FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Iverson, J Kamath, C Karypis, G AF Iverson, J. Kamath, C. Karypis, G. TI Evaluation of connected-component labeling algorithms for distributed-memory systems SO PARALLEL COMPUTING LA English DT Article DE Distributed-memory; Connected component; Scalability ID PARALLEL; COMPUTERS AB Connected component labeling is a key step in a wide-range of applications, such as community detection in social networks and coherent structure identification in massively-parallel scientific simulations. There have been several distributed-memory connected component algorithms described in literature; however, little has been done regarding their stalability analysis. Theoretical and experimental results are presented for five algorithms: three that are direct implementations of previous approaches, one that is an implementation of a previous approach that is optimized to reduce communication, and one that is a novel approach based on graph contraction. Under weak scaling and for certain classes of graphs, the graph contraction algorithm scales consistently better than the four other algorithms. Furthermore, it uses significantly less memory than two of the alternative methods and is of the same order in terms of memory as the other two. (C) 2015 Elsevier B.V. All rights reserved. C1 [Iverson, J.; Karypis, G.] Univ Minnesota, Minneapolis, MN 55455 USA. [Iverson, J.; Kamath, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Iverson, J (reprint author), Univ Minnesota, Minneapolis, MN 55455 USA. EM jiverson@cs.umn.edu; kamath@llnl.gov; karpyis@cs.umn.edu FU NSF - United States [IIS-0905220, OCI-1048018, IOS-0820730]; DOE (as part of the Exa-DM project - ASCR) [USDOE/DE-SC0005013]; Digital Technology Center at the University of Minnesota FX This work was supported in part by NSF - United States (IIS-0905220, OCI-1048018, and IOS-0820730) and by the DOE Grant USDOE/DE-SC0005013 (as part of the Exa-DM project, funded by Dr. Lucy Nowell, program manager, ASCR), and the Digital Technology Center at the University of Minnesota. Access to research and computing facilities was provided by the Digital Technology Center and the Minnesota Supercomputing Institute. NR 21 TC 2 Z9 2 U1 3 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD MAY PY 2015 VL 44 BP 53 EP 68 DI 10.1016/j.parco.2015.02.005 PG 16 WC Computer Science, Theory & Methods SC Computer Science GA CG2HK UT WOS:000353095300004 ER PT J AU Erickson, E Wakao, S Niyogi, KK AF Erickson, Erika Wakao, Setsuko Niyogi, Krishna K. TI Light stress and photoprotection in Chlamydomonas reinhardtii SO PLANT JOURNAL LA English DT Review DE Chlamydomonas reinhardtii; non-photochemical quenching; photoinhibition; photoprotection; photosynthesis; reactive oxygen species; singlet oxygen ID CYCLIC ELECTRON FLOW; HARVESTING-COMPLEX-II; PHOTOSYNTHETIC CARBON ASSIMILATION; XANTHOPHYLL-DEFICIENT MUTANT; DIFFERENT GROWTH IRRADIANCES; CHLOROPLAST GENE-EXPRESSION; PLASTOQUINONE REDOX STATE; SINGLET OXYGEN; PHOTOSYSTEM-II; CHLOROPHYLL FLUORESCENCE AB Plants and algae require light for photosynthesis, but absorption of too much light can lead to photo-oxidative damage to the photosynthetic apparatus and sustained decreases in the efficiency and rate of photosynthesis (photoinhibition). Light stress can adversely affect growth and viability, necessitating that photosynthetic organisms acclimate to different environmental conditions in order to alleviate the detrimental effects of excess light. The model unicellular green alga, Chlamydomonas reinhardtii, employs diverse strategies of regulation and photoprotection to avoid, minimize, and repair photo-oxidative damage in stressful light conditions, allowing for acclimation to different and changing environments. Significance Statement This review summarizes the mechanisms used by the model photosynthetic eukaryote Chlamydomonas reinhardtii to avoid, minimize, and repair photo-oxidative damage and to acclimate to singlet oxygen and excess light stress. C1 [Erickson, Erika; Wakao, Setsuko; Niyogi, Krishna K.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Erickson, Erika; Niyogi, Krishna K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Niyogi, KK (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. EM niyogi@berkeley.edu FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [449B]; Howard Hughes Medical Institute; Gordon and Betty Moore Foundation [GBMF3070]; National Science Foundation FX Our work on NPQ was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under field work proposal 449B, and our work on singlet oxygen signaling was supported by the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation through grant GBMF3070. E.E. was supported by a National Science Foundation Graduate Research Fellowship. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. NR 204 TC 30 Z9 30 U1 19 U2 103 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD MAY PY 2015 VL 82 IS 3 BP 449 EP 465 DI 10.1111/tpj.12825 PG 17 WC Plant Sciences SC Plant Sciences GA CG7QR UT WOS:000353500000007 PM 25758978 ER PT J AU Kempe, MD Panchagade, D Reese, MO Dameron, AA AF Kempe, Michael D. Panchagade, Dhananjay Reese, Matthew O. Dameron, Arrelaine A. TI Modeling moisture ingress through polyisobutylene-based edge-seals SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE photovoltaic; edge-seal; moisture; humidity; polyisobutylene; desiccant; diffusivity; modeling ID SOLAR-CELLS; TEMPERATURE; DIFFUSION; STABILITY AB Photovoltaic devices are often sensitive to moisture and must be packaged in such a way as to limit moisture ingress for 25years or more. Typically, this is accomplished through the use of impermeable front and backsheets (e.g., glass sheets or metal foils). However, this will still allow moisture ingress between the sheets from the edges. Attempts to hermetically seal with a glass frit or similarly welded bonds at the edge have had problems with costs and mechanical strength. Because of this, low diffusivity polyisobutylene materials filled with desiccant are typically used. Although it is well known that these materials will substantially delay moisture ingress, correlating that to outdoor exposure has been difficult. Here, we use moisture ingress measurements at different temperatures and relative humidities to find fit parameters for a moisture ingress model for an edge-seal material. Then, using meteorological data, a finite element model is used to predict the moisture ingress profiles for hypothetical modules deployed in different climates and mounting conditions, assuming no change in properties of the edge-seal as a function of aging. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Kempe, Michael D.; Panchagade, Dhananjay; Reese, Matthew O.; Dameron, Arrelaine A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kempe, MD (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM michael.kempe@nrel.gov FU US Department of Energy [DOE-AC36-08GO28308]; National Renewable Energy Laboratory FX The Authors would like to acknowledge the help of Sarah Kurtz, David Miller, Calvin Curtis, Kent Terwilliger, Thomas Moricone, Dylan Nobles, and Joshua Martin. This work was supported by the US Department of Energy under contract no. DOE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 25 TC 3 Z9 3 U1 2 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD MAY PY 2015 VL 23 IS 5 BP 570 EP 581 DI 10.1002/pip.2465 PG 12 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA CF8FZ UT WOS:000352792900004 ER PT J AU Lin, CT McMahon, WE Ward, JS Geisz, JF Wanlass, MW Carapella, JJ Olavarria, W Perl, EE Young, M Steiner, MA France, RM Kibbler, AE Duda, A Moriarty, TE Friedman, DJ Bowers, JE AF Lin, Chieh-Ting McMahon, William E. Ward, James S. Geisz, John F. Wanlass, Mark W. Carapella, Jeffrey J. Olavarria, Waldo Perl, Emmett E. Young, Michelle Steiner, Myles A. France, Ryan M. Kibbler, Alan E. Duda, Anna Moriarty, Tom E. Friedman, Daniel J. Bowers, John E. TI Two-terminal metal-inter-connected multijunction III-V solar cells SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE III-V semiconductor; photovoltaic cells; multijunction; concentrator photovoltaic; device bonding; thermal compression bond AB A novel bonding approach with an interface consisting of a metal and dielectric is developed, and a pillar-array metal topology is proposed for minimal optical and electrical loss at the interface. This enables a fully lattice-matched two-terminal, four-junction device that consists of an inverted top two-junction (2J) cell with 1.85eV GaInP/1.42eV GaAs, and an upright lower 2J cell with similar to 1eV GaInAsP/0.74eV GaInAs aimed for concentrator applications. The fabrication process and simulation of the metal topology are discussed along with the results of GaAs/GaInAs 2J and (GaInP+GaAs)/GaInAs three-junction bonded cells. Bonding-related issues are also addressed along with optical coupling across the bonding interface. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Lin, Chieh-Ting; Perl, Emmett E.; Bowers, John E.] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. [McMahon, William E.; Ward, James S.; Geisz, John F.; Wanlass, Mark W.; Carapella, Jeffrey J.; Olavarria, Waldo; Young, Michelle; Steiner, Myles A.; France, Ryan M.; Kibbler, Alan E.; Duda, Anna; Moriarty, Tom E.; Friedman, Daniel J.] Natl Renewable Energy Lab, Golden, CO USA. RP Lin, CT (reprint author), Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. EM clin01@umail.ucsb.edu FU Center for Energy Efficient Materials (CEEM); Energy Frontier Research Center (EFRC); US Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-SC0001009]; University of California, Santa Barbara; National Science Foundation; National Nanofabrication Infrastructure Network (NNIN); National Science Foundation [DGE-1144085] FX This material is based upon work supported as part of the Center for Energy Efficient Materials (CEEM), an Energy Frontier Research Center (EFRC) funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under award number DE-SC0001009. Part of this work is performed in the University of California, Santa Barbara Nanofabrication Facility, supported by the National Science Foundation and the National Nanofabrication Infrastructure Network (NNIN). E.E. Perl is supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE-1144085. NR 19 TC 2 Z9 2 U1 2 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD MAY PY 2015 VL 23 IS 5 BP 593 EP 599 DI 10.1002/pip.2468 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA CF8FZ UT WOS:000352792900006 ER PT J AU Ward, JS Duda, A Friedman, DJ Geisz, J McMahon, W Young, M AF Ward, J. Scott Duda, Anna Friedman, Daniel J. Geisz, John McMahon, William Young, Michelle TI High aspect ratio electrodeposited Ni/Au contacts for GaAs-based III-V concentrator solar cells SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE GaAs; electro-deposition; III-V; concentrator; gold; nickel AB We report on a photolithographic and electro-deposition process that results in an optimized front grid structure for high efficiency multi-junction III-V concentrator solar cells operating under flux concentrations up to 1000 suns. Two different thick photoresists were investigated to achieve a 6 mu m wide grid line with an aspect ratio of 1:1. A positive photoresist, SPR220 manufactured by Rohm and Haas was compared with a negative photoresist, nXT15 manufactured by AZ. A gold sulfite electrolyte was employed to prevent underplating as well as for environmental and safety considerations. An initial layer of nickel was discovered to be necessary to prevent delamination of the fingers during the removal of the contact layer. When deposited on a purpose grown, heavily doped GaAs contact layer, this Ni/Au contact exhibits an acceptable specific contact resistance in the low 10(-4) to mid 10(-5) Ohm cm(2) range along with excellent adhesion without sintering. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Ward, J. Scott; Duda, Anna; Friedman, Daniel J.; Geisz, John; McMahon, William; Young, Michelle] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ward, JS (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM scott.ward@nrel.gov FU US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the US Department of Energy under contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 17 TC 2 Z9 2 U1 4 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD MAY PY 2015 VL 23 IS 5 BP 646 EP 653 DI 10.1002/pip.2490 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA CF8FZ UT WOS:000352792900012 ER PT J AU Miskin, CK Yang, WC Hages, CJ Carter, NJ Joglekar, CS Stach, EA Agrawal, R AF Miskin, Caleb K. Yang, Wei-Chang Hages, Charles J. Carter, Nathaniel J. Joglekar, Chinmay S. Stach, Eric A. Agrawal, Rakesh TI 9.0% efficient Cu2ZnSn(S,Se)(4) solar cells from selenized nanoparticle inks SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE CZTS; CZTSSe; nanoparticle ink; photovoltaics; selenization; thin films ID CU2ZNSNS4 THIN-FILMS; NANOCRYSTALS AB Thin-film solar cells using Cu2ZnSn(S,Se)(4) absorber materials continue to attract increasing attention. The synthesis of kesterite Cu2ZnSnS4 nanoparticles by a modified method of hot injection is explained. Characterization of the nanoparticles by energy dispersive X-ray spectroscopy, X-ray diffraction, Raman, and transmission electron microscopy is presented and discussed. When suspended in an ink, coated, and processed into a device, the nanoparticles obtained by this synthesis achieve a total area (active area) efficiency of 9.0% (9.8%) using AM 1.5 illumination and light soaking. This improvement over the previous efficiency of 7.2% is attributed to the modified synthesis approach, as well as fine-tuned conditions for selenizing the coated nanoparticles into a dense absorber layer. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Miskin, Caleb K.; Hages, Charles J.; Carter, Nathaniel J.; Joglekar, Chinmay S.; Agrawal, Rakesh] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47906 USA. [Yang, Wei-Chang] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47906 USA. [Yang, Wei-Chang] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47906 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Agrawal, R (reprint author), Purdue Univ, Sch Chem Engn, W Lafayette, IN 47906 USA. EM agrawalr@purdue.edu RI Stach, Eric/D-8545-2011; Hages, Charles/J-6074-2015 OI Stach, Eric/0000-0002-3366-2153; Hages, Charles/0000-0003-4054-1218 FU National Science Foundation [DGE-0833366]; NSF Solar Economy IGERT [0903670-DGE]; DOE SunShot [DE-EE0005328]; US DOE Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We acknowledge Brian Graeser and Kevin Brew for their assistance and expertise in preparing the Mo-coated soda lime glass. C.K.M. acknowledges this work's support by the National Science Foundation under grant no. DGE-0833366. The authors also gratefully acknowledge the funding of NSF Solar Economy IGERT (0903670-DGE) and DOE SunShot (DE-EE0005328). E.A.S. acknowledges support to the Center for Functional Nanomaterials, Brookhaven National Laboratory by the US DOE Office of Basic Energy Sciences (contract no. DE-AC02-98CH10886). NR 33 TC 69 Z9 69 U1 20 U2 156 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD MAY PY 2015 VL 23 IS 5 BP 654 EP 659 DI 10.1002/pip.2472 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA CF8FZ UT WOS:000352792900013 ER PT J AU Weerth, RS Michalska, K Bingman, CA Yennamalli, RM Li, H Jedrzejczak, R Wang, FB Babnigg, G Joachimiak, A Thomas, MG Phillips, GN AF Weerth, R. Sophia Michalska, Karolina Bingman, Craig A. Yennamalli, Ragothaman M. Li, Hui Jedrzejczak, Robert Wang, Fengbin Babnigg, Gyorgy Joachimiak, Andrzej Thomas, Michael G. Phillips, George N. TI Structure of a cupin protein Plu4264 from Photorhabdus luminescenssubsp. laumondii TTO1 at 1.35 angstrom resolution (vol 83, pg 383, 2014) SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Correction C1 [Weerth, R. Sophia; Thomas, Michael G.] Univ Wisconsin Madison, Dept Bacteriol, Madison, WI USA. [Michalska, Karolina; Babnigg, Gyorgy; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Gen, Biosci Div, Argonne, IL 60439 USA. [Michalska, Karolina; Li, Hui; Jedrzejczak, Robert; Babnigg, Gyorgy; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. [Bingman, Craig A.] Univ Wisconsin Madison, Dept Biochem, Madison, WI USA. [Yennamalli, Ragothaman M.; Wang, Fengbin; Phillips, George N.] Rice Univ, Biosci Rice, Houston, TX 77005 USA. RP Phillips, GN (reprint author), Rice Univ, Biosci Rice, 6100 Main St, Houston, TX 77005 USA. EM georgep@rice.edu NR 1 TC 1 Z9 1 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 EI 1097-0134 J9 PROTEINS JI Proteins PD MAY PY 2015 VL 83 IS 5 BP 1003 EP 1003 DI 10.1002/prot.24798 PG 1 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA CG1US UT WOS:000353060900022 ER PT J AU Haberkorn, N Kim, J Gofryk, K Ronning, F Sefat, AS Fang, L Welp, U Kwok, WK Civale, L AF Haberkorn, N. Kim, Jeehoon Gofryk, K. Ronning, F. Sefat, A. S. Fang, L. Welp, U. Kwok, W. K. Civale, L. TI Enhancement of the critical current density by increasing the collective pinning energy in heavy ion irradiated Co-doped BaFe2As2 single crystals SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article; Proceedings Paper CT 4th International Workshop on Numerical Modelling of High Temperature Superconductors (HTSs)3 CY MAY 11-14, 2014 CL ELU, Bratislava, SLOVAKIA SP HTS Modelling Work Grp, Eurotopes, SuperPower HO ELU DE iron superconductors; heavy ion irradiation; vortex dynamics ID HIGH-TEMPERATURE SUPERCONDUCTORS; FLUX-CREEP; VORTEX DYNAMICS; DEPENDENCE; YBA2CU3O7-X AB We investigate the effect of heavy ion irradiation (1.4 GeV Pb) on the vortex matter in Ba (Fe0.92Co0.08)(2)As-2 single crystals by superconducting quantum interference device (SQUID) magnetometry. The defects created by the irradiation are discontinuous amorphous tracks, resulting in an effective track density smaller than 25% of the nominal doses. We observe large increases in the critical current density (J(c)), ranging from a factor of similar to 3 at low magnetic fields to a factor of similar to 10 at fields close to 1 T after irradiation with a nominal fluence of B-Phi= 3.5 T. From the normalized flux creep rates (S) and the Maley analysis, we determine that the J(c) increase can be mainly attributed to a large increment in the pinning energy, from <50 K to approximate to 500 K, while the glassy exponent mu changes from similar to 1.5 to <1. Although the enhancement of J(c) is substantial in the entire temperature range and S is strongly suppressed, the artificial pinning landscape induced by the irradiation does not modify significantly the crossover to fast creep in the field-temperature vortex phase diagram. C1 [Haberkorn, N.] Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. [Kim, Jeehoon] Inst for Basic Sci Korea, CALDES, Pohang, South Korea. [Kim, Jeehoon] Pohang Univ Sci & Techonl, Dept Phys, Pohang, South Korea. [Gofryk, K.; Ronning, F.; Civale, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sefat, A. S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Fang, L.; Welp, U.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. EM nhaberk@cab.cnea.gov.ar RI Sefat, Athena/R-5457-2016; OI Sefat, Athena/0000-0002-5596-3504; Ronning, Filip/0000-0002-2679-7957; Civale, Leonardo/0000-0003-0806-3113 NR 40 TC 6 Z9 6 U1 5 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2015 VL 28 IS 5 AR 055011 DI 10.1088/0953-2048/28/5/055011 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA CG1EK UT WOS:000353015700017 ER PT J AU Di Iorio, JR Bates, SA Verma, AA Delgass, WN Ribeiro, FH Miller, JT Gounder, R AF Di Iorio, John R. Bates, Shane A. Verma, Anuj A. Delgass, W. Nicholas Ribeiro, Fabio H. Miller, Jeffrey T. Gounder, Rajamani TI The Dynamic Nature of Bronsted Acid Sites in Cu-Zeolites During NOx Selective Catalytic Reduction: Quantification by Gas-Phase Ammonia Titration SO TOPICS IN CATALYSIS LA English DT Article DE Ammonia; Bronsted acid site; Copper-exchanged zeolites; n-Propylamine; Selective catalytic reduction; Titration ID VANADIA-TITANIA CATALYSTS; AMORPHOUS SILICA-ALUMINA; NITRIC-OXIDE; MOLECULAR-SIEVE; ACTIVE-SITES; H-USY; CRYSTAL-STRUCTURE; AMINE ADSORPTION; NH3-SCR REACTION; SOLID ACIDS AB Bronsted acid sites on Cu-exchanged zeolites can be titrated selectively using gaseous ammonia when NH3 saturation steps are followed by protocols that remove Lewis acid-bound and physisorbed NH3, such as purging in flowing wet helium at 433 K. NH3 titrates all H+ sites on small-pore chabazite zeolites (SSZ-13) and leads to the complete disappearance of infrared stretches for Bronsted acidic OH groups after saturation (433 K), in contrast with larger n-propylamine titrants that access only a small fraction (<0.25) of H+ sites on SSZ-13 under conditions sufficient to titrate all H+ sites on medium-pore ZSM-5 zeolites (323 K, 2 h). NH3 titration of the residual H+ sites present in Cu-exchanged SSZ-13 samples (Si/Al = 4.5, Cu/Al = 0-0.20) after oxidative treatments detects two fewer H+ sites per exchanged Cu2+ ion, as expected to maintain framework charge neutrality. NH3 titrants detect only one fewer H+ site (per Cu) after Cu-SSZ-13 samples undergo a reductive treatment in flowing NO and NH3 (473 K), however, indicating that each Cu2+ cation reduces to form a Cu+ and H+ site pair. In the context of low temperature (473 K) selective catalytic reduction (SCR) on high aluminum Cu-SSZ-13, we discuss the different mechanistic roles of residual H+ sites that remain after Cu2+ exchange, whose primary function appears to be NH3 storage, and of proximal H+ sites that are generated in situ upon Cu2+ reduction, whose role is to stabilize reactive NH4 (+) intermediates involved in the standard SCR oxidation half-cycle. We highlight how gaseous NH3 titrants can selectively count H+ sites on small-pore, Cu-exchanged zeolites and, in doing so, enable probing the dynamic nature of active sites and catalytic surfaces during SCR redox cycles. C1 [Di Iorio, John R.; Bates, Shane A.; Verma, Anuj A.; Delgass, W. Nicholas; Ribeiro, Fabio H.; Miller, Jeffrey T.; Gounder, Rajamani] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Gounder, R (reprint author), Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM rgounder@purdue.edu FU National Science Foundation GOALI program [1258715-CBET]; Oak Ridge Associated Universities; Purdue Research Foundation Summer Faculty Grant; U.S. DOE, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC0-06CH11357] FX We acknowledge the financial support provided by the National Science Foundation GOALI program under award number 1258715-CBET. RG also acknowledges financial support from a Ralph E. Powe Junior Faculty Enhancement Award from the Oak Ridge Associated Universities, and from a Purdue Research Foundation Summer Faculty Grant. Support for JTM was provided under the auspices of the U.S. DOE, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract number DE-AC0-06CH11357. We would like to thank Sachem, Inc. for their donation of the structure-directing agent used to synthesize SSZ-13, Dr. Yury Zvinevich for assistance constructing a custom-built acid site titration unit, Austin Tackaberry for assistance with SSZ-13 sample preparation, and Arthur Shih and Jonatan Albarracin-Caballero for assistance with some of the NH3 TPD experiments. Finally, we would like to thank Professor Mark E. Davis for continuing to lead by example and inspire his current and former colleagues to pursue creative research problems in catalysis. NR 60 TC 8 Z9 8 U1 8 U2 78 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAY PY 2015 VL 58 IS 7-9 BP 424 EP 434 DI 10.1007/s11244-015-0387-8 PG 11 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA CG8QQ UT WOS:000353575500006 ER PT J AU Ramasamy, US Cosimbescu, L Martini, A AF Ramasamy, Uma Shantini Cosimbescu, Lelia Martini, Ashlie TI Temperature-Dependent Conformations of Model Viscosity Index Improvers SO TRIBOLOGY & LUBRICATION TECHNOLOGY LA English DT Article C1 [Ramasamy, Uma Shantini; Martini, Ashlie] Univ Calif Merced, Sch Engn, Merced, CA 95343 USA. [Cosimbescu, Lelia] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Ramasamy, US (reprint author), Univ Calif Merced, Sch Engn, Merced, CA 95343 USA. EM uramasamy@ucmerced.edu FU U.S. Department of Energy's (DOE) Office of Vehicle Technology of the PNNL AOP project [27029]; DOE [DE-AC05-76RL01830]; American Chemical Society Petroleum Research Fund [55026-ND6] FX The authors would like to acknowledge financial support from the U.S. Department of Energy's (DOE) Office of Vehicle Technology (under Contract No. 27029) of the PNNL AOP project. PNNL is a multi-program national laboratory operated by Battelle for DOE under Contract DE-AC05-76RL01830. USR and AM also acknowledge the donors of the American Chemical Society Petroleum Research Fund (# 55026-ND6) for partial support of this research. NR 0 TC 0 Z9 0 U1 2 U2 5 PU SOC TRIBOLOGISTS & LUBRICATION ENGINEERS PI PARK RIDGE PA 840 BUSSE HIGHWAY, PARK RIDGE, IL 60068 USA SN 1545-858X J9 TRIBOL LUBR TECHNOL JI Tribol. Lubr. Technol. PD MAY PY 2015 VL 71 IS 5 BP 30 EP 31 PG 2 WC Engineering, Mechanical SC Engineering GA CG6UF UT WOS:000353437200017 ER PT J AU Nurkowski, D Klippenstein, SJ Georgievskii, Y Verdicchio, M Jasper, AW Akroyd, J Mosbach, S Kraft, M AF Nurkowski, Daniel Klippenstein, Stephen J. Georgievskii, Yuri Verdicchio, Marco Jasper, Ahren W. Akroyd, Jethro Mosbach, Sebastian Kraft, Markus TI Ab initio Variational Transition State Theory and Master Equation Study of the Reaction (OH)(3)SiOCH2 + CH3 reversible arrow (OH)(3)SiOC2H5 SO ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS LA English DT Article DE TEOS; VRC-TST; ab initio; Rate Constant ID POPULATION BALANCE MODEL; SILICA NANOPARTICLES; THERMAL-DECOMPOSITION; REACTION COORDINATE; FLAME SYNTHESIS; KINETIC-MODEL; GAS-PHASE; COMBUSTION; ETHANOL; THERMOCHEMISTRY AB In this paper we use variable reaction coordinate variational transition state theory (VRC-TST) to calculate the reaction rate constants for the two reactions, R1: (OH)(3)SiOCH2 + CH3 reversible arrow (OH)(3)SiOC2H5, and R2: CH2OH + CH3 reversible arrow C2H5OH. The first reaction is an important channel during the thermal decomposition of tetraethoxysilane (TEOS), and its rate coefficient is the main focus of this work. The second reaction is analogous to the first and is used as a basis for comparison. The interaction energies are obtained on-the-fly at the CASPT2(2e,2o)/cc-pVDZ level of theory. A one-dimensional correction to the sampled energies was introduced to account for the energetic effects of geometry relaxation along the reaction path. The computed, high-pressure rate coefficients were calculated to be, R1: k(1) = 2.406x10(-10)T(-0.301) exp(-271.4/T) cm(3) molecule(-1) s(-1) and R2: k(2) = 1.316x10(-10)T(-0.189) exp(-256.5/T) cm(3) molecule(-1) s(-1). These rates differ fromeach other by only 10%-30% over the temperature range 300-2000 K. A comparison of the computed rates with experimental data shows good agreement and an improvement over previous results. The pressure dependency of the reaction R1 is explored by solving a master equation using helium as a bath gas. The results obtained show that the reaction is only weakly pressure dependent over the temperature range 300-1700 K, with the predicted rate constant being within 50% of its high-pressure limit at atmospheric pressure. C1 [Nurkowski, Daniel; Akroyd, Jethro; Mosbach, Sebastian; Kraft, Markus] Univ Cambridge, Dept Chem Engn & Biotechnol, New Museums Site, Cambridge CB2 3RA, England. [Klippenstein, Stephen J.; Georgievskii, Yuri; Verdicchio, Marco] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Jasper, Ahren W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Kraft, M (reprint author), Univ Cambridge, Dept Chem Engn & Biotechnol, New Museums Site, Pembroke St, Cambridge CB2 3RA, England. EM mk306@cam.ac.uk RI Jasper, Ahren/A-5292-2011; Kraft, Markus/D-7243-2016 OI Kraft, Markus/0000-0002-4293-8924 FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357]; National Research Foundation (NRF), Prime Minister's Office, Singapore FX The work at Argonne was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC02-06CH11357. This project is partly funded by the National Research Foundation (NRF), Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme. NR 53 TC 2 Z9 2 U1 1 U2 7 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0942-9352 J9 Z PHYS CHEM JI Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys. PD MAY PY 2015 VL 229 IS 5 SI SI BP 691 EP 708 DI 10.1515/zpch-2014-0640 PG 18 WC Chemistry, Physical SC Chemistry GA CG6OA UT WOS:000353420300005 ER PT J AU Korobeinichev, OP Gerasimov, IE Knyazkov, DA Shmakov, AG Bolshova, TA Hansen, N Westbrook, CK Dayma, G Yang, B AF Korobeinichev, Oleg P. Gerasimov, Ilya E. Knyazkov, Denis A. Shmakov, Andrey G. Bolshova, Tatyana A. Hansen, Nils Westbrook, Charles K. Dayma, Guillaume Yang, Bin TI An Experimental and Kinetic Modeling Study of Premixed Laminar Flames of Methyl Pentanoate and Methyl Hexanoate SO ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS LA English DT Article DE Spectroscopy; Reaction Kinetics ID JET-STIRRED REACTOR; PHOTOIONIZATION MASS-SPECTROMETRY; FLOW DIFFUSION FLAME; BIODIESEL FUELS; DESTRUCTION CHEMISTRY; ETHYL PROPANOATE; DIESEL-ENGINES; OXIDATION; COMBUSTION; MECHANISM AB Detailed chemical structures of stoichiometric and rich premixed laminar flames of methyl pentanoate and methyl hexanoate were investigated over a flat burner at 20 Torr and for methyl pentanoate at 1 atm. Molecular beam mass spectrometry was used with tunable synchrotron vacuum ultraviolet (VUV) photoionization for low pressure flames of both methyl pentanoate and methyl hexanoate, and soft electron-impact ionization was used for atmospheric pressure flames of methyl pentanoate. Mole fraction profiles of stable and intermediate species, as well as temperature profiles, were measured in the flames. A detailed chemical kinetic high temperature reaction mechanism for small alkyl ester oxidation was extended to include combustion of methyl pentanoate and methyl hexanoate, and the resulting model was used to compare computed values with experimentally measured values. Reaction pathways for both fuels were identified, with good agreement between measured and computed species profiles. Implications of these results for future studies of larger alkyl ester fuels are discussed. C1 [Westbrook, Charles K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Korobeinichev, Oleg P.; Gerasimov, Ilya E.; Knyazkov, Denis A.; Shmakov, Andrey G.; Bolshova, Tatyana A.] Russian Acad Sci, Inst Chem Kinet & Combust, Novosibirsk 630090, Russia. [Knyazkov, Denis A.; Shmakov, Andrey G.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Hansen, Nils] Sandia Natl Labs, Livermore, CA USA. [Dayma, Guillaume] CNRS, F-45071 Orleans 1, France. [Yang, Bin] Tsinghua Univ, Ctr Combust Energy, Beijing 100084, Peoples R China. RP Westbrook, CK (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM westbrookck@earthlink.net RI Hansen, Nils/G-3572-2012; Yang, Bin/A-7158-2008; OI Yang, Bin/0000-0001-7333-0017; Dayma, Guillaume/0000-0003-2761-657X FU RFBR [11-03-92503]; CRDF [RUC2-7027-NO-11]; Ministry of Education and Science of the Russian Federation [8186]; US Department of Energy, Office of Vehicle Technologies and the Office of Basic Energy Sciences under auspices of the US Department of Energy [DE-AC52-07NA27344]; Lawrence Livermore National Laboratory [DE-AC04-94-AL85000]; Sandia Corporation; Office of Science, BES/USDOE [DE-AC02-05CH11231] FX The experimental work was supported by RFBR under grant #11-03-92503; CRDF under grant #RUC2-7027-NO-11; and the Ministry of Education and Science of the Russian Federation under project No. 8186. Experimental and computational work was supported by the US Department of Energy, Office of Vehicle Technologies and the Office of Basic Energy Sciences and was performed under the auspices of the US Department of Energy under Contract DE-AC52-07NA27344 by the Lawrence Livermore National Laboratory (CKW) and under Contract DE-AC04-94-AL85000 by the Sandia Corporation (NH). The Advanced Light Source is supported by the Director, Office of Science, BES/USDOE under Contract No. DE-AC02-05CH11231. NR 42 TC 2 Z9 2 U1 9 U2 37 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0942-9352 J9 Z PHYS CHEM JI Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys. PD MAY PY 2015 VL 229 IS 5 SI SI BP 759 EP 780 DI 10.1515/zpch-2014-0596 PG 22 WC Chemistry, Physical SC Chemistry GA CG6OA UT WOS:000353420300008 ER PT J AU Smith, SD Bridou, R Johs, A Parks, JM Elias, DA Hurt, RA Brown, SD Podar, M Wall, JD AF Smith, Steven D. Bridou, Romain Johs, Alexander Parks, Jerry M. Elias, Dwayne A. Hurt, Richard A., Jr. Brown, Steven D. Podar, Mircea Wall, Judy D. TI Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID DESULFOVIBRIO-DESULFURICANS LS; POLYACRYLAMIDE GELS; SULFUR PROTEIN; FERREDOXIN-I; CLOSTRIDIUM-THERMOACETICUM; ELECTROPHORETIC TRANSFER; PRINCIPAL METHYLATORS; DEPENDENT ENZYMES; CRYSTAL-STRUCTURE; GENE HGCA AB Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative "cap helix" region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. This study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin. C1 [Smith, Steven D.; Bridou, Romain; Wall, Judy D.] Univ Missouri, Div Biochem, Columbia, MO 65211 USA. [Johs, Alexander; Podar, Mircea] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A., Jr.; Brown, Steven D.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Elias, Dwayne A.; Brown, Steven D.