaward
No. PODR05-S16 from the Multiple Campus Award program of the California
Energy Commission.
NR 76
TC 31
Z9 31
U1 30
U2 174
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD AUG 25
PY 2015
VL 27
IS 16
BP 5531
EP 5542
DI 10.1021/acs.chemmater.5b01627
PG 12
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA CQ0YE
UT WOS:000360323700012
ER
PT J
AU Tsai, HH
Nie, WY
Cheruku, P
Mack, NH
Xu, P
Gupta, G
Mohite, AD
Wang, HL
AF Tsai, Hsinhan
Nie, Wanyi
Cheruku, Pradeep
Mack, Nathan H.
Xu, Ping
Gupta, Gautam
Mohite, Aditya D.
Wang, Hsing-Lin
TI Optimizing Composition and Morphology for Large-Grain Perovskite Solar
Cells via Chemical Control
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID ORGANOMETAL HALIDE PEROVSKITES; SOLUTION-PROCESSED PEROVSKITE; TRIHALIDE
PEROVSKITES; HIGH-PERFORMANCE; LEAD TRIHALIDE; EFFICIENT; CHLORIDE;
CH3NH3PBI3; DEPOSITION; CRYSTALLIZATION
AB We report solid iodine as a precursor additive for achieving purified organometallic perovskite crystals. By adding iodine, we found that the reaction can be pushed toward pure iodine phase rather than the kinetically favored chlorine phase. This approach can be applied in large crystalline perovskite solar cells and improved the average efficiency from 9.83% to 15.58%.
C1 [Tsai, Hsinhan; Cheruku, Pradeep; Mack, Nathan H.; Xu, Ping; Wang, Hsing-Lin] Los Alamos Natl Lab, PCS, Div Chem, Los Alamos, NM 87545 USA.
[Nie, Wanyi; Gupta, Gautam; Mohite, Aditya D.] Los Alamos Natl Lab, Mat Phys & Applicat Div, MPA 11, Los Alamos, NM 87545 USA.
RP Mohite, AD (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, MPA 11, POB 1663, Los Alamos, NM 87545 USA.
EM amohite@lanl.gov; hwang@lanl.gov
FU Laboratory Directed Research and Development (LDRD) program under
Department of Energy (DOE); Basic Energy Science (BES), Biomaterials
program, Materials Sciences and Engineering Division; Los Alamos
Director Funded Postdoctoral Fellowship
FX This research is supported by the Laboratory Directed Research and
Development (LDRD) program, under the auspices of Department of Energy
(DOE). H.T. is partially supported by Basic Energy Science (BES),
Biomaterials program, Materials Sciences and Engineering Division. W.N.,
P.C., and P.X. are supported by Los Alamos Director Funded Postdoctoral
Fellowship.
NR 39
TC 19
Z9 19
U1 15
U2 108
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD AUG 25
PY 2015
VL 27
IS 16
BP 5570
EP 5576
DI 10.1021/acs.chemmater.5b02378
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA CQ0YE
UT WOS:000360323700016
ER
PT J
AU Han, F
Wang, D
Malliakas, CD
Sturza, M
Chung, DY
Wan, XG
Kanatzidis, MG
AF Han, Fei
Wang, Di
Malliakas, Christos D.
Sturza, Mihai
Chung, Duck Young
Wan, Xiangang
Kanatzidis, Mercouri G.
TI (CaO)(FeSe): A Layered Wide-Gap Oxychalcogenide Semiconductor
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID MAGNETIC-PROPERTIES; 43 K; SUPERCONDUCTIVITY; COMPOUND; FESE; SR; BA; SE
AB A new iron-oxychalcogenide (CaO)(FeSe) was obtained which crystallizes in the orthorhombic space group Pnma (No. 62) with a = 5.9180(12) angstrom, b = 3.8802(8) angstrom, c = 13.193(3) angstrom. The unique structure of (CaO)(FeSe) is built up of a quasi-two-dimensional network of corrugated infinite layers of corner-shared FeSe2O2 tetrahedra that extend in the ab plane. The corrugated layers composed of corner-shared FeSe2O2 tetrahedra stack along the c axis with Ca2+ cations sandwiched between the layers. Optical spectroscopy and resistivity measurements reveal semiconducting behavior with an indirect optical band gap of around 1.8 eV and an activation energy of 0.19(1) eV. Electronic band structure calculations at the density function level predict a magnetic configuration as ground state and confirm the presence of an indirect wide gap in (CaO)(FeSe).
C1 [Han, Fei; Malliakas, Christos D.; Sturza, Mihai; Chung, Duck Young; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Wang, Di; Wan, Xiangang] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China.
[Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
RP Kanatzidis, MG (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM m-kanatzidis@northwestern.edu
RI Han, Fei/N-2021-2013
OI Han, Fei/0000-0001-7782-2713
FU U.S. Department of Energy, Office of Science, Basic Energy Sciences,
Materials Sciences and Engineering Division; U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357];
NSF of China [11374137, 91122035, 11174124]
FX This work was supported by the U.S. Department of Energy, Office of
Science, Basic Energy Sciences, Materials Sciences and Engineering
Division. Use of the Center for Nanoscale Materials, including resources
in the Electron Microscopy Center, was supported by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357. Work done at Nanjing University (by D.W.
and X.W.) was supported by the NSF of China (Grant Nos. 11374137,
91122035, and 11174124).
NR 42
TC 3
Z9 3
U1 19
U2 57
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD AUG 25
PY 2015
VL 27
IS 16
BP 5695
EP 5701
DI 10.1021/acs.chemmater.5b02164
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA CQ0YE
UT WOS:000360323700030
ER
PT J
AU Wang, LP
Bai, JM
Gao, P
Wang, XY
Looney, JP
Wang, F
AF Wang, Liping
Bai, Jianming
Gao, Peng
Wang, Xiaoya
Looney, J. Patrick
Wang, Feng
TI Structure Tracking Aided Design and Synthesis of Li3V2(PO4)(3)
Nanocrystals as High-Power Cathodes for Lithium Ion Batteries
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID ELECTROCHEMICAL PROPERTIES; ROOM-TEMPERATURE; CAPACITY; PERFORMANCE;
COMPOSITES; NANOCOMPOSITE; PHASE; OXIDE
AB Preparing new electrode materials with synthetic control of phases and electrochemical properties is desirable for battery applications but hardly achievable without knowing how the synthesis reaction proceeds. Herein, we report on structure tracking-aided design and synthesis of single-crystalline Li3V2(PO4)(3) (LVP) nanoparticles with extremely high rate capability. A comprehensive investigation was made to the local structural orderings of the involved phases and their evolution toward forming LVP phase using in situ/ex situ synchrotron X-ray and electron-beam diffraction, spectroscopy, and imaging techniques. The results shed light on the thermodynamics and kinetics of synthesis reactions and enabled the design of a cost-efficient synthesis protocol to make nanocrystalline LVP, wherein solvothermal treatment is a crucial step leading to an amorphous intermediate with local structural ordering resembling that of LVP, which, upon calcination at moderate temperatures, rapidly transforms into the desired LVP phase. The obtained LVP particles are about 50 nm, coated with a thin layer of amorphous carbon and featured with excellent cycling stability and rate capability - 95% capacity retention after 200 cycles and 66% theoretical capacity even at a current rate of 10 C. The structure tracking based method we developed in this work offers a new way of designing battery electrodes with synthetic control of material phases and properties.
C1 [Wang, Liping; Gao, Peng; Wang, Xiaoya; Looney, J. Patrick; Wang, Feng] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA.
[Bai, Jianming] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA.
[Wang, Liping] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Sch Microelect & Solid State Elect, Chengdu 610054, Sichuan, Peoples R China.
[Wang, Xiaoya] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11790 USA.
RP Wang, F (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA.
EM fwang@bnl.gov
RI Gao, Peng/B-4675-2012; Bai, Jianming/O-5005-2015; Wang,
Feng/C-1443-2016; Wang, Xiaoya/F-9394-2015
OI Wang, Feng/0000-0003-4068-9212;
FU U.S. Department of Energy (DOE) Office of Energy Efficiency and
Renewable Energy [DE-SC0012704]; Laboratory Directed Research and
Development (LDRD) program at Brookhaven National Laboratory [13-022];
U.S. Department of Energy, Office of Basic Energy Sciences
[DE-SC0012704]
FX We thank John Johnson, Steven Ehrlich, and Lihua Zhang for technical
support and thank Tiffany Bowman for graphic design. This work is
supported by the U.S. Department of Energy (DOE) Office of Energy
Efficiency and Renewable Energy under the Advanced Battery Materials
Research (BMR) program, Contract No. DE-SC0012704. P.G. was supported by
the Laboratory Directed Research and Development (LDRD) program at
Brookhaven National Laboratory, under Award No. 13-022. Research carried
out at the Center for Functional Nanomaterials and the National
Synchrotron Light Source, Brookhaven National Laboratory, was supported
by the U.S. Department of Energy, Office of Basic Energy Sciences, under
Contract No. DE-SC0012704.
NR 27
TC 9
Z9 9
U1 16
U2 71
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD AUG 25
PY 2015
VL 27
IS 16
BP 5712
EP 5718
DI 10.1021/acs.chemmater.5b02236
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA CQ0YE
UT WOS:000360323700032
ER
PT J
AU Tian, ZQ
Dai, S
Jiang, DE
AF Tian, Ziqi
Dai, Sheng
Jiang, De-en
TI Stability and Core-Level Signature of Nitrogen Dopants in Carbonaceous
Materials
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID ORDERED MESOPOROUS CARBONS; OXYGEN REDUCTION REACTION; CARBIDE-DERIVED
CARBON; LITHIUM-ION BATTERIES; X-RAY-ABSORPTION; DOPED GRAPHENE;
POLYPYRROLE NANOSPHERES; NANOPOROUS CARBON; ANODE MATERIALS; CO2
ADSORPTION
AB Nitrogen doping is an important strategy in tuning the properties and functions of carbonaceous materials. But the chemical speciation of the nitrogen groups in the sp(2)-carbon framework has not been firmly established. Here we address two important questions in nitrogen doping of carbonaceous materials from a computational approach: the relative stability of different nitrogen groups and their X-ray photoelectron spectrum (XPS) signatures of the core-level (N 1s) electron binding energies. Four types of nitrogen groups (graphitic, pyrrolic, aza-pyrrolic, and pyrichnic) in 69 model compounds have been examined. Computed formation energies indicate that pyrrolic and pyridinic nitrogens are significantly more stable (by about 110 kJ/mol) than graphitic and aza-pyrrolic nitrogens. This stability trend can be understood from the Clar's sextet rule. Predicted N is binding energies show relatively high consistency among each dopant type, thereby offering a guide to identify nitrogen groups. The relative stability coupled with predicted N is binding energies can explain the temperature-dependent change in the experimental XPS spectra. The present work therefore provides fundamental insights into nitrogen dopants in carbonaceous materials, which will be useful in understanding the applications of nitrogen-doped carbons in electric energy storage, electrocatalysis, and carbon capture.
C1 [Tian, Ziqi; Jiang, De-en] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA.
[Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
RP Jiang, DE (reprint author), Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA.
EM de-en.jiang@ucr.edu
RI Dai, Sheng/K-8411-2015; Jiang, De-en/D-9529-2011
OI Dai, Sheng/0000-0002-8046-3931; Jiang, De-en/0000-0001-5167-0731
FU Division of Chemical Sciences, Geosciences and Biosciences, Office of
Basic Energy Sciences, U.S. Department of Energy; Office of Science of
the U.S. Department of Energy [DE-AC02-05-CH11231]
FX This work was supported by the Division of Chemical Sciences,
Geosciences and Biosciences, Office of Basic Energy Sciences, U.S.
Department of Energy. This research used resources of the National
Energy Research Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the U.S. Department
of Energy under Contract DE-AC02-05-CH11231.
NR 54
TC 6
Z9 6
U1 10
U2 67
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD AUG 25
PY 2015
VL 27
IS 16
BP 5775
EP 5781
DI 10.1021/acs.chemmater.5b02370
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA CQ0YE
UT WOS:000360323700039
ER
PT J
AU Chen, XC
Kortright, JB
Balsara, NP
AF Chen, X. Chelsea
Kortright, Jeffrey B.
Balsara, Nitash P.
TI Water Uptake and Proton Conductivity in Porous Block Copolymer
Electrolyte Membranes
SO MACROMOLECULES
LA English
DT Article
ID X-RAY-SCATTERING; TRANSPORT-PROPERTIES; TRIBLOCK COPOLYMERS; HOMOPOLYMER
BLENDS; PHASE-EQUILIBRIA; MORPHOLOGY; MICROEMULSIONS; MIXTURES;
CHANNELS; BEHAVIOR
AB We demonstrate that the water uptake and conductivity of proton-conducting block copolymer electrolyte membranes can be controlled systematically by the introduction of pores in the conducting domains. We start with a membrane comprising a mixture of homopolymer polystyrene (hPS) and a polystyrene-b-polyethylene-b-polystyrene (SES) copolymer. Rinsing the membranes in tetrahydrofuran and methanol results in the dissolution of hPS, leaving behind a porous membrane. The polystyrene domains in the porous SES membranes are then sulfonated to give a porous membrane with hydrophilic and hydrophobic domains. The porosity is controlled by controlling phi(v), the volume fraction of hPS in the blended membrane. The morphology of the membranes before and after sulfonation was studied by scanning transmission electron microscopy (STEM), electron tomography, and resonance soft X-ray scattering (RSoXS). The porous structures before and after sulfonation are qualitatively different. Water uptake of the sulfonated membranes increased with increasing phi(v). Proton conductivity is a nonmonotonic function of phi(v) with a maximum at phi(v) = 0.1. The introduction of microscopic pores in the conducting domain provides an additional handle for tuning water uptake and ion transport in proton-conducting membranes.
C1 [Chen, X. Chelsea; Kortright, Jeffrey B.; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA.
[Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
RP Balsara, NP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM nbalsara@berkeley.edu
FU Soft Matter Electron Microscopy Program from the Office of Science,
Office of Basic Energy Sciences, Materials Sciences and Engineering
Division of the U.S. Department of Energy [DE-AC02-05CH11231]
FX Primary funding for the work was provided by the Soft Matter Electron
Microscopy Program from the Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division of the U.S.
Department of Energy under Contract DE-AC02-05CH11231. RSoXS experiments
were performed at the Advanced Light Source (ALS), Beam line 11.0.1.2.
The STEM and STEM tomography experiments were performed as user projects
at the National Center for Electron Microscopy, Lawrence Berkeley
National Laboratory. ALS and NCEM are DOE national user facilities and
are supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy under the same contract. We
thank Anthony Young for help with RSoXS experiments, Karen Bustillo and
Peter Ercius for their help with STEM tomography experiments, and
Nicolas Young for help with additional flux measurements on the
membranes.
NR 37
TC 7
Z9 7
U1 9
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
EI 1520-5835
J9 MACROMOLECULES
JI Macromolecules
PD AUG 25
PY 2015
VL 48
IS 16
BP 5648
EP 5655
DI 10.1021/acs.macromol.5b00950
PG 8
WC Polymer Science
SC Polymer Science
GA CQ0YL
UT WOS:000360324400025
ER
PT J
AU Nagayama, T
Mancini, RC
Mayes, D
Tommasini, R
Florido, R
AF Nagayama, T.
Mancini, R. C.
Mayes, D.
Tommasini, R.
Florido, R.
TI An important criterion for reliable multi-monochromatic x-ray imager
diagnostics and its impact on the reconstructed images
SO HIGH POWER LASER SCIENCE AND ENGINEERING
LA English
DT Article
DE high power laser; inertial confinement fusion; monochromatic imager;
x-ray diagnostics
ID PLASMAS
AB Temperature and density asymmetry diagnosis is critical to advance inertial confinement fusion (ICF) science. A multi-monochromatic x-ray imager, MMI, records the spectral signature from an ICF implosion core with time resolution, 2D spatial resolution and spectral resolution. While narrow-band images and 2D space-resolved spectra from the MMI data constrain the temperature and the density spatial structure of the core, the accuracy of the images and the spectra highly depends on the quality of the MMI data and the processing tools. Here, we synthetically investigate the criterion for reliable MMI diagnostics and its effects on the accuracy of the reconstructed images. The pinhole array tilt determines the object spatial sampling efficiency and the minimum reconstruction width, w. When the spectral width associated with w is significantly narrower than the spectral linewidth, the line images reconstructed from the MMI data become reliable. The MMI setup has to be optimized for every application to meet this criterion for reliable ICF diagnostics.
C1 [Nagayama, T.; Mancini, R. C.; Mayes, D.] Univ Nevada, Dept Phys, Reno, NV 89557 USA.
[Tommasini, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Florido, R.] Univ Las Palmas Gran Canaria, Dept Fis, Las Palmas Gran Canaria 35017, Spain.
RP Nagayama, T (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM tnnagay@sandia.gov
RI Florido, Ricardo/H-5513-2015; Tommasini, Riccardo/A-8214-2009
OI Florido, Ricardo/0000-0001-7428-6273; Tommasini,
Riccardo/0000-0002-1070-3565
NR 19
TC 2
Z9 2
U1 1
U2 4
PU CAMBRIDGE UNIV PRESS
PI CAMBRIDGE
PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND
SN 2095-4719
EI 2052-3289
J9 HIGH POWER LASER SCI
JI High Power Laser Sci. Eng.
PD AUG 25
PY 2015
VL 3
AR e23
DI 10.1017/hpl.2015.25
PG 7
WC Optics
SC Optics
GA CQ0HS
UT WOS:000360276700001
ER
PT J
AU Chang, FJ
Riera, A
Evrin, C
Sun, JC
Li, HL
Speck, C
Weinreich, M
AF Chang, FuJung
Riera, Alberto
Evrin, Cecile
Sun, Jingchuan
Li, Huilin
Speck, Christian
Weinreich, Michael
TI Cdc6 ATPase activity disengages Cdc6 from the pre-replicative complex to
promote DNA replication
SO ELIFE
LA English
DT Article
ID SACCHAROMYCES-CEREVISIAE; BUDDING YEAST; ORIGIN DNA; STRUCTURAL BASIS;
MCM2-7 HELICASE; INITIATION; BINDING; PROTEIN; HYDROLYSIS; ACTIVATION
AB To initiate DNA replication, cells first load an MCM helicase double hexamer at origins in a reaction requiring ORC, Cdc6, and Cdt1, also called pre-replicative complex (pre-RC) assembly. The essential mechanistic role of Cdc6 ATP hydrolysis in this reaction is still incompletely understood. Here, we show that although Cdc6 ATP hydrolysis is essential to initiate DNA replication, it is not essential for MCM loading. Using purified proteins, an ATPase-defective Cdc6 mutant 'Cdc6-E224Q' promoted MCM loading on DNA. Cdc6-E224Q also promoted MCM binding at origins in vivo but cells remained blocked in G1-phase. If after loading MCM, Cdc6-E224Q was degraded, cells entered an apparently normal S-phase and replicated DNA, a phenotype seen with two additional Cdc6 ATPase-defective mutants. Cdc6 ATP hydrolysis is therefore required for Cdc6 disengagement from the pre-RC after helicase loading to advance subsequent steps in helicase activation in vivo.
C1 [Chang, FuJung; Weinreich, Michael] Van Andel Res Inst, Grand Rapids, MI 49503 USA.
[Riera, Alberto; Evrin, Cecile; Speck, Christian] Univ London Imperial Coll Sci Technol & Med, Fac Med, London, England.
[Sun, Jingchuan; Li, Huilin] Brookhaven Natl Lab, Dept Biosci, New York, NY USA.
[Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY USA.
RP Weinreich, M (reprint author), Van Andel Res Inst, Grand Rapids, MI 49503 USA.
EM chris.speck@imperial.ac.uk; michael.weinreich@vai.org
RI 7aVqn2, 7aVqn2/L-5089-2015; Speck, Christian/G-2882-2011
OI Speck, Christian/0000-0001-6646-1692
FU National Institutes of Health (NIH) [R01-GM74985]; National Science
Foundation (NSF) [MCB-0950464]; Medical Research Council (MRC)
FX National Institutes of Health (NIH) R01-GM74985 Huilin Li; National
Science Foundation (NSF) MCB-0950464 Michael Weinreich; Medical Research
Council (MRC) Christian Speck
NR 42
TC 6
Z9 6
U1 1
U2 11
PU ELIFE SCIENCES PUBLICATIONS LTD
PI CAMBRIDGE
PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND
SN 2050-084X
J9 ELIFE
JI eLife
PD AUG 25
PY 2015
VL 4
AR e05795
DI 10.7554/eLife.05795
PG 14
WC Biology
SC Life Sciences & Biomedicine - Other Topics
GA CQ0JE
UT WOS:000360280500001
ER
PT J
AU Liddick, SN
Walters, WB
Chiara, CJ
Janssens, RVF
Abromeit, B
Ayres, A
Bey, A
Bingham, CR
Carpenter, MP
Cartegni, L
Chen, J
Crawford, HL
Darby, IG
Grzywacz, R
Harker, J
Hoffman, CR
Ilyushkin, S
Kondev, FG
Larson, N
Madurga, M
Miller, D
Padgett, S
Paulauskas, SV
Rajabali, MM
Rykaczewski, K
Seweryniak, D
Suchyta, S
Zhu, S
AF Liddick, S. N.
Walters, W. B.
Chiara, C. J.
Janssens, R. V. F.
Abromeit, B.
Ayres, A.
Bey, A.
Bingham, C. R.
Carpenter, M. P.
Cartegni, L.
Chen, J.
Crawford, H. L.
Darby, I. G.
Grzywacz, R.
Harker, J.
Hoffman, C. R.
Ilyushkin, S.
Kondev, F. G.
Larson, N.
Madurga, M.
Miller, D.
Padgett, S.
Paulauskas, S. V.
Rajabali, M. M.
Rykaczewski, K.
Seweryniak, D.
Suchyta, S.
Zhu, S.
TI Analogous intruder behavior near Ni, Sn, and Pb isotopes
SO PHYSICAL REVIEW C
LA English
DT Article
ID ATOMIC-NUCLEI; SHELL-MODEL; MASS NUCLEI; HALF-LIVES; STATES; ODD;
COEXISTENCE; CU-69; NI-68; DECAY
AB Near shell closures, the presence of unexpected states at lowenergies provides a critical test of our understanding of the atomic nucleus. New measurements for the N = 42 isotones Co-69(27) and Cu-71(29), along with recent data and calculations in the Ni isotopes, establish a full set of complementary, deformed, intruder states astride the closed-shell Ni-28 isotopes. Nuclei with a one-proton hole or one-proton particle adjacent to Z = 28 were populated in beta-decay experiments and in multinucleon transfer reactions. A beta-decaying isomer, with a 750(250)-ms half-life, has been identified in Co-69(27)42. It likely has low spin and accompanies the previously established 7/2(-) state. Complementary data for the levels of isotonic Cu-71(29)42 support the presence of a deformed, Delta J = 1 band built on the proton intruder 7/2(-) level at 981 keV. These data, together with recent studies of lower-mass Co and Cu isotopes and extensive work near Ni-68, support the view that intruder states based on particle-hole excitations accompany all closed proton shells with Z >= 28.
C1 [Liddick, S. N.; Abromeit, B.; Larson, N.; Suchyta, S.] Michigan State Univ, NSCL, E Lansing, MI 48824 USA.
[Liddick, S. N.; Larson, N.; Suchyta, S.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA.
[Walters, W. B.; Chiara, C. J.; Harker, J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
[Chiara, C. J.; Janssens, R. V. F.; Carpenter, M. P.; Hoffman, C. R.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Ayres, A.; Bey, A.; Bingham, C. R.; Cartegni, L.; Grzywacz, R.; Madurga, M.; Miller, D.; Padgett, S.; Paulauskas, S. V.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Chen, J.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA.
[Crawford, H. L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Nucl Sci Div, Berkeley, CA 94720 USA.
[Darby, I. G.; Rajabali, M. M.] Katholieke Univ Leuven, Inst Kern & Stralingsfys, B-3001 Leuven, Belgium.
[Ilyushkin, S.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA.
[Rykaczewski, K.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
RP Liddick, SN (reprint author), Michigan State Univ, NSCL, E Lansing, MI 48824 USA.
RI Carpenter, Michael/E-4287-2015; Miller, David/B-5372-2012; Hoffman,
Calem/H-4325-2016; Larson, Nicole/S-5997-2016
OI Bey, Anissa/0000-0002-8035-6853; Carpenter, Michael/0000-0002-3237-5734;
Miller, David/0000-0002-0426-974X; Chen, Jun/0000-0003-0447-7466;
Paulauskas, Stanley/0000-0002-6479-4626; Hoffman,
Calem/0000-0001-7141-9827; Larson, Nicole/0000-0003-0292-957X
FU National Science Foundation [NSF-06067007]; US Department of Energy,
National Nuclear Security Administration [DE-FC03-03NA00143,
DE-NA0000979]; U.S. Department of Energy, Office of Science, Office of
Nuclear Physics, (Maryland) [DE-FG02-94ER40834, DE-AC05-060R23100,
DE-AC02-06CH11357, DE-AC05-00OR22725]
FX This material is based upon work supported by the National Science
Foundation under Contract No. NSF-06067007 (NSCL), the US Department of
Energy, National Nuclear Security Administration under Grant No.
DE-FC03-03NA00143, and Award No. DE-NA0000979, the U.S. Department of
Energy, Office of Science, Office of Nuclear Physics, under Grants No.
DE-FG02-94ER40834 (Maryland), No. DE-FG02-96ER40983 (UT), No.
DE-AC05-060R23100 (ORAU), and under Contracts No. DE-AC02-06CH11357
(ANL) and No. DE-AC05-00OR22725 (ORNL). This research used resources of
ANL's ATLAS facility, which is a DOE Office of Science User Facility.
NR 51
TC 4
Z9 4
U1 2
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD AUG 25
PY 2015
VL 92
IS 2
AR 024319
DI 10.1103/PhysRevC.92.024319
PG 7
WC Physics, Nuclear
SC Physics
GA CP6GZ
UT WOS:000359985300001
ER
PT J
AU Willias, SP
Chauhan, S
Lo, CC
Chain, PSG
Motin, VL
AF Willias, Stephan P.
Chauhan, Sadhana
Lo, Chien-Chi
Chain, Patrick S. G.
Motin, Vladimir L.
TI CRP-Mediated Carbon Catabolite Regulation of Yersinia pestis Biofilm
Formation Is Enhanced by the Carbon Storage Regulator Protein, CsrA
SO PLOS ONE
LA English
DT Article
ID ESCHERICHIA-COLI; GLYCOGEN BIOSYNTHESIS; HMS(+) PHENOTYPE; GLOBAL
REGULATOR; PLAGUE; EXPRESSION; GENE; RNA; TRANSMISSION; TRANSLATION
AB The natural transmission of Yersinia pestis is reliant upon biofilm blockage of the flea vector. However, the environmentally-responsive adaptive regulators which facilitate Y. pestis biofilm production in accordance with the flea midgut milieu are not well understood. We seek to establish the impact of available carbon source metabolism and storage upon Y. pestis biofilm production. Our findings demonstrate that Y. pestis biofilm production is subject to carbon catabolite regulation in which the presence of glucose impairs biofilm production; whereas, the sole metabolism of alternate carbon sources promotes robust biofilm formation. This observation is facilitated by the cAMP receptor protein, CRP. In accordance with a stark growth defect, deletion of crp in both CO92 and KIM6+ Y. pestis strains significantly impaired biofilm production when solely utilizing alternate carbon sources. Media supplementation with cAMP, a small-molecule activator of CRP, did not significantly alter Y. pestis biofilm production. Furthermore, CRP did not alter mRNA abundance of previously-characterized hms biofilm synthesis and regulation factors. Therefore, our findings indicate CRP does not confer a direct stimulatory effect, but may indirectly promote Y. pestis biofilm production by facilitating the alternate carbon source expression profile. Additionally, we assessed the impact of the carbon storage regulator protein, CsrA, upon Y. pestis biofilm production. Contrary to what has been described for E. coli, Y. pestis biofilm formation was found to be enhanced by CsrA. Regardless of media composition and available carbon source, deletion of csrA significantly impaired Y. pestis biofilm production. CsrA was found to promote Y. pestis biofilm production independent of glycogen regulation. Loss of csrA did not significantly alter relative hmsH, hmsP, or hmsT mRNA abundance. However, deletion of hmsP in the csrA-deficient mutant enabled excessive biofilm production, suggesting CsrA enables potent Y. pestis biofilm production through cyclic diguanylate regulation.
C1 [Willias, Stephan P.; Motin, Vladimir L.] Univ Texas Med Branch, Dept Pathol, Galveston, TX 77555 USA.
[Chauhan, Sadhana; Motin, Vladimir L.] Univ Texas Med Branch, Dept Microbiol & Immunol, Galveston, TX 77555 USA.
[Lo, Chien-Chi; Chain, Patrick S. G.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA.
RP Motin, VL (reprint author), Univ Texas Med Branch, Dept Pathol, Galveston, TX 77555 USA.
EM vlmotin@utmb.edu
RI Motin, Vladimir/O-1535-2013;
OI Chain, Patrick/0000-0003-3949-3634
FU NIH/NIAID [Y01 AI008401, T32 AI007526]; UTMB McLaughlin pre-doctoral
fellowship
FX This work was supported by NIH/NIAID, Y01 AI008401; NIH/NIAID, T32
AI007526; and UTMB McLaughlin pre-doctoral fellowship to SPW,
http://www.utmb.edu/mclaughlin/predoctoral.shtml. The funders had no
role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.
NR 48
TC 4
Z9 4
U1 0
U2 5
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD AUG 25
PY 2015
VL 10
IS 8
AR e0135481
DI 10.1371/journal.pone.0135481
PG 20
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP6KK
UT WOS:000359995500023
PM 26305456
ER
PT J
AU Shui, JL
Chen, C
Grabstanowicz, L
Zhao, D
Liu, DJ
AF Shui, Jianglan
Chen, Chen
Grabstanowicz, Lauren
Zhao, Dan
Liu, Di-Jia
TI Highly efficient nonprecious metal catalyst prepared with metal-organic
framework in a continuous carbon nanofibrous network
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE nanofibrous; nonprecious metal catalyst; metal-organic framework; fuel
cell; oxygen reduction
ID OXYGEN REDUCTION REACTION; PEM FUEL-CELLS; ZEOLITIC IMIDAZOLATE
FRAMEWORKS; HIGH ELECTROCATALYTIC ACTIVITY; CATHODE CATALYST; FE/N/C
CATALYSTS; HEAT-TREATMENT; IRON; PRECURSOR; BLACKS
AB Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electro-spinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A.cm(-3) at 0.9 V or 450 A.cm(-3) extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.
C1 [Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Shui, Jianglan] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China.
[Grabstanowicz, Lauren] Alcoa Tech Ctr, New Kensington, PA 15068 USA.
[Zhao, Dan] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore.
RP Liu, DJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM djliu@anl.gov
RI Zhao, Dan/D-5975-2011
OI Zhao, Dan/0000-0002-4427-2150
FU US Department of Energy's Office of Science; Office of Energy Efficiency
and Renewable Energy, Fuel Cell Technologies Office
FX We thank Dr. Deborah J. Myers, Dr. Magali Ferrandon, Heather Barkholtz,
and Zachary Kaiser for their assistance in fuel cell performance tests
and material characterizations. This work was supported by the US
Department of Energy's Office of Science and the Office of Energy
Efficiency and Renewable Energy, Fuel Cell Technologies Office.
NR 34
TC 49
Z9 49
U1 26
U2 105
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD AUG 25
PY 2015
VL 112
IS 34
BP 10629
EP 10634
DI 10.1073/pnas.1507159112
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP6NZ
UT WOS:000360005600041
PM 26261338
ER
PT J
AU Hejazi, MI
Voisin, N
Liu, L
Bramer, LM
Fortin, DC
Hathaway, JE
Huang, M
Kyle, P
Leung, LR
Li, HY
Liu, Y
Patel, PL
Pulsipher, TC
Rice, JS
Tesfa, TK
Vernon, CR
Zhou, YY
AF Hejazi, Mohamad I.
Voisin, Nathalie
Liu, Lu
Bramer, Lisa M.
Fortin, Daniel C.
Hathaway, John E.
Huang, Maoyi
Kyle, Page
Leung, L. Ruby
Li, Hong-Yi
Liu, Ying
Patel, Pralit L.
Pulsipher, Trenton C.
Rice, Jennie S.
Tesfa, Teklu K.
Vernon, Chris R.
Zhou, Yuyu
TI 21st century United States emissions mitigation could increase water
stress more than the climate change it is mitigating
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE climate change; mitigation; water deficit; Earth system model;
integrated assessment
ID EARTH SYSTEM MODELS; INTEGRATED ASSESSMENT; HIGH-RESOLUTION;
LAND-SURFACE; RESOURCES; STABILIZATION; PATHWAYS; AVAILABILITY;
MANAGEMENT; BIOENERGY
AB There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.
C1 [Hejazi, Mohamad I.; Liu, Lu; Kyle, Page; Patel, Pralit L.; Zhou, Yuyu] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
[Voisin, Nathalie; Bramer, Lisa M.; Fortin, Daniel C.; Hathaway, John E.; Huang, Maoyi; Leung, L. Ruby; Li, Hong-Yi; Liu, Ying; Pulsipher, Trenton C.; Rice, Jennie S.; Tesfa, Teklu K.; Vernon, Chris R.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Hejazi, MI (reprint author), Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
EM mohamad.hejazi@pnnl.gov
RI Li, Hong-Yi/C-9143-2014; Bramer, Lisa/L-9184-2016; Huang,
Maoyi/I-8599-2012;
OI Li, Hong-Yi/0000-0001-5690-3610; Bramer, Lisa/0000-0002-8384-1926;
Huang, Maoyi/0000-0001-9154-9485; Voisin, Nathalie/0000-0002-6848-449X
FU US Department of Energy [DE-AC05-76RL01830]; US Department of Energy,
Office of Science, Biological and Environmental Research as part of the
Integrated Assessment Research and Earth System Modeling programs
FX This research is part of the Platform for Regional Integrated Modeling
and Analysis (PRIMA) Initiative at Pacific Northwest National Laboratory
(PNNL). It was conducted under the Laboratory Directed Research and
Development Program at PNNL, a multiprogram national laboratory operated
by Battelle for the US Department of Energy under Contract
DE-AC05-76RL01830. This research also leveraged capabilities that were
funded by the US Department of Energy, Office of Science, Biological and
Environmental Research as part of the Integrated Assessment Research and
Earth System Modeling programs.
NR 41
TC 10
Z9 10
U1 9
U2 31
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD AUG 25
PY 2015
VL 112
IS 34
BP 10635
EP 10640
DI 10.1073/pnas.1421675112
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP6NZ
UT WOS:000360005600042
PM 26240363
ER
PT J
AU Weber, CA
Suzuki, R
Schaller, V
Aranson, IS
Bausch, AR
Frey, E
AF Weber, Christoph A.
Suzuki, Ryo
Schaller, Volker
Aranson, Igor S.
Bausch, Andreas R.
Frey, Erwin
TI Random bursts determine dynamics of active filaments
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE active filaments; nonthermal statistics; molecular motors; gliding
assay; kinetic model
ID MYOSIN STEP-SIZE; SEMIFLEXIBLE POLYMERS; XENOPUS MELANOPHORES; ASSAY;
MOVEMENT; INVITRO; MOTION; HYDRODYNAMICS; FLUCTUATIONS; MICROTUBULES
AB Constituents of living or synthetic active matter have access to a local energy supply that serves to keep the system out of thermal equilibrium. The statistical properties of such fluctuating active systems differ from those of their equilibrium counterparts. Using the actin filament gliding assay as a model, we studied how nonthermal distributions emerge in active matter. We found that the basic mechanism involves the interplay between local and random injection of energy, acting as an analog of a thermal heat bath, and nonequilibrium energy dissipation processes associated with sudden jump-like changes in the system's dynamic variables. We show here how such a mechanism leads to a nonthermal distribution of filament curvatures with a non-Gaussian shape. The experimental curvature statistics and filament relaxation dynamics are reproduced quantitatively by stochastic computer simulations and a simple kinetic model.
C1 [Weber, Christoph A.; Frey, Erwin] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany.
[Weber, Christoph A.; Frey, Erwin] Univ Munich, Dept Phys, Ctr NanoSci, D-80333 Munich, Germany.
[Weber, Christoph A.] Max Planck Inst Phys Komplexer Syst, Dept Biol Phys, D-01187 Dresden, Germany.
[Suzuki, Ryo; Schaller, Volker; Bausch, Andreas R.] Tech Univ Munich, Lehrstuhl Biophys E27, D-85748 Garching, Germany.
[Aranson, Igor S.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Bausch, AR (reprint author), Tech Univ Munich, Lehrstuhl Biophys E27, D-85748 Garching, Germany.
EM abausch@mytum.de; frey@lmu.de
FU Deutsche Forschungsgemeinschaft [SFB 863]; German Excellence Initiative
via the program "NanoSystems Initiative Munich"; US Department of
Energy, Office of Basic Energy Sciences, Division of Materials Science
and Engineering
FX We thank Frank Julicher for fruitful and stimulating discussions. This
project was supported by the Deutsche Forschungsgemeinschaft in the
framework of the SFB 863 "Forces in Biomolecular Systems" (Projects B1
and B2) and the German Excellence Initiative via the program
"NanoSystems Initiative Munich". The work of I. S. A. was also supported
by the US Department of Energy, Office of Basic Energy Sciences,
Division of Materials Science and Engineering.
NR 53
TC 5
Z9 5
U1 7
U2 27
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD AUG 25
PY 2015
VL 112
IS 34
BP 10703
EP 10707
DI 10.1073/pnas.1421322112
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP6NZ
UT WOS:000360005600054
PM 26261319
ER
PT J
AU Balachandran, PV
Theiler, J
Rondinelli, JM
Lookman, T
AF Balachandran, Prasanna V.
Theiler, James
Rondinelli, James M.
Lookman, Turab
TI Materials Prediction via Classification Learning
SO SCIENTIFIC REPORTS
LA English
DT Article
ID ORBITAL-RADII; STRUCTURAL STABILITY; CRYSTAL-CHEMISTRY; BINARY
COMPOUNDS; SUPPORT; SOLIDS; PSEUDOPOTENTIALS; SEMICONDUCTORS; ENERGIES;
DIAGRAMS
AB In the paradigm of materials informatics for accelerated materials discovery, the choice of feature set (i.e. attributes that capture aspects of structure, chemistry and/or bonding) is critical. Ideally, the feature sets should provide a simple physical basis for extracting major structural and chemical trends and furthermore, enable rapid predictions of new material chemistries. Orbital radii calculated from model pseudopotential fits to spectroscopic data are potential candidates to satisfy these conditions. Although these radii (and their linear combinations) have been utilized in the past, their functional forms are largely justified with heuristic arguments. Here we show that machine learning methods naturally uncover the functional forms that mimic most frequently used features in the literature, thereby providing a mathematical basis for feature set construction without a priori assumptions. We apply these principles to study two broad materials classes: (i) wide band gap AB compounds and (ii) rare earth-main group RM intermetallics. The AB compounds serve as a prototypical example to demonstrate our approach, whereas the RM intermetallics show how these concepts can be used to rapidly design new ductile materials. Our predictive models indicate that ScCo, ScIr, and YCd should be ductile, whereas each was previously proposed to be brittle.
C1 [Balachandran, Prasanna V.; Lookman, Turab] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Theiler, James] Los Alamos Natl Lab, Intelligence & Space Res, Los Alamos, NM 87545 USA.
[Rondinelli, James M.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
RP Lookman, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM txl@lanl.gov
RI Rondinelli, James/A-2071-2009
OI Rondinelli, James/0000-0003-0508-2175
FU Los Alamos National Laboratory (LANL) Laboratory Directed Research and
Development (LDRD) DR on Materials Informatics [20140013DR]; NSF-DMR
[1454688]
FX P.V.B., T.L. and J.T. acknowledge funding support from the Los Alamos
National Laboratory (LANL) Laboratory Directed Research and Development
(LDRD) DR (#20140013DR) on Materials Informatics. J.M.R. acknowledges
support from NSF-DMR 1454688. P.V.B. thanks J. Hogden for comments on
the paper. P.V.B. thanks M. Sanati for bringing the RM intermetallics
problem to our attention and M. Topsakal for assistance with the
Dy-pseudopotentials. P.V.B. also thanks J. Gubernatis and G. Pilania for
insightful discussions. DFT calculations were performed using the
Institutional Computing (IC) resources at LANL.
NR 60
TC 12
Z9 12
U1 11
U2 49
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD AUG 25
PY 2015
VL 5
AR 13285
DI 10.1038/srep13285
PG 16
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP6UH
UT WOS:000360023200001
PM 26304800
ER
PT J
AU Tan, XD
Rajguru, S
Young, H
Xia, N
Stock, SR
Xiao, XH
Richter, CP
AF Tan, Xiaodong
Rajguru, Suhrud
Young, Hunter
Xia, Nan
Stock, Stuart R.
Xiao, Xianghui
Richter, Claus-Peter
TI Radiant energy required for infrared neural stimulation
SO SCIENTIFIC REPORTS
LA English
DT Article
ID LASER STIMULATION; OPTICAL STIMULATION; NERVE-STIMULATION;
PERIPHERAL-NERVE; CAVERNOUS NERVES; IN-VIVO; NEURONS; ACTIVATION;
MECHANISMS; THRESHOLD
AB Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography was used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 +/- 12.2 or 10.3 +/- 4.9 mJ/cm(2), respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.
C1 [Tan, Xiaodong; Young, Hunter; Xia, Nan; Richter, Claus-Peter] Northwestern Univ, Dept Otolaryngol, Chicago, IL 60611 USA.
[Rajguru, Suhrud] Univ Miami, Dept Biomed Engn, Miami, FL 33146 USA.
[Rajguru, Suhrud] Univ Miami, Dept Otolaryngol, Miami, FL 33136 USA.
[Xia, Nan] Chongqing Univ, Bioengn Coll, Key Lab Biorheol Sci & Technol, Chongqing 400044, Peoples R China.
[Stock, Stuart R.] Northwestern Univ Feinberg Sch Med, Dept Cell & Mol Biol, Chicago, IL 60611 USA.
[Xiao, Xianghui] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Richter, Claus-Peter] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA.
[Richter, Claus-Peter] Northwestern Univ, Dept Commun Sci & Disorders, Hugh Knowles Ctr, Evanston, IL 60208 USA.
RP Richter, CP (reprint author), Northwestern Univ, Dept Otolaryngol, 303 E Chicago Ave,Searle 12-561, Chicago, IL 60611 USA.
EM cri529@northwestern.edu
FU National Institute on Deafness and Other Communication Disorders,
National Institutes of Health [R01 DC011855]; Lockheed Martin Aculight
FX This project has been funded with federal funds from the National
Institute on Deafness and Other Communication Disorders, National
Institutes of Health, grant R01 DC011855, and by Lockheed Martin
Aculight.
NR 46
TC 6
Z9 7
U1 8
U2 27
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD AUG 25
PY 2015
VL 5
AR 13273
DI 10.1038/srep13273
PG 13
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP6TZ
UT WOS:000360022400001
PM 26305106
ER
PT J
AU Dennis, BS
Czaplewski, DA
Haftel, MI
Lopez, D
Blumberg, G
Aksyuk, V
AF Dennis, Brian S.
Czaplewski, David A.
Haftel, Michael I.
Lopez, Daniel
Blumberg, Girsh
Aksyuk, Vladimir
TI Diffraction limited focusing and routing of gap plasmons by a
metal-dielectric-metal lens
SO OPTICS EXPRESS
LA English
DT Article
ID SURFACE-PLASMONS; WAVE-GUIDES; PHASE MODULATORS; POLARITONS; OPTICS
AB Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron-and focused-ion-beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-coupler slits. (C) 2015 Optical Society of America
C1 [Dennis, Brian S.; Blumberg, Girsh] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Czaplewski, David A.; Lopez, Daniel] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Haftel, Michael I.] Univ Colorado, Dept Phys, Colorado Springs, CO 80918 USA.
[Aksyuk, Vladimir] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA.
RP Aksyuk, V (reprint author), NIST, Ctr Nanoscale Sci & Technol, 100 Bur Dr, Gaithersburg, MD 20899 USA.
EM vladimir.aksyuk@nist.gov
FU Measurement Science and Engineering Research Grant Program of the
National Institute of Standards and Technology [70NANB14H259,
70NANB14H030]; National Science Foundation [DMR-1104884]; Air Force
Office of Scientific Research [FA9550-09-1-0698]; Center for Nanoscale
Materials, a US Department of Energy, Office of Science, Office of Basic
Energy Sciences User Facility [DE-AC02-06CH11357]
FX This work has been supported by the Measurement Science and Engineering
Research Grant Program of the National Institute of Standards and
Technology (award nos. 70NANB14H259 and 70NANB14H030), the National
Science Foundation DMR-1104884, and the Air Force Office of Scientific
Research (grant no. FA9550-09-1-0698). Computational support from the
Department of Defense High Performance Computation Modernization project
is acknowledged. This work was performed, in part, at the Center for
Nanoscale Materials, a US Department of Energy, Office of Science,
Office of Basic Energy Sciences User Facility (contract no.
DE-AC02-06CH11357).
NR 36
TC 1
Z9 1
U1 7
U2 35
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD AUG 24
PY 2015
VL 23
IS 17
BP 21899
EP 21908
DI 10.1364/OE.23.021899
PG 10
WC Optics
SC Optics
GA CS9NR
UT WOS:000362418300032
PM 26368166
ER
PT J
AU Farfurnik, D
Jarmola, A
Pham, LM
Wang, ZH
Dobrovitski, VV
Walsworth, RL
Budker, D
Bar-Gill, N
AF Farfurnik, D.
Jarmola, A.
Pham, L. M.
Wang, Z. H.
Dobrovitski, V. V.
Walsworth, R. L.
Budker, D.
Bar-Gill, N.
TI Optimizing a dynamical decoupling protocol for solid-state electronic
spin ensembles in diamond
SO PHYSICAL REVIEW B
LA English
DT Article
ID COHERENCE TIME; RESOLUTION; SEQUENCES; CENTERS; BATH; NMR
AB We demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T-1 effects and DD microwave pulses are used to increase the transverse coherence time T-2 from similar to 0.7 ms up to similar to 30 ms. We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.
C1 [Farfurnik, D.; Bar-Gill, N.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-9190401 Jerusalem, Israel.
[Farfurnik, D.; Bar-Gill, N.] Hebrew Univ Jerusalem, Ctr Nanosci & Nanotechnol, IL-9190401 Jerusalem, Israel.
[Jarmola, A.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Pham, L. M.; Walsworth, R. L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Wang, Z. H.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA.
[Dobrovitski, V. V.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Walsworth, R. L.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
[Budker, D.] Johannes Gutenberg Univ Mainz, Helmholtz Inst, D-55099 Mainz, Germany.
[Bar-Gill, N.] Hebrew Univ Jerusalem, Dept Appl Phys, Rachel & Selim Sch Engn, IL-9190401 Jerusalem, Israel.
RP Farfurnik, D (reprint author), Hebrew Univ Jerusalem, Racah Inst Phys, IL-9190401 Jerusalem, Israel.
RI Budker, Dmitry/F-7580-2016
OI Budker, Dmitry/0000-0002-7356-4814
FU EU CIG; Minerva ARCHES award; Israel Science Foundation [750/14];
Ministry of Science and Technology, Israel; German-Israeli Project
Cooperation (DIP) program; NSF [ECCS-1202258]; AFOSR/DARPA QuASAR
program; U.S. Department of Energy-Basic Energy Sciences
[DE-AC02-07CH11358]; CAMBR fellowship for Nanoscience and
Nanotechnology; Binational Science Foundation Rahamimoff travel grant
FX We thank Gonzalo A. Alvarez for fruitful discussions. This work has been
supported in part by the EU CIG, the Minerva ARCHES award, the Israel
Science Foundation (Grant No. 750/14), and the Ministry of Science and
Technology, Israel. Additional support was provided by the
German-Israeli Project Cooperation (DIP) program, the NSF through Grant
No. ECCS-1202258, and the AFOSR/DARPA QuASAR program. Work at Ames
Laboratory was supported by the U.S. Department of Energy-Basic Energy
Sciences under Contract No. DE-AC02-07CH11358. D.F. was partially
supported by the CAMBR fellowship for Nanoscience and Nanotechnology,
and the Binational Science Foundation Rahamimoff travel grant.
NR 39
TC 12
Z9 12
U1 3
U2 23
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 24
PY 2015
VL 92
IS 6
AR 060301
DI 10.1103/PhysRevB.92.060301
PG 5
WC Physics, Condensed Matter
SC Physics
GA CS6SO
UT WOS:000362212200002
ER
PT J
AU MacLaughlin, DE
Bernal, OO
Shu, L
Ishikawa, J
Matsumoto, Y
Wen, JJ
Mourigal, M
Stock, C
Ehlers, G
Broholm, CL
Machida, Y
Kimura, K
Nakatsuji, S
Shimura, Y
Sakakibara, T
AF MacLaughlin, D. E.
Bernal, O. O.
Shu, Lei
Ishikawa, Jun
Matsumoto, Yosuke
Wen, J. -J.
Mourigal, M.
Stock, C.
Ehlers, G.
Broholm, C. L.
Machida, Yo
Kimura, Kenta
Nakatsuji, Satoru
Shimura, Yasuyuki
Sakakibara, Toshiro
TI Unstable spin-ice order in the stuffed metallic pyrochlore
Pr2+xIr2-xO7-delta
SO PHYSICAL REVIEW B
LA English
DT Article
ID MU-SR; FIELD; LIQUID; FLUCTUATIONS; TEMPERATURE; RELAXATION; MAGNETISM;
PR2IR2O7; SYSTEMS; MODEL
AB Specific heat, elastic neutron scattering, and muon spin rotation (mu SR) experiments have been carried out on a well-characterized sample of "stuffed" (Pr-rich) Pr2+xIr2-xO7-delta. Elastic neutron scattering shows the onset of long-range spin-ice "2-in/2-out" magnetic order at T-M = 0.93 K, with an ordered moment of 1.7(1)mu(B)/Pr ion at low temperatures. Approximate lower bounds on the correlation length and correlation time in the ordered state are 170 angstrom and 0.7 ns, respectively. mu SR experiments yield an upper bound 2.6(7) mT on the local field B-loc(4f) at the muon site, which is nearly two orders of magnitude smaller than the expected dipolar field for long-range spin-ice ordering of 1.7 mu(B) moments (120-270 mT, depending on muon site). This shortfall is due in part to splitting of the non-Kramers crystal-field ground-state doublets of near-neighbor Pr3+ ions by the mu(+)-induced lattice distortion. For this to be the only effect, however, similar to 160 Pr moments out to a distance of similar to 14 angstrom must be suppressed. An alternative scenario, which is consistent with the observed reduced nuclear hyperfine Schottky anomaly in the specific heat, invokes slow correlated Pr-moment fluctuations in the ordered state that average B-loc(4f) on the mu SR time scale (similar to 10(-7) s), but are static on the time scale of the elastic neutron scattering experiments (similar to 10(-9) s). In this picture, the dynamic muon relaxation suggests a Pr3+ 4f correlation time of a few nanoseconds, which should be observable in a neutron spin echo experiment.
C1 [MacLaughlin, D. E.; Shu, Lei] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA.
[MacLaughlin, D. E.; Ishikawa, Jun; Matsumoto, Yosuke; Machida, Yo; Kimura, Kenta; Nakatsuji, Satoru; Shimura, Yasuyuki; Sakakibara, Toshiro] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan.
[Bernal, O. O.] Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA.
[Shu, Lei] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai 200433, Peoples R China.
[Shu, Lei] Fudan Univ, Collaborat Innovat Ctr Adv Microstruct, Shanghai 200433, Peoples R China.
[Wen, J. -J.; Mourigal, M.; Stock, C.; Broholm, C. L.] Johns Hopkins Univ, Inst Quantum Matter, Baltimore, MD 21218 USA.
[Wen, J. -J.; Mourigal, M.; Stock, C.; Broholm, C. L.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Stock, C.; Broholm, C. L.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Ehlers, G.; Broholm, C. L.] Oak Ridge Natl Lab, Neutron Sci Directorate, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
[Broholm, C. L.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA.
[Nakatsuji, Satoru] Japan Sci & Technol Agcy JST, PRESTO, Kawaguchi, Saitama 3320012, Japan.
RP MacLaughlin, DE (reprint author), Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA.
EM macl@physics.ucr.edu; satoru@issp.u-tokyo.ac.jp
RI Ehlers, Georg/B-5412-2008; Instrument, CNCS/B-4599-2012; Mourigal,
Martin/F-4495-2010; Kimura, Kenta/F-4267-2017
OI Ehlers, Georg/0000-0003-3513-508X; Mourigal, Martin/0000-0003-2772-8440;
FU U.S. NSF (Riverside) [0422671, 0801407]; U.S. NSF (Los Angeles)
[1105380]; Japanese Society for the Promotion of Science (JSPS)
[21684019]; Ministry of Education, Culture, Sports, Science and
Technology (MEXT), Japan [17071003, 19052003]; National Natural Science
Foundation of China [11474060]; STCSM of China [15XD1500200]; U.S.
Department of Energy, Office of Basic Energy Sciences, Division of
Material Sciences and Engineering [DE-FG02-08ER46544]; Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy
FX C.L.B. and S.N. thank the Aspen Center for Physics, where progress was
made on this project, for their hospitality during the summer of 2014.
D.E.M. wishes to thank the Institute for Solid State Physics, Tokyo
University, for their hospitality during his stays there. We are
grateful for technical assistance from the TRIUMF Centre for Molecular
and Materials Science, where the mu SR experiments were carried out. We
thank E. J. Ansaldo, J. M. Mackie, K. Onuma, and S. Zhao for assistance
with the experiments, and R. F. Kiefl and G. M. Luke for useful
discussions. We are grateful to S. Koohpayeh for performing powder x-ray
diffraction at IQM. This work was partially supported by U.S. NSF Grant
Nos. 0422671, 0801407 (Riverside), and 1105380 (Los Angeles), by a
Grant-in-Aid (No. 21684019) from the Japanese Society for the Promotion
of Science (JSPS), by Grants-in-Aid for Scientific Research on Priority
Areas (Nos. 17071003 and 19052003) from the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan, by the National
Natural Science Foundation of China (No. 11474060), and STCSM of China
(No. 15XD1500200). The work at IQM was supported by the U.S. Department
of Energy, Office of Basic Energy Sciences, Division of Material
Sciences and Engineering under grant DE-FG02-08ER46544. The research at
ORNL's Spallation Neutron Source was sponsored by the Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy.
NR 53
TC 4
Z9 4
U1 8
U2 24
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 24
PY 2015
VL 92
IS 5
AR 054432
DI 10.1103/PhysRevB.92.054432
PG 12
WC Physics, Condensed Matter
SC Physics
GA CS6RZ
UT WOS:000362210600006
ER
PT J
AU Mkhitaryan, VV
Dobrovitski, VV
AF Mkhitaryan, V. V.
Dobrovitski, V. V.
TI Hyperfine-induced spin relaxation of a diffusively moving carrier in low
dimensions: Implications for spin transport in organic semiconductors
SO PHYSICAL REVIEW B
LA English
DT Article
ID MONTE-CARLO-SIMULATION; CHARGE-TRANSPORT; ROOM-TEMPERATURE;
RANDOM-WALKS; INJECTION; MAGNETORESISTANCE; DEPOLARIZATION; LATTICES;
SOLIDS; VALVE
AB The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d = 1 and 2, the time dependence of the space-integrated spin polarization P(t) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, which occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P(t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d = 1 versus d = 3). Furthermore, we investigate in detail the coordinate dependence of the time-integrated spin polarization sigma(r), which can be probed in the spin-transport experiments with spin-polarized electrodes. We demonstrate that, while sigma(r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.
C1 [Mkhitaryan, V. V.; Dobrovitski, V. V.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
RP Mkhitaryan, VV (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
FU US Department of Energy, Office of Science, Basic Energy Sciences,
Division of Materials Sciences and Engineering; US Department of Energy
by Iowa State University [DE-AC02-07CH11358]
FX We thank J. Shinar and M. E. Raikh for many useful discussions. Work at
the Ames Laboratory was supported by the US Department of Energy, Office
of Science, Basic Energy Sciences, Division of Materials Sciences and
Engineering. The Ames Laboratory is operated for the US Department of
Energy by Iowa State University under Contract No. DE-AC02-07CH11358.
NR 48
TC 3
Z9 3
U1 3
U2 20
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 24
PY 2015
VL 92
IS 5
AR 054204
DI 10.1103/PhysRevB.92.054204
PG 14
WC Physics, Condensed Matter
SC Physics
GA CS6RZ
UT WOS:000362210600002
ER
PT J
AU Highland, MJ
Fong, DD
Ju, GX
Thompson, C
Baldo, PM
Fuoss, PH
Eastman, JA
AF Highland, Matthew J.
Fong, Dillon D.
Ju, Guangxu
Thompson, Carol
Baldo, Peter M.
Fuoss, Paul H.
Eastman, Jeffrey A.
TI In-situ x-ray studies of compositional control during synthesis of
LaGaO3 by radio frequency-magnetron sputtering
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID THIN-FILMS; LA2O3-GA2O3 SYSTEM
AB In-situ synchrotron x-ray scattering has been used to monitor and control the synthesis of LaGaO3 epitaxial thin films by 90 degrees off-axis RF-magnetron sputtering. Films deposited from a single LaGaO3 source were compared with those prepared by alternating deposition from separate La2O3 and Ga2O3 sources. The conditions for growth of stoichiometric films were determined by real-time monitoring of secondary phase formation as well as from features in the diffuse scatter from island formation during synthesis. These results provide atomic-scale insight into the mechanisms taking place during reactive epitaxial growth and demonstrate how in-situ techniques can be utilized to achieve stoichiometric control in ultrathin films. (C) 2015 AIP Publishing LLC.
C1 [Highland, Matthew J.; Fong, Dillon D.; Ju, Guangxu; Baldo, Peter M.; Fuoss, Paul H.; Eastman, Jeffrey A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Thompson, Carol] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
RP Highland, MJ (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM mhighland@anl.gov
FU U.S. Department of Energy (DOE), Office of Science, Office of Basic
Energy Sciences (BES), Division of Materials Sciences and Engineering;
DOE-BES [DE-AC02-06CH11357]
FX This work was supported by the U.S. Department of Energy (DOE), Office
of Science, Office of Basic Energy Sciences (BES), Division of Materials
Sciences and Engineering. Use of the Advanced Photon Source was
supported by DOE-BES, under Contract No. DE-AC02-06CH11357. We thank
Brad Stumphy and Tim Spila for conducting and analyzing the RBS
measurements, which were carried out in the Frederick Seitz Materials
Research Laboratory at the University of Illinois at Urbana-Champaign.
NR 19
TC 1
Z9 1
U1 2
U2 18
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD AUG 24
PY 2015
VL 107
IS 8
AR 081606
DI 10.1063/1.4929753
PG 5
WC Physics, Applied
SC Physics
GA CQ4SC
UT WOS:000360593900019
ER
PT J
AU Jalarvo, N
Pramanick, A
Do, C
Diallo, SO
AF Jalarvo, N.
Pramanick, A.
Do, C.
Diallo, S. O.
TI Effects of configurational changes on molecular dynamics in
polyvinylidene fluoride and poly(vinylidene fluoride-trifluoroethylene)
ferroelectric polymers
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID INCOHERENT NEUTRON-SCATTERING; VINYLIDENE FLUORIDE; COPOLYMER FILMS;
PHASE-TRANSITION; TRIFLUOROETHYLENE; DIFFUSION; BEHAVIOR;
PIEZOELECTRICITY; SPECTRA; DENSITY
AB We present a comparative study of proton dynamics in unpoled non-ferroelectric polymer polyvinylidene fluoride (PVDF) and in its trifluoroethylene containing ferroelectric copolymer (with 70/30 molar proportion), using quasi-elastic neutron scattering. The neutron data reveal the existence of two distinct types of molecular motions in the temperature range investigated. The slower motion, which is characterized in details here, is ascribed to protons jump diffusion along the polymeric carbon chains, while the faster motion could be attributed to localized rotational motion of methylene groups. At temperatures below the Curie point (T-c similar to 385 K) of the composite polymer, the slower diffusive mode experiences longer relaxation times in the ferroelectric blend than in the bare PVDF, although the net corresponding diffusion coefficient remains comparatively the same in both polymers with characteristic activation energy of E-A approximate to 27-33 kJ/mol. This arises because of a temperature dependent jump length r(0), which we observe to be effectively longer in the copolymer, possibly due to the formation of ordered ferroelectric domains below Tc. Above Tc, there is no appreciable difference in r(0) between the two systems. This observation directly relates the known dependence of Tc on molar ratio to changes in r(0), providing fundamental insight into the ferroelectric properties of PVDF-based copolymers. (C) 2015 AIP Publishing LLC.
C1 [Jalarvo, N.] Forschungszentrum Julich, Julich Ctr Neutron Sci, D-52428 Julich, Germany.
[Jalarvo, N.; Diallo, S. O.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.
[Pramanick, A.] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China.
[Do, C.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA.
RP Jalarvo, N (reprint author), Forschungszentrum Julich, Julich Ctr Neutron Sci, D-52428 Julich, Germany.
EM jalarvonh@ornl.gov; abhijit.pramanick@gmail.com; omardiallos@ornl.gov
RI Diallo, Souleymane/B-3111-2016; Jalarvo, Niina/Q-1320-2015; Pramanick,
Abhijit/D-9578-2011; Do, Changwoo/A-9670-2011
OI Diallo, Souleymane/0000-0002-3369-8391; Jalarvo,
Niina/0000-0003-0644-6866; Pramanick, Abhijit/0000-0003-0687-4967; Do,
Changwoo/0000-0001-8358-8417
FU City University of Hong Kong; Scientific User Facilities Division,
Office of Basic Energy Sciences, U.S. Department of Energy
FX The authors would like to thank R. Goyette and R. Mills for their
excellent technical support during the neutron measurements. AP
acknowledges funding support from City University of Hong Kong. Work at
ORNL's Spallation Neutron Source is sponsored by the Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy.
NR 36
TC 0
Z9 0
U1 6
U2 24
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD AUG 24
PY 2015
VL 107
IS 8
AR 082907
DI 10.1063/1.4929693
PG 5
WC Physics, Applied
SC Physics
GA CQ4SC
UT WOS:000360593900057
ER
PT J
AU Macrander, AT
Kubec, A
Conley, R
Bouet, N
Zhou, J
Wojcik, M
Maser, J
AF Macrander, Albert T.
Kubec, Adam
Conley, Raymond
Bouet, Nathalie
Zhou, Juan
Wojcik, Michael
Maser, Jorg
TI Efficiency of a multilayer-Laue-lens with a 102 mu m aperture
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID X-RAY OPTICS; PERFORMANCE
AB A multilayer-Laue-lens (MLL) comprised of WSi2/Al layers stacked to a full thickness of 102 mu m was characterized for its diffraction efficiency and dynamical diffraction properties by x-ray measurements made in the far field. The achieved aperture roughly doubles the previous maximum reported aperture for an MLL, thereby doubling the working distance. Negative and positive first orders were found to have 14.2% and 13.0% efficiencies, respectively. A section thickness of 9.6 mu m was determined from Laue-case thickness fringes in the diffraction data. A background gas consisting of 90% Ar and 10% N-2 was used for sputtering. This material system was chosen to reduce grown-in stress as the multilayer is deposited. Although some regions of the full MLL exhibited defects, the presently reported results were obtained for a region devoid of defects. The data compare well to dynamical diffraction calculations with Coupled Wave Theory (CWT) which provided confirmation of the optical constants and densities assumed for the CWT calculations. (C) 2015 AIP Publishing LLC.
C1 [Macrander, Albert T.; Kubec, Adam; Conley, Raymond; Wojcik, Michael; Maser, Jorg] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Kubec, Adam] Fraunhofer IWS Dresden, D-01277 Dresden, Germany.
[Conley, Raymond; Bouet, Nathalie; Zhou, Juan] Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA.
RP Macrander, AT (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM atm@anl.gov
OI Bouet, Nathalie/0000-0002-5816-9429
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-AC-02-06CH11357]; U.S. Department of Energy, Office Basic Energy
Sciences [DE-SC00112704]; European Union (ERDF); Free State of Saxony
via the ESF Project [100087859]
FX We acknowledge Dr. N. Kujala for assistance in the early phases of this
work, and we thank H. Yan for commenting on the manuscript. We are
grateful to the X-ray Science Division of the Advanced Photon Source for
support. This work was supported by the U.S. Department of Energy,
Office of Basic Energy Sciences, under Contract No. DE-AC-02-06CH11357.
Work carried out at National Synchrotron Light Source II and the Center
for Functional Nanomaterials at Brookhaven was supported by the U.S.
Department of Energy, Office Basic Energy Sciences under Contract No.
DE-SC00112704. Work at Fraunhofer IWS was partly funded by the European
Union (ERDF) and the Free State of Saxony via the ESF Project No.
100087859 (ENano).
NR 24
TC 4
Z9 4
U1 1
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD AUG 24
PY 2015
VL 107
IS 8
AR 081904
DI 10.1063/1.4929505
PG 3
WC Physics, Applied
SC Physics
GA CQ4SC
UT WOS:000360593900025
ER
PT J
AU Warren, EL
Kibbler, AE
France, RM
Norman, AG
Stradins, P
McMahon, WE
AF Warren, Emily L.
Kibbler, Alan E.
France, Ryan M.
Norman, Andrew G.
Stradins, Paul
McMahon, William E.
TI Growth of antiphase-domain-free GaP on Si substrates by metalorganic
chemical vapor deposition using an in situ AsH3 surface preparation
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SI(100) SURFACES; SPECTROSCOPY; GAAS; RDS
AB Antiphase-domain (APD) free GaP films were grown on Si(100) substrates prepared by annealing under dilute AsH3 in situ in an MOCVD reactor. LEED and AES surface analysis of Si(100) surfaces prepared by this treatment show that AsH3 etching quickly removes O and C contaminants at a relatively low temperature (690-740 degrees C), and creates a single-domain "A-type" As/Si surface reconstruction. The resulting GaP epilayers grown at the same temperature are APD-free, and could thereby serve as templates for direct growth of III-V semiconductors on Si. This single chamber process has a low thermal budget, and can enable heteroepitaxial integration of III-Vs and Si at an industrial scale. (C) 2015 AIP Publishing LLC.
C1 [Warren, Emily L.; Kibbler, Alan E.; France, Ryan M.; Norman, Andrew G.; Stradins, Paul; McMahon, William E.] Natl Ctr Photovolta, Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Warren, EL (reprint author), Natl Ctr Photovolta, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.
EM emily.warren@nrel.gov
RI Norman, Andrew/F-1859-2010;
OI Norman, Andrew/0000-0001-6368-521X; Warren, Emily/0000-0001-8568-7881
FU DOE EERE SETP [DE- EE00025783]
FX This work was supported by DOE EERE SETP under DE- EE00025783. We thank
Sanjini Nanayakkara, Bobby To, and Adele Tamboli for sample
characterization and helpful discussions. The U.S. Government retains
and the publisher, by accepting the article for publication,
acknowledges that the U.S. Government retains a nonexclusive, paid up,
irrevocable, worldwide license to publish or reproduce the published
form of this work, or allow others to do so, for U.S. Government
purposes.
NR 22
TC 2
Z9 2
U1 1
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD AUG 24
PY 2015
VL 107
IS 8
AR 082109
DI 10.1063/1.4929714
PG 4
WC Physics, Applied
SC Physics
GA CQ4SC
UT WOS:000360593900037
ER
PT J
AU Bailey, WD
Luconi, L
Rossin, A
Yakhvarov, D
Flowers, SE
Kaminsky, W
Kemp, RA
Giambastiani, G
Goldberg, KI
AF Bailey, Wilson D.
Luconi, Lapo
Rossin, Andrea
Yakhvarov, Dmitry
Flowers, Sarah E.
Kaminsky, Werner
Kemp, Richard A.
Giambastiani, Giuliano
Goldberg, Karen I.
TI Pyrazole-Based PCN Pincer Complexes of Palladium(II): Mono- and
Dinuclear Hydroxide Complexes and Ligand Rollover C-H Activation
SO ORGANOMETALLICS
LA English
DT Article
ID INTRAMOLECULAR HYDROAMINATION REACTIONS; UNEXPECTED REACTIVITY PATHS;
CRYSTAL-STRUCTURE; TRANSITION-ELEMENTS; BOND ACTIVATION; CYCLOMETALATED
COMPOUNDS; REDUCTIVE ELIMINATION; STRUCTURAL-ANALYSIS;
CATALYTIC-ACTIVITY; PLATINUM
AB Palladium complexes of the novel unsymmetrical phosphine pyrazole-containing pincer ligands PCNH (PCNH = 1-[3- [(di-tert-butylphosphino)methyl]pheny1]-1H-pyrazole) and PCNMe (PCNMe = 1-[3-(di-tert-butylphosphino)methyl]pheny1]-5-methyl-1H-pyrazole) have been prepared and characterized through single-crystal X-ray diffraction and multinudear H-1, C-13{H-1}, and P-31{H-1} NMR spectroscopy. In preparations of the monomeric hydroxide species (PCNH)Pd(OH), an unexpected N detachment followed by C-H activation on the heterocycle 5-position took place resulting in conversion of the monoanionic {P,C-,N} framework into a dianionic {P,C-,C-} ligand set. The dinuclear hydroxide-bridged species (PCNH)Pd(mu-OH)Pd(PCC) was the final product obtained under ambient conditions. The "rollover" activation was followed via P-31{H-1} NMR spectroscopy, and dinuclear cationic mu-OH and monomeric Pd-II hydroxide intermediates were identified. DFT computational analysis of the process (M06//6-31G*, THF) showed that the energy barriers for the pyrazolyl rollover and for C-H activation through a sigma-bond metathesis reaction are low enough to be overcome under ambient-temperature conditions, in line with the experimental findings. In contrast to the PCNH system, no "rollover" reactivity was observed in the PCNMe system, and the terminal hydroxide complex (PCNMe)Pd(OH) could be readily isolated and fully characterized.
C1 [Bailey, Wilson D.; Flowers, Sarah E.; Kaminsky, Werner; Goldberg, Karen I.] Univ Washington, Dept Chem, Seattle, WA 98195 USA.
[Luconi, Lapo; Rossin, Andrea; Giambastiani, Giuliano] CNR, Inst Chem Organomet Cpds ICCOM, I-50019 Sesto Fno Florence, Italy.
[Luconi, Lapo; Rossin, Andrea; Giambastiani, Giuliano] CNR, Consorzio INSTM, I-50019 Sesto Fno Florence, Italy.
[Yakhvarov, Dmitry; Giambastiani, Giuliano] Kazan Fed Univ, Kazan 420008, Russia.
[Kemp, Richard A.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA.
[Kemp, Richard A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA.
RP Kemp, RA (reprint author), Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA.
EM rakemp@unm.edu; giuliano.giambastiani@iccom.cnr.it;
goldberg@chem.washington.edu
RI Rossin, Andrea/P-6379-2015; Giambastiani, Giuliano/E-3255-2016
OI Rossin, Andrea/0000-0002-1283-2803; Giambastiani,
Giuliano/0000-0002-0315-3286
FU Fondazione Cariplo ("Crystalline Elastomers"); Groupe de Recherche
International (GDRI) "Homogeneous Catalysis for Sustainable
Development"; COST action: "EUFEN: European F-Element Network" [CM1006];
[DE-FG02-06ER15765]
FX L.L., A.R., and G.G. thank the Fondazione Cariplo ("Crystalline
Elastomers" project), the Groupe de Recherche International (GDRI)
"Homogeneous Catalysis for Sustainable Development", and the COST action
CM1006: "EUFEN: European F-Element Network" for supporting this work.
CREA (Centro Ricerche Energia e Ambiente) in Colle Val d'Elsa (Siena,
Italy) is also acknowledged for computational resources. The work done
at the University of Washington and the University of New Mexico was
supported by the Department of Energy (DE-FG02-06ER15765).
NR 100
TC 5
Z9 5
U1 7
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0276-7333
EI 1520-6041
J9 ORGANOMETALLICS
JI Organometallics
PD AUG 24
PY 2015
VL 34
IS 16
BP 3998
EP 4010
DI 10.1021/acs.organomet.5b00355
PG 13
WC Chemistry, Inorganic & Nuclear; Chemistry, Organic
SC Chemistry
GA CQ0XS
UT WOS:000360322500011
ER
PT J
AU Alvarado, SR
Shortt, IA
Fan, HJ
Vela, J
AF Alvarado, Samuel R.
Shortt, Ian A.
Fan, Hua-Jun
Vela, Javier
TI Assessing Phosphine-Chalcogen Bond Energetics from Calculations
SO ORGANOMETALLICS
LA English
DT Article
ID ELECTRONIC POPULATION ANALYSIS; MOLECULAR WAVE FUNCTIONS; SULFUR
ATOM-TRANSFER; NMR CHEMICAL-SHIFTS; SEMICONDUCTOR NANOCRYSTAL SYNTHESIS;
NUCLEAR-MAGNETIC-RESONANCE; PERTURBATION-THEORY; EXCHANGE-REACTIONS;
LCAO; MECHANISM
AB Phosphine chalcogenides are useful reagents in chalcogen atom transfer reactions and nanocrystal syntheses. Understanding the strength and electronic structure of these bonds is key to optimizing their use, but a limited number of experimental and computational studies probe these issues. Using density functional theory (DFT), we computationally screen multiple series of trisubstituted phosphine chalcogenide molecules with a variety of phosphorus substituents and examine how these affect the strength of the phosphorus-chalcogen bond. DFT provides valuable data on these compounds including PE bond dissociation energies, P-E bond order, Lowdin charge on phosphorus and chalcogen atoms, and molecular geometries. Experimentally monitoring the P-31 and Se-77 NMR chemical shifts and published Hammett constants provides good estimates and confirmation of the relative magnitude of electronic shielding around these nuclei and confirms the predictive value of the computational results.
C1 [Alvarado, Samuel R.; Vela, Javier] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
[Alvarado, Samuel R.; Vela, Javier] Ames Lab, Ames, IA 50011 USA.
[Shortt, Ian A.; Fan, Hua-Jun] Prairie View A&M Univ, Dept Chem, Prairie View, TX 77446 USA.
RP Fan, HJ (reprint author), Prairie View A&M Univ, Dept Chem, Prairie View, TX 77446 USA.
EM hjfan@pvamu.edu; vela@iastate.edu
RI Vela, Javier/I-4724-2014
OI Vela, Javier/0000-0001-5124-6893
FU National Science Foundation through Division of Materials Research,
Solid State and Materials Chemistry program [NSF-DMR-1309510];
Department of Chemistry at Prairie View AM University [115103-00011];
U.S. Department of Energy, National Nuclear Security Administration
[DE-NA 0001861]
FX J.V. gratefully acknowledges the National Science Foundation for funding
of this work through the Division of Materials Research, Solid State and
Materials Chemistry program (NSF-DMR-1309510). H.-J.F. thanks the
Department of Chemistry at Prairie View A&M University for release time
and a 2014 Summer Research mini-grant (115103-00011), and the U.S.
Department of Energy, National Nuclear Security Administration, for
support (DE-NA 0001861). S.R.A. thanks Stephen Todey for assistance with
NMR experiments. The authors would like to dedicate this work to Prof.
John Verkade for his six decades of research excellence and thank him,
Pat Holland, Gordie Miller, and Arthur Winter for comments.
NR 67
TC 6
Z9 6
U1 3
U2 14
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0276-7333
EI 1520-6041
J9 ORGANOMETALLICS
JI Organometallics
PD AUG 24
PY 2015
VL 34
IS 16
BP 4023
EP 4031
DI 10.1021/acs.organomet.5b00428
PG 9
WC Chemistry, Inorganic & Nuclear; Chemistry, Organic
SC Chemistry
GA CQ0XS
UT WOS:000360322500014
ER
PT J
AU Efremenko, I
Fish, RH
AF Efremenko, Irena
Fish, Richard H.
TI Quantum Chemical and Molecular Docking Studies of
[(eta(6)-Cp*Rh-Tyr(1))-Leu-enkephalin](2+) to G-Protein-Coupled mu-,
partial derivative- and kappa-Opioid Receptors and Comparisons to the
Neuropeptide [Tyr(1)]-Leu-enkephalin: Conformations, Noncovalent Amino
Acid Binding Sites, Binding Energies, Electronic Factors, and Receptor
Distortion Forces
SO ORGANOMETALLICS
LA English
DT Article
ID BIOORGANOMETALLIC CHEMISTRY; BASIS-SETS; COMPLEXES; DFT; STABILITY;
CANCER
AB Recently reported studies by Kobilka et al. (Nature 2012, 485, 321, 400) and Stevens et al. (Nature 2012, 485, 327) have characterized the structures of the G-protein-coupled mu-, partial derivative-, and kappa-opioid receptors (GPCORs) via X-ray crystallography, including the use of guest, morphinan antagonist, drug analogues. These GPCORs have been shown to control the physiological functions of pain and, therefore, have been designated as a prime target for new, nonaddictive, pain drug discoveries. Moreover, Fish et al. (J. Am. Chem. Soc. 2012, 134, 10321) have recently reported on a chemoselective reaction of GPCR tyrosine-containing peptides with [Cp*Rh(H2O3)](OTf)(2) to provide [(eta(6)-Cp*Rh-Tyr(#))-GPCR-peptide] (OTf)(2) complexes. For example, the agonist, endogenous neuropeptide [Tyr(1)]-Leu-enkephalin, 1 (Tyr(1)-Gly-Gly-Phe-Leu), upon reaction with the Cp*Rh tris aqua complex, at pH 5-6, gave the [(eta(6)-Cp*Rh-Tyr(1))-Leu-enkephalin](OTf)(2) complex 2, also an agonist, which was found to bind to individual and coexpressed mu- and partial derivative-opioid receptor cells. Therefore, we present, in this contribution, the first comprehensive quantum chemical and molecular docking studies of an organometallic neuropeptide complex, 2, to structurally characterized mu-, partial derivative-, and kappa-GPCORs. We found that the docked conformations of dication 2 at the three opioid receptors were in similar receptor locations to the natural neuropeptide 1, as well as the morphinan drug derivatives, all antagonists, used in the X-ray structures of the mu-, partial derivative-, and kappa-opioid receptors, but, importantly, had distinctly different noncovalent H-bonding, pi-pi and CH-pi interactions with the nearby transmembrane receptor amino acids compared to 1, with only H-bonding interactions. Therefore, quantum chemical calculations showed this was due to four critical factors: (a) Dication 2 was found to be a non-zwitterion versus 1 being a zwitterion; (b) significant differences in the electron density and hydrophobic effects of the (eta(6)-Cp*Rh-Tyr(1))(2+) versus the (Tyr(1)) moieties on the message paradigm for receptor molecular recognition; (c) binding energies of 2 in comparison to 1, for the opioid receptors; and (d) receptor distortion forces that could possibly hinder binding regimes of 1 and 2, especially to the kappa-opioid receptor. Furthermore, we have attempted to understand how these factors might possibly be related to the previously reported EC50 receptor binding values (nM) of agonists 1 and 2 at the mu-, partial derivative-, and kappa-opioid receptors.
C1 [Efremenko, Irena] Weizmann Inst Sci, Dept Organ Chem, IL-76100 Rehovot, Israel.
[Fish, Richard H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Efremenko, I (reprint author), Weizmann Inst Sci, Dept Organ Chem, IL-76100 Rehovot, Israel.
EM irena.efremenko@weizmann.ac.il; rhfish@lbl.gov
FU Helen and Martin Kimmel Center for Molecular Design; Minerva Foundation;
Lise Meitner-Minerva Center; Weizmann Institute of Science; Israel
Science Foundation [709/05]; [DE AC02-05CH11231]
FX I.E. gratefully acknowledges the financial support at the Weizmann
Institute of Science, by the Helen and Martin Kimmel Center for
Molecular Design, the Israel Science Foundation (grant 709/05), the
Minerva Foundation, and the Lise Meitner-Minerva Center for
Computational Quantum Chemistry. R.H.F. thanks Dr. H. Bauke Albada,
formerly of the Department of Bioinorganic Chemistry, Ruhr University,
Bochum, and now of the Department of Organic Chemistry, Hebrew
University, Jerusalem, for collaboration on the synthesis and
purification of peptide 1 and complex 2 (ref 6). We also thank Dr.
Jennifer Whistler, Department of Neurology, University of California,
San Francisco, for critical discussions on the biological aspects.
R.H.F. also gratefully acknowledges support by the Department of Energy
under Contract No. DE AC02-05CH11231.
NR 39
TC 3
Z9 3
U1 2
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0276-7333
EI 1520-6041
J9 ORGANOMETALLICS
JI Organometallics
PD AUG 24
PY 2015
VL 34
IS 16
BP 4117
EP 4126
DI 10.1021/acs.organomet.5b00542
PG 10
WC Chemistry, Inorganic & Nuclear; Chemistry, Organic
SC Chemistry
GA CQ0XS
UT WOS:000360322500026
ER
PT J
AU Chikara, S
Haskel, D
Sim, JH
Kim, HS
Chen, CC
Fabbris, G
Veiga, LSI
Souza-Neto, NM
Terzic, J
Butrouna, K
Cao, G
Han, MJ
van Veenendaal, M
AF Chikara, Shalinee
Haskel, Daniel
Sim, Jae-Hoon
Kim, Heung-Sik
Chen, Cheng-Chien
Fabbris, G.
Veiga, L. S. I.
Souza-Neto, N. M.
Terzic, J.
Butrouna, K.
Cao, G.
Han, Myung Joon
van Veenendaal, Michel
TI Sr2Ir1-xRhxO4(x < 0.5): An inhomogeneous j(eff)=1/2 Hubbard system
SO PHYSICAL REVIEW B
LA English
DT Article
AB In a combined experimental and theoretical study, we investigate the properties of Sr2Ir1-xRhxO4. From the branching ratios of the L-edge isotropic x-ray absorption spectra, we determine that the spin-orbit coupling is remarkably independent of x for both iridium and rhodium sites. DFT + U calculations show that the doping is close to isoelectronic and introduces impurity bands of predominantly rhodium character close to the lower Hubbard band. Overlap of these two bands leads to metallic behavior. Since the low-energy states for x < 0.5 have predominantly j(eff) = 1/2 character, we suggest that the electronic properties of this material can be described by an inhomogeneous Hubbard model, where the on-site energies change due to local variations in the spin-orbit interaction strength combined with additional changes in binding energy.
C1 [Chikara, Shalinee; Haskel, Daniel; Chen, Cheng-Chien; Fabbris, G.; Veiga, L. S. I.; van Veenendaal, Michel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Sim, Jae-Hoon; Kim, Heung-Sik; Han, Myung Joon] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea.
[Fabbris, G.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Veiga, L. S. I.; Souza-Neto, N. M.] LNLS, BR-13083970 Campinas, SP, Brazil.
[Veiga, L. S. I.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Sao Paulo, Brazil.
[Terzic, J.; Butrouna, K.; Cao, G.] Univ Kentucky, Ctr Adv Mat, Lexington, KY 40506 USA.
[Terzic, J.; Butrouna, K.; Cao, G.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA.