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN USA. [Podar, Mircea] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Wall, Judy D.] Univ Missouri, Mol Microbiol & Immunol, Columbia, MO USA. RP Wall, JD (reprint author), Univ Missouri, Div Biochem, Columbia, MO 65211 USA. EM wallj@missouri.edu RI Parks, Jerry/B-7488-2009; Brown, Steven/A-6792-2011; OI Parks, Jerry/0000-0002-3103-9333; Brown, Steven/0000-0002-9281-3898; Podar, Mircea/0000-0003-2776-0205 FU U.S. Department of Energy (DOE) Office of Science, Biological and Environmental Research, Subsurface Biogeochemical Research (SBR) Program [DE SC0006809, DE-FG02-07ER64396]; Oak Ridge National Laboratory (ORNL) Mercury Scientific Focus Area [40000099987]; U.S. DOE [DE-AC05-00OR22725] FX This work was supported by the U.S. Department of Energy (DOE) Office of Science, Biological and Environmental Research, Subsurface Biogeochemical Research (SBR) Program through grants DE SC0006809 and DE-FG02-07ER64396 and by subcontract number 40000099987 from the Oak Ridge National Laboratory (ORNL) Mercury Scientific Focus Area. ORNL is managed by UT-Battelle LLC for the U.S. DOE under contract number DE-AC05-00OR22725. NR 61 TC 11 Z9 11 U1 6 U2 31 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY PY 2015 VL 81 IS 9 BP 3205 EP 3217 DI 10.1128/AEM.00217-15 PG 13 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA CF6FM UT WOS:000352652400025 PM 25724962 ER PT J AU Karthik, C Kane, J Butt, DP Windes, WE Ubic, R AF Karthik, Chinnathambi Kane, Joshua Butt, Darryl P. Windes, William E. Ubic, Rick TI Neutron irradiation induced microstructural changes in NBG-18 and IG-110 nuclear graphites SO CARBON LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; GRADE GRAPHITE; DAMAGE PROCESS; CARBON-FIBER; REACTOR AB This paper reports the neutron-irradiation-induced effects on the microstructure of NBG-18 and IG-110 nuclear graphites. The high-temperature neutron irradiation at two different irradiation conditions was carried out at the Advanced Test Reactor National User Facility at the Idaho National Laboratory. NBG-18 samples were irradiated to 1.54 dpa and 6.78 dpa at 430 degrees C and 678 degrees C respectively. samples were irradiated to 1.91 dpa and 6.70 dpa at 451 degrees C and 674 degrees C respectively. Bright-field transmission electron microscopy imaging was used to study the changes in different microstructural components such as filler particles, microcracks, binder and quinoline-insoluble (QI) particles. Significant changes have been observed in samples irradiated to about 6.7 dpa. The closing of pre-existing microcracks was observed in both the filler and the binder phases. The binder phase exhibited substantial densification with near complete elimination of the microcracks. The QI particles embedded in the binder phase exhibited a complete microstructural transformation from rosettes to highly crystalline solid spheres. The lattice images indicate the formation of edge dislocations as well as extended line defects bridging the adjacent basal planes. The positive climb of these dislocations has been identified as the main contributor to the irradiation-induced swelling of the graphite lattice. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Karthik, Chinnathambi; Kane, Joshua; Butt, Darryl P.; Ubic, Rick] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA. [Karthik, Chinnathambi; Kane, Joshua; Butt, Darryl P.; Windes, William E.; Ubic, Rick] Ctr Adv Energy Studies, Idaho Falls, ID 83415 USA. [Kane, Joshua; Windes, William E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Karthik, C (reprint author), Boise State Univ, Dept Mat Sci & Engn, 1910 Univ Dr, Boise, ID 83725 USA. EM karthikchinnathambi@boisestate.edu FU Department of Energy [National Nuclear Security Administration] [00041394/00026, DE-NE0000140]; Nuclear Regulatory Commission under the Nuclear Materials Fellowship Program [NRC-38-08-955] FX This material is based upon work supported by the Department of Energy [National Nuclear Security Administration] under Award Numbers 00041394/00026 and DE-NE0000140. TEM studies were carried out at the Boise State Center for Materials Characterization (BSCMC. Furthermore, J. Kane acknowledges the funding of the Nuclear Regulatory Commission under the Nuclear Materials Fellowship Program (NRC-38-08-955). The authors are also thankful to Bryan Forsmann and Brian Jaques of Boise State University for their help with TEM sample preparation of irradiated graphites. NR 22 TC 3 Z9 4 U1 5 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD MAY PY 2015 VL 86 BP 124 EP 131 DI 10.1016/j.carbon.2015.01.036 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CF9YB UT WOS:000352922700015 ER PT J AU Cao, FY Shi, ZM Song, GL Liu, M Dargusch, MS Atrens, A AF Cao, Fuyong Shi, Zhiming Song, Guang-Ling Liu, Ming Dargusch, Matthew S. Atrens, Andrej TI Influence of casting porosity on the corrosion behaviour of Mg0.1Si SO CORROSION SCIENCE LA English DT Article DE Magnesium; Polarisation; Weight loss; EIS; SEM ID ENHANCED CATALYTIC-ACTIVITY; CHLORIDE-ION CONCENTRATION; HIGH-PURITY MAGNESIUM; MECHANICAL-PROPERTIES; MG-ALLOYS; ANODIC-DISSOLUTION; PURE MAGNESIUM; AZ91; MICROSTRUCTURE; PERFORMANCE AB The influence of casting porosity on the corrosion behaviour of Mg0.1Si was investigated for immersion in 3.5% NaCl solution saturated with Mg(OH)(2). The corrosion behaviour was characterised using (i) hydrogen evolution, (ii) weight loss, (iii) cathodic polarisation curves, (iv) electrochemical impedance spectroscopy (EIS), and (v) an examination of the corroded surfaces. Specimens with porosity had higher corrosion rates attributed to the corrosion associated with the pores activating significant corrosion over the whole specimen surface, wherein important aspects were (i) the breakdown of a partly protective surface film, and (ii) micro-galvanic acceleration of the corrosion by Fe-rich particles. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Cao, Fuyong; Shi, Zhiming; Song, Guang-Ling; Atrens, Andrej] Univ Queensland, Mat Engn, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia. [Cao, Fuyong; Shi, Zhiming; Dargusch, Matthew S.; Atrens, Andrej] Univ Queensland, Queensland Ctr Adv Mat Proc & Mfg AMPAM, Brisbane, Qld 4072, Australia. [Shi, Zhiming; Dargusch, Matthew S.] Univ Queensland, Def Mat Technol Ctr, Brisbane, Qld 4072, Australia. [Song, Guang-Ling] Oak Ridge Natl Lab, Corros Sci & Technol, Oak Ridge, TN 37831 USA. [Liu, Ming] GM China Sci Lab, Shanghai 201206, Peoples R China. RP Atrens, A (reprint author), Univ Queensland, Mat Engn, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia. EM Andrejs.Atrens@uq.edu.au RI Atrens, Andrejs/I-5850-2013; OI Atrens, Andrejs/0000-0003-0671-4082; Dargusch, Matthew/0000-0003-4336-5811; Song, Guang-Ling/0000-0002-9802-6836 FU Australian Research Council Centre of Excellence Design of Light Alloys; Defence Materials Technology Centre; China Scholarship Council; GM Global Research and Development FX This research was supported by the Australian Research Council Centre of Excellence Design of Light Alloys, GM Global Research and Development, and the Defence Materials Technology Centre. Thanks to the China Scholarship Council to provide a scholarship under the State Scholarship Fund to Fuyong Cao. The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy & Microanalysis, The University of Queensland. NR 69 TC 3 Z9 3 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X EI 1879-0496 J9 CORROS SCI JI Corrosion Sci. PD MAY PY 2015 VL 94 BP 255 EP 269 DI 10.1016/j.corsci.2015.02.002 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CF6MG UT WOS:000352670200028 ER PT J AU Laguna, I Ahn, DH de Supinski, BR Bagchi, S Gamblin, T AF Laguna, Ignacio Ahn, Dong H. de Supinski, Bronis R. Bagchi, Saurabh Gamblin, Todd TI Diagnosis of Performance Faults in Large Scale MPI Applications via Probabilistic Progress-Dependence Inference SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Distributed debugging; MPI; progress dependence; parallel applications ID OPTIMIZATION; PROGRAMS AB Debugging large-scale parallel applications is challenging. Most existing techniques provide little information about failure root causes. Further, most debuggers significantly slow down program execution, and run sluggishly with massively parallel applications. This paper presents a novel technique that scalably infers the tasks in a parallel program on which a failure occurred, as well as the code in which it originated. Our technique combines scalable runtime analysis with static analysis to determine the least-progressed task(s) and to identify the code lines at which the failure arose. We present a novel algorithm that infers probabilistically progress dependence among MPI tasks using a globally constructed Markov model that represents tasks' control-flow behavior. In comparison to previous work, our algorithm infers more precisely the least-progressed task. We combine this technique with static backward slicing analysis, further isolating the code responsible for the current state. A blind study demonstrates that our technique isolates the root cause of a concurrency bug in a molecular dynamics simulation, which only manifests itself at 7,996 tasks or more. We extensively evaluate fault coverage of our technique via fault injections in 10 HPC benchmarks and show that our analysis takes less than a few seconds on thousands of parallel tasks. C1 [Laguna, Ignacio; Ahn, Dong H.; de Supinski, Bronis R.; Gamblin, Todd] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bagchi, Saurabh] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN 47907 USA. RP Laguna, I (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM ilaguna@llnl.gov; ahn1@llnl.gov; bronis@llnl.gov; sbagchi@purdue.edu; tgamblin@llnl.gov FU National Science Foundation [CNS-0916337]; US Department of Energy (DOE) [DEAC52-07NA27344 (LLNL-JRNL-643939)] FX The authors thank David Richards of the Lawrence Livermore National Laboratory for helping us to conduct the blind study on ddcMD. This work was partly supported by the National Science Foundation under Grant No. CNS-0916337, and it was performed partly under the auspices of the US Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344 (LLNL-JRNL-643939). NR 30 TC 1 Z9 1 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD MAY PY 2015 VL 26 IS 5 BP 1280 EP 1289 DI 10.1109/TPDS.2014.2314100 PG 10 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA CF7HX UT WOS:000352728200007 ER PT J AU Han, JK Hannah, ME Piquette, A Talbot, JB Mishra, KC McKittrick, J AF Han, J. K. Hannah, M. E. Piquette, A. Talbot, J. B. Mishra, K. C. McKittrick, J. TI Particle morphology and luminescence properties of green emitting Ba2SiO4:Eu2+ through a hydrothermal reaction route SO JOURNAL OF LUMINESCENCE LA English DT Article DE Ba2SiO4; Phosphor; Solid-state lighting; Hydrothermal synthesis ID OPTICAL-PROPERTIES; WHITE LEDS; PHOSPHORS; EMISSION; PHOTOLUMINESCENCE; ENHANCEMENT; CERAMICS; SYSTEMS; POWDERS; TIO2 AB Green-emitting (Ba0.97Eu0.03)(2)SiO4 phosphors of different morphologies and particle sizes were prepared by varying the conditions of hydrothermal synthesis. Single-phase powders were obtained at 250 degrees C and autogeneous pressure followed by post annealing at 900 degrees C for 1 h. The ethanol/water ratio, hydrothermal reaction time, NaOH/Ba2+ ratio and silicon precursor strongly influence the particle size and morphology. The particle size, having spherical or needlelike shapes, ranges from 200 nm to 3 pm, depending on those parameters. These phosphors show strong absorption in the near UV range and the photoluminescence emission spectra consist of a strong broad green band centered around 514 nm. Furthermore, the emission intensities are dependent on the ethanol to water ratio, and 55-79% of that of micron-sized powders with a quantum efficiency of 94%. (C) 2014 Elsevier B.V. All rights reserved. C1 [Han, J. K.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Hannah, M. E.; Piquette, A.; Mishra, K. C.] OSRAM SYLVANIA Cent Res, Beverly, MA 01915 USA. [Talbot, J. B.] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA. [McKittrick, J.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. RP McKittrick, J (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. EM jmckittrick@ucsd.edu FU U.S Department of Energy [DE-EE0002003] FX This work was supported by the U.S Department of Energy of Grant DE-EE0002003. NR 31 TC 3 Z9 4 U1 5 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 EI 1872-7883 J9 J LUMIN JI J. Lumines. PD MAY PY 2015 VL 161 BP 20 EP 24 DI 10.1016/j.jlumin.2014.12.032 PG 5 WC Optics SC Optics GA CF6JR UT WOS:000352663500004 ER PT J AU Choi, TA Furimsky, AM Swezey, R Bunin, DI Byrge, P Iyer, LV Chang, PY Abergel, RJ AF Choi, Taylor A. Furimsky, Anna M. Swezey, Robert Bunin, Deborah I. Byrge, Patricia Iyer, Lalitha V. Chang, Polly Y. Abergel, Rebecca J. TI In Vitro Metabolism and Stability of the Actinide Chelating Agent 3,4,3-LI(1,2-HOPO) SO JOURNAL OF PHARMACEUTICAL SCIENCES LA English DT Article DE chelation therapy; stability; microsomes; ADME; protein binding; cytochrome P450; intestinal absorption ID RADIONUCLIDE DECORPORATION AGENTS; EFFICACY; UPDATE; PLASMA AB The hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO) is currently under development for radionuclide chelation therapy. The preclinical characterization of this highly promising ligand comprised the evaluation of its in vitro properties, including microsomal, plasma, and gastrointestinal fluid stability, cytochrome P450 inhibition, plasma protein binding, and intestinal absorption using the Caco-2 cell line. When mixed with active human liver microsomes, no loss of parent compound was observed after 60 min, indicating compound stability in the presence of liver microsomal P450. At the tested concentrations, 3,4,3-LI(1,2-HOPO) did not significantly influence the activities of any of the cytochromal isoforms screened. Thus, 3,4,3-LI(1,2-HOPO) is unlikely to cause drug-drug interactions by inhibiting the metabolic clearance of coadministered drugs metabolized by these enzymes. Plasma protein-binding assays revealed that the compound is protein-bound in dogs and less extensively in rats and humans. In the plasma stability study, the compound was stable after 1 h at 37 degrees C in mouse, rat, dog, and human plasma samples. Finally, a bidirectional permeability assay demonstrated that 3,4,3-LI(1,2-HOPO) is not permeable across the Caco-2 monolayer, highlighting the need to further evaluate the effects of various compounds with known permeability enhancement properties on the permeability of the ligand in future studies. (c) 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1832-1838, 2015 C1 [Choi, Taylor A.; Abergel, Rebecca J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Furimsky, Anna M.; Swezey, Robert; Bunin, Deborah I.; Byrge, Patricia; Iyer, Lalitha V.; Chang, Polly Y.] SRI Int, Biosci Div, Menlo Pk, CA 94025 USA. RP Abergel, RJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM rjabergel@lbl.gov FU National Institutes of Health/National Institute of Allergy and Infectious Diseases Medical Countermeasures Against Radiological Threats (MCART) Consortium [HHSN272201000046C]; National Institutes of Health/National Institute of Allergy and Infectious Diseases Medical Countermeasures Against Radiological Threats (MCART) Consortium through the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Institutes of Health/National Institute of Allergy and Infectious Diseases Medical Countermeasures Against Radiological Threats (MCART) Consortium (Contract #HHSN272201000046C to the University of Maryland School of Medicine), through the U.S. Department of Energy under Contract #DE-AC02-05CH11231. NR 18 TC 2 Z9 2 U1 5 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-3549 EI 1520-6017 J9 J PHARM SCI-US JI J. Pharm. Sci. PD MAY PY 2015 VL 104 IS 5 BP 1832 EP 1838 DI 10.1002/jps.24394 PG 7 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Pharmacology & Pharmacy SC Pharmacology & Pharmacy; Chemistry GA CF5AW UT WOS:000352567900028 PM 25727482 ER PT J AU Hill, SC Williamson, CC Doughty, DC Pan, YL Santarpia, JL Hill, HH AF Hill, Steven C. Williamson, Chatt C. Doughty, David C. Pan, Yong-Le Santarpia, Joshua L. Hill, Hanna H. TI Size-dependent fluorescence of bioaerosols: Mathematical model using fluorescing and absorbing molecules in bacteria SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Fluorescence; Bioaerosols; Aerosol characterization; Light scattering ID BIOLOGICAL AEROSOL-PARTICLES; LASER-INDUCED FLUORESCENCE; METABOLITE CONCENTRATIONS; POTENTIAL INTERFERENCES; OPTICAL-PROPERTIES; ESCHERICHIA-COLI; BUOYANT DENSITY; UV-APS; SCATTERING; SPECTRA AB This paper uses a mathematical model of fluorescent biological particles composed of bacteria and/or proteins (mostly as in Hill et al., 2013 [23]) to investigate the size-dependence of the total fluorescence emitted in all directions. The model applies to particles which have negligible reabsorption of fluorescence within the particle. The specific particles modeled here are composed of ovalbumin and of a generic Bacillus. The particles need not be spherical, and in some cases need not be homogeneous. However, the results calculated in this paper are for spherical homogeneous particles. Light absorbing and fluorescing molecules included in the model are amino acids, nucleic acids, and several coenzymes. Here the excitation wavelength is 266 nm. The emission range, 300 to 370 nm, encompasses the fluorescence of tryptophan. The fluorescence cross section (C-F) is calculated and compared with one set of published measured values. We investigate power law (Ad(y)) approximations to C-F, where d is diameter, and A and y are parameters adjusted to fit the data, and examine how y varies with d and composition, including the fraction as water. The particle's fluorescence efficiency (Q(F)=C-F/geometric-cross-section) can be written for homogeneous particles as Q(abs)R(F), where Q(abs) is the absorption efficiency, and R-F, the fraction of the absorbed light emitted as fluorescence, is independent of size and shape. When Q(F) is plotted vs. m(i)d or m(i)(m(r)-1)d, where m=m(r)+im(i) is the complex refractive index, the plots for different fractions of water in the particle tend to overlap. Published by Elsevier Ltd. C1 [Hill, Steven C.; Williamson, Chatt C.; Doughty, David C.; Pan, Yong-Le] US Army, Res Lab, Adelphi, MD 20783 USA. [Santarpia, Joshua L.] Sandia Natl Labs, Albuquerque, NM USA. RP Hill, SC (reprint author), US Army, Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA. EM steven.c.hill32.civ@mail.mil FU US Army Research Laboratory mission funds; Defense Threat Reduction Agency (DTRA) Basic and Supporting Science Program [HDT RA1-10-C-0023] FX Supported by US Army Research Laboratory mission funds and the Defense Threat Reduction Agency (DTRA) Basic and Supporting Science Program (contract HDT RA1-10-C-0023) NR 67 TC 3 Z9 3 U1 4 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAY PY 2015 VL 157 BP 54 EP 70 DI 10.1016/j.jqsrt.2015.01.011 PG 17 WC Optics; Spectroscopy SC Optics; Spectroscopy GA CG2CV UT WOS:000353083400005 ER PT J AU Zecevic, M McCabe, RJ Knezevic, M AF Zecevic, Miroslav McCabe, Rodney J. Knezevic, Marko TI A new implementation of the spectral crystal plasticity framework in implicit finite elements SO MECHANICS OF MATERIALS LA English DT Article DE Spectral methods; Crystal plasticity; Finite element method; UMAT; Texture; Anisotropy ID CRYSTALLOGRAPHIC TEXTURE EVOLUTION; EMBEDDED POLYCRYSTAL PLASTICITY; DISCRETE FOURIER-TRANSFORMS; STRAIN-RATE; MECHANICAL RESPONSE; FAST COMPUTATION; ALPHA-URANIUM; DEFORMATION; CLOSURES; METALS AB We present a new implementation of a computationally efficient crystal plasticity model in an implicit finite element (FE) framework. In recent publications, we have reported a standalone version of a crystal plasticity model based on fast Fourier transforms (FFTs) and termed it the spectral crystal plasticity (SCP) model. In this approach, iterative solvers for obtaining the mechanical response of a single crystal of any crystallographic orientation subjected to any deformation mode are replaced by a database of FFTs that allows fast retrieval of the solution. The standalone version of the code facilitates simulations of relatively simple monotonic deformation processes under homogeneous boundary conditions. In this paper, we present a new model that enables simulations of complex, non-monotonic deformation process with heterogeneous boundary conditions. For this purpose, we derive a fully analytical Jacobian enabling an efficient coupling of SCP with implicit finite elements. In our implementation, an FE integration point can represent a single crystal or a polycrystalline material point whose meso-scale mechanical response is obtained by the mean-field Taylor-type homogenization scheme. The finite element spectral crystal plasticity (FE-SCP) implementation has been validated for several monotonic loading conditions and successfully applied to rolling and equi-channel angular extrusion deformation processes. Predictions of the FE-SCP simulations compare favorably with experimental measurements. Details of the FE-SCP implementation and predicted results are presented and discussed in this paper. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Zecevic, Miroslav; Knezevic, Marko] Univ New Hampshire, Dept Mech Engn, Durham, NH 03824 USA. [McCabe, Rodney J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Knezevic, M (reprint author), Univ New Hampshire, Dept Mech Engn, 33 Acad Way,Kingsbury Hall,W119, Durham, NH 03824 USA. EM marko.knezevic@unh.edu OI McCabe, Rodney /0000-0002-6684-7410 FU CEPS Graduate Fellowships Program at the University of New Hampshire (UNH); Los Alamos National Laboratory [277871]; US Department of Energy [DE-AC52-06NA25396] FX M.Z. acknowledges support from the CEPS Graduate Fellowships Program at the University of New Hampshire (UNH). M.K. acknowledges subcontract, No. 277871, granted by Los Alamos National Laboratory to UNH. The work was supported by the US Department of Energy under Contract No. DE-AC52-06NA25396. NR 76 TC 19 Z9 19 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6636 EI 1872-7743 J9 MECH MATER JI Mech. Mater. PD MAY PY 2015 VL 84 BP 114 EP 126 DI 10.1016/j.mechmat.2015.01.018 PG 13 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA CF7QM UT WOS:000352751400009 ER PT J AU MacDonald, JI Munch, HK Moore, T Francis, MB AF MacDonald, James I. Munch, Henrik K. Moore, Troy Francis, Matthew B. TI One-step site-specific modification of native proteins with 2-pyridinecarboxyaldehydes SO NATURE CHEMICAL BIOLOGY LA English DT Article ID FUNCTIONALIZED POLY(ETHYLENE GLYCOL); N-TERMINAL MODIFICATION; IN-VIVO; CHEMICAL-MODIFICATION; PEPTIDES; LIGATION; CELLS; REACTIVITY; RECEPTOR; IDENTIFICATION AB The chemical modification of proteins is an enabling technology for many scientific fields, including chemical biology, biophysics, bioengineering and materials science. These methods allow the attachment of strategically selected detection probes, polymers, drug molecules and analysis platforms. However, organic reactions that can proceed under conditions mild enough to maintain biomolecular function are limited. Even more rare are chemical strategies that can target a single site, leading to products with uniform properties and optimal function. We present a versatile method for the selective modification of protein N termini that does not require any genetic engineering of the protein target. This reaction is demonstrated for 12 different proteins, including the soluble domain of the human estrogen receptor. The function of this protein was confirmed through the binding of a fluorescent estrogen mimic, and the modified protein was explored as a prototype for the detection of endocrine-disrupting chemicals in water. C1 [MacDonald, James I.; Munch, Henrik K.; Moore, Troy; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Francis, Matthew B.] Lawrence Berkeley Natl Labs, Mol Foundry, Div Mat Sci, Berkeley, CA USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mbfrancis@berkeley.edu RI Foundry, Molecular/G-9968-2014 FU Berkeley Chemical Biology Graduate Program (National Research Service) [1 T32 GMO66698]; Villum Kann Rasmussens Foundation; Laboratory Directed Research and Development Program at Lawrence Berkeley National Labs FX The development of this reaction was supported by the Energy Biosciences Institute at the University of California-Berkeley. The application of the reaction to the human estrogen receptor was supported by the US National Science Foundation (CHE-1059083 and CHE-1413666). J.I.M. was supported by the Berkeley Chemical Biology Graduate Program (National Research Service Award Training grant 1 T32 GMO66698). H.K.M. was supported by the Villum Kann Rasmussens Foundation as well as the Laboratory Directed Research and Development Program at Lawrence Berkeley National Labs. We would like to acknowledge M. Dedeo for the tobacco mosaic virus coat protein, L. Witus for the GFP and A. Obermeyer for X-ADSWAG peptides (all at the University of California-Berkeley). NR 50 TC 28 Z9 29 U1 10 U2 75 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1552-4450 EI 1552-4469 J9 NAT CHEM BIOL JI Nat. Chem. Biol. PD MAY PY 2015 VL 11 IS 5 BP 326 EP U114 DI 10.1038/NCHEMBIO.1792 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CG3FD UT WOS:000353162600008 PM 25822913 ER PT J AU Ent, R Ullrich, T Venugopalan, R AF Ent, Rolf Ullrich, Thomas Venugopalan, Raju TI the glue that binds us Physicists have known for decades that particles called gluons keep protons and neutrons intact- and thereby hold the universe together. Yet the details of how gluons function remain surprisingly mysterious SO SCIENTIFIC AMERICAN LA English DT Article C1 [Ent, Rolf] Thomas Jefferson Natl Accelerator Facil, Expt Nucl Phys, Newport News, VA 23606 USA. [Ullrich, Thomas] Brookhaven Natl Lab, Upton, NY 11973 USA. [Ullrich, Thomas] Yale Univ, New Haven, CT 06520 USA. [Venugopalan, Raju] Brookhaven Natl Lab, Nucl Theory Grp, Upton, NY 11973 USA. RP Ent, R (reprint author), Thomas Jefferson Natl Accelerator Facil, Expt Nucl Phys, Newport News, VA 23606 USA. NR 2 TC 1 Z9 1 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0036-8733 J9 SCI AM JI Sci.Am. PD MAY PY 2015 VL 312 IS 5 BP 42 EP 49 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG1BY UT WOS:000353009200027 PM 26336710 ER PT J AU Riesz, J Milligan, M AF Riesz, Jenny Milligan, Michael TI Designing electricity markets for a high penetration of variable renewables SO WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT LA English DT Article ID WIND GENERATION; PRICES; INTEGRATION AB Renewable technologies are often characterized as being somewhat different to 'conventional' generating technologies in three ways, each with different implications for electricity markets. Firstly, some have highly variable and somewhat uncertain availability, meaning that electricity markets must be designed to elicit adequate flexibility. Secondly, many have very low short-run marginal costs (operating costs), meaning that the mechanisms for managing resource adequacy must be carefully considered. Thirdly, some are nonsynchronous, meaning that grid codes and regulatory requirements must be appropriately designed. Access to flexibility can be enhanced by a range of market design choices, such as short dispatch intervals, short delays from gate closure to dispatch, large balancing areas, high demand side participation, and exposing renewable technologies to market price signals commensurate with other technologies. The design of markets for frequency control ancillary services (FCAS) also provides opportunities to increase access to flexibility, by creating active real-time markets for a wide range of FCAS, allowing renewable technologies to provide FCAS, and determining FCAS reserve requirements dynamically in real time. Mechanisms for managing resource adequacy are a source of ongoing debate, with many of the key issues having been exacerbated by the entry of renewables. Rapid market change makes investment decisions difficult, regardless of the market model applied. Ultimately, given the existence of arguably successful examples of both energy-only and capacity market designs, the choice of market model may be less important than the quality of governance with which it is implemented and maintained. (C) 2014 John Wiley & Sons, Ltd. C1 [Riesz, Jenny] Univ New S Wales, Ctr Energy & Environm Mkt, Sydney, NSW, Australia. [Riesz, Jenny] Univ New S Wales, Sch Elect Engn & Telecommun, Sydney, NSW, Australia. [Milligan, Michael] Natl Renewable Energy Lab, Transmiss & Grid Integrat, Denver, CO USA. RP Riesz, J (reprint author), Univ New S Wales, Ctr Energy & Environm Mkt, Sydney, NSW, Australia. EM J.riesz@unsw.edu.au NR 48 TC 5 Z9 5 U1 2 U2 12 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-8396 EI 2041-840X J9 WIRES ENERGY ENVIRON JI Wiley Interdiscip. Rev. Energy Environ. PD MAY-JUN PY 2015 VL 4 IS 3 BP 279 EP 289 DI 10.1002/wene.137 PG 11 WC Energy & Fuels SC Energy & Fuels GA CF6XO UT WOS:000352700300005 ER PT J AU Anikeeva, N Sykulev, Y Blanchette, C Fischer, N AF Anikeeva, Nadia Sykulev, Yuri Blanchette, Craig Fischer, Nicholas TI Towards the development of artificial antigen presenting cell SO JOURNAL OF IMMUNOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American-Association-of-Immunologists (IMMUNOLOGY) CY MAY 08-12, 2015 CL New Orleans, LA SP Amer Assoc Immunologists C1 [Anikeeva, Nadia; Sykulev, Yuri] Thomas Jefferson Univ, Philadelphia, PA 19107 USA. [Blanchette, Craig; Fischer, Nicholas] Lawrence Livermore Natl Lab, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC IMMUNOLOGISTS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-1767 EI 1550-6606 J9 J IMMUNOL JI J. Immunol. PD MAY 1 PY 2015 VL 194 SU 1 MA APP3P.116 PG 2 WC Immunology SC Immunology GA DQ7RG UT WOS:000379404500124 ER PT J AU Castro, A Stephenson, K Neubauer, G Korber, B Barouch, D Pawlowski, N Zerweck, J Reimer, U AF Castro, Aaron Stephenson, Kathryn Neubauer, George Korber, Bette Barouch, Dan Pawlowski, Nikolaus Zerweck, Johannes Reimer, Ulf TI Peptide microarrays for coverage of sequence diversity in monitoring the B cell immune response SO JOURNAL OF IMMUNOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American-Association-of-Immunologists (IMMUNOLOGY) CY MAY 08-12, 2015 CL New Orleans, LA SP Amer Assoc Immunologists C1 [Castro, Aaron; Pawlowski, Nikolaus; Zerweck, Johannes; Reimer, Ulf] JPT Innovat Peptide Solut, Acton, MA USA. [Stephenson, Kathryn; Neubauer, George; Barouch, Dan] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Ctr Virol & Vaccine Res, Boston, MA USA. [Korber, Bette] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC IMMUNOLOGISTS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-1767 EI 1550-6606 J9 J IMMUNOL JI J. Immunol. PD MAY 1 PY 2015 VL 194 SU 1 MA TECH2P.911 PG 1 WC Immunology SC Immunology GA DQ7RG UT WOS:000379404504168 ER PT J AU Pardington, P Chaudhary, A Norvell, M Gupta, G Dandekar, A Gouran, H Uratsu, S Aguero, C Feldstein, P Bruening, G Civerolo, E Hao, GX Duan, YP Stover, E AF Pardington, Paige Chaudhary, Anu Norvell, Meghan Gupta, Goutam Dandekar, Abhaya Gouran, Hossein Uratsu, Sandra Aguero, Cecilia Feldstein, Paul Bruening, George Civerolo, Edwin Hao, Guixia Duan, YongPing Stover, Ed TI Pathogen clearance by engineering of novel innate immune defense SO JOURNAL OF IMMUNOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American-Association-of-Immunologists (IMMUNOLOGY) CY MAY 08-12, 2015 CL New Orleans, LA SP Amer Assoc Immunologists C1 [Gupta, Goutam] Los Alamos Natl Lab, Los Alamos, NM USA. [Pardington, Paige] Los Alamos Natl Lab, Biosecur & Publ Hlth, Los Alamos, NM USA. [Chaudhary, Anu] Univ Washington, Microbiol, Los Alamos, NM USA. [Norvell, Meghan] NanoMR, Business & Technol Dev, Albuquerque, NM USA. [Dandekar, Abhaya; Uratsu, Sandra; Aguero, Cecilia; Feldstein, Paul; Bruening, George] Univ Calif Davis, Plant Sci, Davis, CA 95616 USA. [Gouran, Hossein] Monsanto Co, Biotechnol, Davis, CA USA. [Civerolo, Edwin] USDA ARS, Plant Pathol, Davis, CA USA. [Hao, Guixia] US Hort Res Lab, Subtrop Insects & Hort, Ft Pierce, FL USA. [Duan, YongPing] US Hort Res Lab, Plant Pathol, Ft Pierce, FL USA. [Stover, Ed] USDA ARS, Hort & Genet, Ft Pierce, FL USA. [Stover, Ed] US Hort Res Lab, Ft Pierce, FL USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER ASSOC IMMUNOLOGISTS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-1767 EI 1550-6606 J9 J IMMUNOL JI J. Immunol. PD MAY 1 PY 2015 VL 194 SU 1 MA INM3P.414 PG 1 WC Immunology SC Immunology GA DQ7RG UT WOS:000379404503210 ER PT J AU Smallwood, H Morfouace, M Duan, SS Wang, RN Zink, E Shulkin, B Green, D Pasa-Tolic, L Thomas, P AF Smallwood, Heather Morfouace, Marie Duan, Susu Wang, Ruoning Zink, Erika Shulkin, Barry Green, Douglas Pasa-Tolic, Ljiljana Thomas, Paul TI Host-influenza proteomics leads to metabolic drug repurposing that reduces viral burden while significantly improving survival after lethal infection SO JOURNAL OF IMMUNOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American-Association-of-Immunologists (IMMUNOLOGY) CY MAY 08-12, 2015 CL New Orleans, LA SP Amer Assoc Immunologists C1 [Smallwood, Heather; Morfouace, Marie; Duan, Susu; Shulkin, Barry; Green, Douglas; Thomas, Paul] St Jude Childrens Res Hosp, Memphis, TN 38105 USA. [Wang, Ruoning] Ohio State Univ, Columbus, OH 43210 USA. [Zink, Erika; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC IMMUNOLOGISTS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-1767 EI 1550-6606 J9 J IMMUNOL JI J. Immunol. PD MAY 1 PY 2015 VL 194 SU 1 MA TECH2P.917 PG 1 WC Immunology SC Immunology GA DQ7RG UT WOS:000379404504200 ER PT J AU Wren, M Pardington, P Stover, E Gupta, G AF Wren, Melinda Pardington, Paige Stover, Ed Gupta, Goutam TI Discovery of huanglongbing (HLB) pre-symptomatic RNA biomarkers SO JOURNAL OF IMMUNOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American-Association-of-Immunologists (IMMUNOLOGY) CY MAY 08-12, 2015 CL New Orleans, LA SP Amer Assoc Immunologists C1 [Gupta, Goutam] Los Alamos Natl Lab, Los Alamos, NM USA. [Wren, Melinda; Pardington, Paige] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Stover, Ed] US Hort Res Lab, USFA ARS, Ft Pierce, FL USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC IMMUNOLOGISTS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-1767 EI 1550-6606 J9 J IMMUNOL JI J. Immunol. PD MAY 1 PY 2015 VL 194 SU 1 MA INM3P.415 PG 1 WC Immunology SC Immunology GA DQ7RG UT WOS:000379404503215 ER PT J AU Taylor-Lange, SC Lamon, EL Riding, KA Juenger, MCG AF Taylor-Lange, Sarah C. Lamon, Emily L. Riding, Kyle A. Juenger, Maria C. G. TI Calcined kaolinite-bentonite clay blends as supplementary cementitious materials SO APPLIED CLAY SCIENCE LA English DT Article DE Metakaolin; Pozzolan; Thermal treatment; Amorphous material ID QUANTITATIVE PHASE-ANALYSIS; POZZOLANIC ACTIVITY; ZINC-OXIDE; THERMAL-TREATMENT; PORTLAND CEMENTS; METAKAOLIN; MINERALS; PERFORMANCE; REFINEMENT; HYDRATION AB In an effort to limit the environmental impact of concrete materials, there is increasing interest in the development and use of a wider range of minerals as acceptable supplementary cementitious materials (SCMs). This study investigated calcined blended clays of kaolinite and bentonite, with impurities, to assess their feasibility as SCMs. The combined use of Rietveld quantitative x-ray diffraction (RQXRD) and thermogravimetric analysis (TGA) techniques proved useful in initially gauging amorphous content post-calcination, lending insight into the relationship between calcination temperature and pozzolanic reactivity. The results demonstrated that for the calcined blended clays, as the amorphous content increased, the SCM consumed more portlandite and the compressive strength of cement-SCM mortars increased. Blends of kaolinite-bentonite clays, containing initially 35 wt.