[van Veenendaal, Michel] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
RP Chikara, S (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RI Fabbris, Gilberto/F-3244-2011; Han, Myung Joon/H-7104-2012; Souza-Neto,
Narcizo/G-1303-2010; Inst. of Physics, Gleb Wataghin/A-9780-2017;
Chikara, Shalinee/E-4654-2017
OI Fabbris, Gilberto/0000-0001-8278-4985; Han, Myung
Joon/0000-0002-8089-7991; Souza-Neto, Narcizo/0000-0002-7474-8017;
FU US DOE, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; US Department of Energy (DOE), Office of Basic
Energy Sciences, Division of Materials Sciences and Engineering
[DE-FG02-03ER46097]; NIU's Institute for Nanoscience, Engineering, and
Technology; US DOE [DE-AC02-05CH11231]; National Institute of
Supercomputing and Networking/Korea Institute of Science and Technology
Information [KSC-2013-C2-23]; Basic Science Research Program through NRF
[2014R1A1A2057202]; Samsung Advanced Institute of Technology (SAIT);
Basic Science Research Program through the National Research Foundation
of Korea (NRF) - Ministry of Education [2013R1A6A3A01064947]; NSF
[DMR1265162]
FX Work at Argonne National Laboratory was supported by the US DOE, Office
of Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. M.v.V. was supported by the US Department of Energy
(DOE), Office of Basic Energy Sciences, Division of Materials Sciences
and Engineering under Award No. DE-FG02-03ER46097 and NIU's Institute
for Nanoscience, Engineering, and Technology. The computational work was
partially performed at NERSC, which is supported by the US DOE Contract
No. DE-AC02-05CH11231. Computational resources were partly supported by
the National Institute of Supercomputing and Networking/Korea Institute
of Science and Technology Information with supercomputing resources
including technical support (Grant No. KSC-2013-C2-23). J.H.S. and M.J.H
were supported by Basic Science Research Program through NRF
(2014R1A1A2057202) and by Samsung Advanced Institute of Technology
(SAIT). H.-S.K. was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry
of Education (Grant No. 2013R1A6A3A01064947). The work at the University
of Kentucky was supported by NSF via Grant No. DMR1265162.
NR 20
TC 6
Z9 6
U1 2
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 24
PY 2015
VL 92
IS 8
AR 081114
DI 10.1103/PhysRevB.92.081114
PG 5
WC Physics, Condensed Matter
SC Physics
GA CP5SD
UT WOS:000359943400002
ER
PT J
AU Adamczyk, L
Adkins, JK
Agakishiev, G
Aggarwal, MM
Ahammed, Z
Alekseev, I
Alford, J
Aparin, A
Arkhipkin, D
Aschenauer, EC
Averichev, GS
Banerjee, A
Bellwied, R
Bhasin, A
Bhati, AK
Bhattarai, P
Bielcik, J
Bielcikova, J
Bland, LC
Bordyuzhin, IG
Bouchet, J
Brandin, AV
Bunzarov, I
Burton, TP
Butterworth, J
Caines, H
Sanchez, MCD
Campbell, JM
Cebra, D
Cervantes, MC
Chakaberia, I
Chaloupka, P
Chang, Z
Chattopadhyay, S
Chen, JH
Chen, X
Cheng, J
Cherney, M
Christie, W
Contin, G
Crawford, HJ
Das, S
De Silva, LC
Debbe, RR
Dedovich, TG
Deng, J
Derevschikov, AA
di Ruzza, B
Didenko, L
Dilks, C
Dong, X
Drachenberg, JL
Draper, JE
Du, CM
Dunkelberger, LE
Dunlop, JC
Efimov, LG
Engelage, J
Eppley, G
Esha, R
Evdokimov, O
Eyser, O
Fatemi, R
Fazio, S
Federic, P
Fedorisin, J
Feng, Z
Filip, P
Fisyak, Y
Flores, CE
Fulek, L
Gagliardi, CA
Garand, D
Geurts, F
Gibson, A
Girard, M
Greiner, L
Grosnick, D
Gunarathne, DS
Guo, Y
Gupta, S
Gupta, A
Guryn, W
Hamad, A
Hamed, A
Haque, R
Harris, JW
He, L
Heppelmann, S
Heppelmann, S
Hirsch, A
Hoffmann, GW
Hofman, DJ
Horvat, S
Huang, B
Huang, X
Huang, HZ
Huck, P
Humanic, TJ
Igo, G
Jacobs, WW
Jang, H
Jiang, K
Judd, EG
Jung, K
Kabana, S
Kalinkin, D
Kang, K
Kauder, K
Ke, HW
Keane, D
Kechechyan, A
Khan, ZH
Kikola, DP
Kisel, I
Kisiel, A
Kochenda, L
Koetke, DD
Kollegger, T
Kosarzewski, LK
Kraishan, AF
Kravtsov, P
Krueger, K
Kulakov, I
Kumar, L
Kycia, RA
Lamont, MAC
Landgraf, JM
Landry, KD
Lauret, J
Lebedev, A
Lednicky, R
Lee, JH
Li, X
Li, C
Li, W
Li, ZM
Li, Y
Li, X
Lisa, MA
Liu, F
Ljubicic, T
Llope, WJ
Lomnitz, M
Longacre, RS
Luo, X
Ma, YG
Ma, GL
Ma, L
Ma, R
Magdy, N
Majka, R
Manion, A
Margetis, S
Markert, C
Masui, H
Matis, HS
McDonald, D
Meehan, K
Minaev, NG
Mioduszewski, S
Mohanty, B
Mondal, MM
Morozov, D
Mustafa, MK
Nandi, BK
Nasim, M
Nayak, TK
Nigmatkulov, G
Nogach, LV
Noh, SY
Novak, J
Nurushev, SB
Odyniec, G
Ogawa, A
Oh, K
Okorokov, V
Olvitt, D
Page, BS
Pak, R
Pan, YX
Pandit, Y
Panebratsev, Y
Pawlik, B
Pei, H
Perkins, C
Peterson, A
Pile, P
Planinic, M
Pluta, J
Poljak, N
Poniatowska, K
Porter, J
Posik, M
Poskanzer, AM
Pruthi, NK
Putschke, J
Qiu, H
Quintero, A
Ramachandran, S
Raniwala, R
Raniwala, S
Ray, RL
Ritter, HG
Roberts, JB
Rogachevskiy, OV
Romero, JL
Roy, A
Ruan, L
Rusnak, J
Rusnakova, O
Sahoo, NR
Sahu, PK
Sakrejda, I
Salur, S
Sandweiss, J
Sarkar, A
Schambach, J
Scharenberg, RP
Schmah, AM
Schmidke, WB
Schmitz, N
Seger, J
Seyboth, P
Shah, N
Shahaliev, E
Shanmuganathan, PV
Shao, M
Sharma, MK
Sharma, B
Shen, WQ
Shi, SS
Shou, QY
Sichtermann, EP
Sikora, R
Simko, M
Skoby, MJ
Smirnov, D
Smirnov, N
Song, L
Sorensen, P
Spinka, HM
Srivastava, B
Stanislaus, TDS
Stepanov, M
Stock, R
Strikhanov, M
Stringfellow, B
Sumbera, M
Summa, B
Sun, X
Sun, Z
Sun, XM
Sun, Y
Surrow, B
Svirida, N
Szelezniak, MA
Tang, AH
Tang, Z
Tarnowsky, T
Tawfik, AN
Thomas, JH
Timmins, AR
Tlusty, D
Tokarev, M
Trentalange, S
Tribble, RE
Tribedy, P
Tripathy, SK
Trzeciak, BA
Tsai, OD
Ullrich, T
Underwood, DG
Upsal, I
Van Buren, G
van Nieuwenhuizen, G
Vandenbroucke, M
Varma, R
Vasiliev, AN
Vertesi, R
Videbaek, F
Viyogi, YP
Vokal, S
Voloshin, SA
Vossen, A
Wang, G
Wang, Y
Wang, F
Wang, Y
Wang, H
Wang, JS
Webb, JC
Webb, G
Wen, L
Westfall, GD
Wieman, H
Wissink, SW
Witt, R
Wu, YF
Xiao, ZG
Xie, W
Xin, K
Xu, QH
Xu, Z
Xu, H
Xu, N
Xu, YF
Yang, Q
Yang, Y
Yang, S
Yang, Y
Yang, C
Ye, Z
Yepes, P
Yi, L
Yip, K
Yoo, IK
Yu, N
Zbroszczyk, H
Zha, W
Zhang, XP
Zhang, J
Zhang, Y
Zhang, J
Zhang, JB
Zhang, S
Zhang, Z
Zhao, J
Zhong, C
Zhou, L
Zhu, X
Zoulkarneeva, Y
Zyzak, M
AF Adamczyk, L.
Adkins, J. K.
Agakishiev, G.
Aggarwal, M. M.
Ahammed, Z.
Alekseev, I.
Alford, J.
Aparin, A.
Arkhipkin, D.
Aschenauer, E. C.
Averichev, G. S.
Banerjee, A.
Bellwied, R.
Bhasin, A.
Bhati, A. K.
Bhattarai, P.
Bielcik, J.
Bielcikova, J.
Bland, L. C.
Bordyuzhin, I. G.
Bouchet, J.
Brandin, A. V.
Bunzarov, I.
Burton, T. P.
Butterworth, J.
Caines, H.
Sanchez, M. Calderon de la Barca
Campbell, J. M.
Cebra, D.
Cervantes, M. C.
Chakaberia, I.
Chaloupka, P.
Chang, Z.
Chattopadhyay, S.
Chen, J. H.
Chen, X.
Cheng, J.
Cherney, M.
Christie, W.
Contin, G.
Crawford, H. J.
Das, S.
De Silva, L. C.
Debbe, R. R.
Dedovich, T. G.
Deng, J.
Derevschikov, A. A.
di Ruzza, B.
Didenko, L.
Dilks, C.
Dong, X.
Drachenberg, J. L.
Draper, J. E.
Du, C. M.
Dunkelberger, L. E.
Dunlop, J. C.
Efimov, L. G.
Engelage, J.
Eppley, G.
Esha, R.
Evdokimov, O.
Eyser, O.
Fatemi, R.
Fazio, S.
Federic, P.
Fedorisin, J.
Feng, Z.
Filip, P.
Fisyak, Y.
Flores, C. E.
Fulek, L.
Gagliardi, C. A.
Garand, D.
Geurts, F.
Gibson, A.
Girard, M.
Greiner, L.
Grosnick, D.
Gunarathne, D. S.
Guo, Y.
Gupta, S.
Gupta, A.
Guryn, W.
Hamad, A.
Hamed, A.
Haque, R.
Harris, J. W.
He, L.
Heppelmann, S.
Heppelmann, S.
Hirsch, A.
Hoffmann, G. W.
Hofman, D. J.
Horvat, S.
Huang, B.
Huang, X.
Huang, H. Z.
Huck, P.
Humanic, T. J.
Igo, G.
Jacobs, W. W.
Jang, H.
Jiang, K.
Judd, E. G.
Jung, K.
Kabana, S.
Kalinkin, D.
Kang, K.
Kauder, K.
Ke, H. W.
Keane, D.
Kechechyan, A.
Khan, Z. H.
Kikola, D. P.
Kisel, I.
Kisiel, A.
Kochenda, L.
Koetke, D. D.
Kollegger, T.
Kosarzewski, L. K.
Kraishan, A. F.
Kravtsov, P.
Krueger, K.
Kulakov, I.
Kumar, L.
Kycia, R. A.
Lamont, M. A. C.
Landgraf, J. M.
Landry, K. D.
Lauret, J.
Lebedev, A.
Lednicky, R.
Lee, J. H.
Li, X.
Li, C.
Li, W.
Li, Z. M.
Li, Y.
Li, X.
Lisa, M. A.
Liu, F.
Ljubicic, T.
Llope, W. J.
Lomnitz, M.
Longacre, R. S.
Luo, X.
Ma, Y. G.
Ma, G. L.
Ma, L.
Ma, R.
Magdy, N.
Majka, R.
Manion, A.
Margetis, S.
Markert, C.
Masui, H.
Matis, H. S.
McDonald, D.
Meehan, K.
Minaev, N. G.
Mioduszewski, S.
Mohanty, B.
Mondal, M. M.
Morozov, D.
Mustafa, M. K.
Nandi, B. K.
Nasim, Md.
Nayak, T. K.
Nigmatkulov, G.
Nogach, L. V.
Noh, S. Y.
Novak, J.
Nurushev, S. B.
Odyniec, G.
Ogawa, A.
Oh, K.
Okorokov, V.
Olvitt, D., Jr.
Page, B. S.
Pak, R.
Pan, Y. X.
Pandit, Y.
Panebratsev, Y.
Pawlik, B.
Pei, H.
Perkins, C.
Peterson, A.
Pile, P.
Planinic, M.
Pluta, J.
Poljak, N.
Poniatowska, K.
Porter, J.
Posik, M.
Poskanzer, A. M.
Pruthi, N. K.
Putschke, J.
Qiu, H.
Quintero, A.
Ramachandran, S.
Raniwala, R.
Raniwala, S.
Ray, R. L.
Ritter, H. G.
Roberts, J. B.
Rogachevskiy, O. V.
Romero, J. L.
Roy, A.
Ruan, L.
Rusnak, J.
Rusnakova, O.
Sahoo, N. R.
Sahu, P. K.
Sakrejda, I.
Salur, S.
Sandweiss, J.
Sarkar, A.
Schambach, J.
Scharenberg, R. P.
Schmah, A. M.
Schmidke, W. B.
Schmitz, N.
Seger, J.
Seyboth, P.
Shah, N.
Shahaliev, E.
Shanmuganathan, P. V.
Shao, M.
Sharma, M. K.
Sharma, B.
Shen, W. Q.
Shi, S. S.
Shou, Q. Y.
Sichtermann, E. P.
Sikora, R.
Simko, M.
Skoby, M. J.
Smirnov, D.
Smirnov, N.
Song, L.
Sorensen, P.
Spinka, H. M.
Srivastava, B.
Stanislaus, T. D. S.
Stepanov, M.
Stock, R.
Strikhanov, M.
Stringfellow, B.
Sumbera, M.
Summa, B.
Sun, X.
Sun, Z.
Sun, X. M.
Sun, Y.
Surrow, B.
Svirida, N.
Szelezniak, M. A.
Tang, A. H.
Tang, Z.
Tarnowsky, T.
Tawfik, A. N.
Thomas, J. H.
Timmins, A. R.
Tlusty, D.
Tokarev, M.
Trentalange, S.
Tribble, R. E.
Tribedy, P.
Tripathy, S. K.
Trzeciak, B. A.
Tsai, O. D.
Ullrich, T.
Underwood, D. G.
Upsal, I.
Van Buren, G.
van Nieuwenhuizen, G.
Vandenbroucke, M.
Varma, R.
Vasiliev, A. N.
Vertesi, R.
Videbaek, F.
Viyogi, Y. P.
Vokal, S.
Voloshin, S. A.
Vossen, A.
Wang, G.
Wang, Y.
Wang, F.
Wang, Y.
Wang, H.
Wang, J. S.
Webb, J. C.
Webb, G.
Wen, L.
Westfall, G. D.
Wieman, H.
Wissink, S. W.
Witt, R.
Wu, Y. F.
Xiao, Z. G.
Xie, W.
Xin, K.
Xu, Q. H.
Xu, Z.
Xu, H.
Xu, N.
Xu, Y. F.
Yang, Q.
Yang, Y.
Yang, S.
Yang, Y.
Yang, C.
Ye, Z.
Yepes, P.
Yi, L.
Yip, K.
Yoo, I. -K.
Yu, N.
Zbroszczyk, H.
Zha, W.
Zhang, X. P.
Zhang, J.
Zhang, Y.
Zhang, J.
Zhang, J. B.
Zhang, S.
Zhang, Z.
Zhao, J.
Zhong, C.
Zhou, L.
Zhu, X.
Zoulkarneeva, Y.
Zyzak, M.
CA STAR Collaboration
TI Measurements of dielectron production in Au plus Au collisions at root
s(NN)=200 GeV from the STAR experiment
SO PHYSICAL REVIEW C
LA English
DT Article
ID RELATIVISTIC NUCLEAR COLLISIONS; SUPER-PROTON SYNCHROTRON; HEAVY-ION
COLLISIONS; DILEPTON PRODUCTION; CHIRAL RESTORATION; TRANSPORT APPROACH;
SPS ENERGIES; CERN-SPS; MULTIPLICITY; FLOW
AB We report on measurements of dielectron (e(+) e(-)) production in Au + Au collisions at a center-of-mass energy of 200 GeV per nucleon-nucleon pair using the STAR detector at BNL Relativistic Heavy Ion Collider. Systematic measurements of the dielectron yield as a function of transverse momentum (p(T)) and collision centrality show an enhancement compared to a cocktail simulation of hadronic sources in the low invariant-mass region (M-ee < 1 GeV / c(2)). This enhancement cannot be reproduced by the rho-meson vacuum spectral function. In minimum-bias collisions, in the invariant-mass range of 0.30-0.76 GeV / c(2), integrated over the full pT acceptance, the enhancement factor is 1.76 +/- 0.06 (stat.) +/- 0.26 (sys.) +/- 0.29 (cocktail). The enhancement factor exhibits weak centrality and pT dependence in STAR's accessible kinematic regions, while the excess yield in this invariant-mass region as a function of the number of participating nucleons follows a power-law shape with a power of 1.44 +/- 0.10. Models that assume an in-medium broadening of the rho-meson spectral function consistently describe the observed excess in these measurements. Additionally, we report on measurements of omega-and phi-meson production through their e+ e(-) decay channel. These measurements show good agreement with Tsallis blast-wave model predictions, as well as, in the case of the phi meson, results through its K+ K- decay channel. In the intermediate invariant-mass region (1.1 < Mee < 3 GeV / c(2)), we investigate the spectral shapes from different collision centralities. Physics implications for possible in-medium modification of charmed hadron production and other physics sources are discussed.
C1 [Adamczyk, L.; Fulek, L.; Sikora, R.] AGH Univ Sci & Technol, PL-30059 Krakow, Poland.
[Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Arkhipkin, D.; Aschenauer, E. C.; Bland, L. C.; Burton, T. P.; Chakaberia, I.; Christie, W.; Debbe, R. R.; di Ruzza, B.; Didenko, L.; Dunlop, J. C.; Eyser, O.; Fazio, S.; Fisyak, Y.; Guryn, W.; Heppelmann, S.; Ke, H. W.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; Li, X.; Ljubicic, T.; Longacre, R. S.; Ma, R.; Ogawa, A.; Page, B. S.; Pak, R.; Pile, P.; Ruan, L.; Schmidke, W. B.; Smirnov, D.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; van Nieuwenhuizen, G.; Videbaek, F.; Wang, H.; Webb, J. C.; Webb, G.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Crawford, H. J.; Engelage, J.; Judd, E. G.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Sanchez, M. Calderon de la Barca; Cebra, D.; Draper, J. E.; Flores, C. E.; Meehan, K.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA.
[Dunkelberger, L. E.; Esha, R.; Huang, H. Z.; Igo, G.; Landry, K. D.; Nasim, Md.; Pan, Y. X.; Trentalange, S.; Tsai, O. D.; Wang, G.; Wen, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[Feng, Z.; Huck, P.; Li, Z. M.; Liu, F.; Luo, X.; Pei, H.; Shi, S. S.; Sun, X. M.; Wang, Y.; Wu, Y. F.; Yang, Y.; Yu, N.; Zhang, J. B.; Zhao, J.] Cent China Normal Univ HZNU, Wuhan 430079, Peoples R China.
[Evdokimov, O.; Hofman, D. J.; Huang, B.; Khan, Z. H.; Pandit, Y.; Ye, Z.] Univ Illinois, Chicago, IL 60607 USA.
[Cherney, M.; De Silva, L. C.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA.
[Bielcik, J.; Chaloupka, P.; Rusnakova, O.; Trzeciak, B. A.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic.
[Bielcikova, J.; Federic, P.; Rusnak, J.; Simko, M.; Sumbera, M.; Tlusty, D.; Vertesi, R.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic.
[Kisel, I.; Kollegger, T.; Kulakov, I.; Stock, R.; Zyzak, M.] Frankfurt Inst Adv Studies FIAS, D-60438 Frankfurt, Germany.
[Das, S.; Sahu, P. K.; Tripathy, S. K.] Inst Phys, Bhubaneswar 751005, Orissa, India.
[Nandi, B. K.; Sarkar, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India.
[Jacobs, W. W.; Skoby, M. J.; Vossen, A.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA.
[Alekseev, I.; Bordyuzhin, I. G.; Kalinkin, D.; Svirida, N.] Alikhanov Inst Theoret & Expt Phys, Moscow 117218, Russia.
[Bhasin, A.; Gupta, S.; Gupta, A.; Sharma, M. K.] Univ Jammu, Jammu 180001, India.
[Agakishiev, G.; Aparin, A.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia.
[Alford, J.; Bouchet, J.; Hamad, A.; Kabana, S.; Keane, D.; Lomnitz, M.; Margetis, S.; Quintero, A.; Shanmuganathan, P. V.] Kent State Univ, Kent, OH 44242 USA.
[Adkins, J. K.; Fatemi, R.; Ramachandran, S.] Univ Kentucky, Lexington, KY 40506 USA.
[Jang, H.; Noh, S. Y.] Korea Inst Sci & Technol Informat, Taejon 305701, South Korea.
[Chen, X.; Du, C. M.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.; Zhang, J.] Inst Modern Phys, Lanzhou 730000, Peoples R China.
[Contin, G.; Dong, X.; Greiner, L.; Manion, A.; Masui, H.; Matis, H. S.; Mustafa, M. K.; Odyniec, G.; Porter, J.; Poskanzer, A. M.; Qiu, H.; Ritter, H. G.; Sakrejda, I.; Salur, S.; Schmah, A. M.; Sichtermann, E. P.; Sun, X.; Szelezniak, M. A.; Thomas, J. H.; Wieman, H.; Xu, N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Schmitz, N.; Seyboth, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Novak, J.; Tarnowsky, T.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA.
[Brandin, A. V.; Kochenda, L.; Kravtsov, P.; Nigmatkulov, G.; Okorokov, V.; Strikhanov, M.] Moscow Engn Phys Inst, Moscow 115409, Russia.
[Haque, R.; Mohanty, B.] Natl Inst Sci Educ & Res, Bhubaneswar 751005, Orissa, India.
[Campbell, J. M.; Humanic, T. J.; Lisa, M. A.; Peterson, A.; Upsal, I.] Ohio State Univ, Columbus, OH 43210 USA.
[Kycia, R. A.; Pawlik, B.] Inst Nucl Phys PAN, PL-31342 Krakow, Poland.
[Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.; Sharma, B.] Panjab Univ, Chandigarh 160014, India.
[Dilks, C.; Heppelmann, S.; Summa, B.] Penn State Univ, University Pk, PA 16802 USA.
[Derevschikov, A. A.; Minaev, N. G.; Morozov, D.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino 142281, Russia.
[Garand, D.; He, L.; Hirsch, A.; Jung, K.; Scharenberg, R. P.; Srivastava, B.; Stepanov, M.; Stringfellow, B.; Wang, F.; Xie, W.; Yi, L.] Purdue Univ, W Lafayette, IN 47907 USA.
[Oh, K.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea.
[Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India.
[Butterworth, J.; Eppley, G.; Geurts, F.; Roberts, J. B.; Xin, K.; Yepes, P.] Rice Univ, Houston, TX 77251 USA.
[Guo, Y.; Jiang, K.; Li, C.; Shao, M.; Sun, Y.; Tang, Z.; Yang, Q.; Yang, S.; Yang, C.; Zha, W.; Zhang, Y.; Zhou, L.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Deng, J.; Xu, Q. H.; Zhang, J.] Shandong Univ, Jinan 250100, Shandong, Peoples R China.
[Chen, J. H.; Li, W.; Ma, Y. G.; Ma, G. L.; Ma, L.; Shah, N.; Shen, W. Q.; Shou, Q. Y.; Xu, Y. F.; Zhang, S.; Zhang, Z.; Zhong, C.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
[Gunarathne, D. S.; Kraishan, A. F.; Li, X.; Olvitt, D., Jr.; Posik, M.; Surrow, B.; Vandenbroucke, M.] Temple Univ, Philadelphia, PA 19122 USA.
[Cervantes, M. C.; Chang, Z.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Mondal, M. M.; Sahoo, N. R.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA.
[Bhattarai, P.; Hoffmann, G. W.; Markert, C.; Ray, R. L.; Schambach, J.] Univ Texas Austin, Austin, TX 78712 USA.
[Bellwied, R.; McDonald, D.; Song, L.; Timmins, A. R.] Univ Houston, Houston, TX 77204 USA.
[Cheng, J.; Huang, X.; Kang, K.; Li, Y.; Wang, Y.; Xiao, Z. G.; Zhang, X. P.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China.
[Witt, R.] US Naval Acad, Annapolis, MD 21402 USA.
[Drachenberg, J. L.; Gibson, A.; Grosnick, D.; Koetke, D. D.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA.
[Ahammed, Z.; Banerjee, A.; Chattopadhyay, S.; Nayak, T. K.; Roy, A.; Tribedy, P.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata 700064, India.
[Girard, M.; Kikola, D. P.; Kisiel, A.; Kosarzewski, L. K.; Pluta, J.; Poniatowska, K.; Zbroszczyk, H.] Warsaw Univ Technol, PL-00661 Warsaw, Poland.
[Kauder, K.; Llope, W. J.; Putschke, J.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA.
[Magdy, N.; Tawfik, A. N.] WLCAPP, Cairo 11571, Egypt.
[Caines, H.; Harris, J. W.; Horvat, S.; Majka, R.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA.
[Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia.
RP Adamczyk, L (reprint author), AGH Univ Sci & Technol, PL-30059 Krakow, Poland.
RI Ma, Yu-Gang/M-8122-2013; Gunarathne, Devika/C-4903-2017; Kycia,
Radoslaw/J-4397-2015; Fazio, Salvatore /G-5156-2010; Rusnak,
Jan/G-8462-2014; Bielcikova, Jana/G-9342-2014; Sumbera,
Michal/O-7497-2014; Chaloupka, Petr/E-5965-2012; Huang,
Bingchu/H-6343-2015; Xin, Kefeng/O-9195-2016; Yi, Li/Q-1705-2016;
Alekseev, Igor/J-8070-2014; Tawfik, Abdel Nasser/M-6220-2013; Okorokov,
Vitaly/C-4800-2017
OI Ma, Yu-Gang/0000-0002-0233-9900; Gunarathne, Devika/0000-0002-7155-7418;
Kycia, Radoslaw/0000-0002-6390-4627; Sumbera,
Michal/0000-0002-0639-7323; Huang, Bingchu/0000-0002-3253-3210; Xin,
Kefeng/0000-0003-4853-9219; Yi, Li/0000-0002-7512-2657; Alekseev,
Igor/0000-0003-3358-9635; Tawfik, Abdel Nasser/0000-0002-1679-0225;
Okorokov, Vitaly/0000-0002-7162-5345
FU RHIC Operations Group; RCF at BNL; NERSC Center at LBNL; KISTI Center in
Korea; Open Science Grid consortium; Office of Nuclear Physics within
the U.S. DOE Office of Science; U.S. NSF [CNRS/IN2P3]; FAPESP CNPq of
Brazil; Ministry of Education and Science of the Russian Federation;
NNSFC; MoST of China (973 Program) [2014CB845400, 2015CB856900]; MoE of
China; CAS; Korean Research Foundation; GA of the Czech Republic; MSMT
of the Czech Republic; FIAS of Germany; DAE of India; DST of India; CSIR
of India; National Science Centre of Poland; National Research
Foundation [NRF-2012004024]; Ministry of Science, Education and Sports
of the Republic of Croatia; RosAtom of Russia
FX We thank Prof. Ralf Rapp for discussions and clarifications on model
calculations. We thank the RHIC Operations Group and RCF at BNL, the
NERSC Center at LBNL, the KISTI Center in Korea, and the Open Science
Grid consortium for providing resources and support. This work was
supported, in part, by the Office of Nuclear Physics within the U.S. DOE
Office of Science, the U.S. NSF, CNRS/IN2P3; FAPESP CNPq of Brazil; the
Ministry of Education and Science of the Russian Federation; the NNSFC,
the MoST of China (973 Program No. 2014CB845400, 2015CB856900), CAS, the
MoE of China; the Korean Research Foundation; GA and MSMT of the Czech
Republic; FIAS of Germany; DAE, DST, and CSIR of India; the National
Science Centre of Poland; National Research Foundation (Grant No.
NRF-2012004024); the Ministry of Science, Education and Sports of the
Republic of Croatia; and RosAtom of Russia.
NR 74
TC 15
Z9 15
U1 6
U2 37
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD AUG 24
PY 2015
VL 92
IS 2
AR 024912
DI 10.1103/PhysRevC.92.024912
PG 35
WC Physics, Nuclear
SC Physics
GA CP5SK
UT WOS:000359944200007
ER
PT J
AU Mahmoud, ME
Yakout, AA
El Aziz, MTA
Osman, MM
Abdel-Fattah, TM
AF Mahmoud, Mohamed E.
Yakout, Amr A.
El Aziz, Marwa T. Abed
Osman, Maher M.
Abdel-Fattah, Tarek M.
TI A novel cellulose-dioctyl phthate-baker's yeast biosorbent for removal
of Co(II), Cu(II), Cd(II), Hg(II) and Pb(II)
SO JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS
SUBSTANCES & ENVIRONMENTAL ENGINEERING
LA English
DT Article
DE Adsorption; Baker's yeast; bioremediation; cellulose; environmental
bioengineering; waste treatment
ID SOLID-PHASE EXTRACTION; WATER-TREATMENT; ADSORPTIVE REMOVAL;
AQUEOUS-SOLUTIONS; HEAVY-METALS; SORBENTS; IONS; LEAD; ADSORBENT;
CADMIUM
AB In this work, dioctyl phthalate (Dop) was used as a highly plasticizing material to coat and link the surface of basic cellulose (Cel) with baker's yeast for the formation of a novel modified cellulose biosorbent (Cel-Dop-Yst). Characterization was accomplished by Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric analysis (TGA) and Scanning Electron Microscope (SEM) measurements. The feasibility of using Cel-Dop-Yst biosorbent as an efficient material for removal of Co(II), Cu(II), Cd(II), Hg(II) and Pb(II) ions was explored using the batch equilibrium technique along with various experimental controlling parameters. The optimum pH values for removal of these metal ions were characterized in the range of 5.0-7.0. Cel-Dop-Yst was identified as a highly selective biosorbent for removal of the selected divalent metal ions. The Cel-Dop-Yst biosorbent was successfully implemented in treatment and removal of these divalent metal ions from industrial wastewater, sea water and drinking water samples using a multistage microcolumn technique.
C1 [Mahmoud, Mohamed E.; Yakout, Amr A.; El Aziz, Marwa T. Abed; Osman, Maher M.] Univ Alexandria, Fac Sci, Dept Chem, Alexandria, Egypt.
[Yakout, Amr A.] Jeddah Univ, Dept Chem, Fac Sci, Jeddah, Saudi Arabia.
[Abdel-Fattah, Tarek M.] Christopher Newport Univ, Appl Res Ctr, Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Abdel-Fattah, Tarek M.] Christopher Newport Univ, Dept Mol Biol & Chem, Newport News, VA 23606 USA.
RP Abdel-Fattah, TM (reprint author), Christopher Newport Univ, Appl Res Ctr, 1 Univ Pl, Newport News, VA 23606 USA.
EM fattah@cnu.edu
NR 38
TC 0
Z9 0
U1 0
U2 25
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 1093-4529
EI 1532-4117
J9 J ENVIRON SCI HEAL A
JI J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng.
PD AUG 24
PY 2015
VL 50
IS 10
BP 1072
EP 1081
DI 10.1080/10934529.2015.1038184
PG 10
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA CL5QW
UT WOS:000357016000009
PM 26121022
ER
PT J
AU Bertram, E
Glover, SCO
Clark, PC
Klessen, RS
AF Bertram, Erik
Glover, Simon C. O.
Clark, Paul C.
Klessen, Ralf S.
TI Star formation efficiencies of molecular clouds in a galactic centre
environment
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE stars: formation; ISM: clouds; Galaxy: centre; galaxies: ISM
ID CENTER DUST RIDGE; GRAVITATIONAL COLLAPSE; MILKY-WAY; INTERSTELLAR
TURBULENCE; SUPERSONIC TURBULENCE; INITIAL CONDITIONS; MOVING MESH; GAS;
GALAXIES; DENSITY
AB We use the arepo moving mesh code to simulate the evolution of molecular clouds exposed to a harsh environment similar to that found in the galactic centre (GC), in an effort to understand why the star formation efficiency (SFE) of clouds in this environment is so small. Our simulations include a simplified treatment of time-dependent chemistry and account for the highly non-isothermal nature of the gas and the dust. We model clouds with a total mass of 1.3 x 10(5) M-aS (TM) and explore the effects of varying the mean cloud density and the virial parameter, alpha = E-kin/ vertical bar E-pot vertical bar. We vary the latter from alpha = 0.5 to 8.0, and so many of the clouds that we simulate are gravitationally unbound. We expose our model clouds to an interstellar radiation field (ISRF) and cosmic ray flux (CRF) that are both a factor of 1000 higher than the values found in the solar neighbourhood. As a reference, we also run simulations with local solar neighbourhood values of the ISRF and the CRF in order to better constrain the effects of the extreme conditions in the GC on the SFE. Despite the harsh environment and the large turbulent velocity dispersions adopted, we find that all of the simulated clouds form stars within less than a gravitational free-fall time. Increasing the virial parameter from alpha = 0.5 to 8.0 decreases the SFE by a factor of similar to 4-10, while increasing the ISRF/CRF by a factor of 1000 decreases the SFE again by a factor of similar to 2-6. However, even in our most unbound clouds, the SFE remains higher than that inferred for real GC clouds. We therefore conclude that high levels of turbulence and strong external heating are not enough by themselves to lead to a persistently low SFE at the centre of the Galaxy.
C1 [Bertram, Erik; Glover, Simon C. O.; Clark, Paul C.; Klessen, Ralf S.] Heidelberg Univ, Inst Theoret Astrophys, Zentrum Astron, D-69120 Heidelberg, Germany.
[Clark, Paul C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Klessen, Ralf S.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Klessen, Ralf S.] Stanford Univ, SLAC, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA.
RP Bertram, E (reprint author), Heidelberg Univ, Inst Theoret Astrophys, Zentrum Astron, Albert Ueberle Str 2, D-69120 Heidelberg, Germany.
EM bertram@zah.uni-heidelberg.de
FU Deutsche Forschungsgemeinschaft (DFG) [SFB 881, SPP 1573];
Konrad-Adenauer-Stiftung (KAS) via their 'Promotionsforderung'; DFG via
Emmy-Noether grant - German Excellence Initiative [BA 3706]; DFG via
Frontier grant of Heidelberg University - German Excellence Initiative;
Baden-Wurttemberg Foundation; European Research Council under the
European Community [339177]
FX We thank J. M. Diederik Kruijssen, Katharine Johnston, Rowan Smith.
Christian Baczynski, Mark Krumholz and Javier Ballesteros Paredes for
informative discussions about the project. We also thank the referee for
a timely and very constructive report, which helped to improve the paper
a lot. EB, SCOG and RSK acknowledge support from the Deutsche
Forschungsgemeinschaft (DFG) via the SFB 881 (sub projects B1, B2, B5
and B8) The Milky Way System' and the SPP (priority programme) 1573,
'Physics of the ISM'. Furthermore, EB acknowledges financial support
from the Konrad-Adenauer-Stiftung (KAS) via their 'Promotionsforderung'.
The simulations presented in this paper were performed on the Milkyway
supercomputer at the Julich Forschungszentrum, funded via SFB 881.
Additional simulations were performed on the kolob cluster at the
University of Heidelberg, which is funded in part by the DFG via
Emmy-Noether grant BA 3706, and via a Frontier grant of Heidelberg
University, sponsored by the German Excellence Initiative as well as the
Baden-Wurttemberg Foundation. RSK acknowledges support from the European
Research Council under the European Community's Seventh Framework
Programme (FP7/2007-2013) via the ERC Advanced Grant 'STARLIGHT:
Formation of the First Stars' (project number 339177).
NR 68
TC 4
Z9 4
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0035-8711
EI 1365-2966
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD AUG 21
PY 2015
VL 451
IS 4
BP 3679
EP 3692
DI 10.1093/mnras/stv1239
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CQ8HA
UT WOS:000360846400025
ER
PT J
AU Balke, N
Jesse, S
Li, Q
Maksymovych, P
Okatan, MB
Strelcov, E
Tselev, A
Kalinin, SV
AF Balke, Nina
Jesse, Stephen
Li, Qian
Maksymovych, Petro
Okatan, M. Baris
Strelcov, Evgheni
Tselev, Alexander
Kalinin, Sergei V.
TI Current and surface charge modified hysteresis loops in ferroelectric
thin films
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID PIEZORESPONSE FORCE MICROSCOPY; SCANNING PROBE MICROSCOPY; NANOSCALE;
SPECTROSCOPY
AB Polarization domains in ferroelectric materials and the ability to orient them with an external electric field lead to the development of a variety of applications from information storage to actuation. The development of piezoresponse force microscopy (PFM) has enabled researchers to investigate ferroelectric domains and ferroelectric domain switching on the nanoscale, which offers a pathway to study structure-function relationships in this important material class. Due to its commercial availability and ease of use, PFM has become a widely used research tool. However, measurement artifacts, i.e., alternative signal origins besides the piezoelectric effect are barely discussed or considered. This becomes especially important for materials with a small piezoelectric coefficient or materials with unknown ferroelectric properties, including non-ferroelectric materials. Here, the role of surface charges and current flow during PFM measurements on classical ferroelectrics are discussed and it will be shown how they alter the PFM hysteresis loop shape. This will help to better address alternative signal origins in PFM-type experiments and offer a pathway to study additional phenomena besides ferroelectricity. (C) 2015 AIP Publishing LLC.
C1 [Balke, Nina; Jesse, Stephen; Li, Qian; Maksymovych, Petro; Okatan, M. Baris; Strelcov, Evgheni; Tselev, Alexander; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Balke, N (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM balken@ornl.gov
RI Tselev, Alexander/L-8579-2015; Balke, Nina/Q-2505-2015; Kalinin,
Sergei/I-9096-2012; Maksymovych, Petro/C-3922-2016; Jesse,
Stephen/D-3975-2016; Okatan, M. Baris/E-1913-2016
OI Tselev, Alexander/0000-0002-0098-6696; Balke, Nina/0000-0001-5865-5892;
Kalinin, Sergei/0000-0001-5354-6152; Maksymovych,
Petro/0000-0003-0822-8459; Jesse, Stephen/0000-0002-1168-8483; Okatan,
M. Baris/0000-0002-9421-7846
FU Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy
FX Personal support was provided by the U.S. Department of Energy, Basic
Energy Sciences, Materials Sciences and Engineering Division through the
Office of Science Early Career Research Program (N.B., Q.L.). The
experiments were performed at the Center for Nanophase Materials
Sciences, which is sponsored at Oak Ridge National Laboratory by the
Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy which also provided additional personal
support (S.J., E.S., P.M., A.T., M.B.O., S.V.K.). The authors gratefully
acknowledge the samples provided by P. Yu.
NR 35
TC 5
Z9 5
U1 7
U2 41
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 21
PY 2015
VL 118
IS 7
AR 072013
DI 10.1063/1.4927811
PG 8
WC Physics, Applied
SC Physics
GA CQ2OX
UT WOS:000360441900014
ER
PT J
AU Balke, N
Bassiri-Gharb, N
Lichtensteiger, C
AF Balke, Nina
Bassiri-Gharb, Nazanin
Lichtensteiger, Celine
TI Preface to Special Topic: Piezoresponse Force Microscopy
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Editorial Material
C1 [Balke, Nina] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Bassiri-Gharb, Nazanin] Georgia Inst Technol, Sch Mat Sci & Engn, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA.
[Lichtensteiger, Celine] Univ Geneva, DQMP, CH-1211 Geneva 4, Switzerland.
RP Bassiri-Gharb, N (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA.
EM nazanin.bassirigharb@me.gatech.edu
RI Bassiri-Gharb, Nazanin/F-1783-2011; Balke, Nina/Q-2505-2015
OI Bassiri-Gharb, Nazanin/0000-0002-0183-5160; Balke,
Nina/0000-0001-5865-5892
NR 5
TC 0
Z9 0
U1 1
U2 12
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 21
PY 2015
VL 118
IS 7
AR 071901
DI 10.1063/1.4927818
PG 3
WC Physics, Applied
SC Physics
GA CQ2OX
UT WOS:000360441900001
ER
PT J
AU Borovikov, VA
Kalinin, SV
Khavin, Y
Mirman, B
Karapetian, E
AF Borovikov, V. A.
Kalinin, S. V.
Khavin, Yu.
Mirman, B.
Karapetian, E.
TI Point force and point electric charge applied to the boundary of
three-dimensional anisotropic piezoelectric solid
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID INHOMOGENEITY PROBLEMS; INCLUSION; INFINITE
AB The Green's functions for a three-dimensional semi-infinite fully anisotropic piezoelectric material are derived using the plane wave theory method. The solution gives the complete set of electromechanical fields due to an arbitrarily oriented point force and a point electric charge applied to the boundary of the half-space. The solution constitutes generalization of Boussinesq's and Cerruti's problems of elastic isotropy for the anisotropic piezoelectric materials. On the example of piezoceramics PZT-6B, the present results are compared with the previously obtained solution for the special case of transversely isotropic piezoelectric solid subjected to the same boundary condition. (C) 2015 AIP Publishing LLC.
C1 [Borovikov, V. A.] Russian Acad Sci, Inst Mech, Moscow, Russia.
[Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Khavin, Yu.] Janis Res Co Inc, Woburn, MA 01801 USA.
[Mirman, B.; Karapetian, E.] Suffolk Univ, Dept Math & Comp Sci, Boston, MA 02114 USA.
RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM sergei2@ornl.gov; ekarapetian@suffolk.edu
RI Kalinin, Sergei/I-9096-2012
OI Kalinin, Sergei/0000-0001-5354-6152
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences
FX The work was supported in part (S.V.K.) by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences. With great
sadness, we acknowledge the passing of the first author. This article is
his last contribution to the advancement of science, and we dedicate
this work to the memory of a great applied mathematician Vladimir
Borovikov.
NR 22
TC 1
Z9 1
U1 1
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 21
PY 2015
VL 118
IS 7
AR 072009
DI 10.1063/1.4927808
PG 8
WC Physics, Applied
SC Physics
GA CQ2OX
UT WOS:000360441900010
ER
PT J
AU Kolasinski, RD
Shimada, M
Oya, Y
Buchenauer, DA
Chikada, T
Cowgill, DF
Donovan, DC
Friddle, RW
Michibayashi, K
Sato, M
AF Kolasinski, R. D.
Shimada, M.
Oya, Y.
Buchenauer, D. A.
Chikada, T.
Cowgill, D. F.
Donovan, D. C.
Friddle, R. W.
Michibayashi, K.
Sato, M.
TI A multi-technique analysis of deuterium trapping and near-surface
precipitate growth in plasma-exposed tungsten
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID EQUATION-OF-STATE; HELIUM BUBBLES; HYDROGEN; RETENTION; IMPURITIES;
METALS; TDS
AB In this work, we examine how deuterium becomes trapped in plasma-exposed tungsten and forms near-surface platelet-shaped precipitates. How these bubbles nucleate and grow, as well as the amount of deuterium trapped within, is crucial for interpreting the experimental database. Here, we use a combined experimental/theoretical approach to provide further insight into the underlying physics. With the Tritium Plasma Experiment, we exposed a series of ITER-grade tungsten samples to high flux D plasmas (up to 1.5 x 10(22) m(-2) s(-1)) at temperatures ranging between 103 and 554 degrees C. Retention of deuterium trapped in the bulk, assessed through thermal desorption spectrometry, reached a maximum at 230 degrees C and diminished rapidly thereafter for T>300 degrees C. Post-mortem examination of the surfaces revealed non-uniform growth of bubbles ranging in diameter between 1 and 10 mu m over the surface with a clear correlation with grain boundaries. Electron back-scattering diffraction maps over a large area of the surface confirmed this dependence; grains containing bubbles were aligned with a preferred slip vector along the < 111 > directions. Focused ion beam profiles suggest that these bubbles nucleated as platelets at depths of 200 nm-1 mu m beneath the surface and grew as a result of expansion of sub-surface cracks. To estimate the amount of deuterium trapped in these defects relative to other sites within the material, we applied a continuum-scale treatment of hydrogen isotope precipitation. In addition, we propose a straightforward model of near-surface platelet expansion that reproduces bubble sizes consistent with our measurements. For the tungsten microstructure considered here, we find that bubbles would only weakly affect migration of D into the material, perhaps explaining why deep trapping was observed in prior studies with plasma-exposed neutron-irradiated specimens. We foresee no insurmountable issues that would prevent the theoretical framework developed here from being extended to a broader range of systems where precipitation of insoluble gases in ion beam or plasma-exposed metals is of interest. (C) 2015 AIP Publishing LLC.
C1 [Kolasinski, R. D.; Buchenauer, D. A.; Cowgill, D. F.; Donovan, D. C.] Sandia Natl Labs, Hydrogen & Combust Technol Dept, Livermore, CA 94551 USA.
[Shimada, M.] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA.
[Oya, Y.; Chikada, T.; Sato, M.] Shizuoka Univ, Grad Sch Sci, Dept Chem, Shizuoka 4228529, Japan.
[Friddle, R. W.] Sandia Natl Labs, Energy Nanomat Dept, Livermore, CA 94551 USA.
[Michibayashi, K.] Shizuoka Univ, Inst Geosci, Shizuoka 4228529, Japan.
RP Kolasinski, RD (reprint author), Sandia Natl Labs, Hydrogen & Combust Technol Dept, Livermore, CA 94551 USA.
EM rkolasi@sandia.gov
OI Shimada, Masashi/0000-0002-1592-843X
FU U.S. Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]; DOE Idaho Field Office [DE-AC07-05ID14517]
FX It is a pleasure to thank Michael Rye (Sandia) for performing the FIB
profiling, as well as Robert Pawelko (INL), Josh Whaley (Sandia), and L.
Shayne Loftus (INL) for their technical support of the experiments. Our
colleague Christopher San Marchi (Sandia) provided valuable guidance on
equation of state models, as did Brian Somerday (Sandia) on crack
propagation. In addition, we express our appreciation to Norman Bartelt
(Sandia) for helpful comments regarding the manuscript. This work was
performed under the U.S.-Japan collaborative research project, PHENIX.
Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under Contract No. DE-AC04-94AL85000. This work
was prepared for the U.S. Department of Energy, the Office of Fusion
Energy Sciences, under the DOE Idaho Field Office Contract No.
DE-AC07-05ID14517.
NR 47
TC 2
Z9 2
U1 4
U2 27
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 21
PY 2015
VL 118
IS 7
AR 073301
DI 10.1063/1.4928184
PG 13
WC Physics, Applied
SC Physics
GA CQ2OX
UT WOS:000360441900025
ER
PT J
AU Pannala, S
Turner, JA
Allu, S
Elwasif, WR
Kalnaus, S
Simunovic, S
Kumar, A
Billings, JJ
Wang, H
Nanda, J
AF Pannala, S.
Turner, J. A.
Allu, S.
Elwasif, W. R.
Kalnaus, S.
Simunovic, S.
Kumar, A.
Billings, J. J.
Wang, H.
Nanda, J.
TI Multiscale modeling and characterization for performance and safety of
lithium-ion batteries
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID RUNAWAY RISK-EVALUATION; INTERNAL SHORT-CIRCUIT; LI-ION; CAPACITY FADE;
FUEL-CELLS; MECHANICAL-PROPERTIES; RAMAN MICROSCOPY; ENERGY-STORAGE;
INSERTION CELL; THERMAL-MODEL
AB Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. Gaining an understanding of the role of these processes as well as development of predictive capabilities for design of better performing batteries requires synergy between theory, modeling, and simulation, and fundamental experimental work to support the models. This paper presents the overview of the work performed by the authors aligned with both experimental and computational efforts. In this paper, we describe a new, open source computational environment for battery simulations with an initial focus on lithium-ion systems but designed to support a variety of model types and formulations. This system has been used to create a three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. This paper also provides an overview of the experimental techniques to obtain crucial validation data to benchmark the simulations at various scales for performance as well as abuse. We detail some initial validation using characterization experiments such as infrared and neutron imaging and micro-Raman mapping. In addition, we identify opportunities for future integration of theory, modeling, and experiments. (C) 2015 AIP Publishing LLC.
C1 [Pannala, S.; Turner, J. A.; Allu, S.; Elwasif, W. R.; Kalnaus, S.; Simunovic, S.; Kumar, A.; Billings, J. J.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
[Wang, H.; Nanda, J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Pannala, S (reprint author), SABIC 14100 Southwest Freeway,Suite 600, Sugar Land, TX 77478 USA.
EM spannala@sabic.com
RI Wang, Hsin/A-1942-2013;
OI Turner, John/0000-0003-2521-4091; allu, srikanth/0000-0003-2841-4398;
Wang, Hsin/0000-0003-2426-9867; Kalnaus, Sergiy/0000-0002-7465-3034;
Billings, Jay/0000-0001-8811-2688; Elwasif, Wael/0000-0003-0554-1036
FU U.S. Department of Energy [DE-AC05-00OR22725]; Vehicle Technologies
Program in the Office of Energy Efficiency and Renewable Energy;
Advanced Research Projects Agency-Energy (ARPA-E); National Highway
Transportation Safety Agency (NHTSA) of the U.S. Department of
Transportation; ORNL Laboratory Directed Research and Development (LDRD)
program
FX The research was performed using the resources at Oak Ridge National
Laboratory (ORNL), managed by UT-Battelle, LLC, for the U.S. Department
of Energy under Contract No. DE-AC05-00OR22725. The authors acknowledge
the support of the Vehicle Technologies Program in the Office of Energy
Efficiency and Renewable Energy, the Advanced Research Projects
Agency-Energy (ARPA-E), the National Highway Transportation Safety
Agency (NHTSA) of the U.S. Department of Transportation, and the ORNL
Laboratory Directed Research and Development (LDRD) program.
NR 76
TC 4
Z9 4
U1 10
U2 79
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 21
PY 2015
VL 118
IS 7
AR 072017
DI 10.1063/1.4927817
PG 14
WC Physics, Applied
SC Physics
GA CQ2OX
UT WOS:000360441900018
ER
PT J
AU Seol, D
Seo, H
Jesse, S
Kim, Y
AF Seol, Daehee
Seo, Hosung
Jesse, Stephen
Kim, Yunseok
TI Nanoscale mapping of electromechanical response in ionic conductive
ceramics with piezoelectric inclusions
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID ATOMIC-FORCE MICROSCOPY; IN-SITU AFM; FERROELECTRIC CAPACITORS;
SWITCHING DYNAMICS; GLASS-CERAMICS; THIN-FILMS; LITHIUM; BATTERY;
SURFACE; LI
AB Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. These results could provide additional information on the EM properties, including the electrochemical strain at nanoscale. (C) 2015 AIP Publishing LLC.
C1 [Seol, Daehee; Seo, Hosung; Kim, Yunseok] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea.
[Jesse, Stephen] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Kim, Y (reprint author), Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea.
EM yunseokkim@skku.edu
RI Jesse, Stephen/D-3975-2016
OI Jesse, Stephen/0000-0002-1168-8483
FU Basic Science Research Program through National Research Foundation of
Korea (NRF) - Ministry of Science, ICT and Future Planning
[NRF-2014R1A1A1008061]; Center for Nanophase Materials Sciences -
Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy
FX This work was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Science, ICT and Future Planning (NRF-2014R1A1A1008061) (D.S. and Y.K.).
A portion of this research was supported by the Center for Nanophase
Materials Sciences (S.J.), which is sponsored at the Oak Ridge National
Laboratory by the Scientific User Facilities Division, Office of Basic
Energy Sciences, U.S. Department of Energy. The authors gratefully
acknowledge multiple discussions with S. V. Kalinin (Oak Ridge National
Laboratory).
NR 36
TC 4
Z9 4
U1 4
U2 27
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 21
PY 2015
VL 118
IS 7
AR 072014
DI 10.1063/1.4927813
PG 7
WC Physics, Applied
SC Physics
GA CQ2OX
UT WOS:000360441900015
ER
PT J
AU Varenyk, OV
Silibin, MV
Kiselev, DA
Eliseev, EA
Kalinin, SV
Morozovska, AN
AF Varenyk, O. V.
Silibin, M. V.
Kiselev, D. A.
Eliseev, E. A.
Kalinin, S. V.
Morozovska, A. N.
TI Self-consistent modelling of electrochemical strain microscopy in mixed
ionic-electronic conductors: Nonlinear and dynamic regimes
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID SCANNING FORCE MICROSCOPY; FERROELECTRIC THIN-FILMS; DOMAIN-STRUCTURE;
BATTERY CATHODE; NANOMETER-SCALE; NANOSCALE; ELECTROMECHANICS;
TRANSPORT; BEHAVIOR
AB The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. The obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers, which are of potential interest for flexible and high-density non-volatile memory devices. (C) 2015 AIP Publishing LLC.
C1 [Varenyk, O. V.; Morozovska, A. N.] Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Ukraine.
[Silibin, M. V.] Natl Res Univ Elect Technol MIET, Moscow 124498, Russia.
[Kiselev, D. A.] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia.
[Eliseev, E. A.] NAS Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine.
[Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM sergei2@ornl.gov; anna.n.morozovska@gmail.com
RI Kalinin, Sergei/I-9096-2012; Silibin, Maxim/J-6227-2014;
OI Kalinin, Sergei/0000-0001-5354-6152; Kiselev, Dmitry/0000-0003-1047-3007
FU Russian Federation [14.Y30.15.2883-MK]; Center for Nanophase Materials
Sciences [CNMS 2013-293, CNMS 2014-270]; National Academy of Sciences of
Ukraine [35-02-14]; [11.2551.2014/K]
FX M.V.S. acknowledges the grant of the President of the Russian Federation
for state support of young Russian scientists-PhD (No.
14.Y30.15.2883-MK) and the project part of the State tasks in the field
of scientific activity No. 11.2551.2014/K. O.V.V., E.A.E., and A.N.M.
acknowledge Center for Nanophase Materials Sciences, user projects CNMS
2013-293, CNMS 2014-270, and National Academy of Sciences of Ukraine
(Grant No. 35-02-14). The authors are very grateful to Dr. Rama K.
Vasudevan and Lisa A. Goins for their help in the manuscript
preparation.
NR 39
TC 2
Z9 2
U1 1
U2 25
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 21
PY 2015
VL 118
IS 7
AR 072015
DI 10.1063/1.4927815
PG 7
WC Physics, Applied
SC Physics
GA CQ2OX
UT WOS:000360441900016
ER
PT J
AU Vasudevan, RK
Zhang, SJ
Okatan, MB
Jesse, S
Kalinin, SV
Bassiri-Gharb, N
AF Vasudevan, Rama K.
Zhang, Shujun
Okatan, M. Baris
Jesse, Stephen
Kalinin, Sergei V.
Bassiri-Gharb, Nazanin
TI Multidimensional dynamic piezoresponse measurements: Unraveling local
relaxation behavior in relaxor-ferroelectrics via big data
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID LEAD MAGNESIUM NIOBATE; FORCE MICROSCOPY; SINGLE-CRYSTALS; POLARIZATION
AB Compositional and charge disorder in ferroelectric relaxors lies at the heart of the unusual properties of these systems, such as aging and non-ergodicity, polarization rotations, and a host of temperature and field-driven phase transitions. However, much information about the field-dynamics of the polarization in the prototypical ferroelectric relaxor (1 - x) Pb(Mg1/3Nb2/3)O-3-xPbTiO(3) (PMN-xPT) remains unprobed at the mesoscopic level. Here, we use a piezoresponse force microscopy-based dynamic multimodal relaxation spectroscopy technique, enabling the study of ferroelectric switching and polarization relaxation at mesoscopic length scales, and carry out measurements on a PMN-0.28PT sample with minimal polishing. Results indicate that beyond a threshold DC bias the average relaxation increases as the system attempts to relax to the previous state. Phenomenological fitting reveals the presence of mesoscale heterogeneity in relaxation amplitudes and clearly suggests the presence of two distinct amplitudes. Independent component analysis reveals the presence of a disorder component of the relaxation, which is found to be strongly anti-correlated with the maximum piezoresponse at that location, suggesting smaller disorder effects where the polarization reversal is large and vice versa. The disorder in the relaxation amplitudes is postulated to arise from rhombohedral and field-induced tetragonal phase in the crystal, with each phase associated with its own relaxation amplitude. These studies highlight the crucial importance of the mixture of ferroelectric phases in the compositions in proximity of the morphotropic phase boundary in governing the local response and further highlight the ability of PFM voltage and time spectroscopies, in conjunction with big-data multivariate analyses, to locally map disorder and correlate it with parameters governing the dynamic behavior. (C) 2015 AIP Publishing LLC.
C1 [Vasudevan, Rama K.; Okatan, M. Baris; Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Vasudevan, Rama K.; Okatan, M. Baris; Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA.
[Zhang, Shujun] Penn State Univ, Mat Res Inst, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Bassiri-Gharb, Nazanin] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA.
[Bassiri-Gharb, Nazanin] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA.
RP Bassiri-Gharb, N (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA.
EM nazanin.bassirigharb@me.gatech.edu
RI Bassiri-Gharb, Nazanin/F-1783-2011; Vasudevan, Rama/Q-2530-2015;
Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Okatan, M.
Baris/E-1913-2016
OI Bassiri-Gharb, Nazanin/0000-0002-0183-5160; Vasudevan,
Rama/0000-0003-4692-8579; Kalinin, Sergei/0000-0001-5354-6152; Jesse,
Stephen/0000-0002-1168-8483; Okatan, M. Baris/0000-0002-9421-7846
FU Division of Materials Sciences and Engineering, BES, DOE; Center for
Nanophase Materials Sciences; U.S. National Science Foundation
[DMR-1255379]
FX This research was sponsored by the Division of Materials Sciences and
Engineering, BES, DOE (R.K.V. and S.V.K.). A portion of this research
was conducted at and partially supported by (S.J. and M.B.O.) the Center
for Nanophase Materials Sciences, which is a DOE Office of Science User
Facility. N.B.-G. acknowledges funding from the U.S. National Science
Foundation through Grant No. DMR-1255379.
NR 39
TC 3
Z9 3
U1 3
U2 16
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 21
PY 2015
VL 118
IS 7
AR 072003
DI 10.1063/1.4927803
PG 10
WC Physics, Applied
SC Physics
GA CQ2OX
UT WOS:000360441900004
ER
PT J
AU Huang, C
Perez, D
Voter, AF
AF Huang, Chen
Perez, Danny
Voter, Arthur F.
TI Hyperdynamics boost factor achievable with an ideal bias potential
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID ACCELERATED MOLECULAR-DYNAMICS; TRANSITION-STATE THEORY; INFREQUENT
EVENTS; CHEMICAL-REACTIONS; SELF-DIFFUSION; TIME-SCALE; SIMULATION;
SURFACE; TEMPERATURE; SYSTEMS
AB Hyperdynamics is a powerful method to significantly extend the time scales amenable to molecular dynamics simulation of infrequent events. One outstanding challenge, however, is the development of the so-called bias potential required by the method. In this work, we design a bias potential using information about all minimum energy pathways (MEPs) out of the current state. While this approach is not suitable for use in an actual hyperdynamics simulation, because the pathways are generally not known in advance, it allows us to show that it is possible to come very close to the theoretical boost limit of hyperdynamics while maintaining high accuracy. We demonstrate this by applying this MEP-based hyperdynamics (MEP-HD) to metallic surface diffusion systems. In most cases, MEP-HD gives boost factors that are orders of magnitude larger than the best existing bias potential, indicating that further development of hyperdynamics bias potentials could have a significant payoff. Finally, we discuss potential practical uses of MEP-HD, including the possibility of developing MEP-HD into a true hyperdynamics. (C) 2015 AIP Publishing LLC.
C1 [Huang, Chen; Perez, Danny; Voter, Arthur F.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Huang, C (reprint author), Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA.
EM chuang3@fsu.edu; afv@lanl.gov
OI Voter, Arthur/0000-0001-9788-7194
FU United States Department of Energy (U.S. DOE) Office of Science, Office
of Basic Energy Sciences, Division of Materials Sciences and
Engineering; National Nuclear Security administration of the U.S. DOE
[DE-AC52-06NA25396]
FX This work was supported by the United States Department of Energy (U.S.
DOE) Office of Science, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering. Los Alamos National Laboratory is
operated by Los Alamos National Security, LLC, for the National Nuclear
Security administration of the U.S. DOE under Contract No.
DE-AC52-06NA25396.
NR 35
TC 2
Z9 2
U1 2
U2 12
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD AUG 21
PY 2015
VL 143
IS 7
AR 074113
DI 10.1063/1.4928636
PG 12
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA CQ2OJ
UT WOS:000360440400016
PM 26298121
ER
PT J
AU Steeves, AH
Park, GB
Bechtel, HA
Baraban, JH
Field, RW
AF Steeves, Adam H.
Park, G. Barratt
Bechtel, Hans A.
Baraban, Joshua H.
Field, Robert W.
TI Communication: Observation of local-bender eigenstates in acetylene
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID BENDING DYNAMICS; (A)OVER-TILDE(1)A(U) STATE; VIBRATIONAL LEVELS; MODES;
FLUORESCENCE; INTENSITIES; SIGNATURES; SPECTRA; QUANTUM; C2H2
AB We report the observation of eigenstates that embody large-amplitude, local-bending vibrational motion in acetylene by stimulated emission pumping spectroscopy via vibrational levels of the S-1 state involving excitation in the non-totally symmetric bending modes. The N-b = 14 level, lying at 8971.69 cm(-1) (J = 0), is assigned on the basis of degeneracy due to dynamical symmetry breaking in the local-mode limit. The level pattern for the N-b = 16 level, lying at 10218.9 cm(-1), is consistent with expectations for increased separation of l = 0 and 2 vibrational angular momentum components. Increasingly poor agreement between our observations and the predicted positions of these levels highlights the failure of currently available normal mode effective Hamiltonian models to extrapolate to regions of the potential energy surface involving large-amplitude displacement along the acetylene reversible arrow vinylidene isomerization coordinate. (C) 2015 AIP Publishing LLC.
C1 [Steeves, Adam H.; Park, G. Barratt; Bechtel, Hans A.; Baraban, Joshua H.; Field, Robert W.] MIT, Dept Chem, Cambridge, MA 02139 USA.
[Steeves, Adam H.] Ithaca Coll, Dept Chem & Biochem, Ithaca, NY 14850 USA.
[Park, G. Barratt] Max Planck Inst Biophys Chem, Gottingen, Germany.
[Bechtel, Hans A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Baraban, Joshua H.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
RP Steeves, AH (reprint author), MIT, Dept Chem, Cambridge, MA 02139 USA.
EM rwfield@mit.edu
OI Steeves, Adam/0000-0001-5813-4659; Park, Barratt/0000-0002-8716-220X;
Field, Robert/0000-0002-7609-4205
FU U.S. Department of Energy, Office of Science, Chemical Sciences
Geosciences and Biosciences Division of the Basic Energy Sciences Office
[DE-FG0287ER13671]
FX We are grateful to Annelise Beck for her assistance. This material is
based upon work supported by the U.S. Department of Energy, Office of
Science, Chemical Sciences Geosciences and Biosciences Division of the
Basic Energy Sciences Office, under Award No. DE-FG0287ER13671.
NR 33
TC 1
Z9 1
U1 1
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD AUG 21
PY 2015
VL 143
IS 7
AR 071101
DI 10.1063/1.4928638
PG 4
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA CQ2OJ
UT WOS:000360440400001
PM 26298106
ER
PT J
AU White, AF
McCurdy, CW
Head-Gordon, M
AF White, Alec F.
McCurdy, C. William
Head-Gordon, Martin
TI Restricted and unrestricted non-Hermitian Hartree-Fock: Theory,
practical considerations, and applications to metastable molecular
anions
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID SELF-CONSISTENT-FIELD; ELECTRON TRANSMISSION SPECTROSCOPY;
STATIC-EXCHANGE APPROXIMATION; SHAPE RESONANCE;
CONFIGURATION-INTERACTION; CROSS-SECTIONS; CONVERGENCE ACCELERATION;
FORMALDEHYDE SCATTERING; VIBRATIONAL-EXCITATION; POLYATOMIC-MOLECULES
AB This work describes the implementation and applications of non-Hermitian self-consistent field (NH-SCF) theory with complex basis functions for the ab initio computation of positions and widths of shape resonances in molecules. We utilize both the restricted open-shell and the previously unexplored spin-unrestricted variants to compute Siegert energies of several anionic shape resonances in small diatomic and polyatomic molecules including carbon tetrafluoride which has been the subject of several recent experimental studies. The computation of general molecular properties from a non-Hermitian wavefunction is discussed, and a density-based analysis is applied to the B-2(1) shape resonance in formaldehyde. Spin-unrestricted NH-SCF is used to compute a complex potential energy surface for the carbon monoxide anion which correctly describes dissociation. (C) 2015 AIP Publishing LLC.
C1 [White, Alec F.] Univ Calif Berkeley, Kenneth S Pitzer Ctr Theoret Chem, Dept Chem, Berkeley, CA 94720 USA.
[White, Alec F.; McCurdy, C. William; Head-Gordon, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[McCurdy, C. William] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA.
[McCurdy, C. William] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA.
[Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP White, AF (reprint author), Univ Calif Berkeley, Kenneth S Pitzer Ctr Theoret Chem, Dept Chem, Berkeley, CA 94720 USA.
FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S.
Department of Energy, Office of Science, Advanced Scientific Computing
Research, and Basic Energy Sciences
FX Support for this work was provided through the Scientific Discovery
through Advanced Computing (SciDAC) program funded by the U.S.
Department of Energy, Office of Science, Advanced Scientific Computing
Research, and Basic Energy Sciences. The authors thank Satoshi Yabushita
for providing valuable computational benchmarks using an independent
complex Gaussian implementation based on the COLUMBUS quantum chemistry
codes. The authors thank Paul Horn for invaluable advice on the
implementation of nonlinear solvers.
NR 84
TC 6
Z9 6
U1 3
U2 15
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD AUG 21
PY 2015
VL 143
IS 7
AR 074103
DI 10.1063/1.4928529
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA CQ2OJ
UT WOS:000360440400006
PM 26298111
ER
PT J
AU Boughezal, R
Caola, F
Melnikov, K
Petriello, F
Schulze, M
AF Boughezal, Radja
Caola, Fabrizio
Melnikov, Kirill
Petriello, Frank
Schulze, Markus
TI Higgs Boson Production in Association with a Jet at
Next-to-Next-to-Leading Order
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DOUBLE-REAL RADIATION; PARTON DISTRIBUTIONS; SECTOR DECOMPOSITION;
NUMERICAL EVALUATION; SUBTRACTION SCHEME; NNLO QCD; LHC; AMPLITUDES;
FACTORIZATION; INTEGRALS
AB We present precise predictions for Higgs boson production in association with a jet. We work in the Higgs effective field theory framework and compute next-to-next-to-leading order QCD corrections to the gluon-gluon and quark-gluon channels, which is sufficient for reliable LHC phenomenology. We present fully differential results as well as total cross sections for the LHC. Our next-to-next-to-leading order predictions reduce the unphysical scale dependence by more than a factor of 2 and enhance the total rate by about twenty percent compared to next-to-leading order QCD predictions. Our results demonstrate for the first time satisfactory convergence of the perturbative series.
C1 [Boughezal, Radja; Petriello, Frank] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Caola, Fabrizio; Schulze, Markus] CERN, Div Theory, CH-1211 Geneva 23, Switzerland.
[Melnikov, Kirill] KIT, Inst Theoret Particle Phys, D-76128 Karlsruhe, Germany.
[Petriello, Frank] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
RP Boughezal, R (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
EM rboughezal@anl.gov; fabrizio.caola@cern.ch; kirill.melnikov@kit.edu;
f-petriello@northwestern.edu; markus.schulze@cern.ch
OI Caola, Fabrizio/0000-0003-4739-9285
FU DOE [DE-AC02-06CH11357, DE-FG02-91ER40684]; Office of Science of the
U.S. Department of Energy [DE-AC02-05CH11231]
FX We thank T. Becher, J. Campbell, T. Gehrmann, and M. Jaquier for helpful
communications. We are grateful to S. Badger for making his results for
tree-level amplitudes available to us. F. C. would like to thank the
Institute for Theoretical Particle Physics of KIT and the Physics and
Astronomy Department of Northwestern University for hospitality at
various stages of this project. R. B. is supported by the DOE under
Contract No. DE-AC02-06CH11357. F. P. is supported by the DOE Grants No.
DE-FG02-91ER40684 and No. DE-AC02-06CH11357. This research used
resources of the National Energy Research Scientific Computing Center, a
DOE Office of Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 62
TC 33
Z9 33
U1 1
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 21
PY 2015
VL 115
IS 8
AR 082003
DI 10.1103/PhysRevLett.115.082003
PG 6
WC Physics, Multidisciplinary
SC Physics
GA CP4SM
UT WOS:000359872900005
PM 26340184
ER
PT J
AU Echevarria, D
Gutfraind, A
Boodram, B
Major, M
Del Valle, S
Cotler, SJ
Dahari, H
AF Echevarria, Desarae
Gutfraind, Alexander
Boodram, Basmattee
Major, Marian
Del Valle, Sara
Cotler, Scott J.
Dahari, Harel
TI Mathematical Modeling of Hepatitis C Prevalence Reduction with Antiviral
Treatment Scale-Up in Persons Who Inject Drugs in Metropolitan Chicago
SO PLOS ONE
LA English
DT Article
ID HIV-ASSOCIATED BEHAVIORS; DIRECT-ACTING ANTIVIRALS; VIRUS-INFECTION;
UNITED-STATES; RISK BEHAVIORS; YOUNG-ADULTS; USERS; METAANALYSIS;
REINFECTION; PEOPLE
AB Background/Aim
New direct-acting antivirals (DAAs) provide an opportunity to combat hepatitis C virus (HCV) infection in persons who inject drugs (PWID). Here we use a mathematical model to predict the impact of a DAA-treatment scale-up on HCV prevalence among PWID and the estimated cost in metropolitan Chicago.
Methods
To estimate the HCV antibody and HCV-RNA (chronic infection) prevalence among the metropolitan Chicago PWID population, we used empirical data from three large epidemiological studies. Cost of DAAs is assumed $50,000 per person.
Results
Approximately 32,000 PWID reside in metropolitan Chicago with an estimated HCV-RNA prevalence of 47% or 15,040 cases. Approximately 22,000 PWID (69% of the total PWID population) attend harm reduction (HR) programs, such as syringe exchange programs, and have an estimated HCV-RNA prevalence of 30%. There are about 11,000 young PWID (<30 years old) with an estimated HCV-RNA prevalence of 10% (PWID in these two subpopulations overlap). The model suggests that the following treatment scale-up is needed to reduce the baseline HCV-RNA prevalence by one-half over 10 years of treatment [cost per year, min-max in millions]: 35 per 1,000 [$50-$77] in the overall PWID population, 19 per 1,000 [$20-$26] for persons in HR programs, and 5 per 1,000 [$3-$4] for young PWID.
Conclusions
Treatment scale-up could dramatically reduce the prevalence of chronic HCV infection among PWID in Chicago, who are the main reservoir for on-going HCV transmission. Focusing treatment on PWID attending HR programs and/or young PWID could have a significant impact on HCV prevalence in these subpopulations at an attainable cost.
C1 [Echevarria, Desarae; Gutfraind, Alexander; Cotler, Scott J.; Dahari, Harel] Loyola Univ Chicago, Med Ctr, Program Expt & Theoret Modeling, Div Hepatol,Dept Med, Maywood, IL 60526 USA.
[Gutfraind, Alexander; Boodram, Basmattee] Univ Illinois, Sch Publ Hlth, Div Epidemiol & Biostat, Chicago, IL USA.
[Major, Marian] US FDA, Div Viral Prod, Ctr Biol Evaluat & Res, Silver Spring, MD USA.
[Del Valle, Sara] Los Alamos Natl Lab, Energy & Infrastruct Anal Grp, Los Alamos, NM USA.
[Dahari, Harel] Los Alamos Natl Lab, Theoret & Biophys Grp, Los Alamos, NM USA.
RP Dahari, H (reprint author), Loyola Univ Chicago, Med Ctr, Program Expt & Theoret Modeling, Div Hepatol,Dept Med, Maywood, IL 60526 USA.
EM hdahari@lumc.edu
FU NIH [P20-GM103452, R01-AI078881]; U.S. Department of Energy
[DE-AC52-06NA25396]; UIC Award of Excellence
FX This study was supported by NIH grants P20-GM103452 and R01-AI078881,
the U.S. Department of Energy contract DE-AC52-06NA25396 and UIC Award
of Excellence. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.
NR 54
TC 0
Z9 0
U1 1
U2 8
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD AUG 21
PY 2015
VL 10
IS 8
AR e0135901
DI 10.1371/journal.pone.0135901
PG 14
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP5MR
UT WOS:000359926900048
PM 26295805
ER
PT J
AU Hamilton, P
Jaffe, M
Haslinger, P
Simmons, Q
Muller, H
Khoury, J
AF Hamilton, P.
Jaffe, M.
Haslinger, P.
Simmons, Q.
Mueller, H.
Khoury, J.
TI Atom-interferometry constraints on dark energy
SO SCIENCE
LA English
DT Article
ID COSMOLOGICAL CONSTANT
AB If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration.
C1 [Hamilton, P.; Jaffe, M.; Haslinger, P.; Simmons, Q.; Mueller, H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Mueller, H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Khoury, J.] Univ Penn, Dept Phys & Astron, Ctr Particle Cosmol, Philadelphia, PA 19104 USA.
RP Muller, H (reprint author), Univ Calif Berkeley, Dept Phys, 366 Le Conte Hall MS 7300, Berkeley, CA 94720 USA.
EM hm@berkeley.edu
OI Hamilton, Paul/0000-0001-6080-632X
FU David and Lucile Packard Foundation; Defense Advanced Research Projects
Agency [N66001-12-1-4232]; NSF [PHY-1404566, PHY-1145525]; NASA
[NNH13ZTT002N, NNH11ZTT001N]; Austrian Science Fund [J3680]; NASA
Astrophysics Theory Program [NNX11AI95G]
FX We acknowledge important discussions with D. Budker, C. Burrage, A.
Charman, Y. Nomura, S. Perlmutter, S. Rajendran, and P. Steinhardt. This
work was supported by the David and Lucile Packard Foundation; a Defense
Advanced Research Projects Agency Young Faculty Award (no.
N66001-12-1-4232); NSF grant PHY-1404566; and NASA grants NNH13ZTT002N,
NNH13ZTT002N, and NNH11ZTT001N. P. Has. thanks the Austrian Science Fund
(grant J3680). The work of J.K. is supported by the NSF Faculty Early
Career Development Program (award PHY-1145525) and the NASA Astrophysics
Theory Program (grant NNX11AI95G).
NR 27
TC 34
Z9 35
U1 1
U2 10
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
EI 1095-9203
J9 SCIENCE
JI Science
PD AUG 21
PY 2015
VL 349
IS 6250
BP 849
EP 851
DI 10.1126/science.aaa8883
PG 3
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP4DR
UT WOS:000359832700044
PM 26293958
ER
PT J
AU Lebeis, SL
Paredes, SH
Lundberg, DS
Breakfield, N
Gehring, J
McDonald, M
Malfatti, S
del Rio, TG
Jones, CD
Tringe, SG
Dangl, JL
AF Lebeis, Sarah L.
Paredes, Sur Herrera
Lundberg, Derek S.
Breakfield, Natalie
Gehring, Jase
McDonald, Meredith
Malfatti, Stephanie
del Rio, Tijana Glavina
Jones, Corbin D.
Tringe, Susannah G.
Dangl, Jeffery L.
TI Salicylic acid modulates colonization of the root microbiome by specific
bacterial taxa
SO SCIENCE
LA English
DT Article
ID PLANT IMMUNE-SYSTEM; ARABIDOPSIS-THALIANA; DEFENSE
AB Immune systems distinguish "self" from "nonself" to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community. We established that biosynthesis of, and signaling dependent on, the foliar defense phytohormone salicylic acid is required to assemble a normal root microbiome. Salicylic acid modulates colonization of the root by specific bacterial families. Thus, plant immune signaling drives selection from the available microbial communities to sculpt the root microbiome.
C1 [Lebeis, Sarah L.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.
[Lebeis, Sarah L.; Paredes, Sur Herrera; Lundberg, Derek S.; Breakfield, Natalie; Gehring, Jase; McDonald, Meredith; Jones, Corbin D.; Dangl, Jeffery L.] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA.
[Paredes, Sur Herrera; Dangl, Jeffery L.] Univ N Carolina, Howard Hughes Med Inst, Chapel Hill, NC 27599 USA.
[Paredes, Sur Herrera; Jones, Corbin D.; Dangl, Jeffery L.] Univ N Carolina, Curriculum Bioinformat & Computat Biol, Chapel Hill, NC 27599 USA.
[Lundberg, Derek S.; Jones, Corbin D.; Dangl, Jeffery L.] Univ N Carolina, Curriculum Genet & Mol Biol, Chapel Hill, NC 27599 USA.
[Malfatti, Stephanie; del Rio, Tijana Glavina; Tringe, Susannah G.] US DOE, Joint Genome Inst, Walnut Creek, CA USA.
[Jones, Corbin D.; Dangl, Jeffery L.] Univ N Carolina, Carolina Ctr Genome Sci, Chapel Hill, NC 27599 USA.
[Dangl, Jeffery L.] Univ N Carolina, Dept Microbiol & Immunol, Chapel Hill, NC 27599 USA.
RP Lebeis, SL (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.
EM slebeis@utk.edu; dangl@email.unc.edu
OI Breakfield, Natalie/0000-0001-8517-885X; Herrera Paredes,
Sur/0000-0001-9246-8337
FU NSF Microbial Systems Biology [IOS-0958245]; NSF INSPIRE [IOS-1343020];
NIH [T32 GM067553-06, T32 GM07092-34]; HHMI; Gordon and Betty Moore
Foundation [GBMF3030]; NIH Minority Opportunities in Research division
of the National Institute of General Medical Sciences (NIGMS)
[K12GM000678]; NIH Dr. Ruth L. Kirschstein National Research Service
Award Fellowship [F32-GM103156]; Office of Science of the DOE
[DE-AC02-05CH11231]; DOE-JGI Director's Discretionary Grand Challenge
Program
FX This work was supported by NSF Microbial Systems Biology grant
IOS-0958245 and NSF INSPIRE grant IOS-1343020 to J.L.D. S.H.P. was
supported by NIH Training Grant T32 GM067553-06 and is a Howard Hughes
Medical Institute (HHMI) International Student Research Fellow. D.S.L.
was supported by NIH Training Grant T32 GM07092-34. J.L.D. is an
Investigator of HHMI, supported by HHMI and the Gordon and Betty Moore
Foundation (GBMF3030). S.L.L. was supported by the NIH Minority
Opportunities in Research division of the National Institute of General
Medical Sciences (NIGMS) grant K12GM000678. N.B. was supported by NIH
Dr. Ruth L. Kirschstein National Research Service Award Fellowship
F32-GM103156. The work conducted by the U.S. Department of Energy (DOE)
Joint Genome Institute (JGI), a DOE Office of Science User Facility, is
supported by the Office of Science of the DOE under contract
DE-AC02-05CH11231. This work was also funded by the DOE-JGI Director's
Discretionary Grand Challenge Program. We thank the Dangl laboratory
microbiome group for useful discussions and S. Grant, S. Y. He, P.
Hugenholtz, J. Kremer, and D. Weigel for critical comments on the
manuscript. The supplementary materials contain additional data. J.L.D.
is a cofounder, shareholder, and chair of the Scientific Advisory Board
of AgBiome, a corporation whose goal is to use plant-associated microbes
to improve plant productivity. Raw sequence data are available at the
Short Read Archive accessions ERP010780 and ERP010863 and at the JGI
portal http://genome.jgi.doe.gov/Immunesamples/Immunesamples.info.html,
which requires registration to access.
NR 16
TC 68
Z9 68
U1 33
U2 187
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
EI 1095-9203
J9 SCIENCE
JI Science
PD AUG 21
PY 2015
VL 349
IS 6250
BP 860
EP 864
DI 10.1126/science.aaa8764
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP4DR
UT WOS:000359832700048
PM 26184915
ER
PT J
AU Chien, TY
He, XB
Mo, SK
Hashimoto, M
Hussain, Z
Shen, ZX
Plummer, EW
AF Chien, TeYu
He, Xiaobo
Mo, Sung-Kwan
Hashimoto, Makoto
Hussain, Zahid
Shen, Zhi-Xun
Plummer, E. W.
TI Electron-phonon coupling in a system with broken symmetry: Surface of
Be(0001)
SO PHYSICAL REVIEW B
LA English
DT Article
ID PHOTOEMISSION SPECTRA; METAL-SURFACES; BI2SR2CACU2O8+DELTA;
SUPERCONDUCTIVITY; DISPERSION; BERYLLIUM; ENERGY
AB The momentum-resolved Eliashberg function (ELF) alpha(2) F(omega, k) for the Be(0001) zone-center surface state was extracted from the high-quality angle-resolved photoemission spectroscopy (ARPES) data at the Fermi energy in the (Gamma) over bar -> (M) over bar direction, displaying ten peaks. A comparison of the peaks in the ELF to the bulk phonon density of states (DOS) and the bulk and surface phonon dispersion allows for an identification of the origin of all but two of the peaks. The five high energy peaks (> 52 meV) are associated with the coupling of the surface state to bulk phonon modes. The peaks at 44.5 and at 49.0 meV have contributions from both the bulk and surface phonons. The most intense peak at 37.5 meV is evidently having a contribution from electron-phonon coupling (EPC) of the surface state to the surface Rayleigh phonon mode. Surprisingly, the two lowest energy modes, which must be associated with surface Rayleigh phonon, cannot be attributed to a high phonon DOS at the surface nor to any Fermi surface nesting. After detail analysis, the three lowest energy peaks are associated with momentum dependence in the EPC matrix, reflected in the phonon linewidth changes. As a result of the broken symmetry at the surface, coupling of the initial surface state due to the presence of the surface phonons contributes similar to 48.5 +/- 12.5% of the spectral weight in the ELF and similar to 66.5 +/- 10.5% to the mass enhancement (lambda).
C1 [Chien, TeYu] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA.
[He, Xiaobo; Plummer, E. W.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
[Mo, Sung-Kwan; Hussain, Zahid] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Hashimoto, Makoto] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Shen, Zhi-Xun] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA.
[Shen, Zhi-Xun] Stanford Univ, Dept Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA.
[Shen, Zhi-Xun] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
RP Chien, TY (reprint author), Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA.
EM tchien@uwyo.edu
RI Mo, Sung-Kwan/F-3489-2013
OI Mo, Sung-Kwan/0000-0003-0711-8514
FU National Science Foundation [DMR-0451163, DMR-1504226]; Office of Basic
Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the National Science Foundation, TYC by
DMR-0451163; and EWP by DMR-1504226. The ALS is supported by the Office
of Basic Energy Sciences, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.
NR 44
TC 1
Z9 1
U1 1
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 21
PY 2015
VL 92
IS 7
AR 075133
DI 10.1103/PhysRevB.92.075133
PG 10
WC Physics, Condensed Matter
SC Physics
GA CP4NX
UT WOS:000359860100002
ER
PT J
AU Gharbharan, D
Britsch, D
Soto, G
Weed, AMK
Svec, F
Zajickova, Z
AF Gharbharan, Deepa
Britsch, Denae
Soto, Gabriela
Weed, Anna-Marie Karen
Svec, Frantisek
Zajickova, Zuzana
TI Tuning preparation conditions towards optimized separation performance
of thermally polymerized organo-silica monolithic columns in capillary
liquid chromatography
SO JOURNAL OF CHROMATOGRAPHY A
LA English
DT Article
DE Organo-silica; Hybrid; Monolith; Sol-gel; Photo-polymerization; Thermal
polymerization
ID SOL-GEL MONOLITHS; HIGH-EFFICIENCY; ELECTROCHROMATOGRAPHY; HPLC; PHASE;
METHACRYLATE; BEHAVIOR
AB Tuning of preparation conditions, such as variations in the amount of a porogen, concentration of an aqueous acid catalyst, and adjustment in polymerization temperature and time, towards optimized chromatographic performance of thermally polymerized monolithic capillaries prepared from 3-(methacryloyloxy)propyltrimethoxysilane has been carried out. Performance of capillary columns in reversed-phase liquid chromatography was assessed utilizing various sets of solutes. Results describing hydrophobicity, steric selectivity, and extent of hydrogen bonding enabled comparison of performance of hybrid monolithic columns prepared under thermal (TSG) and photopolymerized (PSG) conditions. Reduced amounts of porogen in the polymerization mixture, and prolonged reaction times were necessary for the preparation of monolithic columns with enhanced retention and column efficiency that reached to 111,000 plates/m for alkylbenzenes with shorter alkyl chains. Both increased concentration of catalyst and higher temperature resulted in faster polymerization but inevitably in insufficient time for pore formation. Thermally polymerized monoliths produced surfaces, which were slightly more hydrophobic (a methylene selectivity of 1.28 +/- 10.002 TSG vs 1.20 +/- 0.002 PSG), with reduced number of residual silanols (a caffeine/phenol selectivity of 0.13 +/- 10.001 TSG vs 0.17 +/- 0.003 PSG). However, steric selectivity of 1.70 +/- 1 0.01 was the same for both types of columns. The batch-to-batch repeatability was better using thermal initiation compared to monolithic columns prepared under photopolymerized conditions. RSD for retention factor of benzene was 3.7% for TSG capillaries (n = 42) vs. 6.6% for PSG capillaries (n = 18). A similar trend was observed for columns prepared within the same batch. (C) 2015 Elsevier B.V. All rights reserved.
C1 [Gharbharan, Deepa; Britsch, Denae; Soto, Gabriela; Weed, Anna-Marie Karen; Zajickova, Zuzana] Barry Univ, Dept Phys Sci, Miami Shores, FL 33161 USA.
[Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
RP Zajickova, Z (reprint author), Barry Univ, Dept Phys Sci, Miami Shores, FL 33161 USA.
EM ZZajickova@barry.edu
FU National Science Foundation [CBET-1066113]; Office of Science, Office of
Basic Energy Sciences of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX Financial support of this project by the National Science Foundation
(CBET-1066113) is gratefully acknowledged. Experimental work carried out
at the Molecular Foundry, Lawrence Berkeley National Laboratory and F.S.
were supported by the Office of Science, Office of Basic Energy Sciences
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 23
TC 3
Z9 3
U1 2
U2 31
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0021-9673
EI 1873-3778
J9 J CHROMATOGR A
JI J. Chromatogr. A
PD AUG 21
PY 2015
VL 1408
BP 101
EP 107
DI 10.1016/j.chroma.2015.06.069
PG 7
WC Biochemical Research Methods; Chemistry, Analytical
SC Biochemistry & Molecular Biology; Chemistry
GA CO7GH
UT WOS:000359327100013
PM 26169907
ER
PT J
AU Polyanskiy, MN
Babzien, M
Pogorelsky, IV
AF Polyanskiy, Mikhail N.
Babzien, Marcus
Pogorelsky, Igor V.
TI Chirped-pulse amplification in a CO2 laser
SO OPTICA
LA English
DT Article
ID PICOSECOND 10-MU-M PULSES; COMPRESSION; ABSORPTION; DISPERSION;
REFRACTION; RADIATION; GERMANIUM; CARRIERS
AB Chirped-pulse amplification (CPA) is an integral part of present-day ultra-intense laser systems that normally employ near-infrared (similar to 1 mu m) solid-state lasers. The recently revived interest in expanding the reach of strong-field laser physics into the mid-infrared (mid-IR) spectral domain directs our attention to 9-11 mu m carbon-dioxide (CO2) lasers for which progress to reaching high peak intensities has been limited so far. We propose that employing the CPA technique will allow us to realize a new breakthrough toward multiterawatt, ultrafast mid-IR lasers; here we report, to our knowledge, the first implementation of this method for a CO2 laser. Our stretching of a 1 ps, 9 mu m pulse to 80 ps improved energy extraction from a regenerative CO2 laser amplifier by 1 order of magnitude. We explain this accomplishment by the reduction in nonlinear absorption and refraction on the amplifier's optical elements. We consider these findings as being a pivotal step toward establishing next-generation ultra-intense CO2 CPA laser systems for strong-field mid-IR research and its applications. (C) 2015 Optical Society of America
C1 [Polyanskiy, Mikhail N.; Babzien, Marcus; Pogorelsky, Igor V.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Polyanskiy, MN (reprint author), Brookhaven Natl Lab, Bldg 820M, Upton, NY 11973 USA.
EM polyanskiy@bnl.gov
RI Polyanskiy, Mikhail/E-8406-2010
FU U.S. Department of Energy (DOE) [DE-AC02-98CH10886]
FX U.S. Department of Energy (DOE) (DE-AC02-98CH10886).
NR 18
TC 6
Z9 6
U1 4
U2 6
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 2334-2536
J9 OPTICA
JI Optica
PD AUG 20
PY 2015
VL 2
IS 8
BP 675
EP 681
PG 7
WC Optics
SC Optics
GA CV7VV
UT WOS:000364484600003
ER
PT J
AU Demos, SG
Negres, RA
Raman, RN
Feit, MD
Manes, KR
Rubenchik, AM
AF Demos, Stavros G.
Negres, Raluca A.
Raman, Rajesh N.
Feit, Michael D.
Manes, Kenneth R.
Rubenchik, Alexander M.
TI Relaxation dynamics of nanosecond laser superheated material in
dielectrics
SO OPTICA
LA English
DT Article
ID FUSED-SILICA; PHASE EXPLOSION; ABLATION; VAPORIZATION; PARTICLES;
VISCOSITY; BREAKDOWN; SURFACE; PULSES
AB Intense laser pulses can cause superheating of the near-surface volume of materials. This mechanism is widely used in applications such as laser micromachining, laser ablation, or laser assisted thin film deposition. The relaxation of the near solid density superheated material is not well understood, however. In this work, we investigate the relaxation dynamics of the superheated material formed in several dielectrics with widely differing physical properties. The results suggest that the relaxation process involves a number of distinct phases, which include the delayed explosive ejection of microscale particles starting after the pressure of the superheated material is reduced to about 4 GPa and for a time duration on the order of 1 mu s. The appearance of a subset of collected ejected particles in fused silica is similar to that of micro-tektites and provides information about the state of the superheated material at the time of ejection. These results advance our understanding of a key aspect of the laser-material interaction pathway and can lead to optimization of associated applications ranging from material processing to laser surgery.
C1 [Demos, Stavros G.; Negres, Raluca A.; Raman, Rajesh N.; Feit, Michael D.; Manes, Kenneth R.; Rubenchik, Alexander M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Demos, SG (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA.
EM demos1@llnl.gov
FU U.S. Department of Energy (DOE) [DE-AC52-07NA27344]
FX U.S. Department of Energy (DOE) (DE-AC52-07NA27344).
NR 37
TC 6
Z9 6
U1 2
U2 5
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 2334-2536
J9 OPTICA
JI Optica
PD AUG 20
PY 2015
VL 2
IS 8
BP 765
EP 772
DI 10.1364/OPTICA.2.000765
PG 8
WC Optics
SC Optics
GA CV7VV
UT WOS:000364484600019
ER
PT J
AU Carvajal, CDR
Dias, AG
Nishi, CC
Sanchez-Vega, BL
AF Carvajal, C. D. R.
Dias, A. G.
Nishi, C. C.
Sanchez-Vega, B. L.
TI Axion like particles and the inverse seesaw mechanism (vol 05, 069,
2015)
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Correction
C1 [Carvajal, C. D. R.; Dias, A. G.] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil.
[Nishi, C. C.] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA.
[Nishi, C. C.] Univ Fed ABC, Ctr Matemat Comp & Cognicao, BR-09210580 Santo Andre, SP, Brazil.
[Sanchez-Vega, B. L.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Carvajal, CDR (reprint author), Univ Fed ABC, Ctr Ciencias Nat & Humanas, Ave Estados 5001, BR-09210580 Santo Andre, SP, Brazil.
EM crisdaruiz@gmail.com; alex.dias@ufabc.edu.br; celso.nishi@ufabc.edu.br;
brucesanchez@anl.gov
RI Nishi, Celso/J-8494-2012
NR 1
TC 2
Z9 2
U1 2
U2 2
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD AUG 20
PY 2015
IS 8
AR 103
DI 10.1007/JHEP08(2015)103
PG 2
WC Physics, Particles & Fields
SC Physics
GA CU4WN
UT WOS:000363531300001
ER
PT J
AU Chandra, S
Zhang, HC
Kushwaha, P
Singh, KP
Bottcher, M
Kaur, N
Baliyan, KS
AF Chandra, Sunil
Zhang, Haocheng
Kushwaha, Pankaj
Singh, K. P.
Bottcher, M.
Kaur, Navpreet
Baliyan, K. S.
TI MULTI-WAVELENGTH STUDY OF FLARING ACTIVITY IN BL Lac OBJECT S5 0716+714
DURING THE 2015 OUTBURST
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE BL Lacertae objects: individual (S5 0716+714)
ID LARGE-AREA TELESCOPE; INVERSE COMPTON VARIABILITY; GAMMA-RAY OUTBURST;
ALL-SKY SURVEY; LACERTAE OBJECT; PKS 1510-089; X-RAY;
ELECTROMAGNETIC-SPECTRUM; GALACTIC NUCLEI; DATA RELEASE
AB We present a detailed investigation of the flaring activity observed from a BL Lac object, S5 0716+714, during its brightest ever optical state in the second half of 2015 January. Observed almost simultaneously in the optical, X-rays, and gamma-rays, a significant change in the degree of optical polarization (PD) and a swing in the position angle (PA) of polarization were recorded. A TeV (VHE) detection was also reported by the MAGIC consortium during this flaring episode. Two prominent sub-flares, peaking about five days apart, were seen in almost all of the energy bands. The multi-wavelength light curves, spectral energy distribution, and polarization are modeled using the time-dependent code developed by Zhang et al. This model assumes a straight jet threaded by large-scale helical magnetic fields taking into account the light travel time effects, incorporating synchrotron flux and polarization in 3D geometry. The rapid variation in PD and rotation in PA are most likely due to reconnections happening in the emission region in the jet, as suggested by the change in the ratio of toroidal to poloidal components of the magnetic field during the quiescent and flaring states.
C1 [Chandra, Sunil; Kushwaha, Pankaj; Singh, K. P.] Tata Inst Fundamental Res, Dept Astron & Astrophys, Bombay 400005, Maharashtra, India.
[Zhang, Haocheng] Ohio Univ, Dept Phys & Astron, Inst Astrophys, Athens, OH 45701 USA.
[Zhang, Haocheng] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Bottcher, M.] North West Univ, Ctr Space Res, ZA-2531 Potchefstroom, South Africa.
[Kaur, Navpreet; Baliyan, K. S.] Phys Res Lab, Ahmadabad 380009, Gujarat, India.
RP Chandra, S (reprint author), Tata Inst Fundamental Res, Dept Astron & Astrophys, Homi Bhabha Rd, Bombay 400005, Maharashtra, India.
OI Chandra, Sunil/0000-0002-8776-1835; /0000-0003-0180-8231
FU Fermi Guest Investigator grants [NNX08AW56G, NNX09AU10G, NNX12AO93G];
Tata Institute of Fundamental Research, Mumbai; Physical Research
Laboratory, Unit of Dept. of Space, GOI, Ahmedabad; LANL/LDRD program;
DoE/Office of Fusion Energy Science through CMSO; South African Research
Chairs Initiative (SARChI) of the Department of Science and Technology;
National Research Foundation of South Africa
FX The authors are grateful to Prof. P. Smith and team, Arizona University,
USA, for making the data from the Steward Observatory
spectropolarimetric monitoring project accessible. This program is
supported by Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, and
NNX12AO93G. The authors also acknowledge the HEASARC and Fermi Science
Team for data access from these facilities. S.C. and P.K. acknowledge
the help and support of MIRO local staff during the course of campaign.
S.C., P.K., K.S.B., and N.K. are thankful to Dr. S. Ganesh for helping
in observations at MIRO. S.C., P.K., and K.P.S. are thankful to Tata
Institute of Fundamental Research, Mumbai for the funding needed for
this project. N.K. and K.S.B. acknowledge support by the Physical
Research Laboratory, Unit of Dept. of Space, GOI, Ahmedabad for partial
support. H.Z. is supported by the LANL/LDRD program and by DoE/Office of
Fusion Energy Science through CMSO. M.B. acknowledges support by the
South African Research Chairs Initiative (SARChI) of the Department of
Science and Technology and the National Research Foundation of South
Africa. The simulations used here were conducted using LANL's
Institutional Computing machines.
NR 58
TC 4
Z9 4
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 20
PY 2015
VL 809
IS 2
AR 130
DI 10.1088/0004-637X/809/2/130
PG 9
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CR9EC
UT WOS:000361655100023
ER
PT J
AU Hovey, L
Hughes, JP
Eriksen, K
AF Hovey, Luke
Hughes, John P.
Eriksen, Kristoffer
TI A DIRECT MEASUREMENT OF THE FORWARD SHOCK SPEED IN SUPERNOVA REMNANT
0509-67.5: CONSTRAINTS ON THE AGE, AMBIENT DENSITY, SHOCK COMPRESSION
FACTOR, AND ELECTRON-ION TEMPERATURE EQUILIBRATION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmic rays; ISM: individual objects (SNR 0509-67.5); ISM: kinematics
and dynamics; ISM: supernova remnants; proper motions; shock waves
ID LARGE-MAGELLANIC-CLOUD; BALMER-DOMINATED SHOCKS; COSMIC-RAY
ACCELERATION; IA SUPERNOVA; PARTICLE-ACCELERATION; NOVA REMNANTS;
ASTROPHYSICAL SHOCKS; OPTICAL-EMISSION; LIGHT ECHOES; X-RAY
AB Two Hubble Space Telescope narrow-band H alpha images separated in time by 1.03 years are used for a proper motion measurement of the forward shock of the LMC supernova remnant 0509-67.5, the only spectroscopically confirmed LMC remnant of Ia origin. We measure a global shock speed of 6500 +/- 200 km s(-1) and constrain the pre-shock neutral hydrogen density to be 0.084 +/- 0.003 cm(-3), for a typical mean number of H alpha photons produced per neutral hydrogen atom entering the forward shock. Previously published broad H alpha line widths from two locations on the rim and our corresponding shock speed measurements are consistent with Balmer shock models that do not include effects of cosmic-ray acceleration. For the northeastern rim location, we limit the post-shock electron temperature to 10% of the proton temperature by also using the broad-to-narrow flux ratio. Hydrodynamic simulations for different initial ejecta density profiles constrain the age and ambient medium density; for an exponential ejecta profile and initial explosion energy of 1.4 x 10(51) erg, the remnant's age is 310(-30)(+40) years. For all evolutionary models explored, the expansion parameter falls in the range of 0.41-0.73, indicating that the remnant is still firmly in the ejecta-dominated phase of its evolution. Our measured neutral hydrogen density of the ambient medium, combined with the shocked density obtained in Williams et al., disfavors forward shock compression factors greater than similar to 7.
C1 [Hovey, Luke; Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Eriksen, Kristoffer] Los Alamos Natl Lab, Theoret Design Div, Los Alamos, NM 87545 USA.
RP Hovey, L (reprint author), Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA.
EM lhovey@physics.rutgers.edu; jph@physics.rutgers.edu; keriksen@lanl.gov
FU NASA from the Space Telescope Science Institute [HST-GO-11015.01-A];
NASA [NAS5-26555]
FX L.H. thanks Kevin Heng for providing him with the numerical results of
the models found in van Adelsberg et al. (2008); he also thanks Chelsea
Sharon, Curtis McCully, and Saurabh Jha for help with various aspects of
the analysis. J.P.H. acknowledges Jessica Warren, Carles Badenes, Chris
Smith, Jacco Vink, and Parviz Ghavamian for their contributions to the
original joint Chandra/HST proposal. Support for Program number
HST-GO-11015.01-A was provided by NASA through a grant from the Space
Telescope Science Institute, which is operated by the Association of
Universities for Research in Astronomy, Incorporated, under NASA
contract NAS5-26555.
NR 45
TC 0
Z9 0
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 20
PY 2015
VL 809
IS 2
AR 119
DI 10.1088/0004-637X/809/2/119
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CR9EC
UT WOS:000361655100012
ER
PT J
AU Krivonos, RA
Tsygankov, SS
Lutovinov, AA
Tomsick, JA
Chakrabarty, D
Bachetti, M
Boggs, SE
Chernyakova, M
Christensen, FE
Craig, WW
Furst, F
Hailey, CJ
Harrison, FA
Lansbury, GB
Rahoui, F
Stern, D
Zhang, WW
AF Krivonos, Roman A.
Tsygankov, Sergey S.
Lutovinov, Alexander A.
Tomsick, John A.
Chakrabarty, Deepto
Bachetti, Matteo
Boggs, Steven E.
Chernyakova, Masha
Christensen, Finn E.
Craig, William W.
Fuerst, Felix
Hailey, Charles J.
Harrison, Fiona A.
Lansbury, George B.
Rahoui, Farid
Stern, Daniel
Zhang, William W.
TI NuSTAR DISCOVERY OF AN UNUSUALLY STEADY LONG-TERM SPIN-UP OF THE Be
BINARY 2RXP J130159.6-635806
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE pulsars: individual (2RXP J130159.6-635806); stars: emission-line, Be;
X-rays: binaries
ID X-RAY BINARIES; NEUTRON-STARS; PULSARS; PERIOD; ACCRETION; EVOLUTION;
EMISSION; CATALOG; ENERGY; LINE
AB We present spectral and timing analyses of Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the accreting X-ray pulsar 2RXP J130159.6-635806. The source was serendipitously observed during a campaign focused on the gamma-ray binary PSR B1259-63 and was later targeted for a dedicated observation. The spectrum has a typical shape for accreting X-ray pulsars, consisting of a simple power law with an exponential cutoff starting at similar to 7 keV with a folding energy of E-fold similar or equal to 18 keV. There is also an indication of the presence of a 6.4 keV iron line in the spectrum at the similar to 3 sigma significance level. NuSTAR measurements of the pulsation period reveal that the pulsar has undergone a strong and steady spin-up for the last 20 years. The pulsed fraction is estimated to be similar to 80%, and is constant with energy up to 40 keV. The power density spectrum shows a break toward higher frequencies relative to the current spin period. This, together with steady persistent luminosity, points to a long-term mass accretion rate high enough to bring the pulsar out of spin equilibrium.
C1 [Krivonos, Roman A.; Tomsick, John A.; Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Krivonos, Roman A.; Tsygankov, Sergey S.; Lutovinov, Alexander A.] Russian Acad Sci, Space Res Inst, Moscow 117997, Russia.
[Tsygankov, Sergey S.] Univ Turku, Dept Phys & Astron, Tuorla Observ, FI-21500 Piikkio, Finland.
[Chakrabarty, Deepto] MIT Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA.
[Bachetti, Matteo] Univ Toulouse 3, Observ Midi Pyrenees, F-31400 Toulouse, France.
[Bachetti, Matteo] CNRS, Inst Rech Astrophys & Planetol, F-31028 Toulouse, France.
[Chernyakova, Masha] Dublin City Univ, Dublin 9, Ireland.
[Chernyakova, Masha] Dublin Inst Adv Studies, Dublin 2, Ireland.
[Christensen, Finn E.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark.
[Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Fuerst, Felix; Harrison, Fiona A.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA.
[Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Lansbury, George B.] Univ Durham, Dept Phys, Durham DH1 3LE, England.
[Rahoui, Farid] European So Observ, D-85748 Garching, Germany.
[Rahoui, Farid] Harvard Univ, Dept Astron, Cambridge, MA 02138 USA.
[Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Zhang, William W.] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Krivonos, RA (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
RI Boggs, Steven/E-4170-2015;
OI Boggs, Steven/0000-0001-9567-4224; Bachetti, Matteo/0000-0002-4576-9337;
Krivonos, Roman/0000-0003-2737-5673
FU NASA; ESA Member States; Russian Science Foundation [14-12-01287]
FX This research has made use of data obtained with NuSTAR, a project led
by Caltech, funded by NASA and managed by NASA/JPL, and has utilized the
NUSTARDAS software package, jointly developed by the ASDC (Italy) and
Caltech (USA). This research has also made use of data obtained with
XMM-Newton, an ESA science mission with instruments and contributions
directly funded by ESA Member States. A.L. and S.T. acknowledge support
from Russian Science Foundation (grant 14-12-01287).
NR 32
TC 5
Z9 5
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 20
PY 2015
VL 809
IS 2
AR 140
DI 10.1088/0004-637X/809/2/140
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CR9EC
UT WOS:000361655100033
ER
PT J
AU Lansbury, GB
Gandhi, P
Alexander, DM
Assef, RJ
Aird, J
Annuar, A
Ballantyne, DR
Balokovic, M
Bauer, FE
Boggs, SE
Brandt, WN
Brightman, M
Christensen, FE
Civano, F
Comastri, A
Craig, WW
Del Moro, A
Grefenstette, BW
Hailey, CJ
Harrison, FA
Hickox, RC
Koss, M
LaMassa, SM
Luo, B
Puccetti, S
Stern, D
Treister, E
Vignali, C
Zappacosta, L
Zhang, WW
AF Lansbury, G. B.
Gandhi, P.
Alexander, D. M.
Assef, R. J.
Aird, J.
Annuar, A.
Ballantyne, D. R.
Balokovic, M.
Bauer, F. E.
Boggs, S. E.
Brandt, W. N.
Brightman, M.
Christensen, F. E.
Civano, F.
Comastri, A.
Craig, W. W.
Del Moro, A.
Grefenstette, B. W.
Hailey, C. J.
Harrison, F. A.
Hickox, R. C.
Koss, M.
LaMassa, S. M.
Luo, B.
Puccetti, S.
Stern, D.
Treister, E.
Vignali, C.
Zappacosta, L.
Zhang, W. W.
TI NuSTAR REVEALS EXTREME ABSORPTION IN z < 0.5 TYPE 2 QUASARS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; X-rays: galaxies
ID ACTIVE GALACTIC NUCLEI; HARD X-RAY; DIGITAL-SKY-SURVEY; SEYFERT 2
GALAXIES; COMPTON-THICK AGN; XMM-NEWTON OBSERVATIONS; ULTRALUMINOUS
INFRARED GALAXIES; RESOLUTION SPECTRAL TEMPLATES; LUMINOUS OBSCURED
QUASARS; APPROXIMATE-TO 2
AB The intrinsic column density (N-H) distribution of quasars is poorly known. At the high obscuration end of the quasar population and for redshifts z < 1, the X-ray spectra can only be reliably characterized using broad-band measurements that extend to energies above 10 keV. Using the hard X-ray observatory NuSTAR, along with archival Chandra and XMM-Newton data, we study the broad-band X-ray spectra of nine optically selected (from the SDSS), candidate Compton-thick (N-H > 1.5 x 10(24) cm(-2)) type 2 quasars (CTQSO2s); five new NuSTAR observations are reported herein, and four have been previously published. The candidate CTQSO2s lie at z < 0.5, have observed [O III] luminosities in the range 8.4< log(L-[O III]/L circle dot)< 9.6, and show evidence for extreme, Compton-thick absorption when indirect absorption diagnostics are considered. Among the nine candidate CTQSO2s, five are detected by NuSTAR in the high-energy (8-24 keV) band: two are weakly detected at the approximate to 3 sigma confidence level and three are strongly detected with sufficient counts for spectral modeling (greater than or similar to 90 net source counts at 8-24 keV). For these NuSTAR-detected sources direct (i.e., X-ray spectral) constraints on the intrinsic active galactic nucleus properties are feasible, and we measure column densities approximate to 2.5-1600 times higher and intrinsic (unabsorbed) X-ray luminosities approximate to 10-70 times higher than pre-NuSTAR constraints from Chandra and XMM-Newton. Assuming the NuSTAR-detected type 2 quasars are representative of other Compton-thick candidates, we make a correction to the N-H distribution for optically selected type 2 quasars as measured by Chandra and XMM-Newton for 39 objects. With this approach, we predict a Compton-thick fraction of f(CT) = 36(-12)(+14)%, although higher fractions (up to 76%) are possible if indirect absorption diagnostics are assumed to be reliable.
C1 [Lansbury, G. B.; Gandhi, P.; Alexander, D. M.; Annuar, A.; Del Moro, A.] Univ Durham, Ctr Extragalact Astron, Dept Phys, Durham DH1 3LE, England.
[Gandhi, P.] Univ Southampton, Sch Phys & Astron, Southampton SO17, Hants, England.
[Assef, R. J.] Univ Diego Portales, Nucleo Astron, Fac Ingn, Santiago, Chile.
[Aird, J.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Ballantyne, D. R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Balokovic, M.; Brightman, M.; Grefenstette, B. W.; Harrison, F. A.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA.
[Bauer, F. E.] Pontificia Univ Catolica Chile, Inst Astrofis, Fac Fis, Santiago 22, Chile.
[Bauer, F. E.] Millennium Inst Astrophys, Santiago 7820436, Chile.
[Bauer, F. E.] Space Sci Inst, Boulder, CO 80301 USA.
[Boggs, S. E.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Brandt, W. N.; Luo, B.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA.
[Brandt, W. N.; Luo, B.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA.
[Christensen, F. E.; Craig, W. W.] Tech Univ Denmark, DTU Space Natl Space Inst, DK-2800 Lyngby, Denmark.
[Civano, F.; LaMassa, S. M.] Yale Univ, Dept Phys, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA.
[Civano, F.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA.
[Civano, F.; Hickox, R. C.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA.
[Comastri, A.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy.
[Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Koss, M.] Swiss Fed Inst Technol, Inst Astron, Dept Phys, CH-8093 Zurich, Switzerland.
[Puccetti, S.] ASDC ASI, I-00133 Rome, Italy.
[Puccetti, S.; Zappacosta, L.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, RM, Italy.
[Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Treister, E.] Univ Concepcion, Dept Astron, Concepcion, Chile.
[Vignali, C.] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy.
[Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Lansbury, GB (reprint author), Univ Durham, Ctr Extragalact Astron, Dept Phys, South Rd, Durham DH1 3LE, England.
EM g.b.lansbury@durham.ac.uk
RI Comastri, Andrea/O-9543-2015; Vignali, Cristian/J-4974-2012; Brandt,
William/N-2844-2015; Boggs, Steven/E-4170-2015;
OI Comastri, Andrea/0000-0003-3451-9970; Lansbury,
George/0000-0002-5328-9827; Puccetti, Simonetta/0000-0002-2734-7835;
Vignali, Cristian/0000-0002-8853-9611; Brandt,
William/0000-0002-0167-2453; Boggs, Steven/0000-0001-9567-4224; Koss,
Michael/0000-0002-7998-9581; Ballantyne, David/0000-0001-8128-6976
FU Science and Technology Facilities Council (STFC) [ST/K501979/1,
ST/J003697/1, ST/I001573/1]; Leverhulme Trust; Gemini-CONICYT
[32120009]; ERC Advanced Grant FEEDBACK at the University of Cambridge;
NSF AST award [1008067]; NASA Earth and Space Science Fellowship Program
[NNX14AQ07H]; CONICYT-Chile [PFB-06/2007, FONDECYT 1141218, ACT1101];
Ministry of Economy, Development, and Tourism's Millennium Science
Initiative [IC120009]; Caltech NuSTAR subcontract [44A-1092750]; NASA
ADP grant [NNX10AC99G]; Caltech Kingsley visitor program; ASI/INAF
[I/037/12/0011/13]; NASA ADAP award [NNX12AE38G]; National Science
Foundation [1211096]; Swiss National Science Foundation
[PP00P2_138979/1]; NASA [NNG08FD60C]; National Aeronautics and Space
Administration
FX We thank the referee for a careful review, which has improved this work.
We acknowledge financial support from: the Science and Technology
Facilities Council (STFC) grants ST/K501979/1 (G.B.L.), ST/J003697/1
(P.G.), ST/I001573/1 (D.M.A. and A.D.M.); the Leverhulme Trust (D.M.A.);
Gemini-CONICYT grant 32120009 (R.J.A.); the ERC Advanced Grant FEEDBACK
at the University of Cambridge (J.A.); NSF AST award 1008067 (D.R.B.);
the NASA Earth and Space Science Fellowship Program, grant NNX14AQ07H
(M.B.); CONICYT-Chile grants Basal-CATA PFB-06/2007 (F.E.B.), FONDECYT
1141218 (F.E.B.), and "EMBIGGEN" Anillo ACT1101 (F.E.B.); the Ministry
of Economy, Development, and Tourism's Millennium Science Initiative
grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS
(F.E.B.); Caltech NuSTAR subcontract 44A-1092750 (W.N.B. and B.L.); NASA
ADP grant NNX10AC99G (W.N.B. and B.L.); the Caltech Kingsley visitor
program (A.C.); ASI/INAF grant I/037/12/0011/13 (A.C., S.P., C.V.); NASA
ADAP award NNX12AE38G (R.C.H.); National Science Foundation grant
1211096 (R.C.H.); and Swiss National Science Foundation grant
PP00P2_138979/1 (M.K.). We thank Andrew Ptak and Jianjun Jia for the
useful correspondence. This work was supported under NASA Contract No.
NNG08FD60C and made use of data from the NuSTAR mission, a project led
by the California Institute of Technology, managed by the Jet Propulsion
Laboratory, and funded by the National Aeronautics and Space
Administration. We thank the NuSTAR Operations, Software and Calibration
teams for support with the execution and analysis of these observations.
This research has made use of the NuSTAR Data Analysis Software
(NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC,
Italy) and the California Institute of Technology (USA).
NR 112
TC 21
Z9 21
U1 1
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 20
PY 2015
VL 809
IS 2
AR 115
DI 10.1088/0004-637X/809/2/115
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CR9EC
UT WOS:000361655100008
ER
PT J
AU Nichols, J
Huenemoerder, DP
Corcoran, MF
Waldron, W
Naze, Y
Pollock, AMT
Moffat, AFJ
Lauer, J
Shenar, T
Russell, CMP
Richardson, ND
Pablo, H
Evans, NR
Hamaguchi, K
Gull, T
Hamann, WR
Oskinova, L
Ignace, R
Hoffman, JL
Hole, KT
Lomax, JR
AF Nichols, J.
Huenemoerder, D. P.
Corcoran, M. F.
Waldron, W.
Naze, Y.
Pollock, A. M. T.
Moffat, A. F. J.
Lauer, J.
Shenar, T.
Russell, C. M. P.
Richardson, N. D.
Pablo, H.
Evans, N. R.
Hamaguchi, K.
Gull, T.
Hamann, W. -R.
Oskinova, L.
Ignace, R.
Hoffman, Jennifer L.
Hole, K. T.
Lomax, J. R.
TI A COORDINATED X-RAY AND OPTICAL CAMPAIGN OF THE NEAREST MASSIVE
ECLIPSING BINARY, delta ORIONIS Aa. II. X-RAY VARIABILITY
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE binaries: close; binaries: eclipsing; stars: individual ([HD 36486]delta
Ori A)
ID EARLY-TYPE STARS; SHORT-TERM VARIABILITY; HELIUM-LIKE IONS; O-TYPE
STARS; ABSORPTION COMPONENTS; LINE INTENSITIES; COLLIDING WINDS;
MAIN-SEQUENCE; ZETA-OPHIUCHI; TIME-SERIES
AB We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximate to 479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 is is confirmed, with a maximum amplitude of about +/- 15% within a single approximate to 125 ks observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.
C1 [Nichols, J.; Lauer, J.; Evans, N. R.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Huenemoerder, D. P.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA.
[Corcoran, M. F.; Hamaguchi, K.] NASA GSFC, CRESST, Greenbelt, MD 20771 USA.
[Corcoran, M. F.; Hamaguchi, K.] NASA GSFC, XRay Astrophys Lab, Greenbelt, MD 20771 USA.
[Waldron, W.] Univ Space Res Assoc, Columbia, MD 21046 USA.
[Naze, Y.] Eureka Sci Inc, Oakland, CA 94602 USA.
[Pollock, A. M. T.] Univ Liege, FNRS Dept AGO, B-4000 Liege, Belgium.
[Moffat, A. F. J.; Richardson, N. D.; Pablo, H.] European Space Agcy, XMM Newton Sci Operat Ctr, European Space Astron Ctr, E-28691 Villanueva De La Canada, Spain.
[Shenar, T.; Hamann, W. -R.; Oskinova, L.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada.
[Hamaguchi, K.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany.
[Gull, T.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA.
[Ignace, R.] NASA GSFC, Greenbelt, MD 20771 USA.
[Hoffman, Jennifer L.] E Tennessee State Univ, Phys & Astron, Johnson City, TN 37614 USA.
[Hole, K. T.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
[Lomax, J. R.] Weber State Univ, Dept Phys, Ogden, UT 84408 USA.
[Russell, C. M. P.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Russell, C. M. P.] NASA Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA.
Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA.
RP Nichols, J (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
FU National Aeronautics and Space Administration through Chandra Award
[GO3-14015A, G03-14015E, GO3-14015G]; National Aeronautics Space
Administration [NAS8-03060]; NASA through the Smithsonian Astrophysical
Observatory [SV3-73016]; Fonds National de la Recherche Scientifique
(Belgium); Communaute Francaise de Belgique; PRODEX XMM and Integral
contracts; Action de Recherche Concertee (CFWB-Academie Wallonie
Europe); NSRC (Canada); FRQNT (Quebec); CRAQ (Centre de Recherche en
Astrophysique du Quebec) fellowship; DLR [50 OR 1302]; Chandra X-ray
Center NASA [NAS8-03060]; NASA [NNX13AF40G]; NSF [AST-0807477]
FX The authors acknowledge the constructive comments of the anomymous
referee. M.F.C., J.S.N., W.L.W., C.M.P.R., and K.H. are grateful for
support provided by the National Aeronautics and Space Administration
through Chandra Award Number GO3-14015A, G03-14015E, and GO3-14015G
issued by the Chandra X-ray Observatory Center, which is operated by the
Smithsonian Astrophysical Observatory for and on behalf of the National
Aeronautics Space Administration under contract NAS8-03060. D.P.H. was
supported by NASA through the Smithsonian Astrophysical Observatory
contract SV3-73016 to MIT for the Chandra X-ray Center and Science
Instruments. Y.N. acknowledges support from the Fonds National de la
Recherche Scientifique (Belgium), the Communaute Francaise de Belgique,
the PRODEX XMM and Integral contracts, and the Action de Recherche
Concertee (CFWB-Academie Wallonie Europe). A.F.J.M. is grateful for
financial aid from NSRC (Canada) and FRQNT (Quebec). N.D.R. gratefully
acknowledges his CRAQ (Centre de Recherche en Astrophysique du Quebec)
fellowship. L.M.O. acknowledges support from DLR grant 50 OR 1302.
N.R.E. is grateful for support from the Chandra X-ray Center NASA
Contract NAS8-03060. J.L.H. acknowledges support from NASA award
NNX13AF40G and NSF award AST-0807477. M.F.C., J.S.N., and K.H. also
acknowledge helpful discussions with John Houck and Michael Nowak on
data analysis with ISIS, and Craig Anderson for technical support. This
research has made use of data and/or software provided by the High
Energy Astrophysics Science Archive Research Center (HEASARC), which is
a service of the Astrophysics Science Division at NASA/GSFC and the High
Energy Astrophysics Division of the Smithsonian Astrophysical
Observatory. This research made use of the Chandra Transmission Grating
Catalog and archive (http://tgcat.mit.edu). This research also has made
use of NASA's Astrophysics Data System.
NR 80
TC 5
Z9 5
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 20
PY 2015
VL 809
IS 2
AR 133
DI 10.1088/0004-637X/809/2/133
PG 21
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CR9EC
UT WOS:000361655100026
ER
PT J
AU Pablo, H
Richardson, ND
Moffat, AFJ
Corcoran, M
Shenar, T
Benvenuto, O
Fuller, J
Naze, Y
Hoffman, JL
Miroshnichenko, A
Apellaniz, JM
Evans, N
Eversberg, T
Gayley, K
Gull, T
Hamaguchi, K
Hamann, WR
Henrichs, H
Hole, T
Ignace, R
Iping, R
Lauer, J
Leutenegger, M
Lomax, J
Nichols, J
Oskinova, L
Owocki, S
Pollock, A
Russell, CMP
Waldron, W
Buil, C
Garrel, T
Graham, K
Heathcote, B
Lemoult, T
Li, D
Mauclaire, B
Potter, M
Ribeiro, J
Matthews, J
Cameron, C
Guenther, D
Kuschnig, R
Rowe, J
Rucinski, S
Sasselov, D
Weiss, W
AF Pablo, Herbert
Richardson, Noel D.
Moffat, Anthony F. J.
Corcoran, Michael
Shenar, Tomer
Benvenuto, Omar
Fuller, Jim
Naze, Yael
Hoffman, Jennifer L.
Miroshnichenko, Anatoly
Apellaniz, Jesus Maiz
Evans, Nancy
Eversberg, Thomas
Gayley, Ken
Gull, Ted
Hamaguchi, Kenji
Hamann, Wolf-Rainer
Henrichs, Huib
Hole, Tabetha
Ignace, Richard
Iping, Rosina
Lauer, Jennifer
Leutenegger, Maurice
Lomax, Jamie
Nichols, Joy
Oskinova, Lida
Owocki, Stan
Pollock, Andy
Russell, Christopher M. P.
Waldron, Wayne
Buil, Christian
Garrel, Thierry
Graham, Keith
Heathcote, Bernard
Lemoult, Thierry
Li, Dong
Mauclaire, Benjamin
Potter, Mike
Ribeiro, Jose
Matthews, Jaymie
Cameron, Chris
Guenther, David
Kuschnig, Rainer
Rowe, Jason
Rucinski, Slavek
Sasselov, Dimitar
Weiss, Werner
TI A COORDINATED X-RAY AND OPTICAL CAMPAIGN OF THE NEAREST MASSIVE
ECLIPSING BINARY, delta ORIONIS Aa. III. ANALYSIS OF OPTICAL PHOTOMETRIC
(MOST) AND SPECTROSCOPIC (GROUND BASED) VARIATIONS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE binaries: close; binaries: eclipsing; stars: early-type; stars:
individual (delta Ori A); stars: mass-loss; stars: variables: general
ID APSIDAL MOTION; STARS; SYSTEM; PULSATIONS; KOI-54; SPECTRA; ORBITS;
SPOTS; ORI
AB We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system delta Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV P > 400 years). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for three weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the first time in non-phased data. From the spectroscopy, we have a well-constrained radial velocity (RV) curve of Aa1. While we are unable to recover RV variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful of such binaries that show evidence for tidally induced pulsations.
C1 [Pablo, Herbert; Richardson, Noel D.; Moffat, Anthony F. J.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada.
[Pablo, Herbert; Richardson, Noel D.; Moffat, Anthony F. J.] Univ Montreal, CRAQ, Montreal, PQ H3C 3J7, Canada.
[Corcoran, Michael; Hamaguchi, Kenji] NASA GSFC, CRESST, Greenbelt, MD 20771 USA.
[Corcoran, Michael; Hamaguchi, Kenji] NASA GSFC, Xray Astrophys Lab, Greenbelt, MD 20771 USA.
[Corcoran, Michael; Iping, Rosina] Univ Space Res Assoc, Columbia, MD 21046 USA.
[Shenar, Tomer; Hamann, Wolf-Rainer; Oskinova, Lida] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany.
[Benvenuto, Omar] Univ Nacl La Plata, Fac Ciencias Astron & Geofis, RA-1900 Buenos Aires, DF, Argentina.
[Benvenuto, Omar] UNLP, CONICET, CCT, IALP, La Plata, Buenos Aires, Argentina.
[Fuller, Jim] CALTECH, Walter Burke Inst Theoret Phys, TAPIR, Pasadena, CA 91125 USA.
[Fuller, Jim; Leutenegger, Maurice] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA.
[Naze, Yael] Univ Liege, FNRS Dept AGO, B-4000 Liege, Belgium.
[Hoffman, Jennifer L.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
[Miroshnichenko, Anatoly] Univ N Carolina, Dept Phys & Astron, Greensboro, NC 27402 USA.
[Apellaniz, Jesus Maiz] Ctr Astrobiol CSIC INTA, E-28691 Villanueva De La Caada, Spain.
[Evans, Nancy; Lauer, Jennifer; Nichols, Joy] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA.
[Eversberg, Thomas] Schnorringen Telescope Sci Inst, Waldbrol, Germany.
[Gayley, Ken] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Gull, Ted] NASA Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Henrichs, Huib] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands.
[Hole, Tabetha; Ignace, Richard] E Tennessee State Univ, Dept Phys & Astron, Johnson City, TN 37614 USA.
[Lomax, Jamie] Univ Oklahoma, HL Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Owocki, Stan] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Pollock, Andy] European Space Agcy, E-28691 Madrid, Spain.
[Russell, Christopher M. P.] NASA Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA.
[Russell, Christopher M. P.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA.
[Waldron, Wayne] Eureka Sci Inc, Oakland, CA 94602 USA.
[Buil, Christian] Castanet Tolosan Observ, F-31320 Castanet Tolosan, France.
[Garrel, Thierry] Observ Juvignac, F-34990 Juvignac, France.
[Heathcote, Bernard] Barfold Observ, Glenhope, Vic 3444, Australia.
[Lemoult, Thierry] Chelles Observ, F-77500 Chelles, France.
[Li, Dong] Jade Observ, Tianjin 300251, Peoples R China.
[Mauclaire, Benjamin] Observ Val Arc, F-13530 Trets, France.
[Ribeiro, Jose] Observ Inst Geog Exercito, Lisbon, Portugal.
[Matthews, Jaymie; Kuschnig, Rainer] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Cameron, Chris] Cape Breton Univ, Dept Math Phys & Geol, Sydney, NS B1P 6L2, Canada.
[Guenther, David] St Marys Univ, Inst Computat Astrophys, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada.
[Kuschnig, Rainer] Univ Vienna, Inst Astron, A-1180 Vienna, Austria.
[Rowe, Jason] NASA Ames Res Ctr, Moffett Field, CA 94035 USA.
[Rucinski, Slavek] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada.
[Sasselov, Dimitar] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
RP Pablo, H (reprint author), Univ Montreal, Dept Phys, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada.
EM hpablo@astro.umontreal.ca; richardson@astro.umontreal.ca
FU Chandra grant [GO3-14015A, GO3-14015E]; Fonds National de la Recherche
Scientifique (Belgium); Communaute Francaise de Belgique; PRODEX
XMMAction de Recherche Concertee (CFWB-Academie Wallonie Europe); CRAQ
(Centre de Recherche en Astrophysique du Quebec); Spanish Government
Ministerio de Economia y Competitividad (MINECO) [AYA2010-15 081,
AYA2010-17 631, AYA2013-40 611-P]; Consejeria de Educacion of the Junta
de Andalucia [P08-TIC-4075]; Austrian Science Fund (FWF); Chandra X-ray
Center NASA [NAS8-03060]; NASA [NNX13AF40G]; NSF [AST-0807477]
FX M.F.C., J.S.N., W.L.W., and K.H. are grateful for support via Chandra
grant GO3-14015A and GO3-14015E. Y.N. acknowledges support from the
Fonds National de la Recherche Scientifique (Belgium), the Communaute
Francaise de Belgique, the PRODEX XMM and Integral contracts, and the
Action de Recherche Concertee (CFWB-Academie Wallonie Europe). N.D.R.
gratefully acknowledges his CRAQ (Centre de Recherche en Astrophysique
du Quebec) fellowship. A.F.J.M., D.B.G., J.M.M., and S.M.R. are grateful
for financial aid to NSERC (Canada). A.F.J.M. and H.P. also thank FRQNT
(Quebec) and the Canadian Space Agency. J.M.A. acknowledges support from
(a) the Spanish Government Ministerio de Economia y Competitividad
(MINECO) through grants AYA2010-15 081, AYA2010-17 631, and AYA2013-40
611-P and (b) the Consejeria de Educacion of the Junta de Andalucia
through grant P08-TIC-4075. R.K. and W.W. acknowledge support by the
Austrian Science Fund (FWF). N.R.E. is grateful for support from the
Chandra X-ray Center NASA Contract NAS8-03060. J.L.H. acknowledges
support from NASA award NNX13AF40G and NSF award AST-0807477.
NR 61
TC 4
Z9 4
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 20
PY 2015
VL 809
IS 2
AR 134
DI 10.1088/0004-637X/809/2/134
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CR9EC
UT WOS:000361655100027
ER
PT J
AU Webb, T
Noble, A
DeGroot, A
Wilson, G
Muzzin, A
Bonaventura, N
Cooper, M
Delahaye, A
Foltz, R
Lidman, C
Surace, J
Yee, HKC
Chapman, S
Dunne, L
Geach, J
Hayden, B
Hildebrandt, H
Huang, JS
Pope, A
Smith, MWL
Perlmutter, S
Tudorica, A
AF Webb, Tracy
Noble, Allison
DeGroot, Andrew
Wilson, Gillian
Muzzin, Adam
Bonaventura, Nina
Cooper, Mike
Delahaye, Anna
Foltz, Ryan
Lidman, Chris
Surace, Jason
Yee, H. K. C.
Chapman, Scott
Dunne, Loretta
Geach, James
Hayden, Brian
Hildebrandt, Hendrik
Huang, Jiasheng
Pope, Alexandra
Smith, Matthew W. L.
Perlmutter, Saul
Tudorica, Alex
TI AN EXTREME STARBURST IN THE CORE OF A RICH GALAXY CLUSTER AT z=1.7
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: clusters: general; galaxies: evolution; galaxies:
interactions; galaxies: starburst
ID ACTIVE GALACTIC NUCLEI; NEAR-INFRARED PROPERTIES; STAR-FORMATION
ACTIVITY; WIDE-FIELD CAMERA; SPECTROSCOPIC CONFIRMATION; COOLING FLOWS;
STELLAR MASS; X-RAY; EXTRAGALACTIC SURVEY; PHOTOMETRIC SYSTEM
AB We have discovered an optically rich galaxy cluster at z = 1.7089 with star formation occurring in close proximity to the central galaxy. The system, SpARCS104922.6+ 564032.5, was detected within the Spitzer Adaptation of the red-sequence Cluster Survey, and confirmed through Keck-MOSFIRE spectroscopy. The rest-frame optical richness of N-gal (500 kpc) = 30 +/- 8 implies a total halo mass, within 500 kpc, of similar to 3.8 +/- 1.2 x 10(14) M-circle dot, comparable to other clusters at or above this redshift. There is a wealth of ancillary data available, including Canada-France-Hawaii Telescope optical, UKIRT-K, Spitzer-IRAC/MIPS, and Herschel-SPIRE. This work adds submillimeter imaging with the SCUBA2 camera on the James Clerk Maxwell Telescope and near-infrared imaging with the Hubble Space Telescope. The mid/far-infrared (M/FIR) data detect an Ultra-luminous Infrared Galaxy spatially coincident with the central galaxy, with L-IR = 6.2 +/- 0.9 x 10(12) L-circle dot. The detection of polycyclic aromatic hydrocarbons at z = 1.7 in a Spitzer-IRS spectrum of the source implies the FIR luminosity is dominated by star formation (an Active Galactic Nucleus contribution of 20%) with a rate of similar to 860 +/- 130 M-circle dot yr(-1). The optical source corresponding to the IR emission is likely a chain of > 10 individual clumps arranged as " beads on a string" over a linear scale of 66 kpc. Its morphology and proximity to the Brightest Cluster Galaxy (BCG) imply a gas-rich interaction at the center of the cluster triggered the star formation. This system indicates that wet mergers may be an important process in forming the stellar mass of BCGs at early times.
C1 [Webb, Tracy; Bonaventura, Nina; Delahaye, Anna] McGill Univ, Dept Phys, Montreal, PQ H3P 1T3, Canada.
[Noble, Allison; Yee, H. K. C.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada.
[DeGroot, Andrew; Wilson, Gillian; Foltz, Ryan] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA.
[Muzzin, Adam; Chapman, Scott] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Cooper, Mike] Univ Calif Irvine, Ctr Galaxy Evolut, Dept Phys & Astron, Irvine, CA 92697 USA.
[Lidman, Chris] Australian Astron Observ, N Ryde, NSW 1670, Australia.
[Surace, Jason] CALTECH, Spitzer Space Sci Ctr, Pasadena, CA 91125 USA.
[Chapman, Scott] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 2R4, Canada.
[Dunne, Loretta] Univ Canterbury, Dept Phys & Astron, Christchurch 8140, New Zealand.
[Dunne, Loretta] Univ Edinburgh, Insitute Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland.
[Geach, James] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England.
[Hayden, Brian; Perlmutter, Saul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Hildebrandt, Hendrik; Tudorica, Alex] Argelander Inst Astron, D-53121 Bonn, Germany.
[Huang, Jiasheng] Chinese Acad Sci, Natl Astron Observ China, Beijing 100012, Peoples R China.
[Huang, Jiasheng] Chinese Acad Sci, China Chile Joint Ctr Astron, Santiago 1515, Chile.
[Huang, Jiasheng] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Pope, Alexandra] Univ Massachusetts, Dept Astron, Amherst, MA 01100 USA.
[Smith, Matthew W. L.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales.
[Perlmutter, Saul] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RP Webb, T (reprint author), McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3P 1T3, Canada.
FU W. M. Keck Foundation; NASA [NAS 5-26555]; US Department of Energy,
Office of Science, Office of High Energy Physics [AC02-05CH11231];
European Research Council; NSERC; NASA from the Space Telescope Science
Institute [GO-13306, GO-13677, GO-13747, GO-13845, GO-14327]
FX Some of the data presented herein were obtained at the W. M. Keck
Observatory, which is operated as a scientific partnership among the
California Institute of Technology, the University of California and the
National Aeronautics and Space Administration. The Observatory was made
possible by the generous financial support of the W. M. Keck Foundation.
The authors wish to recognize and acknowledge the very significant
cultural role and reverence that the summit of Mauna Kea has always had
within the indigenous Hawaiian community. We are most fortunate to have
the opportunity to conduct observations from this mountain. Financial
support for this work was provided by NASA through program GO-13677 from
the Space Telescope Science Institute, which is operated by AURA, Inc.,
under NASA contract NAS 5-26555. This material is based upon work
supported in part by the US Department of Energy, Office of Science,
Office of High Energy Physics, under contract No. AC02-05CH11231. This
work is based in part on observations made with the Spitzer Space
Telescope, which is operated by the Jet Propulsion Laboratory,
California Institute of Technology under a contract with NASA. L.D.
acknowledges support from European Research Council Advanced Grant:
cosmicism. T.M.A.W. acknowledges the support of an NSERC Discovery
Grant. Financial support for this work was provided by NASA through
programs GO-13306, GO-13677, GO-13747, GO-13845, and GO-14327 from the
Space Telescope Science Institute, which is operated by AURA, Inc.,
under NASA contract NAS 5-26555.
NR 84
TC 11
Z9 11
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 20
PY 2015
VL 809
IS 2
AR 173
DI 10.1088/0004-637X/809/2/173
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA CR9EC
UT WOS:000361655100066
ER
PT J
AU Barajas, JF
Phelan, RM
Schaub, AJ
Kliewer, JT
Kelly, PJ
Jackson, DR
Luo, R
Keasling, JD
Tsai, SC
AF Barajas, Jesus F.
Phelan, Ryan M.
Schaub, Andrew J.
Kliewer, Jaclyn T.
Kelly, Peter J.
Jackson, David R.
Luo, Ray
Keasling, Jay D.
Tsai, Shiou-Chuan
TI Comprehensive Structural and Biochemical Analysis of the Terminal
Myxalamid Reductase Domain for the Engineered Production of Primary
Alcohols
SO CHEMISTRY & BIOLOGY
LA English
DT Article
ID NONRIBOSOMAL PEPTIDE SYNTHETASES; POLYKETIDE BIOSYNTHESIS; GENE-CLUSTER;
FORCE-FIELD; PROTEIN; AMBER; CLASSIFICATION; ANTIBIOTICS; PERFORMANCE;
PREDICTION
AB The terminal reductase (R) domain from the non-ribosomal peptide synthetase (NRPS) module MxaA in Stigmatella aurantiaca Sga15 catalyzes a non-processive four-electron reduction to produce the myxalamide family of secondary metabolites. Despite widespread use in nature, a lack of structural and mechanistic information concerning reductive release from polyketide synthase (PKS) and NRPS assembly lines principally limits our ability to redesign R domains with altered or improved activity. Here we report crystal structures for MxaA R, both in the absence and, for the first time, in the presence of the NADPH cofactor. Molecular dynamics simulations were employed to provide a deeper understanding of this domain and further identify residues critical for structural integrity, substrate binding, and catalysis. Aggregate computational and structural findings provided a basis for mechanistic investigations and, in the process, delivered a rationally altered variant with improved activity toward highly reduced substrates.
C1 [Barajas, Jesus F.; Schaub, Andrew J.; Kliewer, Jaclyn T.; Kelly, Peter J.; Jackson, David R.; Luo, Ray; Tsai, Shiou-Chuan] Univ Calif Irvine, Dept Mol Biol & Biochem Chem & Pharmaceut, Irvine, CA 92697 USA.
[Phelan, Ryan M.; Keasling, Jay D.] Joint Bioenergy Inst, Emeryville, CA 94608 USA.
[Phelan, Ryan M.; Keasling, Jay D.] Univ Calif Berkeley, Inst QB3, Berkeley, CA 94270 USA.
[Keasling, Jay D.] Univ Calif Berkeley, Dept Biomol & Chem Engn, Berkeley, CA 94720 USA.
[Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
[Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Keasling, JD (reprint author), Joint Bioenergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA.
EM keasling@berkeley.edu; sctsai@uci.edu
RI Luo, Ray/I-6928-2012;
OI Luo, Ray/0000-0002-6346-8271; Schaub, Andrew/0000-0001-7770-7045
FU US Department of Energy, Office of Science, Office of Biological and
Environmental Research [DE-AC02-05CH11231]; National Science Foundation
[CBET-1437775]; Pew Foundation [ES001670]
FX We would like to acknowledge Benjamin Adler for assistance with the
biochemical assay of the MxaA didomain. We would also like to thank Dr.
Gaurav Shakya for his insights in chemistry and Dr. P. Adams, C.
Petzold, and L. Chan for assistance with the LC-MS/MS assay. This work
was part of the DOE Joint BioEnergy Institute (http://www.jbei.org)
supported by the US Department of Energy, Office of Science, Office of
Biological and Environmental Research, through contract
DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the
US Department of Energy. In addition, R.M.P. and J.D.K. would like to
acknowledge the National Science Foundation for support through the
Catalysis and Biocatalysis Program (CBET-1437775). A portion of this
work was supported by grant ES001670 by the Pew Foundation.
Crystallographic studies were performed at the Stanford Synchrotron
Radiation Laboratory, a national user facility by Stanford University on
behalf of the US Department of Energy Office of Basic Energy Sciences
and the Advance Light Source at the Lawrence Berkeley National
Laboratory. J.D.K. has financial interests in Amyris, LS9, and Lygos.
NR 56
TC 9
Z9 9
U1 3
U2 16
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 1074-5521
EI 1879-1301
J9 CHEM BIOL
JI Chem. Biol.
PD AUG 20
PY 2015
VL 22
IS 8
BP 1018
EP 1029
DI 10.1016/j.chembiol.2015.06.022
PG 12
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA CS2DY
UT WOS:000361879200008
PM 26235055
ER
PT J
AU Aad, G
Abbott, B
Abdallah, J
Abdinov, O
Aben, R
Abolins, M
AbouZeid, OS
Abramowicz, H
Abreu, H
Abreu, R
Abulaiti, Y
Acharya, BS
Adamczyk, L
Adams, DL
Adelmanl, J
Adomeitl, S
Adye, T
Affolder, AA
Agatonovic-Jovin, T
Aguilar-Saavedra, JA
Ahlen, SP
Ahmadov, F
Aielli, G
Akerstedt, H
Akesson, TPA
Akimoto, G
Akimov, AV
Alberghi, GL
Albert, J
Albrand, S
Verzini, MJA
Aleksa, M
Aleksandrov, IN
Alexa, C
Alexander, G
Alexopoulos, T
Alhroob, M
Alimonti, G
Alio, L
Alison, J
Alkire, SP
Allbrooke, BMM
Allport, PP
Aloisio, A
Alonso, A
Alonso, F
Alpigiani, C
Altheimer, A
Gonzalez, BA
Piqueras, DA
Alviggi, MG
Amadio, BT
Amako, K
Coutinho, YA
Amelung, C
Amidei, D
Dos Santos, SPA
Amorim, A
Amoroso, S
Amram, N
Amundsen, G
Anastopoulos, C
Ancu, LS
Andari, N
Andeen, T
Anders, CF
Anders, G
Anders, JK
Anderson, KJ
Andreazza, A
Andrei, V
Angelidakis, S
Angelozzil, I
Anger, P
Angerami, A
Anghinolfi, F
Anisenkov, AV
Anjos, N
Annovi, A
Antonelli, M
Antonov, A
Antos, J
Anulli, F
Aoki, M
Bella, LA
Arabidze, G
Arai, Y
Araque, JP
Arce, ATH
Arduh, FA
Arguin, JF
Argyropoulos, S
Arik, M
Armbruster, AJ
Arnaez, O
Arnal, V
Arnold, H
Arratia, M
Arslan, O
Artamonov, A
Artoni, G
Asai, S
Asbah, N
Ashkenazi, A
Asman, B
Asquith, L
Assamagan, K
Astalos, R
Atkinson, M
Atlay, NB
Auerbach, B
Augsten, K
Aurousseau, M
Avolio, G
Axen, B
Ayoub, MK
Azuelos, G
Baak, MA
Baas, AE
Bacci, C
Bachacou, H
Bachas, K
Backes, M
Backhaus, M
Bagiacchi, P
Bagnaia, P
Bai, Y
Bain, T
Baines, JT
Baker, OK
Balek, P
Balestri, T
Balli, F
Banas, E
Banerjee, S
Bannoura, AAE
Bansi, HS
Barak, L
Barberio, EL
Barberis, D
Barbero, M
Barillaril, T
Barisonzi, M
Barklow, T
Barlow, N
Barnes, SL
Barnett, BM
Barnett, RM
Barnovska, Z
Baroncelli, A
Barone, G
Barr, AJ
Barreiro, F
da Costa, JBG
Bartoldusm, R
Barton, AE
Bartos, P
Basalaev, A
Bassalat, A
Basye, A
Bates, RL
Batista, SJ
Batley, JR
Battaglia, M
Bauce, M
Bauer, F
Bawa, HS
Beacham, JB
Beattie, MD
Beau, T
Beauchemin, PH
Beccherle, R
Bechtle, P
Beck, HP
Becker, K
Becker, M
Becker, S
Beckingham, M
Becot, C
Beddall, AJ
Beddall, A
Bednyakov, VA
Bee, CP
Beemsterl, LJ
Beermann, TA
Bege, M
Behr, JK
Belanger-Champagne, C
Bell, WH
Bella, G
Bellagamba, L
Bellerive, A
Bellomo, M
Belotskiy, K
Beltramello, O
Benary, O
Benchekroun, D
Bender, M
Bendtz, K
Benekos, N
Benhammou, Y
Noccioli, EB
Garcia, JAB
Benjamin, DP
Bensinger, JR
Bentvelsen, S
Beresford, L
Beretta, M
Bergel, D
Kuutmann, EB
Berger, N
Berghaus, F
Beringer, J
Bernard, C
Bernard, NR
Berniusll, C
Bernlochner, FU
Berry, T
Berta, P
Bertella, C
Bertoli, G
Bertolucci, F
Bertsche, C
Bertsche, D
Besana, MI
Besjes, GJ
Bylund, OB
Bessner, M
Besson, N
Betancourt, C
Bethke, S
Bevan, AJ
Bhimji, W
Bianchi, RM
Bianchini, L
Bianco, M
Biebel, O
Bieniek, SP
Biglietti, M
De Mendizabal, JB
Bilokon, H
Bindi, M
Binet, S
Bingul, A
Bini, C
Black, CW
Black, JE
Black, KM
Blackburn, D
Blair, RE
Blanchard, JB
Blanco, JE
Blazek, T
Bloch, I
Blocker, C
Blum, W
Blumenschein, U
Bobbinkl, GJ
Bobrovnikov, VS
Bocchetta, SS
Bocci, A
Bock, C
Boehler, M
Bogaerts, JA
Bogdanchikov, AG
Bohm, C
Boisvert, V
Bold, T
Boldea, V
Boldyrev, AS
Bomben, M
Bona, M
Boonekamp, M
Borisov, A
Borissov, G
Borroni, S
Bortfeldt, J
Bortolotto, V
Bos, K
Boscherini, D
Bosmanu, M
Boudreau, J
Bouffard, J
Bouhova-Thacker, EV
Boumediene, D
Bourdarios, C
Bousson, N
Boveia, A
Boyd, J
Boyko, IR
Bozic, I
Bracinik, J
Brandt, A
Brandt, G
Brandt, O
Bratzler, U
Brau, B
Brau, JE
Braun, HM
Brazzale, SF
Brendlinger, K
Brennan, AJ
Brenner, L
Brenner, R
Bresser, S
Bristow, K
Bristow, TM
Britton, D
Britzger, D
Brochu, FM
Brock, I
Brock, R
Bronnerl, J
Brooijmans, G
Brooks, T
Brooks, WK
Brosamer, J
Brost, E
Brown, J
de Renstrom, PAB
Bruncko, D
Bruneliere, R
Bruni, A
Bruni, G
Bruschi, M
Bryngemark, L
Buanesm, T
Buat, Q
Buchholz, P
Buckley, AG
Buda, SI
Budagov, IA
Buehrer, F
Bugge, L
Bugge, MK
Bulekov, O
Bullock, D
Burckhart, H
Burdin, S
Burghgrave, B
Burke, S
Burmeister, I
Busato, E
Buscher, D
Buscher, V
Bussey, P
Butler, JM
Butt, AI
Buttar, CM
Butterworth, JM
Buttil, P
Buttinger, W
Buzatu, A
Buzykaev, AR
Urban, SC
Caforio, D
Cairo, VM
Cakir, O
Calafiura, P
Calandri, A
Calderini, G
Calfayanl, P
Caloba, LP
Calvet, D
Calvet, S
Toro, RC
Camarda, S
Camarri, P
Cameron, D
Caminada, LM
Armadans, RC
Campana, S
Campanelli, M
Campoverde, A
Canale, V
Canepa, A
Bret, MC
Cantero, J
Cantrill, R
Cao, T
Garrido, MDMC
Caprini, I
Caprini, M
Capua, M
Caputo, R
Cardarelli, R
Carli, T
Carlino, G
Carminati, L
Caron, S
Carquin, E
Carrillo-Montoya, GD
Carter, JR
Carvalho, J
Casadei, D
Casado, MP
Casolino, M
Castaneda-Miranda, E
Caste, A
Gimenez, VC
Castro, NF
Catastini, P
Catinaccio, A
Catmorell, JR
Cattai, A
Caudron, J
Cavaliere, V
Cavalli, D
Cavalli-Sforza, M
Cavasinni, V
Ceradini, F
Cerio, BC
Cerny, K
Cerqueira, AS
Cerri, A
Cerrito, L
Cerutti, F
Cerv, M
Cervelli, A
Cetin, SA
Chafaq, A
Chakraborty, D
Chalupkova, I
Chang, P
Chapleau, B
Chapman, JD
Charlton, DG
Chau, CC
Barajas, CAC
Cheatham, S
Chegwidden, A
Chekanov, S
Chekulaev, SV
Chelkov, GA
Chelstowska, MA
Chen, C
Chen, H
Cher, K
Chen, L
Chen, S
Chen, X
Chen, Y
Cheng, HC
Cheng, Y
Cheplakov, A
Cheremushkina, E
El Moursli, RC
Chernyatin, V
Cheu, E
Chevalier, L
Chiarella, V
Childers, JT
Chiodini, G
Chisholm, AS
Chislett, RT
Chitan, A
Chizhov, MV
Choi, K
Chouridou, S
Chow, BKB
Christodoulou, V
Chromek-Burckhart, D
Chu, ML
Chudoba, J
Chuinard, AJ
Chwastowski, JJ
Chytka, L
Ciapetti, G
Ciftci, AK
Cinca, D
Cindro, V
Cioara, IA
Ciocio, A
Citron, ZH
Ciubancan, M
Clark, A
Clark, BL
Clark, PJ
Clarke, RN
Cleland, W
Clement, C
Coadou, Y
Cobal, M
Coccaro, A
Cochran, J
Coffey, L
Cogan, JG
Cole, B
Colel, S
Colijnl, AP
Collot, J
Colombo, T
Compostellal, G
Muino, PC
Coniavitis, E
Connell, SH
Connelly, IA
Consonni, SM
Consorti, V
Constantinescu, S
Conta, C
Conti, G
Conventi, F
Cooke, M
Cooper, BD
Cooper-Sarkar, AM
Cornelissen, T
Corradi, M
Corriveau, F
Corso-Radu, A
Cortes-Gonzalezu, A
Cortianal, G
Costa, G
Costa, MJ
Costanzo, D
Cote, D
Cottin, G
Cowan, G
Cox, BE
Cranmer, K
Cree, G
Crepe-Renaudin, S
Crescioli, F
Cribbs, WA
Ortuzar, MC
Cristinziani, M
Croft, V
Crosetti, G
Donszelmann, TC
Cummings, J
Curatolo, M
Cuthbert, C
Czirr, H
Czodrowski, P