% crystalline kaolinite prior to calcination, achieved roughly 10% increase in compressive strength over samples containing 100 wt% cement, at 90 days. Blended kaolinite SCMs may offer significant advantages as a low-cost alternative binder or cement replacement material, with the ability to maintain or enhance mechanical strength. Published by Elsevier B.V. C1 [Taylor-Lange, Sarah C.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Lamon, Emily L.; Juenger, Maria C. G.] Univ Texas Austin, Dept Civil Architectural & Environm Engn, Austin, TX 78712 USA. [Riding, Kyle A.] Kansas State Univ, Dept Civil Engn, Manhattan, KS 66506 USA. RP Taylor-Lange, SC (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, One Cyclotron Rd,Mail Stop 90R3111, Berkeley, CA 94720 USA. EM sctaylorlange@lbl.gov FU P.E.O. International Scholar Award; U.S. Environmental Protection Agency STAR fellowship [FP-91717601-O]; National Science Foundation IGERT program in Indoor Environmental Science and Engineering [DGE 0549428]; NSF [CMMI 1030972, CMMI 1030939] FX This work was supported by the P.E.O. International Scholar Award, the U.S. Environmental Protection Agency STAR fellowship (Project No. FP-91717601-O) awarded to Sarah C. Taylor-Lange and the National Science Foundation IGERT program in Indoor Environmental Science and Engineering (Award DGE 0549428) and NSF (No. CMMI 1030972 and CMMI 1030939). Any opinions, findings, and conclusions expressed in this document are those of the authors and do not necessarily reflect those of the U.S. Environmental Protection Agency and the National Science Foundation. NR 74 TC 6 Z9 6 U1 3 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-1317 EI 1872-9053 J9 APPL CLAY SCI JI Appl. Clay Sci. PD MAY PY 2015 VL 108 BP 84 EP 93 DI 10.1016/j.clay.2015.01.025 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary; Mineralogy SC Chemistry; Materials Science; Mineralogy GA CF6PB UT WOS:000352677500011 ER PT J AU Heo, Y Augenbroe, G Graziano, D Muehleisen, RT Guzowski, L AF Heo, Yeonsook Augenbroe, Godfried Graziano, Diane Muehleisen, Ralph T. Guzowski, Leah TI Scalable methodology for large scale building energy improvement: Relevance of calibration in model-based retrofit analysis SO BUILDING AND ENVIRONMENT LA English DT Article DE Large-scale retrofit analysis; Bayesian calibration; Normative model; Uncertainty analysis ID SIMULATION; UNCERTAINTY AB The increasing interest in retrofitting of existing buildings is motivated by the need to make a major contribution to enhancing building energy efficiency and reducing energy consumption and CO2 emission by the built environment. This paper examines the relevance of calibration in model-based analysis to support decision-making for energy and carbon efficiency retrofits of individual buildings and portfolios of buildings. The authors formulate a set of real retrofit decision-making situations and evaluate the role of calibration by using a case study that compares predictions and decisions from an uncalibrated model with those of a calibrated model. The case study illustrates both the mechanics and outcomes of a practical alternative to the expert- and time-intense application of dynamic energy simulation models for large-scale retrofit decision-making under uncertainty. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Heo, Yeonsook] Univ Cambridge, Dept Architecture, Cambridge, England. [Augenbroe, Godfried] Georgia Inst Technol, Coll Architecture, Atlanta, GA 30332 USA. [Graziano, Diane; Muehleisen, Ralph T.; Guzowski, Leah] Argonne Natl Lab, Decis & Informat Sci Div, Lemont, IL USA. RP Heo, Y (reprint author), Univ Cambridge, Dept Architecture, Cambridge, England. EM yh305@cam.ac.uk FU US Department of Energy [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy under Contract No. DE-AC02-06CH11357. NR 48 TC 6 Z9 6 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1323 EI 1873-684X J9 BUILD ENVIRON JI Build. Environ. PD MAY PY 2015 VL 87 BP 342 EP 350 DI 10.1016/j.buildenv.2014.12.016 PG 9 WC Construction & Building Technology; Engineering, Environmental; Engineering, Civil SC Construction & Building Technology; Engineering GA CE7QQ UT WOS:000352037300032 ER PT J AU Serdar, M Meral, C Kunz, M Bjegovic, D Wenk, HR Monteiro, PJM AF Serdar, Marijana Meral, Cagla Kunz, Martin Bjegovic, Dubravka Wenk, Hans-Rudolf Monteiro, Paulo J. M. TI Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete SO CEMENT AND CONCRETE RESEARCH LA English DT Article DE Backscattered Electron Imaging; X-ray micro-diffraction; Corrosion; Concrete; Stainless steel ID MULTIPHASE INTERFACE STRUCTURES; CHLORIDE-INDUCED CORROSION; SIMULATED PORE SOLUTIONS; X-RAY MICRODIFFRACTION; ELECTROCHEMICAL PHENOMENA; ELECTRICAL-PROPERTIES; REINFORCED MORTAR; FEOOH PARTICLES; ALKALINE MEDIA; BEHAVIOR AB The mineralogy and spatial distribution of nano-crystalline corrosion products that form in the steel/concrete interface were characterized using synchrotron X-ray micro-diffraction (mu-XRD). Two types of low-nickel high-chromium reinforcing steels embedded into mortar and exposed to NaCl solution were investigated. Corrosion in the samples was confirmed by electrochemical impedance spectroscopy (EIS). mu-XRD revealed that goethite (alpha-FeOOH) and akaganeite (beta-FeOOH) are the main iron oxide-hydroxides formed during the chloride-induced corrosion of stainless steel in concrete. Goethite is formed closer to the surface of the steel due to the presence of chromium in the steel, while akaganeite is formed further away from the surface due to the presence of chloride ions. Detailed microstructural analysis is shown and discussed on one sample of each type of steel. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Serdar, Marijana; Bjegovic, Dubravka] Univ Zagreb, Fac Civil Engn, Dept Mat, Zagreb 10000, Croatia. [Meral, Cagla] Middle E Tech Univ, Dept Civil Engn, TR-06531 Ankara, Turkey. [Kunz, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Wenk, Hans-Rudolf] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Monteiro, Paulo J. M.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Monteiro, PJM (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM monteiro@ce.berkeley.edu FU scientific project "The composition of corrosion products on corrosion resistant concrete reinforcement" - Unity through Knowledge Fund (UKF) [73/10]; scientific project "The Development of New Materials and Concrete Structure Protection Systems" - Croatian Ministry of Education, Science and Sport [082-0822161-2159]; King Abdullah University of Science and Technology (KAUST) [KUS-l1-004021]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by scientific project "The composition of corrosion products on corrosion resistant concrete reinforcement" (Grant No. 73/10), funded by Unity through Knowledge Fund (UKF), and by scientific project "The Development of New Materials and Concrete Structure Protection Systems" (No. 082-0822161-2159), funded by Croatian Ministry of Education, Science and Sport. This publication was based on work supported in part by Award No. KUS-l1-004021, made by King Abdullah University of Science and Technology (KAUST). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 43 TC 3 Z9 3 U1 2 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-8846 EI 1873-3948 J9 CEMENT CONCRETE RES JI Cem. Concr. Res. PD MAY PY 2015 VL 71 BP 93 EP 105 DI 10.1016/j.cemconres.2015.02.004 PG 13 WC Construction & Building Technology; Materials Science, Multidisciplinary SC Construction & Building Technology; Materials Science GA CE9NY UT WOS:000352171900010 ER PT J AU Batista, ER Jonsson, H AF Batista, Enrique R. Jonsson, Hannes TI Diffusion and Island formation on the ice Ih basal plane surface (vol 20, pg 325, 2001) SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Correction C1 [Batista, Enrique R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Jonsson, Hannes] Univ Iceland, Fac Phys Sci, IS-107 Reykjavik, Iceland. RP Jonsson, H (reprint author), Univ Iceland, Fac Phys Sci, IS-107 Reykjavik, Iceland. EM hj@hi.is RI Jonsson, Hannes/G-2267-2013 OI Jonsson, Hannes/0000-0001-8285-5421 NR 2 TC 2 Z9 2 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD MAY PY 2015 VL 102 BP 338 EP 338 DI 10.1016/j.commatsci.2015.02.047 PG 1 WC Materials Science, Multidisciplinary SC Materials Science GA CE7JE UT WOS:000352014500039 ER PT J AU Satchwell, A Mills, A Barbose, G AF Satchwell, Andrew Mills, Andrew Barbose, Galen TI Quantifying the financial impacts of net-metered PV on utilities and ratepayers SO ENERGY POLICY LA English DT Article DE Customer-sited PV; Utility profitability; Utility regulation; Utility ratemaking AB Deployment of customer-sited photovoltaics (PV) in the United States has expanded rapidly in recent years, driven by falling PV system prices, the advent of customer financing options, and various forms of policy support at the federal, state, and local levels. With the success of these efforts, heated debates have surfaced in a number of U.S. states about the impacts of customer-sited PV on utility shareholders and ratepayers. We performed a scoping analysis using a financial model to quantify the financial impacts of customer-sited PV on utility shareholders and ratepayers and to assess the magnitude of these impacts under alternative utility conditions. We find that customer-sited PV generally reduces utility collected revenues greater than reductions in costs leading to a revenue erosion effect and lost future earnings opportunities. We also find that average retail rates increase as utility costs are spread over a relatively smaller sales base. We analyze these results under various assumptions about utility operating and regulatory environments and find that these impacts can vary greatly depending upon the specific circumstances of the utility. Based on this analysis, we highlight potential implications for policymakers and identify key issues warranting further analysis. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Satchwell, Andrew; Mills, Andrew; Barbose, Galen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Satchwell, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,Mailstop 90R4000, Berkeley, CA 94720 USA. EM ASatchwell@lbl.gov; ADMills@lbl.gov; GLBarbose@lbl.gov RI Mills, Andrew/B-3469-2016 OI Mills, Andrew/0000-0002-9065-0458 FU Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Office) of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Office) of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. We would particularly like to thank Elaine Ulrich, Kelly Knutsen, Christina Nichols, and Minh Le of the U.S. Department of Energy (US DOE) for their support of this project, and for supporting development of the financial model used in this study, we would like to thank Larry Mansueti (US DOE). NR 31 TC 5 Z9 5 U1 1 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD MAY PY 2015 VL 80 BP 133 EP 144 DI 10.1016/j.enpol.2015.01.043 PG 12 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA CE6WD UT WOS:000351978000013 ER PT J AU Bosetti, V Marangoni, G Borgonovo, E Anadon, LD Barron, R McJeon, HC Politis, S Friley, P AF Bosetti, Valentina Marangoni, Giacomo Borgonovo, Emanuele Anadon, Laura Diaz Barron, Robert McJeon, Haewon C. Politis, Savvas Friley, Paul TI Sensitivity to energy technology costs: A multi-model comparison analysis SO ENERGY POLICY LA English DT Article DE Sensitivity analysis; Integrated Assessment Models; Expert elicitation; Technology cost ID RD-AND-D; UNCERTAINTY IMPORTANCE; EXPERT ELICITATION; PERFORMANCE; MODEL AB In the present paper we use the output of multiple expert elicitation surveys on the future cost of key low-carbon technologies and use it as input of three Integrated Assessment models, GCAM, MARKAL_US and WITCH. By means of a large set of simulations we aim to assess the implications of these subjective distributions of technological costs over key model outputs. We are able to detect what sources of technology uncertainty are more influential, how this differs across models, and whether and how results are affected by the time horizon, the metric considered or the stringency of the climate policy. In unconstrained emission scenarios, within the range of future technology performances considered in the present analysis, the cost of nuclear energy is shown to dominate all others in affecting future emissions. Climate-constrained scenarios, stress the relevance, in addition to that of nuclear energy, of biofuels, as they represent the main source of decarbonization of the transportation sector and bioenergy, since the latter can be coupled with Carbon Capture and Storage (CCS) to produce negative emissions. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Bosetti, Valentina; Borgonovo, Emanuele] Bocconi Univ, Milan, Italy. [Bosetti, Valentina; Marangoni, Giacomo] Fdn Eni Enrico Mattei, Milan, Italy. [Bosetti, Valentina; Marangoni, Giacomo] CMCC, Bologna, Italy. [Marangoni, Giacomo] Politecn Milan, Milan, Italy. [Anadon, Laura Diaz] Harvard Univ, Harvard Kennedy Sch, Cambridge, MA 02138 USA. [Barron, Robert] Univ Massachusetts, Amherst, MA 01003 USA. [McJeon, Haewon C.] JGCRI, Pacific NW Natl Lab, College Pk, MD USA. [Politis, Savvas; Friley, Paul] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Bosetti, V (reprint author), Fdn Eni Enrico Mattei, Milan, Italy. EM valentina.bosetti@feem.it OI bosetti, valentina/0000-0003-4970-0027 FU European Research Council under the European Community [240895]; Italian Ministry of Education, University and Research; Italian Ministry of Environment, Land and Sea under the GEMINA Project; Science, Technology, and Public Policy Program at the Harvard Kennedy School; Doris Duke Charitable Foundation; BP; Office of Science of the U.S. Department of Energy as part of the Integrated Assessment Research Program FX Bosetti acknowledges funding from the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013)/ERC Grant agreement no. 240895-Project ICARUS "Innovation for Climate Change Mitigation: a Study of energy R&D, its Uncertain Effectiveness and Spillovers". The research work of Bosetti and Marangoni was supported by the Italian Ministry of Education, University and Research and the Italian Ministry of Environment, Land and Sea under the GEMINA Project. Anadon acknowledges funding from the Science, Technology, and Public Policy Program at the Harvard Kennedy School and Grants from the Doris Duke Charitable Foundation and BP to the Energy Technology Innovation Policy Research Group. McJeon was supported by the Office of Science of the U.S. Department of Energy as part of the Integrated Assessment Research Program. NR 50 TC 8 Z9 8 U1 6 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD MAY PY 2015 VL 80 BP 244 EP 263 DI 10.1016/j.enpol.2014.12.012 PG 20 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA CE6WD UT WOS:000351978000023 ER PT J AU Barron, R McJeon, H AF Barron, Robert McJeon, Haewon TI The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios SO ENERGY POLICY LA English DT Article DE Integrated assessment models; Expert elicitation; Technology cost ID EXPERT ELICITATION; TRANSPORTATION AB This paper considers the effect of several key parameters of low carbon energy technologies on the cost of abatement. A methodology for determining the minimum level of performance required for a parameter to have a statistically significant impact on CO2 abatement cost is developed and used to evaluate the impact of eight key parameters of low carbon energy supply technologies on the cost of CO2 abatement. The capital cost of nuclear technology is found to have the greatest impact of the parameters studied. The cost of biomass and CCS technologies also have impacts, while their efficiencies have little, if any. Sensitivity analysis of the results with respect to population, GDP, and CO2 emission constraint show that the minimum performance level and impact of nuclear technologies is consistent across the socioeconomic scenarios studied, while the other technology parameters show different performance under higher population, lower GDP scenarios. Solar technology was found to have a small impact, and then only at very low costs. These results indicate that the cost of nuclear is the single most important driver of abatement cost, and that trading efficiency for cost may make biomass and CCS technologies more competitive. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Barron, Robert] Univ Massachusetts, Amherst, MA 01003 USA. [McJeon, Haewon] JGCRI, Pacific NW Natl Lab, College Pk, MD USA. RP Barron, R (reprint author), Univ Massachusetts, Amherst, MA 01003 USA. EM Haewon.McJeon@pnnl.gov FU National Science Foundation [0960993]; Global Technology Strategy Project (GTSP); GEMINA project - Italian Ministry for the Environment, Land and Sea (MATTM); Energy Modeling Forum at Stanford University FX This research was partially funded by the National Science Foundation under Grant no. 0960993 and by the Global Technology Strategy Project (GTSP). Further support was provided by the GEMINA project, funded by the Italian Ministry for the Environment, Land and Sea (MATTM) and by the Energy Modeling Forum at Stanford University. This research used Evergreen computing resources at the Pacific Northwest National Laboratory's (PNNL) Joint Global Change Research Institute at the University of Maryland in College Park. The views and opinions expressed in this paper are those of the authors alone. NR 33 TC 2 Z9 2 U1 1 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD MAY PY 2015 VL 80 BP 264 EP 274 DI 10.1016/j.enpol.2015.01.038 PG 11 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA CE6WD UT WOS:000351978000024 ER PT J AU Taylor, SD Marcano, MC Rosso, KM Becker, U AF Taylor, S. D. Marcano, M. C. Rosso, K. M. Becker, U. TI An experimental and ab initio study on the abiotic reduction of uranyl by ferrous iron SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID SEMICONDUCTING MINERAL SURFACES; ELECTRON-TRANSFER REACTIONS; GOETHITE ALPHA-FEOOH; HETEROGENEOUS REDUCTION; URANIUM(VI) REDUCTION; COMPLEXATION; CHEMISTRY; FE(II); U(VI); OXIDATION AB It is important to understand the mechanisms controlling the removal of uranyl from solution from an environmental standpoint, particularly whether soluble Fe(II) is capable of reducing soluble U(VI) to insoluble U(IV). Experiments were performed to shed light into discrepancies of recent studies about precipitation of U-containing solids without changing oxidation states versus precipitation/reduction reactions, especially with respect to the kinetics of these reactions. To understand the atomistic mechanisms, thermodynamics, and kinetics of these redox processes, ab initio electron transfer (ET) calculations, using Marcus theory, were applied to study the reduction of U(VI)(aq) to U(V)(aq) by Fe(II)(aq) (the first rate-limiting ET-step). Outer-sphere (OS) and inner-sphere (IS) Fe-U complexes were modeled to represent simple species within a homogeneous environment through which ET could occur. Experiments on the chemical reduction were performed by reacting 1 mM Fe(II)(aq) at pH 7.2 with high (i.e., 0.16 mM) and lower (i.e., 0.02 mM) concentrations of U(VI) aq. At higher U concentration, a rapid decrease in U(VI) aq was observed within the first hour of reaction. XRD and XPS analyses of the precipitates confirmed the presence of (meta) schoepite phases, where up to similar to 25% of the original U was reduced to U4+ and/or U5+-containing phases. In contrast, at 0.02 mM U, the U(VI)(aq) concentration remained fairly constant for the first 3 h of reaction and only then began to decrease due to slower precipitation kinetics. XPS spectra confirm the partial chemical reduction U associated with the precipitate (up to similar to 30%). Thermodynamic calculations support that the reduction of U(VI)(aq) to U(IV)(aq) by Fe(II)(aq) is energetically unfavorable. The batch experiments in this study show U(VI) is removed from solution by precipitation and that transitioning to a heterogeneous system in turn enables the solid U phase to be partially reduced. Ab initio ET calculations revealed that OS ET is strongly kinetically inhibited in all cases modeled. OS ET as a concerted proton-coupled ET reaction (ferrimagnetic spin configuration) is thermodynamically favorable (-35 kJ/mol), but kinetically inhibited by concurrent proton-transfer (10(-19)s(-1)). OS ET as a sequential proton-coupled ET reaction is thermodynamically unfavorable (+102 kJ/mol) as well as kinetically inhibited, where ET is the rate-limiting step (10(-12)s(-1)). In contrast, the reduction of U(VI) aq to U(V) aq by Fe(II) aq as an IS ET reaction is both thermodynamically favorable (-16 kJ/mol) and kinetically rapid (10(8) s(-1)); the IS ET rate is several orders of magnitude faster than the OS ET rate. Thus, reduction of U(VI) aq to U(V) aq by Fe(II) aq in a homogenous system could occur if an IS Fe-U complex can be achieved. However, the formation of IS Fe-U complexes in an homogeneous solution is predicted to be low; considerable thermodynamic and kinetic barriers exist to proceed from an OS ET reaction to an IS ET reaction, a process that needs to overcome dehydration of the first solvation shell (+96 kJ/mol) and hydrolysis of Fe(II) aq. The computational results complement and further substantiate experimental results where the reduction of U(VI) aq by Fe(II) aq does not occur. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Taylor, S. D.; Marcano, M. C.; Becker, U.] Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA. [Rosso, K. M.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Becker, U (reprint author), Univ Michigan, Dept Earth & Environm Sci, 2534 CC Little Bldg,1100 North Univ Ave, Ann Arbor, MI 48109 USA. EM ubecker@umich.edu FU U.S. Office of Science, BES/HEC (Basic Energy Sciences, Heavy Element Chemistry) [DE-FG02-06ER15783]; Center for Advanced Structural Metallic Materials [DOD-G-F49620-93-1-0289]; NSF grant [DMR-0420785]; Geosciences Program at Pacific Northwest National Laboratory (PNNL) from the U.S. Department of Energy (DOE) Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; DOE Office of Biological and Environmental Research and located at PNNL FX This research was supported by the U.S. Office of Science, BES/HEC (Basic Energy Sciences, Heavy Element Chemistry) DE-FG02-06ER15783. The authors would like to thank the following scientists for their technical assistance with the instrumentation used in this study: Dr. Thomas Yavaraski (ICP-MS), Dr. Zhongrui Li (XRD), Ke Yuan (SEM; instrumentation supported primarily by DOD-G-F49620-93-1-0289, Center for Advanced Structural Metallic Materials), and Dr. Eugene Ilton, Dr. Kai Sun, and Dr. Haiping Sun (XPS; instrumentation supported by NSF grant # DMR-0420785). We would like to further thank Dr. Eugene Ilton for his help with XPS analyses and revisions of this manuscript. We would also like to thank Dr. Drew Latta and Odeta Qafoku for their help with developing experimental procedures. KMR acknowledges support from the Geosciences Program at Pacific Northwest National Laboratory (PNNL) from the U.S. Department of Energy (DOE) Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. A portion of the research was performed using EMSL, a DOE Office of Science User Facility sponsored by the DOE Office of Biological and Environmental Research and located at PNNL. NR 53 TC 5 Z9 6 U1 12 U2 67 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 1 PY 2015 VL 156 BP 154 EP 172 DI 10.1016/j.gca.2015.01.021 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA CE9VS UT WOS:000352192100009 ER PT J AU Shechtman, Y Eldar, YC Cohen, O Chapman, HN Miao, JW Segev, M AF Shechtman, Yoav Eldar, Yonina C. Cohen, Oren Chapman, Henry N. Miao, Jianwei Segev, Mordechai TI Phase Retrieval with Application to Optical Imaging SO IEEE SIGNAL PROCESSING MAGAZINE LA English DT Article ID RAY-DIFFRACTION MICROSCOPY; FREE-ELECTRON LASER; FOURIER-TRANSFORM; SIGNAL RECONSTRUCTION; TRANSPORT-EQUATION; RESOLUTION; MAGNITUDE; NANOSCALE; HOLOGRAPHY; ALGORITHMS C1 [Shechtman, Yoav] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Eldar, Yonina C.] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel. [Cohen, Oren] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Chapman, Henry N.] Univ Hamburg, Deutsch Elektronen Synchrotron, Ctr Free Electron Laser Sci, Hamburg, Germany. [Miao, Jianwei] Univ Calif Los Angeles, Los Angeles, CA USA. [Segev, Mordechai] CALTECH, Pasadena, CA 91125 USA. [Segev, Mordechai] Princeton Univ, Princeton, NJ 08544 USA. [Segev, Mordechai] OSA, New York, NY USA. [Segev, Mordechai] APS, New York, NY USA. RP Shechtman, Y (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM yoavsh@stanford.edu; yonina@ee.technion.ac.il; oren@tx.technion.ac.il; henry.chapman@desy.de; miao@physics.ucla.edu; msegev@tx.technion.ac.il RI Magazine, Signal Processing/E-9947-2015; Chapman, Henry/G-2153-2010 OI Chapman, Henry/0000-0002-4655-1743 NR 144 TC 63 Z9 64 U1 9 U2 50 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1053-5888 EI 1558-0792 J9 IEEE SIGNAL PROC MAG JI IEEE Signal Process. Mag. PD MAY PY 2015 VL 32 IS 3 BP 87 EP 109 DI 10.1109/MSP.2014.2352673 PG 23 WC Engineering, Electrical & Electronic SC Engineering GA CF4DL UT WOS:000352498800009 ER PT J AU Pourabbas, E Shoshani, A AF Pourabbas, Elaheh Shoshani, Arie TI The Composite Data Model: A Unified Approach for Combining and Querying Multiple Data Models SO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING LA English DT Article DE Anchor; paths; composite data model; composite query language; object-relationship data model; multi-dimensional data model; object hierarchy data model ID LANGUAGE; XQUERY; UML AB In this paper, we combine the characteristics of three fundamental data models in order to represent their semantics in a common framework. These fundamental data models include the familiar concepts of modeling (1) object classes (or entities), their properties (attributes) and relationships between them, (2) multidimensional objects and attributes that can be summarized over the dimensions, and (3) hierarchical structures. This model, called the Composite Data Model, facilitates combinations of these three model structures to be represented jointly in a single schema, thus providing more expressive and natural queries over them. The main advantage of the composite data model (CDM), and a composite query language (CQL) over it, is that any combination of the three fundamental models can be represented jointly based on explicit semantics of each of the fundamental data models. This is unlike existing data models that represent each data model individually or obscure the semantics of additional features being modeled. In order to develop a query language over the combined schemas, we introduce a new concept, referred to as anchor, which is an object class that acts as the focus of the query. We provide in the query language path structures relative to the anchor that facilitate data navigation and data manipulation. We develop the syntax and semantics of the proposed language, and illustrate its expressive power through numerous query examples, and comparisons to three other query languages: OQL, SPARQL, and XQuery. C1 [Pourabbas, Elaheh] CNR, Inst Syst Anal & Comp Sci Antonio Ruberti, Rome, Italy. [Shoshani, Arie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Comp & Data Sci Dept, Berkeley, CA 94720 USA. RP Pourabbas, E (reprint author), CNR, Inst Syst Anal & Comp Sci Antonio Ruberti, Rome, Italy. EM elaheh.pourabbas@iasi.cnr.it FU Office of Advanced Scientific Computing Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Arie Shoshani's work was supported by the Office of Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 0 Z9 0 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1041-4347 EI 1558-2191 J9 IEEE T KNOWL DATA EN JI IEEE Trans. Knowl. Data Eng. PD MAY PY 2015 VL 27 IS 5 BP 1424 EP 1437 DI 10.1109/TKDE.2014.2365815 PG 14 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Engineering, Electrical & Electronic SC Computer Science; Engineering GA CF5PA UT WOS:000352608000020 ER PT J AU Lemmer, KC Dohnalkova, AC Noguera, DR Donohue, TJ AF Lemmer, Kimberly C. Dohnalkova, Alice C. Noguera, Daniel R. Donohue, Timothy J. TI Oxygen-Dependent Regulation of Bacterial Lipid Production SO JOURNAL OF BACTERIOLOGY LA English DT Article ID PHOTOSYNTHESIS GENE-EXPRESSION; RHODOBACTER-SPHAEROIDES 2.4.1; CYTOCHROME C(2) GENE; RHODOPSEUDOMONAS-SPHAEROIDES; ESCHERICHIA-COLI; RESPONSE REGULATOR; OLEAGINOUS MICROORGANISMS; PHOSPHOLIPID-COMPOSITION; BIODIESEL PRODUCTION; ELECTRON-MICROSCOPY AB Understanding the mechanisms of lipid accumulation in microorganisms is important for several reasons. In addition to providing insight into assembly of biological membranes, lipid accumulation has important applications in the production of renewable fuels and chemicals. The photosynthetic bacterium Rhodobacter sphaeroides is an attractive organism to study lipid accumulation, as it has the ability to increase membrane production at low O-2 tensions. Under these conditions, R. sphaeroides develops invaginations of the cytoplasmic membrane to increase its membrane surface area for housing of the membrane-bound components of its photosynthetic apparatus. Here we use fatty acid levels as a reporter of membrane lipid content. We show that, under low-O-2 and anaerobic conditions, the total fatty acid content per cell increases 3-fold. We also find that the increases in the amount of fatty acid and photosynthetic pigment per cell are correlated as O-2 tensions or light intensity are changed. To ask if lipid and pigment accumulation were genetically separable, we analyzed strains with mutations in known photosynthetic regulatory pathways. While a strain lacking AppA failed to induce photosynthetic pigment-protein complex accumulation, it increased fatty acid content under low-O-2 conditions. We also found that an intact PrrBA pathway is required for low-O-2-induced fatty acid accumulation. Our findings suggest a previously unknown role of R. sphaeroides transcriptional regulators in increasing fatty acid and phospholipid accumulation in response to decreased O-2 tension. IMPORTANCE Lipids serve important functions in living systems, either as structural components of membranes or as a form of carbon storage. Understanding the mechanisms of lipid accumulation in microorganisms is important for providing insight into the assembly of biological membranes and additionally has important applications in the production of renewable fuels and chemicals. In this study, we investigate the ability of Rhodobacter sphaeroides to increase membrane production at low O-2 tensions in order to house its photosynthetic apparatus. We demonstrate that this bacterium has a mechanism to increase lipid content in response to decreased O-2 tension and identify a transcription factor necessary for this response. This is significant because it identifies a transcriptional regulatory pathway that can increase microbial lipid content. C1 [Lemmer, Kimberly C.; Noguera, Daniel R.; Donohue, Timothy J.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Donohue, Timothy J.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Noguera, Daniel R.] Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA. [Dohnalkova, Alice C.