D'Auria, S
D'Onofrio, M
De Sousa, MJDS
Da Via, C
Dabrowski, W
Dafinca, A
Dai, T
Dale, O
Dallaire, F
Dallapiccola, C
Dam, M
Dandoy, JR
Dang, NP
Daniells, AC
Danninger, M
Hoffmann, MD
Dao, V
Darbo, G
Darmora, S
Dassoulas, J
Dattagupta, A
Davey, W
David, C
Davidek, T
Davies, E
Davies, M
Davison, P
Davygora, Y
Dawe, E
Dawson, I
Daya-Ishmukhametova, RK
De, K
de Asmundis, R
De Castro, S
De Cecco, S
De Groot, N
de Jong, P
De la Torre, H
De Lorenzi, F
De Nooijl, L
De Pedis, D
De Salvo, A
De Sanctis, U
De Santo, A
De Regie, JBD
Dearnaley, WJ
Debbe, R
Debenedetti, C
Dedovich, DV
Deigaardl, I
Del Peso, J
Del Prete, T
Delgove, D
Deliot, F
Delitzsch, CM
Deliyergiyev, M
Dell'Acqua, A
Dell'Asta, L
Dell'Orso, M
Della Pietra, M
della Volpe, D
Delmastro, M
Delsart, PA
Delucal, C
DeMarco, DA
Demers, S
Demichev, M
Demilly, A
Denisov, SP
Derendarz, D
Derkaoui, JE
Derue, F
Dervan, P
Desch, K
Deterre, C
Deviveiros, PO
Dewhurst, A
Dhaliwal, S
Di Ciaccio, A
Di Ciaccio, L
Di Domenico, A
Di Donato, C
Di Girolamo, A
Di Girolamo, B
Di Mattia, A
Di Micco, B
Di Nardo, R
Di Simone, A
Di Sipio, R
Di Valentino, D
Diaconu, C
Diamond, M
Dias, FA
Diaz, MA
Diehl, EB
Dietrich, J
Diglio, S
Dimitrievska, A
Dingfelder, J
Dita, P
Dita, S
Dittus, F
Djama, F
Djobava, T
Djuvsland, JI
do Vale, MAB
Dobos, D
Dobre, M
Doglioni, C
Dohmae, T
Dolejsi, J
Dolezal, Z
Dolgoshein, BA
Donadelli, M
Donati, S
Dondero, P
Donini, J
Dopke, J
Doria, A
Dova, MT
Doyle, AT
Drechsler, E
Dris, M
Dubreuil, E
Duchovni, E
Duckeckl, G
Ducu, OA
Duda, D
Dudarev, A
Duflot, L
Duguid, L
Duhrssen, M
Dunford, M
Yildiz, HD
Duren, M
Durglishvili, A
Duschinger, D
Dyndal, M
Eckardt, C
Ecker, KM
Edgar, RC
Edson, W
Edwards, NC
Ehrenfeld, W
Eifert, T
Eigen, G
Einsweiler, K
Ekelof, T
El Kacimi, M
Ellert, M
Elles, S
Ellinghaus, F
Elliot, AA
Ellis, N
Elmsheuser, J
Elsing, M
Emeliyanov, D
Enari, Y
Endner, OC
Endo, M
Erdmann, J
Ereditato, A
Ernis, G
Ernst, J
Ernst, M
Errede, S
Ertel, E
Escalier, M
Esch, H
Escobar, C
Esposito, B
Etienvre, AI
Etzion, E
Evans, H
Ezhilov, A
Fabbri, L
Facini, G
Fakhrutdinov, RM
Falciano, S
Falla, RJ
Faltova, J
Fang, Y
Fanti, M
Farbin, A
Farilla, A
Farooque, T
Farrell, S
Farrington, SM
Farthouat, P
Fassi, F
Fassnacht, P
Fassouliotis, D
Giannelli, MF
Favareto, A
Fayard, L
Federic, P
Fedin, OL
Fedorko, W
Feigl, S
Feligioni, L
Feng, C
Feng, EJ
Feng, H
Fenyuk, AB
Martinez, PF
Perez, SF
Ferrando, J
Ferrari, A
Ferraril, P
Ferrari, R
de Lima, DEF
Ferrer, A
Ferrere, D
Ferretti, C
Parodi, AF
Fiascaris, M
Fiedler, F
Filipcic, A
Filipuzzi, M
Filthautl, F
Fincke-Keeler, M
Fine, KD
Fiolhais, MCN
Fiorini, L
Firan, A
Fischer, A
Fischer, C
Fischer, J
Fisher, WC
Fitzgerald, EA
Flechl, M
Fleck, I
Fleischmann, P
Fleischmann, S
Fletcher, GT
Fletcher, G
Flick, T
Floderus, A
Castillo, LRF
Flowerdew, MJ
Formica, A
Forti, A
Fournier, D
Fox, H
Fracchia, S
Francavilla, P
Franchini, M
Francis, D
Franconi, L
Franklin, M
Fraternali, M
Freeborn, D
French, ST
Friedrich, F
Froidevaux, D
Frost, JA
Fukunaga, C
Torregrosa, EF
Fulsom, BG
Fuster, J
Gabaldon, C
Gabizon, O
Gabrielli, A
Gabrielli, A
Gadatsch, S
Gadomski, S
Gagliardi, G
Gagnon, P
Galea, C
Galhardo, B
Gallas, EJ
Gallop, BJ
Gallus, P
Galster, G
Gan, KK
Gao, J
Gao, Y
Gao, YS
Walls, FMG
Garberson, F
Garcia, C
Navarro, JEG
Garcia-Sciveres, M
Gardner, RW
Garelli, N
Garonne, V
Gatti, C
Gaudiello, A
Gaudio, G
Gaur, B
Gauthier, L
Gauzzi, P
Gavrilenko, IL
Gay, C
Gaycken, G
Gazis, EN
Ge, P
Gecse, Z
Gee, CNP
Geerts, DAA
Geich-Gimbel, C
Geisler, MP
Gemme, C
Genest, MH
Gentile, S
George, M
George, S
Gerbaudo, D
Gershon, A
Ghazlane, H
Giacobbe, B
Giagu, S
Giangiobbe, V
Giannetti, P
Gibbard, B
Gibson, SM
Gilchriese, M
Gillam, TPS
Gillberg, D
Gilles, G
Gingrich, DM
Giokaris, N
Giordani, MP
Giorgi, FM
Giorgi, FM
Giraud, PF
Giromini, P
Giugni, D
Giuliani, C
Giulini, M
Gjelsten, BK
Gkaitatzis, S
Gkialas, I
Gkougkousis, EL
Gladilin, LK
Glasman, C
Glatzer, J
Glaysher, PCF
Glazov, A
Goblirsch-Kolb, M
Goddard, JR
Godlewski, J
Goldfarb, S
Golling, T
Golubkov, D
Gomes, A
Goncalo, R
Da Costa, JGPF
Gonella, L
de la Hoz, SG
Parra, GG
Gonzalez-Sevilla, S
Goossens, L
Gorbounov, PA
Gordon, HA
Gorelov, I
Gorini, B
Gorini, E
Gorisek, A
Gornicki, E
Goshaw, AT
Gossling, C
Gostkin, MI
Goujdami, D
Goussiou, AG
Govender, N
Grabas, HMX
Graber, L
Grabowska-Bold, I
Grafstrom, P
Grahn, KJ
Grarnling, J
Grarnstad, E
Grancagnolo, S
Grassi, V
Gratchev, V
Gray, HM
Graziani, E
Greenwood, ZD
Gregersen, K
Gregor, IM
Grenier, P
Griffiths, J
Grillo, AA
Grimm, K
Grinstein, S
Gris, P
Grivaz, JF
Grohs, JP
Grohsjean, A
Gross, E
Grosse-Knetter, J
Grossi, GC
Grout, ZJ
Guan, L
Guenther, J
Guescini, F
Guest, D
Gueta, O
Guido, E
Guillemin, T
Guindon, S
Gul, U
Gumpert, C
Guo, J
Gupta, S
Gutierrez, P
Ortiz, NGG
Gutschow, C
Guyot, C
Gwenlan, C
Gwilliam, CB
Haas, A
Haber, C
Hadavand, HK
Haddad, N
Haefner, P
Hagebock, S
Hajduk, Z
Hakobyan, H
Haleem, M
Haley, J
Hall, D
Halladjian, G
Hallewel, GD
Hamacher, K
Hamal, P
Hamano, K
Hamer, M
Hamilton, A
Hamity, GN
Hamnett, PG
Han, L
Hanagaki, K
Hanawa, K
Hance, M
Hanke, P
Hanna, R
Hansen, JB
Hansen, JD
Hansen, MC
Hansen, PH
Hara, K
Hard, AS
Harenberg, T
Haririll, F
Harkusha, S
Harrington, RD
Harrison, PF
Hartjes, F
Hasegawa, M
Hasegawa, S
Hasegawa, Y
Hasib, A
Hassani, S
Haug, S
Hauser, R
Hauswald, L
Havranek, M
Hawkes, CM
Hawkings, RJ
Hawkins, AD
Hayashi, T
Hayden, D
Hays, CP
Hays, JM
Hayward, HS
Haywood, SJ
Head, SJ
Heck, T
Hedberg, V
Heelan, L
Heim, S
Heim, T
Heinemann, B
Heinrich, L
Hejbal, J
Helary, L
Hellman, S
Hellmich, D
Helsens, C
Henderson, J
Henderson, RCW
Heng, Y
Hengler, C
Henrichs, A
Correia, AMH
Henrot-Versille, S
Herbert, GH
Jimenez, YH
Herrberg-Schubert, R
Herten, G
Hertenberger, R
Hervas, L
Hesketh, GG
Hessey, NP
Hetherly, JW
Hickling, R
Higon-Rodriguez, E
Hill, E
Hill, JC
Hiller, KH
Hillier, SJ
Hinchliffe, I
Hines, E
Hinman, RR
Hirose, M
Hirschbuehl, D
Hobbs, J
Hod, N
Hodgkinson, MC
Hodgson, P
Hoecker, A
Hoeferkamp, MR
Hoenig, F
Hohlfeld, M
Hohn, D
Holmes, TR
Homann, M
Hong, TM
van Huysduynen, LH
Hopkins, WH
Horii, Y
Horton, AJ
Hostachy, JY
Hou, S
Hoummada, A
Howard, J
Howarth, J
Hrabovsky, M
Hristova, I
Hrivnac, J
Hryn'ova, T
Hrynevich, A
Hu, C
Hsu, PJ
Hsu, SC
Hu, D
Hu, Q
Hu, X
Huang, Y
Hubacek, Z
Hubaut, F
Huegging, F
Huffman, TB
Hughes, EW
Hughes, G
Huhtinen, M
Hulsing, TA
Huseynov, N
Huston, J
Huth, J
Iacobucci, G
Iakovidis, G
Ibragimov, I
Iconomidou-Fayard, L
Idea, E
Idrissi, Z
Iengo, P
Igonkinal, O
Iizawa, T
Ikegami, Y
Ikematsu, K
Ikeno, M
Ilchenko, Y
Iliadis, D
Ilic, N
Inarnaru, Y
Incel, T
Ioannou, P
Iodice, M
Iordanidou, K
Ippolito, V
Quiles, AT
Isaksson, C
Ishino, M
Ishitsuka, M
Ishmukhametov, R
Issever, C
Istin, S
Ponce, JMI
Iuppa, R
Ivarsson, J
Iwanski, W
Iwasaki, H
Izen, JM
Izzo, V
Jabbar, S
Jackson, B
Jackson, M
Jackson, P
Jaekel, MR
Jain, V
Jakobs, K
Jakobsen, S
Jakoubek, T
Jakubek, J
Jamin, DO
Jana, DK
Jansen, E
Jansky, RW
Janssen, J
Janus, M
Jarlskog, G
Javadov, N
Javurek, T
Jeanty, L
Jejelava, J
Jeng, GY
Jennens, D
Jenni, P
Jentzsch, J
Jeske, C
Jezequel, S
Ji, H
Jia, J
Jiang, Y
Jiggins, S
Pena, JJ
Jin, S
Jinaru, A
Jinnouchi, O
Joergensen, MD
Johansson, P
Johns, KA
Jon-And, K
Jones, G
Jones, RWL
Jones, TJ
Jongmanns, J
Jorge, PM
Joshi, KD
Jovicevic, J
Ju, X
Jung, CA
Jussel, P
Rozas, AJ
Kaci, M
Kaczmarska, A
Kado, M
Kagan, H
Kagan, M
Kahn, SJ
Kajomovitz, E
Kalderon, CW
Kama, S
Kamenshchikov, A
Kanaya, N
Kaneda, M
Kaneti, S
Kantserov, VA
Kanzaki, J
Kaplan, B
Kapliy, A
Kar, D
Karakostas, K
Karamaoun, A
Karastathis, N
Kareem, MJ
Karnevskiy, M
Karpov, SN
Karpova, ZM
Karthik, K
Kartvelishvili, V
Karyukhin, AN
Kashif, L
Kass, RD
Kastanas, A
Kataoka, Y
Katre, A
Katzy, J
Kawagoe, K
Kawamoto, T
Kawamura, G
Kazama, S
Kazanin, VF
Kazarinov, MY
Keeler, R
Kehoe, R
Keller, JS
Kempster, JJ
Keoshkerian, H
Kepka, O
Kersevan, BP
Kersten, S
Keyes, RA
Khalil-zada, F
Khandanyan, H
Khanov, A
Kharlamov, AG
Khoo, TJ
Khovanskiy, V
Khramov, E
Khubua, J
Kim, HY
Kim, H
Kim, SH
Kim, Y
Kimura, N
Kind, OM
King, BT
King, M
King, RSB
King, SB
Kirk, J
Kiryunin, AE
Kishimoto, T
Kisielewska, D
Kiss, F
Kiuchi, K
Kivernyk, O
Kladiva, E
Klein, MH
Klein, M
Klein, U
Kleinknecht, K
Klimek, P
Klimentov, A
Klingenberg, R
Klinger, JA
Klioutchnikova, T
Kluge, EE
Kluit, P
Kluth, S
Kneringer, E
Knoops, EBFG
Knue, A
Kobayashi, A
Kobayashi, D
Kobayashi, T
Kobel, M
Kocian, M
Kodys, P
Koffas, T
Koffeman, E
Kogan, LA
Kohlmann, S
Kohout, Z
Kohriki, T
Koi, T
Kolanoski, H
Koletsou, I
Komar, AA
Komori, Y
Kondo, T
Kondrashova, N
Koneke, K
Konig, AC
Konig, S
Kono, T
Konoplich, R
Konstantinidis, N
Kopeliansky, R
Koperny, S
Koepke, L
Kopp, AK
Korcyl, K
Kordas, K
Korn, A
Korol, AA
Korolkov, I
Korolkova, EV
Kortner, O
Kortner, S
Kosek, T
Kostyukhin, VV
Kotov, VM
Kotwal, A
Kourkoumeli-Charalampidi, A
Kourkoumelis, C
Kouskoura, V
Koutsman, A
Kowalewski, R
Kowalski, TZ
Kozanecki, W
Kozhin, AS
Kramarenko, VA
Kramberger, G
Krasnopevtsev, D
Krasny, MW
Krasznahorkay, A
Kraus, JK
Kravchenko, A
Kreiss, S
Kretz, M
Kretzschmar, J
Kreutzfeldt, K
Krieger, P
Krizka, K
Kroeninger, K
Kroha, H
Kroll, J
Kroseberg, J
Krstic, J
Kruchonak, U
Kruger, H
Krumnack, N
Krumshteyn, ZV
Kruse, A
Kruse, MC
Kruskal, M
Kubota, T
Kucuk, H
Kuday, S
Kuehn, S
Kugel, A
Kuger, F
Kuhl, A
Kuhl, T
Kukhtin, V
Kulchitsky, Y
Kuleshov, S
Kuna, M
Kunigo, T
Kupco, A
Kurashige, H
Kurochkin, YA
Kurumida, R
Kus, V
Kuwertz, ES
Kuze, M
Kvita, J
Kwan, T
Kyriazopoulos, D
La Rosa, A
Navarrod, JLL
Rotonda, L
Lacasta, C
Lacava, F
Lacey, J
Lacker, H
Lacour, D
Lacuesta, VR
Ladygin, E
Lafaye, R
Laforge, B
Lagouri, T
Lai, S
Lambourne, L
Lammers, S
Lampen, CL
Lampl, W
Lancon, E
Landgraf, U
Landon, MPJ
Lang, VS
Lange, JC
Lankford, AJ
Lanni, F
Lantzsch, K
Laplace, S
Lapoire, C
Laporte, JF
Lari, T
Manghi, FL
Lassnig, M
Laurelli, P
Lavrijsen, W
Law, AT
Laycock, P
Lazovich, T
Le Dortz, O
Le Guirriec, E
Le Menedeu, E
LeBlanc, M
LeCompte, T
Ledroit-Guillon, F
Lee, CA
Lee, SC
Lee, L
Lefebvre, G
Lefebvre, M
Leggerl, F
Leggett, C
Lehan, A
Miotto, GL
Lei, X
Leight, WA
Leisos, A
Leister, AG
Leite, MAL
Leitner, R
Lellouch, D
Lemmer, B
Leney, KJC
Lenz, T
Lenzi, B
Leone, R
Leone, S
Leonidopoulos, C
Leontsinis, S
Leroy, C
Lester, CG
Levchenko, M
Leveque, J
Levin, D
Levinson, LJ
Levy, M
Lewis, A
Leyko, AM
Leyton, M
Li, B
Li, H
Li, HL
Li, L
Li, L
Li, S
Li, Y
Liang, Z
Liao, H
Liberti, B
Liblong, A
Lichard, P
Lie, K
Liebal, J
Liebig, W
Limbach, C
Limosani, A
Lin, SC
Lin, TH
Linde, F
Lindquist, BE
Linnemann, JT
Lipeles, E
Lipniacka, A
Lisovyi, M
Liss, TM
Lissauer, D
Lister, A
Litke, AM
Liu, B
Liu, D
Liu, J
Liu, JB
Liu, K
Liu, L
Liu, M
Liu, M
Liu, Y
Livan, M
Lleres, A
Merino, JL
Lloyd, SL
Lo Sterzo, F
Lobodzinska, E
Loch, P
Lockman, WS
Loebinger, FK
Loevschall-Jensen, AE
Loginov, A
Lohse, T
Lohwasser, K
Lokajicek, M
Long, BA
Long, JD
Long, RE
Looper, KA
Lopes, L
Mateos, DL
Paredes, BL
Paz, IL
Lorenz, J
Martinez, NL
Losada, M
Loscutoff, P
Losel, PJ
Lou, X
Lounis, A
Love, J
Love, PA
Lu, N
Lubatti, HJ
Luci, C
Lucotte, A
Luehring, F
Lukas, W
Luminari, L
Lundberg, O
Lund-Jensen, B
Lynn, D
Lysak, R
Lytken, E
Ma, H
Ma, LL
Maccarrone, G
Macchiolo, A
Macdonald, CM
Miguens, JM
Macina, D
Madaffari, D
Madar, R
Maddocks, HJ
Mader, WF
Madsen, A
Maeland, S
Maeno, T
Maevskiy, A
Magradze, E
Mahboubi, K
Mahlstedtl, J
Maiani, C
Maidantchik, C
Maier, AA
Maierl, T
Maio, A
Majewski, S
Makida, Y
Makovec, N
Malaescu, B
Malecki, P
Maleev, VP
Malek, F
Mallik, U
Malon, D
Malone, C
Maltezos, S
Malyshev, VM
Malyukov, S
Mamuzic, J
Mancini, G
Mandelli, B
Mandelli, L
Mandic, I
Mandrysch, R
Maneira, J
Manfredini, A
Andrade, MD
Ramos, JM
Mann, A
Manning, PM
Manousakis-Katsikakis, A
Mansoulie, B
Mantife, R
Mantoani, M
Mapelli, L
March, L
Marchiori, G
Marcisovsky, M
Marino, CP
Marjanovic, M
Marroquim, F
Marsden, SP
Marshall, Z
Marti, LF
Marti-Garcia, S
Martin, B
Martin, TA
Martin, VJ
Latour, BMD
Martinez, M
Martin-Haugh, S
Martoiu, VS
Martyniuk, AC
Marx, M
Marzano, F
Marzin, A
Masetti, L
Mashimo, T
Mashinistov, R
Masik, J
Maslennikov, AL
Massa, I
Massa, L
MassoI, N
Mastrandrea, P
Mastroberardino, A
Masubuchi, T
Mattig, P
Mattmann, J
Maurer, J
Maxfield, SJ
Maximov, DA
Mazini, R
Mazza, SM
Mazzaferro, L
Mc Goldrick, G
Mc Kee, SP
McCarn, A
McCarthy, RL
McCarthy, TG
McCubbin, NA
McFarlane, KW
Mcfayden, JA
Mchedlidze, G
McMahon, SJ
McPherson, RA
Medinnis, M
Meehan, S
Mehlhase, S
Mehta, A
Meier, K
Meineckl, C
Meirose, B
Garcia, BRM
Meloni, F
Mengarelli, A
Menke, S
Meoni, E
Mercurio, KM
Mergelmeyer, S
Mermod, P
Merola, L
Meroni, C
Merritt, FS
Messina, A
Metcalfe, J
Mete, AS
Meyer, C
Meyer, C
Meyer, JP
Meyerl, J
Middleton, RP
Miglioranzi, S
Mijovic, L
Mikenberg, G
Mikestikova, M
Mikuz, M
Milesi, M
Milic, A
Miller, DW
Mills, C
Milov, A
Milstead, DA
Minaenko, AA
Minami, Y
Minashvili, IA
Mincer, AI
Mindur, B
Mineev, M
Ming, Y
Mir, LM
Mitani, T
Mitrevski, J
Mitsou, VA
Miucci, A
Miyagawa, PS
Mjornmark, JU
Moa, T
Mochizuki, K
Mohapatra, S
Mohr, W
Molander, S
Moles-Valls, R
Monig, K
Monini, C
Monk, J
Monnier, E
Berlingen, JM
Monticelli, F
Monzani, S
Moore, RW
Morange, N
Moreno, D
Llacer, MM
Morettini, P
Morgenstern, M
Morii, M
Morinaga, M
Morisbak, V
Moritz, S
Morley, AK
Mornacchi, G
Morris, JD
Mortensen, SS
Morton, A
Morvajl, L
Mosidze, M
Moss, J
Motohashi, K
Mount, R
Mountricha, E
Mouraviev, SV
Moyse, EJW
Muanza, S
Mudd, RD
Mueller, F
Mueller, J
Mueller, K
Mueller, RSP
Mueller, T
Muenstermann, D
Mullen, P
Munwes, Y
Quijada, JAM
Murray, WJ
Musheghyan, H
Musto, E
Myagkov, AG
Myska, M
Nackenhorst, O
Nada, J
Nagai, K
Nagai, R
Nagai, Y
Nagano, K
Nagarkar, A
Nagasaka, Y
Nagata, K
Nage, M
Nagy, E
Nairz, AM
Nakahama, Y
Nakamura, K
Nakamura, T
Nakano, I
Namasivayam, H
Garcia, RFN
Narayan, R
Naumann, T
Navarro, G
Nayyar, R
Neal, HA
Nechaeva, PY
Neep, TJ
Ner, PD
Negri, A
Negrini, M
Nektarijevicl, S
Nellist, C
Nelson, A
Nemecek, S
Nemethyll, P
Nepomuceno, AA
Nessi, M
Neubauer, MS
Neumann, M
Nevesil, RM
Nevski, P
Newman, PR
Nguyen, DH
Nickerson, RB
Nicolaidou, R
Nicquevert, B
Nielsen, J
Nikiforou, N
Nikiforov, A
Nikolaenko, V
Nikolic-Audit, I
Nikolopoulos, K
Nilsen, JK
Nilsson, P
Ninomiya, Y
Nisati, A
Nisiusl, R
Nobe, T
Nomachi, M
Nomidis, I
Nooney, T
Norberg, S
Nordberg, M
Novgorodova, O
Nowak, S
Nozaki, M
Nozka, L
Ntekasl, K
Hanninger, GN
Nunnemannl, T
Nurse, E
Nuti, F
O'Brien, BJ
O'grady, F
O'Nei, DC
O'Shea, V
Oakham, FG
Oberlack, H
Obermann, T
Ocariz, J
Ochi, A
Ochoa, I
Ochoa-Ricoux, JP
Oda, S
Odaka, S
Ogren, H
Oh, A
Oh, SH
Ohm, CC
Ohman, H
Oide, H
Okamura, W
Okawa, H
Okumura, Y
Okuyama, T
Olariu, A
Pino, SAO
Damazio, DO
Garcia, EO
Olszewski, A
Olszowska, J
Onofre, A
Onyisi, PUE
Oram, CJ
Oreglia, MJ
Oren, Y
Orestano, D
Orlando, N
Barrera, CO
Orr, RS
Osculati, B
Ospanov, R
Garzon, GOY
Otono, H
Ouchrif, M
Ouellette, EA
Ould-Saada, F
Ouraou, A
Oussorenl, KP
Ouyang, Q
Ovcharova, A
Owen, M
Owen, RE
Ozcan, VE
Ozturk, N
Pachal, K
Pages, AP
Aranda, CP
Pagacova, M
Griso, SP
Paganis, E
Pahl, C
Paige, F
Pais, P
Pajchel, K
Palacino, G
Palestini, S
Palka, M
Pallin, D
Palma, A
Pan, YB
Panagiotopoulou, E
Pandini, CE
Vazquez, JGP
Pani, P
Panitkin, S
Pantea, D
Paolozzi, L
Papadopouloul, TD
Papageorgiou, K
Paramonov, A
Hernandez, DP
Parker, MA
Parker, KA
Parodi, F
Parsons, JA
Parzefall, U
Pasqualucci, E
Passaggio, S
Pastore, F
Pastore, F
Pasztor, G
Pataraia, S
Patel, ND
Pater, JR
Pauly, T
Pearce, J
Pearson, B
Pedersen, LE
Pedersen, M
Lopez, SP
Pedro, R
Peleganchuk, SV
Pelikan, D
Peng, H
Penning, B
Penwell, J
Perepelitsa, DV
Codina, EP
Garcia-Estan, MTP
Perini, L
Pernegger, H
Perrella, S
Peschke, R
Peshekhonov, VD
Peters, K
Peters, RFY
Petersen, BA
Petersen, TC
Petit, E
Petridis, A
Petridou, C
Petrolo, E
Petrucci, F
Pettersson, NE
Pezoa, R
Phillips, PW
Piacquadio, G
Pianori, E
Picazio, A
Piccaro, E
Piceinini, M
Pickeringuo, MA
Piegaia, R
Pignotti, DT
Pilcher, JE
Pilkington, AD
Pina, J
Pinamonti, M
Pinfold, JL
Pingel, A
Pinto, B
Pires, S
Pitt, M
Pizio, C
Plazak, L
Pleier, MA
Pleskot, V
Plotnikova, E
Pucinski, P
Pluth, D
Poettgen, R
Poggioli, L
Pohl, D
Polesello, G
Policicchio, A
Polifka, R
Polini, A
Pollard, CS
Polychronakos, V
Pommes, K
Pontecorvo, L
Pope, BG
Popeneciub, GA
Popovic, DS
Poppleton, A
Pospisil, S
Potamianos, K
Potrap, IN
Potter, CJ
Potter, CT
Poulard, G
Poveda, J
Pozdnyakov, V
Pralavorio, P
Pranko, A
Prasad, S
Prell, S
Price, D
Price, LE
Primavera, M
Prince, S
Proiss, M
Prokofiev, K
Prokoshin, F
Protopapadaki, E
Protopopescu, S
Proudfoot, J
Przybycien, M
Ptacek, E
Puddu, D
Puesche, E
Puldon, D
Purohit, M
Puzo, P
Qian, J
Qin, G
Qin, Y
Quadt, A
Quarrie, DR
Quayle, WB
Queitsch-Maitland, M
Quilty, D
Raddum, S
Radeka, V
Radescu, V
Radhakrishnan, SK
Radloff, P
Rados, P
Ragusa, F
Rahal, G
Rajagopalan, S
Rammensee, M
Rangel-Smith, C
Rauscherl, F
Rave, S
Ravenscroft, T
Raymond, M
Read, AL
Readioff, NP
Rebuzzi, DM
Redelbach, A
Redlinger, G
Reece, R
Reeves, K
Rehnischm, L
Reisin, H
Relich, M
Rembser, C
Ren, H
Renaud, A
Rescigno, M
Resconi, S
Rezanova, OL
Reznicek, P
Rezvani, R
Richter, R
Richter, S
Richter-Was, E
Ricken, O
Ridel, M
Rieck, P
Riege, CJ
Rieger, J
Rijssenbeek, M
Rimoldi, A
Rinaldi, L
Ristic, B
Ritsch, E
Riu, I
Rizatdinova, F
Rizvi, E
Robertson, SH
Robichaud-Veronneau, A
Robinson, D
Robinson, JEM
Robson, A
Roda, C
Roe, S
Rohne, O
Rolli, S
Romaniouk, A
Romano, M
Saez, SMR
Adam, ER
Rompotis, N
Ronzani, M
Roos, L
Ros, E
Rosati, S
Rosbach, K
Rose, P
Rosendahlm, PL
Rosenthal, O
Rossetti, V
Rossi, E
Rossi, LP
Rosten, R
Rotaru, M
Roth, I
Rothberg, J
Rousseau, D
Royon, CR
Rozanov, A
Rozen, Y
Ruan, X
Rubbo, F
Rubinskiy, I
Rud, VI
Rudolph, C
Rudolph, MS
Ruhr, F
Ruiz-Martinez, A
Rurikova, Z
Rusakovich, NA
Ruschkel, A
Russe, HL
Rutherfoord, JP
Ruthmann, N
Ryabov, YF
Rybar, M
Rybkin, G
Ryder, NC
Aavedra, AF
Sabatol, G
Sacerdoti, S
Saddique, A
Sadrozinski, HFW
Sadykov, R
Tehrani, FS
Saimpert, M
Sakamoto, H
Sakurai, Y
Salamanna, G
Salamon, A
Saleem, M
Salek, D
De Bruin, PHS
Salihagic, D
Salnikov, A
Salt, J
Salvatore, D
Salvatore, F
Salvucci, A
Salzburger, A
Sampsonidis, D
Sanchez, A
Sanchez, J
Martinez, VS
Sandaker, H
Sandbach, RL
Sander, HG
Sanders, MP
Sandhoff, M
Sandoval, C
Sandstroem, R
Sankey, DPC
Sannino, M
Sansoni, A
Santoni, C
Santonico, R
Santos, H
Castillo, IS
Sapp, K
Sapronov, A
Saraiva, JG
Sarrazin, B
Sasaki, O
Sasaki, Y
Sato, K
Sauvage, G
Sauvan, E
Savage, G
Savard, P
Sawyer, C
Sawyer, L
Saxon, J
Sbarra, C
Sbrizzi, A
Scanlon, T
Scannicchio, DA
Scarcella, M
Scarfone, V
Schaarschmidt, J
Schacht, P
Schaefer, D
Schaefer, R
Schaeffer, J
Schaepe, S
Schaetzel, S
Schafer, U
Chaffer, AC
Schaile, D
Schamberger, RD
Scharf, V
Schegelsky, VA
Scheirich, D
Schernau, M
Schiavi, C
Schillo, C
Schioppa, M
Schlenker, S
Schmidt, E
Schmieden, K
Schmitt, C
Schmitt, S
Schmitt, S
Schneider, B
Schnellbach, YJ
Schnoor, U
Schoeffe, L
Schoening, A
Schoenrock, BD
Schopf, E
Schorlemmer, ALS
Schott, M
Schouten, D
Schovancova, J
Schramm, S
Schreyer, M
Schroeder, C
Schuh, N
Schultens, MJ
Schultz-Coulon, HC
Schulz, H
Schumacher, M
Schumm, BA
Schune, P
Schwanenberger, C
Schwartzman, A
Schwarz, TA
Schwegler, P
Schweiger, H
Schwemling, P
Schwienhorst, R
Schwindling, J
Schwindt, T
Schwoerer, M
Sciacca, FG
Scifo, E
Sciolla, G
Scuri, F
Scutti, F
Searcy, J
Sedov, G
Sedykh, E
Seema, P
Seidel, SC
Seiden, A
Seifert, F
Seixas, JM
Sekhniaidze, G
Sekhon, K
Sekula, SJ
Selbach, KE
Seliverstov, DM
Semprini-Cesari, N
Serfon, C
Serin, L
Serkin, L
Serre, T
Sessa, M
Seuster, R
Severini, H
Sfiligoj, T
Sforza, F
Sfyrla, A
Shabalina, E
Shamim, M
Shan, LY
Shang, R
Shank, JT
Shapiro, M
Shatalov, PB
Shaw, K
Shaw, SM
Shcherbakova, A
Shehu, CY
Sherwood, P
Shi, L
Shimizu, S
Shimmin, CO
Shimojima, M
Shiyakova, M
Shmeleva, A
Saadi, DS
Shochet, MJ
Shojaii, S
Shrestha, S
Shulga, E
Shupe, MA
Shushkevich, S
Sicho, P
Sidiropoulou, O
Sidorov, D
Sidoti, A
Siegert, F
Sijacki, D
Silva, J
Silver, Y
Silverstein, SB
Simak, V
Simard, O
Simic, L
Simion, S
Simioni, E
Simmons, B
Simon, D
Simoniello, R
Sinervo, P
Sinev, NB
Siragusa, G
Sisakyan, AN
Sivoklokov, SY
Sjolin, J
Sjursen, TB
Skinner, MB
Skottowe, HP
Skubic, P
Slater, M
Slavicek, T
Slawinska, M
Sliwa, K
Smakhtin, V
Smart, BH
Smestad, L
Smirnov, SY
Smirnov, Y
Smirnova, LN
Smirnova, O
Smith, MNK
Smith, RW
Smizanska, M
Smolek, K
Snesarev, AA
Snidero, G
Snyder, S
Sobie, R
Socher, F
Soffer, A
Soh, DA
Solans, CA
Solar, M
Solc, J
Soldatov, EY
Soldevila, U
Solodkov, AA
Soloshenko, A
Solovyanov, OV
Solovyev, V
Sommer, P
Song, HY
Soni, N
Sood, A
Sopczak, A
Sopko, B
Sopko, V
Sorin, V
Sosa, D
Sosebee, M
Sotiropoulou, CL
Soualah, R
Soueid, P
Soukharev, AM
South, D
Sowden, BC
Spagnolo, S
Spalla, M
Spano, F
Spearman, WR
Spettel, F
Spighi, R
Spigo, G
Spiller, LA
Spousta, M
Spreitzer, T
Denis, RD
Staerz, S
Stahlman, J
Stamen, R
Stamm, S
Stanecka, E
Stanescu, C
Stanescu-Bellu, M
Stanitzki, MM
Stapnes, S
Starchenko, EA
Stark, J
Staroba, P
Starovoitov, P
Staszewski, R
Stavina, P
Steinberg, P
Stelzer, B
Stelzer, HJ
Stelzer-Chilton, O
Stenzel, H
Stern, S
Stewart, GA
Stillings, JA
Stockton, MC
Stoebe, M
Stoicea, G
Stolte, P
Stonjek, S
Stradling, AR
Straessner, A
Stramaglia, ME
Strandberg, J
Strandberg, S
Strandlie, A
Strauss, E
Strauss, M
Strizenec, P
Stroehmer, R
Strom, DM
Stroynowski, R
Strubig, A
Stucci, SA
Stugu, B
Styles, NA
Su, D
Su, J
Subramaniam, R
Succurro, A
Sugaya, Y
Suhr, C
Suk, M
Sulin, VV
Sultansoy, S
Sumida, T
Sun, S
Sun, X
Sundermann, JE
Suruliz, K
Susinno, G
Sutton, MR
Suzuki, S
Suzuki, Y
Svatos, M
Swedish, S
Swiatlowski, M
Sykora, I
Sykora, T
Ta, D
Taccini, C
Tackmann, K
Taenzer, J
Taffard, A
Tafirout, R
Taiblum, N
Takai, H
Takashima, R
Takeda, H
Takeshita, T
Takubo, Y
Talby, M
Talyshev, AA
Tam, JYC
Tan, KG
Tanaka, J
Tanaka, R
Tanaka, S
Tannenwald, BB
Tannoury, N
Tapprogge, S
Tarem, S
Tarrade, F
Tartarelli, GF
Tas, P
Tasevsky, M
Tashiro, T
Tassi, E
Delgado, AT
Tayalati, Y
Taylor, FE
Taylor, GN
Taylor, W
Teischinger, FA
Castanheira, MTD
Teixeira-Dias, P
Temming, KK
Ten Kate, H
Teng, PK
Teoh, JJ
Tepel, F
Terada, S
Terashi, K
Terron, J
Terzo, S
Testa, M
Teuscher, RJ
Therhaag, J
Theveneaux-Pelzer, T
Thomas, JP
Thomas-Wilsker, J
Thompson, EN
Thompson, PD
Thompson, RJ
Thompson, AS
Thomsen, LA
Thomson, E
Thomson, M
Thun, RP
Tibbetts, MJ
Torres, RET
Tikhomirov, VO
Tikhonov, YA
Timoshenko, S
Tiouchichine, E
Tipton, P
Tisserant, S
Todorov, T
Todorova-Nova, S
Tojo, J
Tokar, S
Tokushuku, K
Tollefson, K
Tolley, E
Tomlinson, L
Tomoto, M
Tompkins, L
Toms, K
Torrence, E
Torres, H
Pastor, ET
Toth, J
Touchard, F
Tovey, DR
Trefzger, T
Tremblet, L
Tricoli, A
Trigger, IM
Trincaz-Duvoid, S
Tripiana, MF
Trischuk, W
Trocme, B
Troncon, C
Trottier-McDonald, M
Trovatelli, M
True, P
Truong, L
Trzebinski, M
Trzupek, A
Tsarouchas, C
Tseng, JCL
Tsiareshka, PV
Tsionou, D
Tsipolitis, G
Tsirintanis, N
Tsiskaridze, S
Tsiskaridze, V
Tskhadadze, EG
Tsukerman, II
Tsulaia, V
Tsuno, S
Tsybychev, D
Tudorache, A
Tudorache, V
Tuna, AN
Tupputi, SA
Turchikhin, S
Turecek, D
Turra, R
Turvey, AJ
Tuts, PM
Tykhonov, A
Tylmad, M
Tyndel, M
Ueda, I
Ueno, R
Ughetto, M
Ugland, M
Uhlenbrock, M
Ukegawa, F
Unal, G
Undrus, A
Unel, G
Ungaro, FC
Unno, Y
Unverdorben, C
Urban, J
Urquijo, P
Urrejola, P
Usai, G
Usanova, A
Vacavant, L
Vacek, V
Vachon, B
Valderanis, C
Valencic, N
Valentinetti, S
Valero, A
Valery, L
Valkar, S
Gallego, E
Vallecorsa, S
Ferrer, JAV
Van den Wollenberg, W
Van der Deijl, PC
Geer, RD
van der Graaf, H
Van der Leeuw, R
van Eldik, N
Gemmeren, P
Van Nieuwkoop, J
Vulpen, I
van Woerden, MC
Vanadia, M
Vandelli, W
Vanguri, R
Vaniachine, A
Vannucci, F
Vardanyan, G
Vari, R
Varnes, EW
Varol, T
Varouchas, D
Vartapetian, A
Varvell, KE
Vazeille, F
Schroeder, TV
Veatch, J
Veloce, LM
Veloso, F
Velz, T
Veneziano, S
Ventura, A
Ventura, D
Venturi, M
Venturi, N
Venturini, A
Vercesi, V
Verducci, M
Verkerke, W
Vermeulen, JC
Vest, A
Vetterli, MC
Viazlo, O
Vichou, I
Vickey, T
Boeriu, OEV
Viehhauser, GHA
Viel, S
Vigne, R
Villa, M
Perez, MV
Vilucchi, E
Vincter, MG
Vinogradov, VB
Vivarelli, I
Vaque, FV
Vlachos, S
Vladoiu, D
Vlasak, M
Vogel, M
Vokac, P
Volpi, G
Volpi, M
von der Schmitt, H
von Radziewski, H
von Toerne, E
Vorobel, V
Vorobev, K
Vos, M
Voss, R
Vossebeld, JH
Vranjes, N
Milosavljevic, MV
Vrba, V
Vreeswijk, M
Vuillermet, R
Vukotic, I
Vykydal, Z
Wagner, P
Wagner, W
Wahlberg, H
Wahrmund, S
Wakabayashi, J
Walder, J
Walker, R
Walkowiak, W
Wang, C
Wang, F
Wang, H
Wang, H
Wang, J
Wang, J
Wang, K
Wang, R
Wang, SM
Wang, T
Wang, X
Wanotayaroj, C
Warburton, A
Ward, CP
Wardrope, DR
Warsinsky, M
Washbrook, A
Wasicki, C
Watkins, PM
Watson, AT
Watson, IJ
Watson, MF
Watts, G
Watts, S
Waugh, BM
Webb, S
Weber, MS
Weber, SW
Webster, JS
Weidberg, AR
Weinert, B
Weingarten, J
Weiser, C
Weits, H
Wells, PS
Wenaus, T
Wengler, T
Wenig, S
Wermes, N
Werner, M
Werner, P
Wessels, M
Wetter, J
Whalen, K
Wharton, AM
White, A
White, MJ
White, R
White, S
Whiteson, D
Wickens, FJ
Wiedenmann, W
Wielers, M
Wienemann, P
Wiglesworth, C
Wiik-Fuchs, LAM
Wildauer, A
Wilkens, HG
Williams, HH
Williams, S
Willis, C
Willocq, S
Wilson, A
Wilson, JA
Wingerter-Seez, I
Winklmeier, F
Winter, BT
Wittgen, M
Wittkowski, J
Wollstadt, SJ
Wolter, MW
Wolters, H
Wosiek, BK
Wotschack, J
Woudstra, MJ
Wozniak, KW
Wu, M
Wu, M
Wu, SL
Wu, X
Wu, Y
Wyatt, TR
Wynne, BM
Xella, S
Xu, D
Xu, L
Yabsley, B
Yacoob, S
Yakabe, R
Yamada, M
Yamaguchi, Y
Yamamoto, A
Yamamoto, S
Yamanaka, T
Yamauchi, K
Yamazaki, Y
Yan, Z
Yang, H
Yang, H
Yang, Y
Yao, L
Yao, WM
Yasu, Y
Yatsenko, E
Wong, KHY
Ye, J
Ye, S
Yeletskikh, I
Yen, AL
Yildirim, E
Yorita, K
Yoshida, R
Yoshihara, K
Young, C
Young, CJS
Youssef, S
Yu, DR
Yu, J
Yu, JM
Yu, J
Yuan, L
Yurkewicz, A
Yusuff, I
Zabinski, B
Zaidan, R
Zaitsev, AM
Zalieckas, J
Zaman, A
Zambito, S
Zanello, L
Zanzi, D
Zeitnitz, C
Zeman, M
Zemla, A
Zengel, K
Zenin, O
Zenis, T
Zerwas, D
Zhang, D
Zhang, F
Zhang, J
Zhang, L
Zhang, R
Zhang, X
Zhang, Z
Zhao, X
Zhao, Y
Zhao, Z
Zhemchugov, A
Zhong, J
Zhou, B
Zhou, C
Zhou, L
Zhou, L
Zhou, N
Zhu, CG
Zhu, H
Zhu, J
Zhu, Y
Zhuang, X
Zhukov, K
Zibell, A
Zieminska, D
Zimine, NI
Zimmermann, C
Zimmermann, S
Zinonos, Z
Zinser, M
Ziolkowski, M
Zivkovic, L
Zobernig, G
Zoccoli, A
Nedden, M
Zurzolo, G
Zwalinski, L
AF Aad, G.
Abbott, B.
Abdallah, J.
Abdinov, O.
Aben, R.
Abolins, M.
AbouZeid, O. S.
Abramowicz, H.
Abreu, H.
Abreu, R.
Abulaiti, Y.
Acharya, B. S.
Adamczyk, L.
Adams, D. L.
Adelmanl, J.
Adomeitl, S.
Adye, T.
Affolder, A. A.
Agatonovic-Jovin, T.
Aguilar-Saavedra, J. A.
Ahlen, S. P.
Ahmadov, F.
Aielli, G.
Akerstedt, H.
Akesson, T. P. A.
Akimoto, G.
Akimov, A. V.
Alberghi, G. L.
Albert, J.
Albrand, S.
Alconada Verzini, M. J.
Aleksa, M.
Aleksandrov, I. N.
Alexa, C.
Alexander, G.
Alexopoulos, T.
Alhroob, M.
Alimonti, G.
Alio, L.
Alison, J.
Alkire, S. P.
Allbrooke, B. M. M.
Allport, P. P.
Aloisio, A.
Alonso, A.
Alonso, F.
Alpigiani, C.
Altheimer, A.
Gonzalez, B. Alvarez
Alvarez Piqueras, D.
Alviggi, M. G.
Amadio, B. T.
Amako, K.
Amaral Coutinho, Y.
Amelung, C.
Amidei, D.
Amor Dos Santos, S. P.
Amorim, A.
Amoroso, S.
Amram, N.
Amundsen, G.
Anastopoulos, C.
Ancu, L. S.
Andari, N.
Andeen, T.
Anders, C. F.
Anders, G.
Anders, J. K.
Anderson, K. J.
Andreazza, A.
Andrei, V.
Angelidakis, S.
Angelozzil, I.
Anger, P.
Angerami, A.
Anghinolfi, F.
Anisenkov, A. V.
Anjos, N.
Annovi, A.
Antonelli, M.
Antonov, A.
Antos, J.
Anulli, F.
Aoki, M.
Bella, L. Aperio
Arabidze, G.
Arai, Y.
Araque, J. P.
Arce, A. T. H.
Arduh, F. A.
Arguin, J-F.
Argyropoulos, S.
Arik, M.
Armbruster, A. J.
Arnaez, O.
Arnal, V.
Arnold, H.
Arratia, M.
Arslan, O.
Artamonov, A.
Artoni, G.
Asai, S.
Asbah, N.
Ashkenazi, A.
Asman, B.
Asquith, L.
Assamagan, K.
Astalos, R.
Atkinson, M.
Atlay, N. B.
Auerbach, B.
Augsten, K.
Aurousseau, M.
Avolio, G.
Axen, B.
Ayoub, M. K.
Azuelos, G.
Baak, M. A.
Baas, A. E.
Bacci, C.
Bachacou, H.
Bachas, K.
Backes, M.
Backhaus, M.
Bagiacchi, P.
Bagnaia, P.
Bai, Y.
Bain, T.
Baines, J. T.
Baker, O. K.
Balek, P.
Balestri, T.
Balli, F.
Banas, E.
Banerjee, Sw.
Bannoura, A. A. E.
Bansi, H. S.
Barak, L.
Barberio, E. L.
Barberis, D.
Barbero, M.
Barillaril, T.
Barisonzi, M.
Barklow, T.
Barlow, N.
Barnes, S. L.
Barnett, B. M.
Barnett, R. M.
Barnovska, Z.
Baroncelli, A.
Barone, G.
Barr, A. J.
Barreiro, F.
da Costa, J. Barreiro Guimaraes
Bartoldusm, R.
Barton, A. E.
Bartos, P.
Basalaev, A.
Bassalat, A.
Basye, A.
Bates, R. L.
Batista, S. J.
Batley, J. R.
Battaglia, M.
Bauce, M.
Bauer, F.
Bawa, H. S.
Beacham, J. B.
Beattie, M. D.
Beau, T.
Beauchemin, P. H.
Beccherle, R.
Bechtle, P.
Beck, H. P.
Becker, K.
Becker, M.
Becker, S.
Beckingham, M.
Becot, C.
Beddall, A. J.
Beddall, A.
Bednyakov, V. A.
Bee, C. P.
Beemsterl, L. J.
Beermann, T. A.
Bege, M.
Behr, J. K.
Belanger-Champagne, C.
Bell, W. H.
Bella, G.
Bellagamba, L.
Bellerive, A.
Bellomo, M.
Belotskiy, K.
Beltramello, O.
Benary, O.
Benchekroun, D.
Bender, M.
Bendtz, K.
Benekos, N.
Benhammou, Y.
Noccioli, E. Benhar
Garcia, J. A. Benitez
Benjamin, D. P.
Bensinger, J. R.
Bentvelsen, S.
Beresford, L.
Beretta, M.
Bergel, D.
Kuutmann, E. Bergeaas
Berger, N.
Berghaus, F.
Beringer, J.
Bernard, C.
Bernard, N. R.
Berniusll, C.
Bernlochner, F. U.
Berry, T.
Berta, P.
Bertella, C.
Bertoli, G.
Bertolucci, F.
Bertsche, C.
Bertsche, D.
Besana, M. I.
Besjes, G. J.
Bylund, O. Bessidskaia
Bessner, M.
Besson, N.
Betancourt, C.
Bethke, S.
Bevan, A. J.
Bhimji, W.
Bianchi, R. M.
Bianchini, L.
Bianco, M.
Biebel, O.
Bieniek, S. P.
Biglietti, M.
De Mendizabal, J. Bilbao
Bilokon, H.
Bindi, M.
Binet, S.
Bingul, A.
Bini, C.
Black, C. W.
Black, J. E.
Black, K. M.
Blackburn, D.
Blair, R. E.
Blanchard, J. -B.
Blanco, J. E.
Blazek, T.
Bloch, I.
Blocker, C.
Blum, W.
Blumenschein, U.
Bobbinkl, G. J.
Bobrovnikov, V. S.
Bocchetta, S. S.
Bocci, A.
Bock, C.
Boehler, M.
Bogaerts, J. A.
Bogdanchikov, A. G.
Bohm, C.
Boisvert, V.
Bold, T.
Boldea, V.
Boldyrev, A. S.
Bomben, M.
Bona, M.
Boonekamp, M.
Borisov, A.
Borissov, G.
Borroni, S.
Bortfeldt, J.
Bortolotto, V.
Bos, K.
Boscherini, D.
Bosmanu, M.
Boudreau, J.
Bouffard, J.
Bouhova-Thacker, E. V.
Boumediene, D.
Bourdarios, C.
Bousson, N.
Boveia, A.
Boyd, J.
Boyko, I. R.
Bozic, I.
Bracinik, J.
Brandt, A.
Brandt, G.
Brandt, O.
Bratzler, U.
Brau, B.
Brau, J. E.
Braun, H. M.
Brazzale, S. F.
Brendlinger, K.
Brennan, A. J.
Brenner, L.
Brenner, R.
Bresser, S.
Bristow, K.
Bristow, T. M.
Britton, D.
Britzger, D.
Brochu, F. M.
Brock, I.
Brock, R.
Bronnerl, J.
Brooijmans, G.
Brooks, T.
Brooks, W. K.
Brosamer, J.
Brost, E.
Brown, J.
Bruckman de Renstrom, P. A.
Bruncko, D.
Bruneliere, R.
Bruni, A.
Bruni, G.
Bruschi, M.
Bryngemark, L.
Buanesm, T.
Buat, Q.
Buchholz, P.
Buckley, A. G.
Buda, S. I.
Budagov, I. A.
Buehrer, F.
Bugge, L.
Bugge, M. K.
Bulekov, O.
Bullock, D.
Burckhart, H.
Burdin, S.
Burghgrave, B.
Burke, S.
Burmeister, I.
Busato, E.
Buescher, D.
Buescher, V.
Bussey, P.
Butler, J. M.
Butt, A. I.
Buttar, C. M.
Butterworth, J. M.
Buttil, P.
Buttinger, W.
Buzatu, A.
Buzykaev, A. R.
Cabrera Urban, S.
Bruneliere, R.
Cairo, V. M.
Cakir, O.
Calafiura, P.
Calandri, A.
Calderini, G.
Calfayanl, P.
Caloba, L. P.
Calvet, D.
Calvet, S.
Toro, R. Camacho
Camarda, S.
Camarri, P.
Cameron, D.
Caminada, L. M.
Caminal Armadans, R.
Campana, S.
Campanelli, M.
Campoverde, A.
Canale, V.
Canepa, A.
Bret, M. Cano
Cantero, J.
Cantrill, R.
Cao, T.
Garrido, M. D. M. Capeans
Caprini, I.
Caprini, M.
Capua, M.
Caputo, R.
Cardarelli, R.
Carli, T.
Carlino, G.
Carminati, L.
Caron, S.
Carquin, E.
Carrillo-Montoya, G. D.
Carter, J. R.
Carvalho, J.
Casadei, D.
Casado, M. P.
Casolino, M.
Castaneda-Miranda, E.
Caste, A.
Castillo Gimenez, V.
Castro, N. F.
Catastini, P.
Catinaccio, A.
Catmorell, J. R.
Cattai, A.
Caudron, J.
Cavaliere, V.
Cavalli, D.
Cavalli-Sforza, M.
Cavasinni, V.
Ceradini, F.
Cerio, B. C.
Cerny, K.
Cerqueira, A. S.
Cerri, A.
Cerrito, L.
Cerutti, F.
Cerv, M.
Cervelli, A.
Cetin, S. A.
Chafaq, A.
Chakraborty, D.
Chalupkova, I.
Chang, P.
Chapleau, B.
Chapman, J. D.
Charlton, D. G.
Chau, C. C.
Barajas, C. A. Chavez
Cheatham, S.
Chegwidden, A.
Chekanov, S.
Chekulaev, S. V.
Chelkov, G. A.
Chelstowska, M. A.
Chen, C.
Chen, H.
Cher, K.
Chen, L.
Chen, S.
Chen, X.
Chen, Y.
Cheng, H. C.
Cheng, Y.
Cheplakov, A.
Cheremushkina, E.
Cherkaoui El Moursli, R.
Chernyatin, V.
Cheu, E.
Chevalier, L.
Chiarella, V.
Childers, J. T.
Chiodini, G.
Chisholm, A. S.
Chislett, R. T.
Chitan, A.
Chizhov, M. V.
Choi, K.
Chouridou, S.
Chow, B. K. B.
Christodoulou, V.
Chromek-Burckhart, D.
Chu, M. L.
Chudoba, J.
Chuinard, A. J.
Chwastowski, J. J.
Chytka, L.
Ciapetti, G.
Ciftci, A. K.
Cinca, D.
Cindro, V.
Cioara, I. A.
Ciocio, A.
Citron, Z. H.
Ciubancan, M.
Clark, A.
Clark, B. L.
Clark, P. J.
Clarke, R. N.
Cleland, W.
Clement, C.
Coadou, Y.
Cobal, M.
Coccaro, A.
Cochran, J.
Coffey, L.
Cogan, J. G.
Cole, B.
Colel, S.
Colijnl, A. P.
Collot, J.
Colombo, T.
Compostellal, G.
Conde Muino, P.
Coniavitis, E.
Connell, S. H.
Connelly, I. A.
Consonni, S. M.
Consorti, V.
Constantinescu, S.
Conta, C.
Conti, G.
Conventi, F.
Cooke, M.
Cooper, B. D.
Cooper-Sarkar, A. M.
Cornelissen, T.
Corradi, M.
Corriveau, F.
Corso-Radu, A.
Cortes-Gonzalezu, A.
Cortianal, G.
Costa, G.
Costa, M. J.
Costanzo, D.
Cote, D.
Cottin, G.
Cowan, G.
Cox, B. E.
Cranmer, K.
Cree, G.
Crepe-Renaudin, S.
Crescioli, F.
Cribbs, W. A.
Ortuzar, M. Crispin
Cristinziani, M.
Croft, V.
Crosetti, G.
Donszelmann, T. Cuhadar
Cummings, J.
Curatolo, M.
Cuthbert, C.
Czirr, H.
Czodrowski, P.
D'Auria, S.
D'Onofrio, M.
Da Cunha Sargedas De Sousa, M. J.
Da Via, C.
Dabrowski, W.
Dafinca, A.
Dai, T.
Dale, O.
Dallaire, F.
Dallapiccola, C.
Dam, M.
Dandoy, J. R.
Dang, N. P.
Daniells, A. C.
Danninger, M.
Hoffmann, M. Dana
Dao, V.
Darbo, G.
Darmora, S.
Dassoulas, J.
Dattagupta, A.
Davey, W.
David, C.
Davidek, T.
Davies, E.
Davies, M.
Davison, P.
Davygora, Y.
Dawe, E.
Dawson, I.
Daya-Ishmukhametova, R. K.
De, K.
de Asmundis, R.
De Castro, S.
De Cecco, S.
De Groot, N.
de Jong, P.
De la Torre, H.
De Lorenzi, F.
De Nooijl, L.
De Pedis, D.
De Salvo, A.
De Sanctis, U.
De Santo, A.
De Regie, J. B. De Vivie
Dearnaley, W. J.
Debbe, R.
Debenedetti, C.
Dedovich, D. V.
Deigaardl, I.
Del Peso, J.
Del Prete, T.
Delgove, D.
Deliot, F.
Delitzsch, C. M.
Deliyergiyev, M.
Dell'Acqua, A.
Dell'Asta, L.
Dell'Orso, M.
Della Pietra, M.
della Volpe, D.
Delmastro, M.
Delsart, P. A.
Delucal, C.
DeMarco, D. A.
Demers, S.
Demichev, M.
Demilly, A.
Denisov, S. P.
Derendarz, D.
Derkaoui, J. E.
Derue, F.
Dervan, P.
Desch, K.
Deterre, C.
Deviveiros, P. O.
Dewhurst, A.
Dhaliwal, S.
Di Ciaccio, A.
Di Ciaccio, L.
Di Domenico, A.
Di Donato, C.
Di Girolamo, A.
Di Girolamo, B.
Di Mattia, A.
Di Micco, B.
Di Nardo, R.
Di Simone, A.
Di Sipio, R.
Di Valentino, D.
Diaconu, C.
Diamond, M.
Dias, F. A.
Diaz, M. A.
Diehl, E. B.
Dietrich, J.
Diglio, S.
Dimitrievska, A.
Dingfelder, J.
Dita, P.
Dita, S.
Dittus, F.
Djama, F.
Djobava, T.
Djuvsland, J. I.
do Vale, M. A. B.
Dobos, D.
Dobre, M.
Doglioni, C.
Dohmae, T.
Dolejsi, J.
Dolezal, Z.
Dolgoshein, B. A.
Donadelli, M.
Donati, S.
Dondero, P.
Donini, J.
Dopke, J.
Doria, A.
Dova, M. T.
Doyle, A. T.
Drechsler, E.
Dris, M.
Dubreuil, E.
Duchovni, E.
Duckeckl, G.
Ducu, O. A.
Duda, D.
Dudarev, A.
Duflot, L.
Duguid, L.
Duehrssen, M.
Dunford, M.
Yildiz, H. Duran
Dueren, M.
Durglishvili, A.
Duschinger, D.
Dyndal, M.
Eckardt, C.
Ecker, K. M.
Edgar, R. C.
Edson, W.
Edwards, N. C.
Ehrenfeld, W.
Eifert, T.
Eigen, G.
Einsweiler, K.
Ekelof, T.
El Kacimi, M.
Ellert, M.
Elles, S.
Ellinghaus, F.
Elliot, A. A.
Ellis, N.
Elmsheuser, J.
Elsing, M.
Emeliyanov, D.
Enari, Y.
Endner, O. C.
Endo, M.
Erdmann, J.
Ereditato, A.
Ernis, G.
Ernst, J.
Ernst, M.
Errede, S.
Ertel, E.
Escalier, M.
Esch, H.
Escobar, C.
Esposito, B.
Etienvre, A. I.
Etzion, E.
Evans, H.
Ezhilov, A.
Fabbri, L.
Facini, G.
Fakhrutdinov, R. M.
Falciano, S.
Falla, R. J.
Faltova, J.
Fang, Y.
Fanti, M.
Farbin, A.
Farilla, A.
Farooque, T.
Farrell, S.
Farrington, S. M.
Farthouat, P.
Fassi, F.
Fassnacht, P.
Fassouliotis, D.
Giannelli, M. Faucci
Favareto, A.
Fayard, L.
Federic, P.
Fedin, O. L.
Fedorko, W.
Feigl, S.
Feligioni, L.
Feng, C.
Feng, E. J.
Feng, H.
Fenyuk, A. B.
Fernandez Martinez, P.
Perez, S. Fernandez
Ferrando, J.
Ferrari, A.
Ferraril, P.
Ferrari, R.
de Lima, D. E. Ferreira
Ferrer, A.
Ferrere, D.
Ferretti, C.
Parodi, A. Ferretto
Fiascaris, M.
Fiedler, F.
Filipcic, A.
Filipuzzi, M.
Filthautl, F.
Fincke-Keeler, M.
Fine, K. D.
Fiolhais, M. C. N.
Fiorini, L.
Firan, A.
Fischer, A.
Fischer, C.
Fischer, J.
Fisher, W. C.
Fitzgerald, E. A.
Flechl, M.
Fleck, I.
Fleischmann, P.
Fleischmann, S.
Fletcher, G. T.
Fletcher, G.
Flick, T.
Floderus, A.
Castillo, L. R. Flores
Flowerdew, M. J.
Formica, A.
Forti, A.
Fournier, D.
Fox, H.
Fracchia, S.
Francavilla, P.
Franchini, M.
Francis, D.
Franconi, L.
Franklin, M.
Fraternali, M.
Freeborn, D.
French, S. T.
Friedrich, F.
Froidevaux, D.
Frost, J. A.
Fukunaga, C.
Torregrosa, E. Fullana
Fulsom, B. G.
Fuster, J.
Gabaldon, C.
Gabizon, O.
Gabrielli, A.
Gabrielli, A.
Gadatsch, S.
Gadomski, S.
Gagliardi, G.
Gagnon, P.
Galea, C.
Galhardo, B.
Gallas, E. J.
Gallop, B. J.
Gallus, P.
Galster, G.
Gan, K. K.
Gao, J.
Gao, Y.
Gao, Y. S.
Walls, F. M. Garay
Garberson, F.
Garcia, C.
Garcia Navarro, J. E.
Garcia-Sciveres, M.
Gardner, R. W.
Garelli, N.
Garonne, V.
Gatti, C.
Gaudiello, A.
Gaudio, G.
Gaur, B.
Gauthier, L.
Gauzzi, P.
Gavrilenko, I. L.
Gay, C.
Gaycken, G.
Gazis, E. N.
Ge, P.
Gecse, Z.
Gee, C. N. P.
Geerts, D. A. A.
Geich-Gimbel, Ch.
Geisler, M. P.
Gemme, C.
Genest, M. H.
Gentile, S.
George, M.
George, S.
Gerbaudo, D.
Gershon, A.
Ghazlane, H.
Giacobbe, B.
Giagu, S.
Giangiobbe, V.
Giannetti, P.
Gibbard, B.
Gibson, S. M.
Gilchriese, M.
Gillam, T. P. S.
Gillberg, D.
Gilles, G.
Gingrich, D. M.
Giokaris, N.
Giordani, M. P.
Giorgi, F. M.
Giorgi, F. M.
Giraud, P. F.
Giromini, P.
Giugni, D.
Giuliani, C.
Giulini, M.
Gjelsten, B. K.
Gkaitatzis, S.
Gkialas, I.
Gkougkousis, E. L.
Gladilin, L. K.
Glasman, C.
Glatzer, J.
Glaysher, P. C. F.
Glazov, A.
Goblirsch-Kolb, M.
Goddard, J. R.
Godlewski, J.
Goldfarb, S.
Golling, T.
Golubkov, D.
Gomes, A.
Goncalo, R.
Da Costa, J. Goncalves Pinto Firmino
Gonella, L.
Gonzalez de la Hoz, S.
Gonzalez Parra, G.
Gonzalez-Sevilla, S.
Goossens, L.
Gorbounov, P. A.
Gordon, H. A.
Gorelov, I.
Gorini, B.
Gorini, E.
Gorisek, A.
Gornicki, E.
Goshaw, A. T.
Goessling, C.
Gostkin, M. I.
Goujdami, D.
Goussiou, A. G.
Govender, N.
Grabas, H. M. X.
Graber, L.
Grabowska-Bold, I.
Grafstroem, P.
Grahn, K-J.
Grarnling, J.
Grarnstad, E.
Grancagnolo, S.
Grassi, V.
Gratchev, V.
Gray, H. M.
Graziani, E.
Greenwood, Z. D.
Gregersen, K.
Gregor, I. M.
Grenier, P.
Griffiths, J.
Grillo, A. A.
Grimm, K.
Grinstein, S.
Gris, Ph.
Grivaz, J. -F.
Grohs, J. P.
Grohsjean, A.
Gross, E.
Grosse-Knetter, J.
Grossi, G. C.
Grout, Z. J.
Guan, L.
Guenther, J.
Guescini, F.
Guest, D.
Gueta, O.
Guido, E.
Guillemin, T.
Guindon, S.
Gul, U.
Gumpert, C.
Guo, J.
Gupta, S.
Gutierrez, P.
Ortiz, N. G. Gutierrez
Gutschow, C.
Guyot, C.
Gwenlan, C.
Gwilliam, C. B.
Haas, A.
Haber, C.
Hadavand, H. K.
Haddad, N.
Haefner, P.
Hageboeck, S.
Hajduk, Z.
Hakobyan, H.
Haleem, M.
Haley, J.
Hall, D.
Halladjian, G.
Hallewel, G. D.
Hamacher, K.
Hamal, P.
Hamano, K.
Hamer, M.
Hamilton, A.
Hamity, G. N.
Hamnett, P. G.
Han, L.
Hanagaki, K.
Hanawa, K.
Hance, M.
Hanke, P.
Hanna, R.
Hansen, J. B.
Hansen, J. D.
Hansen, M. C.
Hansen, P. H.
Hara, K.
Hard, A. S.
Harenberg, T.
Haririll, F.
Harkusha, S.
Harrington, R. D.
Harrison, P. F.
Hartjes, F.
Hasegawa, M.
Hasegawa, S.
Hasegawa, Y.
Hasib, A.
Hassani, S.
Haug, S.
Hauser, R.
Hauswald, L.
Havranek, M.
Hawkes, C. M.
Hawkings, R. J.
Hawkins, A. D.
Hayashi, T.
Hayden, D.
Hays, C. P.
Hays, J. M.
Hayward, H. S.
Haywood, S. J.
Head, S. J.
Heck, T.
Hedberg, V.
Heelan, L.
Heim, S.
Heim, T.
Heinemann, B.
Heinrich, L.
Hejbal, J.
Helary, L.
Hellman, S.
Hellmich, D.
Helsens, C.
Henderson, J.
Henderson, R. C. W.
Heng, Y.
Hengler, C.
Henrichs, A.
Correia, A. M. Henriques
Henrot-Versille, S.
Herbert, G. H.
Hernandez Jimenez, Y.
Herrberg-Schubert, R.
Herten, G.
Hertenberger, R.
Hervas, L.
Hesketh, G. G.
Hessey, N. P.
Hetherly, J. W.
Hickling, R.
Higon-Rodriguez, E.
Hill, E.
Hill, J. C.
Hiller, K. H.
Hillier, S. J.
Hinchliffe, I.
Hines, E.
Hinman, R. R.
Hirose, M.
Hirschbuehl, D.
Hobbs, J.
Hod, N.
Hodgkinson, M. C.
Hodgson, P.
Hoecker, A.
Hoeferkamp, M. R.
Hoenig, F.
Hohlfeld, M.
Hohn, D.
Holmes, T. R.
Homann, M.
Hong, T. M.
van Huysduynen, L. Hooft
Hopkins, W. H.
Horii, Y.
Horton, A. J.
Hostachy, J-Y.
Hou, S.
Hoummada, A.
Howard, J.
Howarth, J.
Hrabovsky, M.
Hristova, I.
Hrivnac, J.
Hryn'ova, T.
Hrynevich, A.
Hu, C.
Hsu, P. J.
Hsu, S. -C.
Hu, D.
Hu, Q.
Hu, X.
Huang, Y.
Hubacek, Z.
Hubaut, F.
Huegging, F.
Huffman, T. B.
Hughes, E. W.
Hughes, G.
Huhtinen, M.
Huelsing, T. A.
Huseynov, N.
Huston, J.
Huth, J.
Iacobucci, G.
Iakovidis, G.
Ibragimov, I.
Iconomidou-Fayard, L.
Idea, E.
Idrissi, Z.
Iengo, P.
Igonkinal, O.
Iizawa, T.
Ikegami, Y.
Ikematsu, K.
Ikeno, M.
Ilchenko, Y.
Iliadis, D.
Ilic, N.
Inarnaru, Y.
Incel, T.
Ioannou, P.
Iodice, M.
Iordanidou, K.
Ippolito, V.
Quiles, A. Tries
Isaksson, C.
Ishino, M.
Ishitsuka, M.
Ishmukhametov, R.
Issever, C.
Istin, S.
Ponce, J. M. Iturbe
Iuppa, R.
Ivarsson, J.
Iwanski, W.
Iwasaki, H.
Izen, J. M.
Izzo, V.
Jabbar, S.
Jackson, B.
Jackson, M.
Jackson, P.
Jaekel, M. R.
Jain, V.
Jakobs, K.
Jakobsen, S.
Jakoubek, T.
Jakubek, J.
Jamin, D. O.
Jana, D. K.
Jansen, E.
Jansky, R. W.
Janssen, J.
Janus, M.
Jarlskog, G.
Javadov, N.
Javurek, T.
Jeanty, L.
Jejelava, J.
Jeng, G. -Y.
Jennens, D.
Jenni, P.
Jentzsch, J.
Jeske, C.
Jezequel, S.
Ji, H.
Jia, J.
Jiang, Y.
Jiggins, S.
Jimenez Pena, J.
Jin, S.
Jinaru, A.
Jinnouchi, O.
Joergensen, M. D.
Johansson, P.
Johns, K. A.
Jon-And, K.
Jones, G.
Jones, R. W. L.
Jones, T. J.
Jongmanns, J.
Jorge, P. M.
Joshi, K. D.
Jovicevic, J.
Ju, X.
Jung, C. A.
Jussel, P.
Juste Rozas, A.
Kaci, M.
Kaczmarska, A.
Kado, M.
Kagan, H.
Kagan, M.
Kahn, S. J.
Kajomovitz, E.
Kalderon, C. W.
Kama, S.
Kamenshchikov, A.
Kanaya, N.
Kaneda, M.
Kaneti, S.
Kantserov, V. A.
Kanzaki, J.
Kaplan, B.
Kapliy, A.
Kar, D.
Karakostas, K.
Karamaoun, A.
Karastathis, N.
Kareem, M. J.
Karnevskiy, M.
Karpov, S. N.
Karpova, Z. M.
Karthik, K.
Kartvelishvili, V.
Karyukhin, A. N.
Kashif, L.
Kass, R. D.
Kastanas, A.
Kataoka, Y.
Katre, A.
Katzy, J.
Kawagoe, K.
Kawamoto, T.
Kawamura, G.
Kazama, S.
Kazanin, V. F.
Kazarinov, M. Y.
Keeler, R.
Kehoe, R.
Keller, J. S.
Kempster, J. J.
Keoshkerian, H.
Kepka, O.
Kersevan, B. P.
Kersten, S.
Keyes, R. A.
Khalil-zada, F.
Khandanyan, H.
Khanov, A.
Kharlamov, A. G.
Khoo, T. J.
Khovanskiy, V.
Khramov, E.
Khubua, J.
Kim, H. Y.
Kim, H.
Kim, S. H.
Kim, Y.
Kimura, N.
Kind, O. M.
King, B. T.
King, M.
King, R. S. B.
King, S. B.
Kirk, J.
Kiryunin, A. E.
Kishimoto, T.
Kisielewska, D.
Kiss, F.
Kiuchi, K.
Kivernyk, O.
Kladiva, E.
Klein, M. H.
Klein, M.
Klein, U.
Kleinknecht, K.
Klimek, P.
Klimentov, A.
Klingenberg, R.
Klinger, J. A.
Klioutchnikova, T.
Kluge, E. -E.
Kluit, P.
Kluth, S.
Kneringer, E.
Knoops, E. B. F. G.
Knue, A.
Kobayashi, A.
Kobayashi, D.
Kobayashi, T.
Kobel, M.
Kocian, M.
Kodys, P.
Koffas, T.
Koffeman, E.
Kogan, L. A.
Kohlmann, S.
Kohout, Z.
Kohriki, T.
Koi, T.
Kolanoski, H.
Koletsou, I.
Komar, A. A.
Komori, Y.
Kondo, T.
Kondrashova, N.
Koeneke, K.
Konig, A. C.
Koenig, S.
Kono, T.
Konoplich, R.
Konstantinidis, N.
Kopeliansky, R.
Koperny, S.
Koepke, L.
Kopp, A. K.
Korcyl, K.
Kordas, K.
Korn, A.
Korol, A. A.
Korolkov, I.
Korolkova, E. V.
Kortner, O.
Kortner, S.
Kosek, T.
Kostyukhin, V. V.
Kotov, V. M.
Kotwal, A.
Kourkoumeli-Charalampidi, A.
Kourkoumelis, C.
Kouskoura, V.
Koutsman, A.
Kowalewski, R.
Kowalski, T. Z.
Kozanecki, W.
Kozhin, A. S.
Kramarenko, V. A.
Kramberger, G.
Krasnopevtsev, D.
Krasny, M. W.
Krasznahorkay, A.
Kraus, J. K.
Kravchenko, A.
Kreiss, S.
Kretz, M.
Kretzschmar, J.
Kreutzfeldt, K.
Krieger, P.
Krizka, K.
Kroeninger, K.
Kroha, H.
Kroll, J.
Kroseberg, J.
Krstic, J.
Kruchonak, U.
Krueger, H.
Krumnack, N.
Krumshteyn, Z. V.
Kruse, A.
Kruse, M. C.
Kruskal, M.
Kubota, T.
Kucuk, H.
Kuday, S.
Kuehn, S.
Kugel, A.
Kuger, F.
Kuhl, A.
Kuhl, T.
Kukhtin, V.
Kulchitsky, Y.
Kuleshov, S.
Kuna, M.
Kunigo, T.
Kupco, A.
Kurashige, H.
Kurochkin, Y. A.
Kurumida, R.
Kus, V.
Kuwertz, E. S.
Kuze, M.
Kvita, J.
Kwan, T.
Kyriazopoulos, D.
La Rosa, A.
La Rosa Navarrod, J. L.
La Rotonda, L.
Lacasta, C.
Lacava, F.
Lacey, J.
Lacker, H.
Lacour, D.
Lacuesta, V. R.
Ladygin, E.
Lafaye, R.
Laforge, B.
Lagouri, T.
Lai, S.
Lambourne, L.
Lammers, S.
Lampen, C. L.
Lampl, W.
Lancon, E.
Landgraf, U.
Landon, M. P. J.
Lang, V. S.
Lange, J. C.
Lankford, A. J.
Lanni, F.
Lantzsch, K.
Laplace, S.
Lapoire, C.
Laporte, J. F.
Lari, T.
Manghi, F. Lasagni
Lassnig, M.
Laurelli, P.
Lavrijsen, W.
Law, A. T.
Laycock, P.
Lazovich, T.
Le Dortz, O.
Le Guirriec, E.
Le Menedeu, E.
LeBlanc, M.
LeCompte, T.
Ledroit-Guillon, F.
Lee, C. A.
Lee, S. C.
Lee, L.
Lefebvre, G.
Lefebvre, M.
Leggerl, F.
Leggett, C.
Lehan, A.
Miotto, G. Lehmann
Lei, X.
Leight, W. A.
Leisos, A.
Leister, A. G.
Leite, M. A. L.
Leitner, R.
Lellouch, D.
Lemmer, B.
Leney, K. J. C.
Lenz, T.
Lenzi, B.
Leone, R.
Leone, S.
Leonidopoulos, C.
Leontsinis, S.
Leroy, C.
Lester, C. G.
Levchenko, M.
Leveque, J.
Levin, D.
Levinson, L. J.
Levy, M.
Lewis, A.
Leyko, A. M.
Leyton, M.
Li, B.
Li, H.
Li, H. L.
Li, L.
Li, L.
Li, S.
Li, Y.
Liang, Z.
Liao, H.
Liberti, B.
Liblong, A.
Lichard, P.
Lie, K.
Liebal, J.
Liebig, W.
Limbach, C.
Limosani, A.
Lin, S. C.
Lin, T. H.
Linde, F.
Lindquist, B. E.
Linnemann, J. T.
Lipeles, E.
Lipniacka, A.
Lisovyi, M.
Liss, T. M.
Lissauer, D.
Lister, A.
Litke, A. M.
Liu, B.
Liu, D.
Liu, J.
Liu, J. B.
Liu, K.
Liu, L.
Liu, M.
Liu, M.
Liu, Y.
Livan, M.
Lleres, A.
Llorente Merino, J.
Lloyd, S. L.
Lo Sterzo, F.
Lobodzinska, E.
Loch, P.
Lockman, W. S.
Loebinger, F. K.
Loevschall-Jensen, A. E.
Loginov, A.
Lohse, T.
Lohwasser, K.
Lokajicek, M.
Long, B. A.
Long, J. D.
Long, R. E.
Looper, K. A.
Lopes, L.
Mateos, D. Lopez
Paredes, B. Lopez
Lopez Paz, I.
Lorenz, J.
Martinez, N. Lorenzo
Losada, M.
Loscutoff, P.
Loesel, P. J.
Lou, X.
Lounis, A.
Love, J.
Love, P. A.
Lu, N.
Lubatti, H. J.
Luci, C.
Lucotte, A.
Luehring, F.
Lukas, W.
Luminari, L.
Lundberg, O.
Lund-Jensen, B.
Lynn, D.
Lysak, R.
Lytken, E.
Ma, H.
Ma, L. L.
Maccarrone, G.
Macchiolo, A.
Macdonald, C. M.
Machado Miguens, J.
Macina, D.
Madaffari, D.
Madar, R.
Maddocks, H. J.
Mader, W. F.
Madsen, A.
Maeland, S.
Maeno, T.
Maevskiy, A.
Magradze, E.
Mahboubi, K.
Mahlstedtl, J.
Maiani, C.
Maidantchik, C.
Maier, A. A.
Maierl, T.
Maio, A.
Majewski, S.
Makida, Y.
Makovec, N.
Malaescu, B.
Malecki, Pa.
Maleev, V. P.
Malek, F.
Mallik, U.
Malon, D.
Malone, C.
Maltezos, S.
Malyshev, V. M.
Malyukov, S.
Mamuzic, J.
Mancini, G.
Mandelli, B.
Mandelli, L.
Mandic, I.
Mandrysch, R.
Maneira, J.
Manfredini, A.
Manhaes de Andrade Filho, L.
Ramos, J. Manjarres
Mann, A.
Manning, P. M.
Manousakis-Katsikakis, A.
Mansoulie, B.
Mantife, R.
Mantoani, M.
Mapelli, L.
March, L.
Marchiori, G.
Marcisovsky, M.
Marino, C. P.
Marjanovic, M.
Marroquim, F.
Marsden, S. P.
Marshall, Z.
Marti, L. F.
Marti-Garcia, S.
Martin, B.
Martin, T. A.
Martin, V. J.
Martin dit Latour, B.
Martinez, M.
Martin-Haugh, S.
Martoiu, V. S.
Martyniuk, A. C.
Marx, M.
Marzano, F.
Marzin, A.
Masetti, L.
Mashimo, T.
Mashinistov, R.
Masik, J.
Maslennikov, A. L.
Massa, I.
Massa, L.
Masso, N., I
Mastrandrea, P.
Mastroberardino, A.
Masubuchi, T.
Maettig, P.
Mattmann, J.
Maurer, J.
Maxfield, S. J.
Maximov, D. A.
Mazini, R.
Mazza, S. M.
Mazzaferro, L.
Mc Goldrick, G.
Mc Kee, S. P.
McCarn, A.
McCarthy, R. L.
McCarthy, T. G.
McCubbin, N. A.
McFarlane, K. W.
Mcfayden, J. A.
Mchedlidze, G.
McMahon, S. J.
McPherson, R. A.
Medinnis, M.
Meehan, S.
Mehlhase, S.
Mehta, A.
Meier, K.
Meineckl, C.
Meirose, B.
Mellado Garcia, B. R.
Meloni, F.
Mengarelli, A.
Menke, S.
Meoni, E.
Mercurio, K. M.
Mergelmeyer, S.
Mermod, P.
Merola, L.
Meroni, C.
Merritt, F. S.
Messina, A.
Metcalfe, J.
Mete, A. S.
Meyer, C.
Meyer, C.
Meyer, J-P.
Meyerl, J.
Middleton, R. P.
Miglioranzi, S.
Mijovic, L.
Mikenberg, G.
Mikestikova, M.
Mikuz, M.
Milesi, M.
Milic, A.
Miller, D. W.
Mills, C.
Milov, A.
Milstead, D. A.
Minaenko, A. A.
Minami, Y.
Minashvili, I. A.
Mincer, A. I.
Mindur, B.
Mineev, M.
Ming, Y.
Mir, L. M.
Mitani, T.
Mitrevski, J.
Mitsou, V. A.
Miucci, A.
Miyagawa, P. S.
Mjornmark, J. U.
Moa, T.
Mochizuki, K.
Mohapatra, S.
Mohr, W.
Molander, S.
Moles-Valls, R.
Moenig, K.
Monini, C.
Monk, J.
Monnier, E.
Montejo Berlingen, J.
Monticelli, F.
Monzani, S.
Moore, R. W.
Morange, N.
Moreno, D.
Llacer, M. Moreno
Morettini, P.
Morgenstern, M.
Morii, M.
Morinaga, M.
Morisbak, V.
Moritz, S.
Morley, A. K.
Mornacchi, G.
Morris, J. D.
Mortensen, S. S.
Morton, A.
Morvajl, L.
Mosidze, M.
Moss, J.
Motohashi, K.
Mount, R.
Mountricha, E.
Mouraviev, S. V.
Moyse, E. J. W.
Muanza, S.
Mudd, R. D.
Mueller, F.
Mueller, J.
Mueller, K.
Mueller, R. S. P.
Mueller, T.
Muenstermann, D.
Mullen, P.
Munwes, Y.
Quijada, J. A. Murillo
Murray, W. J.
Musheghyan, H.
Musto, E.
Myagkov, A. G.
Myska, M.
Nackenhorst, O.
Nada, J.
Nagai, K.
Nagai, R.
Nagai, Y.
Nagano, K.
Nagarkar, A.
Nagasaka, Y.
Nagata, K.
Nage, M.
Nagy, E.
Nairz, A. M.
Nakahama, Y.
Nakamura, K.
Nakamura, T.
Nakano, I.
Namasivayam, H.
Garcia, R. F. Naranjo
Narayan, R.
Naumann, T.
Navarro, G.
Nayyar, R.
Neal, H. A.
Nechaeva, P. Yu.
Neep, T. J.
Ner, P. D.
Negri, A.
Negrini, M.
Nektarijevicl, S.
Nellist, C.
Nelson, A.
Nemecek, S.
Nemethyll, P.
Nepomuceno, A. A.
Nessi, M.
Neubauer, M. S.
Neumann, M.
Nevesil, R. M.
Nevski, P.
Newman, P. R.
Nguyen, D. H.
Nickerson, R. B.
Nicolaidou, R.
Nicquevert, B.
Nielsen, J.
Nikiforou, N.
Nikiforov, A.
Nikolaenko, V.
Nikolic-Audit, I.
Nikolopoulos, K.
Nilsen, J. K.
Nilsson, P.
Ninomiya, Y.
Nisati, A.
Nisiusl, R.
Nobe, T.
Nomachi, M.
Nomidis, I.
Nooney, T.
Norberg, S.
Nordberg, M.
Novgorodova, O.
Nowak, S.
Nozaki, M.
Nozka, L.
Ntekasl, K.
Hanninger, G. Nunes
Nunnemannl, T.
Nurse, E.
Nuti, F.
O'Brien, B. J.
O'grady, F.
O'Nei, D. C.
O'Shea, V.
Oakham, F. G.
Oberlack, H.
Obermann, T.
Ocariz, J.
Ochi, A.
Ochoa, I.
Ochoa-Ricoux, J. P.
Oda, S.
Odaka, S.
Ogren, H.
Oh, A.
Oh, S. H.
Ohm, C. C.
Ohman, H.
Oide, H.
Okamura, W.
Okawa, H.
Okumura, Y.
Okuyama, T.
Olariu, A.
Pino, S. A. Olivares
Damazio, D. Oliveira
Oliver Garcia, E.
Olszewski, A.
Olszowska, J.
Onofre, A.
Onyisi, P. U. E.
Oram, C. J.
Oreglia, M. J.
Oren, Y.
Orestano, D.
Orlando, N.
Barrera, C. Oropeza
Orr, R. S.
Osculati, B.
Ospanov, R.
Otero y Garzon, G.
Otono, H.
Ouchrif, M.
Ouellette, E. A.
Ould-Saada, F.
Ouraou, A.
Oussorenl, K. P.
Ouyang, Q.
Ovcharova, A.
Owen, M.
Owen, R. E.
Ozcan, V. E.
Ozturk, N.
Pachal, K.
Pacheco Pages, A.
Padilla Aranda, C.
Pagacova, M.
Griso, S. Pagan
Paganis, E.
Pahl, C.
Paige, F.
Pais, P.
Pajchel, K.
Palacino, G.
Palestini, S.
Palka, M.
Pallin, D.
Palma, A.
Pan, Y. B.
Panagiotopoulou, E.
Pandini, C. E.
Vazquez, J. G. Panduro
Pani, P.
Panitkin, S.
Pantea, D.
Paolozzi, L.
Papadopouloul, Th. D.
Papageorgiou, K.
Paramonov, A.
Hernandez, D. Paredes
Parker, M. A.
Parker, K. A.
Parodi, F.
Parsons, J. A.
Parzefall, U.
Pasqualucci, E.
Passaggio, S.
Pastore, F.
Pastore, Fr.
Pasztor, G.
Pataraia, S.
Patel, N. D.
Pater, J. R.
Pauly, T.
Pearce, J.
Pearson, B.
Pedersen, L. E.
Pedersen, M.
Pedraza Lopez, S.
Pedro, R.
Peleganchuk, S. V.
Pelikan, D.
Peng, H.
Penning, B.
Penwell, J.
Perepelitsa, D. V.
Codina, E. Perez
Perez Garcia-Estan, M. T.
Perini, L.
Pernegger, H.
Perrella, S.
Peschke, R.
Peshekhonov, V. D.
Peters, K.
Peters, R. F. Y.
Petersen, B. A.
Petersen, T. C.
Petit, E.
Petridis, A.
Petridou, C.
Petrolo, E.
Petrucci, F.
Pettersson, N. E.
Pezoa, R.
Phillips, P. W.
Piacquadio, G.
Pianori, E.
Picazio, A.
Piccaro, E.
Piceinini, M.
Pickeringuo, M. A.
Piegaia, R.
Pignotti, D. T.
Pilcher, J. E.
Pilkington, A. D.
Pina, J.
Pinamonti, M.
Pinfold, J. L.
Pingel, A.
Pinto, B.
Pires, S.
Pitt, M.
Pizio, C.
Plazak, L.
Pleier, M. -A.
Pleskot, V.
Plotnikova, E.
Pucinski, P.
Pluth, D.
Poettgen, R.
Poggioli, L.
Pohl, D.
Polesello, G.
Policicchio, A.
Polifka, R.
Polini, A.
Pollard, C. S.
Polychronakos, V.
Pommes, K.
Pontecorvo, L.
Pope, B. G.
Popeneciub, G. A.
Popovic, D. S.
Poppleton, A.
Pospisil, S.
Potamianos, K.
Potrap, I. N.
Potter, C. J.
Potter, C. T.
Poulard, G.
Poveda, J.
Pozdnyakov, V.
Pralavorio, P.
Pranko, A.
Prasad, S.
Prell, S.
Price, D.
Price, L. E.
Primavera, M.
Prince, S.
Proiss, M.
Prokofiev, K.
Prokoshin, F.
Protopapadaki, E.
Protopopescu, S.
Proudfoot, J.
Przybycien, M.
Ptacek, E.
Puddu, D.
Puesche, E.
Puldon, D.
Purohit, M.
Puzo, P.
Qian, J.
Qin, G.
Qin, Y.
Quadt, A.
Quarrie, D. R.
Quayle, W. B.
Queitsch-Maitland, M.
Quilty, D.
Raddum, S.
Radeka, V.
Radescu, V.
Radhakrishnan, S. K.
Radloff, P.
Rados, P.
Ragusa, F.
Rahal, G.
Rajagopalan, S.
Rammensee, M.
Rangel-Smith, C.
Rauscherl, F.
Rave, S.
Ravenscroft, T.
Raymond, M.
Read, A. L.
Readioff, N. P.
Rebuzzi, D. M.
Redelbach, A.
Redlinger, G.
Reece, R.
Reeves, K.
Rehnischm, L.
Reisin, H.
Relich, M.
Rembser, C.
Ren, H.
Renaud, A.
Rescigno, M.
Resconi, S.
Rezanova, O. L.
Reznicek, P.
Rezvani, R.
Richter, R.
Richter, S.
Richter-Was, E.
Ricken, O.
Ridel, M.
Rieck, P.
Riege, C. J.
Rieger, J.
Rijssenbeek, M.
Rimoldi, A.
Rinaldi, L.
Ristic, B.
Ritsch, E.
Riu, I.
Rizatdinova, F.
Rizvi, E.
Robertson, S. H.
Robichaud-Veronneau, A.
Robinson, D.
Robinson, J. E. M.
Robson, A.
Roda, C.
Roe, S.
Rohne, O.
Rolli, S.
Romaniouk, A.
Romano, M.
Saez, S. M. Romano
Romero Adam, E.
Rompotis, N.
Ronzani, M.
Roos, L.
Ros, E.
Rosati, S.
Rosbach, K.
Rose, P.
Rosendahlm, P. L.
Rosenthal, O.
Rossetti, V.
Rossi, E.
Rossi, L. P.
Rosten, R.
Rotaru, M.
Roth, I.
Rothberg, J.
Rousseau, D.
Royon, C. R.
Rozanov, A.
Rozen, Y.
Ruan, X.
Rubbo, F.
Rubinskiy, I.
Rud, V. I.
Rudolph, C.
Rudolph, M. S.
Ruehr, F.
Ruiz-Martinez, A.
Rurikova, Z.
Rusakovich, N. A.
Ruschkel, A.
Russe, H. L.
Rutherfoord, J. P.
Ruthmann, N.
Ryabov, Y. F.
Rybar, M.
Rybkin, G.
Ryder, N. C.
Aavedra, A. F.
Sabatol, G.
Sacerdoti, S.
Saddique, A.
Sadrozinski, H. F-W.
Sadykov, R.
Tehrani, F. Safai
Saimpert, M.
Sakamoto, H.
Sakurai, Y.
Salamanna, G.
Salamon, A.
Saleem, M.
Salek, D.
De Bruin, P. H. Sales
Salihagic, D.
Salnikov, A.
Salt, J.
Salvatore, D.
Salvatore, F.
Salvucci, A.
Salzburger, A.
Sampsonidis, D.
Sanchez, A.
Sanchez, J.
Sanchez Martinez, V.
Sandaker, H.
Sandbach, R. L.
Sander, H. G.
Sanders, M. P.
Sandhoff, M.
Sandoval, C.
Sandstroem, R.
Sankey, D. P. C.
Sannino, M.
Sansoni, A.
Santoni, C.
Santonico, R.
Santos, H.
Castillo, I. Santoyo
Sapp, K.
Sapronov, A.
Saraiva, J. G.
Sarrazin, B.
Sasaki, O.
Sasaki, Y.
Sato, K.
Sauvage, G.
Sauvan, E.
Savage, G.
Savard, P.
Sawyer, C.
Sawyer, L.
Saxon, J.
Sbarra, C.
Sbrizzi, A.
Scanlon, T.
Scannicchio, D. A.
Scarcella, M.
Scarfone, V.
Schaarschmidt, J.
Schacht, P.
Schaefer, D.
Schaefer, R.
Schaeffer, J.
Schaepe, S.
Schaetzel, S.
Schaefer, U.
Chaffer, A. C.
Schaile, D.
Schamberger, R. D.
Scharf, V.
Schegelsky, V. A.
Scheirich, D.
Schernau, M.
Schiavi, C.
Schillo, C.
Schioppa, M.
Schlenker, S.
Schmidt, E.
Schmieden, K.
Schmitt, C.
Schmitt, S.
Schmitt, S.
Schneider, B.
Schnellbach, Y. J.
Schnoor, U.
Schoeffe, L.
Schoening, A.
Schoenrock, B. D.
Schopf, E.
Schorlemmer, A. L. S.
Schott, M.
Schouten, D.
Schovancova, J.
Schramm, S.
Schreyer, M.
Schroeder, C.
Schuh, N.
Schultens, M. J.
Schultz-Coulon, H. -C.
Schulz, H.
Schumacher, M.
Schumm, B. A.
Schune, Ph.
Schwanenberger, C.
Schwartzman, A.
Schwarz, T. A.
Schwegler, Ph.
Schweiger, H.
Schwemling, Ph.
Schwienhorst, R.
Schwindling, J.
Schwindt, T.
Schwoerer, M.
Sciacca, F. G.
Scifo, E.
Sciolla, G.
Scuri, F.
Scutti, F.
Searcy, J.
Sedov, G.
Sedykh, E.
Seema, P.
Seidel, S. C.
Seiden, A.
Seifert, F.
Seixas, J. M.
Sekhniaidze, G.
Sekhon, K.
Sekula, S. J.
Selbach, K. E.
Seliverstov, D. M.
Semprini-Cesari, N.
Serfon, C.
Serin, L.
Serkin, L.
Serre, T.
Sessa, M.
Seuster, R.
Severini, H.
Sfiligoj, T.
Sforza, F.
Sfyrla, A.
Shabalina, E.
Shamim, M.
Shan, L. Y.
Shang, R.
Shank, J. T.
Shapiro, M.
Shatalov, P. B.
Shaw, K.
Shaw, S. M.
Shcherbakova, A.
Shehu, C. Y.
Sherwood, P.
Shi, L.
Shimizu, S.
Shimmin, C. O.
Shimojima, M.
Shiyakova, M.
Shmeleva, A.
Saadi, D. Shoaleh
Shochet, M. J.
Shojaii, S.
Shrestha, S.
Shulga, E.
Shupe, M. A.
Shushkevich, S.
Sicho, P.
Sidiropoulou, O.
Sidorov, D.
Sidoti, A.
Siegert, F.
Sijacki, Dj.
Silva, J.
Silver, Y.
Silverstein, S. B.
Simak, V.
Simard, O.
Simic, Lj.
Simion, S.
Simioni, E.
Simmons, B.
Simon, D.
Simoniello, R.
Sinervo, P.
Sinev, N. B.
Siragusa, G.
Sisakyan, A. N.
Sivoklokov, S. Yu.
Sjoelin, J.
Sjursen, T. B.
Skinner, M. B.
Skottowe, H. P.
Skubic, P.
Slater, M.
Slavicek, T.
Slawinska, M.
Sliwa, K.
Smakhtin, V.
Smart, B. H.
Smestad, L.
Smirnov, S. Yu.
Smirnov, Y.
Smirnova, L. N.
Smirnova, O.
Smith, M. N. K.
Smith, R. W.
Smizanska, M.
Smolek, K.
Snesarev, A. A.
Snidero, G.
Snyder, S.
Sobie, R.
Socher, F.
Soffer, A.
Soh, D. A.
Solans, C. A.
Solar, M.
Solc, J.
Soldatov, E. Yu.
Soldevila, U.
Solodkov, A. A.
Soloshenko, A.
Solovyanov, O. V.
Solovyev, V.
Sommer, P.
Song, H. Y.
Soni, N.
Sood, A.
Sopczak, A.
Sopko, B.
Sopko, V.
Sorin, V.
Sosa, D.
Sosebee, M.
Sotiropoulou, C. L.
Soualah, R.
Soueid, P.
Soukharev, A. M.
South, D.
Sowden, B. C.
Spagnolo, S.
Spalla, M.
Spano, F.
Spearman, W. R.
Spettel, F.
Spighi, R.
Spigo, G.
Spiller, L. A.
Spousta, M.
Spreitzer, T.
St Denis, R. D.
Staerz, S.
Stahlman, J.
Stamen, R.
Stamm, S.
Stanecka, E.
Stanescu, C.
Stanescu-Bellu, M.
Stanitzki, M. M.
Stapnes, S.
Starchenko, E. A.
Stark, J.
Staroba, P.
Starovoitov, P.
Staszewski, R.
Stavina, P.
Steinberg, P.
Stelzer, B.
Stelzer, H. J.
Stelzer-Chilton, O.
Stenzel, H.
Stern, S.
Stewart, G. A.
Stillings, J. A.
Stockton, M. C.
Stoebe, M.
Stoicea, G.
Stolte, P.
Stonjek, S.
Stradling, A. R.
Straessner, A.
Stramaglia, M. E.
Strandberg, J.
Strandberg, S.
Strandlie, A.
Strauss, E.
Strauss, M.
Strizenec, P.
Stroehmer, R.
Strom, D. M.
Stroynowski, R.
Strubig, A.
Stucci, S. A.
Stugu, B.
Styles, N. A.
Su, D.
Su, J.
Subramaniam, R.
Succurro, A.
Sugaya, Y.
Suhr, C.
Suk, M.
Sulin, V. V.
Sultansoy, S.
Sumida, T.
Sun, S.
Sun, X.
Sundermann, J. E.
Suruliz, K.
Susinno, G.
Sutton, M. R.
Suzuki, S.
Suzuki, Y.
Svatos, M.
Swedish, S.
Swiatlowski, M.
Sykora, I.
Sykora, T.
Ta, D.
Taccini, C.
Tackmann, K.
Taenzer, J.
Taffard, A.
Tafirout, R.
Taiblum, N.
Takai, H.
Takashima, R.
Takeda, H.
Takeshita, T.
Takubo, Y.
Talby, M.
Talyshev, A. A.
Tam, J. Y. C.
Tan, K. G.
Tanaka, J.
Tanaka, R.
Tanaka, S.
Tannenwald, B. B.
Tannoury, N.
Tapprogge, S.
Tarem, S.
Tarrade, F.
Tartarelli, G. F.
Tas, P.
Tasevsky, M.
Tashiro, T.
Tassi, E.
Tavares Delgado, A.
Tayalati, Y.
Taylor, F. E.
Taylor, G. N.
Taylor, W.
Teischinger, F. A.
Castanheira, M. Teixeira Dias
Teixeira-Dias, P.
Temming, K. K.
Ten Kate, H.
Teng, P. K.
Teoh, J. J.
Tepel, F.
Terada, S.
Terashi, K.
Terron, J.
Terzo, S.
Testa, M.
Teuscher, R. J.
Therhaag, J.
Theveneaux-Pelzer, T.
Thomas, J. P.
Thomas-Wilsker, J.
Thompson, E. N.
Thompson, P. D.
Thompson, R. J.
Thompson, A. S.
Thomsen, L. A.
Thomson, E.
Thomson, M.
Thun, R. P.
Tibbetts, M. J.
Torres, R. E. Ticse
Tikhomirov, V. O.
Tikhonov, Yu. A.
Timoshenko, S.
Tiouchichine, E.
Tipton, P.
Tisserant, S.
Todorov, T.
Todorova-Nova, S.
Tojo, J.
Tokar, S.
Tokushuku, K.
Tollefson, K.
Tolley, E.
Tomlinson, L.
Tomoto, M.
Tompkins, L.
Toms, K.
Torrence, E.
Torres, H.
Torro Pastor, E.
Toth, J.
Touchard, F.
Tovey, D. R.
Trefzger, T.
Tremblet, L.
Tricoli, A.
Trigger, I. M.
Trincaz-Duvoid, S.
Tripiana, M. F.
Trischuk, W.
Trocme, B.
Troncon, C.
Trottier-McDonald, M.
Trovatelli, M.
True, P.
Truong, L.
Trzebinski, M.
Trzupek, A.
Tsarouchas, C.
Tseng, J. C-L.
Tsiareshka, P. V.
Tsionou, D.
Tsipolitis, G.
Tsirintanis, N.
Tsiskaridze, S.
Tsiskaridze, V.
Tskhadadze, E. G.
Tsukerman, I. I.
Tsulaia, V.
Tsuno, S.
Tsybychev, D.
Tudorache, A.
Tudorache, V.
Tuna, A. N.
Tupputi, S. A.
Turchikhin, S.
Turecek, D.
Turra, R.
Turvey, A. J.
Tuts, P. M.
Tykhonov, A.
Tylmad, M.
Tyndel, M.
Ueda, I.
Ueno, R.
Ughetto, M.
Ugland, M.
Uhlenbrock, M.
Ukegawa, F.
Unal, G.
Undrus, A.
Unel, G.
Ungaro, F. C.
Unno, Y.
Unverdorben, C.
Urban, J.
Urquijo, P.
Urrejola, P.
Usai, G.
Usanova, A.
Vacavant, L.
Vacek, V.
Vachon, B.
Valderanis, C.
Valencic, N.
Valentinetti, S.
Valero, A.
Valery, L.
Valkar, S.
Valladolid Gallego, E.
Vallecorsa, S.
Valls Ferrer, J. A.
Van den Wollenberg, W.
Van der Deijl, P. C.
van der Geer, R.
van der Graaf, H.
Van der Leeuw, R.
van Eldik, N.
van Gemmeren, P.
Van Nieuwkoop, J.
van Vulpen, I.
van Woerden, M. C.
Vanadia, M.
Vandelli, W.
Vanguri, R.
Vaniachine, A.
Vannucci, F.
Vardanyan, G.
Vari, R.
Varnes, E. W.
Varol, T.
Varouchas, D.
Vartapetian, A.
Varvell, K. E.
Vazeille, F.
Schroeder, T. Vazquez
Veatch, J.
Veloce, L. M.
Veloso, F.
Velz, T.
Veneziano, S.
Ventura, A.
Ventura, D.
Venturi, M.
Venturi, N.
Venturini, A.
Vercesi, V.
Verducci, M.
Verkerke, W.
Vermeulen, J. C.
Vest, A.
Vetterli, M. C.
Viazlo, O.
Vichou, I.
Vickey, T.
Boeriu, O. E. Vickey
Viehhauser, G. H. A.
Viel, S.
Vigne, R.
Villa, M.
Perez, M. Villaplana
Vilucchi, E.
Vincter, M. G.
Vinogradov, V. B.
Vivarelli, I.
Vaque, F. Vives
Vlachos, S.
Vladoiu, D.
Vlasak, M.
Vogel, M.
Vokac, P.
Volpi, G.
Volpi, M.
von der Schmitt, H.
von Radziewski, H.
von Toerne, E.
Vorobel, V.
Vorobev, K.
Vos, M.
Voss, R.
Vossebeld, J. H.
Vranjes, N.
Milosavljevic, M. Vranjes
Vrba, V.
Vreeswijk, M.
Vuillermet, R.
Vukotic, I.
Vykydal, Z.
Wagner, P.
Wagner, W.
Wahlberg, H.
Wahrmund, S.
Wakabayashi, J.
Walder, J.
Walker, R.
Walkowiak, W.
Wang, C.
Wang, F.
Wang, H.
Wang, H.
Wang, J.
Wang, J.
Wang, K.
Wang, R.
Wang, S. M.
Wang, T.
Wang, X.
Wanotayaroj, C.
Warburton, A.
Ward, C. P.
Wardrope, D. R.
Warsinsky, M.
Washbrook, A.
Wasicki, C.
Watkins, P. M.
Watson, A. T.
Watson, I. J.
Watson, M. F.
Watts, G.
Watts, S.
Waugh, B. M.
Webb, S.
Weber, M. S.
Weber, S. W.
Webster, J. S.
Weidberg, A. R.
Weinert, B.
Weingarten, J.
Weiser, C.
Weits, H.
Wells, P. S.
Wenaus, T.
Wengler, T.
Wenig, S.
Wermes, N.
Werner, M.
Werner, P.
Wessels, M.
Wetter, J.
Whalen, K.
Wharton, A. M.
White, A.
White, M. J.
White, R.
White, S.
Whiteson, D.
Wickens, F. J.
Wiedenmann, W.
Wielers, M.
Wienemann, P.
Wiglesworth, C.
Wiik-Fuchs, L. A. M.
Wildauer, A.
Wilkens, H. G.
Williams, H. H.
Williams, S.
Willis, C.
Willocq, S.
Wilson, A.
Wilson, J. A.
Wingerter-Seez, I.
Winklmeier, F.
Winter, B. T.
Wittgen, M.
Wittkowski, J.
Wollstadt, S. J.
Wolter, M. W.
Wolters, H.
Wosiek, B. K.
Wotschack, J.
Woudstra, M. J.
Wozniak, K. W.
Wu, M.
Wu, M.
Wu, S. L.
Wu, X.
Wu, Y.
Wyatt, T. R.
Wynne, B. M.
Xella, S.
Xu, D.
Xu, L.
Yabsley, B.
Yacoob, S.
Yakabe, R.
Yamada, M.
Yamaguchi, Y.
Yamamoto, A.
Yamamoto, S.
Yamanaka, T.
Yamauchi, K.
Yamazaki, Y.
Yan, Z.
Yang, H.
Yang, H.
Yang, Y.
Yao, L.
Yao, W-M.
Yasu, Y.
Yatsenko, E.
Wong, K. H. Yau
Ye, J.
Ye, S.
Yeletskikh, I.
Yen, A. L.
Yildirim, E.
Yorita, K.
Yoshida, R.
Yoshihara, K.
Young, C.
Young, C. J. S.
Youssef, S.
Yu, D. R.
Yu, J.
Yu, J. M.
Yu, J.
Yuan, L.
Yurkewicz, A.
Yusuff, I.
Zabinski, B.
Zaidan, R.
Zaitsev, A. M.
Zalieckas, J.
Zaman, A.
Zambito, S.
Zanello, L.
Zanzi, D.
Zeitnitz, C.
Zeman, M.
Zemla, A.
Zengel, K.
Zenin, O.
Zenis, T.
Zerwas, D.
Zhang, D.
Zhang, F.
Zhang, J.
Zhang, L.
Zhang, R.
Zhang, X.
Zhang, Z.
Zhao, X.
Zhao, Y.
Zhao, Z.
Zhemchugov, A.
Zhong, J.
Zhou, B.
Zhou, C.
Zhou, L.
Zhou, L.
Zhou, N.
Zhu, C. G.
Zhu, H.
Zhu, J.
Zhu, Y.
Zhuang, X.
Zhukov, K.
Zibell, A.
Zieminska, D.
Zimine, N. I.
Zimmermann, C.
Zimmermann, S.
Zinonos, Z.
Zinser, M.
Ziolkowski, M.
Zivkovic, L.
Zobernig, G.
Zoccoli, A.
zur Nedden, M.
Zurzolo, G.
Zwalinski, L.
CA ATLAS Collaboration
TI Search for production of vector-like quark pairs and of four top quarks
in the lepton-plus-jets final state in pp collisions at root 8=8 TeV
with the ATLAS detector
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Hadron-Hadron Scattering
ID MODEL HIGGS-BOSON; STANDARD MODEL; ROOT-S=7 TEV; PARTON DISTRIBUTIONS;
HADRONIC COLLISIONS; SYMMETRY-BREAKING; MATRIX-ELEMENTS; MONTE-CARLO;
LHC; NLO
AB A search for pair production of vector-like quarks, both up-type (T) and down-type (B), as well as for four-top-quark production, is presented. The search is based on pp collisions at TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider and corresponding to an integrated luminosity of 20.3 fb(-1). Data are analysed in the lepton-plus-jets final state, characterised by an isolated electron or muon with high transverse momentum, large missing transverse momentum and multiple jets. Dedicated analyses are performed targeting three cases: a T quark with significant branching ratio to a W boson and a b-quark , and both a T quark and a B quark with significant branching ratio to a Higgs boson and a third-generation quark ( respectively). No significant excess of events above the Standard Model expectation is observed, and 95% CL lower limits are derived on the masses of the vector-like T and B quarks under several branching ratio hypotheses assuming contributions from T -> Wb, Zt, Ht and B -> Wt, Zb, Hb decays. The 95% CL observed lower limits on the T quark mass range between 715 GeV and 950 GeV for all possible values of the branching ratios into the three decay modes, and are the most stringent constraints to date. Additionally, the most restrictive upper bounds on four-top-quark production are set in a number of new physics scenarios.
C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia.
[Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA.
[Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada.
[Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey.
[Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey.
[Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey.
[Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Masso, N., I; Novgorodova, O.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] IN2P3, CNRS, LAPP, Annecy Le Vieux, France.
[Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Masso, N., I; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France.
[Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Brandt, A.; Bullock, D.; Carrillo-Montoya, G. D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece.
[Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekasl, K.; Panagiotopoulou, E.; Papadopouloul, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, GR-15773 Athens, Greece.
[Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan.
[Anjos, N.; Bosmanu, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalezu, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Anjos, N.; Bosmanu, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalezu, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain.
[Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia.
[Buanesm, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Martin dit Latour, B.; Rosendahlm, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnischm, L.; Rieck, P.; Schulz, H.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany.
[Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland.
[Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland.
[Allbrooke, B. M. M.; Bella, L. Aperio; Bansi, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England.
[Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey.
[Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey.
[Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey.
[Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piceinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy.
[Alberghi, G. L.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piceinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy.
[Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Jinnouchi, O.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uhlenbrock, M.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau] Univ Bonn, Inst Phys, Bonn, Germany.
[Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA.
[Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil.
[Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil.
[do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil.
[Donadelli, M.; La Rosa Navarrod, J. L.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
[Adams, D. L.; Assamagan, K.; Bege, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Alexa, C.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Popeneciub, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania.
Univ Politehn Bucuresti, Bucharest, Romania.
West Univ Timisoara, Timisoara, Romania.
[Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina.
[Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
[Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.
[Abreu, R.; Aleksa, M.; Gonzalez, B. Alvarez; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Jenni, P.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland.
[Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Carquin, E.; Diaz, M. A.; Ochoa-Ricoux, J. P.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile.
[Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile.
[Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China.
[Gao, J.; Guan, L.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China.
[Chen, S.; Guo, J.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China.
[Chen, L.; Feng, C.; Ge, P.; Liu, B.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China.
[Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China.
[Chen, X.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Blaise Pascal, Clermont Ferrand, France.
[Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] IN2P3, CNRS, Clermont Ferrand, France.
[Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA.
[Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark.
[Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy.
[Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy.
[Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland.
[Banas, E.; Bruckman de Renstrom, P. A.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland.
[Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA.
[Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA.
[Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Hamburg, Germany.
[Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Zeuthen, Germany.
[Burmeister, I.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany.
[Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA.
[Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proiss, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland.
[Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany.
[Ancu, L. S.; Barone, G.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Grarnling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nessi, M.; Paolozzi, L.; Picazio, A.; Ristic, B.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland.
[Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy.
[Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia.
[Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia.
[Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany.
[Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland.
[Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Kareem, M. J.; Kawamura, G.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nada, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany.
[Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, IN2P3, CNRS, Lab Phys Subatom & Cosmol, Grenoble, France.
[McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA.
[da Costa, J. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA.
[Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany.
[Anders, C. F.; Giulini, M.; Lisovyi, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany.
[Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany.
[Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan.
[Bortolotto, V.; Castillo, L. R. Flores] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China.
[Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
[Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China.
[Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Jansky, R. W.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria.
[Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA.
[Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA.
[Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia.
[Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, S.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan.
[Chen, Y.; Hasegawa, M.; Inarnaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan.
[Ishino, M.; Kunigo, T.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan.
[Takashima, R.] Kyoto Univ, Kyoto 612, Japan.
[Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan.
[Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina.
[Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina.
[Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England.
[Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy.
[Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy.
[Affolder, A. A.; Allport, P. P.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England.
[Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia.
[Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia.
[Alpigiani, C.; Bevan, A. J.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England.
[Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England.
[Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England.
[Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France.
[Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] IN2P3, CNRS, Paris, France.
[Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden.
[Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain.
[Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Poettgen, R.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55122 Mainz, Germany.
[Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Jinnouchi, O.; Joshi, K. D.; Keoshkerian, H.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Novgorodova, O.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Schweiger, H.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England.
[Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewel, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France.
[Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewel, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] IN2P3, CNRS, Marseille, France.
[Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Puesche, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA.
[Belanger-Champagne, C.; Chapleau, B.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantife, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada.
[Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Hu, X.; Levin, D.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy.
[Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus.
[Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus.
[Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada.
[Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia.
[Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys ITEP, Moscow, Russia.
[Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia.
[Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia.
[Adomeitl, S.; Becker, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayanl, P.; Chow, B. K. B.; Duckeckl, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Leggerl, F.; Lorenz, J.; Loesel, P. J.; Maierl, T.; Mann, A.; Mehlhase, S.; Meineckl, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemannl, T.; Rauscherl, F.; Ruschkel, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany.
[Barillaril, T.; Bethke, S.; Bronnerl, J.; Compostellal, G.; Cortianal, G.; Ecker, K. M.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Incel, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Mueller, F.; Nage, M.; Nisiusl, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst Phys, Max Planck Inst Phys, Munich, Germany.
[Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan.
[Hasegawa, S.; Horii, Y.; Morvajl, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan.
[Hasegawa, S.; Horii, Y.; Morvajl, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy.
[Aloisio, A.; Alviggi, M. G.; Canale, V.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy.
[Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthautl, F.; Galea, C.; Konig, A. C.; Nektarijevicl, S.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands.
[Aben, R.; Angelozzil, I.; Beemsterl, L. J.; Bentvelsen, S.; Bergel, D.; Bobbinkl, G. J.; Bos, K.; Brenner, L.; Buttil, P.; Caste, A.; Colijnl, A. P.; de Jong, P.; De Nooijl, L.; Deigaardl, I.; Delucal, C.; Ferraril, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkinal, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedtl, J.; Meyerl, J.; Oussorenl, K. P.; Sabatol, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands.
[Aben, R.; Angelozzil, I.; Beemsterl, L. J.; Bentvelsen, S.; Bergel, D.; Bobbinkl, G. J.; Bos, K.; Brenner, L.; Buttil, P.; Caste, A.; Colijnl, A. P.; de Jong, P.; De Nooijl, L.; Deigaardl, I.; Delucal, C.; Ferraril, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkinal, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedtl, J.; Meyerl, J.; Oussorenl, K. P.; Sabatol, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands.
[Adelmanl, J.; Burghgrave, B.; Chakraborty, D.; Colel, S.; Suhr, C.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, Budker Inst Nucl Phys, SB, Novosibirsk, Russia.
[Berniusll, C.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethyll, P.; Nevesil, R. M.] NYU, Dept Phys, New York, NY 10003 USA.
[Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan.
[Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Bousson, N.; Haley, J.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA.
[Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic.
[Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA.
[Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Haririll, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Chaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France.
[Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Haririll, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Chaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] IN2P3, CNRS, Orsay, France.
[Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan.
[Bugge, L.; Bugge, M. K.; Cameron, D.; Catmorell, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Grarnstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway.
[Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickeringuo, M. A.; Ryder, N. C.; Sawyer, C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England.
[Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy.
[Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy.
[Brendlinger, K.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Machado Miguens, J.; Meyer, C.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
[Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Natl Res Ctr Kurchatov Inst, St Petersburg, Russia.
[Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy.
[Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy.
[Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal.
[Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal.
[Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal.
[Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal.
[Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal.
[Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain.
[Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain.
Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Fis, Caparica, Portugal.
Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal.
[Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic.
[Augsten, K.; Bruneliere, R.; Gallus, P.; Guenther, J.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic.
[Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino, Russia.
[Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy.
[Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.
[Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy.
[Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy.
[Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy.
[Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco.
[Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco.
[El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco.
[Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco.
[Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco.
[Cherkaoui El Moursli, R.; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco.
[Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dana; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffe, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France.
[Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russe, H. L.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England.
[Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan.
[Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany.
[Buat, Q.; Horton, A. J.; O'Nei, D. C.; Pachal, K.; Stelzer, B.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Barklow, T.; Bartoldusm, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Mount, R.; Ner, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA.
[Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia.
[Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia.
[Hamilton, A.; Meehan, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa.
[Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Govender, N.; Lee, C. A.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa.
[Bristow, K.; Hamity, G. N.; Hu, C.; March, L.; Mellado Garcia, B. R.; Ruan, X.] Univ Witwatersrand, ZA-2050 Johannesburg, South Africa.
[Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Pucinski, P.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden.
[Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Pucinski, P.; Rossetti, V.; Shcherbakova, A.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden.
[Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden.
[Balestri, T.; Bee, C. P.; Campoverde, A.; Cher, K.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Balestri, T.; Bee, C. P.; Campoverde, A.; Cher, K.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England.
[Black, C. W.; Cuthbert, C.; Fine, K. D.; Jeng, G. -Y.; Limosani, A.; Patel, N. D.; Aavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Abdallah, J.; Chu, M. L.; Hou, S.; Hsu, P. J.; Jamin, D. O.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan.
[Abreu, H.; Cheatham, S.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
[Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Munwes, Y.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sack ler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece.
[Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan.
[Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan.
[Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada.
[Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Gingrich, D. M.; Jovicevic, J.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada.
[Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan.
[Beauchemin, P. H.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA.
[Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia.
[Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA.
[Acharya, B. S.; Barisonzi, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy.
[Acharya, B. S.; Barisonzi, M.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy.
[Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy.
[Atkinson, M.; Basye, A.; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Neubauer, M. S.; Rybar, M.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.
[Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Tries; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain.
[Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Tries; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain.
[Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Tries; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain.
[Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Tries; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, IMB CNM, Valencia, Spain.
[Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Tries; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain.
[Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada.
[Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada.
[Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan.
[Bresser, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel.
[Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fac Phys & Astron, D-97070 Wurzburg, Germany.
[Bannoura, A. A. E.; Beermann, T. A.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Maettig, P.; Neumann, M.; Pataraia, S.; Riege, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany.
[Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Guest, D.; Henrichs, A.; Idea, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Thomsen, L. A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA.
[Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France.
[Acharya, B. S.] Kings Coll London, Dept Phys, London, England.
[Anisenkov, A. V.; Kazanin, V. F.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia.
[Bawa, H. S.; Bobrovnikov, V. S.; Buzykaev, A. R.; Gao, Y. S.; Kharlamov, A. G.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA.
[Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland.
[Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4100 Oporto, Portugal.
[Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia.
[Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy.
[Davies, E.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England.
[Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia.
[Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA.
[Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain.
[Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan.
[Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
[Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia.
[Khubua, J.] GTU, Tbilisi, Rep of Georgia.
[Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan.
[Konoplich, R.] Manhattan Coll, New York, NY USA.
[Leisos, A.] Hellen Open Univ, Patras, Greece.
[Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan.
[Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia.
[Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy.
[Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
[Shi, L.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China.
[Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia.
[Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Toth, J.] Inst Particle & Nucl Phys, Wigner Res Ctr Phys, Budapest, Hungary.
[Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa.
[Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia.
RP Sampsonidis, D (reprint author), Aix Marseille Univ, CPPM, Marseille, France.
RI Chekulaev, Sergey/O-1145-2015; Ciubancan, Liviu Mihai/L-2412-2015;
Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Di Domenico,
Antonio/G-6301-2011; Boyko, Igor/J-3659-2013; Zhukov,
Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Camarri,
Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Boldyrev,
Alexey/M-9684-2015; Tikhomirov, Vladimir/M-6194-2015; Negrini,
Matteo/C-8906-2014; Zaitsev, Alexandre/B-8989-2017; Peleganchuk,
Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017;
Garcia, Jose /H-6339-2015; Vanadia, Marco/K-5870-2016; Ippolito,
Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin,
Fedor/E-2795-2012; Staroba, Pavel/G-8850-2014; Kukla,
Romain/P-9760-2016; Goncalo, Ricardo/M-3153-2016; Gauzzi,
Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Mindur,
Bartosz/A-2253-2017; Gutierrez, Phillip/C-1161-2011; Fabbri,
Laura/H-3442-2012; Solodkov, Alexander/B-8623-2017; Smirnova,
Oxana/A-4401-2013; Doyle, Anthony/C-5889-2009; Gonzalez de la Hoz,
Santiago/E-2494-2016; Aguilar Saavedra, Juan Antonio/F-1256-2016;
Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes
Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015;
Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Snesarev,
Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov,
Vadim/M-9761-2015; Warburton, Andreas/N-8028-2013; Brooks,
William/C-8636-2013; Guo, Jun/O-5202-2015; Gorelov, Igor/J-9010-2015;
Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Carvalho,
Joao/M-4060-2013; White, Ryan/E-2979-2015; Mashinistov,
Ruslan/M-8356-2015; spagnolo, stefania/A-6359-2012; Buttar,
Craig/D-3706-2011
OI Ciubancan, Liviu Mihai/0000-0003-1837-2841; Livan,
Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Di
Domenico, Antonio/0000-0001-8078-2759; Boyko, Igor/0000-0002-3355-4662;
Camarri, Paolo/0000-0002-5732-5645; Tikhomirov,
Vladimir/0000-0002-9634-0581; Negrini, Matteo/0000-0003-0101-6963;
Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk,
Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani,
Simone/0000-0002-0479-2207; Vanadia, Marco/0000-0003-2684-276X;
Ippolito, Valerio/0000-0001-5126-1620; Maneira,
Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Kukla,
Romain/0000-0002-1140-2465; Goncalo, Ricardo/0000-0002-3826-3442;
Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611;
Fabbri, Laura/0000-0002-4002-8353; Solodkov,
Alexander/0000-0002-2737-8674; Smirnova, Oxana/0000-0003-2517-531X;
Doyle, Anthony/0000-0001-6322-6195; Gonzalez de la Hoz,
Santiago/0000-0001-5304-5390; Aguilar Saavedra, Juan
Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones,
Roger/0000-0002-6427-3513; Vranjes Milosavljevic,
Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495;
Vykydal, Zdenek/0000-0003-2329-0672; Ventura,
Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X;
Warburton, Andreas/0000-0002-2298-7315; Brooks,
William/0000-0001-6161-3570; Guo, Jun/0000-0001-8125-9433; Gorelov,
Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De,
Kaushik/0000-0002-5647-4489; Carvalho, Joao/0000-0002-3015-7821; White,
Ryan/0000-0003-3589-5900; Mashinistov, Ruslan/0000-0001-7925-4676;
spagnolo, stefania/0000-0001-7482-6348;
FU Science and Technology Facilities Council [ST/J501074/1, ST/K001388/1,
ST/K50208X/1, ST/M000664/1, ST/M503575/1]
NR 132
TC 20
Z9 20
U1 9
U2 69
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD AUG 20
PY 2015
IS 8
AR 105
DI 10.1007/JHEP08(2015)105
PG 86
WC Physics, Particles & Fields
SC Physics
GA CQ2CX
UT WOS:000360408100001
ER
PT J
AU Rubenchik, A
Wu, S
Mitchell, S
Golosker, I
Leblanc, M
Peterson, N
AF Rubenchik, A.
Wu, S.
Mitchell, S.
Golosker, I.
Leblanc, M.
Peterson, N.
TI Direct measurements of temperature-dependent laser absorptivity of metal
powders
SO APPLIED OPTICS
LA English
DT Article
ID IRRADIATION
AB A compact system is developed to measure laser absorptivity for a variety of powder materials (metals, ceramics, etc.) with different powder size distributions and thicknesses. The measured results for several metal powders are presented. The results are consistent with those from ray tracing calculations. (C) 2015 Optical Society of America
C1 [Rubenchik, A.; Wu, S.; Mitchell, S.; Golosker, I.; Leblanc, M.; Peterson, N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Wu, S (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM wu31@llnl.gov
FU Laboratory Directed Research and Development [13-SI-002, 15-ERD-037];
Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
FX Laboratory Directed Research and Development (13-SI-002, 15-ERD-037);
Lawrence Livermore National Laboratory (DE-AC52-07NA27344).
NR 9
TC 5
Z9 5
U1 1
U2 13
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1559-128X
EI 2155-3165
J9 APPL OPTICS
JI Appl. Optics
PD AUG 20
PY 2015
VL 54
IS 24
BP 7230
EP 7233
DI 10.1364/AO.54.007230
PG 4
WC Optics
SC Optics
GA CP9CB
UT WOS:000360190200013
PM 26368757
ER
PT J
AU Li, ZL
Bansal, N
Azarpira, A
Bhalla, A
Chen, CH
Ralph, J
Hegg, EL
Hodge, DB
AF Li, Zhenglun
Bansal, Namita
Azarpira, Ali
Bhalla, Aditya
Chen, Charles H.
Ralph, John
Hegg, Eric L.
Hodge, David B.
TI Chemical and structural changes associated with Cu-catalyzed
alkaline-oxidative delignification of hybrid poplar
SO BIOTECHNOLOGY FOR BIOFUELS
LA English
DT Article
DE Plant cell walls; Pretreatment; Catalytic oxidation; Lignin; Alkaline
hydrogen peroxide (AHP) pretreatment; NMR spectroscopy; Electron
microscopy
ID STATE 2D NMR; HYDROGEN-PEROXIDE; CELL-WALL; DILUTE-ACID;
ENZYMATIC-HYDROLYSIS; WOOD-PULP; LIGNIN; PRETREATMENT; OXYGEN; COMPLEXES
AB Background: Alkaline hydrogen peroxide pretreatment catalyzed by Cu(II) 2,2'-bipyridine complexes has previously been determined to substantially improve the enzymatic hydrolysis of woody plants including hybrid poplar as a consequence of moderate delignification. In the present work, cell wall morphological and lignin structural changes were characterized for this pretreatment approach to gain insights into pretreatment outcomes and, specifically, to identify the extent and nature of lignin modification.
Results: Through TEM imaging, this catalytic oxidation process was shown to disrupt cell wall layers in hybrid poplar. Cu-containing nanoparticles, primarily in the Cu(I) oxidation state, co-localized with the disrupted regions, providing indirect evidence of catalytic activity whereby soluble Cu(II) complexes are reduced and precipitated during pretreatment. The concentration of alkali-soluble polymeric and oligomeric lignin was substantially higher for the Cu-catalyzed oxidative pretreatment. This alkali-soluble lignin content increased with time during the catalytic oxidation process, although the molecular weight distributions were unaltered. Yields of aromatic monomers (including phenolic acids and aldehydes) were found to be less than 0.2 % (wt/wt) on lignin. Oxidation of the benzylic alcohol in the lignin side-chain was evident in NMR spectra of the solubilized lignin, whereas minimal changes were observed for the pretreatment-insoluble lignin.
Conclusions: These results provide indirect evidence for catalytic activity within the cell wall. The low yields of lignin-derived aromatic monomers, together with the detailed characterization of the pretreatment-soluble and pretreatment-insoluble lignins, indicate that the majority of both lignin pools remained relatively unmodified. As such, the lignins resulting from this process retain features closely resembling native lignins and may, therefore, be amenable to subsequent valorization.
C1 [Li, Zhenglun; Chen, Charles H.; Hodge, David B.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA.
[Li, Zhenglun; Bansal, Namita; Bhalla, Aditya; Hegg, Eric L.; Hodge, David B.] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.
[Bansal, Namita; Bhalla, Aditya; Hegg, Eric L.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA.
[Azarpira, Ali; Ralph, John] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI USA.
[Ralph, John] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA.
[Hodge, David B.] Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA.
[Hodge, David B.] Lulea Univ Technol, Div Sustainable Proc Engn, S-95187 Lulea, Sweden.
RP Hegg, EL (reprint author), Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.
EM erichegg@msu.edu; hodgeda@egr.msu.edu
RI BHALLA, ADITYA/Q-2792-2015
OI BHALLA, ADITYA/0000-0003-3462-9600
FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science)
[DE-FC02-07ER64494]; Northeast Sun Grant Initiative
FX The authors would like to acknowledge Prof. Daniel Jones (MSU Department
of Biochemistry and Molecular Biology) and the MSU Mass Spectrometry
core facility for providing assistance in the analysis of aromatic
monomers. This work was funded by the DOE Great Lakes Bioenergy Research
Center (DOE BER Office of Science DE-FC02-07ER64494). Aditya Bhalla was
also supported in part by funding from the Northeast Sun Grant
Initiative.
NR 72
TC 2
Z9 2
U1 6
U2 21
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1754-6834
J9 BIOTECHNOL BIOFUELS
JI Biotechnol. Biofuels
PD AUG 20
PY 2015
VL 8
AR 123
DI 10.1186/s13068-015-0300-5
PG 12
WC Biotechnology & Applied Microbiology; Energy & Fuels
SC Biotechnology & Applied Microbiology; Energy & Fuels
GA CP8AR
UT WOS:000360113200001
PM 26300970
ER
PT J
AU Hajer, J
Ismail, A
Kling, F
Li, YY
Liu, T
Su, SF
AF Hajer, Jan
Ismail, Ahmed
Kling, Felix
Li, Ying-Ying
Liu, Tao
Su, Shufang
TI Searches for non-SM heavy Higgses at a 100 TeV pp collider
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article
ID STANDARD MODEL; ATLAS DETECTOR; BOSON; LHC; SUPERSYMMETRY; COLLISIONS;
PARTICLE; PHYSICS; MASS
AB In this write-up, we summarize the production of non-SM Higgses in the Type II Two Higgs Doublet Model at a 100 TeV pp collider, as well as their decays. We present the reach for pp -> bbH(0)/A -> bbtt, bb tau tau as well as pp -> tbH(+/-) -> tbtb, tb tau nu at the 100 TeV pp collider and outline the possible search channels via Higgs exotic decays. We point out that a combination of these conventional channels potentially yields full coverage for tan beta and pushes the exclusion limits from the O(1)TeV at the LHC to the O(10)TeV at a 100 TeV pp collider, whereas the exotic decays of a heavy Higgs into two light Higgses or one light Higgs plus one SM gauge boson provide alternative discovery channels.
C1 [Hajer, Jan; Li, Ying-Ying; Liu, Tao] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
[Hajer, Jan] Hong Kong Univ Sci & Technol, Jockey Club Inst Adv Study, Hong Kong, Hong Kong, Peoples R China.
[Ismail, Ahmed] Univ Illinois, Dept Phys, Chicago, IL 60607 USA.
[Ismail, Ahmed] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Kling, Felix; Su, Shufang] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
RP Hajer, J (reprint author), Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China.
EM jan.hajer@ust.hk; aismail@anl.gov; kling@email.arizona.edu;
ylict@connect.ust.hk; taoliu@ust.hk; shufang@email.arizona.edu
FU Department of Energy [DE-AC02-06CH11357, DE-FG02-12ER41811,
DH-FG02-13E1141976]; Hong Kong University of Science and Technology;
Hong Kong PhD Fellowship Scheme (HKPFS)
FX We would like to thank Tilman Plehn for fruitful discussion. A. I. is
supported by the Department of Energy under Grant DE-AC02-06CH11357 and
DE-FG02-12ER41811. F. K. and S. S. are supported by the Department of
Energy under Grant DH-FG02-13E1141976. T. L. and J. S. are supported by
fund at the Hong Kong University of Science and Technology. Y. L. is
supported by the the Hong Kong PhD Fellowship Scheme (HKPFS) issued by
the Research Grants Council (RGC) of Hong Kong. Y. L., T. L. and S. S.
also would like to acknowledge the hospitality of the Jockey Club
Institute for Advanced Study, HKUST, where part of this work was
completed.
NR 52
TC 3
Z9 3
U1 0
U2 4
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
EI 1793-656X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD AUG 20
PY 2015
VL 30
IS 23
SI SI
AR 1544005
DI 10.1142/S0217751X15440054
PG 12
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA CP7NB
UT WOS:000360073800006
ER
PT J
AU Hinchliffe, I
Kotwal, A
Mangano, ML
Quigg, C
Wang, LT
AF Hinchliffe, Ian
Kotwal, Ashutosh
Mangano, Michelangelo L.
Quigg, Chris
Wang, Lian-Tao
TI Luminosity goals for a 100-TeV pp collider
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article
ID PHYSICS
AB We consider diverse examples of science goals that provide a framework to assess luminosity goals for a future 100-TeV proton-proton collider.
C1 [Hinchliffe, Ian] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Kotwal, Ashutosh] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Kotwal, Ashutosh] Duke Univ, Durham, NC 27708 USA.
[Mangano, Michelangelo L.] CERN, TH Unit, PH Dept, CH-1211 Geneva 23, Switzerland.
[Quigg, Chris] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA.
[Quigg, Chris] Ecole Normale Super, Inst Phys Theor Philippe Meyer, F-75231 Paris 05, France.
[Wang, Lian-Tao] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
[Wang, Lian-Tao] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
RP Hinchliffe, I (reprint author), Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
EM i_hinchliffe@lbl.gov; kotwal@phy.duke.edu; michelangelomangano@cern.ch;
quigg@fnal.gov; liantaow@uchicago.edu
FU ERC [291377]; United States Department of Energy [DE-AC02-07CH11359];
Office of Science, Office of High Energy Physics, of the U.S. Department
of Energy [DE-AC02-05CH11231]
FX This document grew out of discussions held at the Jockey Club Institute
for Advanced Study of the Hong Kong University of Science and
Technology, during the Programme on The future of high energy physics,
January 5-30, 2015. We thank Henry Tye and members of the Institute for
the hospitality, the participants for contributing to a stimulating
environment, and Prudence Wong for helpful practical assistance. In
particular, we acknowledge informative discussions with Stephen Gourlay,
Ian Low, Vladimir Shiltsev, Dick Talman, Weiming Yao and Charlie Young,
and continuous encouragement from Michael Benedikt and Weiren Chou. The
work of MLM was performed in the framework of the ERC grant 291377,
"LHCtheory: Theoretical predictions and analyses of LHC physics:
advancing the precision frontier". Fermilab is operated by Fermi
Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the
United States Department of Energy. CQ thanks John Iliopoulos and the
Fondation Meyer pour le developpement culturel et artistigue for
generous hospitality. The work of IH was supported in part by the Office
of Science, Office of High Energy Physics, of the U.S. Department of
Energy under contract DE-AC02-05CH11231.
NR 19
TC 13
Z9 13
U1 0
U2 0
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
EI 1793-656X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD AUG 20
PY 2015
VL 30
IS 23
SI SI
AR 1544002
DI 10.1142/S0217751X15440029
PG 13
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA CP7NB
UT WOS:000360073800003
ER
PT J
AU Shiltsev, VD
AF Shiltsev, Vladimir D.
TI Accelerator physics and technology challenges of very high energy hadron
colliders
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article
DE Colliders; accelerators; Tevatron
ID PARTICLE COLLIDERS; SCIENCE
AB High energy hadron eel liders have been in the forefront of particle physics for more than three decades. Al present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy eel liders and outlines the areas of required research and development towards their technical and financial feasibility.
C1 US DOE, Fermi Natl Accelerator Lab, Fermi Res Alliance LLC, Batavia, IL 60510 USA.
RP Shiltsev, VD (reprint author), US DOE, Fermi Natl Accelerator Lab, Fermi Res Alliance LLC, POB 500, Batavia, IL 60510 USA.
EM shiltsev@fnal.gov
NR 69
TC 2
Z9 2
U1 0
U2 1
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
EI 1793-656X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD AUG 20
PY 2015
VL 30
IS 23
SI SI
AR 1544001
DI 10.1142/S0217751X15440017
PG 21
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA CP7NB
UT WOS:000360073800002
ER
PT J
AU Zhang, HZ
Waychunas, GA
Banfield, JF
AF Zhang, Hengzhong
Waychunas, Glenn A.
Banfield, Jillian F.
TI Molecular Dynamics Simulation Study of the Early Stages of Nucleation of
Iron Oxyhydroxide Nanoparticles in Aqueous Solutions
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID RAY ABSORPTION-SPECTROSCOPY; TRANSITION-METAL IONS; HYDROLYSIS PRODUCTS;
HYDRATION SHELLS; WATER EXCHANGE; IRON(III); COMPLEXES; CLUSTERS;
CRYSTALLIZATION; POTENTIALS
AB Nucleation is a fundamental step in crystal growth. Of environmental and materials relevance are reactions that lead to nucleation of iron oxyhydroxides in aqueous solutions. These reactions are difficult to study experimentally due to their rapid kinetics. Here, we used classical molecular dynamics, simulations to investigate nucleation of iron hydroxide/oxyhydroxide nanoparticles in aqueous solutions. Results show that in a solution containing ferric ions and hydroxyl groups, iron-hydroxyl molecular clusters form by merging ferric monomers, dimers, and other oligomers, driven by strong affinity of ferric ions to hydroxyls. When deprotonation reactions are not considered in the simulations, these clusters aggregate to form small iron hydroxide nanocrystals with a six-membered ring-like layered structure allomeric to gibbsite. By comparison, in a solution containing iron chloride and sodium hydroxide, the presence of chlorine drives cluster assembly along a different direction to form long molecular chains (rather than rings) composed of Fe-O octahedra linked by edge sharing. Further, in chlorine-free solutions, when deprotonation reactions are considered, the simulations predict ultimate formation of amorphous iron oxyhydroxide nanoparticles with local atomic structure similar to that of ferrihydrite nanoparticles. our simulation results reveal that nucleation of iron oxyhydroxide nanoparticles proceeds via a cluster aggregation-based nonclassical pathway.
C1 [Zhang, Hengzhong; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Waychunas, Glenn A.; Banfield, Jillian F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Zhang, HZ (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
EM heng@eps.berkeley.edu
FU U.S. Department of Energy (DOE), Office of Science, Basic Energy
Sciences (BES) [DE-AC02-05CH11231]; National Science Foundation (NSF)
[CHE-1213835]
FX This research was supported primarily by the U.S. Department of Energy
(DOE), Office of Science, Basic Energy Sciences (BES), under Award no.
DE-AC02-05CH11231, and by the National Science Foundation (NSF), under
Award no. CHE-1213835. We thank Drs. M. Zhu and B. Legg for helpful
discussions.
NR 45
TC 8
Z9 9
U1 10
U2 56
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD AUG 20
PY 2015
VL 119
IS 33
BP 10630
EP 10642
DI 10.1021/acs.jpcb.5b03801
PG 13
WC Chemistry, Physical
SC Chemistry
GA CP6VN
UT WOS:000360026400025
PM 26222332
ER
PT J
AU Zoerb, MC
Henderson, JS
Glover, SD
Lomont, JP
Nguyen, SC
Hill, AD
Kubiak, CP
Harris, CB
AF Zoerb, Matthew C.
Henderson, Jane S.
Glover, Starla D.
Lomont, Justin P.
Nguyen, Son C.
Hill, Adam D.
Kubiak, Clifford P.
Harris, Charles B.
TI Electron Dynamics and IR Peak Coalescence in Bridged Mixed Valence
Dimers Studied by Ultrafast 2D-IR Spectroscopy
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID TO-DELOCALIZED TRANSITION; TRINUCLEAR RUTHENIUM CLUSTERS;
DENSITY-FUNCTIONAL THEORY; VIBRATIONAL TIME-SCALE; CHEMICAL-EXCHANGE;
LINE-SHAPE; RAMAN-SPECTROSCOPY; BLOCH EQUATIONS; RADICAL-ANIONS; RATE
CONSTANTS
AB Dynamic IR peak coalescence and simulations based on the optical Bloch equations have been used previously to predict the rates of intramolecular electron transfer in a group of bridged mixed valence dimers of the type [Ru-3(O)(OAc)(6)(CO)L]-BL-[Ru-3(O) (OAc)(6)(CO)L]. However, limitations of the Bloch equations for the analysis of dynamical coalescence in vibrational spectra have been described. We have used ultrafast 2D-IR spectroscopy to investigate the vibrational dynamics of the CO spectator ligands of several dimers in the group. These experiments reveal that no electron site exchange occurs on the time scale required to explain the observed peak coalescence. The high variability in FTIR peak shapes for these mixed valence systems is suggested to be the result of fluctuations in the charge distributions at each metal cluster within a single-well potential energy surface, rather than the previous model of two-site exchange.
C1 [Kubiak, Clifford P.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA.
[Zoerb, Matthew C.; Lomont, Justin P.; Nguyen, Son C.; Hill, Adam D.; Harris, Charles B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Harris, Charles B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Henderson, Jane S.; Glover, Starla D.; Kubiak, Clifford P.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA.
RP Kubiak, CP (reprint author), Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA.
EM ckubiak@ucsd.edu; cbharris@berkeley.edu
FU NSF [CHE-0909632, CHE-1213135, CHE-1145893, CHE-1461632, CHE-0840505];
VIED fellowship; Office of Science of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX C.B.H. acknowledges support from NSF awards CHE-0909632 and CHE-1213135.
C.P.K. acknowledges support from NSF awards CHE-1145893 and CHE-1461632.
S.C.N. acknowledges support through a VIED fellowship. J.P.L.
acknowledges support through an NSF graduate research fellowship. This
research used resources of the Molecular Graphics and Computation
Facility at UC Berkeley (NSF grant CHE-0840505) and the National Energy
Research Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.
NR 71
TC 1
Z9 1
U1 2
U2 30
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD AUG 20
PY 2015
VL 119
IS 33
BP 10738
EP 10749
DI 10.1021/acs.jpcb.5b06734
PG 12
WC Chemistry, Physical
SC Chemistry
GA CP6VN
UT WOS:000360026400036
PM 26204239
ER
PT J
AU Shard, AG
Havelund, R
Spencer, SJ
Gilmore, IS
Alexander, MR
Angerer, TB
Aoyagi, S
Barnes, JP
Benayad, A
Bernasik, A
Ceccone, G
Counsell, JDP
Deeks, C
Fletcher, JS
Graham, DJ
Heuser, C
Lee, TG
Marie, C
Marzec, MM
Mishra, G
Rading, D
Renault, O
Scurr, DJ
Shon, HK
Spampinato, V
Tian, H
Wang, FY
Winograd, N
Wu, K
Wucher, A
Zhou, YF
Zhu, ZH
AF Shard, Alexander G.
Havelund, Rasmus
Spencer, Steve J.
Gilmore, Ian S.
Alexander, Morgan R.
Angerer, Tina B.
Aoyagi, Satoka
Barnes, Jean-Paul
Benayad, Anass
Bernasik, Andrzej
Ceccone, Giacomo
Counsell, Jonathan D. P.
Deeks, Christopher
Fletcher, John S.
Graham, Daniel J.
Heuser, Christian
Lee, Tae Geol
Marie, Camille
Marzec, Mateusz M.
Mishra, Gautam
Rading, Derk
Renault, Olivier
Scurr, David J.
Shon, Hyun Kzong
Spampinato, Valentina
Tian, Hua
Wang, Fuyi
Winograd, Nicholas
Wu, Kui
Wucher, Andreas
Zhou, Yufan
Zhu, Zihua
TI Measuring Compositions in Organic Depth Profiling: Results from a VAMAS
Interlaboratory Study
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID ION MASS-SPECTROMETRY; CLUSTER SPUTTERING YIELDS; UNIVERSAL EQUATION;
SIZE-DEPENDENCE; TOF-SIMS; BEAMS; FILMS; SUPPRESSION; EFFICIENCY;
EMISSION
AB We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-L-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray photoelectron spectroscopy (XPS) or time-of-flight secondary ion mass spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants' data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally, we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.
C1 [Shard, Alexander G.; Havelund, Rasmus; Spencer, Steve J.; Gilmore, Ian S.] Natl Phys Lab, Teddington TW11 0LW, Middx, England.
[Alexander, Morgan R.; Scurr, David J.] Univ Nottingham, Lab Biophys & Surface Anal, Nottingham NG7 2RD, England.
[Angerer, Tina B.; Fletcher, John S.] Univ Gothenburg, Dept Chem & Mol Biol, S-40530 Gothenburg, Sweden.
[Aoyagi, Satoka] Seikei Univ, Dept Mat & Life Sci, Tokyo 1808633, Japan.
[Barnes, Jean-Paul; Benayad, Anass; Marie, Camille; Renault, Olivier] Univ Grenoble Alpes, F-38000 Grenoble, France.
[Barnes, Jean-Paul; Marie, Camille; Renault, Olivier] CEA, LETI, F-38054 Grenoble, France.
[Benayad, Anass] CEA, LITEN, DTNM, F-38054 Grenoble, France.
[Bernasik, Andrzej; Marzec, Mateusz M.] AGH Univ Sci & Technol, PL-30059 Krakow, Poland.
[Ceccone, Giacomo] Inst Hlth & Consumer Protect, I-21027 Ispra, VA, Italy.
[Counsell, Jonathan D. P.] Kratos Analyt Ltd, Manchester M17 1GP, Lancs, England.
[Deeks, Christopher] Thermo Fisher Sci, E Grinstead RH19 1UB, W Sussex, England.
[Mishra, Gautam] Univ Washington, Dept Bioengn, Seattle, WA USA.
[Heuser, Christian; Wucher, Andreas] Univ Duisburg Essen, Fac Phys, D-52425 Duisburg, Germany.
[Lee, Tae Geol; Shon, Hyun Kzong] Korea Res Inst Stand & Sci, Daejeon 305340, South Korea.
[Mishra, Gautam] 3M Deutschland GmbH, CRAL, D-41460 Neuss, Germany.
[Rading, Derk] ION TOF GmbH, D-48149 Munster, Germany.
[Spampinato, Valentina] CNR, Ist Fis Plasmi, I-20125 Milan, Italy.
[Tian, Hua; Winograd, Nicholas] Penn State Univ, University Pk, PA 16802 USA.
[Wang, Fuyi] Chinese Acad Sci, CAS Key Lab Analyt Chem Living Biosyst, Beijing 100190, Peoples R China.
[Zhou, Yufan; Zhu, Zihua] Pacific NW Natl Lab, EMSL, Richland, WA 99354 USA.
RP Shard, AG (reprint author), Natl Phys Lab, Teddington TW11 0LW, Middx, England.
EM alex.shard@npl.co.uk
RI Scurr, David/E-8441-2012; Alexander, Morgan/C-2506-2009; Zhu,
Zihua/K-7652-2012;
OI Scurr, David/0000-0003-0859-3886; Alexander, Morgan/0000-0001-5182-493X;
Gilmore, Ian/0000-0002-0981-2318; Havelund, Rasmus/0000-0001-7316-9761
FU European Union; EMRP within EURAMET; U.S. National Institutes of Health
[EB-002027]; DOE
FX We thank Steve A. Smith from NPL for assisting in the production of the
samples used in this study and Martin P. Seth from NPL for reviewing the
manuscript and providing insightful comments. We thank the following
people for providing some of the data used in this study: Dr. Helen
Brannon, Kratos Analytical, U.K.; Ms. Tomoko Kawashima, Panasonic
Corporation, Japan; Dr. Takuya Miyayama, ULVAC-Phi, Japan; Mr. Kan Shen,
Pennsylvania State University; and Mr. Michael Taylor, University of
Nottingham, U.K. This work forms part of the Chemical and Biological
programme of the National Measurement System of the U.K. Department of
Business, Innovation and Skills and with additional funding from the
European Union through the European Metrology Research Programme (EMRP)
projects SurfChem and TREND. The EMRP is jointly funded by the EMRP
participating countries within EURAMET and the European Union. Funding
from the U.S. National Institutes of Health Grant EB-002027 is
gratefully acknowledged for the experiments done at the National ESCA
and Surface Analysis Center for Biomedical Problems, University of
Washington. A portion of the data was collected at EMSL, a National
Scientific User Facility sponsored by the DOE and located at PNNL.
NR 40
TC 12
Z9 12
U1 5
U2 31
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD AUG 20
PY 2015
VL 119
IS 33
BP 10784
EP 10797
DI 10.1021/acs.jpcb.5b05625
PG 14
WC Chemistry, Physical
SC Chemistry
GA CP6VN
UT WOS:000360026400040
PM 26204428
ER
PT J
AU Swierk, JR
Klaus, S
Trotochaud, L
Bell, AT
Tilley, TD
AF Swierk, John R.
Klaus, Shannon
Trotochaud, Lena
Bell, Alexis T.
Tilley, T. Don
TI Electrochemical Study of the Energetics of the Oxygen Evolution Reaction
at Nickel Iron (Oxy)Hydroxide Catalysts
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID ALKALINE WATER ELECTROLYSIS; OXIDE ELECTRODES; ACIDIC-SOLUTIONS; FILM
ELECTRODES; PASSIVE FILM; AC-IMPEDANCE; THIN-FILMS; FE;
ELECTROCATALYSTS; NI
AB Iron-doped nickel (oxy)hydroxide catalysts (FexNi1-xOOH) exhibit high electrocatalytic behavior for the oxygen evolution reaction in base. Recent findings suggest that the incorporation of Fe3+ into a NiOOH lattice leads to nearly optimal adsorption energies for OER intermediates on active Fe sites. Utilizing electrochemical impedance spectroscopy and activation energy measurements, we find that pure NiOOH and FeOOH catalysts exhibit exceedingly high Faradaic resistances and activation energies 40-50 kJ/mol(-1) higher than those of the most active FexNi1-xOOH catalysts. Furthermore, the most active FexNi1-xOOH catalysts in this study exhibit activation energies that approach those previously reported for IrO2 OER catalysts.
C1 [Swierk, John R.; Klaus, Shannon; Trotochaud, Lena; Bell, Alexis T.; Tilley, T. Don] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Div Mat Sci, Berkeley, CA 94720 USA.
[Klaus, Shannon; Bell, Alexis T.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Swierk, JR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Div Mat Sci, Berkeley, CA 94720 USA.
EM jrswierk@gmail.com; tdtilley@berkeley.edu
OI Swierk, John/0000-0001-5811-7285; Bell, Alexis/0000-0002-5738-4645
FU Office of Science of the U.S. Department of Energy [DE-SC0004993]
FX This material is based upon work performed by the Joint Center for
Artificial Photosynthesis, a DOE Energy Innovation Hub, supported
through the Office of Science of the U.S. Department of Energy under
award no. DE-SC0004993. We thank Nella Vargas-Barbosa (Pennsylvania
State University) for helpful discussions during the preparation of this
manuscript.
NR 65
TC 29
Z9 30
U1 23
U2 138
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD AUG 20
PY 2015
VL 119
IS 33
BP 19022
EP 19029
DI 10.1021/acs.jpcc.5b05861
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA CP6VL
UT WOS:000360026200022
ER
PT J
AU Wang, J
Seifert, S
Winans, RE
Tolmachoff, E
Xin, YX
Chen, DP
Wang, H
Anderson, SL
AF Wang, Juan
Seifert, Sonke
Winans, Randall E.
Tolmachoff, Erik
Xin, Yuxuan
Chen, Dongping
Wang, Hai
Anderson, Scott L.
TI In situ X-ray Scattering and Dynamical Modeling of Pd Catalyst
Nanoparticles Formed in Flames
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID PARTICLE-SIZE DISTRIBUTION; SOLUBLE NANO-CATALYSTS; SMALL-ANGLE
SCATTERING; GAS-PHASE; AEROSOL COAGULATION; MOLECULAR-DYNAMICS; SOOT
PARTICLES; GROWTH; FUEL; PERFORMANCE
AB It has previously been demonstrated that organopalladium precursors can break down under combustion conditions, forming nanoparticles that catalyze ignition. Here, we use in situ small-angle X-ray scattering (SAXS) to probe the formation and growth of palladium nanoparticles in an ethylene flame doped with 28 ppm (mol) of Pd(acetate)(2). The particles appear to nucleate in the flame front and are observed by SAXS to grow in size and mass in the high-temperature region of the flame (similar to 1200 K) with median diameters that evolve from 1.5 to 3.0 nm. Transmission electron microscopy of particles collected on a grid located outside the flame shows that the particles are metallic palladium with sizes comparable to those determined by SAXS. Molecular dynamics simulation of particles of selected sizes indicates that at the flame temperature the particles are molten and the average mass density of the particle material is notably smaller than that of bulk, liquid Pd at the melting point. Both experimental and computational results point to homogeneous nucleation and particle-particle coalescence as mechanisms for particle formation and growth. Aerosol dynamics simulation reproduces the time evolution of the particle size distribution and suggests that a substantial fraction of the particles must be electrically charged during their growth process.
C1 [Wang, Juan] Peac Inst Multiscale Sci, Chengdu 610207, Sichuan, Peoples R China.
[Wang, Juan; Anderson, Scott L.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA.
[Seifert, Sonke; Winans, Randall E.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
[Tolmachoff, Erik] Univ So Calif, Aerosp & Mech Engn, Los Angeles, CA 90089 USA.
[Xin, Yuxuan] Princeton Univ, Mech & Aerosp Engn, Princeton, NJ 08544 USA.
[Chen, Dongping; Wang, Hai] Stanford Univ, Mech Engn, Stanford, CA 94305 USA.
[Wang, Juan] Southwest Jiaotong Univ, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Sichuan, Peoples R China.
RP Winans, RE (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
EM rewinans@anl.gov
RI Wang, Hai/A-1292-2009
OI Wang, Hai/0000-0001-6507-5503
FU U.S. DOE [DE-AC02-06CH11357]; Center for Nanoscale Materials, a U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
User Facility [DE-AC02-06CH11357]; Molecular Dynamics program of the Air
Force Office of Scientific Research (AFOSR) through a MURI
[FA9550-08-1-0400]
FX We thank Dr. Byeongdu Lee and Dr. Xiaobing Zuo for their help with the
SAXS data analysis. We also thank Dr. Jan Ilavsky for providing the
"IRENA" macro package for Igor Pro for the data fitting. Use of the
Advanced Photon Source, an Office of Science User Facility operated for
the U.S. Department of Energy (DOE) Office of Science by Argonne
National Laboratory, was supported by the U.S. DOE under Contract No.
DE-AC02-06CH11357. This work was performed, in part, at the Center for
Nanoscale Materials, a U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences User Facility under Contract No.
DE-AC02-06CH11357. The Argonne, Utah, USC, and Stanford groups
gratefully acknowledge support for this work from the Molecular Dynamics
program of the Air Force Office of Scientific Research (AFOSR) through a
MURI grant (FA9550-08-1-0400).
NR 50
TC 0
Z9 0
U1 4
U2 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD AUG 20
PY 2015
VL 119
IS 33
BP 19073
EP 19082
DI 10.1021/acs.jpcc.5b01226
PG 10
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA CP6VL
UT WOS:000360026200027
ER
PT J
AU Shi, W
Siefert, NS
Morreale, BD
AF Shi, Wei
Siefert, Nicholas S.
Morreale, Bryan D.
TI Molecular Simulations of CO2, H-2, H2O, and H2S Gas Absorption into
Hydrophobic Poly(dimethylsiloxane) (PDMS) Solvent: Solubility and
Surface Tension
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID CARBON-DIOXIDE; MONTE-CARLO; DYNAMICS; LIQUID; HEXAFLUOROPHOSPHATE;
CAPTURE; WATER
AB Henry's law constants were calculated for H2S, CO2, H2O, and H-2 gas absorption in the hydrophobic poly(dimethylsiloxane) (PDMS) solvent using an all-atom (AA) PDMS model. Calculations show that the relative gas solubility at 298 K decreases in the following order: H2S (147) > CO2 (19) approximate to H2O (15) > H-2 (1). Both quantum ab initio (AI) and classical force field (FF) gas-phase calculations show that these gases interact with the PDMS molecule in the order of H2S > CO2 > H-2; they decrease in the same order as gas solubility. The AA PDMS model gives CO2 solubility and PDMS surface tension values close to the experimental data, with differences of 14 and 8%, respectively. In addition, by using both the all-atom and united-atom PDMS models, our simulations suggest that it is challenging to develop a solvent which both has a significantly large surface tension and exhibits large CO2 solubility at high CO2 pressure. Finally, gas absorption effects on PDMS surface tension were investigated. CO2 absorption was simulated to decrease the solvent surface tension by 3 X 10(-3)-4 X 10(-3) N/m compared to the simulated neat PDMS solvent surface tension value of 21 x 10(-3) N/m; CO2 molecules exhibit the largest concentration in the gas-liquid interface region. In contrast, H2S absorption does not decrease PDMS surface tension, which is partially due to the strong H2S-PDMS interaction compared to the CO2-PDMS interaction.
C1 [Shi, Wei; Siefert, Nicholas S.; Morreale, Bryan D.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Shi, Wei] AECOM, South Pk, PA 15129 USA.
[Shi, Wei] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA.
RP Shi, W (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
EM shiw@netl.doe.gov
FU National Energy Technology Laboratory under RES [DE-FE0004000];
Department of Energy, National Energy Technology Laboratory, an agency
of the United States Government; URS Energy & Construction, Inc.
FX We thank Bob Enick, Peter Koronaios, David Luebke, Hunaid Nulwala, Fan
Ski, Janice Steckel, and David Hopkinson for helpful discussions. This
technical effort was performed in support of the National Energy
Technology Laboratory's ongoing research in computational chemistry
under RES contract DE-FE0004000. This project was funded by the
Department of Energy, National Energy Technology Laboratory, an agency
of the United States Government, through a support contract with URS
Energy & Construction, Inc. Neither the United States Government nor any
agency thereof nor any of their employees nor URS Energy & Construction,
Inc. nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed or represents that its use would not
infringe on privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government
or any agency thereof. The views and opinions of the authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
NR 37
TC 4
Z9 4
U1 6
U2 40
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD AUG 20
PY 2015
VL 119
IS 33
BP 19253
EP 19265
DI 10.1021/acs.jpcc.5b05806
PG 13
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA CP6VL
UT WOS:000360026200046
ER
PT J
AU Lopez-Bezanilla, A
Littlewood, PB
AF Lopez-Bezanilla, Alejandro
Littlewood, Peter B.
TI sigma-pi-Band Inversion in a Novel Two-Dimensional Material
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID GRAPHENE; STRAIN
AB We present a theoretical study of a new type of two-dimensional material exhibiting a pentagonal arrangement of C and Si atoms. Pentagonal SiC2 is investigated with density functional theory-based calculations to show that the buckled nanostructure is dynamically stable, and exhibits an indirect energy band gap and an enhanced electronic dispersion with respect to the all-carbon counterpart. Computed Born effective charges exhibit a significant anisotropy for C and Si atoms that deviates substantially from their static effective charges. We establish an accurate tunability of the vertical location of the p-p-sigma and p-p-pi bands and show that under compressive biaxial strain the density of states decreases, and conversely for tensile biaxial strain. This coupling between the tunability of strain-mediated density of states and semiconducting properties in a monolayered structure may allow for the development of applications in semiconducting stretchable electronics.
C1 [Lopez-Bezanilla, Alejandro; Littlewood, Peter B.] Argonne Natl Lab, Lemont, IL 60439 USA.
[Lopez-Bezanilla, Alejandro; Littlewood, Peter B.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA.
RP Lopez-Bezanilla, A (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA.
EM alejandrolb@gmail.com
RI Littlewood, Peter/B-7746-2008; Lopez-Bezanilla, Alejandro/B-9125-2015
OI Lopez-Bezanilla, Alejandro/0000-0002-4142-2360
FU DOE-BES [DE-AC02-06CH11357]
FX We gratefully acknowledge the computing resources provided on Blues
high-performance computing cluster operated by the Laboratory Computing
Resource Center at Argonne National Laboratory. A.L.-B. thanks J. Allred
for fruitful discussions. Work at Argonne is supported by DOE-BES under
contract no. DE-AC02-06CH11357.
NR 18
TC 12
Z9 13
U1 9
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD AUG 20
PY 2015
VL 119
IS 33
BP 19469
EP 19474
DI 10.1021/acs.jpcc.5b04726
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA CP6VL
UT WOS:000360026200072
ER
PT J
AU Wong, CY
Folie, BD
Cotts, BL
Ginsberg, NS
AF Wong, Cathy Y.
Folie, Brendan D.
Cotts, Benjamin L.
Ginsberg, Naomi S.
TI Discerning Variable Extents of Interdomain Orientational and Structural
Heterogeneity in Solution-Cast Polycrystalline Organic Semiconducting
Thin Films
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID FIELD-EFFECT TRANSISTORS; SINGLET EXCITON FISSION; CHARGE-TRANSPORT;
SOLUBLE ANTHRADITHIOPHENE; FUNCTIONALIZED PENTACENE; GRAIN-ORIENTATION;
PROBE MICROSCOPY; DYNAMICS; CRYSTALLIZATION; TEMPERATURE
AB By spatially resolving the polarized ultrafast optical transient absorption within several tens of individual domains in solution-processed polycrystalline small-molecule organic semiconducting films, we infer the domains' extents of structural and orientational heterogeneity. As metrics, we observe variations in the time scales of ultrafast excited state dynamics and in the relative strength of competing resonant probe transitions. We find that films of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT) exhibit a much higher degree of both structural and orientational heterogeneity among their domains than do films of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pn), despite the apparent structural similarity between these two small molecules. Since both molecules feature prominently in solution-processed organic transistors, correlating the extent of heterogeneity to bulk transport using our approach will be highly valuable toward determining the underlying design principles for creating high-performing devices. Furthermore, our ability to characterize such variation in heterogeneity will enable fundamental studies of the interplay between molecular dynamics and driving forces in controlling emergent unequilibrated structures.
C1 [Wong, Cathy Y.; Cotts, Benjamin L.; Ginsberg, Naomi S.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Folie, Brendan D.; Ginsberg, Naomi S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Ginsberg, Naomi S.] Lawrence Berkeley Natl Lab, Phys Biosci, Berkeley, CA 94720 USA.
[Ginsberg, Naomi S.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Ginsberg, Naomi S.] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.
RP Ginsberg, NS (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM nsginsberg@berkeley.edu
FU Defense Advanced Research Projects Agency Young Faculty
[N66001-12-1-4228]; David and Lucile Packard Foundation Fellowship for
Science and Engineering; Natural Sciences and Engineering Research
Council, Canada; National Science Foundation Graduate Research
Fellowship [DGE 1106400]; Alfred P. Sloan Research Fellowship
FX This work has been supported by the Defense Advanced Research Projects
Agency Young Faculty Award number N66001-12-1-4228 and by a David and
Lucile Packard Foundation Fellowship for Science and Engineering to
N.S.G. C.Y.W. thanks the Natural Sciences and Engineering Research
Council, Canada for a Postdoctoral Fellowship, B.D.F. and B.L.C. each
acknowledge a National Science Foundation Graduate Research Fellowship
(DGE 1106400), and N.S.G. acknowledges an Alfred P. Sloan Research
Fellowship.
NR 48
TC 4
Z9 4
U1 11
U2 37
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD AUG 20
PY 2015
VL 6
IS 16
BP 3155
EP 3162
DI 10.1021/acs.jpclett.5b01416
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CP6VT
UT WOS:000360027000008
ER
PT J
AU Watson, BR
Yang, B
Xiao, K
Ma, YZ
Doughty, B
Calhoun, TR
AF Watson, Brianna R.
Yang, Bin
Xiao, Kai
Ma, Ying-Zhong
Doughty, Benjamin
Calhoun, Tessa R.
TI Elucidation of Perovskite Film Micro-Orientations Using Two-Photon Total
Internal Reflectance Fluorescence Microscopy
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID HETEROJUNCTION SOLAR-CELLS; HALIDE PEROVSKITES; EFFICIENCY; CH3NH3PBI3;
CHARGE; CRYSTALLIZATION; SEMICONDUCTORS; LUMINESCENCE; DIFFUSION;
CRYSTALS
AB The emergence of efficient hybrid organic inorganic perovskite photovoltaic materials has brought about the rapid development of a variety of preparation and processing techniques designed to maximize their performance. As processing methods continue to emerge, it is important to understand how the optical properties of these materials are affected on a microscopic scale. Here, polarization-resolved two-photon total internal reflectance microscopy (TIRFM) was used to probe changes in transition dipole moment orientation as a function of thermal annealing time in hybrid organic inorganic lead-iodide-based perovskite (CH3NH3PbI3) thin films on glass. These results show that as thermal annealing time is increased the distribution of transition moments pointing out-of-plane decreases in favor of forming areas with increased in-plane orientations. It was also shown through the axial sensitivity of TIRFM that the surface topography is manifested in the signal intensity and can be used to survey aspects of morphology in coincidence with the optical properties of these films.
C1 [Watson, Brianna R.; Calhoun, Tessa R.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Yang, Bin; Xiao, Kai] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Ma, Ying-Zhong; Doughty, Benjamin] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Doughty, B (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM doughtybl@ornl.gov; trcalhoun@utk.edu
RI Yang, Bin/P-8529-2014; Ma, Yingzhong/L-6261-2016; Doughty, Benjamin
/M-5704-2016;
OI Yang, Bin/0000-0002-5667-9126; Ma, Yingzhong/0000-0002-8154-1006;
Doughty, Benjamin /0000-0001-6429-9329; Watson,
Brianna/0000-0001-6540-5330; Xiao, Kai /0000-0002-0402-8276
FU University of Tennessee; UT-ORNL Science Alliance Joint Directed
Research and Development program; Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory; U.S. Department of
Energy, Office of Science, Basic Energy Sciences, Chemical Sciences,
Geosciences, and Biosciences Division
FX T.RC.'s research is supported by the University of Tennessee and the
UT-ORNL Science Alliance Joint Directed Research and Development
program. B.D.'s research sponsored by the Laboratory Directed Research
and Development Program of Oak Ridge National Laboratory, managed by
UT-Battelle, LLC, for the U.S. Department of Energy. Work by Y.-Z.M. was
supported by the U.S. Department of Energy, Office of Science, Basic
Energy Sciences, Chemical Sciences, Geosciences, and Biosciences
Division. Work by B.Y. and K.X. was conducted at the Center for
Nanophase Materials Sciences (CNMS), which is a DOE Office of Science
User Facility.
NR 42
TC 6
Z9 6
U1 2
U2 37
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD AUG 20
PY 2015
VL 6
IS 16
BP 3283
EP 3288
DI 10.1021/acs.jpclett.5b01474
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CP6VT
UT WOS:000360027000012
ER
PT J
AU Kumara, C
Zuo, XB
Cullen, DA
Dass, A
AF Kumara, Chanaka
Zuo, Xiaobing
Cullen, David A.
Dass, Amala
TI Au329-xAgx(SR)(84) Nanomolecules: Plasmonic Alloy Faradaurate-329
SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS
LA English
DT Article
ID NANOCRYSTAL GOLD MOLECULES; RAY CRYSTAL-STRUCTURE; MASS-SPECTROMETRY;
CLUSTER COMPOUNDS; NANOPARTICLES; NANOCLUSTERS; ABSORPTION; RESOLUTION;
SCATTERING; RESONANCE
AB Though significant progress has been made to improve the monodispersity of larger (>10 nm) alloy metal nanoparticles, there still exists a significant variation in nanoparticle composition, ranging from +/- 1000s of atoms. Here, for the first time, we report the synthesis of atomically precise (+/- 0 metal atom variation) Au329-xAgx(SCH2CH2Ph)(84) alloy nanomolecules. The composition was determined using high resolution electrospray ionization mass spectrometry. In contrast to larger (>10 nm) Au-Ag nanoparticles, the surface plasmon resonance (SPR) peak does not show a major shift, but a minor similar to 10 nm red-shift, upon increasing silver content. The intensity of the SPR peak also varies in an intriguing manner, where a dampening is observed with medium silver incorporation, and a significant sharpening is observed upon higher Ag content. The report outlines (a) an unprecedented advance in nanoparticle mass spectrometry of high mass at atomic precision; and (b) the unexpected optical behavior of Au-Ag alloys in the region where nascent SPR emerges; specifically, in this work, the SPR-like peak does not show a major similar to 100 nm blue-shift with Ag alloying of Au-329 nanomolecules, as shown to be common in larger nanoparticles.
C1 [Kumara, Chanaka; Dass, Amala] Univ Mississippi, Dept Chem & Biochem, Oxford, MS 38677 USA.
[Zuo, Xiaobing] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA.
[Cullen, David A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Dass, A (reprint author), Univ Mississippi, Dept Chem & Biochem, Oxford, MS 38677 USA.
EM amal@olemiss.edu
RI Cullen, David/A-2918-2015
OI Cullen, David/0000-0002-2593-7866
FU NSF [CHE-1255519]; ORNL's Center for Nanophase Materials Sciences
(CNMS); U.S. DOE [DE-AC02-06CH11357]
FX C.K. and A.D. gratefully acknowledge support from NSF CHE-1255519.
Electron microscopy research supported through a user project supported
by ORNL's Center for Nanophase Materials Sciences (CNMS), which is a DOE
Office of Science User Facility. Work performed at Argonne and the use
of the Advanced Photon Source, an Office of Science User Facility
operated for the U.S. Department of Energy (DOE) Office of Science by
Argonne National Laboratory, was supported by the U.S. DOE under
Contract No. DE-AC02-06CH11357.
NR 43
TC 3
Z9 3
U1 3
U2 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1948-7185
J9 J PHYS CHEM LETT
JI J. Phys. Chem. Lett.
PD AUG 20
PY 2015
VL 6
IS 16
BP 3320
EP 3326
DI 10.1021/acs.jpclett.5b01395
PG 7
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Atomic, Molecular & Chemical
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CP6VT
UT WOS:000360027000030
ER
PT J
AU Trabert, E
Beiersdorfer, P
Hell, N
Brown, GV
AF Traebert, E.
Beiersdorfer, P.
Hell, N.
Brown, G. V.
TI Measurement of the 3s(1/2)-3p(3/2) resonance line of sodiumlike Eu52+
SO PHYSICAL REVIEW A
LA English
DT Article
ID BEAM ION-TRAP; ENERGY-LEVEL SCHEME; X-RAY SPECTROMETER; CU-LIKE IONS;
ISOELECTRONIC SEQUENCE; NA-LIKE; TRANSITION-PROBABILITIES;
PERTURBATION-THEORY; SPECTROSCOPY; SPECTRA
AB We have measured the 3s(1/2)-3p(3/2) transition in sodiumlike Eu52+ situated at 41.232 angstrom with an uncertainty of 73 ppm. Our measurement extends previous high-precision measurements into the 56 < Z < 78 range of atomic numbers. We also present measurements of 3s(1/2)-3p(3/2) and 3p(1/2)-3d(3/2) transitions in the neighboring magnesiumlike, aluminumlike, and siliconlike europium ions.
C1 [Traebert, E.; Beiersdorfer, P.; Hell, N.; Brown, G. V.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA.
RP Trabert, E (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA.
EM beiersdorfer1@llnl.gov
OI Hell, Natalie/0000-0003-3057-1536
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; German Research Association DFG [Tr171/19]; German
Bundesministerium fur Wirtschaft und Technologie under Deutsches Zentrum
fur Luft- und Raumfahrt [50OR1113]
FX This work was performed under the auspices of the US Department of
Energy by Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344. E.T. acknowledges travel support by the German
Research Association DFG (Grant No. Tr171/19). N.H. acknowledges support
from the German Bundesministerium fur Wirtschaft und Technologie under
Deutsches Zentrum fur Luft- und Raumfahrt Grant No. 50OR1113.
NR 42
TC 1
Z9 1
U1 1
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
EI 1094-1622
J9 PHYS REV A
JI Phys. Rev. A
PD AUG 20
PY 2015
VL 92
IS 2
AR 022509
DI 10.1103/PhysRevA.92.022509
PG 4
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA CP4MY
UT WOS:000359857500004
ER
PT J
AU Aartsen, MG
Abraham, K
Ackermann, M
Adams, J
Aguilar, JA
Ahlers, M
Ahrens, M
Altmann, D
Anderson, T
Archinger, M
Arguelles, C
Arlen, TC
Auffenberg, J
Bai, X
Barwick, SW
Baum, V
Bay, R
Beatty, JJ
Tjus, JB
Becker, KH
Beiser, E
BenZvi, S
Berghaus, P
Berley, D
Bernardini, E
Bernhard, A
Besson, DZ
Binder, G
Bindig, D
Bissok, M
Blaufuss, E
Blumenthal, J
Boersma, DJ
Bohm, C
Borner, M
Bos, F
Bose, D
Boser, S
Botner, O
Braun, J
Brayeur, L
Bretz, HP
Brown, AM
Buzinsky, N
Casey, J
Casier, M
Cheung, E
Chirkin, D
Christov, A
Christy, B
Clark, K
Classen, L
Coenders, S
Cowen, DF
Silva, AHC
Daughhetee, J
Davis, JC
Day, M
de Andre, JPAM
De Clercq, C
Dembinski, H
De Ridder, S
Desiati, P
de Vries, KD
de Wasseige, G
de With, M
Deyoung, T
Diaz-Velez, JC
Dumm, JP
Dunkman, M
Eagan, R
Eberhardt, B
Ehrhardt, T
Eichmann, B
Euler, S
Evenson, PA
Fadiran, O
Fahey, S
Fazely, AR
Fedynitch, A
Feintzeig, J
Felde, J
Filimonov, K
Finley, C
Fischer-Wasels, T
Flis, S
Fuchs, T
Glagla, M
Gaisser, TK
Gaior, R
Gallagher, J
Gerhardt, L
Ghorbani, K
Gier, D
Gladstone, L
Gluesenkamp, T
Goldschmidt, A
Golup, G
Gonzalez, JG
Goodman, JA
Gora, D
Grant, D
Gretskov, P
Groh, JC
Gross, A
Ha, C
Haack, C
Ismail, AH
Hallgren, A
Halzen, F
Hansmann, B
Hanson, K
Hebecker, D
Heereman, D
Helbing, K
Hellauer, R
Hellwig, D
Hickford, S
Hignight, J
Hill, GC
Hoffman, KD
Hoffmann, R
Holzapfe, K
Homeier, A
Hoshina, K
Huang, F
Huber, M
Huelsnitz, W
Hulth, PO
Hultqvist, K
In, S
Ishihara, A
Jacobi, E
Japaridze, GS
Jero, K
Jurkovic, M
Kaminsky, B
Kappes, A
Karg, T
Karle, A
Kauer, M
Keivani, A
Kelley, JL
Kemp, J
Kheirandish, A
Kiryluk, J
Klas, J
Klein, SR
Kohnen, G
Kolanoski, H
Konietz, R
Koob, A
Koepke, L
Kopper, C
Kopper, S
Koskinen, DJ
Kowalski, M
Krings, K
Kroll, G
Kroll, M
Kunnen, J
Kurahashi, N
Kuwabara, T
Labare, M
Lanfranchi, JL
Larson, MJ
Lesiak-Bzdak, M
Leuermann, M
Leuner, J
Lunemann, J
Madsen, J
Maggi, G
Mahn, KBM
Maruyama, R
Mase, K
Matis, HS
Maunu, R
McNally, F
Meagher, K
Medici, M
Meli, A
Menne, T
Merino, G
Meures, T
Miarecki, S
Middell, E
Middlemas, E
Miller, J
Mohrmann, L
Montaruli, T
Morse, R
Nahnhauer, R
Naumann, U
Niederhausen, H
Nowicki, SC
Nygren, DR
Obertacke, A
Olivas, A
Omairat, A
O'Murchadha, A
O'Murchadha, A
Paul, L
Pepper, JA
de los Heros, CP
Pfendner, C
Pieloth, D
Pinat, E
Posselt, J
Price, PB
Przybylski, GT
Putz, J
Quinnan, M
Radel, L
Rameez, M
Rawlins, K
Redl, P
Reimann, R
Relich, M
Resconi, E
Rhode, W
Richman, M
Richter, S
Riedel, B
Robertson, S
Rongen, M
Rott, C
Ruhe, T
Ruzybayev, B
Ryckbosch, D
Saba, SM
Sabbatini, L
Sander, HG
Sandrock, A
Sandroos, J
Sarkar, S
Schatto, K
Scheriau, F
Schimp, M
Schmidt, T
Schmitz, M
Schoenen, S
Schoneberg, S
Schonwald, A
Schukraft, A
Schulte, L
Seckel, D
Seunarine, S
Shanidze, R
Smith, MWE
Soldin, D
Spiczak, GM
Spiering, C
Stahlberg, M
Stamatikos, M
Stanev, T
Stanisha, NA
Stasik, A
Stezelberger, T
Stokstad, RG
Stossl, A
Strahler, EA
Strom, R
Strotjohann, NL
Sullivan, GW
Sutherland, M
Taavola, H
Taboada, I
Ter-Antonyan, S
Terliuk, A
Tesic, G
Tilav, S
Toale, PA
Tobin, MN
Tosi, D
Tselengidou, M
Unger, E
Usner, M
Vallecorsa, S
van Eijndhoven, N
Vandenbroucke, J
van Santen, J
Vanheule, S
Veenkamp, J
Vehring, M
Voge, M
Vraeghe, M
Walck, C
Wallraff, M
Wandkowsky, N
Weaver, C
Wendt, C
Westerhoff, S
Whelan, BJ
Whitehorn, N
Wichary, C
Wiebe, K
Wiebusch, CH
Wille, L
Williams, DR
Wissing, H
Wolf, M
Wood, TR
Woschnagg, K
Xu, DL
Xu, XW
Xu, Y
Yanez, JP
Yodh, G
Yoshida, S
Zarzhitsky, P
Zoll, M
AF Aartsen, M. G.
Abraham, K.
Ackermann, M.
Adams, J.
Aguilar, J. A.
Ahlers, M.
Ahrens, M.
Altmann, D.
Anderson, T.
Archinger, M.
Arguelles, C.
Arlen, T. C.
Auffenberg, J.
Bai, X.
Barwick, S. W.
Baum, V.
Bay, R.
Beatty, J. J.
Tjus, J. Becker
Becker, K. -H.
Beiser, E.
BenZvi, S.
Berghaus, P.
Berley, D.
Bernardini, E.
Bernhard, A.
Besson, D. Z.
Binder, G.
Bindig, D.
Bissok, M.
Blaufuss, E.
Blumenthal, J.
Boersma, D. J.
Bohm, C.
Boerner, M.
Bos, F.
Bose, D.
Boeser, S.
Botner, O.
Braun, J.
Brayeur, L.
Bretz, H. -P.
Brown, A. M.
Buzinsky, N.
Casey, J.
Casier, M.
Cheung, E.
Chirkin, D.
Christov, A.
Christy, B.
Clark, K.
Classen, L.
Coenders, S.
Cowen, D. F.
Silva, A. H. Cruz
Daughhetee, J.
Davis, J. C.
Day, M.
de Andre, J. P. A. M.
De Clercq, C.
Dembinski, H.
De Ridder, S.
Desiati, P.
de Vries, K. D.
de Wasseige, G.
de With, M.
deYoung, T.
Diaz-Velez, J. C.
Dumm, J. P.
Dunkman, M.
Eagan, R.
Eberhardt, B.
Ehrhardt, T.
Eichmann, B.
Euler, S.
Evenson, P. A.
Fadiran, O.
Fahey, S.
Fazely, A. R.
Fedynitch, A.
Feintzeig, J.
Felde, J.
Filimonov, K.
Finley, C.
Fischer-Wasels, T.
Flis, S.
Fuchs, T.
Glagla, M.
Gaisser, T. K.
Gaior, R.
Gallagher, J.
Gerhardt, L.
Ghorbani, K.
Gier, D.
Gladstone, L.
Gluesenkamp, T.
Goldschmidt, A.
Golup, G.
Gonzalez, J. G.
Goodman, J. A.
Gora, D.
Grant, D.
Gretskov, P.
Groh, J. C.
Gross, A.
Ha, C.
Haack, C.
Ismail, A. Haj
Hallgren, A.
Halzen, F.
Hansmann, B.
Hanson, K.
Hebecker, D.
Heereman, D.
Helbing, K.
Hellauer, R.
Hellwig, D.
Hickford, S.
Hignight, J.
Hill, G. C.
Hoffman, K. D.
Hoffmann, R.
Holzapfe, K.
Homeier, A.
Hoshina, K.
Huang, F.
Huber, M.
Huelsnitz, W.
Hulth, P. O.
Hultqvist, K.
In, S.
Ishihara, A.
Jacobi, E.
Japaridze, G. S.
Jero, K.
Jurkovic, M.
Kaminsky, B.
Kappes, A.
Karg, T.
Karle, A.
Kauer, M.
Keivani, A.
Kelley, J. L.
Kemp, J.
Kheirandish, A.
Kiryluk, J.
Klaes, J.
Klein, S. R.
Kohnen, G.
Kolanoski, H.
Konietz, R.
Koob, A.
Koepke, L.
Kopper, C.
Kopper, S.
Koskinen, D. J.
Kowalski, M.
Krings, K.
Kroll, G.
Kroll, M.
Kunnen, J.
Kurahashi, N.
Kuwabara, T.
Labare, M.
Lanfranchi, J. L.
Larson, M. J.
Lesiak-Bzdak, M.
Leuermann, M.
Leuner, J.
Luenemann, J.
Madsen, J.
Maggi, G.
Mahn, K. B. M.
Maruyama, R.
Mase, K.
Matis, H. S.
Maunu, R.
McNally, F.
Meagher, K.
Medici, M.
Meli, A.
Menne, T.
Merino, G.
Meures, T.
Miarecki, S.
Middell, E.
Middlemas, E.
Miller, J.
Mohrmann, L.
Montaruli, T.
Morse, R.
Nahnhauer, R.
Naumann, U.
Niederhausen, H.
Nowicki, S. C.
Nygren, D. R.
Obertacke, A.
Olivas, A.
Omairat, A.
O'Murchadha, A.
Palczewski, T.
Paul, L.
Pepper, J. A.
de los Heros, C. Perez
Pfendner, C.
Pieloth, D.
Pinat, E.
Posselt, J.
Price, P. B.
Przybylski, G. T.
Puetz, J.
Quinnan, M.
Raedel, L.
Rameez, M.
Rawlins, K.
Redl, P.
Reimann, R.
Relich, M.
Resconi, E.
Rhode, W.
Richman, M.
Richter, S.
Riedel, B.
Robertson, S.
Rongen, M.
Rott, C.
Ruhe, T.
Ruzybayev, B.
Ryckbosch, D.
Saba, S. M.
Sabbatini, L.
Sander, H. -G.
Sandrock, A.
Sandroos, J.
Sarkar, S.
Schatto, K.
Scheriau, F.
Schimp, M.
Schmidt, T.
Schmitz, M.
Schoenen, S.
Schoeneberg, S.
Schoenwald, A.
Schukraft, A.
Schulte, L.
Seckel, D.
Seunarine, S.
Shanidze, R.
Smith, M. W. E.
Soldin, D.
Spiczak, G. M.
Spiering, C.
Stahlberg, M.
Stamatikos, M.
Stanev, T.
Stanisha, N. A.
Stasik, A.
Stezelberger, T.
Stokstad, R. G.
Stoessl, A.
Strahler, E. A.
Stroem, R.
Strotjohann, N. L.
Sullivan, G. W.
Sutherland, M.
Taavola, H.
Taboada, I.
Ter-Antonyan, S.
Terliuk, A.
Tesic, G.
Tilav, S.
Toale, P. A.
Tobin, M. N.
Tosi, D.
Tselengidou, M.
Unger, E.
Usner, M.
Vallecorsa, S.
van Eijndhoven, N.
Vandenbroucke, J.
van Santen, J.
Vanheule, S.
Veenkamp, J.
Vehring, M.
Voge, M.
Vraeghe, M.
Walck, C.
Wallraff, M.
Wandkowsky, N.
Weaver, C.
Wendt, C.
Westerhoff, S.
Whelan, B. J.
Whitehorn, N.
Wichary, C.
Wiebe, K.
Wiebusch, C. H.
Wille, L.
Williams, D. R.
Wissing, H.
Wolf, M.
Wood, T. R.
Woschnagg, K.
Xu, D. L.
Xu, X. W.
Xu, Y.
Yanez, J. P.
Yodh, G.
Yoshida, S.
Zarzhitsky, P.
Zoll, M.
CA IceCube Collaboration
TI Evidence for Astrophysical Muon Neutrinos from the Northern Sky with
IceCube
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID HIGH-ENERGY NEUTRINOS; GAMMA-RAY BURSTS; ATMOSPHERIC MUON; SPECTRUM;
FLUXES; RATIO
AB Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere data set consisting primarily of nu(e) and nu(tau) charged-current and neutral-current ( cascade) neutrino interactions. In the analysis presented here, a data sample of approximately 35 000 muon neutrinos from the Northern sky is extracted from data taken during 659.5 days of live time recorded between May 2010 and May 2012. While this sample is composed primarily of neutrinos produced by cosmic ray interactions in Earth's atmosphere, the highest energy events are inconsistent with a hypothesis of solely terrestrial origin at 3.7 sigma significance. These neutrinos can, however, be explained by an astrophysical flux per neutrino flavor at a level of Phi(E-nu) = 9.9(-3.4)(+3.9) x 10(-19) GeV-1 cm(-2) sr(-1) s(-1) (E-nu/100 TeV)(-2), consistent with IceCube's Southern-Hemisphere-dominated result. Additionally, a fit for an astrophysical flux with an arbitrary spectral index is performed. We find a spectral index of 2.2(-0.2)(+0.2), which is also in good agreement with the Southern Hemisphere result.
C1 [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Glagla, M.; Gier, D.; Gretskov, P.; Haack, C.; Hansmann, B.; Hellwig, D.; Kemp, J.; Konietz, R.; Koob, A.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schukraft, A.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany.
[Aartsen, M. G.; Hill, G. C.; Robertson, S.; Whelan, B. J.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia.
[Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA.
[Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA.
[Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA.
[Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Tjus, J. Becker; Bos, F.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany.
[Homeier, A.; Schulte, L.; Voge, M.] Univ Bonn, Phys Inst, D-53115 Bonn, Germany.
[Aguilar, J. A.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium.
[Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de Wasseige, G.; Golup, G.; Kunnen, J.; Maggi, G.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium.
[Gaior, R.; Ishihara, A.; Kuwabara, T.; Mase, K.; Relich, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan.
[Adams, J.; Brown, A. M.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand.
[Berley, D.; Blaufuss, E.; Cheung, E.; Christy, B.; Felde, J.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Redl, P.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA.
[Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Koskinen, D. J.; Larson, M. J.; Medici, M.; Sandroos, J.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Boerner, M.; Fuchs, T.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Scheriau, F.; Schmitz, M.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany.
[de Andre, J. P. A. M.; deYoung, T.; Hignight, J.; Mahn, K. B. M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Buzinsky, N.; Grant, D.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada.
[Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany.
[Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland.
[De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium.
[Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
[Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Ahlers, M.; Arguelles, C.; Beiser, E.; BenZvi, S.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fadiran, O.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Wandkowsky, N.; Weaver, C.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wille, L.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Ahlers, M.; Arguelles, C.; Beiser, E.; BenZvi, S.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fadiran, O.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Middlemas, E.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Wandkowsky, N.; Weaver, C.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wille, L.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA.
[Archinger, M.; Baum, V.; Boeser, S.; Eberhardt, B.; Ehrhardt, T.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany.
[Kohnen, G.] Univ Mons, B-7000 Mons, Belgium.
[Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfe, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Veenkamp, J.] Tech Univ Munich, D-85748 Garching, Germany.
[Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
[Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England.
[Kurahashi, N.; Richman, M.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA.
[Bai, X.] South Dakota Sch Mines & Technol, Phys Dept, Rapid City, SD 57701 USA.
[Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA.
[Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.
[Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden.
[Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xu, Y.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Bose, D.; In, S.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea.
[Clark, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
[Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
[Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Anderson, T.; Arlen, T. C.; Cowen, D. F.; Dunkman, M.; Eagan, R.; Groh, J. C.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Quinnan, M.; Smith, M. W. E.; Stanisha, N. A.; Tesic, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; de los Heros, C. Perez; Stroem, R.; Taavola, H.; Unger, E.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden.
[Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany.
[Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Kowalski, M.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany.
RP Aartsen, MG (reprint author), Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia.
RI Maruyama, Reina/A-1064-2013; Koskinen, David/G-3236-2014; Tjus,
Julia/G-8145-2012; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011;
Wiebusch, Christopher/G-6490-2012;
OI Maruyama, Reina/0000-0003-2794-512X; Arguelles Delgado,
Carlos/0000-0003-4186-4182; Koskinen, David/0000-0002-0514-5917; Sarkar,
Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Wiebusch,
Christopher/0000-0002-6418-3008; Perez de los Heros,
Carlos/0000-0002-2084-5866; Strotjohann, Nora Linn/0000-0002-4667-6730
FU U.S. National Science Foundation-Office of Polar Programs; U.S. National
Science Foundation-Physics Division; University of Wisconsin Alumni
Research Foundation; Grid Laboratory of Wisconsin (GLOW) grid
infrastructure at the University of Wisconsin-Madison; Open Science Grid
(OSG) grid infrastructure; U.S. Department of Energy; National Energy
Research Scientific Computing Center; Louisiana Optical Network
Initiative (LONI) grid computing resources; Natural Sciences and
Engineering Research Council of Canada; Swedish Research Council;
Swedish Polar Research Secretariat; Swedish National Infrastructure for
Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German
Ministry for Education and Research (BMBF); Deutsche
Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle
Physics (HAP); Research Department of Plasmas with Complex Interactions
(Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus
programme; Flanders Institute to encourage scientific and technological
research in industry (IWT); Belgian Federal Science Policy Office
(Belspo); University of Oxford, United Kingdom; Marsden Fund, New
Zealand; Australian Research Council; Japan Society for Promotion of
Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland;
National Research Foundation of Korea (NRF); Danish National Research
Foundation, Denmark (DNRF); WestGrid and Compute/Calcul Canada
FX We acknowledge the support from the following agencies: U.S. National
Science Foundation-Office of Polar Programs, U.S. National Science
Foundation-Physics Division, University of Wisconsin Alumni Research
Foundation, the Grid Laboratory of Wisconsin (GLOW) grid infrastructure
at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid
infrastructure; U.S. Department of Energy, and National Energy Research
Scientific Computing Center, the Louisiana Optical Network Initiative
(LONI) grid computing resources; Natural Sciences and Engineering
Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish
Research Council, Swedish Polar Research Secretariat, Swedish National
Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg
Foundation, Sweden; German Ministry for Education and Research (BMBF),
Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for
Astroparticle Physics (HAP), Research Department of Plasmas with Complex
Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO),
FWO Odysseus programme, Flanders Institute to encourage scientific and
technological research in industry (IWT), Belgian Federal Science Policy
Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New
Zealand; Australian Research Council; Japan Society for Promotion of
Science (JSPS); the Swiss National Science Foundation (SNSF),
Switzerland; National Research Foundation of Korea (NRF); Danish
National Research Foundation, Denmark (DNRF).
NR 46
TC 55
Z9 55
U1 1
U2 18
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 20
PY 2015
VL 115
IS 8
AR 081102
DI 10.1103/PhysRevLett.115.081102
PG 7
WC Physics, Multidisciplinary
SC Physics
GA CP4SL
UT WOS:000359872800003
PM 26340177
ER
PT J
AU Bolintineanu, DS
Grest, GS
Lechman, JB
Silbert, LE
AF Bolintineanu, Dan S.
Grest, Gary S.
Lechman, Jeremy B.
Silbert, Leonardo E.
TI Diffusion in Jammed Particle Packs
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID BROWNIAN-MOTION SIMULATION; HETEROGENEOUS MEDIA;
ELECTRICAL-CONDUCTIVITY; DISORDERED MEDIA
AB Using random walk simulations we explore diffusive transport through monodisperse sphere packings over a range of packing fractions phi in the vicinity of the jamming transition at phi(c). Various diffusion properties are computed over several orders of magnitude in both time and packing pressure. Two well-separated regimes of normal "Fickian" diffusion, where the mean squared displacement is linear in time, are observed. The first corresponds to diffusion inside individual spheres, while the latter is the long-time bulk diffusion. The intermediate anomalous diffusion regime and the long-time value of the diffusion coefficient are both shown to be controlled by particle contacts, which in turn depend on proximity to phi(c). The time required to recover normal diffusion t* scales as (phi - phi(c))(-0.5) and the long-time diffusivity D-infinity similar to (phi - phi(c))(0.5), or D-infinity similar to 1/t*. It is shown that the distribution of mean first passage times associated with the escape of random walkers between neighboring particles controls both t* and D-infinity in the limit phi -> phi(c).
C1 [Bolintineanu, Dan S.; Grest, Gary S.; Lechman, Jeremy B.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Silbert, Leonardo E.] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA.
RP Bolintineanu, DS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM dsbolin@sandia.gov
FU Sandia Laboratory Directed Research and Development Program; U.S.
Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX This work was supported by the Sandia Laboratory Directed Research and
Development Program. This work was performed, in part, at the Center for
Integrated Nanotechnologies, a U.S. Department of Energy, Office of
Basic Energy Sciences user facility. Sandia National Laboratories is a
multiprogram laboratory managed and operated by Sandia Corporation, a
Lockheed-Martin Company, for the U.S. Department of Energy's National
Nuclear Security Administration under Contract No. DE-AC04-94AL85000. L.
E. S. gratefully acknowledges a hospitable stay at SNL.
NR 34
TC 0
Z9 0
U1 4
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 20
PY 2015
VL 115
IS 8
AR 088002
DI 10.1103/PhysRevLett.115.088002
PG 5
WC Physics, Multidisciplinary
SC Physics
GA CP4SL
UT WOS:000359872800014
PM 26340211
ER
PT J
AU Estey, B
Yu, CH
Muller, H
Kuan, PC
Lan, SY
AF Estey, Brian
Yu, Chenghui
Mueller, Holger
Kuan, Pei-Chen
Lan, Shau-Yu
TI High-Resolution Atom Interferometers with Suppressed Diffraction Phases
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PRECISION-MEASUREMENT; CONSTANT
AB We experimentally and theoretically study the diffraction phase of large-momentum transfer beam splitters in atom interferometers based on Bragg diffraction. We null the diffraction phase and increase the sensitivity of the interferometer by combining Bragg diffraction with Bloch oscillations. We demonstrate agreement between experiment and theory, and a 1500-fold reduction of the diffraction phase, limited by measurement noise. In addition to reduced systematic effects, our interferometer has high contrast with up to 4.4 x 10(6) radians of phase difference, and a resolution in the fine structure constant of delta alpha/alpha = 0.25 ppb in 25 h of integration time.
C1 [Estey, Brian; Yu, Chenghui; Mueller, Holger] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Kuan, Pei-Chen; Lan, Shau-Yu] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore.
[Mueller, Holger] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Estey, B (reprint author), Univ Calif Berkeley, Dept Phys, 366 Le Conte Hall MS 7300, Berkeley, CA 94720 USA.
EM hm@berkeley.edu
RI Lan, Shau-Yu/B-5567-2014
OI Lan, Shau-Yu/0000-0003-2608-9472
FU National Science Foundation [PHY-1056620]; David and Lucile Packard
Foundation; National Aeronautics and Space Administration [NNH13ZTT002N,
NNH10ZDA001N-PIDDP, NNH11ZTT001]; Singapore National Research Foundation
[NRFF2013-12]
FX We thank Sheng-wey Chiow, Jordan Dudley, Paul Hamilton, Philipp
Haslinger, and Erik Urban for discussions and assistance. This material
is based upon work supported by the National Science Foundation under
CAREER Grant No. PHY-1056620, the David and Lucile Packard Foundation,
and National Aeronautics and Space Administration Grants No.
NNH13ZTT002N, No. NNH10ZDA001N-PIDDP, and No. NNH11ZTT001. S.-Y. L. and
P.-C. K. acknowledge support from the Singapore National Research
Foundation under Grant No. NRFF2013-12.
NR 34
TC 6
Z9 6
U1 5
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 20
PY 2015
VL 115
IS 8
AR 083002
DI 10.1103/PhysRevLett.115.083002
PG 5
WC Physics, Multidisciplinary
SC Physics
GA CP4SL
UT WOS:000359872800004
PM 26340186
ER
PT J
AU Wu, DL
Potluri, N
Lu, JP
Kim, YC
Rastinejad, F
AF Wu, Dalei
Potluri, Nalini
Lu, Jingping
Kim, Youngchang
Rastinejad, Fraydoon
TI Structural integration in hypoxia-inducible factors
SO NATURE
LA English
DT Article
ID RENAL-CELL CARCINOMA; HIF2-ALPHA PAS-B; TRANSCRIPTION FACTOR;
LIGAND-BINDING; SUPPRESSOR GENE; SMALL MOLECULES; CANCER BIOLOGY;
TUMOR-GROWTH; DOMAIN; HIF-1
AB The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1 beta) subunits. Here we describe crystal structures for each of mouse HIF-2 alpha-ARNT and HIF-1 alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2 alpha-ARNT and HIF-1 alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinct pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.
C1 [Wu, Dalei; Potluri, Nalini; Lu, Jingping; Rastinejad, Fraydoon] Sanford Burnham Prebys Med Discovery Inst, Metab Dis Program, Orlando, FL 32827 USA.
[Kim, Youngchang] Argonne Natl Lab, Biosci Div, Struct Biol Ctr, Argonne, IL 60439 USA.
RP Rastinejad, F (reprint author), Sanford Burnham Prebys Med Discovery Inst, Metab Dis Program, Orlando, FL 32827 USA.
EM frastinejad@sbpdiscovery.org
NR 64
TC 23
Z9 25
U1 6
U2 32
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD AUG 20
PY 2015
VL 524
IS 7565
BP 303
EP +
DI 10.1038/nature14883
PG 17
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP2NN
UT WOS:000359714000026
PM 26245371
ER
PT J
AU Liu, Z
Guan, DB
Wei, W
Davis, SJ
Ciais, P
Bai, J
Peng, SS
Zhang, Q
Hubacek, K
Marland, G
Andres, RJ
Crawford-Brown, D
Lin, JT
Zhao, HY
Hong, CP
Boden, TA
Feng, KS
Peters, GP
Xi, FM
Liu, JG
Li, Y
Zhao, Y
Zeng, N
He, KB
AF Liu, Zhu
Guan, Dabo
Wei, Wei
Davis, Steven J.
Ciais, Philippe
Bai, Jin
Peng, Shushi
Zhang, Qiang
Hubacek, Klaus
Marland, Gregg
Andres, Robert J.
Crawford-Brown, Douglas
Lin, Jintai
Zhao, Hongyan
Hong, Chaopeng
Boden, Thomas A.
Feng, Kuishuang
Peters, Glen P.
Xi, Fengming
Liu, Junguo
Li, Yuan
Zhao, Yu
Zeng, Ning
He, Kebin
TI Reduced carbon emission estimates from fossil fuel combustion and cement
production in China
SO NATURE
LA English
DT Article
ID CO2 EMISSIONS; GDP STATISTICS; DISTRIBUTIONS; UNCERTAINTIES; POLLUTANTS
AB Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China(1,2). Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent(1,3-5). The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics(6), that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change(7), and that emissions from China's cement production are 45 per cent less than recent estimates(1,4). Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = +/-7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories(1,4,8). Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions(1,4). Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon)(9) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon)(10).
C1 [Liu, Zhu] Harvard Univ, John F Kennedy Sch Govt, Cambridge, MA 02138 USA.
[Guan, Dabo; Davis, Steven J.; Xi, Fengming] Chinese Acad Sci, Inst Appl Ecol, Shenyang 110016, Peoples R China.
[Liu, Zhu] CALTECH, Resnick Sustainabil Inst, Pasadena, CA 91125 USA.
[Guan, Dabo; Zhang, Qiang; Zhao, Hongyan; Hong, Chaopeng] Tsinghua Univ, Ctr Earth Syst Sci, Key Lab Earth Syst Modeling, Minist Educ, Beijing 100084, Peoples R China.
[Guan, Dabo; Li, Yuan] Univ E Anglia, Sch Int Dev, Norwich NR4 7TJ, Norfolk, England.
[Wei, Wei] Chinese Acad Sci, Shanghai Adv Res Inst, CAS Key Lab Lowcarbon Convers Sci & Engn, Shanghai 201203, Peoples R China.
[Davis, Steven J.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA.
[Ciais, Philippe; Peng, Shushi] CE Orme Merisiers, CEA CNRS UVSQ, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France.
[Bai, Jin] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China.
[Peng, Shushi] CNRS, F-38041 Grenoble, France.
[Peng, Shushi] UJF Grenoble 1, LGGE, UMR5183, F-38041 Grenoble, France.
[Hubacek, Klaus; Feng, Kuishuang] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA.
[Marland, Gregg] Appalachian State Univ, Res Inst Environm Energy & Econ, Boone, NC 28608 USA.
[Andres, Robert J.; Boden, Thomas A.] Oak Ridge Natl Lab, Carbon Dioxide Informat Anal Ctr, Oak Ridge, TN 37831 USA.
[Crawford-Brown, Douglas] Univ Cambridge, Dept Land Econ, Cambridge Ctr Climate Change Mitigat Res, Cambridge CB3 9EP, England.
[Lin, Jintai] Peking Univ, Sch Phys, Dept Atmospher & Ocean Sci, Lab Climate & Ocean Atmosphere Studies, Beijing 100871, Peoples R China.
[Hong, Chaopeng; He, Kebin] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut C, Beijing 100084, Peoples R China.
[Peters, Glen P.] CICERO, N-0318 Oslo, Norway.
[Xi, Fengming] Chinese Acad Sci, CAS Key Lab Pollut Ecol & Environm Engn, Shenyang 110016, Peoples R China.
[Liu, Junguo] Beijing Forestry Univ, Sch Nat Conservat, Beijing 10083, Peoples R China.
[Liu, Junguo] Int Inst Appl Syst Anal, Ecosyst Serv & Management Program, A-2361 Laxenburg, Austria.
[Liu, Junguo] South Univ Sci & Technol China, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China.
[Zhao, Yu] Nanjing Univ, State Key Lab Pollut Control& Resource Reuse, Nanjing 210023, Jiangsu, Peoples R China.
[Zhao, Yu] Nanjing Univ, Sch Environm, Nanjing 210023, Jiangsu, Peoples R China.
[Zeng, Ning] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA.
[Zeng, Ning] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
[Zeng, Ning] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China.
RP Liu, Z (reprint author), Harvard Univ, John F Kennedy Sch Govt, Cambridge, MA 02138 USA.
EM liuzhu@iae.ac.cn; dabo.guan@uea.ac.uk; weiwei@sari.ac.cn;
hekb@tsinghua.edu.cn
RI Zhang, Qiang/D-9034-2012; Lin, Jintai/A-8872-2012; Liu, Zhu/A-4634-2013;
Peng, Shushi/J-4779-2014; Liu, Junguo/B-3021-2012; Zeng,
Ning/A-3130-2008;
OI Lin, Jintai/0000-0002-2362-2940; Liu, Zhu/0000-0002-8968-7050; Peng,
Shushi/0000-0001-5098-726X; Liu, Junguo/0000-0002-5745-6311; Zeng,
Ning/0000-0002-7489-7629; Davis, Steven/0000-0002-9338-0844; Bai,
Jin/0000-0002-8623-1656; ANDRES, ROBERT/0000-0001-8781-4979; Guan,
Dabo/0000-0003-3773-3403
FU Chinese Academy of Sciences; China's National Basic Research Program;
National Natural Science Foundation of China (NSFC) [XDA05010109,
2014CB441301, XDA05010110, XDA05010103, XDA05010101, 41328008,
41222036]; Italy's Ministry for Environment, Land and Sea; Economic and
Social Research Council [ES/L016028]; Institute of Applied Ecology,
Chinese Academy of Sciences; European Research Council [ERC-2013-SyG
610028-IMBALANCE-P]; US Department of Energy, Office of Science,
Biological and Environmental Research under US Department of Energy
[DE-AC05-00OR22725]; NSFC [41422502, 41175127, 41161140353, 91425303,
41473076]; International Science & Technology Cooperation Program of
China [2012DFA91530]; Natural Science Foundation of Beijing, China
[8151002]; National Program for Support of Top-notch Young
Professionals; Fundamental Research Funds for the Central Universities
[TD-JC-2013-2]; China CDM Fund [2013051, 2013124]; Shenyang Science and
Technology Planning [F14-232-6-01, F14-134-9-00]; Norwegian Research
Council [235523]
FX This work was supported by the Strategic Priority Research Program
"Climate Change: Carbon Budget and Relevant Issues" of the Chinese
Academy of Sciences, and by China's National Basic Research Program and
National Natural Science Foundation of China (NSFC) funded projects
(grants XDA05010109, 2014CB441301, XDA05010110, XDA05010103,
XDA05010101, 41328008 and 41222036). Z.L. acknowledges Harvard
University Giorgio Ruffolo fellowship and support from Italy's Ministry
for Environment, Land and Sea. D.G. acknowledges the Economic and Social
Research Council funded project "Dynamics of Green Growth in European
and Chinese Cities" (ES/L016028) and the Philip Leverhulme Prize. S.J.D.
acknowledges support from the Institute of Applied Ecology, Chinese
Academy of Sciences Fellowships for Young International Distinguished
Scientists. P.C. and S.P. acknowledge support of the European Research
Council Synergy grant ERC-2013-SyG 610028-IMBALANCE-P. R.J.A. and T.A.B.
were sponsored by the US Department of Energy, Office of Science,
Biological and Environmental Research under US Department of Energy
contract DE-AC05-00OR22725. J. Lin acknowledges the NSFC (41422502 and
41175127). J. Liu acknowledges the International Science & Technology
Cooperation Program of China (2012DFA91530), the NSFC (41161140353,
91425303), The Natural Science Foundation of Beijing, China (8151002),
the National Program for Support of Top-notch Young Professionals, and
Fundamental Research Funds for the Central Universities (TD-JC-2013-2).
F.X. acknowledges the NSFC (41473076), China CDM Fund (2013051, 2013124)
and Shenyang Science and Technology Planning (F14-232-6-01,
F14-134-9-00). G.P.P. acknowledges funding from the Norwegian Research
Council (235523). The authors are grateful to S. Piao, L. Cao and J. Yan
for insightful comments.
NR 43
TC 86
Z9 102
U1 60
U2 283
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD AUG 20
PY 2015
VL 524
IS 7565
BP 335
EP +
DI 10.1038/nature14677
PG 12
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP2NN
UT WOS:000359714000032
PM 26289204
ER
PT J
AU Kapilevich, GA
Riseborough, PS
Gray, AX
Gulacsi, M
Durakiewicz, T
Smith, JL
AF Kapilevich, G. A.
Riseborough, P. S.
Gray, A. X.
Gulacsi, M.
Durakiewicz, Tomasz
Smith, J. L.
TI Incomplete protection of the surface Weyl cones of the Kondo insulator
SmB6: Spin exciton scattering
SO PHYSICAL REVIEW B
LA English
DT Article
ID HEAVY-FERMION SEMICONDUCTORS; MAGNETIC EXCITATIONS; NEUTRON-SCATTERING;
SINGLE-CRYSTAL; MIXED-VALENCE; GAP; RESONANCE; LATTICE; STATES; YBB12
AB The compound SmB6 is a Kondo insulator, where the lowest-energy bulk electronic excitations are spin-excitons. It also has surface states that are subjected to strong spin-orbit coupling. It has been suggested that SmB6 is also a topological insulator. Here we show that, despite the absence of time-reversal symmetry breaking and the presence of strong spin-orbit coupling, the chiral spin texture of the Weyl cone is not completely protected. In particular, we show that the spin-exciton-mediated scattering produces features in the surface electronic spectrum at energies separated from the surface Fermi energy by the spin-exciton energy. Despite the features being far removed from the surface Fermi energy, they are extremely temperature dependent. The temperature variation occurs over a characteristic scale determined by the dispersion of the spin-exciton. The structures may be observed by electron spectroscopy at low temperatures.
C1 [Kapilevich, G. A.; Riseborough, P. S.; Gray, A. X.] Temple Univ, Philadelphia, PA 19122 USA.
[Gulacsi, M.] Max Planck Inst Phys Komplexer Syst, Dresden, Germany.
[Durakiewicz, Tomasz; Smith, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Kapilevich, GA (reprint author), Temple Univ, Philadelphia, PA 19122 USA.
RI Riseborough, Peter/D-4689-2011
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-FG02-01ER45872]
FX The work at Temple was supported by an award from the U.S. Department of
Energy, Office of Basic Energy Sciences, via Grant No.
DE-FG02-01ER45872. P.S.R. acknowledges stimulating conversations with
Pedro Schlottman, Collin Broholm, Wes Fuhrman, Laura Greene, and Wan-Kyu
Park. T.D. acknowledges the NSF IR/D program.
NR 58
TC 5
Z9 5
U1 12
U2 41
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 20
PY 2015
VL 92
IS 8
AR 085133
DI 10.1103/PhysRevB.92.085133
PG 8
WC Physics, Condensed Matter
SC Physics
GA CP4OG
UT WOS:000359861100001
ER
PT J
AU Mun, E
Bud'ko, SL
Lee, Y
Martin, C
Tanatar, MA
Prozorov, R
Canfield, PC
AF Mun, E.
Bud'ko, S. L.
Lee, Y.
Martin, C.
Tanatar, M. A.
Prozorov, R.
Canfield, P. C.
TI Quantum oscillations in the heavy-fermion compound YbPtBi
SO PHYSICAL REVIEW B
LA English
DT Article
ID MASSIVE ELECTRON STATE; PHASE-TRANSITIONS; TEMPERATURE; YBBIPT; SURFACE;
MAGNETISM; BEHAVIOR; SYSTEMS; METALS; CEBIPT
AB We present quantum oscillations observed in the heavy-fermion compound YbPtBi in magnetic fields far beyond its field-tuned, quantum critical point. Quantum oscillations are observed in magnetic fields as low as 60 kOe at 60 mK and up to temperatures as high as 3 K, which confirms the very high quality of the samples as well as the small effective mass of the conduction carriers far from the quantum critical point. Although the electronic specific heat coefficient of YbPtBi reaches similar to 7.4 J/mol K-2 in zero field, which is one of the highest effective mass values among heavy-fermion systems, it is suppressed quickly by an applied magnetic field. The quantum oscillations were used to extract the quasiparticle effective masses of the order of the bare electron mass, which is consistent with the behavior observed in specific heat measurements. Such small effective masses at high fields can be understood by considering the suppression of Kondo screening.
C1 [Mun, E.; Bud'ko, S. L.; Lee, Y.; Martin, C.; Tanatar, M. A.; Prozorov, R.; Canfield, P. C.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
[Mun, E.; Bud'ko, S. L.; Lee, Y.; Martin, C.; Tanatar, M. A.; Prozorov, R.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Mun, E.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
RP Mun, E (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
FU US Department of Energy, Office of Basic Energy Science, Division of
Materials Sciences and Engineering; US Department of Energy by Iowa
State University [DE-AC02-07CH11358]; Natural Sciences and Engineering
Research Council of Canada
FX This work was supported by the US Department of Energy, Office of Basic
Energy Science, Division of Materials Sciences and Engineering. The
research was performed at the Ames Laboratory. Ames Laboratory is
operated for the US Department of Energy by Iowa State University under
Contract No. DE-AC02-07CH11358. The work at Simon Fraser University was
supported by the Natural Sciences and Engineering Research Council of
Canada.
NR 30
TC 1
Z9 1
U1 3
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 20
PY 2015
VL 92
IS 8
AR 085135
DI 10.1103/PhysRevB.92.085135
PG 5
WC Physics, Condensed Matter
SC Physics
GA CP4OG
UT WOS:000359861100003
ER
PT J
AU Neupane, M
Xu, SY
Sankar, R
Gibson, Q
Wang, YJ
Belopolski, I
Alidoust, N
Bian, G
Shibayev, PP
Sanchez, DS
Ohtsubo, Y
Taleb-Ibrahimi, A
Basak, S
Tsai, WF
Lin, H
Durakiewicz, T
Cava, RJ
Bansil, A
Chou, FC
Hasan, MZ
AF Neupane, Madhab
Xu, Su-Yang
Sankar, R.
Gibson, Q.
Wang, Y. J.
Belopolski, I.
Alidoust, N.
Bian, G.
Shibayev, P. P.
Sanchez, D. S.
Ohtsubo, Y.
Taleb-Ibrahimi, A.
Basak, S.
Tsai, W. -F.
Lin, H.
Durakiewicz, Tomasz
Cava, R. J.
Bansil, A.
Chou, F. C.
Hasan, M. Z.
TI Topological phase diagram and saddle point singularity in a tunable
topological crystalline insulator
SO PHYSICAL REVIEW B
LA English
DT Article
ID SPIN TEXTURE; PB1-XSNXSE; TRANSITION; GRAPHENE; SURFACE;
SUPERCONDUCTIVITY; SUPERLATTICES; STATES; SNTE
AB We report the evolution of the surface electronic structure and surface material properties of a topological crystalline insulator (TCI), Pb1-xSnxSe, as a function of various material parameters including composition x, temperature T, and crystal structure. Our spectroscopic data demonstrate the electronic ground-state condition for the saddle point singularity, the tunability of surface chemical potential, and the surface states' response to circularly polarized light. Our results show that each material parameter can tune the system between the trivial and topological phase in a distinct way, unlike that seen in Bi2Se3 and related compounds, leading to a rich topological phase diagram. Our systematic studies of the TCI Pb1-xSnxSe are a valuable materials guide to realize new topological phenomena.
C1 [Neupane, Madhab; Xu, Su-Yang; Belopolski, I.; Alidoust, N.; Bian, G.; Shibayev, P. P.; Sanchez, D. S.; Hasan, M. Z.] Princeton Univ, Dept Phys, Joseph Henry Lab, Princeton, NJ 08544 USA.
[Neupane, Madhab; Durakiewicz, Tomasz] Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, Los Alamos, NM 87545 USA.
[Sankar, R.; Chou, F. C.] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan.
[Gibson, Q.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA.
[Wang, Y. J.; Basak, S.; Bansil, A.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA.
[Wang, Y. J.] Lawrence Berkeley Natl Lab, Adv Light Source, Stanford, CA 94305 USA.
[Ohtsubo, Y.; Taleb-Ibrahimi, A.] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France.
[Taleb-Ibrahimi, A.] UR1 CNRS Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France.
[Tsai, W. -F.] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan.
[Lin, H.] Natl Univ Singapore, Ctr Adv Mat 2D, Singapore 117546, Singapore.
[Lin, H.] Natl Univ Singapore, Graphene Res Ctr, Singapore 117546, Singapore.
[Lin, H.] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore.
[Hasan, M. Z.] Princeton Univ, Princeton Ctr Complex Mat, Princeton, NJ 08544 USA.
RP Neupane, M (reprint author), Princeton Univ, Dept Phys, Joseph Henry Lab, Princeton, NJ 08544 USA.
EM mneupane@lanl.gov; mzhasan@princeton.edu
RI Bian, Guang/C-5182-2016; Lin, Hsin/F-9568-2012; Ohtsubo,
Yoshiyuki/O-2052-2016
OI Bian, Guang/0000-0001-7055-2319; Lin, Hsin/0000-0002-4688-2315; Ohtsubo,
Yoshiyuki/0000-0003-4388-825X
FU Office of Basic Energy Sciences, US Department of Energy (DOE)
[DE-FG-02-40105ER46200]; Gordon and Betty Moore Foundations EPiQS
Initiative [GBMF4547]; DOE, Office of Science, Basic Energy Sciences
[DE-FG02-07ER46352]; NERSC supercomputing center through DOE
[DE-AC02-05CH11231]; NSF [DMR-0537588]; Singapore National Research
Foundation under NRF Award [NRF-NRFF2013-03]; NSF IR/D program; LANL
LDRD program; DOE/BES; A.P. Sloan Foundation
FX The work at Princeton and synchrotron x-ray-based measurements are
supported by the Office of Basic Energy Sciences, US Department of
Energy (DOE) Grant No. DE-FG-02-40105ER46200 and partial instrumentation
support provided by the Gordon and Betty Moore Foundations EPiQS
Initiative through Grant GBMF4547 (M.Z.H.). The work at Northeastern
University is supported by the DOE, Office of Science, Basic Energy
Sciences Grant Number DE-FG02-07ER46352, and benefited from Northeastern
University's Advanced Scientific Computation Center (ASCC) and the NERSC
supercomputing center through DOE Grant Number DE-AC02-05CH11231. Use of
the Synchrotron Radiation Center (SRC) was supported by the NSF (Grant
No. DMR-0537588) under an external user agreement. H.L. acknowledges the
Singapore National Research Foundation for the support under NRF Award
No. NRF-NRFF2013-03. T.D. acknowledges support from the NSF IR/D
program. M.N. at LANL acknowledges support from the LANL LDRD program.
We thank Sung-Kwan Mo, Alexi Fedorov, and Makoto Hashimoto for beamline
assistance at the LBNL and the SSRL. M.Z.H. acknowledges Visiting
Scientist support from LBNL and additional support from DOE/BES and the
A.P. Sloan Foundation.
NR 47
TC 1
Z9 1
U1 4
U2 35
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 20
PY 2015
VL 92
IS 7
AR 075131
DI 10.1103/PhysRevB.92.075131
PG 10
WC Physics, Condensed Matter
SC Physics
GA CP4NV
UT WOS:000359859900003
ER
PT J
AU Henry, TW
Bentley, MA
Clark, RM
Davies, PJ
Bader, VM
Baugher, T
Bazin, D
Beausang, CW
Berryman, JS
Bruce, AM
Campbell, CM
Crawford, HL
Cromaz, M
Fallon, P
Gade, A
Henderson, J
Iwasaki, H
Jenkins, DG
Lee, IY
Lemasson, A
Lenzi, SM
Macchiavelli, AO
Napoli, DR
Nichols, AJ
Paschalis, S
Petri, M
Recchia, F
Rissanen, J
Simpson, EC
Stroberg, SR
Wadsworth, R
Weisshaar, D
Wiens, A
Walz, C
AF Henry, T. W.
Bentley, M. A.
Clark, R. M.
Davies, P. J.
Bader, V. M.
Baugher, T.
Bazin, D.
Beausang, C. W.
Berryman, J. S.
Bruce, A. M.
Campbell, C. M.
Crawford, H. L.
Cromaz, M.
Fallon, P.
Gade, A.
Henderson, J.
Iwasaki, H.
Jenkins, D. G.
Lee, I. Y.
Lemasson, A.
Lenzi, S. M.
Macchiavelli, A. O.
Napoli, D. R.
Nichols, A. J.
Paschalis, S.
Petri, M.
Recchia, F.
Rissanen, J.
Simpson, E. C.
Stroberg, S. R.
Wadsworth, R.
Weisshaar, D.
Wiens, A.
Walz, C.
TI Triplet energy differences and the low lying structure of Ga-62
SO PHYSICAL REVIEW C
LA English
DT Article
ID HIGH-SPIN STATES; SHELL-MODEL; IN-BEAM; NUCLEI; SYMMETRY; T=0;
SPECTROSCOPY; MN-50
AB Background: Triplet energy differences (TED) can be studied to yield information on isospin-non-conserving interactions in nuclei.
Purpose: The systematic behavior of triplet energy differences (TED) of T = 1, J(pi) = 2(+) states is examined. The A = 62 isobar is identified as having a TED value that deviates significantly from an otherwise very consistent trend. This deviation can be attributed to the tentative assignments of the pertinent states in Ga-62 and Ge-62.
Methods: An in-beam gamma-ray spectroscopy experiment was performed to identify excited states in Ga-62 using Gamma-Ray Energy Tracking In-Beam Nuclear Array with the S800 spectrometer at NSCL using a two-nucleon knockout approach. Cross-section calculations for the knockout process and shell-model calculations have been performed to interpret the population and decay properties observed.
Results: Using the systematics as a guide, a candidate for the transition from the T = 1, 2(+) state is identified. However, previous work has identified similar states with different J(pi) assignments. Cross-section calculations indicate that the relevant T = 1, 2(+) state should be one of the states directly populated in this reaction.
Conclusions: As spins and parities were not measurable, it is concluded that an unambiguous identification of the first T = 1, 2(+) state is required to reconcile our understanding of TED systematics.
C1 [Henry, T. W.; Bentley, M. A.; Davies, P. J.; Henderson, J.; Jenkins, D. G.; Nichols, A. J.; Simpson, E. C.; Wadsworth, R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
[Clark, R. M.; Campbell, C. M.; Crawford, H. L.; Cromaz, M.; Fallon, P.; Lee, I. Y.; Macchiavelli, A. O.; Rissanen, J.; Wiens, A.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
[Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Gade, A.; Iwasaki, H.; Lemasson, A.; Recchia, F.; Stroberg, S. R.; Weisshaar, D.; Walz, C.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.
[Bader, V. M.; Baugher, T.; Gade, A.; Iwasaki, H.; Lemasson, A.; Stroberg, S. R.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Beausang, C. W.] Univ Richmond, Richmond, VA 23173 USA.
[Bruce, A. M.] Univ Brighton, Sch Comp Engn & Math, Brighton BN2 4GJ, E Sussex, England.
[Lemasson, A.] GANIL, CNRS, CEA, DSM,IN2P3, F-14076 Caen 5, France.
[Lenzi, S. M.] Dipartimento Fis & Astron, I-35131 Padua, Italy.
[Lenzi, S. M.] INFN, Sez Padova, I-35131 Padua, Italy.
[Napoli, D. R.] Lab Nazl Legnaro, I-35020 Legnaro, Italy.
[Paschalis, S.; Petri, M.; Walz, C.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
RP Henry, TW (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
RI Gade, Alexandra/A-6850-2008; Petri, Marina/H-4630-2016; Paschalis,
Stefanos/H-8758-2016; Bruce, Alison/K-7663-2016; Napoli, Daniel
R./D-9863-2012;
OI Gade, Alexandra/0000-0001-8825-0976; Petri, Marina/0000-0002-3740-6106;
Paschalis, Stefanos/0000-0002-9113-3778; Bruce,
Alison/0000-0003-2871-0517; Napoli, Daniel R./0000-0002-8154-6958;
Stroberg, Ragnar/0000-0002-0635-776X; Recchia,
Francesco/0000-0002-8428-0112
FU UK Science and Technology Facilities Council (STFC) [ST/J000124/1,
ST/L005727/1]; DOE, Office of Science; NSF (NSCL) [PHY-1102511]; DOE
(LBNL) [DE-AC02-05CH11231]; Helmholtz International Center for FAIR
within the framework of the LOEWE program
FX The authors thank T. Ginter and J. Pereira for their effort during the
experiment, and D. Rudolph and H. David for helpful discussions. This
work was supported by the UK Science and Technology Facilities Council
(STFC) through Grants No. ST/J000124/1 and No. ST/L005727/1. GRETINA was
funded by the DOE, Office of Science. Operation of the array at NSCL was
supported by NSF under Cooperative Agreement No. PHY-1102511 (NSCL) and
DOE under Grant No. DE-AC02-05CH11231 (LBNL). M.P. acknowledges support
from the Helmholtz International Center for FAIR within the framework of
the LOEWE program (Landesoffensive zur Entwicklung
Wissenschaftlich-Okonomischer Exzellenz) launched by the State of Hesse.
NR 49
TC 0
Z9 0
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD AUG 20
PY 2015
VL 92
IS 2
AR 024315
DI 10.1103/PhysRevC.92.024315
PG 6
WC Physics, Nuclear
SC Physics
GA CP4PD
UT WOS:000359863600002
ER
PT J
AU Jia, JY
Radhakrishnan, S
AF Jia, Jiangyong
Radhakrishnan, Sooraj
TI Limitation of multiparticle correlations for studying the event-by-event
distribution of harmonic flow in heavy-ion collisions
SO PHYSICAL REVIEW C
LA English
DT Article
ID RELATIVISTIC NUCLEAR COLLISIONS; PLUS PB COLLISIONS;
ANGULAR-CORRELATIONS; COLLECTIVE FLOW; ATLAS DETECTOR; LONG-RANGE; PPB;
TEV; ANISOTROPY; PARTICLES
AB The sensitivity of flow harmonics from cumulants to the event-by-event flow distribution p(nu(n)) is investigated using a simple central moment expansion approach. For a narrow distribution whose width is much smaller than the mean sigma(n) << , the differences between the first three higher-order cumulant estimates nu(n){4}, nu(n){6}, and nu(n){8} are not very sensitive to the shape of p(nu(n)). For a broad distribution sigma(n) greater than or similar to , the higher-order cumulant estimates differ from each other but may change sign and become ill defined. This sign change arises from the choice of p(nu(n)), without the need to invoke nonflow effects. Direct extraction of p(nu(n)) via a data-driven unfolding method used by the ATLAS experiment is a more preferred approach for flow distribution measurement.
C1 [Jia, Jiangyong; Radhakrishnan, Sooraj] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Jia, Jiangyong] Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA.
RP Jia, JY (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
EM jjia@bnl.gov; sooraj9286@gmail.com
FU NSF [PHY-1305037]
FX We appreciate valuable comments and fruitful discussions with D. Teaney
and A. Bilandzic. This research is supported by the NSF under Grant No.
PHY-1305037.
NR 37
TC 4
Z9 4
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD AUG 20
PY 2015
VL 92
IS 2
AR 024911
DI 10.1103/PhysRevC.92.024911
PG 7
WC Physics, Nuclear
SC Physics
GA CP4PD
UT WOS:000359863600005
ER
PT J
AU Altunkaynak, B
Baer, H
Barger, V
Huang, P
AF Altunkaynak, Baris
Baer, Howard
Barger, Vernon
Huang, Peisi
TI Distinguishing LSP archetypes via gluino pair production at LHC13
SO PHYSICAL REVIEW D
LA English
DT Article
ID SUPERSYMMETRIC STANDARD MODEL; PURE GRAVITY MEDIATION; GRAND UNIFIED
THEORIES; NONUNIVERSAL HIGGS MASSES; LOCAL SUPERSYMMETRY; DARK-MATTER;
BREAKING; SUPERGRAVITY; PARTICLE; BOSON
AB The search for supersymmetry at run 1 of the LHC has resulted in gluino mass limits m((g) over tilde) greater than or similar to 1.3 TeV for the case where m((q) over tilde) >> m((g) over tilde) and in models with gaugino mass unification. The increased energy and, ultimately, luminosity of LHC13 will explore the range m((g) over tilde) similar to 1.3-2 TeV. We examine how the discovery of SUSY via gluino pair production would unfold via a comparative analysis of three LSP archetype scenarios: (1) mSUGRA/CMSSM model with a binolike LSP, (2) charged SUSY breaking (CSB) with a winolike LSP, and (3) SUSY with radiatively driven naturalness (RNS) and a Higgsino-like LSP. In all three cases we expect heavy-to-very-heavy squarks as suggested by a decoupling solution to the SUSY flavor and CP problems and by the gravitino problem. For all cases, initial SUSY discovery would likely occur in the multi-b-jet + (E) over bar (T) channel. The CSB scenario would be revealed by the presence of highly ionizing, terminating tracks from quasistable charginos. As further data accrue, the RNS scenario with 100-200 GeV Higgsino-like LSPs would be revealed by the buildup of a mass edge/bump in the opposite sign/same flavor dilepton invariant mass which is bounded by the neutralino mass difference. The mSUGRA/CMSSM archetype would contain neither of these features but would be revealed by a buildup of the usual multilepton cascade decay signatures.
C1 [Altunkaynak, Baris; Baer, Howard] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
[Barger, Vernon] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Huang, Peisi] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Huang, Peisi] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA.
RP Altunkaynak, B (reprint author), Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA.
EM baris@nhn.ou.edu; baer@nhn.ou.edu; barger@pheno.wisc.edu;
peisi@uchicago.edu
OI Huang, Peisi/0000-0003-3360-2641
FU Center for Theoretical Underground Physics and Related Areas (CETUP);
U.S. Department of Energy, Office of High Energy Physics
FX The authors would like to thank the Center for Theoretical Underground
Physics and Related Areas (CETUP) for its hospitality and partial
support during the 2015 Summer Program. This work was supported in part
by the U.S. Department of Energy, Office of High Energy Physics.
NR 85
TC 6
Z9 6
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD AUG 20
PY 2015
VL 92
IS 3
AR 035015
DI 10.1103/PhysRevD.92.035015
PG 10
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA CP4PP
UT WOS:000359864900006
ER
PT J
AU Rellan-Alvarez, R
Lobet, G
Lindner, H
Pradier, PL
Sebastian, J
Yee, MC
Geng, Y
Trontin, C
LaRue, T
Schrager-Lavelle, A
Haney, CH
Nieu, R
Maloof, J
Vogel, JP
Dinneny, JR
AF Rellan-Alvarez, Ruben
Lobet, Guillaume
Lindner, Heike
Pradier, Pierre-Luc
Sebastian, Jose
Yee, Muh-Ching
Geng, Yu
Trontin, Charlotte
LaRue, Therese
Schrager-Lavelle, Amanda
Haney, Cara H.
Nieu, Rita
Maloof, Julin
Vogel, John P.
Dinneny, Jose R.
TI GLO-Roots: an imaging platform enabling multidimensional
characterization of soil-grown root systems
SO ELIFE
LA English
DT Article
ID BOX PROTEIN TIR1; ARABIDOPSIS SEEDLINGS; AUXIN RECEPTOR; ARCHITECTURE;
BRACHYPODIUM; REPORTER; SHAPE; PHOTOMORPHOGENESIS; EXPRESSION; MECHANISM
AB Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.
C1 [Rellan-Alvarez, Ruben; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; Dinneny, Jose R.] Carnegie Inst Sci, Dept Plant Biol, 290 Panama St, Stanford, CA 94305 USA.
[Lobet, Guillaume] Univ Liege, PhytoSyst, Liege, Belgium.
[Geng, Yu; Vogel, John P.] US DOE, Joint Genome Inst, Walnut Creek, PA USA.
[LaRue, Therese] Stanford Univ, Dept Biol, Stanford, CA 94305 USA.
[Schrager-Lavelle, Amanda; Maloof, Julin] Univ Calif Davis, Dept Plant Biol, Davis, CA 95616 USA.
[Haney, Cara H.] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Genet,Dept Mol Biol, Boston, MA USA.
[Nieu, Rita] USDA, Western Reg Res Ctr, Albany, CA USA.
RP Dinneny, JR (reprint author), Carnegie Inst Sci, Dept Plant Biol, 290 Panama St, Stanford, CA 94305 USA.
EM jdinneny@carnegiescience.edu
OI Yee, Muh-ching/0000-0002-0445-7927; Sebastian, Jose/0000-0002-1826-0308;
Vogel, John/0000-0003-1786-2689; Rellan-Alvarez,
Ruben/0000-0001-6843-3716
FU National Science Foundation [MCB-115795, MCB-0519898, IOS-0820854]; U.S.
Department of Energy [DE-SC0008769, DE-AI02-07ER64452]; National
Institutes of Health [GM48707]; Fonds De La Recherche Scientifique -
FNRS (Belgian National Fund for Scientific Research); Consejo Nacional
de Ciencia y Tecnologia (National Council of Science and Technology,
Mexico) [CB-2014-01-238101]
FX National Science Foundation MCB-115795 Jose R Dinneny; U.S. Department
of Energy DE-SC0008769 Jose R Dinneny; National Science Foundation
MCB-0519898 Cara H Haney; National Science Foundation IOS-0820854 Amanda
Schrager-Lavelle, Julin Maloof; National Institutes of Health GM48707
Cara H Haney; Fonds De La Recherche Scientifique - FNRS (Belgian
National Fund for Scientific Research) Guillaume Lobet; Consejo Nacional
de Ciencia y Tecnologia (National Council of Science and Technology,
Mexico) CB-2014-01-238101 Ruben Rellan-Alvarez; U.S. Department of
Energy DE-AI02-07ER64452 John P Vogel; The funders had no role in study
design, data collection and interpretation, or the decision to submit
the work for publication.
NR 58
TC 15
Z9 15
U1 7
U2 18
PU ELIFE SCIENCES PUBLICATIONS LTD
PI CAMBRIDGE
PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND
SN 2050-084X
J9 ELIFE
JI eLife
PD AUG 19
PY 2015
VL 4
AR e07597
DI 10.7554/eLife.07597
PG 26
WC Biology
SC Life Sciences & Biomedicine - Other Topics
GA DI9HU
UT WOS:000373814300001
ER
PT J
AU Picon, A
Mompart, J
Southworth, SH
AF Picon, Antonio
Mompart, Jordi
Southworth, Stephen H.
TI Stimulated Raman adiabatic passage with two-color x-ray pulses
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
DE XFEL; STIRAP; quantum control
ID FREE-ELECTRON LASER; COHERENT POPULATION TRANSFER; EXTREME-ULTRAVIOLET;
DELAYED PULSES; LIGHT; SCATTERING; MOLECULES; SPECTRA; CO; SELECTIVITY
AB Recent techniques in x-ray free electron lasers allow the generation of highly coherent, intense x-ray pulses with time lengths on the order of femtoseconds. Here we explore the possibilities of using such x-ray pulses to control matter based on coherence. In particular we propose a theoretical scheme to perform stimulated Raman adiabatic passage in the x-ray regime by using inner-hole excited states. Numerical results in two well-known systems, the neon atom and the carbon monoxide molecule, show a robust control of population transfer. In the molecule, vibrational selectivity is achieved with femtosecond x-ray pulses. This work supports the possibility of using two-color x-ray pulses for coherent control.
C1 [Picon, Antonio; Southworth, Stephen H.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Mompart, Jordi] Univ Autonoma Barcelona, Dept Fis, E-08193 Bellaterra, Spain.
RP Picon, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM apicon@anl.gov
RI Mompart, Jordi/F-9698-2011
OI Mompart, Jordi/0000-0002-9634-9455
FU US Department of Energy, Basic Energy Sciences, Office of Science
[DE-AC02-06CH11357]
FX We acknowledge discussions with L Cheng about calculating dipole
transitions with CFOUR and RW Dunford about metastable states in neon.
We also acknowledge fruitful discussions with P Bucksbaum, W Jakubetz, D
Moonshiram, P Ho, G Doumy, CS Lehmann, A Zholents, A Marinelli, A
Lutman, and C Bostedt, and the financial support of the US Department of
Energy, Basic Energy Sciences, Office of Science, under contract #
DE-AC02-06CH11357.
NR 54
TC 2
Z9 2
U1 4
U2 22
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD AUG 19
PY 2015
VL 17
AR 083038
DI 10.1088/1367-2630/17/8/083038
PG 7
WC Physics, Multidisciplinary
SC Physics
GA CQ9TB
UT WOS:000360956900001
ER
PT J
AU Cao, RG
Xu, W
Lv, DP
Xiao, J
Zhang, JG
AF Cao, Ruiguo
Xu, Wu
Lv, Dongping
Xiao, Jie
Zhang, Ji-Guang
TI Anodes for Rechargeable Lithium-Sulfur Batteries
SO ADVANCED ENERGY MATERIALS
LA English
DT Review
ID LI-S BATTERIES; SOLID-ELECTROLYTE INTERPHASE; GEL POLYMER ELECTROLYTE;
IONIC LIQUID ELECTROLYTES; ELECTROSTATIC SHIELD MECHANISM; ETHER-BASED
ELECTROLYTES; HIGH SPECIFIC ENERGY; ELECTROCHEMICAL PERFORMANCE;
SECONDARY BATTERIES; COMPOSITE ELECTRODE
AB With the significant progress that has been made toward the development of cathode materials and electrolytes in lithium-sulfur (Li-S) batteries in recent years, the stability of the anode in Li-S batteries has become one of the more urgent challenges in order to reach long-term stability of Li-S batteries. In Li-S batteries, a passivation layer is easily formed on the metallic Li anode surface because of the presence of polysulfides and electrolyte additives. Although the passivation layer on the Li metal anode can significantly suppress Li dendrite growth and improve the safety of Li-S batteries, continuous corrosion of the Li metal anode eventually leads to battery failure due to the increased cell impedance and the depletion of electrolyte. Here, the recent developments on the protection of the Li metal anode in Li-S batteries are reviewed. Various strategies used to minimize the corrosion of Li anodes and to reduce its impedance increase are analyzed. Other alternative anodes used in sulfur-based rechargeable batteries are also discussed.
C1 [Cao, Ruiguo; Xu, Wu; Lv, Dongping; Xiao, Jie; Zhang, Ji-Guang] Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Energy & Environm Directorate, Richland, WA 99354 USA.
RP Zhang, JG (reprint author), Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Energy & Environm Directorate, Richland, WA 99354 USA.
EM Jiguang.Zhang@pnnl.gov
RI Cao, Ruiguo/O-7354-2016;
OI Xu, Wu/0000-0002-2685-8684
FU Joint Center for Energy Storage Research, an Energy Innovation Hub -
U.S. Department of Energy (DOE), Office of Science, Basic Energy
Sciences
FX This work was supported as part of the Joint Center for Energy Storage
Research, an Energy Innovation Hub funded by the U.S. Department of
Energy (DOE), Office of Science, Basic Energy Sciences.
NR 161
TC 50
Z9 50
U1 150
U2 634
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1614-6832
EI 1614-6840
J9 ADV ENERGY MATER
JI Adv. Energy Mater.
PD AUG 19
PY 2015
VL 5
IS 16
SI SI
AR 1402273
DI 10.1002/aenm.201402273
PG 23
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary; Physics, Applied; Physics, Condensed Matter
SC Chemistry; Energy & Fuels; Materials Science; Physics
GA CQ1OV
UT WOS:000360368100005
ER
PT J
AU Cuisinier, M
Hart, C
Balasubramanian, M
Garsuch, A
Nazar, LF
AF Cuisinier, Marine
Hart, Connor
Balasubramanian, Mahalingam
Garsuch, Arnd
Nazar, Linda F.
TI Radical or Not Radical: Revisiting Lithium-Sulfur Electrochemistry in
Nonaqueous Electrolytes
SO ADVANCED ENERGY MATERIALS
LA English
DT Article
ID RAY-ABSORPTION SPECTROSCOPY; LI-S BATTERIES; ENERGY DENSITY;
PERFORMANCE; REDUCTION; POLYSULFIDES; REACTIVITY; STABILITY; OXYGEN;
CELL
C1 [Cuisinier, Marine; Hart, Connor; Nazar, Linda F.] Univ Waterloo, Dept Chem, Waterloo Inst Nanotechnol, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada.
[Balasubramanian, Mahalingam] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Garsuch, Arnd] BASF SE, D-67056 Ludwigshafen, Germany.
RP Nazar, LF (reprint author), Univ Waterloo, Dept Chem, Waterloo Inst Nanotechnol, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada.
EM lfnazar@uwaterloo.ca
OI Cuisinier, Marine/0000-0002-0690-9755; Nazar, Linda/0000-0002-3314-8197
FU BASF International Scientific Network for Electrochemistry and
Batteries; National Science Foundation-Earth Sciences [EAR-1128799];
Department of Energy-GeoSciences [DE-FG02-94ER14466]; DOE Office of
Science by the Argonne National Laboratory [DE-AC02-06CH11357]
FX The research was supported by the BASF International Scientific Network
for Electrochemistry and Batteries. XANES experiments were performed at
GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne
National Laboratory. GeoSoilEnviroCARS is supported by the National
Science Foundation-Earth Sciences (EAR-1128799) and the Department of
Energy-GeoSciences (DE-FG02-94ER14466). This research used resources of
the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of
Science User Facility operated for the DOE Office of Science by the
Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The
authors thank Dr. M. Newville and Dr. A. Lanzirotti for helping with the
acquisition of the XANES data at the APS.
NR 39
TC 31
Z9 31
U1 14
U2 146
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1614-6832
EI 1614-6840
J9 ADV ENERGY MATER
JI Adv. Energy Mater.
PD AUG 19
PY 2015
VL 5
IS 16
SI SI
AR UNSP 1401801
DI 10.1002/aenm.201401801
PG 6
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary; Physics, Applied; Physics, Condensed Matter
SC Chemistry; Energy & Fuels; Materials Science; Physics
GA CQ1OV
UT WOS:000360368100002
ER
PT J
AU Lv, DP
Zheng, JM
Li, QY
Xie, X
Ferrara, S
Nie, ZM
Mehdi, LB
Browning, ND
Zhang, JG
Graff, GL
Liu, J
Xiao, J
AF Lv, Dongping
Zheng, Jianming
Li, Qiuyan
Xie, Xi
Ferrara, Seth
Nie, Zimin
Mehdi, Layla B.
Browning, Nigel D.
Zhang, Ji-Guang
Graff, Gordon L.
Liu, Jun
Xiao, Jie
TI High Energy Density Lithium-Sulfur Batteries: Challenges of Thick Sulfur
Cathodes
SO ADVANCED ENERGY MATERIALS
LA English
DT Article
ID LI-S BATTERIES; ELECTROCHEMICAL PERFORMANCE; RECHARGEABLE BATTERIES;
LIQUID ELECTROLYTE; POROUS CARBON; CYCLE LIFE; BINDER; COMPOSITE; CELLS;
CAPACITY
AB High energy and cost-effective lithium sulfur (Li-S) battery technology has been vigorously revisited in recent years due to the urgent need of advanced energy storage technologies for green transportation and large-scale energy storage applications. However, the market penetration of Li-S batteries has been plagued due to the gap in scientific knowledge between the fundamental research and the real application need. Here, a facile and effective approach to integrate commercial carbon nanoparticles into microsized secondary ones for application in high loading sulfur electrodes is proposed The slurry with the integrated particles is easily cast into electrode laminates with practically usable mass loadings. Uniform and crack-free coating with high loading of 2-8 mg cm(-2) sulfur are successfully achieved. Based on the obtained thick electrodes, the dependence of areal specific capacity on mass loading, factors influencing electrode performance, and measures used to address the existing issues are studied and discussed.
C1 [Lv, Dongping; Zheng, Jianming; Li, Qiuyan; Xie, Xi; Ferrara, Seth; Nie, Zimin; Zhang, Ji-Guang; Graff, Gordon L.; Liu, Jun; Xiao, Jie] Pacific NW Natl Lab, Energy & Environm Directorate, Electrochem Mat & Syst Grp, Richland, WA 99352 USA.
[Mehdi, Layla B.; Browning, Nigel D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
RP Xiao, J (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Electrochem Mat & Syst Grp, Richland, WA 99352 USA.
EM Jie.Xiao@pnnl.gov
RI Zheng, Jianming/F-2517-2014;
OI Zheng, Jianming/0000-0002-4928-8194; Browning, Nigel/0000-0003-0491-251X
FU Office of Vehicle Technologies of the U.S. Department of Energy (DOE)
[DEAC02-05CH11231]; Office of Vehicle Technologies of the U.S.
Department of Energy (DOE) under Batteries for Advanced Transportation
Technologies (BATT) program [DEAC02-98CH10886]; DOE's Office of
Biological and Environmental Research (BER); DOE [DE-AC05-76RLO1830]
FX This work was supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy, Office of Vehicle Technologies of the U.S.
Department of Energy (DOE) under Contract No. DEAC02-05CH11231 for PNNL
and under DEAC02-98CH10886 under the Batteries for Advanced
Transportation Technologies (BATT) program. The SEM characterization was
conducted in the William R. Wiley Environmental Molecular Sciences
Laboratory (EMSL)-a national scientific user facility located at PNNL,
which is sponsored, by the DOE's Office of Biological and Environmental
Research (BER). PNNL is operated by Battelle for the DOE under Contract
DE-AC05-76RLO1830.
NR 64
TC 48
Z9 48
U1 39
U2 181
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1614-6832
EI 1614-6840
J9 ADV ENERGY MATER
JI Adv. Energy Mater.
PD AUG 19
PY 2015
VL 5
IS 16
SI SI
AR 1402290
DI 10.1002/aenm.201402290
PG 8
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary; Physics, Applied; Physics, Condensed Matter
SC Chemistry; Energy & Fuels; Materials Science; Physics
GA CQ1OV
UT WOS:000360368100006
ER
PT J
AU Pan, HL
Wei, XL
Henderson, WA
Shao, YY
Chen, JZ
Bhattacharya, P
Xiao, J
Liu, J
AF Pan, Huilin
Wei, Xiaoliang
Henderson, Wesley A.
Shao, Yuyan
Chen, Junzheng
Bhattacharya, Priyanka
Xiao, Jie
Liu, Jun
TI On the Way Toward Understanding Solution Chemistry of Lithium
Polysulfides for High Energy Li-S Redox Flow Batteries
SO ADVANCED ENERGY MATERIALS
LA English
DT Article
ID IONIC LIQUID ELECTROLYTES; X-RAY-DIFFRACTION; SULFUR BATTERIES; IN-SITU;
POLYMER ELECTROLYTES; SOLVATE STRUCTURES; PHASE-BEHAVIOR; STORAGE;
DENSITY; CATHODE
AB Lithium-sulfur (Li-S) redox flow battery (RFB) is a promising candidate for high energy large-scale energy storage application due to good solubility of long-chain polysulfide species and low cost of sulfur. Here, the fundamental understanding and control of lithium polysulfide chemistry are studied to enable the development of liquid phase Li-S redox flow prototype cells. These differ significantly from conventional static Li-S batteries targeting for vehicle electrification. A high solubility of the different lithium polysulfides generated at different depths of discharge and states of charge is required for a flow battery in order to take full advantage of the multiple electron transitions. A new dimethyl sulfoxide based electrolyte is proposed for Li-S RFBs, which not only enables the high solubility of lithium polysulfide species, especially for the short-chain species, but also results in excellent cycling with a high Coulombic efficiency. The challenges and opportunities for the Li-S redox flow concept have also been discussed in depth.
C1 [Pan, Huilin; Wei, Xiaoliang; Shao, Yuyan; Chen, Junzheng; Xiao, Jie; Liu, Jun] Joint Ctr Energy Storage Res, Washington, DC 20005 USA.
[Pan, Huilin; Wei, Xiaoliang; Henderson, Wesley A.; Shao, Yuyan; Chen, Junzheng; Bhattacharya, Priyanka; Xiao, Jie; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Xiao, J (reprint author), Joint Ctr Energy Storage Res, Washington, DC 20005 USA.
EM jie.xiao@pnnl.gov; jun.liu@pnnl.gov
RI Shao, Yuyan/A-9911-2008; Pan, Huilin/J-9298-2016
OI Shao, Yuyan/0000-0001-5735-2670;
FU Joint Center for Energy Storage Research, an Energy Innovation Hub -
U.S. Department of Energy, Office of Science, Basic Energy Sciences;
U.S. Department of Energy's Office of Biological and Environmental
Research
FX This work was supported as part of the Joint Center for Energy Storage
Research, an Energy Innovation Hub funded by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences. The Raman and SEM
analyses were performed in the Environmental Molecular Sciences
Laboratory, a national scientific user facility sponsored by the U.S.
Department of Energy's Office of Biological and Environmental Research
and located at Pacific Northwest National Laboratory (PNNL).
NR 50
TC 14
Z9 14
U1 19
U2 139
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1614-6832
EI 1614-6840
J9 ADV ENERGY MATER
JI Adv. Energy Mater.
PD AUG 19
PY 2015
VL 5
IS 16
SI SI
AR UNSP 1500113
DI 10.1002/aenm.201500113
PG 7
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary; Physics, Applied; Physics, Condensed Matter
SC Chemistry; Energy & Fuels; Materials Science; Physics
GA CQ1OV
UT WOS:000360368100010
ER
PT J
AU Wujcik, KH
Pascal, TA
Pemmaraju, CD
Devaux, D
Stolte, WC
Balsara, NP
Prendergast, D
AF Wujcik, Kevin H.
Pascal, Tod A.
Pemmaraju, C. D.
Devaux, Didier
Stolte, Wayne C.
Balsara, Nitash P.
Prendergast, David
TI Characterization of Polysulfide Radicals Present in an Ether-Based
Electrolyte of a Lithium-Sulfur Battery During Initial Discharge Using
In Situ X-Ray Absorption Spectroscopy Experiments and First-Principles
Calculations
SO ADVANCED ENERGY MATERIALS
LA English
DT Article
ID BLOCK-COPOLYMER ELECTROLYTES; ELECTROCHEMICAL REDUCTION;
PSEUDOPOTENTIALS; MEDIA; SPECIATION; PRODUCTS; SOLVENTS; SPECTRA
AB The presence and role of polysulfide radicals in the electrochemical processes of lithium sulfur (Li-S) batteries is currently being debated. Here, first-principles interpretations of measured X-ray absorption spectra (XAS) of Li-S cells are leveraged with an ether-based electrolyte. Unambiguous evidence is found for significant quantities of polysulfide radical species (LiS3, LiS4, and LiS5), including the trisulfur radical anion S-3(-), present after initial discharge to the first discharge plateau, as evidenced by a low energy shoulder in the S K-edge XAS below 2469 eV. This feature is not present in the XAS of cells at increased depth of discharge, which, by our analysis, exhibit increasing concentrations of progressively shorter polysulfide dianions. Through a combination of first-principles molecular dynamics and associated interpretation of in situ XAS of Li-S cells, atomic level insights into the chemistries are provided that underlie the operation and stability of these batteries.
C1 [Wujcik, Kevin H.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
[Pascal, Tod A.; Pemmaraju, C. D.; Prendergast, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Devaux, Didier] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Stolte, Wayne C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.
EM nbalsara@berkeley.edu; dgprendergast@lbl.gov
RI Foundry, Molecular/G-9968-2014
FU Office of Vehicle Technologies of the US Department of Energy under the
Batteries for Advanced Transportation Technologies program
[DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences
of the US Department of Energy [DE-AC02-05CH11231]
FX K.H.W. and T.A.P. contributed equally to this work. This work was
supported by the Assistant Secretary for Energy Efficiency and Renewable
Energy, Office of Vehicle Technologies of the US Department of Energy
under Contract DE-AC02-05CH11231 under the Batteries for Advanced
Transportation Technologies program. Theoretical work was supported by a
User Project at The Molecular Foundry and calculations were performed at
NERSC, while XAS measurements were made at The Advanced Light Source.
The Berkeley Lab User Facilities are supported by the Director, Office
of Science, Office of Basic Energy Sciences, of the US Department of
Energy under Contract No. DE-AC02-05CH11231.
NR 49
TC 9
Z9 9
U1 20
U2 83
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1614-6832
EI 1614-6840
J9 ADV ENERGY MATER
JI Adv. Energy Mater.
PD AUG 19
PY 2015
VL 5
IS 16
SI SI
AR 1500285
DI 10.1002/aenm.201500285
PG 10
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary; Physics, Applied; Physics, Condensed Matter
SC Chemistry; Energy & Fuels; Materials Science; Physics
GA CQ1OV
UT WOS:000360368100017
ER
PT J
AU Xu, R
Lu, J
Amine, K
AF Xu, Rui
Lu, Jun
Amine, Khalil
TI Progress in Mechanistic Understanding and Characterization Techniques of
Li-S Batteries
SO ADVANCED ENERGY MATERIALS
LA English
DT Review
ID LITHIUM-SULFUR BATTERIES; X-RAY-DIFFRACTION; IONIC-LIQUID ELECTROLYTE;
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; DISCHARGE REACTION-MECHANISM;
METAL-ORGANIC FRAMEWORK; GLYCOL) DIMETHYL ETHER; NITROGEN-DOPED CARBON;
HIGH SPECIFIC ENERGY; IN-SITU
AB Rechargeable lithium-sulfur batteries that operate at room temperature have attracted much research interest as next-generation energy storage systems. Although tremendous advances have been made with Li-S batteries, great challenges still exist in achieving high capacity, high loading, high coulombic efficiency, and long cycle life. These challenges arise from the system complexity, lack of mechanistic understanding of the redox reaction, and operational limitations of Li-S cells. The focus here is on the recent gains in fundamental understanding of the Li-S redox reaction mechanism based on the application of advanced characterization techniques. Research results that help with the understanding of the close relationship between cell design (including development of new and advanced electrode materials, electrolytes, separators, binders, and cell configurations), the Li-S reaction mechanism, characterization methods, and Li-S battery performance are discussed.
C1 [Xu, Rui; Lu, Jun; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA.
RP Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA.
EM junlu@anl.gov; amine@anl.gov
FU U.S. Department of Energy [DE-AC0206CH11357]; Vehicle Technologies
Office, Department of Energy (DOE) Office of Energy Efficiency and
Renewable Energy (EERE)
FX This work was supported by the U.S. Department of Energy under Contract
DE-AC0206CH11357 with the main support provided by the Vehicle
Technologies Office, Department of Energy (DOE) Office of Energy
Efficiency and Renewable Energy (EERE). The authors are also thankful
for useful discussions with Dr. David Howell and Mr. Tien Duong of the
EERE Vehicle Technologies Office.
NR 203
TC 46
Z9 46
U1 88
U2 315
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1614-6832
EI 1614-6840
J9 ADV ENERGY MATER
JI Adv. Energy Mater.
PD AUG 19
PY 2015
VL 5
IS 16
SI SI
AR 1500408
DI 10.1002/aenm.201500408
PG 22
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary; Physics, Applied; Physics, Condensed Matter
SC Chemistry; Energy & Fuels; Materials Science; Physics
GA CQ1OV
UT WOS:000360368100018
ER
PT J
AU Yu, XQ
Pan, HL
Zhou, YN
Northrup, P
Xiao, J
Bak, S
Liu, MZ
Nam, KW
Qu, DY
Liu, J
Wu, TP
Yang, XQ
AF Yu, Xiqian
Pan, Huilin
Zhou, Yongning
Northrup, Paul
Xiao, Jie
Bak, Seongmin
Liu, Mingzhao
Nam, Kyung-Wan
Qu, Deyang
Liu, Jun
Wu, Tianpin
Yang, Xiao-Qing
TI Direct Observation of the Redistribution of Sulfur and Polysufides in
Li-S Batteries During the First Cycle by In Situ X-Ray Fluorescence
Microscopy
SO ADVANCED ENERGY MATERIALS
LA English
DT Article
ID ABSORPTION-SPECTROSCOPY; ENERGY-STORAGE; POLYSULFIDE DISSOLUTION;
HIGH-CAPACITY; LITHIUM; DIFFRACTION; CATHODE; ELECTROLYTE; CHEMISTRY
C1 [Yu, Xiqian; Zhou, Yongning; Northrup, Paul; Bak, Seongmin; Liu, Mingzhao; Yang, Xiao-Qing] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Pan, Huilin; Xiao, Jie; Liu, Jun] Pacific NW Natl Lab, Joint Ctr Energy Storage Res, Richland, WA 99352 USA.
[Nam, Kyung-Wan] Dongguk Univ Seoul, Dept Energy & Mat Engn, Seoul 100715, South Korea.
[Qu, Deyang] Univ Massachusetts, Dept Chem, Boston, MA 02125 USA.
Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA.
RP Yang, XQ (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM xyang@bnl.gov
RI Liu, Mingzhao/A-9764-2011; Yu, Xiqian/B-5574-2014; Pan,
Huilin/J-9298-2016; Nam, Kyung-Wan/E-9063-2015; Bak, Seong
Min/J-4597-2013;
OI Liu, Mingzhao/0000-0002-0999-5214; Yu, Xiqian/0000-0001-8513-518X; Nam,
Kyung-Wan/0000-0001-6278-6369; Bak, Seong-Min/0000-0002-1626-5949
FU U.S. Department of Energy (DOE), Office of Vehicle Technologies
[DE-SC0012704]; U.S. Department of Energy, Office of Science, Basic
Energy Sciences (BES); Energy Efficiency & Resources of the Korea
Institute of Energy Technology Evaluation and Planning - Korea
government Ministry of Trade, Industry Energy [20142020103090]; U.S.
Department of Energy, Office of Basic Energy Sciences [DE-SC0012704];
U.S. DOE [DE-AC02-06CH11357]
FX X.Y. and H.P. contributed equally to this paper. This work at BNL was
supported by the U.S. Department of Energy (DOE), the Assistant
Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle
Technologies under Contract No. DE-SC0012704. The research performed by
the scientists at the Pacific Northwest National Laboratory (PNNL) was
supported as part of the Joint Center for Energy Storage Research
(JCESR), an Energy Innovation Hub funded by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences (BES). Dr. Kyung-Wan
Nam is supported by the Energy Efficiency & Resources of the Korea
Institute of Energy Technology Evaluation and Planning grant funded by
the Korea government Ministry of Trade, Industry & Energy (Project No.
20142020103090). SEM characterization was performed at the Center for
Functional Nanomaterials (BNL), which is supported by the U.S.
Department of Energy, Office of Basic Energy Sciences, under Contract
No. DE-SC0012704. The authors acknowledge technical supports by the
scientists at beamline X15B, X14A of NSLS (BNL) and 9-BM-B of APS (ANL),
supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.
NR 39
TC 7
Z9 7
U1 23
U2 79
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1614-6832
EI 1614-6840
J9 ADV ENERGY MATER
JI Adv. Energy Mater.
PD AUG 19
PY 2015
VL 5
IS 16
SI SI
AR 1500072
DI 10.1002/aenm.201500072
PG 6
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary; Physics, Applied; Physics, Condensed Matter
SC Chemistry; Energy & Fuels; Materials Science; Physics
GA CQ1OV
UT WOS:000360368100008
ER
PT J
AU Zheng, D
Qu, DY
Yang, XQ
Yu, XQ
Lee, HS
Qu, DY
AF Zheng, Dong
Qu, Deyu
Yang, Xiao-Qing
Yu, Xiqian
Lee, Hung-Sui
Qu, Deyang
TI Quantitative and Qualitative Determination of Polysulfide Species in the
Electrolyte of a Lithium-Sulfur Battery using HPLC ESI/MS with One-Step
Derivatization
SO ADVANCED ENERGY MATERIALS
LA English
DT Article
ID LI-S BATTERY; CHROMATOGRAPHIC-SEPARATION; ELECTROCHEMICAL REDUCTION;
MEDIA
C1 [Zheng, Dong; Qu, Deyang] Univ Massachusetts, Dept Chem, Boston, MA 02125 USA.
[Qu, Deyu] Wuhan Univ Technol, Dept Chem, Sch Sci, Wuhan 430070, Hubei, Peoples R China.
[Yang, Xiao-Qing; Yu, Xiqian; Lee, Hung-Sui] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP Qu, DY (reprint author), Univ Massachusetts, Dept Chem, Boston, MA 02125 USA.
EM Deyang.qu@umb.edu
RI Zheng, Dong/J-9975-2015; Yu, Xiqian/B-5574-2014
OI Zheng, Dong/0000-0002-5824-3270; Yu, Xiqian/0000-0001-8513-518X
FU Office of Vehicle Technologies of the U.S. Department of Energy
[DEAC02-98CH10886]; Fundamental Research Funds for the Central
Universities China
FX The authors from UMB and BNL are indebted to the Assistant Secretary for
Energy Efficiency and Renewable Energy, Office of Vehicle Technologies
of the U.S. Department of Energy for financial support under Contract
No. DEAC02-98CH10886. The author from WUT is grateful for the partially
supported by the Fundamental Research Funds for the Central Universities
China.
NR 23
TC 8
Z9 8
U1 13
U2 50
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1614-6832
EI 1614-6840
J9 ADV ENERGY MATER
JI Adv. Energy Mater.
PD AUG 19
PY 2015
VL 5
IS 16
SI SI
AR 1401888
DI 10.1002/aenm.201401888
PG 5
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary; Physics, Applied; Physics, Condensed Matter
SC Chemistry; Energy & Fuels; Materials Science; Physics
GA CQ1OV
UT WOS:000360368100003
ER
PT J
AU Zhou, WD
Wang, CM
Zhang, QL
Abruna, HD
He, Y
Wang, JW
Mao, SX
Xiao, XC
AF Zhou, Weidong
Wang, Chongmin
Zhang, Qinglin
Abruna, Hector D.
He, Yang
Wang, Jiangwei
Mao, Scott X.
Xiao, Xingcheng
TI Tailoring Pore Size of Nitrogen-Doped Hollow Carbon Nanospheres for
Confining Sulfur in Lithium-Sulfur Batteries
SO ADVANCED ENERGY MATERIALS
LA English
DT Article
ID CATHODE; PERFORMANCE; POLYSULFIDES; NANOFIBERS; STABILITY; POROSITY
C1 [Zhou, Weidong; Zhang, Qinglin; Xiao, Xingcheng] Gen Motors Global Res & Dev Ctr, Warren, MI 48090 USA.
[Wang, Chongmin] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Abruna, Hector D.] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA.
[He, Yang; Wang, Jiangwei; Mao, Scott X.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA.
RP Xiao, XC (reprint author), Gen Motors Global Res & Dev Ctr, 30500 Mound Rd, Warren, MI 48090 USA.
EM xingcheng.xiao@gm.com
RI Wang, Jiangwei/F-8249-2011; Zhang, Qinglin/D-9258-2013
OI Wang, Jiangwei/0000-0003-1191-0782; Zhang, Qinglin/0000-0001-5933-4361
FU Vehicle Technologies Office of the U.S. Department of Energy under
Batteries for Advanced Transportation Technologies (BATT) Program
[DE-AC02-05CH11231, 7056410]
FX The authors acknowledge the support by the Assistant Secretary for
Energy Efficiency and Renewable Energy, Vehicle Technologies Office of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231,
Subcontract No. 7056410 under the Batteries for Advanced Transportation
Technologies (BATT) Program. They also would like to thank Yang He and
Jiangwei Wang for helping conduct in situ TEM at PNNL.
NR 33
TC 44
Z9 45
U1 30
U2 122
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1614-6832
EI 1614-6840
J9 ADV ENERGY MATER
JI Adv. Energy Mater.
PD AUG 19
PY 2015
VL 5
IS 16
SI SI
AR 1401752
DI 10.1002/aenm.201401752
PG 8
WC Chemistry, Physical; Energy & Fuels; Materials Science,
Multidisciplinary; Physics, Applied; Physics, Condensed Matter
SC Chemistry; Energy & Fuels; Materials Science; Physics
GA CQ1OV
UT WOS:000360368100001
ER
PT J
AU Cheng, L
Wu, CH
Jarry, A
Chen, W
Ye, YF
Zhu, JF
Kostecki, R
Persson, K
Guo, JH
Salmeron, M
Chen, GY
Doeff, M
AF Cheng, Lei
Wu, Cheng Hao
Jarry, Angelique
Chen, Wei
Ye, Yifan
Zhu, Junfa
Kostecki, Robert
Persson, Kristin
Guo, Jinghua
Salmeron, Miguel
Chen, Guoying
Doeff, Marca
TI Interrelationships among Grain Size, Surface Composition, Air Stability,
and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid
Electrolytes
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE interface; interfacial resistance; solid electrolyte; solid state
battery; surface stability
ID IONIC-CONDUCTIVITY; ELECTROCHEMICAL PROPERTIES; CONDUCTORS LI7LA3ZR2O12;
LITHIUM; MICROSTRUCTURE; RAMAN; PHOSPHATE; ENERGY; METAL; GE
AB The interfacial resistances of symmetrical lithium cells containing Al-substituted Li7La3Zr2O12 (LLZO) solid electrolytes are sensitive to their microstructures and histories of exposure to air. Air exposure of LLZO samples with large grain sizes (similar to 150 mu m) results in dramatically increased interfacial impedances in cells containing them, compared to those with pristine large-grained samples. In contrast, a much smaller difference is seen between cells with small-grained (similar to 20 mu m) pristine and air-exposed LLZO samples. A combination of soft X-ray absorption (sXAS) and Raman spectroscopy, with probing depths ranging from nanometer to micrometer scales, revealed that the small-grained LLZO pellets are more air-stable than large-grained ones, forming far less surface Li2CO3 under both short- and long-term exposure conditions. Surface sensitive X-ray photoelectron spectroscopy (XPS) indicates that the better chemical stability of the small-grained LLZO is related to differences in the distribution of Al and Li at sample surfaces. Density functional theory calculations show that LLZO can react via two different pathways to form Li2CO3. The first, more rapid, pathway involves a reaction with moisture in air to form LiOH, which subsequently absorbs CO2 to form Li2CO3. The second, slower, pathway involves direct reaction with CO2 and is favored when surface lithium contents are lower, as with the small-grained samples. These observations have important implications for the operation of solid-state lithium batteries containing LLZO because the results suggest that the interfacial impedances of these devices is critically dependent upon specific characteristics of the solid electrolyte and how it is prepared.
C1 [Cheng, Lei; Jarry, Angelique; Chen, Wei; Kostecki, Robert; Persson, Kristin; Chen, Guoying; Doeff, Marca] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA.
[Cheng, Lei; Salmeron, Miguel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Wu, Cheng Hao] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Wu, Cheng Hao; Salmeron, Miguel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA.
[Ye, Yifan; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Ye, Yifan; Zhu, Junfa] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China.
[Ye, Yifan; Zhu, Junfa] Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230029, Peoples R China.
RP Cheng, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA.
EM leicheng@lbl.gov; mmdoeff@lbl.gov
RI Wu, Cheng Hao/C-9565-2014; Zhu, Junfa/E-4020-2010; Chen, Wei/B-3045-2012
OI Zhu, Junfa/0000-0003-0888-4261; Chen, Wei/0000-0002-1135-7721
FU Assistant Secretary for Energy Efficiency and Renewable Energy; Office
of Basic Energy Sciences of the U.S. Department of Energy
[DE-ACO2-05CH11231]; Director Office of Science; Materials Project
Center (BES DOE) [EDCBEE]; Advanced Light Source Doctoral Fellowship;
Office of Vehicle Technologies; Chemical Sciences, Geosciences, and
Biosciences Division
FX This work was supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy, Office of Vehicle Technologies and the Chemical
Sciences, Geosciences, and Biosciences Division, Office of Basic Energy
Sciences of the U.S. Department of Energy under contract no.
DE-ACO2-05CH11231. The Advanced Light Source is supported by the
Director Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE-ACO2-05CH11231. L.C., G.C,
and M.D acknowledge illuminating discussions with Dr. Thomas Richardson.
Prof. Lutgard De Jonghe is cordially acknowledged for the discussion on
solid electrolytes. L.C. would like to acknowledge Mr. James Wu and Mr.
Yuyi Li for assistance with instruments and Dr. Wanli Yang and Dr.
Ruimin Qiao for helpful discussion on soft X-ray spectroscopy. W.C.
gratefully acknowledges the Materials Project Center (BES DOE Grant No.
EDCBEE) for funding support. C.H.W. acknowledges the Advanced Light
Source Doctoral Fellowship in Residence.
NR 42
TC 9
Z9 10
U1 37
U2 145
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD AUG 19
PY 2015
VL 7
IS 32
BP 17649
EP 17655
DI 10.1021/acsami.5b02528
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA CP6VU
UT WOS:000360027100016
PM 26192634
ER
PT J
AU Tian, CX
Zhu, LP
Lin, F
Boyes, SG
AF Tian, Chixia
Zhu, Liping
Lin, Feng
Boyes, Stephen G.
TI Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold
Nanoparticle Composites as Contrast Agents for Computed Tomography and
Magnetic Resonance Bimodal Imaging
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE multimodal imaging contrast agent; MRI/CT; gold nanoparticles;
gadolinium metal organic framework nanoparticles
ID SEMICONDUCTOR QUANTUM DOTS; BIOMEDICAL APPLICATIONS; MULTIFUNCTIONAL
NANOPARTICLES; RAFT POLYMERIZATION; PARTICLE-SIZE; CANCER; THERAPY; CT;
POLYMERS; NANORODS
AB Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early stage cancer diagnosis. Gadolinium (Gd)(III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high X-ray attenuation coefficient, is an ideal contrast agent candidate for X-ray-based CT imaging. Gd metal organic framework (MOF) nanopartides with tunable size, high Gd(III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanopartides with gold nanopartides (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanopartides and AuNPs. The hybrid nanocomposites were then evaluated in MM and CT imaging. The results revealed high longitudinal relaxivity in MM and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multimodal imaging probes.
C1 [Tian, Chixia; Zhu, Liping; Boyes, Stephen G.] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA.
[Lin, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Boyes, SG (reprint author), Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA.
EM sboyes@mines.edu
FU State of Colorado; Colorado School of Mines
FX The authors thank the State of Colorado for providing a Bioscience
Discovery Evaluation Proof of Concept Grant and the Colorado School of
Mines for providing a Proof of Concept grant to support this work.
NR 63
TC 5
Z9 5
U1 35
U2 148
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD AUG 19
PY 2015
VL 7
IS 32
BP 17765
EP 17775
DI 10.1021/acsami.5b03998
PG 11
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA CP6VU
UT WOS:000360027100029
PM 26147906
ER
PT J
AU Page, KA
Shin, JW
Eastman, SA
Rowe, BW
Kim, S
Kusoglu, A
Yager, KG
Stafford, GR
AF Page, Kirt A.
Shin, Jae Wook
Eastman, Scott A.
Rowe, Brandon W.
Kim, Sangcheol
Kusoglu, Ahmet
Yager, Kevin G.
Stafford, Gery R.
TI In Situ Method for Measuring the Mechanical Properties of Nafion Thin
Films during Hydration Cycles
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE stress; thin films; Nafion; curvature; modulus; humidity
ID FUEL-CELL MEMBRANES; POLYMER ELECTROLYTE MEMBRANE; PROTON-EXCHANGE
MEMBRANES; (111)-TEXTURED AU; RECAST NAFION(R); WATER-UPTAKE;
TEMPERATURE; TRANSPORT; CONFINEMENT; HUMIDITY
AB Perfluorinated ionomers, in particular Nafion, are an essential component in hydrogen fuel cells, as both the proton exchange membrane and the binder within the catalyst layer. During normal operation of a hydrogen fuel cell, the ionomer will progressively swell and deswell in response to the changes in hydration, resulting in mechanical fatigue and ultimately failure over time. In this study, we have developed and implemented a cantilever bending technique in order to investigate the swelling-induced stresses in biaxially constrained Nafion thin films. When the deflection of a cantilever beam coated with a polymer film is monitored as it is exposed to varying humidity environments, the swelling induced stressthickness product of the polymer film is measured. By combining the stress-thickness results with a measurement of the swelling strain as a function of humidity, as measured by quartz crystal microbalance (QCM) and X-ray reflectivity (XR), the swelling stress can be determined. An estimate of the Young's modulus of thin Nafion films as a function of relative humidity is obtained. The Young's modulus values indicate orientation of the ionic domains within the polymer films, which were confirmed by grazing incidence small-angle X-ray scattering (GISAXS). This study represents a measurement platform that can be expanded to incorporate novel ionomer systems and fuel cell components to mimic the stress state of a working hydrogen fuel cell.
C1 [Page, Kirt A.; Shin, Jae Wook; Rowe, Brandon W.; Kim, Sangcheol; Stafford, Gery R.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.
[Eastman, Scott A.] United Technol Res Ctr, East Hartford, CT 06108 USA.
[Kusoglu, Ahmet] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA.
[Yager, Kevin G.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Stafford, GR (reprint author), NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.
EM gery.stafford@nist.gov
RI Yager, Kevin/F-9804-2011;
OI Yager, Kevin/0000-0001-7745-2513; Kusoglu, Ahmet/0000-0002-2761-1050
FU NIST NRC Fellowship program; U.S. DOE Office of Science Facilities
[DE-SC0012704]
FX The authors gratefully acknowledge Carlos Beauchamp, Bradley Frieberg,
Christopher Stafford, and Christopher L. Soles of NIST for technical
contributions, programmatic support, and several lively scientific
discussions. S.A.E. and B.W.R. acknowledge support from the NIST NRC
Fellowship program. Certain commercial equipment, instruments, or
materials are identified in this paper in order to specify the
experimental procedure adequately. Such identification is not intended
to imply recommendation or endorsement by the National Institute of
Standards and Technology, nor is it intended to imply that the materials
or equipment identified are necessarily the best available for the
purpose. Research used resources of the Center for Functional
Nanomaterials, and the National Synchrotron Light Source, which are U.S.
DOE Office of Science Facilities, at Brookhaven National Laboratory
under Contract No. DE-SC0012704.
NR 46
TC 7
Z9 7
U1 10
U2 47
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD AUG 19
PY 2015
VL 7
IS 32
BP 17874
EP 17883
DI 10.1021/acsami.5b04080
PG 10
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA CP6VU
UT WOS:000360027100042
PM 26258630
ER
PT J
AU Wang, T
Li, RP
Quan, ZW
Loc, WS
Bassett, WA
Xu, HW
Cao, YC
Fang, JY
Wang, ZW
AF Wang, Tie
Li, Ruipeng
Quan, Zewei
Loc, Welley Siu
Bassett, William A.
Xu, Hongwu
Cao, Y. Charles
Fang, Jiye
Wang, Zhongwu
TI Pressure Processing of Nanocube Assemblies Toward Harvesting of a
Metastable PbS Phase
SO ADVANCED MATERIALS
LA English
DT Article
DE metastable phases; nanocrystal assemblies; porous architectures;
pressure processing
ID SHAPE-CONTROLLED SYNTHESIS; NANOPARTICLE SUPERLATTICES; STRUCTURAL
STABILITY; SIZE DEPENDENCE; NANOCRYSTALS; TRANSFORMATION; SALT;
SUPERCONDUCTIVITY; TRANSITION
C1 [Wang, Tie] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Key Lab Analyt Chem Living Biosyst, Beijing 100190, Peoples R China.
[Wang, Tie; Cao, Y. Charles] Univ Florida, Dept Chem, Gainesville, FL 32611 USA.
[Li, Ruipeng; Wang, Zhongwu] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA.
[Quan, Zewei; Loc, Welley Siu; Fang, Jiye] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA.
[Bassett, William A.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA.
[Xu, Hongwu] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA.
RP Quan, ZW (reprint author), Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA.
EM zw42@cornell.edu
RI Wang, Tie/L-5060-2015; Li, Ruipeng/A-3691-2014;
OI Wang, Tie/0000-0001-5965-6520; Li, Ruipeng/0000-0001-8176-3138; Xu,
Hongwu/0000-0002-0793-6923
FU National Science Foundation; National Institutes of Health/National
Institute of General Medical Sciences under NSF [DMR-1332208]; National
Natural Science Foundation of China [21422507, 21321003]
FX T.W. and R.L. contributed equally to this work. This work is based upon
research conducted at the Cornell High Energy Synchrotron Source (CHESS)
which is supported by the National Science Foundation and the National
Institutes of Health/National Institute of General Medical Sciences
under NSF Award DMR-1332208. T.W. appreciates the financial support by
the National Natural Science Foundation of China (Grant Nos. 21422507
and 21321003).
NR 37
TC 7
Z9 7
U1 15
U2 97
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0935-9648
EI 1521-4095
J9 ADV MATER
JI Adv. Mater.
PD AUG 19
PY 2015
VL 27
IS 31
BP 4544
EP 4549
DI 10.1002/adma.201502070
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CP5HI
UT WOS:000359911500005
PM 26179895
ER
PT J
AU Hu, L
Chen, J
Fan, LL
Ren, Y
Huang, QZ
Sanson, A
Jiang, Z
Zhou, M
Rong, YC
Wang, Y
Deng, JX
Xing, XR
AF Hu, Lei
Chen, Jun
Fan, Longlong
Ren, Yang
Huang, Qingzhen
Sanson, Andrea
Jiang, Zheng
Zhou, Mei
Rong, Yangchun
Wang, Yong
Deng, Jinxia
Xing, Xianran
TI High-Curie-Temperature Ferromagnetism in (Sc,Fe)F-3 Fluorides and its
Dependence on Chemical Valence
SO ADVANCED MATERIALS
LA English
DT Article
DE magnetic materials; fluorides; spintronics; multifunctional materials;
structure-property relationships
ID THERMAL-EXPANSION; ROOM-TEMPERATURE; THIN-FILMS; DOPED ZNO; OXIDES;
SEMICONDUCTORS; NANOCRYSTALS; NANOWIRES; EXCHANGE; FE
C1 [Hu, Lei; Chen, Jun; Fan, Longlong; Rong, Yangchun; Deng, Jinxia; Xing, Xianran] Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China.
[Chen, Jun] Univ Sci & Technol Beijing, Beijing Key Lab Special Melting & Preparat High E, Beijing 100083, Peoples R China.
[Ren, Yang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Huang, Qingzhen] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Sanson, Andrea] Univ Padua, Dept Phys & Astron, I-35131 Padua, Italy.
[Jiang, Zheng; Wang, Yong] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201800, Peoples R China.
[Zhou, Mei] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.
RP Chen, J (reprint author), Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China.
EM junchen@ustb.edu.cn; xing@ustb.edu.cn
RI Chen, Jun/M-1669-2015;
OI Zhou, Mei/0000-0003-1738-2116
FU National Natural Science Foundation of China [21322102, 91422301,
21231001]; Program for Changjiang Scholars and Innovative Research Team
in University [IRT1207]; Fundamental Research Funds for the Central
Universities, China [FRF-TP-14-012C1]; Program of Introducing Talents of
Discipline to Universities [B14003]; U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357];
[20140214]
FX This work was supported by the National Natural Science Foundation of
China (Grant Nos. 21322102, 91422301, 21231001), the Program for
Changjiang Scholars and Innovative Research Team in University
(IRT1207), the Fundamental Research Funds for the Central Universities,
China (FRF-TP-14-012C1), and the Program of Introducing Talents of
Discipline to Universities (B14003). The use of the Advanced Photon
Source at Argonne National Laboratory was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
(DE-AC02-06CH11357). We thank the staff at beamlines BL14W and BL08U of
the Shanghai Synchrotron Radiation Facility (SSRF) for providing beam
time to collect the Fe L- and K-edge EXAFS spectra and for assisting
with the XAFS measurements. We are also grateful to the ELETTRA
synchrotron radiation facility and the staff of the XAFS beamline for
the Sc K-edge EXAFS spectrum of pure ScF3, which was
collected during the project N. 20140214.
NR 28
TC 7
Z9 7
U1 17
U2 65
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0935-9648
EI 1521-4095
J9 ADV MATER
JI Adv. Mater.
PD AUG 19
PY 2015
VL 27
IS 31
BP 4592
EP 4596
DI 10.1002/adma.201500868
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CP5HI
UT WOS:000359911500013
PM 26149472
ER
PT J
AU Ugur, A
Katmis, F
Li, MD
Wu, LJ
Zhu, YM
Varanasi, KK
Gleason, KK
AF Ugur, Asli
Katmis, Ferhat
Li, Mingda
Wu, Lijun
Zhu, Yimei
Varanasi, Kripa K.
Gleason, Karen K.
TI Low-Dimensional Conduction Mechanisms in Highly Conductive and
Transparent Conjugated Polymers
SO ADVANCED MATERIALS
LA English
DT Article
DE chemical vapor deposition; conducting polymers; poly(3,
4-ethylenedioxythiophene) (PEDOT)
ID CHEMICAL-VAPOR-DEPOSITION; LIGHT-EMITTING-DIODES; FIELD-EFFECT MOBILITY;
THERMOELECTRIC PERFORMANCE; ELECTRICAL-CONDUCTIVITY; FILMS;
POLY(3,4-ETHYLENEDIOXYTHIOPHENE); SEMICONDUCTORS; POLYACETYLENE;
POLYTHIOPHENE
C1 [Ugur, Asli; Gleason, Karen K.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA.
[Varanasi, Kripa K.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
[Katmis, Ferhat] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Li, Mingda] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA.
[Wu, Lijun; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RP Varanasi, KK (reprint author), MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
EM varanasi@mit.edu; kkg@mit.edu
RI Gleason, Karen/G-1471-2013
OI Gleason, Karen/0000-0001-6127-1056
FU MIT Institute for Soldier Nanotechnologies (ISN) [DAAD-19-02D-0002];
U.S. Army Research Office; U.S. Department of Energy, Office of Basic
Energy Science, Material Science and Engineering Division
[DE-AC02-98CH10886]
FX The authors acknowledge financial support from the MIT Institute for
Soldier Nanotechnologies (ISN) under Contract DAAD-19-02D-0002 with the
U.S. Army Research Office. Part of this work was carried out at the CMSE
shared experimental facilities, and the authors would like to thank S.
Speakman for assistance and J. Moodera for fruitful discussions. The
Work at BNL was supported by the U.S. Department of Energy, Office of
Basic Energy Science, Material Science and Engineering Division, under
Contract No. DE-AC02-98CH10886.
NR 43
TC 15
Z9 15
U1 20
U2 148
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0935-9648
EI 1521-4095
J9 ADV MATER
JI Adv. Mater.
PD AUG 19
PY 2015
VL 27
IS 31
BP 4604
EP 4610
DI 10.1002/adma.201502340
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CP5HI
UT WOS:000359911500015
PM 26224113
ER
PT J
AU Keyshar, K
Gong, YJ
Ye, GL
Brunetto, G
Zhou, W
Cole, DP
Hackenberg, K
He, YM
Machado, L
Kabbani, M
Hart, AHC
Li, B
Galvao, DS
George, A
Vajtai, R
Tiwary, CS
Ajayan, PM
AF Keyshar, Kunttal
Gong, Yongji
Ye, Gonglan
Brunetto, Gustavo
Zhou, Wu
Cole, Daniel P.
Hackenberg, Ken
He, Yongmin
Machado, Leonardo
Kabbani, Mohamad
Hart, Amelia H. C.
Li, Bo
Galvao, Douglas S.
George, Antony
Vajtai, Robert
Tiwary, Chandra Sekhar
Ajayan, Pulickel M.
TI Chemical Vapor Deposition of Monolayer Rhenium Disulfide (ReS2)
SO ADVANCED MATERIALS
LA English
DT Article
DE 2D materials; chemical vapor deposition; renium disulfide; transition
metal dichalcogenides
ID HYDROGEN EVOLUTION REACTION; HEXAGONAL BORON-NITRIDE; HIGH-QUALITY
MONOLAYER; MOS2 ATOMIC LAYERS; HIGH-PERFORMANCE; GRAIN-BOUNDARY;
NANOSHEETS; TRANSISTORS; GROWTH; DICHALCOGENIDES
C1 [Keyshar, Kunttal; Ye, Gonglan; Hackenberg, Ken; He, Yongmin; Kabbani, Mohamad; Hart, Amelia H. C.; Li, Bo; George, Antony; Vajtai, Robert; Tiwary, Chandra Sekhar; Ajayan, Pulickel M.] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA.
[Gong, Yongji] Rice Univ, Dept Chem, Houston, TX 77005 USA.
[Brunetto, Gustavo; Machado, Leonardo; Galvao, Douglas S.] State Univ Campinas UNICAMP, IFGW DFA, Dept Appl Phys, BR-13083859 Campinas, SP, Brazil.
[Zhou, Wu] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Cole, Daniel P.] US Army Res Lab, Vehicle Technol Directorate, Aberdeen Proving Ground, MD 21005 USA.
RP Tiwary, CS (reprint author), Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA.
EM cst311@gmail.com; ajayan@rice.edu
RI Zhou, Wu/D-8526-2011; UNICAMP, CCES - /J-7787-2015; Gong,
Yongji/L-7628-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017;
Machado, Leonardo/E-2081-2017
OI Zhou, Wu/0000-0002-6803-1095;
FU Army Research Laboratory [W911NF-1O-l-0052]; AFOSR (Air Force Office of
Scientific Research) [FA9550-14-1-0268]; CNPq; CAPES; FAPESP; Center for
Computational Engineering and Sciences at Unicamp through the
FAPESP/CEPID [2013/08293-7]
FX Research was sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement No. W911NF-1O-l-0052. The views
and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation herein. The Research was also sponsored by AFOSR (Air
Force Office of Scientific Research) under Award No. FA9550-14-1-0268.
The authors would also like to acknowlege Sidong Lei from Rice
University for aid in device measurements. Gustavo Brunetto, Leonardo
Machado and Douglas S. Galvao acknowledge financial support from the
Brazilian Agencies CNPq, CAPES and FAPESP and also thank the Center for
Computational Engineering and Sciences at Unicamp for financial support
through the FAPESP/CEPID Grant 2013/08293-7.
NR 45
TC 26
Z9 26
U1 36
U2 178
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0935-9648
EI 1521-4095
J9 ADV MATER
JI Adv. Mater.
PD AUG 19
PY 2015
VL 27
IS 31
BP 4640
EP 4648
DI 10.1002/adma.201501795
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CP5HI
UT WOS:000359911500021
PM 26140355
ER
PT J
AU Yang, XF
Kattel, S
Senanayake, SD
Boscoboinik, JA
Nie, XW
Graciani, J
Rodriguez, JA
Liu, P
Stacchiola, DJ
Chen, JGG
AF Yang, Xiaofang
Kattel, Shyam
Senanayake, Sanjaya D.
Boscoboinik, J. Anibal
Nie, Xiaowa
Graciani, Jesus
Rodriguez, Jose A.
Liu, Ping
Stacchiola, Dario J.
Chen, Jingguang G.
TI Low Pressure CO2 Hydrogenation to Methanol over Gold Nanoparticles
Activated on a CeOx/TiO2 Interface
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID LOW-TEMPERATURE OXIDATION; MIXED-METAL OXIDE; CARBON-DIOXIDE; NANOMETER
LEVEL; SYNTHESIS GAS; CATALYSTS; CERIA; SPECTROSCOPY; SURFACES; SUPPORT
AB Capture and recycling of CO2 into valuable chemicals such as alcohols could help mitigate its emissions into the atmosphere. Due to its inert nature, the activation of CO2 is a critical step in improving the overall reaction kinetics during its chemical conversion. Although pure gold is an inert noble metal and cannot catalyze hydrogenation reactions, it can be activated when deposited as nanoparticles on the appropriate oxide support. In this combined experimental and theoretical study, it is shown that an electronic polarization at the metal-oxide interface of Au nanoparticles anchored and stabilized on a CeOx/TiO2 substrate generates active centers for CO2 adsorption and its low pressure hydrogenation, leading to a higher selectivity toward methanol. This study illustrates the importance of localized electronic properties and structure in catalysis for achieving higher alcohol selectivity from CO2 hydrogenation.
C1 [Yang, Xiaofang; Kattel, Shyam; Senanayake, Sanjaya D.; Rodriguez, Jose A.; Liu, Ping; Stacchiola, Dario J.; Chen, Jingguang G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Boscoboinik, J. Anibal] Brookhaven Natl Lab, CFN, Upton, NY 11973 USA.
[Nie, Xiaowa] Dalian Univ Technol, Dalian 116024, Liaoning, Peoples R China.
[Graciani, Jesus] Univ Seville, Dept Phys Chem, E-41012 Seville, Spain.
[Chen, Jingguang G.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA.
RP Stacchiola, DJ (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
EM djs@bnl.gov; jgchen@columbia.edu
RI Stacchiola, Dario/B-1918-2009; Senanayake, Sanjaya/D-4769-2009
OI Stacchiola, Dario/0000-0001-5494-3205; Senanayake,
Sanjaya/0000-0003-3991-4232
FU U.S. Department of Energy, Office of Science [DE-AC02-98CH10886]; U.S.
DOE Office of Science User Facilities at Brookhaven National Laboratory
[DE-SC0012704]; Office of Science of the US Department of Energy
[DE-AC02-05CH11231]
FX The work was sponsored under Contract No. DE-AC02-98CH10886 with the
U.S. Department of Energy, Office of Science. This research used
resources of the Center for Functional Nanomaterials and National
Synchrotron Light Source, which are U.S. DOE Office of Science User
Facilities at Brookhaven National Laboratory under Contract No.
DE-SC0012704 and the National Energy Research Scientific Computing
Center (NERSC) supported by the Office of Science of the US Department
of Energy under Contract No. DE-AC02-05CH11231.
NR 24
TC 21
Z9 21
U1 41
U2 265
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 19
PY 2015
VL 137
IS 32
BP 10104
EP 10107
DI 10.1021/jacs.5b06150
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA CP5YR
UT WOS:000359962000020
PM 26218072
ER
PT J
AU Dalton, DM
Ellis, SR
Nichols, EM
Mathies, RA
Toste, FD
Bergman, RG
Raymond, KN
AF Dalton, Derek M.
Ellis, Scott R.
Nichols, Eva M.
Mathies, Richard A.
Toste, F. Dean
Bergman, Robert G.
Raymond, Kenneth N.
TI Supramolecular Ga4L612- Cage Photosensitizes 1,3-Rearrangement of
Encapsulated Guest via Photoinduced Electron Transfer
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID AZA-COPE REARRANGEMENT; ENERGY-TRANSFER; HOST; CYCLODEXTRIN;
DERIVATIVES; EXCITATION; PORPHYRIN; CATALYSIS; DYNAMICS; ACCEPTOR
AB The K12Ga4L6 supramolecular cage is photoactive and enables an unprecedented photoreaction not observed in bulk solution. Ga4L612- cages photosensitize the 1,3-rearrangement of encapsulated cinnamylammonium cation guests from the linear isomer to the higher energy branched isomer when irradiated with UVA light. The rearrangement requires light and guest encapsulation to occur. The Ga4L612- cage-mediated reaction mechanism was investigated by UV/vis absorption, fluorescence, ultrafast transient absorption, and electrochemical experiments. The results support a photoinduced electron transfer mechanism for the 1,3-rearrangement, in which the Ga4L612- cage absorbs photons and transfers an electron to the encapsulated cinnamylammonium ion, which undergoes C-N bond cleavage, followed by back electron transfer to the cage and recombination of the guest fragments to form the higher energy isomer.
C1 [Toste, F. Dean; Bergman, Robert G.; Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Toste, FD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM fdtoste@berkeley.edu; rbergman@berkeley.edu;
raymond@socrates.berkeley.edu
FU Office of Science, Office of Basic Energy Sciences; Division of Chemical
Sciences, Geosciences, and Biosciences of the U.S. Department of Energy
at LBNL [DE-AC02-05CH11231]; National Science Foundation Graduate
Research Fellowship Program (NSF GRFP)
FX This research was supported by the Director, Office of Science, Office
of Basic Energy Sciences, and the Division of Chemical Sciences,
Geosciences, and Biosciences of the U.S. Department of Energy at LBNL
(DE-AC02-05CH11231). E.M.N. gratefully acknowledges support from the
National Science Foundation Graduate Research Fellowship Program (NSF
GRFP). We thank Dr. Heinz Frei, Dr. Daniel Dietze, and Rebecca Schafer
for helpful discussions.
NR 35
TC 6
Z9 6
U1 9
U2 72
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 19
PY 2015
VL 137
IS 32
BP 10128
EP 10131
DI 10.1021/jacs.5b06317
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA CP5YR
UT WOS:000359962000026
PM 26256754
ER
PT J
AU Zhu, HY
Wu, ZL
Su, D
Veith, GM
Lu, HF
Zhang, PF
Chai, SH
Dai, S
AF Zhu, Huiyuan
Wu, Zili
Su, Dong
Veith, Gabriel M.
Lu, Hanfeng
Zhang, Pengfei
Chai, Song-Hai
Dai, Sheng
TI Constructing Hierarchical Interfaces: TiO2-Supported PtFe-FeOx Nanowires
for Room Temperature CO Oxidation
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID OXYGEN REDUCTION REACTION; CATALYTIC-OXIDATION; FERROUS CENTERS;
NANOPARTICLES; MECHANISM; FEPT; ELECTROCATALYSIS; ELECTROOXIDATION;
STABILITY; ULTRATHIN
AB In this communication, we report a facile approach to constructing catalytic active hierarchical interfaces in one-dimensional (1D) nanostructure, exemplified by the synthesis of TiO2-supported PtFe-FeOx nanowires (NWs). The hierarchical interface, constituting atomic level interactions between PtFe and FeOx within each NW and the interactions between NWs and support (TiO2), enables CO oxidation with 100% conversion at room temperature. We Identify the role of the two interfaces by probing the CO oxidation reaction with isotopic labeling experiments. Both the oxygen atoms (Os) in FeOx and TiO2 participate in the initial CO oxidation, facilitating the reaction through a redox pathway. Moreover, the intact 1D structure leads to the high stability of the catalyst. After 30 h in the reaction stream, the PtFe-FeOx/TiO2 catalyst exhibits no activity decay. Our results provide a general approach and new insights into the construction of hierarchical interfaces for advanced catalysis.
C1 [Zhu, Huiyuan; Wu, Zili; Zhang, Pengfei; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Wu, Zili] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Chai, Song-Hai; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Lu, Hanfeng] Zhejiang Univ Technol, Coll Chem Engn, Inst Catalyt React Engn, Hangzhou 310014, Zhejiang, Peoples R China.
RP Zhu, HY (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM zhuh@ornl.gov; dais@ornl.gov
RI Dai, Sheng/K-8411-2015; Zhang, Pengfei/I-5484-2013; Wu,
Zili/F-5905-2012; Chai, Song-Hai/A-9299-2012; Su, Dong/A-8233-2013
OI Dai, Sheng/0000-0002-8046-3931; Wu, Zili/0000-0002-4468-3240; Chai,
Song-Hai/0000-0002-4152-2513; Su, Dong/0000-0002-1921-6683
FU Laboratory Directed Research and Development Program at the Oak Ridge
National Laboratory; U.S. Department of Energy, Office of Science,
Chemical Sciences, Geosciences and Biosciences Division; U.S. DOE Office
of Science Facility, at Brookhaven National Laboratory [DE-SC0012704];
US Department of Energy's Office of Basic Energy Sciences, Division of
Materials Science and Engineering
FX H.Z. was supported by Liane B. Russell Fellowship sponsored by the
Laboratory Directed Research and Development Program at the Oak Ridge
National Laboratory, managed by UT-Battelle, LLC, for the US Department
of Energy. Z.W. and S.D. were supported by the U.S. Department of
Energy, Office of Science, Chemical Sciences, Geosciences and
Biosciences Division. Part of the work, including the DRIFTS study, was
conducted at the Center for Nanophase Materials Sciences, which is a DOE
Office of Science User Facility. Electron Microscopy work used resources
of the Center for Functional Nanomaterials, which is a U.S. DOE Office
of Science Facility, at Brookhaven National Laboratory under Contract
No. DE-SC0012704. Part of the work (XPS-GMV), was supported by the US
Department of Energy's Office of Basic Energy Sciences, Division of
Materials Science and Engineering.
NR 29
TC 15
Z9 15
U1 26
U2 111
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 19
PY 2015
VL 137
IS 32
BP 10156
EP 10159
DI 10.1021/jacs.5b07011
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA CP5YR
UT WOS:000359962000033
PM 26244820
ER
PT J
AU Musselwhite, N
Na, K
Sabyrov, K
Aayogu, S
Somorjai, GA
AF Musselwhite, Nathan
Na, Kyungsu
Sabyrov, Kairat
Aayogu, Selim
Somorjai, Gabor A.
TI Mesoporous Aluminosilicate Catalysts for the Selective Isomerization of
n-Hexane: The Roles of Surface Acidity and Platinum Metal
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID SINGLE-CRYSTAL SURFACES; TEMPERATURE-DEPENDENCE; STRUCTURE SENSITIVITY;
BETA ZEOLITES; CRACKING; NANOPARTICLES; MECHANISMS; SIZE; AROMATIZATION;
SPECTROSCOPY
AB Several types of mesoporous aluminosilicates were synthesized and evaluated in the catalytic isomerization of n-hexane, both with and without Pt nanopartides loaded into the mesopores. The materials investigated included mesoporous MFI and BEA type zeolites, MCF-17 mesoporous silica, and an aluminum modified MCF-17. The acidity of the materials was investigated through pyridine adsorption and Fourier Transform-Infrared Spectroscopy (FT-IR). It was found that the strong Bronsted acid sites in the micropores of the zeolite catalysts facilitated the cracking of hexane. However, the medium strength acid sites on the Al modified MCF-17 mesoporous silica greatly enhanced the isomerization reaction. Through the loading of different amounts of Pt into the mesopores of the Al modified MCF-17, the relationship between the metal nanopartides and acidic sites on the support was revealed.
C1 [Musselwhite, Nathan; Na, Kyungsu; Sabyrov, Kairat; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Musselwhite, Nathan; Na, Kyungsu; Sabyrov, Kairat; Aayogu, Selim; Somorjai, Gabor A.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Na, Kyungsu] Chonnam Natl Univ, Dept Chem, Gwangju 500757, South Korea.
RP Aayogu, S (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM somorjai@berkeley.edu; salayoglu@lbl.gov
FU Chevron Energy Technology Company; Office of Science, Office of Basic
Energy Sciences, Division of Chemical Sciences, Geological and
Biosciences of the U.S. DOE [DE-AC02-05CH11231]; Korea government
(Ministry of Science, ICT & Future Planning) [NRF-2014M1A8A1049254];
Office of Science, Office of Basic Energy Sciences, Division of Material
Sciences and Engineering, of the U.S. Department of Energy
[DE-AC02-05CH11231]
FX This work is funded by The Chevron Energy Technology Company. We
acknowledge support from the Director, Office of Science, Office of
Basic Energy Sciences, Division of Chemical Sciences, Geological and
Biosciences of the U.S. DOE under Contract DE-AC02-05CH11231. K.N.
thanks the Korea CCS R&D Center (KCRC) grant funded by the Korea
government (Ministry of Science, ICT & Future Planning,
NRF-2014M1A8A1049254). Work at the Molecular Foundry was supported by
the Director, Office of Science, Office of Basic Energy Sciences,
Division of Material Sciences and Engineering, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.
NR 40
TC 5
Z9 5
U1 16
U2 98
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 19
PY 2015
VL 137
IS 32
BP 10231
EP 10237
DI 10.1021/jacs.5b04808
PG 7
WC Chemistry, Multidisciplinary
SC Chemistry
GA CP5YR
UT WOS:000359962000043
PM 26168190
ER
PT J
AU Altman, AB
Pemmaraju, CD
Camp, C
Arnold, J
Minasian, SG
Prendergast, D
Shuh, DK
Tyliszczak, T
AF Altman, Alison B.
Pemmaraju, C. D.
Camp, Clement
Arnold, John
Minasian, Stefan G.
Prendergast, David
Shuh, David K.
Tyliszczak, Tolek
TI Theory and X-ray Absorption Spectroscopy for Aluminum Coordination
Complexes - Al K-Edge Studies of Charge and Bonding in (BDI)Al,
(BDI)AlR2, and (BDI)AlX2 Complexes
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID AB-INITIO CALCULATIONS; ADVANCED LIGHT-SOURCE; NON-INNOCENT LIGANDS;
LOW-VALENT ALUMINUM; MAIN-GROUP; ELECTRONIC-STRUCTURE; HYDROGEN STORAGE;
GROUP-13 METALS; LEWIS-ACID; CHEMISTRY
AB Polarized aluminum K-edge X-ray absorption near edge structure (XANES) spectroscopy and first-principles calculations were used to probe electronic structure in a series of (BDI)Al, (BDI)AlX2, and (BDI)AlR2 coordination compounds (X = F, Cl, I; R = H, Me; BDI = 2,6-diisopropylphenyl-beta-diketiminate). Spectral interpretations were guided by examination of the calculated transition energies and polarization-dependent oscillator strengths, which agreed well with the XANES spectroscopy measurements. Pre-edge features were assigned to transitions associated with the Al 3p orbitals involved in metalligand bonding. Qualitative trends in Al 1s core energy and valence orbital occupation were established through a systematic comparison of excited states derived from Al 3p orbitals with similar symmetries in a molecular orbital framework. These trends suggested that the higher transition energies observed for (BDI)AlX2 systems with more electronegative X-1 ligands could be ascribed to a decrease in electron density around the aluminum atom, which causes an increase in the attractive potential of the Al nucleus and concomitant increase in the binding energy of the Al 1s core orbitals. For (BDI)Al and (BDI)AlH2 the experimental Al K-edge XANES spectra and spectra calculated using the eXcited electron and CoreHole (XCH) approach had nearly identical energies for transitions to final state orbitals of similar composition and symmetry. These results implied that the charge distributions about the aluminum atoms in (BDI)Al and (BDI)AlH2 are similar relative to the (BDI)AlX2 and (BDI)AlMe2 compounds, despite having different formal oxidation states of +1 and +3, respectively. However, (BDI)Al was unique in that it exhibited a low-energy feature that was attributed to transitions into a low-lying p-orbital of b(1) symmetry that is localized on Al and orthogonal to the (BDI)Al plane. The presence of this low-energy unoccupied molecular orbital on electron-rich (BDI)Al distinguishes its valence electronic structure from that of the formally trivalent compounds (BDI)AlX2 and (BDI)AlR2. The work shows that Al K-edge XANES spectroscopy can be used to provide valuable insight into electronic structure and reactivity relationships for main-group coordination compounds.
C1 [Altman, Alison B.; Camp, Clement; Arnold, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Altman, Alison B.; Pemmaraju, C. D.; Arnold, John; Minasian, Stefan G.; Shuh, David K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Prendergast, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.
[Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Arnold, J (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM arnold@berkeley.edu; sgminasian@lbl.gov; dgprendergast@lbl.gov;
dkshuh@lbl.gov
RI Foundry, Molecular/G-9968-2014; Arnold, John/F-3963-2012; CAMP,
Clement/I-5072-2015
OI Arnold, John/0000-0001-9671-227X; CAMP, Clement/0000-0001-8528-0731
FU Department of Energy (DOE) Integrated University Program Fellowship at
the University of California, Berkeley; Office of Science, Office of
Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and
Biosciences Heavy Element Chemistry Program of the U.S. DOE at LBNL
[DE-AC02-05CH11231]; User Project at the Molecular Foundry, LBNL; Office
of Science, Office of Basic Energy Sciences, of the U.S. DOE at LBNL
[DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences Condensed
Phase and Interfacial Molecular Sciences Program of the U.S. DOE at LBNL
[DE-AC02-05CH11231]
FX A.B.A. acknowledges support by a Department of Energy (DOE) Integrated
University Program Fellowship at the University of California, Berkeley.
J.A., S.G.M. and D.K.S. were supported by the Director, Office of
Science, Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences Heavy Element Chemistry Program of the U.S.
DOE at LBNL under contract no. DE-AC02-05CH11231. The theory work of
C.D.P. and D.P. was supported through a User Project at the Molecular
Foundry, LBNL. Calculations were performed on the Cray XE6 Hopper
computer at the National Energy Research Scientific Computing Center
(NERSC-LBNL) and Molecular Foundry computing resources, Nano and Vulcan,
managed by the High Performance Computing Services Group of LBNL. The
ALS and T.T. were supported by the Director, Office of Science, Office
of Basic Energy Sciences, of the U.S. DOE under contract no.
DE-AC02-05CH11231 at LBNL. Research at Beam line 11.0.2 at the ALS was
supported by the Director, Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and Biosciences
Condensed Phase and Interfacial Molecular Sciences Program of the U.S.
DOE at LBNL under contract no. DE-AC02-05CH11231.
NR 128
TC 4
Z9 4
U1 8
U2 35
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 19
PY 2015
VL 137
IS 32
BP 10304
EP 10316
DI 10.1021/jacs.5b05854
PG 13
WC Chemistry, Multidisciplinary
SC Chemistry
GA CP5YR
UT WOS:000359962000052
PM 26258886
ER
PT J
AU Carrasquillo-Flores, R
Ro, I
Kumbhalkar, MD
Burt, S
Carrero, CA
Alba-Rubio, AC
Miller, JT
Hermans, I
Huber, GW
Dumesic, JA
AF Carrasquillo-Flores, Ronald
Ro, Insoo
Kumbhalkar, Mrunmayi D.
Burt, Samuel
Carrero, Carlos A.
Alba-Rubio, Ana C.
Miller, Jeffrey T.
Hermans, Ive
Huber, George W.
Dumesic, James A.
TI Reverse Water-Gas Shift on Interfacial Sites Formed by Deposition of
Oxidized Molybdenum Moieties onto Gold Nanoparticles
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID CO OXIDATION; CARBON-MONOXIDE; ACTIVE-SITES; IN-SITU; HYDROGEN
DISSOCIATION; AU NANOPARTICLES; LOW-TEMPERATURE; METAL-OXIDE;
QUANTITATIVE-DETERMINATION; AU/CEO2 CATALYST
AB We show that MoOx-promoted Au/SiO2 catalysts are active for reverse water gas shift (RWGS) at 573 K. Results from reactivity measurements, CO FTIR studies, Raman spectroscopy, and X-ray absorption spectroscopy (XAS) indicate that the deposition of Mo onto Au nanoparticles occurs preferentially on under-coordinated Au sites, forming Au/MoOx interfacial sites active for reverse water gas shift (RWGS). Au and AuMo sites are quantified from FTIR spectra of adsorbed CO collected at subambient temperatures (e.g., 150-270 K). Bands at 2111 and 2122 cm(-1) are attributed to CO adsorbed on under-coordinated Au and Au-0 and Au delta+ species, respectively. Clausius-Clapeyron analysis of FTIR data yields a heat of CO adsorption (Delta H-ads) of -31 kJ mol(-1) for Au-0 and -64 kJ mol(-1) for Au delta+ at 33% surface coverage. Correlations of RWGS reactivity with changes in FTIR spectra for samples containing different amounts of Mo indicate that interfacial sites are an order of magnitude more active than Au sites for RWGS. Raman spectra of Mo/SiO2 show a feature at 975 cm(-1), attributed to a dioxo (O=)(2)Mo(-O-Si)(2) species not observed in spectra of AuMo/SiO2 catalysts, indicating preferential deposition of Mo on Au. XAS results indicate that Mo is in a +6 oxidation state, and therefore Au and Mo exist as a metal metal oxide combination. Catalyst calcination increases the quantity of under-coordinated Au sites, increasing RWGS activity. This strategy for catalyst synthesis and characterization enables quantification of Au active sites and interfacial sites, and this approach may be extended to describe reactivity changes observed in other reactions on supported gold catalysts.
C1 [Carrasquillo-Flores, Ronald; Ro, Insoo; Kumbhalkar, Mrunmayi D.; Burt, Samuel; Alba-Rubio, Ana C.; Hermans, Ive; Huber, George W.; Dumesic, James A.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA.
[Burt, Samuel; Carrero, Carlos A.; Hermans, Ive] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA.
[Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn, Argonne, IL 60439 USA.
RP Dumesic, JA (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA.
EM dumesic@engr.wisc.edu
RI BM, MRCAT/G-7576-2011
FU U.S. Department of Energy, Office of Basic Energy Sciences; U.S. DOE
[DE-AC02-06CH11357]
FX This material is based upon work supported by the U.S. Department of
Energy, Office of Basic Energy Sciences. We are thankful for the use of
the Advanced Photon Source, an Office of Science User Facility operated
for the DOE Office of Science by Argonne National Laboratory, supported
by the U.S. DOE under contract DE-AC02-06CH11357. We wish to thank Canan
Sener for valuable discussions and help in catalyst synthesis
NR 66
TC 11
Z9 12
U1 20
U2 105
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 19
PY 2015
VL 137
IS 32
BP 10317
EP 10325
DI 10.1021/jacs.5b05945
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA CP5YR
UT WOS:000359962000053
PM 26225538
ER
PT J
AU Vjunov, A
Derewinski, MA
Fulton, JL
Camaioni, DM
Lercher, JA
AF Vjunov, Aleksei
Derewinski, Miroslaw A.
Fulton, John L.
Camaioni, Donald M.
Lercher, Johannes A.
TI Impact of Zeolite Aging in Hot Liquid Water on Activity for
Acid-Catalyzed Dehydration of Alcohols
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID HIGH-RESOLUTION SI-29; SOLID-STATE; NMR-SPECTROSCOPY; AL DISTRIBUTION;
BETA-ZEOLITE; Y-ZEOLITES; MAS NMR; FRAMEWORK; ALUMINUM; SPECTRA
AB The location and stability of Bronsted acid sites catalytically active in zeolites during aqueous phase dehydration of alcohols were studied on the example of cydohexanol. The catalytically active hydronium ions originate from Bronsted acid sites (BAS) of the zeolite that are formed by framework tetrahedral Si atom substitution by Al. Al K-edge extended X-ray absorption fine structure (EXAFS) and Al-27 magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopies in combination with density functional theory (DFT) calculations are used to determine the distribution of tetrahedral Al sites (Al T-sites) both qualitatively and quantitatively for both parent and HBEA catalysts aged in water prior to catalytic testing. The aging procedure leads to partial degradation of the zeolite framework evidenced from the decrease of material crystallinity (XRD) as well as sorption capacity (BET). With the exception of one commercial zeolite sample, which had the highest concentration of framework silanol-defects, there is no evidence of Al coordination modification after aging in water. The catalyst weight-normalized dehydration rate correlated best with the sum of strong and weak Bronsted acidic protons both able to generate the hydrated hydronium ions. All hydronium ions were equally active for the acid-catalyzed reactions in water. Zeolite aging in hot water prior to catalysis decreased the weight normalized dehydration reaction rate compared to that of the parent HBEA, which is attributed to the reduced concentration of accessible Bronsted acid sites. Sites are hypothesized to be blocked due to reprecipitation of silica dissolved during framework hydrolysis in the aging procedure.
C1 [Vjunov, Aleksei; Derewinski, Miroslaw A.; Fulton, John L.; Camaioni, Donald M.; Lercher, Johannes A.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.
[Lercher, Johannes A.] Tech Univ Munich, Dept Chem, D-85748 Garching, Germany.
[Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Inst, D-85748 Garching, Germany.
RP Lercher, JA (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA.
EM Johannes.Lercher@pnnl.gov
FU U.S. Department of Energy (DOE), Office of Science, Office of Basic
Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences;
Materials Synthesis and Simulation Across Scales (MS3 Initiative); DOE
Office of Science, Office of Biological and Environmental Research
located at Pacific Northwest National Laboratory (PNNL); Physical
Science Laboratory located at Pacific Northwest National Laboratory
(PNNL)
FX Authors thank B. W. Arey (PNNL) for HIM measurements, T. Huthwelker for
support during Al XAFS measurements at the Swiss Light Source (PSI,
Switzerland), J. Z. Hu and S. D. Burton (PNNL) for support during NMR
experiments. This work was supported by the U.S. Department of Energy
(DOE), Office of Science, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences & Biosciences. M.D. acknowledges support
by the Materials Synthesis and Simulation Across Scales (MS3
Initiative) conducted under Laboratory Directed Research & Development
Program at PNNL. NMR experiments were performed at the Environmental
Molecular Science Laboratory, a national scientific user facility
sponsored by the DOE Office of Science, Office of Biological and
Environmental Research, and Physical Science Laboratory both located at
Pacific Northwest National Laboratory (PNNL).
NR 42
TC 8
Z9 8
U1 20
U2 125
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 19
PY 2015
VL 137
IS 32
BP 10374
EP 10382
DI 10.1021/jacs.5b06169
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA CP5YR
UT WOS:000359962000060
PM 26237038
ER
PT J
AU Kenanakis, G
Soukoulis, CM
Economou, EN
AF Kenanakis, George
Soukoulis, Costas M.
Economou, Eleftherios N.
TI Casimir forces of metallic microstructures into cavities
SO PHYSICAL REVIEW B
LA English
DT Article
ID MICROELECTROMECHANICAL SYSTEMS; VACUUM; RANGE
AB A theoretical estimate of the Casimir force of a metallic structure embedded into a cubic cavity is proposed. We demonstrate that by calculating the eigenmodes of the system we can determine the Casimir force, which can be either attractive or repulsive, by simply changing the geometry of the structures relative to the walls of the cavity. In this analysis, several cases of structures are taken into account, from rectangular slabs to chiral "omega" particles, and the predicted data are consistent with recent literature. We demonstrate that the sidewalls of the studied cavity contribute decisively to the repulsive Casimir force between the system and the nearby top surface of the cavity. Finally, we provide evidence that the medium embedded into the studied cavity (and especially its permittivity) can change the intensity of the Casimir force, while its repulsive nature, once established (owing to favorable geometrical features), remains quite robust.
C1 [Kenanakis, George; Soukoulis, Costas M.; Economou, Eleftherios N.] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 70013, Crete, Greece.
[Soukoulis, Costas M.] US DOE, Ames Lab, Ames, IA 50011 USA.
[Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Kenanakis, G (reprint author), Fdn Res & Technol Hellas, Inst Elect Struct & Laser, N Plastira 100, Iraklion 70013, Crete, Greece.
EM gkenanak@iesl.forth.gr
RI Economou, Eleftherios /E-6374-2010; Soukoulis, Costas/A-5295-2008
FU Greek GSRT project [ERC02-EXEL]; European Research Council under ERC
Advanced Grant [32081]; Department of Energy (Basic Energy Sciences,
Division of Materials Sciences and Engineering) [DE-AC02-07CH11358]
FX This work was supported by Greek GSRT project ERC02-EXEL, and by the
European Research Council under ERC Advanced Grant No. 32081
(PHOTOMETA). Work at Ames Laboratory was partially supported by the
Department of Energy (Basic Energy Sciences, Division of Materials
Sciences and Engineering) under Contract No. DE-AC02-07CH11358
(computational studies).
NR 27
TC 1
Z9 1
U1 1
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 19
PY 2015
VL 92
IS 7
AR 075430
DI 10.1103/PhysRevB.92.075430
PG 6
WC Physics, Condensed Matter
SC Physics
GA CP4NS
UT WOS:000359859600007
ER
PT J
AU Adolph, C
Akhunzyanov, R
Alexeev, MG
Alexeev, GD
Amoroso, A
Andrieux, V
Anosov, V
Austregesilo, A
Azevedo, C
Badelek, B
Balestra, F
Barth, J
Beck, R
Bedfer, Y
Bernhard, J
Bicker, K
Bielert, ER
Birsa, R
Bisplinghoff, J
Bodlak, M
Boer, M
Bordalo, P
Bradamante, F
Braun, C
Bressan, A
Buchele, M
Burtin, E
Chang, WC
Chiosso, M
Choi, I
Chung, SU
Cicuttin, A
Crespo, ML
Curiel, Q
Dalla Torre, S
Dasgupta, SS
Dasgupta, S
Denisov, OY
Dhara, L
Donskov, SV
Doshita, N
Dunnweber, W
Duic, V
Dziewiecki, M
Efremov, A
Eversheim, PD
Eyrich, W
Faessler, M
Ferrero, A
Finger, M
Finger, M
Fischer, H
Franco, C
von Hohenesche, ND
Friedrich, JM
Frolov, V
Gautheron, F
Gavrichtchouk, OP
Gerassimov, S
Gnesi, I
Gorzellik, M
Grabmuller, S
Grasso, A
Grosse-Perdekamp, M
Grube, B
Grussenmeyer, T
Guskov, A
Haas, F
Hahne, D
von Harrach, D
Hashimoto, R
Heinsius, FH
Herrmann, F
Hinterberger, F
Horikawa, N
d'Hose, N
Hsieh, CY
Huber, S
Ishimoto, S
Ivanov, A
Ivanshin, Y
Iwata, T
Jahn, R
Jary, V
Jorg, P
Joosten, R
Kabuss, E
Ketzer, B
Khaustov, GV
Khokhlov, YA
Kisselev, Y
Klein, F
Klimaszewski, K
Koivuniemi, JH
Kolosov, VN
Kondo, K
Konigsmann, K
Konorov, I
Konstantinov, VF
Kotzinian, AM
Kouznetsov, O
Kramer, M
Kremser, P
Krinner, F
Kroumchtein, ZV
Kuchinski, N
Kunne, F
Kurek, K
Kurjata, RP
Lednev, AA
Lehmann, A
Levillain, M
Levorato, S
Lichtenstadt, J
Maggiora, A
Magnon, A
Makins, N
Makke, N
Mallot, GK
Marchand, C
Martin, A
Marzec, J
Matousek, J
Matsuda, H
Matsuda, T
Meshcheryakov, G
Meyer, W
Michigami, T
Mikhailov, YV
Miyachi, Y
Nagaytsev, A
Nagel, T
Nerling, F
Neyret, D
Nikolaenko, VI
Novy, J
Nowak, WD
Nunes, AS
Olshevsky, AG
Orlov, I
Ostrick, M
Panzieri, D
Parsamyan, B
Paul, S
Peng, JC
Pereira, F
Pesek, M
Peshekhonov, DV
Platchkov, S
Pochodzalla, J
Polyakov, VA
Pretz, J
Quaresma, M
Quintans, C
Ramos, S
Regali, C
Reicherz, G
Riedl, C
Rocco, E
Rossiyskaya, NS
Ryabchikov, DI
Rychter, A
Samoylenko, VD
Sandacz, A
Santos, C
Sarkar, S
Savin, IA
Sbrizzai, G
Schiavon, P
Schmeing, S
Schmidt, K
Schmieden, H
Schonning, K
Schopferer, S
Schluter, T
Selyunin, A
Shevchenko, OY
Silva, L
Sinha, L
Sirtl, S
Slunecka, M
Sozzi, F
Srnka, A
Stolarski, M
Sulc, M
Suzuki, H
Szabelski, A
Szameitat, T
Sznajder, P
Takekawa, S
ter Wolbeek, J
Tessaro, S
Tessarotto, F
Thibaud, F
Tskhay, V
Uhl, S
Veloso, J
Virius, M
Wallner, S
Weisrock, T
Wilfert, M
Zaremba, K
Zavertyaev, M
Zemlyanichkina, E
Ziembicki, M
Zink, A
AF Adolph, C.
Akhunzyanov, R.
Alexeev, M. G.
Alexeev, G. D.
Amoroso, A.
Andrieux, V.
Anosov, V.
Austregesilo, A.
Azevedo, C.
Badelek, B.
Balestra, F.
Barth, J.
Beck, R.
Bedfer, Y.
Bernhard, J.
Bicker, K.
Bielert, E. R.
Birsa, R.
Bisplinghoff, J.
Bodlak, M.
Boer, M.
Bordalo, P.
Bradamante, F.
Braun, C.
Bressan, A.
Buechele, M.
Burtin, E.
Chang, W. -C.
Chiosso, M.
Choi, I.
Chung, S. U.
Cicuttin, A.
Crespo, M. L.
Curiel, Q.
Dalla Torre, S.
Dasgupta, S. S.
Dasgupta, S.
Denisov, O. Yu.
Dhara, L.
Donskov, S. V.
Doshita, N.
Duennweber, W.
Duic, V.
Dziewiecki, M.
Efremov, A.
Eversheim, P. D.
Eyrich, W.
Faessler, M.
Ferrero, A.
Finger, M.
Finger, M., Jr.
Fischer, H.
Franco, C.
von Hohenesche, N. du Fresne
Friedrich, J. M.
Frolov, V.
Gautheron, F.
Gavrichtchouk, O. P.
Gerassimov, S.
Gnesi, I.
Gorzellik, M.
Grabmueller, S.
Grasso, A.
Grosse-Perdekamp, M.
Grube, B.
Grussenmeyer, T.
Guskov, A.
Haas, F.
Hahne, D.
von Harrach, D.
Hashimoto, R.
Heinsius, F. H.
Herrmann, F.
Hinterberger, F.
Horikawa, N.
d'Hose, N.
Hsieh, C. -Yu
Huber, S.
Ishimoto, S.
Ivanov, A.
Ivanshin, Yu.
Iwata, T.
Jahn, R.
Jary, V.
Joerg, P.
Joosten, R.
Kabuss, E.
Ketzer, B.
Khaustov, G. V.
Khokhlov, Yu. A.
Kisselev, Yu.
Klein, F.
Klimaszewski, K.
Koivuniemi, J. H.
Kolosov, V. N.
Kondo, K.
Koenigsmann, K.
Konorov, I.
Konstantinov, V. F.
Kotzinian, A. M.
Kouznetsov, O.
Kraemer, M.
Kremser, P.
Krinner, F.
Kroumchtein, Z. V.
Kuchinski, N.
Kunne, F.
Kurek, K.
Kurjata, R. P.
Lednev, A. A.
Lehmann, A.
Levillain, M.
Levorato, S.
Lichtenstadt, J.
Maggiora, A.
Magnon, A.
Makins, N.
Makke, N.
Mallot, G. K.
Marchand, C.
Martin, A.
Marzec, J.
Matousek, J.
Matsuda, H.
Matsuda, T.
Meshcheryakov, G.
Meyer, W.
Michigami, T.
Mikhailov, Yu. V.
Miyachi, Y.
Nagaytsev, A.
Nagel, T.
Nerling, F.
Neyret, D.
Nikolaenko, V. I.
Novy, J.
Nowak, W. -D.
Nunes, A. S.
Olshevsky, A. G.
Orlov, I.
Ostrick, M.
Panzieri, D.
Parsamyan, B.
Paul, S.
Peng, J. -C.
Pereira, F.
Pesek, M.
Peshekhonov, D. V.
Platchkov, S.
Pochodzalla, J.
Polyakov, V. A.
Pretz, J.
Quaresma, M.
Quintans, C.
Ramos, S.
Regali, C.
Reicherz, G.
Riedl, C.
Rocco, E.
Rossiyskaya, N. S.
Ryabchikov, D. I.
Rychter, A.
Samoylenko, V. D.
Sandacz, A.
Santos, C.
Sarkar, S.
Savin, I. A.
Sbrizzai, G.
Schiavon, P.
Schmeing, S.
Schmidt, K.
Schmieden, H.
Schoenning, K.
Schopferer, S.
Schlueter, T.
Selyunin, A.
Shevchenko, O. Yu.
Silva, L.
Sinha, L.
Sirtl, S.
Slunecka, M.
Sozzi, F.
Srnka, A.
Stolarski, M.
Sulc, M.
Suzuki, H.
Szabelski, A.
Szameitat, T.
Sznajder, P.
Takekawa, S.
ter Wolbeek, J.
Tessaro, S.
Tessarotto, F.
Thibaud, F.
Tskhay, V.
Uhl, S.
Veloso, J.
Virius, M.
Wallner, S.
Weisrock, T.
Wilfert, M.
Zaremba, K.
Zavertyaev, M.
Zemlyanichkina, E.
Ziembicki, M.
Zink, A.
CA COMPASS Collaboration
TI Observation of a New Narrow Axial-Vector Meson alpha(1)(1420)
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID RESONANCE
AB The COMPASS Collaboration at CERN has measured diffractive dissociation of 190 GeV/c pions into the pi(-) pi(-) pi(+) final state using a stationary hydrogen target. A partial- wave analysis (PWA) was performed in bins of 3 pi mass and four-momentum transfer using the isobar model and the so far largest PWA model consisting of 88 waves. A narrow peak is observed in the f(0)(980)pi channel with spin, parity and C-parity quantum numbers J(PC) = 1(++). We present a resonance- model study of a subset of the spin-density matrix selecting 3 pi states with J(PC) = 2(++) and 4(++) decaying into rho(770)pi and with J(PC) = 1(++) decaying into f(0)(980)pi. We identify a new a 1 meson with mass (1414(-13)(+15)) MeV/c(2) and width (153(-23)(+8)) MeV/c(2). Within the final states investigated in our analysis, we observe the new a(1)(1420) decaying only into f(0)(980)pi, suggesting its exotic nature.
C1 [Panzieri, D.] Univ Piemonte Orientale, I-15100 Alessandria, Italy.
[Azevedo, C.; Pereira, F.; Veloso, J.] Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal.
[Gautheron, F.; Koivuniemi, J. H.; Meyer, W.; Reicherz, G.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany.
[Beck, R.; Bisplinghoff, J.; Eversheim, P. D.; Hinterberger, F.; Jahn, R.; Joosten, R.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany.
[Barth, J.; Hahne, D.; Klein, F.; Pretz, J.; Schmieden, H.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany.
[Srnka, A.] Acad Sci Czech Republic, Inst Sci Instruments, CS-61264 Brno, Czech Republic.
[Dasgupta, S. S.; Dhara, L.; Sarkar, S.; Sinha, L.] Matrivani Inst Expt Res & Educ, Kolkata 700030, W Bengal, India.
[Akhunzyanov, R.; Alexeev, G. D.; Anosov, V.; Efremov, A.; Gavrichtchouk, O. P.; Guskov, A.; Ivanov, A.; Ivanshin, Yu.; Kisselev, Yu.; Kouznetsov, O.; Kroumchtein, Z. V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Olshevsky, A. G.; Orlov, I.; Peshekhonov, D. V.; Rossiyskaya, N. S.; Savin, I. A.; Selyunin, A.; Shevchenko, O. Yu.; Slunecka, M.; Zemlyanichkina, E.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
[Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Zink, A.] Univ Erlangen Nurnberg, Inst Phys, D-91054 Erlangen, Germany.
[Buechele, M.; Fischer, H.; Gorzellik, M.; Grussenmeyer, T.; Heinsius, F. H.; Herrmann, F.; Joerg, P.; Koenigsmann, K.; Kremser, P.; Nowak, W. -D.; Regali, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Szameitat, T.; ter Wolbeek, J.] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany.
[Austregesilo, A.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; von Hohenesche, N. du Fresne; Frolov, V.; Mallot, G. K.; Novy, J.; Rocco, E.; Schoenning, K.] CERN, CH-1211 Geneva 23, Switzerland.
[Sulc, M.] Tech Univ Liberec, Liberec 46117, Czech Republic.
[Bordalo, P.; Franco, C.; Nunes, A. S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M.] LIP, P-1000149 Lisbon, Portugal.
[Bernhard, J.; von Hohenesche, N. du Fresne; von Harrach, D.; Kabuss, E.; Nerling, F.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
[Matsuda, T.] Miyazaki Univ, Miyazaki 8892192, Japan.
[Gerassimov, S.; Konorov, I.; Tskhay, V.; Zavertyaev, M.] PN Lebedev Phys Inst, Moscow 119991, Russia.
[Austregesilo, A.; Bicker, K.; Chung, S. U.; Friedrich, J. M.; Gerassimov, S.; Grabmueller, S.; Grube, B.; Haas, F.; Huber, S.; Ketzer, B.; Konorov, I.; Kraemer, M.; Krinner, F.; Nagel, T.; Paul, S.; Schmeing, S.; Uhl, S.; Wallner, S.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany.
[Horikawa, N.] Nagoya Univ, Nagoya, Aichi 464, Japan.
[Bodlak, M.; Finger, M.; Finger, M., Jr.; Matousek, J.] Charles Univ Prague, Fac Math & Phys, CR-18000 Prague, Czech Republic.
[Jary, V.; Novy, J.; Pesek, M.; Virius, M.] Czech Tech Univ, Prague 16636, Czech Republic.
[Donskov, S. V.; Khaustov, G. V.; Khokhlov, Yu. A.; Kolosov, V. N.; Konstantinov, V. F.; Lednev, A. A.; Mikhailov, Yu. V.; Nikolaenko, V. I.; Polyakov, V. A.; Ryabchikov, D. I.; Samoylenko, V. D.] Natl Res Ctr Kurchatov Inst, State Sci Ctr Inst High Energy Phys, Protvino 142281, Russia.
[Andrieux, V.; Bedfer, Y.; Boer, M.; Burtin, E.; Curiel, Q.; Ferrero, A.; d'Hose, N.; Kunne, F.; Levillain, M.; Magnon, A.; Marchand, C.; Neyret, D.; Platchkov, S.; Thibaud, F.] CEA IRFU SPhN Saclay, F-91191 Gif Sur Yvette, France.
[Chang, W. -C.; Hsieh, C. -Yu] Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
[Lichtenstadt, J.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Bradamante, F.; Bressan, A.; Duic, V.; Makke, N.; Martin, A.; Sbrizzai, G.; Schiavon, P.] Univ Trieste, Dept Phys, I-34127 Trieste, Italy.
[Birsa, R.; Bradamante, F.; Bressan, A.; Cicuttin, A.; Crespo, M. L.; Dalla Torre, S.; Dasgupta, S.; Levorato, S.; Makke, N.; Martin, A.; Santos, C.; Sbrizzai, G.; Schiavon, P.; Sozzi, F.; Tessaro, S.; Tessarotto, F.] Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy.
[Cicuttin, A.; Crespo, M. L.] Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy.
[Alexeev, M. G.; Amoroso, A.; Balestra, F.; Chiosso, M.; Gnesi, I.; Grasso, A.; Kotzinian, A. M.; Parsamyan, B.; Takekawa, S.] Univ Turin, Dept Phys, I-10125 Turin, Italy.
[Amoroso, A.; Balestra, F.; Chiosso, M.; Denisov, O. Yu.; Gnesi, I.; Grasso, A.; Kotzinian, A. M.; Maggiora, A.; Panzieri, D.; Parsamyan, B.; Takekawa, S.] INFN, Torino Sect, I-10125 Turin, Italy.
[Choi, I.; Grosse-Perdekamp, M.; Makins, N.; Peng, J. -C.; Riedl, C.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Klimaszewski, K.; Kurek, K.; Sandacz, A.; Szabelski, A.; Sznajder, P.] Natl Ctr Nucl Res, PL-00681 Warsaw, Poland.
[Badelek, B.] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland.
[Dziewiecki, M.; Kurjata, R. P.; Marzec, J.; Rychter, A.; Zaremba, K.; Ziembicki, M.] Warsaw Univ Technol, Inst Radioelect, PL-00665 Warsaw, Poland.
[Doshita, N.; Hashimoto, R.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Suzuki, H.] Yamagata Univ, Yamagata 9928510, Japan.
[Bordalo, P.; Ramos, S.] Univ Lisbon, Inst Super Tecn, P-1699 Lisbon, Portugal.
[Chung, S. U.] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea.
[Chung, S. U.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Horikawa, N.; Suzuki, H.] Chubu Univ, Kasugai, Aichi 4878501, Japan.
[Ishimoto, S.] KEK, Tsukuba, Ibaraki 3050801, Japan.
[Khokhlov, Yu. A.] Moscow Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia.
RP Bressan, A (reprint author), Univ Trieste, Dept Phys, I-34127 Trieste, Italy.
EM andrea.bressan@cern.ch; bgrube@tum.de; fabienne.kunne@cea.fr
RI Paul, Stephan/K-9237-2016; Silva, Luis/M-4435-2016; Dasgupta, Shuddha
Shankar/O-6118-2016; Srnka, A/E-2441-2012; Martin, Anna/I-9381-2012;
Koivuniemi, Jaakko/L-2959-2015; Zavertyaev, Mikhail/M-6844-2015;
Gerassimov, Sergei/M-8779-2015; Tskhay, Vladimir/N-1711-2015; Azevedo,
Carlos/J-5733-2013; Kurjata, Robert/I-5112-2016; Paul,
Stephan/F-7596-2015; veloso, joao/J-4478-2013; Friedrich,
Jan/B-9024-2013; Olshevskiy, Alexander/I-1580-2016
OI Paul, Stephan/0000-0002-8813-0437; Silva, Luis/0000-0003-0044-3736;
Amoroso, Antonio/0000-0002-3095-8610; Martin, Anna/0000-0002-1333-0143;
Koivuniemi, Jaakko/0000-0002-6817-5267; Azevedo,
Carlos/0000-0002-0012-9918; Kurjata, Robert/0000-0001-8547-910X; Paul,
Stephan/0000-0002-8813-0437; Friedrich, Jan/0000-0001-9298-7882;
Olshevskiy, Alexander/0000-0002-8902-1793
FU CERN management; MEYS (Czech Republic); European Union; CEA (France);
P2I (France); ANR (France); BMBF; DFG cluster of excellence "Origin and
Structure of the Universe"; computing facilities of the Computational
Center for Particle and Astrophysics (C2PAP); IAS-TUM; Humboldt
foundation (Germany); SAIL (CSR) (India); ISF (Israel); INFN (Italy);
MEXT (Japan); JSPS (Japan); Daiko (Japan); Yamada Foundations (Japan);
NRF (Rep. of Korea); NCN (Poland); FCT (Portugal); CERN-RFBR (Russia);
Presidential Grant (Russia) [NSh-999.2014.2]
FX We gratefully acknowledge the support of the CERN management and staff
as well as the skills and efforts of the technicians of the
collaborating institutions. This work is supported by MEYS (Czech
Republic); "HadronPhysics2" Integrating Activity in FP7 (European
Union); CEA, P2I, and ANR (France); BMBF, DFG cluster of excellence
"Origin and Structure of the Universe", the computing facilities of the
Computational Center for Particle and Astrophysics (C2PAP), IAS-TUM, and
the Humboldt foundation (Germany); SAIL (CSR) (India); ISF (Israel);
INFN (Italy); MEXT, JSPS, Daiko, and Yamada Foundations (Japan); NRF
(Rep. of Korea); NCN (Poland); FCT (Portugal); CERN-RFBR and
Presidential Grant NSh-999.2014.2 (Russia).
NR 28
TC 16
Z9 16
U1 1
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 19
PY 2015
VL 115
IS 8
AR 082001
DI 10.1103/PhysRevLett.115.082001
PG 6
WC Physics, Multidisciplinary
SC Physics
GA CP4SJ
UT WOS:000359872600002
PM 26340182
ER
PT J
AU Cherkashyna, N
DiJulio, DD
Panzner, T
Rantsiou, E
Filges, U
Ehlers, G
Bentley, PM
AF Cherkashyna, Nataliia
DiJulio, Douglas D.
Panzner, Tobias
Rantsiou, Emmanouela
Filges, Uwe
Ehlers, Georg
Bentley, Phillip M.
TI Benchmarking shielding simulations for an accelerator-driven spallation
neutron source
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
AB The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS), currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ), at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolith wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code Geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates Geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters) instruments at ESS.
C1 [Cherkashyna, Nataliia; DiJulio, Douglas D.; Bentley, Phillip M.] European Spallat Source ESS AB, SE-22100 Lund, Sweden.
[Panzner, Tobias; Rantsiou, Emmanouela; Filges, Uwe] Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
[Ehlers, Georg] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.
[Bentley, Phillip M.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden.
RP Cherkashyna, N (reprint author), European Spallat Source ESS AB, POB 176, SE-22100 Lund, Sweden.
EM nataliia.cherkashyna@esss.se
RI Instrument, CNCS/B-4599-2012; Ehlers, Georg/B-5412-2008
OI Ehlers, Georg/0000-0003-3513-508X
FU Scientific User Facilities Division; Office of Basic Energy Sciences;
U.S. Department of Energy
FX One of the authors (G. E.) acknowledges funding by the Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy.
NR 21
TC 1
Z9 1
U1 1
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD AUG 19
PY 2015
VL 18
IS 8
AR 083501
DI 10.1103/PhysRevSTAB.18.083501
PG 7
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA CP5EI
UT WOS:000359903700003
ER
PT J
AU Yoon, J
Kim, S
Kim, D
Kim, ID
Hong, S
No, K
AF Yoon, Jaesung
Kim, Sangjoon
Kim, Dongjin
Kim, Il-Doo
Hong, Seungbum
No, Kwangsoo
TI Fabrication of Highly Ordered and Well-Aligned PbTiO3/TiN Core-Shell
Nanotube Arrays
SO SMALL
LA English
DT Article
DE core-shell nanostructures; nanotube arrays; PbTiO3; piezoresponse force
microscopy
ID ATOMIC LAYER DEPOSITION; TITANIUM NITRIDE; MICROSCOPY; PRECURSOR
C1 [Yoon, Jaesung; Kim, Sangjoon; Kim, Dongjin; Kim, Il-Doo; Hong, Seungbum; No, Kwangsoo] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea.
[Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA.
RP Hong, S (reprint author), Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 291 Daehak Ro, Taejon 305701, South Korea.
EM hong@anl.gov; ksno@kaist.ac.kr
RI Hong, Seungbum/B-7708-2009; No, Kwangsoo/C-1983-2011; Kim,
Il-Doo/C-1850-2011
OI Hong, Seungbum/0000-0002-2667-1983;
FU Mid-career Researcher Program through the National Research Foundation
of Korea - Ministry of Education, Science and Technology [2010-0015063];
KIMM; National Research Council of Science & Technology (NST), Republic
of Korea; U.S. Department of Energy, Office of Science, Materials
Sciences and Engineering Division
FX J.Y. and S.K. contributed equally to this work. This research was
supported by the Mid-career Researcher Program (2010-0015063) through
the National Research Foundation of Korea funded by Ministry of
Education, Science and Technology and the KIMM and the National Research
Council of Science & Technology (NST), Republic of Korea. Work at
Argonne National Laboratory (S.H., data analysis and writing of
manuscript) was supported by the U.S. Department of Energy, Office of
Science, Materials Sciences and Engineering Division.
NR 28
TC 1
Z9 1
U1 5
U2 26
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1613-6810
EI 1613-6829
J9 SMALL
JI Small
PD AUG 19
PY 2015
VL 11
IS 31
BP 3750
EP 3754
DI 10.1002/smll.201500087
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA CP5GI
UT WOS:000359908900003
PM 25929761
ER
PT J
AU Witzel, WM
Montano, I
Muller, RP
Carroll, MS
AF Witzel, Wayne M.
Montano, Ines
Muller, Richard P.
Carroll, Malcolm S.
TI Multiqubit gates protected by adiabaticity and dynamical decoupling
applicable to donor qubits in silicon
SO PHYSICAL REVIEW B
LA English
DT Article
ID OPEN QUANTUM-SYSTEMS; PYTHON FRAMEWORK; ELECTRON-SPIN; READOUT; PULSES;
QUTIP; DOT
AB We present a strategy for producing multiqubit gates that promise high fidelity with minimal tuning requirements. Our strategy combines gap protection from the adiabatic theorem with dynamical decoupling in a complementary manner. Energy-level transition errors are protected by adiabaticity and remaining phase errors are mitigated via dynamical decoupling. This is a powerful way to divide and conquer the various error channels. In order to accomplish this without violating a no-go theorem regarding black-box dynamically corrected gates [Phys. Rev. A 80, 032314 (2009)], we require a robust operating point (sweet spot) in control space where the qubits interact with little sensitivity to noise. There are also energy gap requirements for effective adiabaticity. We apply our strategy to an architecture in Si with P donors where we assume we can shuttle electrons between different donors. Electron spins act as mobile ancillary qubits and P nuclear spins act as long-lived data qubits. This system can have a very robust operating point where the electron spin is bound to a donor in the quadratic Stark shift regime. High fidelity single qubit gates may be performed using well-established global magnetic resonance pulse sequences. Single electron-spin preparation and measurement has also been demonstrated. Putting this all together, we present a robust universal gate set for quantum computation.
C1 [Witzel, Wayne M.; Muller, Richard P.] Sandia Natl Labs, Ctr Comp Res, Albuquerque, NM 87185 USA.
[Montano, Ines; Carroll, Malcolm S.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Witzel, WM (reprint author), Sandia Natl Labs, Ctr Comp Res, POB 5800, Albuquerque, NM 87185 USA.
EM wwitzel@sandia.gov
FU US Department of Energy's National Nuclear Security Administration
[DE-AC04-94AL85000]
FX We acknowledge numerous discussions with intellectual contributions to
this work from our diverse, multidisciplinary team of quantum device and
architecture experts at Sandia National Laboratories including N.
Bishop, R. Blume-Kohout, J. Gamble, A. Ganti, M. Grace, N. T. Jacobson,
A. Landahl, E. Nielsen, and K. Young. We also acknowledge R. Rahman and
G. Klimeck for assistance and support with the NEMO-3D simulations.
Sandia National Laboratories is a multiprogram laboratory operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the US Department of Energy's National Nuclear Security
Administration under Contract No. DE-AC04-94AL85000.
NR 39
TC 0
Z9 0
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 19
PY 2015
VL 92
IS 8
AR 081407
DI 10.1103/PhysRevB.92.081407
PG 5
WC Physics, Condensed Matter
SC Physics
GA CP4OC
UT WOS:000359860700004
ER
PT J
AU LaHaye, NL
Kurian, J
Diwakar, PK
Alff, L
Harilal, SS
AF LaHaye, Nicole L.
Kurian, Jose
Diwakar, Prasoon K.
Alff, Lambert
Harilal, Sivanandan S.
TI Femtosecond laser ablation-based mass spectrometry: An ideal tool for
stoichiometric analysis of thin films
SO SCIENTIFIC REPORTS
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; MS SIGNAL INTENSITY; LA-ICP-MS; ELEMENTAL
FRACTIONATION; MATERIALS SCIENCE; REPETITION RATE; PULSE DURATION;
DEPOSITION; LAYERS; OXIDES
AB An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material's properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd(x)Sb-2 and T'-La2CuO4 to demonstrate the capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of similar to 10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.
C1 [LaHaye, Nicole L.; Harilal, Sivanandan S.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[LaHaye, Nicole L.; Diwakar, Prasoon K.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47906 USA.
[Kurian, Jose; Alff, Lambert] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany.
RP Harilal, SS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM hari@pnnl.gov
RI Harilal, Sivanandan/B-5438-2014;
OI Harilal, Sivanandan/0000-0003-2266-7976; LaHaye,
Nicole/0000-0001-5047-8078
FU DOE/NNSA Office of Nonproliferation and Verification Research and
Development [NA-22]; Laboratory Directed Research and Development (LDRD)
Program of PNNL; U.S. National Science Foundation; U.S. Department of
Energy [DE-AC05-76RLO1830]
FX This work was supported in part by DOE/NNSA Office of Nonproliferation
and Verification Research and Development (NA-22), the Laboratory
Directed Research and Development (LDRD) Program of PNNL and the U.S.
National Science Foundation. Pacific Northwest National Laboratory is
operated for the U.S. Department of Energy by the Battelle Memorial
Institute under Contract No. DE-AC05-76RLO1830.
NR 58
TC 5
Z9 5
U1 7
U2 40
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 2045-2322
J9 SCI REP-UK
JI Sci Rep
PD AUG 19
PY 2015
VL 5
AR 13121
DI 10.1038/srep13121
PG 8
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA CP2FL
UT WOS:000359692800001
PM 26285795
ER
PT J
AU Kim, JB
Weichman, ML
Neumark, DM
AF Kim, Jongjin B.
Weichman, Marissa L.
Neumark, Daniel M.
TI Low-lying states of FeO and FeO- by slow photoelectron spectroscopy
SO MOLECULAR PHYSICS
LA English
DT Article
DE photoelectron; iron; metal oxide; spectroscopy
ID MILLIMETER-WAVE SPECTRUM; 5-DELTA-I GROUND-STATE; ELECTRONIC-STRUCTURE;
EXCITED-STATES; IRON MONOXIDE; NEGATIVE-IONS; PHOTODETACHMENT
SPECTROSCOPY; ANGULAR-DISTRIBUTIONS; DIATOMIC-MOLECULES; DIPOLE-MOMENTS
AB High-resolution anion photoelectron spectra of FeO- were acquired by slow electron velocity-map imaging of trapped and cooled ions. Ions were cooled to different temperatures by controlling the conditions in the trap, allowing us to disentangle contributions in the spectra from two different anion states. The spectra show that photodetachment of the two anion states accesses three low-lying neutral FeO states with one state in common, allowing us to derive term energies of all five states. The ground anion state is confirmed to be the X (4)Delta state, and FeO is found to have an electron affinity of 1.4950 eV. We assign the anion a (6)sigma(+) state, and obtain a term energy of 0.117 eV. The A (5)sigma(+) and a (7)sigma(+) neutral states are reassigned, and have term energies of 0.258 and 0.616 eV, respectively, relative to the neutral X (5)Delta(4) ground state.
C1 [Kim, Jongjin B.; Weichman, Marissa L.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM dneumark@berkeley.edu
RI Neumark, Daniel/B-9551-2009;
OI Neumark, Daniel/0000-0002-3762-9473; Weichman,
Marissa/0000-0002-2551-9146
FU Air Force Office of Scientific Research [FA9550-12-1-0160]; Defense
University Research Instrumentation Program [FA9550-11-1-0330]; National
Science Foundation
FX This work is funded by the Air Force Office of Scientific Research
[grant number FA9550-12-1-0160] and the Defense University Research
Instrumentation Program [grant number FA9550-11-1-0330]. Marissa L.
Weichman thanks the National Science Foundation for a graduate research
fellowship.
NR 55
TC 1
Z9 1
U1 4
U2 24
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 0026-8976
EI 1362-3028
J9 MOL PHYS
JI Mol. Phys.
PD AUG 18
PY 2015
VL 113
IS 15-16
SI SI
BP 2105
EP 2114
DI 10.1080/00268976.2015.1005706
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA CQ9BN
UT WOS:000360906000008
ER
PT J
AU Savee, JD
Zador, J
Hemberger, P
Sztaray, B
Bodi, A
Osborn, DL
AF Savee, John D.
Zador, Judit
Hemberger, Patrick
Sztaray, Balint
Bodi, Andras
Osborn, David L.
TI Threshold photoelectron spectrum of the benzyl radical
SO MOLECULAR PHYSICS
LA English
DT Article
DE PEPICO; benzylium; photoelectron; benzyl
ID DIFFUSE INTERSTELLAR BANDS; SPECTROSCOPY; PHOTOIONIZATION; HYDROCARBONS;
IONIZATION; RESOLUTION; KINETICS; CARRIERS; CATIONS; STATES
AB We measure threshold photoelectron spectra of the benzyl radical, which show transitions to at least three electronic states of the benzylium cation:
[GRAPHICS]
(1)A(1),
[GRAPHICS]
B-3(2), and
[GRAPHICS]
B-1(2), with possible contributions from transitions to
[GRAPHICS]
(3)A(1). The main features in the vibrationally resolved threshold photoelectron spectrum between 7.1 and 10.5 eV are assigned with the aid of Franck-Condon simulations to these four electronic states of benzylium. We measure the adiabatic ionisation energy of the benzyl radical to be 7.252(5) eV and observe a well-resolved vibrational progression in the lowest triplet state,
[GRAPHICS]
B-3(2), from which we obtain a measured singlet-triplet splitting of 1.928(7) eV in benzylium.
C1 [Savee, John D.; Zador, Judit; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA.
[Hemberger, Patrick; Bodi, Andras] Paul Scherrer Inst, Mol Dynam Grp, CH-5232 Villigen, Switzerland.
[Sztaray, Balint] Univ Pacific, Dept Chem, Stockton, CA 95211 USA.
RP Osborn, DL (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA.
EM dlosbor@sandia.gov
RI Zador, Judit/A-7613-2008; Hemberger, Patrick/E-7909-2017;
OI Zador, Judit/0000-0002-9123-8238; Hemberger,
Patrick/0000-0002-1251-4549; Bodi, Andras/0000-0003-2742-1051
FU National Nuclear Security Administration [DE-AC04-94-AL85000]; Swiss
Federal Office for Energy [BFE] [101969/152433]; National Science
Foundation [CHE-1266407]
FX Sandia is a multi-program laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the National Nuclear Security
Administration [contract DE-AC04-94-AL85000]; Andras Bodi and Patrick
Hemberger gratefully acknowledge support by the Swiss Federal Office for
Energy [BFE contract number 101969/152433]; Balint Sztaray is supported
by the National Science Foundation [CHE-1266407].
NR 37
TC 4
Z9 4
U1 5
U2 18
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0026-8976
EI 1362-3028
J9 MOL PHYS
JI Mol. Phys.
PD AUG 18
PY 2015
VL 113
IS 15-16
SI SI
BP 2217
EP 2227
DI 10.1080/00268976.2015.1021398
PG 11
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA CQ9BN
UT WOS:000360906000019
ER
PT J
AU Ormond, TK
Hemberger, P
Troy, TP
Ahmed, M
Stanton, JF
Ellison, GB
AF Ormond, Thomas K.
Hemberger, Patrick
Troy, Tyler P.
Ahmed, Musahid
Stanton, John F.
Ellison, G. Barney
TI The ionisation energy of cyclopentadienone: a photoelectron-photoion
coincidence study
SO MOLECULAR PHYSICS
LA English
DT Article
DE iPEPICO; pyrolysis; microtubular reactor
ID THERMAL-DECOMPOSITION; BASIS-SETS; SPECTROSCOPY; PYROLYSIS; STATES;
MASS; INTERMEDIATE; DERIVATIVES; COMBUSTION; MOLECULES
AB Imaging photoelectron photoion coincidence (iPEPICO) spectra of cyclopentadienone (C5H4=O and C5D4=O) have been measured at the Swiss Light Source Synchrotron (Paul Scherrer Institute, Villigen, Switzerland) at the Vacuum Ultraviolet (VUV) Beamline. Complementary to the photoelectron spectra, photoionisation efficiency curves were measured with tunable VUV radiation at the Chemical Dynamics Beamline at the Advanced Light Source Synchrotron (Lawrence Berkeley National Laboratory, Berkeley, CA, USA). For both experiments, molecular beams diluted in argon and helium were generated from the vacuum flash pyrolysis of o-phenylene sulphite in a resistively heated microtubular SiC flow reactor. The Franck-Condon profiles and ionisation energies were calculated at the CCSD(T) level of theory, and are in excellent agreement with the observed iPEPICO spectra. The ionisation energies of both cyclopentadienone-d(0), IE(C5H4=O), and cyclopentadienone-d(4), IE(C5D4=O), were observed to be the same: 9.41 +/- 0.01 eV. The mass-selected threshold photoelectron spectrum (ms-TPES) of cyclopentadienone reveals that the C=C stretch in the ground state of the cation is excited upon ionisation, supporting computational evidence that the ground state of the cation is
[GRAPHICS]
(2)A(2), and is in agreement with previous studies. However, the previously reported ionisation potential has been improved considerably in this work. In addition, since o-benzoquinone (o-O=C6H4=O and o-O=C6D4=O) is also produced in this process, its ms-TPES has been recorded. From the iPEPICO and photoionisation efficiency spectra, we infer an adiabatic ionisation energy of IE(o-O=C6H4=O) = 9.3 +/- 0.1 eV, but the rather structureless spectrum indicates a strong change in geometry upon ionisation making this value less reliable.
C1 [Ormond, Thomas K.; Ellison, G. Barney] Univ Colorado, Dept Chem, Boulder, CO 80309 USA.
[Hemberger, Patrick] Paul Scherrer Inst, Mol Dynam Grp, Villigen, Switzerland.
[Troy, Tyler P.; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Chem Dynam Beamline, Berkeley, CA 94720 USA.
[Stanton, John F.] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA.
RP Ellison, GB (reprint author), Univ Colorado, Dept Chem, Boulder, CO 80309 USA.
EM barney@jila.colorado.edu
RI Ahmed, Musahid/A-8733-2009; Hemberger, Patrick/E-7909-2017
OI Hemberger, Patrick/0000-0002-1251-4549
FU US National Science Foundation [CHE-1112466]; US Department of Energy,
Office of Science, Basic Energy Sciences [DE-FG02-07ER1588]; Robert A.
Welch Foundation of Houston, TX [F-1283]; Chemical Sciences Division of
the US Department of Energy [DE-AC02-05CH11231]; Swiss Federal Office
for Energy [BFE] [101969/152433]
FX T.K. Ormond, G.B. Ellison and J.F. Stanton: US National Science
Foundation [grant number CHE-1112466]; J.F. Stanton: US Department of
Energy, Office of Science, Basic Energy Sciences [award number
DE-FG02-07ER1588]; Robert A. Welch Foundation of Houston, TX [grant
number F-1283]; T.P. Troy and M. Ahmed: Director of the Office of Energy
Research; Office of Basic Energy Sciences; Chemical Sciences Division of
the US Department of Energy [contract number DE-AC02-05CH11231]. Swiss
Federal Office for Energy [BFE contract number 101969/152433].
NR 39
TC 2
Z9 2
U1 1
U2 11
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0026-8976
EI 1362-3028
J9 MOL PHYS
JI Mol. Phys.
PD AUG 18
PY 2015
VL 113
IS 15-16
SI SI
BP 2350
EP 2358
DI 10.1080/00268976.2015.1042936
PG 9
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA CQ9BN
UT WOS:000360906000030
ER
PT J
AU Varghese, NJ
Mukherjee, S
Ivanova, N
Konstantinidis, KT
Mavrommatis, K
Kyrpides, NC
Pati, A
AF Varghese, Neha J.
Mukherjee, Supratim
Ivanova, Natalia
Konstantinidis, Konstantinos T.
Mavrommatis, Kostas
Kyrpides, Nikos C.
Pati, Amrita
TI Microbial species delineation using whole genome sequences
SO NUCLEIC ACIDS RESEARCH
LA English
DT Article
ID BACILLUS-CEREUS GROUP; REAL-TIME PCR; BURKHOLDERIA-PSEUDOMALLEI; SP
NOV.; MALLEI; IDENTIFICATION; THAILANDENSIS; DEFINITION; PHYLOGENY;
BOTULINUM
AB Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF, gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF, gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required.
C1 [Varghese, Neha J.; Mukherjee, Supratim; Ivanova, Natalia; Kyrpides, Nikos C.; Pati, Amrita] DOE Joint Genom Inst, Microbial & Metagenome Superprogram, Walnut Creek, CA 94598 USA.
[Konstantinidis, Konstantinos T.] Georgia Inst Technol, Dept Civil & Environm Engn, Atlanta, GA 30332 USA.
[Mavrommatis, Kostas] Celgene Corp, San Francisco, CA 94158 USA.
RP Varghese, NJ (reprint author), DOE Joint Genom Inst, Microbial & Metagenome Superprogram, Walnut Creek, CA 94598 USA.
EM njvarghese@lbl.gov; nckyrpides@lbl.gov; apati@lbl.gov
RI Kyrpides, Nikos/A-6305-2014;
OI Kyrpides, Nikos/0000-0002-6131-0462; Ivanova,
Natalia/0000-0002-5802-9485
FU LDRD grant [YLD012]; US Department of Energy Joint Genome Institute,
Office of Science of the US Department of Energy [DE-AC02-05CH11231,
DE-AC02-5CH11231]
FX LDRD grant YLD012: Computational, Data Management and Analysis Methods
for the Study of a Rapidly Expanding Genome and Metagenome Sequence Data
Space (YLD012); US Department of Energy Joint Genome Institute, Office
of Science of the US Department of Energy [DE-AC02-05CH11231]. Funding
for open access charge: US Department of Energy Joint Genome Institute,
Office of Science of the US Department of Energy [DE-AC02-5CH11231].
NR 30
TC 40
Z9 40
U1 6
U2 28
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0305-1048
EI 1362-4962
J9 NUCLEIC ACIDS RES
JI Nucleic Acids Res.
PD AUG 18
PY 2015
VL 43
IS 14
BP 6761
EP 6771
DI 10.1093/nar/gkv657
PG 11
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA CQ4PX
UT WOS:000360588200017
PM 26150420
ER
PT J
AU Kukshal, V
Kim, IK
Hura, GL
Tomkinson, AE
Tainer, JA
Ellenberger, T
AF Kukshal, Vandna
Kim, In-Kwon
Hura, Gregory L.
Tomkinson, Alan E.
Tainer, John A.
Ellenberger, Tom
TI Human DNA ligase III bridges two DNA ends to promote specific
intermolecular DNA end joining
SO NUCLEIC ACIDS RESEARCH
LA English
DT Article
ID STRAND BREAK REPAIR; X-RAY-SCATTERING; ZINC-FINGER; POLY(ADP-RIBOSE)
POLYMERASE; NICK RECOGNITION; BINDING; XRCC1; CELLS; MITOCHONDRIA;
LIGATION
AB Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation.
C1 [Kukshal, Vandna; Kim, In-Kwon; Ellenberger, Tom] Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA.
[Hura, Gregory L.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA.
[Tomkinson, Alan E.] Univ New Mexico, Dept Internal Med, Albuquerque, NM 87131 USA.
[Tomkinson, Alan E.] Univ New Mexico, Ctr Canc, Albuquerque, NM 87131 USA.
[Tainer, John A.] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA.
RP Ellenberger, T (reprint author), Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA.
EM tome@biochem.wustl.edu
OI kukshal, vandna/0000-0002-6207-2638
FU National Institutes of Health [GM052504, P01 CA92584, ES0112512]
FX National Institutes of Health [GM052504 to T.E., P01 CA92584 to J.A.T.,
A.T., T.E., ES0112512 to A.T.]. Funding for the open access charge:
Institutional startup funds.
NR 48
TC 3
Z9 3
U1 0
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0305-1048
EI 1362-4962
J9 NUCLEIC ACIDS RES
JI Nucleic Acids Res.
PD AUG 18
PY 2015
VL 43
IS 14
BP 7021
EP 7031
DI 10.1093/nar/gkv652
PG 11
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA CQ4PX
UT WOS:000360588200036
PM 26130724
ER
PT J
AU Gonzalez, TL
Liang, Y
Nguyen, BN
Staskawicz, BJ
Loque, D
Hammond, MC
AF Gonzalez, Tania L.
Liang, Yan
Nguyen, Bao N.
Staskawicz, Brian J.
Loque, Dominique
Hammond, Ming C.
TI Tight regulation of plant immune responses by combining promoter and
suicide exon elements
SO NUCLEIC ACIDS RESEARCH
LA English
DT Article
ID BACTERIAL SPOT DISEASE; III EFFECTOR PROTEINS; CELL-DEATH; RESISTANCE
PROTEIN; GENE-EXPRESSION; AVIRULENCE GENE; CLIMATE-CHANGE; ARABIDOPSIS;
PEPPER; EDS1
AB Effector-triggered immunity (ETI) is activated when plant disease resistance (R) proteins recognize the presence of pathogen effector proteins delivered into host cells. The ETI response generally encompasses a defensive 'hypersensitive response' (HR) that involves programmed cell death at the site of pathogen recognition. While many R protein and effector protein pairs are known to trigger HR, other components of the ETI signaling pathway remain elusive. Effector genes regulated by inducible promoters cause background HR due to leaky protein expression, preventing the generation of relevant transgenic plant lines. By employing the HyP5SM suicide exon, we have developed a strategy to tightly regulate effector proteins such that HR is chemically inducible and non-leaky. This alternative splicing-based gene regulation system was shown to successfully control Bs2/AvrBs2-dependent and RPP1/ATR1 Delta 51-dependent HR in Nicotiana benthamiana and Nicotiana tabacum, respectively. It was also used to generate viable and healthy transgenic Arabidopsis thaliana plants that inducibly initiate HR. Beyond enabling studies on the ETI pathway, our regulatory strategy is generally applicable to reduce or eliminate undesired background expression of transgenes.
C1 [Gonzalez, Tania L.; Hammond, Ming C.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Liang, Yan; Loque, Dominique] Joint BioEnergy Inst, Emeryville, CA 94608 USA.
[Liang, Yan; Loque, Dominique; Hammond, Ming C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Nguyen, Bao N.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA.
[Staskawicz, Brian J.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA.
[Hammond, Ming C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Hammond, MC (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.
EM mingch@berkeley.edu
RI Gonzalez, Tania/E-4812-2011; Loque, Dominique/A-8153-2008; Liang,
Yan/K-8199-2016
OI Gonzalez, Tania/0000-0003-3825-8544; Liang, Yan/0000-0002-2144-1388
FU National Institutes of Health New Innovator Award [1DP2-OD008677];
Burroughs Wellcome Fund [CASI 1007224]; UC Berkeley Chancellor's
Opportunity Fellowship; NIGMS Center for RNA Systems Biology at UC
Berkeley [P50-GM102706]; DOE Early Career Award; DOE Joint BioEnergy
Institute - U.S. Department of Energy, Office of Science, Office of
Biological and Environmental Research [DE-AC02-05CH11231]
FX National Institutes of Health New Innovator Award (1DP2-OD008677 to
M.C.H.); Career Award at the Scientific Interface from the Burroughs
Wellcome Fund (CASI 1007224 to M.C.H.); UC Berkeley Chancellor's
Opportunity Fellowship (to T.L.G); NIGMS Center for RNA Systems Biology
at UC Berkeley (P50-GM102706, in part to M.C.H.); DOE Early Career Award
and DOE Joint BioEnergy Institute supported by the U.S. Department of
Energy, Office of Science, Office of Biological and Environmental
Research through contract (DE-AC02-05CH11231 between Lawrence Berkeley
National Laboratory and the U.S. Department of Energy to Y.L. and D.L.).
Funding for open access charge: Burroughs Wellcome Fund.
NR 46
TC 1
Z9 1
U1 1
U2 10
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0305-1048
EI 1362-4962
J9 NUCLEIC ACIDS RES
JI Nucleic Acids Res.
PD AUG 18
PY 2015
VL 43
IS 14
BP 7152
EP 7161
DI 10.1093/nar/gkv655
PG 10
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA CQ4PX
UT WOS:000360588200046
PM 26138488
ER
PT J
AU Nutaro, J
Fugate, D
Kuruganti, T
Sanyal, J
Starke, M
AF Nutaro, James
Fugate, David
Kuruganti, Teja
Sanyal, Jibonananda
Starke, Michael
TI Cost-effective retrofit technology for reducing peak power demand in
small and medium commercial buildings
SO SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT
LA English
DT Article
AB This article describes a cost-effective retrofit technology that uses collective control of multiple rooftop air-conditioning units to reduce the peak power consumption of small and medium commercial buildings. The proposed control uses a model of the building and air-conditioning units to select an operating schedule for the air-conditioning units that maintains a temperature set-point subject to a constraint on the number of units that may operate simultaneously. A prototype of this new control system was built and deployed in a large gymnasium to coordinate four rooftop air-conditioning units. Based on data collected while operating this prototype, it is estimated that the cost savings achieved by reducing peak power consumption is sufficient to repay the cost of the prototype within a year.
C1 [Nutaro, James; Kuruganti, Teja] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA.
[Fugate, David; Starke, Michael] Oak Ridge Natl Lab, Elect & Elect Syst Res Div, Oak Ridge, TN 37831 USA.
[Sanyal, Jibonananda] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA.
RP Kuruganti, T (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM kurugantipv@ornl.gov
OI Nutaro, James/0000-0001-7360-2836
FU U.S. Department of Energy [DE-AC05-00OR22725]
FX This manuscript has been authored by UT-Battelle, LLC under contract
DE-AC05-00OR22725 with the U.S. Department of Energy. The U.S.
Government retains, and the publisher, by accepting the article for
publication, acknowledges that the U.S. Government retains a
non-exclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do
so, for U.S. Government purposes. The U.S. DOE will provide public
access to these results of federally sponsored research in accordance
with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).
NR 7
TC 0
Z9 0
U1 0
U2 5
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 2374-4731
EI 2374-474X
J9 SCI TECHNOL BUILT EN
JI Sci. Technol. Built Environ.
PD AUG 18
PY 2015
VL 21
IS 6
SI SI
BP 761
EP 772
DI 10.1080/23744731.2015.1047719
PG 12
WC Thermodynamics; Construction & Building Technology; Engineering,
Mechanical
SC Thermodynamics; Construction & Building Technology; Engineering
GA CQ3FQ
UT WOS:000360487700003
ER
PT J
AU Hess, M
Peterson, K
Harvey-Thompson, A
AF Hess, M.
Peterson, K.
Harvey-Thompson, A.
TI An efficient method for unfolding kinetic pressure driven VISAR data
SO HIGH POWER LASER SCIENCE AND ENGINEERING
LA English
DT Article
DE laser driven blast wave; pulsed-power; VISAR
AB Velocity Interferometer System for Any Reflector (VISAR) [Barker and Hollenbach, J. Appl. Phys. 43, 4669 (1972)] is a well-known diagnostic that is employed on many shock physics and pulsed-power experiments. With the VISAR diagnostic, the velocity on the surface of any metal flyer can be found. For most experiments employing VISAR, either a kinetic pressure [Grady, Mech. Mater. 29, 181 (1998)] or a magnetic pressure [Lemke et al., Intl J. Impact Eng. 38, 480 (2011)] drives the motion of the flyer. Moreover, reliable prediction of the time-dependent pressure is often a critical component to understanding the physics of these experiments. Although VISAR can provide a precise measurement of a flyer's surface velocity, the real challenge of this diagnostic implementation is using this velocity to unfold the time-dependent pressure. The purpose of this paper is to elucidate a new method for quickly and reliably unfolding VISAR data.
C1 [Hess, M.; Peterson, K.; Harvey-Thompson, A.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Hess, M (reprint author), POB 5800,MS 1186, Albuquerque, NM 87185 USA.
EM mhess@sandia.gov
NR 19
TC 1
Z9 1
U1 0
U2 3
PU CAMBRIDGE UNIV PRESS
PI CAMBRIDGE
PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND
SN 2095-4719
EI 2052-3289
J9 HIGH POWER LASER SCI
JI High Power Laser Sci. Eng.
PD AUG 18
PY 2015
VL 3
DI 10.1017/hpl.2015.23
PG 9
WC Optics
SC Optics
GA CQ0HO
UT WOS:000360276300001
ER
PT J
AU Deng, LL
Chen, XF
Li, W
Wang, Z
Wong, YE
Chat, TWD
AF Deng, Liulin
Chen, Xiangfeng
Li, Wan
Wang, Ze
Wong, Yiling Elaine
Chan, T. -W. Dominic
TI Sensitivity and Robustness Enhancements by Using a V-Shape Ion Funnel in
FTICR-MS
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID IONIZATION MASS-SPECTROMETRY; ELECTROSPRAY-IONIZATION;
ATMOSPHERIC-PRESSURE; MOLECULAR-BEAMS; TRANSMISSION; INTERFACE;
PROTEINS; IMPLEMENTATION; EVAPORATION; PRINCIPLES
AB In this paper, a new configuration of the ion funnel interface (i.e., V-shape ion funnel (V-IF)) for high ion transmission efficiency and robustness enhancement was developed and implemented on FTICR-MS. The performance of the V-IF was compared with that of a home-built orthogonal ion funnel. An order of magnitude of improvement in sensitivity was achieved for various peptides and proteins. The performance of the instrument was maintained for a long period by neutral molecule removal. Other ion transmission patterns, such as gentle ion transmission, adduct ion removal, and radio frequency (RF)-driven collision induced dissociation (OD), was also realized in V-IF by varying the RF potentials. V-IF is believed to be a novel ion guide that has promising applications in mass spectrometry.
C1 [Deng, Liulin; Chen, Xiangfeng; Li, Wan; Wang, Ze; Wong, Yiling Elaine; Chan, T. -W. Dominic] Chinese Univ Hong Kong, Dept Chem, Hong Kong, Hong Kong, Peoples R China.
[Chen, Xiangfeng] Shandong Acad Sci, Jinan 250014, Shandong, Peoples R China.
[Deng, Liulin] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Deng, Liulin] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Chen, XF (reprint author), Chinese Univ Hong Kong, Dept Chem, Hong Kong, Hong Kong, Peoples R China.
EM xiangfchensdas@163.com; twdchan@cuhk.edu.hk
OI Chen, Xiangfeng/0000-0001-9266-7707
FU National Natural Science Foundation of China [NSFC 21205071]; Research
Grant Council of the Hong Kong Special Administrative Region [2060351];
Natural Science Foundation of Shandong Province [ZR2012BQ009]; Funds for
Fostering Distinguished Young Scholar of Shandong Academy of Sciences
FX The authors would like to acknowledge the financial support from
National Natural Science Foundation of China (NSFC 21205071), Research
Grant Council of the Hong Kong Special Administrative Region (Research
Grant Direct Allocation, ref. 2060351), Natural Science Foundation of
Shandong Province (ZR2012BQ009), and Funds for Fostering Distinguished
Young Scholar of Shandong Academy of Sciences. The authors thank the
staff in the mechanical and electronic workshops of The Chinese
University of Hong Kong.
NR 32
TC 0
Z9 0
U1 2
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
EI 1520-6882
J9 ANAL CHEM
JI Anal. Chem.
PD AUG 18
PY 2015
VL 87
IS 16
BP 8073
EP 8077
DI 10.1021/acs.analchem.5b01828
PG 5
WC Chemistry, Analytical
SC Chemistry
GA CP4ZW
UT WOS:000359892100008
PM 26218276
ER
PT J
AU Qiu, YH
Yang, C
Hinkle, P
Vlassiouk, IV
Siwy, ZS
AF Qiu, Yinghua
Yang, Crystal
Hinkle, Preston
Vlassiouk, Ivan V.
Siwy, Zuzanna S.
TI Anomalous Mobility of Highly Charged Particles in Pores
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID RESISTIVE-PULSE TECHNIQUE; ELECTROPHORETIC MOBILITY; SURFACE-CHARGE;
COUNTERION CONDENSATION; COLLOIDAL PARTICLES; CYLINDRICAL PORE;
ELECTROKINETIC PROPERTIES; INDIVIDUAL NANOPARTICLES; SUBMICRON
PARTICLES; ION CONDENSATION
AB Single micropores in resistive-pulse technique were used to understand a complex dependence of particle mobility on its surface charge density. We show that the mobility of highly charged carboxylated particles decreases with the increase of the solution pH due to an interplay of three effects: (i) ion condensation, (ii) formation of an asymmetric electrical double layer around the particle, and (iii) electroosmotic flow induced by the charges on the pore walls and the particle surfaces. The results are important for applying resistive-pulse technique to determine surface charge density and zeta potential of the particles. The experiments also indicate the presence of condensed ions, which contribute to the measured current if a sufficiently high electric field is applied across the pore.
C1 [Qiu, Yinghua; Hinkle, Preston; Siwy, Zuzanna S.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Yang, Crystal; Siwy, Zuzanna S.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA.
[Siwy, Zuzanna S.] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92717 USA.
[Qiu, Yinghua] Southeast Univ, Sch Mech Engn, Nanjing 211189, Jiangsu, Peoples R China.
[Qiu, Yinghua] Southeast Univ, Jiangsu Key Lab Design & Mfg Micronano Biomed Ins, Nanjing 211189, Jiangsu, Peoples R China.
[Vlassiouk, Ivan V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Siwy, ZS (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
EM zsiwy@uci.edu
RI Qiu, Yinghua/N-6497-2014; Vlassiouk, Ivan/F-9587-2010
OI Qiu, Yinghua/0000-0003-2489-0784; Vlassiouk, Ivan/0000-0002-5494-0386
FU National Science Foundation [CHE 1306058]; China Scholarship Council
[CSC 201406090034]
FX Irradiation with swift heavy ions was performed at the GSI
Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt, Germany. We
very much appreciate helpful discussions with Prof. Salvador Mafe from
the University of Valencia in Spain. This research was supported by the
National Science Foundation (CHE 1306058). Y.Q, acknowledges financial
support from the China Scholarship Council (CSC 201406090034).
NR 48
TC 10
Z9 10
U1 3
U2 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
EI 1520-6882
J9 ANAL CHEM
JI Anal. Chem.
PD AUG 18
PY 2015
VL 87
IS 16
BP 8517
EP 8523
DI 10.1021/acs.analchem.5b02060
PG 7
WC Chemistry, Analytical
SC Chemistry
GA CP4ZW
UT WOS:000359892100069
PM 26177843
ER
PT J
AU Diallo, MS
Baier, G
Moyer, BA
Hamelers, B
AF Diallo, Mamadou S.
Baier, Gretchen
Moyer, Bruce A.
Hamelers, Bert
TI Critical Materials Recovery from Solutions and Wastes: Retrospective and
Outlook
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Editorial Material
C1 [Diallo, Mamadou S.] Korea Adv Inst Sci & Technol, Grad Sch EEWS, Taejon 305701, South Korea.
[Diallo, Mamadou S.] CALTECH, Environm Sci & Engn, Div Engn & Appl Sci, Pasadena, CA 91125 USA.
[Baier, Gretchen] Dow Chem Co USA, Midland, MI 48674 USA.
[Moyer, Bruce A.] Oak Ridge Natl Lab, Chem Separat Grp, Oak Ridge, TN 37831 USA.
[Moyer, Bruce A.] Oak Ridge Natl Lab, Crit Mat Inst, Oak Ridge, TN 37831 USA.
[Hamelers, Bert] European Ctr Excellence Sustainable Water Technol, Wetsus, NL-8900 CC Leeuwarden, Netherlands.
RP Diallo, MS (reprint author), Korea Adv Inst Sci & Technol, Grad Sch EEWS, Taejon 305701, South Korea.
EM mdiallo@kaist.ac.kr
RI Moyer, Bruce/L-2744-2016; Diallo, Mamadou/C-2075-2011
OI Moyer, Bruce/0000-0001-7484-6277;
NR 0
TC 2
Z9 2
U1 2
U2 42
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD AUG 18
PY 2015
VL 49
IS 16
BP 9387
EP 9389
DI 10.1021/acs.est.5b03694
PG 3
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA CP4ZS
UT WOS:000359891700001
PM 26281889
ER
PT J
AU Kim, D
Powell, LE
Delmau, LH
Peterson, ES
Herchenroeder, J
Bhave, RR
AF Kim, Daejin
Powell, Lawrence E.
Delmau, Laetitia H.
Peterson, Eric S.
Herchenroeder, Jim
Bhave, Ramesh R.
TI Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps
with Membrane Solvent Extraction
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID CHLORIDE MEDIA; CYANEX 923; RECOVERY; REMOVAL; WASTE; LANTHANIDES; ACID;
ND
AB The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.
C1 [Kim, Daejin; Powell, Lawrence E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Delmau, Laetitia H.] Oak Ridge Natl Lab, Nucl Mat Proc Grp, Oak Ridge, TN 37831 USA.
[Peterson, Eric S.] Idaho Natl Lab, Ctr Adv Energy Studies, Idaho Falls, ID 83415 USA.
[Herchenroeder, Jim] Molycorp Magnequench, Greenwood Village, CO 80111 USA.
EM bhaverr@ornl.gov
RI Peterson, Eric/B-9127-2017
OI Peterson, Eric/0000-0002-2292-4939
FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department
of Energy, Office of Energy Efficiency and Renewable Energy, Advanced
Manufacturing Office
FX This research/work is supported by the Critical Materials Institute, an
Energy Innovation Hub funded by the U.S. Department of Energy, Office of
Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.
We thank Dr. Huseyin Ucar at ORNL for his assistance in XRD analysis.
NR 30
TC 5
Z9 5
U1 7
U2 51
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD AUG 18
PY 2015
VL 49
IS 16
BP 9452
EP 9459
DI 10.1021/acs.est.5b01306
PG 8
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA CP4ZS
UT WOS:000359891700008
PM 26107531
ER
PT J
AU Fujita, Y
Barnes, J
Eslamimanesh, A
Lencka, MM
Anderko, A
Riman, RE
Navrotsky, A
AF Fujita, Yoshiko
Barnes, Joni
Eslamimanesh, Ali
Lencka, Malgorzata M.
Anderko, Andrzej
Riman, Richard E.
Navrotsky, Alexandra
TI Effects of Simulated Rare Earth Recycling Wastewaters on Biological
Nitrification
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID NORMAL-BUTYL PHOSPHATE; SOLVENT ELECTROLYTE SYSTEMS; TRIBUTYL-PHOSPHATE;
NITROSOMONAS-EUROPAEA; NITRIFYING BACTERIA; WASTE-WATER;
PSEUDOMONAS-AERUGINOSA; LANTHANIDE ADSORPTION; MEMBRANE-PERMEABILITY;
AQUEOUS-SOLUTIONS
AB Increasing rare earth element (REE) supplies by recycling and expanded ore processing will result in generation of new wastewaters. In some cases, disposal to a sewage treatment plant may be favored, but plant performance must be maintained. To assess the potential effects of such wastewaters on biological treatment, model nitrifying organisms Nitrosomonas europaea and Nitrobacter winogradskyi were exposed to simulated wastewaters containing varying levels of yttrium or europium (10, 50, and 100 ppm), and the extractant tributyl phosphate (TBP, at 0.1 g/L). Y and Eu additions at 50 and 100 ppm inhibited N. europaea, even when virtually all of the REE was insoluble. Provision of TBP with Eu increased N. europaea inhibition, although TBP alone did not substantially alter activity. For N. winogradskyi cultures, Eu or Y additions at all tested levels induced significant inhibition, and nitrification shut down completely with TBP addition. REE solubility was calculated using the previously developed MSE (Mixed-Solvent Electrolyte) thermodynamic model. The model calculations reveal a strong pH dependence of solubility, typically controlled by the precipitation of REE hydroxides but also likely affected by the formation of unknown phosphate phases, which determined aqueous concentrations experienced by the microorganisms.
C1 [Fujita, Yoshiko; Barnes, Joni] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Eslamimanesh, Ali; Lencka, Malgorzata M.; Anderko, Andrzej] OLI Syst Inc, Cedar Knolls, NJ 07927 USA.
[Riman, Richard E.] Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08855 USA.
[Navrotsky, Alexandra] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA.
[Navrotsky, Alexandra] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA.
RP Fujita, Y (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
EM yoshikolujita@inl.gov
RI Fujita, Yoshiko/S-2007-2016;
OI Fujita, Yoshiko/0000-0002-4472-4102; Anderko,
Andrzej/0000-0002-1522-4889; Eslamimanesh, Ali/0000-0003-2555-4838
FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department
of Energy, Office of Energy Efficiency and Renewable Energy, Advanced
Manufacturing Office; DOE Idaho Operations Office [DE-AC07-05ID14517]
FX We express our appreciation to D. LaCroix and J. Taylor at the
University of Idaho/Center for Advanced Energy Studies for ICP-MS
measurements. We also thank M. Greenhalgh of INL for advice regarding
wastewater composition and for provision of the TBP and Isopar L. We
also thank anonymous reviewers for their helpful comments. This research
is supported by the Critical Materials Institute, an Energy Innovation
Hub funded by the U.S. Department of Energy, Office of Energy Efficiency
and Renewable Energy, Advanced Manufacturing Office. Funding was
provided via the DOE Idaho Operations Office Contract DE-AC07-05ID14517.
NR 64
TC 2
Z9 2
U1 10
U2 43
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD AUG 18
PY 2015
VL 49
IS 16
BP 9460
EP 9468
DI 10.1021/acs.est.5b01753
PG 9
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA CP4ZS
UT WOS:000359891700009
PM 26132866
ER
PT J
AU Qu, YT
Baumann, TF
Santiago, JG
Stadermann, M
AF Qu, Yatian
Baumann, Theodore F.
Santiago, Juan G.
Stadermann, Michael
TI Characterization of Resistances of a Capacitive Deionization System
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID DOUBLE-LAYER CAPACITOR; CONSTANT PHASE ELEMENT; AL CURRENT-COLLECTOR;
IMPEDANCE SPECTROSCOPY; ENERGY-CONSUMPTION; CARBON ELECTRODES; MEMBRANE;
DESALINATION; ADSORPTION; SUPERCAPACITORS
AB Capacitive deionization (CDI) is a promising desalination technology, which operates at low pressure, low temperature, requires little infrastructure, and has the potential to consume less energy for brackish water desalination. However, CDI devices consume significantly more energy than the theoretical thermodynamic minimum, and this is at least partly due to resistive power dissipation. We here report our efforts to characterize electric resistances in a CDI system, with a focus on the resistance associated with the contact between current collectors and porous electrodes. We present an equivalent circuit model to describe resistive components in a CDI cell. We propose measurable figures of merit to characterize cell resistance. We also show that contact pressure between porous electrodes and current collectors can significantly reduce contact resistance. Lastly, we propose and test an alternative electrical contact configuration which uses a pore-filling conductive adhesive (silver epoxy) and achieves significant reductions in contact resistance.
C1 [Qu, Yatian; Santiago, Juan G.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA.
[Qu, Yatian; Baumann, Theodore F.; Stadermann, Michael] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Santiago, JG (reprint author), Stanford Univ, Dept Mech Engn, 440 Escondido Mall, Stanford, CA 94305 USA.
EM juan.santiago@stanford.edu; stadermann2@llnl.gov
FU US DOE by LLNL [DE-AC52-07NA27344]
FX Y.Q. would like to thank the Lawrence Scholar program. Work at LLNL was
performed under the auspices of the US DOE by LLNL under Contract
DE-AC52-07NA27344.
NR 44
TC 7
Z9 7
U1 22
U2 87
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD AUG 18
PY 2015
VL 49
IS 16
BP 9699
EP 9706
DI 10.1021/acs.est.5b02542
PG 8
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA CP4ZS
UT WOS:000359891700037
PM 26214554
ER
PT J
AU Zhang, HF
Worton, DR
Shen, S
Nah, T
Isaacman-VanWertz, G
Wilson, KR
Goldstein, AH
AF Zhang, Haofei
Worton, David R.
Shen, Steve
Nah, Theodora
Isaacman-VanWertz, Gabriel
Wilson, Kevin R.
Goldstein, Allen H.
TI Fundamental Time Scales Governing Organic Aerosol Multiphase
Partitioning and Oxidative Aging
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID AIR-POLLUTION SOURCES; KINETIC MULTILAYER MODEL; HETEROGENEOUS
OXIDATION; MOTOR-VEHICLES; MEXICO-CITY; GAS; EMISSIONS; PHASE; OH;
SEMIVOLATILE
AB Traditional descriptions of gas particle partitioning of organic aerosols (OA) rely solely on thermodynamic properties (e.g., volatility). Under realistic conditions where phase partitioning is dynamic rather than static, the transformation of OA involves the interplay of multiphase partitioning with oxidative aging. A key challenge remains in quantifying the fundamental time scales for evaporation and oxidation of semivolatile OA. In this paper, we use isomer-resolved product measurements of a series of normal-alkanes (C-18, C-20, C-22, and C-24) to distinguish between gas-phase and heterogeneous oxidation products formed by reaction with hydroxyl radicals (OH). The product isomer distributions when combined with kinetics measurements of evaporation and oxidation enable a quantitative description of the multiphase time scales to be simulated using a single-particle kinetic model. Multiphase partitioning and oxidative transformation of semivolatile normal-alkanes under laboratory conditions is largely controlled by the particle phase state, since the time scales of heterogeneous oxidation and evaporation are found to occur on competing time scales (on the order of 10(-1) h). This is in contrast to atmospheric conditions where heterogeneous oxidation time scales are expected to be much longer (on the order of 10(2) h), with gas-phase oxidation being the dominant process regardless of the evaporation kinetics. Our results demonstrate the dynamic nature of OA multiphase partitioning and oxidative aging and reveal that the fundamental time scales of these processes are crucial for reliably extending laboratory measurements of OA phase partitioning and aging to the atmosphere.
C1 [Zhang, Haofei; Worton, David R.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA.
[Shen, Steve] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Nah, Theodora] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Goldstein, Allen H.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA.
[Zhang, Haofei; Nah, Theodora; Wilson, Kevin R.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Worton, David R.] Aerosol Dynam Inc, Berkeley, CA 94710 USA.
RP Wilson, KR (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
EM krwilson@lbl.gov; ahg@berkeley.edu
RI Worton, David/A-8374-2012
OI Worton, David/0000-0002-6558-5586
FU Camille & Henry Dreyfus Foundation; Laboratory-Directed Research and
Development (LDRD) Program of Lawrence Berkeley National Laboratory
under U.S. Department of Energy [DE-AC02-05CH11231]; Department of
Energy, Office of Science
FX This work was supported by the Camille & Henry Dreyfus Foundation and
the Laboratory-Directed Research and Development (LDRD) Program of
Lawrence Berkeley National Laboratory under U.S. Department of Energy
Contract DE-AC02-05CH11231. K.R.W. is additionally supported by the
Department of Energy, Office of Science Early Career Research Program.
NR 44
TC 1
Z9 1
U1 8
U2 35
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD AUG 18
PY 2015
VL 49
IS 16
BP 9768
EP 9777
DI 10.1021/acs.est.5b02115
PG 10
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA CP4ZS
UT WOS:000359891700045
PM 26200667
ER
PT J
AU Waples, JT
Bordewyk, JK
Knesting, KM
Orlandini, KA
AF Waples, James T.
Bordewyk, Jason K.
Knesting, Kristina M.
Orlandini, Kent A.
TI Using Naturally Occurring Radionuclides To Determine Drinking Water Age
in a Community Water System
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID TRACE INORGANIC CONTAMINANTS; U-234/U-238 ACTIVITY RATIOS; PIPE-SCALE
DEPOSITS; RADIOACTIVITY; MODELS; TH-234; SR-90; TIME
AB Drinking water quality in a community water system is closely linked to the age of water from initial treatment to time of delivery. However, water age is difficult to measure with conventional chemical tracers; particularly in stagnant water, where the relationship between disinfectant decay, microbial growth, and water age is poorly understood. Using radionuclides that were naturally present in source water, we found that measured activity ratios of Y-90/Sr-90 and Th-234/U-238 in discrete drinking water samples of known age accurately estimated water age up to 9 days old (sigma(est): +/- 3.8 h, P < 0.0001, r(2) = 0.998, n = 11) and 25 days old (sigma(est): +/- 13.3 h, P < 0.0001, r(2) = 0.996, n = 12), respectively. Moreover, 90Y-derived water ages in a community water system (6.8 x 10(4) m(3) d(-1) capacity) were generally consistent with water ages derived from an extended period simulation model. Radionuclides differ from conventional chemical tracers in that they are ubiquitous in distribution mains and connected premise plumbing. The ability to measure both water age and an analyte (e.g., chemical or microbe) in any water sample at any time allows for new insight into factors that control drinking water quality.
C1 [Waples, James T.; Knesting, Kristina M.] Univ Wisconsin, Sch Freshwater Sci, 600 East Greenfield Ave, Milwaukee, WI 53204 USA.
[Bordewyk, Jason K.] Stantec, St Paul, MN 55113 USA.
[Orlandini, Kent A.] Argonne Natl Lab, Div Environm Res, Argonne, IL 60439 USA.
RP Waples, JT (reprint author), Univ Wisconsin, Sch Freshwater Sci, 600 East Greenfield Ave, Milwaukee, WI 53204 USA.
EM jwaples@uwm.edu
FU National Science Foundation [OCE 0351824, BES 0630847]; NSF [OCE
0354031]; University of Wisconsin-Milwaukee School of Freshwater
Sciences
FX We thank D. Szmania, and K. Weckerly for sampling assistance, and V.
Klump for assistance with gamma analysis. We are particularly grateful
to R. Johnson and E. Kiefer for information and access to the NSWC
treatment plant and distribution system. This research was supported by
the National Science Foundation (OCE 0351824, BES 0630847), the NSF
Research Experience for Undergraduates Program (OCE 0354031) and the
University of Wisconsin-Milwaukee School of Freshwater Sciences.
NR 43
TC 1
Z9 1
U1 3
U2 21
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD AUG 18
PY 2015
VL 49
IS 16
BP 9850
EP 9857
DI 10.1021/acs.est.5b03227
PG 8
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA CP4ZS
UT WOS:000359891700054
PM 26200208
ER
PT J
AU Delaire, C
van Genuchten, CM
Nelson, KL
Amrose, SE
Gadgil, AJ
AF Delaire, Caroline
van Genuchten, Case M.
Nelson, Kara L.
Amrose, Susan E.
Gadgil, Ashok J.
TI Escherichia coli Attenuation by Fe Electrocoagulation in Synthetic
Bengal Groundwater: Effect of pH and Natural Organic Matter
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID TUBEWELL WATER-QUALITY; IRON ELECTROCOAGULATION; ARSENIC REMOVAL;
DRINKING-WATER; ENHANCED COAGULATION; BACTERIAL ADHESION; ZEROVALENT
IRON; SURFACE-WATER; VIRUS REMOVAL; FERROUS ION
AB Technologies addressing both arsenic and microbial contamination of Bengal groundwater are needed. Fe electrocoagulation (Fe-EC), a simple process relying on the dissolution of an Fe(0) anode to produce Fe(III) precipitates, has been shown to efficiently remove arsenic from groundwater at low cost. We investigated Escherichia con (E. coli) attenuation by Fe-EC in synthetic Bengal groundwater as a function of Fe dosage rate, total Fe dosed, pH, and presence of natural organic matter (NOM). A 2.5 mil4 Fe dosage simultaneously achieved over 4-log E. coli attenuation and arsenic removal from 450 to below 10 mu g/L. E. coli reduction was significantly enhanced at pH 6.6 compared to pH 7.5, which we linked to the decreased rate of Fe(II) oxidation at lower pH. 3 mg/L-C of NOM (Suwanee River fulvic acid) did not significantly affect E. coli attenuation. Live dead staining and comparisons of Fe-EC with chemical coagulation controls showed that the primary mechani sm of E. coli attenuation is physical removal with Fe(III) precipitates, with inactivation likely contributing as well at lower pH. Transmission electron microscopy showed that EC precipitates adhere to and bridge individual E. coli cells, resulting in large bacteria Fe aggregates that can be removed by gravitational settling. Our results point to the promising ability of Fe-EC to treat arsenic and bacterial contamination simultaneously at low cost.
C1 [Delaire, Caroline; van Genuchten, Case M.; Nelson, Kara L.; Amrose, Susan E.; Gadgil, Ashok J.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA.
[Gadgil, Ashok J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA.
RP Delaire, C (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA.
EM caroline.delaire@orange.fr
RI Foundry, Molecular/G-9968-2014
FU Development Impact Lab (USAID) part of the USAID Higher Education
Solutions Network [AID-OAA-A-13-00002]; Andrew and Virginia Rudd Family
Foundation; Office of Basic Energy Sciences of the U.S. Department of
Energy [DE-AC02-05CH11231]
FX This work was supported by the Development Impact Lab (USAID Cooperative
Agreement AID-OAA-A-13-00002), part of the USAID Higher Education
Solutions Network, and by the Andrew and Virginia Rudd Family
Foundation. This work would not have been possible without the generous
assistance from David Sedlak, Andrew Torkelson, Andrea Silverman,
Samantha Beardsley, Jannis Wenk, Denise Schichnes and Reena Zalpouri. We
are grateful to James Britt Abrahamson for conducting zeta-potential
measurements. We thank the CNR Biological Imaging Facility and the
Electron Microscope Lab at UC Berkeley. Work at the Molecular Foundry
(zeta-potential measurements) was supported by the Office of Basic
Energy Sciences of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 63
TC 3
Z9 3
U1 14
U2 63
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD AUG 18
PY 2015
VL 49
IS 16
BP 9945
EP 9953
DI 10.1021/acs.est.5b01696
PG 9
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA CP4ZS
UT WOS:000359891700065
PM 26172118
ER
PT J
AU Deng, H
Fitts, JP
Crandall, D
McIntyre, D
Peters, CA
AF Deng, Hang
Fitts, Jeffrey P.
Crandall, Dustin
McIntyre, Dustin
Peters, Catherine A.
TI Alterations of Fractures in Carbonate Rocks by CO2-Acidified Brines
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID CALCITE DISSOLUTION RATES; PORE-SCALE; LIMESTONE DISSOLUTION; REACTIVE
TRANSPORT; CO2 SEQUESTRATION; SINGLE FRACTURE; ATM PCO(2); PERMEABILITY;
FLOW; CAPROCK
AB Fractures in geological formations may enable migration of environmentally relevant fluids, as in leakage of CO2 through caprocks in geologic carbon sequestration. We investigated geochemically induced alterations of fracture geometry in Indiana Limestone specimens. Experiments were the first of their kind, with periodic high-resolution imaging using X-ray computed tomography (xCT) scanning while maintaining high pore pressure (100 bar). We studied two CO2-acidified brines having the same pH (3.3) and comparable thermodynamic disequilibrium but different equilibrated pressures of CO2 (P-CO2 values of 12 and 77 bar). High-P-CO2 brine has a faster calcite dissolution kinetic rate because of the accelerating effect of carbonic acid. Contrary to expectations, dissolution extents were comparable in the two experiments. However, progressive xCT images revealed extensive channelization for high P-CO2, explained by strong positive feedback between ongoing flow and reaction. The pronounced channel increasingly directed flow to a small region of the fracture, which explains why the overall dissolution was lower than expected. Despite this, flow simulations revealed large increases in permeability in the high-P-CO2 experiment. This study shows that the permeability evolution of dissolving fractures will be larger for faster-reacting fluids. The overall mechanism is not because more rock dissolves, as would be commonly assumed, but because of accelerated fracture channelization.
C1 [Deng, Hang; Fitts, Jeffrey P.; Peters, Catherine A.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA.
[Crandall, Dustin; McIntyre, Dustin] Natl Energy Technol Lab, Morgantown, WV 26507 USA.
RP Peters, CA (reprint author), Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA.
EM cap@princeton.edu
RI Deng, Hang/E-5302-2015;
OI Deng, Hang/0000-0001-5784-996X; Peters, Catherine/0000-0003-2418-795X
FU National Science Foundation (NSF) [CBET-1133849]
FX This research was funded by the National Science Foundation (NSF) grant
CBET-1133849. H.D. acknowledges additional support by an appointment to
the U.S. Department of Energy (DOE) Postgraduate Research Program at
NETL administered by ORISE. We also acknowledge the use of the ICP-OES
facility in Dr. Higgins' lab in the Department of Geosciences at
Princeton University. Finally, we acknowledge the reviewers for their
detailed and thorough assessments, which were extremely helpful in
improving this manuscript.
NR 68
TC 8
Z9 9
U1 5
U2 39
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD AUG 18
PY 2015
VL 49
IS 16
BP 10226
EP 10234
DI 10.1021/acs.est.5b01980
PG 9
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA CP4ZS
UT WOS:000359891700096
PM 26205851
ER
PT J
AU Piao, HL
Hawley, E
Kopf, S
DeScenzo, R
Sealock, S
Henick-Kling, T
Hess, M
AF Piao, Hailan
Hawley, Erik
Kopf, Scott
DeScenzo, Richard
Sealock, Steven
Henick-Kling, Thomas
Hess, Matthias
TI Insights into the bacterial community and its temporal succession during
the fermentation of wine grapes
SO FRONTIERS IN MICROBIOLOGY
LA English
DT Article
DE wine bacteria; wine fermentation; temporal succession; organic grape
products; 16S rRNA gene profile; next-generation sequencing
ID ACETIC-ACID BACTERIA; MICROBIAL COMMUNITIES; STARTER CULTURES; RED WINE;
POPULATIONS; DIVERSITY; SPOILAGE; YEAST; BRUXELLENSIS; SEQUENCES
AB Grapes harbor complex microbial communities. It is well known that yeasts, typically Saccharomyces cerevisiae, and bacteria, commonly the lactic acid fermenting Oenococcus oeni, work sequentially during primary and secondary wine fermentation. In addition to these main players, several microbes, often with undesirable effects on wine quality, have been found in grapes and during wine fermentation. However, still little is known about the dynamics of the microbial community during the fermentation process. In previous studies culture dependent methods were applied to detect and identify microbial organisms associated with grapes and grape products, which resulted in a picture that neglected the non-culturable fraction of the microbes. To obtain a more complete picture of how microbial communities change during grape fermentation and how different fermentation techniques might affect the microbial community composition, we employed next-generation sequencing (NGS) a culture-independent method. A better understanding of the microbial dynamics and their effect on the final product is of great importance to help winemakers produce wine styles of consistent and high quality. In this study, we focused on the bacterial community dynamics during wine vinification by amplifying and sequencing the hypervariable V1-V3 region of the 16S rRNA gene a phylogenetic marker gene that is ubiquitous within prokaryotes. Bacterial communities and their temporal succession was observed for communities associated with organically and conventionally produced wines. In addition, we analyzed the chemical characteristics of the grape musts during the organic and conventional fermentation process. These analyses revealed distinct bacterial population with specific temporal changes as well as different chemical profiles for the organically and conventionally produced wines. In summary these results suggest a possible correlation between the temporal succession of the bacterial population and the chemical wine profiles.
C1 [Piao, Hailan; Henick-Kling, Thomas] Washington State Univ, Dept Viticulture & Enol, Richland, WA USA.
[Hawley, Erik] ZeaChem Inc, Boardman, OR USA.
[Kopf, Scott; Sealock, Steven] Pacific Rim Winemakers, West Richland, WA USA.
[DeScenzo, Richard] ETS Labs, St Helena, CA USA.
[Hess, Matthias] Univ Calif Davis, Dept Anim Sci, Funct Syst Microbiol Lab, Davis, CA 95616 USA.
[Hess, Matthias] US DOE, Joint Genome Inst, Walnut Creek, CA USA.
RP Hess, M (reprint author), Univ Calif Davis, Dept Anim Sci, Funct Syst Microbiol Lab, 2251 Meyer Hall,One Shields Ave, Davis, CA 95616 USA.
EM mhess@ucdavis.edu
NR 44
TC 6
Z9 6
U1 8
U2 58
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015,
SWITZERLAND
SN 1664-302X
J9 FRONT MICROBIOL
JI Front. Microbiol.
PD AUG 18
PY 2015
VL 6
AR 809
DI 10.3389/fmicb.2015.00809
PG 12
WC Microbiology
SC Microbiology
GA CP6UM
UT WOS:000360023700001
PM 26347718
ER
PT J
AU Smith-Moritz, AM
Hao, Z
Fernandez-Nino, SG
Fangel, JU
Verhertbruggen, Y
Holman, HYN
Willats, WGT
Ronald, PC
Scheller, HV
Heazlewood, JL
Vega-Sanchez, ME
AF Smith-Moritz, Andreia M.
Hao, Zhao
Fernandez-Nino, Susana G.
Fangel, Jonatan U.
Verhertbruggen, Yves
Holman, Hoi-Ying N.
Willats, William G. T.
Ronald, Pamela C.
Scheller, Henrik V.
Heazlewood, Joshua L.
Vega-Sanchez, Miguel E.
TI Structural characterization of a mixed-linkage glucan deficient mutant
reveals alteration in cellulose microfibril orientation in rice
coleoptile mesophyll cell walls
SO FRONTIERS IN PLANT SCIENCE
LA English
DT Article
DE type II cell walls; cellulose; FT-MIR spectroscopy; mixed-linkage
glucan; primary cell wall; rice
ID PLANT-CELL; POLYSACCHARIDES; XYLOGLUCAN; SYNTHASE; ARABIDOPSIS; GRASSES;
GROWTH; GENE; MICROSPECTROSCOPY; MICROTUBULES
AB The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.
C1 [Smith-Moritz, Andreia M.; Fernandez-Nino, Susana G.; Verhertbruggen, Yves; Ronald, Pamela C.; Scheller, Henrik V.; Heazlewood, Joshua L.; Vega-Sanchez, Miguel E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Joint BioEnergy Inst, Berkeley, CA 94720 USA.
[Hao, Zhao; Holman, Hoi-Ying N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Synchrotron Infrared Struct Biol Program, Berkeley, CA 94720 USA.
[Fangel, Jonatan U.; Willats, William G. T.] Univ Copenhagen, Dept Plant & Environm Sci, Copenhagen, Denmark.
[Ronald, Pamela C.] Univ Calif Davis, UC Davis Genome Ctr, Dept Plant Pathol, Davis, CA 95616 USA.
RP Ronald, PC (reprint author), Univ Calif Davis, UC Davis Genome Ctr, Dept Plant Pathol, One Shield Ave, Davis, CA 95616 USA.
EM pcronald@ucdavis.edu; mevega-sanchez@lbl.gov
RI Heazlewood, Joshua/A-2554-2008; Hao, Zhao/G-2391-2015; Holman,
Hoi-Ying/N-8451-2014; Scheller, Henrik/A-8106-2008;
OI Heazlewood, Joshua/0000-0002-2080-3826; Hao, Zhao/0000-0003-0677-8529;
Holman, Hoi-Ying/0000-0002-7534-2625; Scheller,
Henrik/0000-0002-6702-3560; Verhertbruggen, Yves/0000-0003-4114-5428
FU Office of Science, Office of Biological and Environmental Research, of
the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of
Energy, Office of Science and Office of Biological and Environmental
Research [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
FX We thank Jeemeng Lao for technical assistance with the HPAEC analysis.
This work conducted by the Joint BioEnergy Institute was supported by
the Office of Science, Office of Biological and Environmental Research,
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The synchrotron mid-infrared spectromicroscopy and associated imaging
work were performed at Infrared Beamline 1.4 and 5.4 under the Berkeley
Synchrotron Infrared Structural Biology (BSISB) Program funded by the
U.S. Department of Energy, Office of Science and Office of Biological
and Environmental Research through contracts DE-AC02-05CH11231. The
Advanced Light Source is supported by the Director, Office of Science,
Office of Basic Energy Sciences, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.
NR 48
TC 2
Z9 2
U1 4
U2 25
PU FRONTIERS MEDIA SA
PI LAUSANNE
PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015,
SWITZERLAND
SN 1664-462X
J9 FRONT PLANT SCI
JI Front. Plant Sci.
PD AUG 18
PY 2015
VL 6
AR 628
DI 10.3389/fpls.2015.00628
PG 13
WC Plant Sciences
SC Plant Sciences
GA CP5JK
UT WOS:000359917200001
PM 26347754
ER
PT J
AU Aaltonen, T
Amerio, S
Amidei, D
Anastassov, A
Annovi, A
Antos, J
Apollinari, G
Appel, JA
Arisawa, T
Artikov, A
Asaadi, J
Ashmanskas, W
Auerbach, B
Aurisano, A
Azfar, F
Badgett, W
Bae, T
Barbaro-Galtieri, A
Barnes, VE
Barnett, BA
Barria, P
Bartos, P
Bauce, M
Bedeschi, F
Behari, S
Bellettini, G
Bellinger, J
Benjamin, D
Beretvas, A
Bhatti, A
Bland, KR
Blumenfeld, B
Bocci, A
Bodek, A
Bortoletto, D
Boudreau, J
Boveia, A
Brigliadori, L
Bromberg, C
Brucken, E
Budagov, J
Budd, HS
Burkett, K
Busetto, G
Bussey, P
Butti, P
Buzatu, A
Calamba, A
Camarda, S
Campanelli, M
Canelli, F
Carls, B
Carlsmith, D
Carosi, R
Carrillo, S
Casal, B
Casarsa, M
Castro, A
Catastini, P
Cauz, D
Cavaliere, V
Cerri, A
Cerrito, L
Chen, YC
Chertok, M
Chiarelli, G
Chlachidze, G
Cho, K
Chokheli, D
Clark, A
Clarke, C
Convery, ME
Conway, J
Corbo, M
Cordelli, M
Cox, CA
Cox, DJ
Cremonesi, M
Cruz, D
Cuevas, J
Culbertson, R
d'Ascenzo, N
Datta, M
de Barbaro, P
Demortier, L
Deninno, M
D'Errico, M
Devoto, F
Di Canto, A
Di Ruzza, B
Dittmann, JR
Donati, S
D'Onofrio, M
Dorigo, M
Driutti, A
Ebina, K
Edgar, R
Elagin, A
Erbacher, R
Errede, S
Esham, B
Farrington, S
Ramos, JPF
Field, R
Flanagan, G
Forrest, R
Franklin, M
Freeman, JC
Frisch, H
Funakoshi, Y
Galloni, C
Garfinkel, AF
Garosi, P
Gerberich, H
Gerchtein, E
Giagu, S
Giakoumopoulou, V
Gibson, K
Ginsburg, CM
Giokaris, N
Giromini, P
Glagolev, V
Glenzinski, D
Gold, M
Goldin, D
Golossanov, A
Gomez, G
Gomez-Ceballos, G
Goncharov, M
Lopez, OG
Gorelov, I
Goshaw, AT
Goulianos, K
Gramellini, E
Grosso-Pilcher, C
Group, RC
da Costa, JG
Hahn, SR
Han, JY
Happacher, F
Hara, K
Hare, M
Harr, RF
Harrington-Taber, T
Hatakeyama, K
Hays, C
Heinrich, J
Henry, S
Herndon, M
Hocker, A
Hong, Z
Hopkins, W
Hou, S
Hughes, RE
Husemann, U
Hussein, M
Huston, J
Introzzi, G
Iori, M
Ivanov, A
James, E
Jang, D
Jayatilaka, B
Jeon, EJ
Jindariani, S
Jones, M
Joo, KK
Jun, SY
Junk, TR
Kambeitz, M
Kamon, T
Karchin, PE
Kasmi, A
Kato, Y
Ketchum, W
Keung, J
Kilminster, B
Kim, DH
Kim, HS
Kim, JE
Kim, MJ
Kim, SH
Kim, SB
Kim, YJ
Kim, YK
Kimura, N
Kirby, M
Knoepfel, K
Kondo, K
Kong, DJ
Konigsberg, J
Kotwal, AV
Kreps, M
Kroll, J
Kruse, M
Kuhr, T
Kurata, M
Laasanen, AT
Lammel, S
Lancaster, M
Lannon, K
Latino, G
Lee, HS
Lee, JS
Leo, S
Leone, S
Lewis, JD
Limosani, A
Lipeles, E
Lister, A
Liu, H
Liu, Q
Liu, T
Lockwitz, S
Loginov, A
Lucchesi, D
Luca, A
Lueck, J
Lujan, P
Lukens, P
Lungu, G
Lys, J
Lysak, R
Madrak, R
Maestro, P
Malik, S
Manca, G
Manousakis-Katsikakis, A
Marchese, L
Margaroli, F
Marino, P
Matera, K
Mattson, ME
Mazzacane, A
Mazzanti, P
McNulty, R
Mehta, A
Mehtala, P
Mesropian, C
Miao, T
Mietlicki, D
Mitra, A
Miyake, H
Moed, S
Moggi, N
Moon, CS
Moore, R
Morello, MJ
Mukherjee, A
Muller, T
Murat, P
Mussini, M
Nachtman, J
Nagai, Y
Naganoma, J
Nakano, I
Napier, A
Nett, J
Neu, C
Nigmanov, T
Nodulman, L
Noh, SY
Norniella, O
Oakes, L
Oh, SH
Oh, YD
Oksuzian, I
Okusawa, T
Orava, R
Ortolan, L
Pagliarone, C
Palencia, E
Palni, P
Papadimitriou, V
Parker, W
Pauletta, G
Paulini, M
Paus, C
Phillips, TJ
Piacentino, G
Pianori, E
Pilot, J
Pitts, K
Plager, C
Pondrom, L
Poprocki, S
Potamianos, K
Pranko, A
Prokoshin, F
Ptohos, F
Punzi, G
Fernandez, IR
Renton, P
Rescigno, M
Rimondi, F
Ristori, L
Robson, A
Rodriguez, T
Rolli, S
Ronzani, M
Roser, R
Rosner, JL
Ruffini, F
Ruiz, A
Russ, J
Rusu, V
Sakumoto, WK
Sakurai, Y
Santi, L
Sato, K
Saveliev, V
Savoy-Navarro, A
Schlabach, P
Schmidt, EE
Schwarz, T
Scodellaro, L
Scuri, F
Seidel, S
Seiya, Y
Semenov, A
Sforza, F
Shalhout, SZ
Shears, T
Shepard, PF
Shimojima, M
Shochet, M
Shreyber-Tecker, I
Simonenko, A
Sliwa, K
Smith, JR
Snider, FD
Song, H
Sorin, V
Denis, RS
Stancari, M
Stentz, D
Strologas, J
Sudo, Y
Sukhanov, A
Suslov, I
Takemasa, K
Takeuchi, Y
Tang, J
Tecchio, M
Teng, PK
Thom, J
Thomson, E
Thukral, V
Toback, D
Tokar, S
Tollefson, K
Tomura, T
Tonelli, D
Torre, S
Torretta, D
Totaro, P
Trovato, M
Ukegawa, F
Uozumi, S
Vazquez, F
Velev, G
Vellidis, C
Vernieri, C
Vidal, M
Vilar, R
Vizan, J
Vogel, M
Volpi, G
Wagner, P
Wallny, R
Wang, SM
Waters, D
Wester, WC
Whiteson, D
Wicklund, AB
Wilbur, S
Williams, HH
Wilson, JS
Wilson, P
Winer, BL
Wittich, P
Wolbers, S
Wolfe, H
Wright, T
Wu, X
Wu, Z
Yamamoto, K
Yamato, D
Yang, T
Yang, UK
Yang, YC
Yao, WM
Yeh, GP
Yi, K
Yoh, J
Yorita, K
Yoshida, T
Yu, GB
Yu, I
Zanetti, AM
Zeng, Y
Zhou, C
Zucchelli, S
AF Aaltonen, T.
Amerio, S.
Amidei, D.
Anastassov, A.
Annovi, A.
Antos, J.
Apollinari, G.
Appel, J. A.
Arisawa, T.
Artikov, A.
Asaadi, J.
Ashmanskas, W.
Auerbach, B.
Aurisano, A.
Azfar, F.
Badgett, W.
Bae, T.
Barbaro-Galtieri, A.
Barnes, V. E.
Barnett, B. A.
Barria, P.
Bartos, P.
Bauce, M.
Bedeschi, F.
Behari, S.
Bellettini, G.
Bellinger, J.
Benjamin, D.
Beretvas, A.
Bhatti, A.
Bland, K. R.
Blumenfeld, B.
Bocci, A.
Bodek, A.
Bortoletto, D.
Boudreau, J.
Boveia, A.
Brigliadori, L.
Bromberg, C.
Brucken, E.
Budagov, J.
Budd, H. S.
Burkett, K.
Busetto, G.
Bussey, P.
Butti, P.
Buzatu, A.
Calamba, A.
Camarda, S.
Campanelli, M.
Canelli, F.
Carls, B.
Carlsmith, D.
Carosi, R.
Carrillo, S.
Casal, B.
Casarsa, M.
Castro, A.
Catastini, P.
Cauz, D.
Cavaliere, V.
Cerri, A.
Cerrito, L.
Chen, Y. C.
Chertok, M.
Chiarelli, G.
Chlachidze, G.
Cho, K.
Chokheli, D.
Clark, A.
Clarke, C.
Convery, M. E.
Conway, J.
Corbo, M.
Cordelli, M.
Cox, C. A.
Cox, D. J.
Cremonesi, M.
Cruz, D.
Cuevas, J.
Culbertson, R.
d'Ascenzo, N.
Datta, M.
de Barbaro, P.
Demortier, L.
Deninno, M.
D'Errico, M.
Devoto, F.
Di Canto, A.
Di Ruzza, B.
Dittmann, J. R.
Donati, S.
D'Onofrio, M.
Dorigo, M.
Driutti, A.
Ebina, K.
Edgar, R.
Elagin, A.
Erbacher, R.
Errede, S.
Esham, B.
Farrington, S.
Fernandez Ramos, J. P.
Field, R.
Flanagan, G.
Forrest, R.
Franklin, M.
Freeman, J. C.
Frisch, H.
Funakoshi, Y.
Galloni, C.
Garfinkel, A. F.
Garosi, P.
Gerberich, H.
Gerchtein, E.
Giagu, S.
Giakoumopoulou, V.
Gibson, K.
Ginsburg, C. M.
Giokaris, N.
Giromini, P.
Glagolev, V.
Glenzinski, D.
Gold, M.
Goldin, D.
Golossanov, A.
Gomez, G.
Gomez-Ceballos, G.
Goncharov, M.
Gonzalez Lopez, O.
Gorelov, I.
Goshaw, A. T.
Goulianos, K.
Gramellini, E.
Grosso-Pilcher, C.
Group, R. C.
da Costa, J. Guimaraes
Hahn, S. R.
Han, J. Y.
Happacher, F.
Hara, K.
Hare, M.
Harr, R. F.
Harrington-Taber, T.
Hatakeyama, K.
Hays, C.
Heinrich, J.
Henry, S.
Herndon, M.
Hocker, A.
Hong, Z.
Hopkins, W.
Hou, S.
Hughes, R. E.
Husemann, U.
Hussein, M.
Huston, J.
Introzzi, G.
Iori, M.
Ivanov, A.
James, E.
Jang, D.
Jayatilaka, B.
Jeon, E. J.
Jindariani, S.
Jones, M.
Joo, K. K.
Jun, S. Y.
Junk, T. R.
Kambeitz, M.
Kamon, T.
Karchin, P. E.
Kasmi, A.
Kato, Y.
Ketchum, W.
Keung, J.
Kilminster, B.
Kim, D. H.
Kim, H. S.
Kim, J. E.
Kim, M. J.
Kim, S. H.
Kim, S. B.
Kim, Y. J.
Kim, Y. K.
Kimura, N.
Kirby, M.
Knoepfel, K.
Kondo, K.
Kong, D. J.
Konigsberg, J.
Kotwal, A. V.
Kreps, M.
Kroll, J.
Kruse, M.
Kuhr, T.
Kurata, M.
Laasanen, A. T.
Lammel, S.
Lancaster, M.
Lannon, K.
Latino, G.
Lee, H. S.
Lee, J. S.
Leo, S.
Leone, S.
Lewis, J. D.
Limosani, A.
Lipeles, E.
Lister, A.
Liu, H.
Liu, Q.
Liu, T.
Lockwitz, S.
Loginov, A.
Lucchesi, D.
Luca, A.
Lueck, J.
Lujan, P.
Lukens, P.
Lungu, G.
Lys, J.
Lysak, R.
Madrak, R.
Maestro, P.
Malik, S.
Manca, G.
Manousakis-Katsikakis, A.
Marchese, L.
Margaroli, F.
Marino, P.
Matera, K.
Mattson, M. E.
Mazzacane, A.
Mazzanti, P.
McNulty, R.
Mehta, A.
Mehtala, P.
Mesropian, C.
Miao, T.
Mietlicki, D.
Mitra, A.
Miyake, H.
Moed, S.
Moggi, N.
Moon, C. S.
Moore, R.
Morello, M. J.
Mukherjee, A.
Muller, Th.
Murat, P.
Mussini, M.
Nachtman, J.
Nagai, Y.
Naganoma, J.
Nakano, I.
Napier, A.
Nett, J.
Neu, C.
Nigmanov, T.
Nodulman, L.
Noh, S. Y.
Norniella, O.
Oakes, L.
Oh, S. H.
Oh, Y. D.
Oksuzian, I.
Okusawa, T.
Orava, R.
Ortolan, L.
Pagliarone, C.
Palencia, E.
Palni, P.
Papadimitriou, V.
Parker, W.
Pauletta, G.
Paulini, M.
Paus, C.
Phillips, T. J.
Piacentino, G.
Pianori, E.
Pilot, J.
Pitts, K.
Plager, C.
Pondrom, L.
Poprocki, S.
Potamianos, K.
Pranko, A.
Prokoshin, F.
Ptohos, F.
Punzi, G.
Redondo Fernandez, I.
Renton, P.
Rescigno, M.
Rimondi, F.
Ristori, L.
Robson, A.
Rodriguez, T.
Rolli, S.
Ronzani, M.
Roser, R.
Rosner, J. L.
Ruffini, F.
Ruiz, A.
Russ, J.
Rusu, V.
Sakumoto, W. K.
Sakurai, Y.
Santi, L.
Sato, K.
Saveliev, V.
Savoy-Navarro, A.
Schlabach, P.
Schmidt, E. E.
Schwarz, T.
Scodellaro, L.
Scuri, F.
Seidel, S.
Seiya, Y.
Semenov, A.
Sforza, F.
Shalhout, S. Z.
Shears, T.
Shepard, P. F.
Shimojima, M.
Shochet, M.
Shreyber-Tecker, I.
Simonenko, A.
Sliwa, K.
Smith, J. R.
Snider, F. D.
Song, H.
Sorin, V.
Denis, R. St.
Stancari, M.
Stentz, D.
Strologas, J.
Sudo, Y.
Sukhanov, A.
Suslov, I.
Takemasa, K.
Takeuchi, Y.
Tang, J.
Tecchio, M.
Teng, P. K.
Thom, J.
Thomson, E.
Thukral, V.
Toback, D.
Tokar, S.
Tollefson, K.
Tomura, T.
Tonelli, D.
Torre, S.
Torretta, D.
Totaro, P.
Trovato, M.
Ukegawa, F.
Uozumi, S.
Vazquez, F.
Velev, G.
Vellidis, C.
Vernieri, C.
Vidal, M.
Vilar, R.
Vizan, J.
Vogel, M.
Volpi, G.
Wagner, P.
Wallny, R.
Wang, S. M.
Waters, D.
Wester, W. C., III
Whiteson, D.
Wicklund, A. B.
Wilbur, S.
Williams, H. H.
Wilson, J. S.
Wilson, P.
Winer, B. L.
Wittich, P.
Wolbers, S.
Wolfe, H.
Wright, T.
Wu, X.
Wu, Z.
Yamamoto, K.
Yamato, D.
Yang, T.
Yang, U. K.
Yang, Y. C.
Yao, W. -M.
Yeh, G. P.
Yi, K.
Yoh, J.
Yorita, K.
Yoshida, T.
Yu, G. B.
Yu, I.
Zanetti, A. M.
Zeng, Y.
Zhou, C.
Zucchelli, S.
CA CDf Collaboration
TI First measurement of the forward-backward asymmetry in bottom-quark pair
production at high mass
SO PHYSICAL REVIEW D
LA English
DT Article
AB We measure the particle-level forward-backward production asymmetry in b (b) over bar pairs with masses (m(b (b) over bar)) larger than 150 GeV/c(2), using events with hadronic jets and employing jet charge to distinguish b from (b) over bar. The measurement uses 9.5 fb(-1) of p (p) over bar collisions at a center-of-mass energy of 1.96 TeV recorded by the CDF II detector. The asymmetry as a function of m(b (b) over bar) is consistent with zero, as well as with the predictions of the standard model. The measurement disfavors a simple model including an axigluon with a mass of 200 GeV/c(2), whereas a model containing a heavier 345 GeV/c(2) axigluon is not excluded.
C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
[Auerbach, B.; Nodulman, L.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece.
[Camarda, S.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Spain.
[Bland, K. R.; Dittmann, J. R.; Hatakeyama, K.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA.
[Brigliadori, L.; Deninno, M.; Gramellini, E.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, Bologna, Italy.
[Brigliadori, L.; Mussini, M.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy.
[Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Pilot, J.; Shalhout, S. Z.; Smith, J. R.; Wilbur, S.] Univ Calif Davis, Davis, CA 95616 USA.
[Plager, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
[Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Ruiz, A.; Scodellaro, L.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Boveia, A.; Canelli, F.; Frisch, H.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Rosner, J. L.; Shochet, M.; Tang, J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia.
[Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia.
[Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia.
[Benjamin, D.; Bocci, A.; Goshaw, A. T.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.; Zhou, C.] Duke Univ, Durham, NC 27708 USA.
[Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Behari, S.; Beretvas, A.; Burkett, K.; Chlachidze, G.; Convery, M. E.; Corbo, M.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Flanagan, G.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harrington-Taber, T.; Hopkins, W.; James, E.; Jayatilaka, B.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kim, H. S.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Liu, T.; Lukens, P.; Madrak, R.; Mazzacane, A.; Miao, T.; Moed, S.; Moon, C. S.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Piacentino, G.; Poprocki, S.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Vazquez, F.; Velev, G.; Vellidis, C.; Wallny, R.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Carrillo, S.; Field, R.; Konigsberg, J.] Univ Florida, Gainesville, FL 32611 USA.
[Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Luca, A.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Clark, A.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland.
[Bussey, P.; Buzatu, A.; Robson, A.; Denis, R. St.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Catastini, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA.
[Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
[Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland.
[Carls, B.; Cavaliere, V.; Errede, S.; Esham, B.; Gerberich, H.; Leo, S.; Matera, K.; Norniella, O.; Pitts, K.] Univ Illinois, Urbana, IL 61801 USA.
[Barnett, B. A.; Blumenfeld, B.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Kambeitz, M.; Kreps, M.; Kuhr, T.; Lueck, J.; Muller, Th.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Gwangju 500757, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea.
[Bae, T.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kamon, T.; Kim, D. H.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, H. S.; Lee, J. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Ewha Womans Univ, Seoul 120750, South Korea.
[Barbaro-Galtieri, A.; Cerri, A.; Lujan, P.; Lys, J.; Potamianos, K.; Pranko, A.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Campanelli, M.; Cerrito, L.; Lancaster, M.; Waters, D.] UCL, London WC1E 6BT, England.
[Fernandez Ramos, J. P.; Gonzalez Lopez, O.; Redondo Fernandez, I.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain.
[Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA.
[Edgar, R.; Mietlicki, D.; Schwarz, T.; Tecchio, M.; Wilson, J. S.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bromberg, C.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA.
[Shreyber-Tecker, I.] ITEP, Moscow 117259, Russia.
[Gold, M.; Gorelov, I.; Palni, P.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Hughes, R. E.; Lannon, K.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.] Okayama Univ, Okayama 7008530, Japan.
[Kato, Y.; Okusawa, T.; Seiya, Y.; Yamamoto, K.; Yamato, D.; Yoshida, T.] Osaka City Univ, Osaka 5588585, Japan.
[Azfar, F.; Farrington, S.; Hays, C.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England.
[Amerio, S.; Bauce, M.; Busetto, G.; D'Errico, M.; Lucchesi, D.; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Amerio, S.; Bauce, M.; Busetto, G.; D'Errico, M.; Lucchesi, D.] Univ Padua, I-35131 Padua, Italy.
[Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA.
[Barria, P.; Bedeschi, F.; Bellettini, G.; Butti, P.; Carosi, R.; Chiarelli, G.; Cremonesi, M.; Di Canto, A.; Donati, S.; Galloni, C.; Garosi, P.; Introzzi, G.; Latino, G.; Leone, S.; Maestro, P.; Marino, P.; Morello, M. J.; Punzi, G.; Ronzani, M.; Ruffini, F.; Scuri, F.; Sforza, F.; Trovato, M.; Vernieri, C.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy.
[Bellettini, G.; Butti, P.; Di Canto, A.; Donati, S.; Galloni, C.; Punzi, G.; Ronzani, M.; Sforza, F.] Univ Pisa, I-56127 Pisa, Italy.
[Barria, P.; Garosi, P.; Maestro, P.; Ruffini, F.] Univ Siena, I-53100 Siena, Italy.
[Marino, P.; Morello, M. J.; Trovato, M.; Vernieri, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Introzzi, G.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy.
[Introzzi, G.] Univ Pavia, I-27100 Pavia, Italy.
[Boudreau, J.; Gibson, K.; Nigmanov, T.; Shepard, P. F.; Song, H.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Barnes, V. E.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA.
[Bodek, A.; Budd, H. S.; de Barbaro, P.; Han, J. Y.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Demortier, L.; Goulianos, K.; Hocker, A.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA.
[Giagu, S.; Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Iori, M.] Sapienza Univ Roma, I-00185 Rome, Italy.
[Asaadi, J.; Aurisano, A.; Cruz, D.; Elagin, A.; Goldin, D.; Henry, S.; Hong, Z.; Kamon, T.; Nett, J.; Thukral, V.; Toback, D.] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, College Stn, TX 77843 USA.
[Casarsa, M.; Cauz, D.; Dorigo, M.; Driutti, A.; Pagliarone, C.; Pauletta, G.; Santi, L.; Zanetti, A. M.] Ist Nazl Fis Nucl, I-34012 Trieste, Italy.
[Cauz, D.; Driutti, A.; Pauletta, G.; Santi, L.] Grp Collegato Udine, I-33100 Udine, Italy.
[Cauz, D.; Driutti, A.; Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy.
[Dorigo, M.] Univ Trieste, I-34127 Trieste, Italy.
[Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan.
[Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA.
[Group, R. C.; Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA.
[Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan.
[Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA.
[Bellinger, J.; Carlsmith, D.; Herndon, M.; Parker, W.; Pondrom, L.] Univ Wisconsin, Madison, WI 53706 USA.
[Husemann, U.; Lockwitz, S.; Loginov, A.] Yale Univ, New Haven, CT 06520 USA.
RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
RI Marino, Pietro/N-7030-2015; song, hao/I-2782-2012; Gorelov,
Igor/J-9010-2015; maestro, paolo/E-3280-2010; Chiarelli,
Giorgio/E-8953-2012; Prokoshin, Fedor/E-2795-2012; Canelli,
Florencia/O-9693-2016; Ruiz, Alberto/E-4473-2011; Paulini,
Manfred/N-7794-2014;
OI Marino, Pietro/0000-0003-0554-3066; Simonenko,
Alexander/0000-0001-6580-3638; song, hao/0000-0002-3134-782X; Gorelov,
Igor/0000-0001-5570-0133; Casarsa, Massimo/0000-0002-1353-8964; maestro,
paolo/0000-0002-4193-1288; Chiarelli, Giorgio/0000-0001-9851-4816;
Prokoshin, Fedor/0000-0001-6389-5399; Canelli,
Florencia/0000-0001-6361-2117; Ruiz, Alberto/0000-0002-3639-0368;
Paulini, Manfred/0000-0002-6714-5787; iori,
maurizio/0000-0002-6349-0380; Devoto, Francesco/0000-0002-3415-7677;
Margaroli, Fabrizio/0000-0002-3869-0153; Latino,
Giuseppe/0000-0002-4098-3502; Farrington, Sinead/0000-0001-5350-9271;
Robson, Aidan/0000-0002-1659-8284; Dorigo, Mirco/0000-0002-0681-6946;
Brucken, Jens Erik/0000-0001-6066-8756
FU U.S. Department of Energy and National Science Foundation; Italian
Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture,
Sports, Science and Technology of Japan; Natural Sciences and
Engineering Research Council of Canada; National Science Council of the
Republic of China; Swiss National Science Foundation; A. P. Sloan
Foundation; Korean World Class University Program, the National Research
Foundation of Korea; Science and Technology Facilities Council and the
Royal Society, United Kingdom; Russian Foundation for Basic Research;
Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio,
Spain; Slovak RD Agency; Australian Research Council; Bundesministerium
fur Bildung und Forschung, Germany; Academy of Finland; EU community
Marie Curie Fellowship [302103]
FX We thank the Fermilab staff and the technical staffs of the
participating institutions for their vital contributions. This work was
supported by the U.S. Department of Energy and National Science
Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the
Ministry of Education, Culture, Sports, Science and Technology of Japan;
the Natural Sciences and Engineering Research Council of Canada; the
National Science Council of the Republic of China; the Swiss National
Science Foundation; the A. P. Sloan Foundation; the Bundesministerium
fur Bildung und Forschung, Germany; the Korean World Class University
Program, the National Research Foundation of Korea; the Science and
Technology Facilities Council and the Royal Society, United Kingdom; the
Russian Foundation for Basic Research; the Ministerio de Ciencia e
Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D
Agency; the Academy of Finland; the Australian Research Council; and the
EU community Marie Curie Fellowship Contract No. 302103.
NR 26
TC 3
Z9 3
U1 2
U2 12
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
EI 1550-2368
J9 PHYS REV D
JI Phys. Rev. D
PD AUG 18
PY 2015
VL 92
IS 3
AR 032006
DI 10.1103/PhysRevD.92.032006
PG 11
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA CP4PX
UT WOS:000359865700002
ER
PT J
AU Agrawal, A
Perahia, D
Grest, GS
AF Agrawal, Anupriya
Perahia, Dvora
Grest, Gary S.
TI Clustering effects in ionic polymers: Molecular dynamics simulations
SO PHYSICAL REVIEW E
LA English
DT Article
ID SULFONATED POLYSTYRENE IONOMERS; RAY-SCATTERING DATA; VISCOELASTIC
BEHAVIOR; MODEL; MORPHOLOGY; MULTIPLETS; ENERGY; WATER
AB Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. These ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing the electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Decrease in electrostatic interaction significantly enhances the mobility of the polymer.
C1 [Agrawal, Anupriya; Perahia, Dvora] Clemson Univ, Dept Chem, Clemson, SC 29634 USA.
[Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Agrawal, A (reprint author), Washington Univ, Dept Mech Engn & Mat Sci, St Louis, MO 63130 USA.
FU Office of Science of the United States Department of Energy
[DE-AC02-05CH11231]; U.S. Department of Energy's National Nuclear
Security Administration [DE-AC04-94AL85000]; [DE-SC007908]
FX We gratefully acknowledge financial support from Grant No. DE-SC007908.
We acknowledge computational resources at the National Energy Research
Scientific Computing Center, which is supported by the Office of Science
of the United States Department of Energy, under Contract No.
DE-AC02-05CH11231 and Clemson Computing and Information Technology. This
work was performed, in part, at the Center for Integrated
Nanotechnology, a U.S. Department of Energy and Office of Basic Energy
Sciences user facility. Sandia National Laboratories is a multiprogram
laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under Contract No.
DE-AC04-94AL85000.
NR 40
TC 4
Z9 4
U1 13
U2 35
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
EI 1550-2376
J9 PHYS REV E
JI Phys. Rev. E
PD AUG 18
PY 2015
VL 92
IS 2
AR 022601
DI 10.1103/PhysRevE.92.022601
PG 6
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA CP4QV
UT WOS:000359868300002
PM 26382420
ER
PT J
AU Bousso, R
Engelhardt, N
AF Bousso, Raphael
Engelhardt, Netta
TI New Area Law in General Relativity
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PARTICLE CREATION; BLACK-HOLES; HORIZONS
AB We report a new area law in general relativity. A future holographic screen is a hypersurface foliated by marginally trapped surfaces. We show that their area increases monotonically along the foliation. Future holographic screens can easily be found in collapsing stars and near a big crunch. Past holographic screens exist in any expanding universe and obey a similar theorem, yielding the first rigorous area law in big bang cosmology. Unlike event horizons, these objects can be identified at finite time and without reference to an asymptotic boundary. The Bousso bound is not used, but it naturally suggests a thermodynamic interpretation of our result.
C1 [Bousso, Raphael] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Bousso, Raphael] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Engelhardt, Netta] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
RP Bousso, R (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM bousso@lbl.gov; engeln@physics.ucsb.edu
FU Berkeley Center for Theoretical Physics; National Science Foundation
[1214644, 1316783]; fqxi Grant [RFP3-1323]; U.S. Department of Energy
[DE-AC02-05CH11231]; U.S. NSF [DGE-1144085]; NSF [PHY12-05500]
FX It is a pleasure to thank M. Aganagic, D. Engelhardt, S. Fischetti, D.
Harlow, G. Horowitz, W. Kelly, S. Leichenauer, T. Jacobson, D. Marolf,
M. Moosa, R. Wald, and A. Wall for discussions and correspondence. The
work of R. B. is supported in part by the Berkeley Center for
Theoretical Physics, by the National Science Foundation (Grants No.
1214644 and No. 1316783), by fqxi Grant No. RFP3-1323, and by the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. The work of
N. E. is supported in part by the U.S. NSF Graduate Research Fellowship
under Grant No. DGE-1144085 and by NSF Grant No. PHY12-05500.
NR 21
TC 14
Z9 14
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 18
PY 2015
VL 115
IS 8
AR 081301
DI 10.1103/PhysRevLett.115.081301
PG 5
WC Physics, Multidisciplinary
SC Physics
GA CP4SG
UT WOS:000359872300003
PM 26340179
ER
PT J
AU Wang, X
Chai, YS
Zhou, L
Cao, HB
Cruz, CD
Yang, JY
Dai, JH
Yin, YY
Yuan, Z
Zhang, SJ
Yu, RZ
Azuma, M
Shimakawa, Y
Zhang, HM
Dong, S
Sun, Y
Jin, CQ
Long, YW
AF Wang, Xiao
Chai, Yisheng
Zhou, Long
Cao, Huibo
Cruz, Clarina-dela
Yang, Junye
Dai, Jianhong
Yin, Yunyu
Yuan, Zhen
Zhang, Sijia
Yu, Runze
Azuma, Masaki
Shimakawa, Yuichi
Zhang, Huimin
Dong, Shuai
Sun, Young
Jin, Changqing
Long, Youwen
TI Observation of Magnetoelectric Multiferroicity in a Cubic Perovskite
System: LaMn3Cr4O12
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID CHARGE; FERROELECTRICITY; POLARIZATION; PROGRESS
AB Magnetoelectric multiferroicity is not expected to occur in a cubic perovskite system because of the high structural symmetry. By versatile measurements in magnetization, dielectric constant, electric polarization, neutron and x-ray diffraction, Raman scattering, as well as theoretical calculations, we reveal that the A-site ordered perovskite LaMn3Cr4O12 with cubic symmetry is a novel spin-driven multiferroic system with strong magnetoelectric coupling effects. When a magnetic field is applied in parallel (perpendicular) to an electric field, the ferroelectric polarization can be enhanced (suppressed) significantly. The unique multiferroic phenomenon observed in this cubic perovskite cannot be understood by conventional spin-driven microscopic mechanisms. Instead, a nontrivial effect involving the interactions between two magnetic sublattices is likely to play a crucial role.
C1 [Wang, Xiao; Chai, Yisheng; Zhou, Long; Yang, Junye; Dai, Jianhong; Yin, Yunyu; Yuan, Zhen; Zhang, Sijia; Sun, Young; Jin, Changqing; Long, Youwen] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China.
[Wang, Xiao; Jin, Changqing; Long, Youwen] Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R China.
[Cao, Huibo; Cruz, Clarina-dela] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Neutron Scattering Sci Directorate, Oak Ridge, TN 37831 USA.
[Yu, Runze; Azuma, Masaki] Tokyo Inst Technol, Mat & Struct Lab, Midori Ku, Yokohama, Kanagawa 2268503, Japan.
[Shimakawa, Yuichi] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan.
[Zhang, Huimin; Dong, Shuai] Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China.
RP Long, YW (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China.
EM youngsun@iphy.ac.cn; ywlong@iphy.ac.cn
RI chai, Yisheng/A-8402-2011; Dong (董), Shuai (帅)/A-5513-2008; Cao,
Huibo/A-6835-2016; Long, Youwen/B-2930-2011; Sun, Young/A-7772-2013
OI chai, Yisheng/0000-0003-0034-7488; Dong (董), Shuai
(帅)/0000-0002-6910-6319; Cao, Huibo/0000-0002-5970-4980; Sun,
Young/0000-0001-8879-3508
FU 973 Project of the Ministry of Science and Technology of China [2014CB92
1500]; Strategic Priority Research Program of the Chinese Academy of
Sciences [XDB070 30300, XDB07030200]; NSFC [11374 347, 11227405,
51322206]; Scientific User Facilities Division, Office of Basic Energy
Sciences, U.S. Department of Energy
FX We thank H. J. Xiang for useful discussion. This work was partially
supported by the 973 Project of the Ministry of Science and Technology
of China (Grant No. 2014CB92 1500), the Strategic Priority Research
Program of the Chinese Academy of Sciences (Grants No. XDB070 30300 and
No. XDB07030200). Y. C., Y. Sun, H. Z., and S. D. were supported by the
NSFC (Grants No. 11374 347, No. 11227405, and No. 51322206). Research
conducted at the ORNL High Flux Isotope Reactor was sponsored by the
Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy. X. W., Y. C., and L. Z. contributed equally
to this work.
NR 48
TC 17
Z9 17
U1 20
U2 106
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 18
PY 2015
VL 115
IS 8
AR 087601
DI 10.1103/PhysRevLett.115.087601
PG 5
WC Physics, Multidisciplinary
SC Physics
GA CP4SG
UT WOS:000359872300004
PM 26340207
ER
PT J
AU Donatelli, JJ
Zwart, PH
Sethian, JA
AF Donatelli, Jeffrey J.
Zwart, Peter H.
Sethian, James A.
TI Iterative phasing for fluctuation X-ray scattering
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE fluctuation scattering; iterative phasing; polar Fourier transform
ID FOURIER-TRANSFORM; RECONSTRUCTION; PARTICLES; SAXS
AB Fluctuation X-ray scattering (FXS) is an extension of small-and wide-angle X-ray scattering in which the X-ray snapshots are taken below rotational diffusion times. This technique, performed using a free electron laser or ultrabright synchrotron source, provides significantly more experimental information compared with traditional solution scattering methods. We develop a multitiered iterative phasing algorithm to determine the underlying structure of the scattering object from FXS data.
C1 [Donatelli, Jeffrey J.; Sethian, James A.] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA.
[Donatelli, Jeffrey J.; Sethian, James A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Math, Berkeley, CA 94720 USA.
[Zwart, Peter H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Sethian, JA (reprint author), Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA.
EM sethian@math.berkeley.edu
FU Applied Mathematical Sciences subprogram of the Office of Energy
Research, US Department of Energy [DE-AC02-05CH11231]; Division of
Mathematical Sciences of the National Science Foundation; Office of
Science of the US Department of Energy [DE-AC02-05CH11231]; National
Institute of General Medical Sciences of the National Institutes of
Health [R01GM109019]
FX This research was supported in part by the Applied Mathematical Sciences
subprogram of the Office of Energy Research, US Department of Energy,
under Contract DE-AC02-05CH11231 and by the Division of Mathematical
Sciences of the National Science Foun