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Donohue, TJ (reprint author), Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. EM tdonohue@bact.wisc.edu OI Donohue, Timothy/0000-0001-8738-2467 FU DOE Great Lakes Bioenergy Research Center grant (DOE Office of Science BER) [DE-FC02-07ER64494]; USDA NIFA fellowship [2011-67012-30702]; Office of Biological and Environmental Research at PNNL FX This work was supported by DOE Great Lakes Bioenergy Research Center grant (DOE Office of Science BER DE-FC02-07ER64494) to T.J.D. and USDA NIFA fellowship 2011-67012-30702 to K.C.L. Electron microscopy was performed at the Environmental Molecular Science Laboratory (EMSL), a DOE Office of Science user facility sponsored by the Office of Biological and Environmental Research and located at PNNL. NR 54 TC 2 Z9 2 U1 0 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD MAY PY 2015 VL 197 IS 9 BP 1649 EP 1658 DI 10.1128/JB.02510-14 PG 10 WC Microbiology SC Microbiology GA CF1HU UT WOS:000352296500012 PM 25733615 ER PT J AU Veress, AI Fung, GSK Lee, TS Tsui, BMW Kicska, GA Segars, WP Gullberg, GT AF Veress, Alexander I. Fung, George S. K. Lee, Taek-Soo Tsui, Benjamin M. W. Kicska, Gregory A. Segars, W. Paul Gullberg, Grant T. TI The Direct Incorporation of Perfusion Defect Information to Define Ischemia and Infarction in a Finite Element Model of the Left Ventricle SO JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE cardiac imaging research; finite element; left ventricle; NCAT; XCAT; SPECT phantom; ischemia; myocardial infarction; mechanical model ID ACUTE MYOCARDIAL-INFARCTION; ACUTE REGIONAL ISCHEMIA; CARDIAC-HYPERTROPHY; ACTIVE CONTRACTION; BORDER ZONE; MECHANICS; HEART; STRESS; SIZE; DYSFUNCTION AB This paper describes the process in which complex lesion geometries (specified by computer generated perfusion defects) are incorporated in the description of nonlinear finite element (FE) mechanical models used for specifying the motion of the left ventricle (LV) in the 4D extended cardiac torso (XCAT) phantom to simulate gated cardiac image data. An image interrogation process was developed to define the elements in the LV mesh as ischemic or infarcted based upon the values of sampled intensity levels of the perfusion maps. The intensity values were determined for each of the interior integration points of every element of the FE mesh. The average element intensity levels were then determined. The elements with average intensity values below a user-controlled threshold were defined as ischemic or infarcted depending upon the model being defined. For the infarction model cases, the thresholding and interrogation process were repeated in order to define a border zone (BZ) surrounding the infarction. This methodology was evaluated using perfusion maps created by the perfusion cardiac-torso (PCAT) phantom an extension of the 4D XCAT phantom. The PCAT was used to create 3D perfusion maps representing 90% occlusions at four locations (left anterior descending (LAD) segments 6 and 9, left circumflex (LCX) segment 11, right coronary artery (RCA) segment 1) in the coronary tree. The volumes and shapes of the defects defined in the FE mechanical models were compared with perfusion maps produced by the PCAT. The models were incorporated into the XCAT phantom. The ischemia models had reduced stroke volume (SV) by 18-59 ml. and ejection fraction (EF) values by 14-50% points compared to the normal models. The infarction models, had less reductions in SV and EF, 17-54 ml. and 14-45% points, respectively. The volumes of the ischemic/infarcted regions of the models were nearly identical to those volumes obtained from the perfusion images and were highly correlated (R-2 = 0.99). C1 [Veress, Alexander I.] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA. [Fung, George S. K.; Lee, Taek-Soo; Tsui, Benjamin M. W.] Johns Hopkins Univ, Dept Radiol, Baltimore, MD 21287 USA. [Kicska, Gregory A.] Univ Washington, Dept Radiol, Seattle, WA 98195 USA. [Segars, W. Paul] Duke Univ, Carl E Ravin Adv Imaging Labs, Durham, NC 27705 USA. [Gullberg, Grant T.] Ernest Orlando Lawrence Berkeley Natl Lab, Struct Biol & Imaging Dept, Berkeley, CA 94720 USA. RP Veress, AI (reprint author), Univ Washington, Dept Mech Engn, Stevens Way,Box 352600, Seattle, WA 98195 USA. EM averess@uw.edu; gfung2@jhmi.edu; tslee@jhmi.edu; btsui@jhmi.edu; gkicska@gmail.com; paul.segars@duke.edu; gtgullberg@lbl.gov FU NIH [R01EB000121, R01EB07219, R01HL50663, R03EB008450, R01HL091036, R01HL068075]; Office of Science, Office of Biological and Environmental Research, Biological Systems Science Division of the US Department of Energy [DE-AC02-05CH11231] FX The following sources of support are gratefully acknowledged, NIH R01EB000121, R01EB07219, R01HL50663, R03EB008450, R01HL091036, and R01HL068075 and the Director, Office of Science, Office of Biological and Environmental Research, Biological Systems Science Division of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 52 TC 1 Z9 1 U1 0 U2 3 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0148-0731 EI 1528-8951 J9 J BIOMECH ENG-T ASME JI J. Biomech. Eng.-Trans. ASME PD MAY PY 2015 VL 137 IS 5 AR 051004 DI 10.1115/1.4028989 PG 10 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA CF0YQ UT WOS:000352271000004 PM 25367177 ER PT J AU Morzfeld, M AF Morzfeld, Matthias TI Implicit Sampling for Path Integral Control, Monte Carlo Localization, and SLAM SO JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME LA English DT Article ID DATA ASSIMILATION; PARTICLE FILTERS; NOISE; TUTORIAL; MODELS AB Implicit sampling is a recently developed variationally enhanced sampling method that guides its samples to regions of high probability, so that each sample carries information. Implicit sampling may thus improve the performance of algorithms that rely on Monte Carlo (MC) methods. Here the applicability and usefulness of implicit sampling for improving the performance of MC methods in estimation and control is explored, and implicit sampling based algorithms for stochastic optimal control, stochastic localization, and simultaneous localization and mapping (SLAM) are presented. The algorithms are tested in numerical experiments where it is found that fewer samples are required if implicit sampling is used, and that the overall runtimes of the algorithms are reduced. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Math, Berkeley, CA 94720 USA. RP Morzfeld, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Math, Berkeley, CA 94720 USA. FU U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program [DE-AC02005CH11231]; National Science Foundation [DMS-1217065] FX I thank Professor Alexandre J. Chorin of UC Berkeley for many interesting technical discussions and for bringing path integral control to my attention. I thank Dr. Robert Saye of Lawrence Berkeley National Laboratory for help with proofreading this manuscript. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under Contract No. DE-AC02005CH11231, and by the National Science Foundation under Grant No. DMS-1217065. NR 46 TC 1 Z9 1 U1 0 U2 4 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-0434 EI 1528-9028 J9 J DYN SYST-T ASME JI J. Dyn. Syst. Meas. Control-Trans. ASME PD MAY PY 2015 VL 137 IS 5 AR 051016 DI 10.1115/1.4029064 PG 14 WC Automation & Control Systems; Instruments & Instrumentation SC Automation & Control Systems; Instruments & Instrumentation GA CF4YP UT WOS:000352560800016 ER PT J AU Brese, RG McMurray, JW Shin, D Besmann, TM AF Brese, R. G. McMurray, J. W. Shin, D. Besmann, T. M. TI Thermodynamic assessment of the U-Y-O system SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; SOLID SOLUTIONS; NUCLEAR-FUELS; URANIA-YTTRIA; OXYGEN SYSTEM; OXIDE; GD AB A CALPHAD assessment of the U-Y-O system has been developed. To represent the YO2 compound in the compound energy formalism (CEF) for U1-yYyO2 +/- x, the lattice stability was calculated using density functional theory (DFT) while a partially ionic liquid sub-lattice model is used to describe the liquid phase. A Gibbs function for the stoichiometric rhombohedral UY6O12 phase is proposed. Models representing the phases in the U-O and Y-O systems taken from the literature along with the phases that appear in the U-Y-O ternary are combined to form a complete assessment. (C) 2015 Elsevier B.V. All rights reserved. C1 [Brese, R. G.; McMurray, J. W.; Shin, D.; Besmann, T. M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP McMurray, JW (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM mcmurrayjw1@ornl.gov RI Shin, Dongwon/C-6519-2008; OI Shin, Dongwon/0000-0002-5797-3423; McMurray, Jacob/0000-0001-5111-3054 FU US Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development Program FX The authors would like to thank Stewart L. Voit and Ying Yang of Oak Ridge National Laboratory for helpful comments. The work was supported by the US Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development Program. NR 21 TC 3 Z9 3 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2015 VL 460 BP 5 EP 12 DI 10.1016/j.jnucmat.2015.01.047 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CE9OE UT WOS:000352172500002 ER PT J AU Janney, DE O'Holleran, TP AF Janney, Dawn E. O'Holleran, Thomas P. TI Zr inclusions in actinide-Zr alloys: New data and ideas about how they form SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RARE-EARTH-ELEMENTS; MINOR ACTINIDES; PU; NP; AM; REDISTRIBUTION; TEMPERATURE; PHASES; FUEL C1 [Janney, Dawn E.; O'Holleran, Thomas P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Janney, DE (reprint author), Idaho Natl Lab, Mail Stop 6188, Idaho Falls, ID 83415 USA. EM dawn.janney@inl.gov; dr.tpoh@hotmail.com FU U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office [DE-AC07-05ID14517] FX The research presented here was supported by the U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 13 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2015 VL 460 BP 13 EP 15 DI 10.1016/j.jnucmat.2015.01.065 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CE9OE UT WOS:000352172500003 ER PT J AU Silva, CM Katoh, Y Voit, SL Snead, LL AF Silva, Chinthaka M. Katoh, Yutai Voit, Stewart L. Snead, Lance L. TI Chemical reactivity of CVC and CVD SiC with UO2 at high temperatures SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PYROLYTIC SILICON CARBIDE; IRRADIATION; TRANSITION; OXIDATION; FILMS AB Two types of silicon carbide (SiC) synthesized using two different vapor deposition processes were embedded in UO2 pellets and evaluated for their potential chemical reaction with UO2. While minor reactivity between chemical-vapor-composited (CVC) SiC and UO2 was observed at comparatively low temperatures of 1100 and 1300 degrees C, chemical-vapor-deposited (CVD) SiC did not show any such reactivity. However, both CVD and CVC SiCs showed some reaction with UO2 at a higher temperature (1500 degrees C). Elemental maps supported by phase maps obtained using electron backscatter diffraction indicated that CVC SiC was more reactive than CVD SiC at 1500 degrees C. Furthermore, this investigation indicated the formation of uranium carbides and uranium suicide chemical phases such as UC, USi2, and U3Si2 as a result of SiC reaction with UO2. (C) 2015 Elsevier B.V. All rights reserved. C1 [Silva, Chinthaka M.; Katoh, Yutai; Snead, Lance L.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Voit, Stewart L.] Oak Ridge Natl Lab, Fus & Mat Nucl Syst Div, Oak Ridge, TN 37831 USA. RP Silva, CM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM silvagw@ornl.gov FU U.S. Department of Energy through the Office of Nuclear Energy, Science and Technology's Fuel Cycle Research and Development Program [DE-AC05-00OR22725]; UT-Battelle, LLC. FX This research work was sponsored by the U.S. Department of Energy through the Office of Nuclear Energy, Science and Technology's Fuel Cycle Research and Development Program under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 16 TC 1 Z9 1 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2015 VL 460 BP 52 EP 59 DI 10.1016/j.jnucmat.2015.02.002 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CE9OE UT WOS:000352172500009 ER PT J AU Lillo, TM van Rooyen, IJ AF Lillo, T. M. van Rooyen, I. J. TI Associations of Pd, U and Ag in the SIC layer of neutron-irradiated TRISO fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID COATED PARTICLES; SILVER DIFFUSION; AGR-1 EXPERIMENT; SILICON-CARBIDE; TRANSPORT; IDENTIFICATION; PALLADIUM AB Knowledge of the associations and composition of fission products in the neutron irradiated SiC layer of high-temperature gas reactor TRISO fuel is important to the understanding of various aspects of fuel performance that presently are not well understood. Recently, advanced characterization techniques have been used to examine fuel particles from the Idaho National Laboratory's AGR-1 experiment. Nano-sized Ag and Pd precipitates were previously identified in grain boundaries and triple points in the SiC layer of irradiated TRISO nuclear fuel. Continuation of this initial research is reported in this paper and consists of the characterization of a relatively large number of nano-sized precipitates in three areas of the SiC layer of a single irradiated TRISO nuclear fuel particle using standardless EDS analysis on focused ion beam-prepared transmission electron microscopy samples. Composition and distribution analyses of these precipitates, which were located on grain boundaries, triple junctions and intragranular precipitates, revealed low levels, generally <10 atomic %, of palladium, silver and/or uranium with palladium being the most common element found. Palladium by itself, or associated with either silver or uranium, was found throughout the SiC layer. A small number of precipitates on grain boundaries and triple junctions were found to contain only silver or silver in association with palladium while uranium was always associated with palladium but never found by itself or in association with silver. Intergranular precipitates containing uranium were found to have migrated similar to 23 mu m along a radial direction through the 35 mu m thick SiC coating during the AGR-1 experiment while silver-containing intergranular precipitates were found at depths up to similar to 24 mu m in the SiC layer. Also, Pd-rich, nano-precipitates (similar to 10 nm in diameter), without evidence for the presence of either Ag or U, were revealed in intragranular regions throughout the SiC layer. Because not all grain boundaries and triple junctions contained precipitates with fission products and/or uranium, along with the differences in migration behavior between Pd, Ag and U, it was concluded that crystallographic grain boundary and triple junction parameters likely influence migration behavior. (C) 2015 Elsevier B.V. All rights reserved. C1 [Lillo, T. M.] Idaho Natl Lab, Dept Mat Sci & Engn, Idaho Falls, ID 83415 USA. [van Rooyen, I. J.] Idaho Natl Lab, Fuel Performance & Design Dept, Idaho Falls, ID 83415 USA. RP Lillo, TM (reprint author), Idaho Natl Lab, Dept Mat Sci & Engn, Idaho Falls, ID 83415 USA. EM thomas.lillo@inl.gov RI Lilllo, Thomas/S-5031-2016 OI Lilllo, Thomas/0000-0002-7572-7883 FU U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office as part of the Very High Temperature Reactor Development Program [DE-AC07-05ID14517] FX This work was sponsored by the U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517, as part of the Very High Temperature Reactor Development Program. The authors would like to acknowledge the efforts of Mr. James Madden in the FIB-fabrication of the TEM samples as well as other staff at the Materials and Fuels Complex at INL and those at the Center for Advanced Energy Studies, all of whom helped facilitate the characterization of these irradiated samples. NR 26 TC 4 Z9 4 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2015 VL 460 BP 97 EP 106 DI 10.1016/j.jnucmat.2015.02.010 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CE9OE UT WOS:000352172500013 ER PT J AU Yan, Y Qian, S Littrell, K Parish, CM Plummer, LK AF Yan, Y. Qian, S. Littrell, K. Parish, C. M. Plummer, L. K. TI Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ZIRCALOY-4 AB A nondestructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless-steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Our study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount (approximate to 120 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor can be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for determining absolute hydrogen concentrations. (C) 2015 Elsevier B.V. All rights reserved. C1 [Yan, Y.; Qian, S.; Littrell, K.; Parish, C. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Plummer, L. K.] Univ Oregon, Eugene, OR 97403 USA. RP Yan, Y (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Parish, Chad/J-8381-2013; Littrell, Kenneth/D-2106-2013 OI Littrell, Kenneth/0000-0003-2308-8618 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory [LOIS-6502]; U.S. Department of Energy [DE-AC05-00OR22725]; EBSD through ORNL's Center for Nanophase Materials Sciences (CNMS) - Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was sponsored by the Laboratory Directed Research and Development (LOIS-6502) Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725), and EBSD through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Beam line CG3 is supported by the Office of Biological and Environmental Research of the U.S. Department of Energy Research through ORNL Center for Structural Molecular Biology. The High Flux Isotope Reactor and beamline CG2 of ORNL was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We are grateful to Dr. Jeremy Busby for his technical inputs and stimulating discussions. NR 20 TC 0 Z9 0 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2015 VL 460 BP 114 EP 121 DI 10.1016/j.jnucmat.2015.02.009 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CE9OE UT WOS:000352172500015 ER PT J AU Gussev, MN Field, KG Busby, JT AF Gussev, Maxim N. Field, Kevin G. Busby, Jeremy T. TI Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID COPPER SINGLE-CRYSTALS; GRAIN-BOUNDARIES; MICROSTRUCTURAL CHARACTERIZATION; CUBIC ELASTICITY; STRESS; 304-STAINLESS-STEEL; INITIATION; SURFACE; STRAIN; NUCLEATION AB The dynamics of deformation localization and dislocation channel formation were investigated in situ in a neutron-irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy (TEM). Channel formation was observed at similar to 70% of the polycrystalline yield stress of the irradiated materials (sigma(0.2)). It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the sigma(0.2), channels often formed near the middle of the grain boundary. For a single grain, the role of elastic stiffness value (Young's modulus) in channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in "soft" grains with a high Schmid factor located near "stiff" grains with high elastic stiffness. The spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one-third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. In the AISI 304 steel, channels in grains oriented close to < 001 >vertical bar vertical bar TA (tensile axis) and < 101 >vertical bar vertical bar TA were twin free and grain with < 111 >vertical bar vertical bar TA and grains oriented close to a Schmid factor maximum contained deformation twins. (C) 2015 Elsevier B.V. All rights reserved. C1 [Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Gussev, MN (reprint author), One Bethel Valley Rd,POB 2008,MS 6151, Oak Ridge, TN 37831 USA. EM gussevmn@ornl.gov FU ORNL's Center for Nanophase Materials Sciences (CNMS) - Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; US Department of Energy, Office of Nuclear Energy FX The research was supported by the US Department of Energy, Office of Nuclear Energy, for the Light Water Reactor Sustainability Program research and development effort and through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors also would like to thank Dr. G. Was and K. Stephenson (University of Michigan) for help with optical confocal measurements and D.P. Stevens (ORNL) for valuable help with manuscript preparation. NR 48 TC 3 Z9 3 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2015 VL 460 BP 139 EP 152 DI 10.1016/j.jnucmat.2015.02.008 PG 14 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CE9OE UT WOS:000352172500018 ER PT J AU Jue, JF Trowbridge, TL Breckenridge, CR Moore, GA Meyer, MK Keiser, DD AF Jue, Jan-Fong Trowbridge, Tammy L. Breckenridge, Cynthia R. Moore, Glenn A. Meyer, Mitchell K. Keiser, Dennis D., Jr. TI Effects of heat treatment On U-Mo fuel foils with a zirconium diffusion barrier SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID WT-PERCENT MOLYBDENUM; MONOLITHIC FUEL; DISPERSION FUEL; GAMMA-PHASE; ALLOY; ZR; INTERDIFFUSION; IRRADIATION; PLATE; PERFORMANCE AB A monolith fuel design based on U-Mo alloy has been selected as the fuel type for conversion of the United States' high performance research reactors (HPRRs) from highly enriched uranium (HEU) to low-enriched uranium (LEU). In this fuel design, a thin layer of zirconium is used to eliminate the direct interaction between the U-Mo fuel meat and the aluminum-alloy cladding during irradiation. The co-rolling process used to bond the Zr barrier layer to the U-Mo foil during fabrication alters the microstructure of both the U-10Mo fuel meat and the U-Mo/Zr interface. This work studied the effects of post-rolling annealing treatment on the microstructure of the co-rolled U-Mo fuel meat and the U-Mo/Zr interaction layer. Microscopic characterization shows that the grain size of U-Mo fuel meat increases with the annealing temperature, as expected. The grain sizes were similar to 9, similar to 13, and similar to 20 mu m for annealing temperature of 650, 750, and 850 degrees C, respectively. No abnormal grain growth was observed. The U-Mo/Zr interaction-layer thickness increased with the annealing temperature with an Arrhenius constant for growth of 184 kJ/mole, consistent with a previous diffusion-couple study. The interaction layer thickness was 3.2 +/- 0.5 mu m, 11.1 +/- 2.1 mu m, 27.1 +/- 0.9 mu m for annealing temperature of 650, 750, to 850 degrees C, respectively. The homogeneity of Mo improves with post rolling annealing temperature and with U-Mo coupon homogenization. The phases in the Zr/U-Mo interaction layer produced by co-rolling, however, differ from those reported in the previous diffusion couple studies. Published by Elsevier B.V. C1 [Jue, Jan-Fong; Trowbridge, Tammy L.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.; Keiser, Dennis D., Jr.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. RP Jue, JF (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Jan-Fong.jue@inl.gov OI Meyer, Mitchell/0000-0002-1980-7862 FU U.S. Department of Energy, Office of Nuclear Materials Threat Reduction, National Nuclear Security Administration, under DOE-NE Idaho Operations Office [DE-AC07-05ID14517, NA-212] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Materials Threat Reduction (NA-212), National Nuclear Security Administration, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. The authors would like to thank Mr. James Madden for FIB work and Dr. Barry Rabin for very useful technical discussion. NR 24 TC 1 Z9 1 U1 4 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2015 VL 460 BP 153 EP 159 DI 10.1016/j.jnucmat.2015.02.017 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CE9OE UT WOS:000352172500019 ER PT J AU Terrani, KA Silva, CM AF Terrani, Kurt A. Silva, Chinthaka M. TI High temperature steam oxidation of SiC coating layer of TRISO fuel particles SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DEPOSITED SILICON-CARBIDE; WATER-VAPOR; LIGHT-WATER; KINETICS AB High-temperature oxidation behavior of SiC coating layer of TRISO fuel particles in 1500-1700 degrees C steam at 1 atm has been examined inside a zirconia furnace. The SiC coating layers experienced a thickness loss of less than 2.51.mu m under these conditions up to 24 h. The thickness of the oxide layer formed under these conditions was consistent with prior steam oxidation tests on high-purity bulk SiC. Upon reducing the presence volatile impurities from the test environment (particularly Al) by conducting the tests inside a zirconia furnace, melting of the silica layer at 1700 degrees C was avoided. (C) 2015 Elsevier B.V. All rights reserved. C1 [Terrani, Kurt A.; Silva, Chinthaka M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Terrani, KA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM terranika@ornl.gov FU Advanced Fuels Campaign of the Fuel Cycle R&D program in the Office of Nuclear Energy, US Department of Energy FX The aid and technical insight of Mike Howell, Ivan Dunbar, John Hunn, Bruce Pint and Lance Snead at ORNL is gratefully acknowledged. Sebastien Dryepondt provided useful comments on the manuscript. The work presented in this paper was supported by the Advanced Fuels Campaign of the Fuel Cycle R&D program in the Office of Nuclear Energy, US Department of Energy. NR 25 TC 0 Z9 0 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD MAY PY 2015 VL 460 BP 160 EP 165 DI 10.1016/j.jnucmat.2015.02.022 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA CE9OE UT WOS:000352172500020 ER PT J AU Grosvenor, AD Rixon, GS Sailer, LM Matheson, MA Gutzwiller, DP Demeulenaere, A Gontier, M Strazisar, AJ AF Grosvenor, Allan D. Rixon, Gregory S. Sailer, Logan M. Matheson, Michael A. Gutzwiller, David P. Demeulenaere, Alain Gontier, Mathieu Strazisar, Anthony J. TI High Resolution RANS Nonlinear Harmonic Study of Stage 67 Tip Injection Physics SO JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME LA English DT Article AB Numerical prediction of the Stage 67 transonic fan stage employing wall jet tip injection flow control and study of the physical mechanisms leading to stall suppression and stability enhancement afforded by endwall recirculation/injection is the focus of this paper. Reynolds averaged Navier-Stokes (RANS) computations were used to perform detailed analysis of the Stage 67 configuration experimentally tested at NASA's Glenn Research Center in 2004. Time varying predictions of the stage plus recirculation and injection flowpath were executed utilizing the nonlinear harmonic (NLH) approach. Significantly higher grid resolution per passage was achieved than what has been generally employed in prior reported numerical studies of spike stall phenomena in transonic compressors. This paper focuses on characterizing the physics of spike stall embryonic stage phenomena and the influence of tip injection, resulting in experimentally and numerically demonstrated stall suppression. C1 [Grosvenor, Allan D.; Rixon, Gregory S.; Sailer, Logan M.] Ramgen Power Syst LLC, Bellevue, WA 98005 USA. [Matheson, Michael A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gutzwiller, David P.; Demeulenaere, Alain] Numeca USA, San Francisco, CA 94109 USA. [Gontier, Mathieu] Numeca Int, B-1170 Brussels, Belgium. [Strazisar, Anthony J.] AJS Aero Inc, Chesterland, OH 44026 USA. RP Grosvenor, AD (reprint author), Ramgen Power Syst LLC, Bellevue, WA 98005 USA. EM allan.grosvenor@gmail.com FU Department of Energy [DE-FE0000493]; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This material is based upon work supported by the Department of Energy under Award No. DE-FE0000493.; This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 35 TC 1 Z9 1 U1 1 U2 4 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0889-504X EI 1528-8900 J9 J TURBOMACH JI J. Turbomach.-Trans. ASME PD MAY PY 2015 VL 137 IS 5 AR 051005 DI 10.1115/1.4028550 PG 13 WC Engineering, Mechanical SC Engineering GA CE9BP UT WOS:000352138700005 ER PT J AU Repins, IL Li, JV Kanevce, A Perkins, CL Steirer, KX Pankow, J Teeter, G Kuciauskas, D Beall, C Dehart, C Carapella, J Bob, B Park, JS Wei, SH AF Repins, I. L. Li, J. V. Kanevce, A. Perkins, C. L. Steirer, K. X. Pankow, J. Teeter, G. Kuciauskas, D. Beall, C. Dehart, C. Carapella, J. Bob, B. Park, J. -S. Wei, S. -H. TI Effects of deposition termination on Cu2ZnSnSe4 device characteristics SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT Symposium A on Thin Film Chalcogenide Photovoltaic Materials held at the E-MRS Spring Meeting CY MAY 26-30, 2014 CL Lille, FRANCE SP European Mat Res Soc DE Copper zinc tin selenide; Copper zinc tin sulfide; Kesterite; Thin films; Surface; Hole barrier; Voltage; Solar cell ID SOLAR-CELLS AB Co-evaporated Cu2ZnSnSe4 (CZTSe) is used to examine sensitivities to the device performance that originate from variations in Zn content very near the surface. While integral Zn content of the film is held approximately constant, the surface composition is manipulated via changes to the Zn flux at the end of the deposition. Surface composition, device performance, and open-circuit voltage extrapolated to zero temperature are measured as a function of deposition termination. Origins of the apparent reduction in surface recombination with increasing Zn are discussed. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Repins, I. L.; Li, J. V.; Kanevce, A.; Perkins, C. L.; Steirer, K. X.; Pankow, J.; Teeter, G.; Kuciauskas, D.; Beall, C.; Dehart, C.; Carapella, J.; Park, J. -S.; Wei, S. -H.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Bob, B.] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. RP Repins, IL (reprint author), Natl Renewable Energy Lab, 16253 Denver West Pkwy, Golden, CO 80401 USA. EM Inglid.repins@nrel.gov RI Li, Jian/B-1627-2016; Park, Ji-Sang/F-9944-2010 OI Park, Ji-Sang/0000-0002-1374-8793 FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 22 TC 11 Z9 11 U1 1 U2 24 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD MAY 1 PY 2015 VL 582 BP 184 EP 187 DI 10.1016/j.tsf.2014.09.028 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA CF0IF UT WOS:000352225900040 ER PT J AU Shin, HM McKone, TE Bennett, DH AF Shin, Hyeong-Moo McKone, Thomas E. Bennett, Deborah H. TI Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Consumer products; Environmental modeling; Low vapor pressure-volatile organic compounds; Ozone; Wastewater treatment plant ID INCREMENTAL HYDROCARBON REACTIVITY; SEWAGE-TREATMENT PLANT; DRINKING-WATER; CHEMICAL FATE; INDOOR AIR; MODEL; BIODEGRADATION; UNCERTAINTY; CALIFORNIA; EMISSIONS AB Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study provide important information and modeling tools to evaluate the impact of LVP-VOCs on air quality and suggest the need for future research on emissions of LVP-VOCs at the point of use. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Shin, Hyeong-Moo; Bennett, Deborah H.] Univ Calif Davis, Dept Publ Hlth Sci, Davis, CA 95616 USA. [McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [McKone, Thomas E.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. RP Shin, HM (reprint author), Univ Calif Davis, One Shields Ave,MS1-C, Davis, CA 95616 USA. EM hmshin@ucdavis.edu FU California Air Resources Board [13-304] FX The study was funded by the California Air Resources Board (Contract#: 13-304). The authors would like to thank Jin Xu, Eileen McCauley, Irina Malkina, and other CARB staff, who generously provided suggested wordings and feedback on the initial manuscript. NR 23 TC 1 Z9 1 U1 10 U2 42 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2015 VL 108 BP 98 EP 106 DI 10.1016/j.atmosenv.2015.02.067 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CE4OB UT WOS:000351808800011 ER PT J AU Huo, H Cai, H Zhang, Q Liu, F He, KB AF Huo, Hong Cai, Hao Zhang, Qiang Liu, Fei He, Kebin TI Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: A comparison between China and the US SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Electric vehicles; Generation mix; Renewable electricity; Fuel economy; Life-cycle analysis ID POLICIES; IMPACTS; CITIES; TRENDS; CO2 AB We evaluated the fuel-cycle emissions of greenhouse gases (GHGs) and air pollutants (NOx, SO2, PM10, and PM2.5) of electric vehicles (EVs) in China and the United States (U.S.), two of the largest potential markets for EVs in the world. Six of the most economically developed and populated regions in China and the U.S. were selected. The results showed that EV fuel-cycle emissions depend substantially on the carbon intensity and cleanness of the electricity mix, and vary significantly across the regions studied. In those regions with a low share of coal-based electricity (e.g., California), EVs can reduce GHG and air pollutant emissions (except for PM) significantly compared with conventional vehicles. However, in the Chinese regions and selected U.S. Midwestern states where coal dominates in the generation mix, EVs can reduce GHG emissions but increase the total and urban emissions of air pollutants. In 2025, EVs will offer greater reductions in GHG and air pollutant emissions because emissions from power plants will be better controlled; EVs in the Chinese regions examined, however, may still increase SO2 and PM emissions. Reductions of 60-85% in GHGs and air pollutants could be achieved were EVs charged with 80% renewable electricity or the electricity generated from the best available technologies of coal-fired power plants, which are futuristic power generation scenarios. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Huo, Hong] Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China. [Cai, Hao] Argonne Natl Lab, Syst Assessment Grp, Argonne, IL 60439 USA. [Zhang, Qiang] Tsinghua Univ, Ctr Earth Syst Sci, Key Lab Earth Syst Modeling, Minist Educ, Beijing 100084, Peoples R China. [Liu, Fei; He, Kebin] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Huo, H (reprint author), Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China. EM hhuo@tsinghua.edu.cn; qiangzhang@tsinghua.edu.cn RI Zhang, Qiang/D-9034-2012; Cai, Hao/A-1975-2016 FU National Science Foundation of China [41175124, 71322304, 41222036]; Tsinghua University Initiative Research Program [2011Z01026]; CollaborativeInnovation Centre for Regional Environmental Quality FX This work was supported by the National Science Foundation of China (41175124, 71322304, and 41222036) and Tsinghua University Initiative Research Program (2011Z01026). Q Zhang and K. He acknowledge support from the CollaborativeInnovation Centre for Regional Environmental Quality. NR 56 TC 13 Z9 14 U1 5 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2015 VL 108 BP 107 EP 116 DI 10.1016/j.atmosenv.2015.02.073 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CE4OB UT WOS:000351808800012 ER PT J AU Harrington, TD Babauta, JT Davenport, EK Renslow, RS Beyenal, H AF Harrington, Timothy D. Babauta, Jerome T. Davenport, Emily K. Renslow, Ryan S. Beyenal, Haluk TI Excess Surface Area in Bioelectrochemical Systems Causes ion Transport Limitations SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE Geobacter sulfurreducens; biofilm; electron transfer; bioelectrochemical system; ion transport ID MICROBIAL FUEL-CELLS; CURRENT GENERATION; POWER-GENERATION; FLOW-THROUGH; ELECTRODES; CONFIGURATION; ANODE AB We investigated ion transport limitations on 3D graphite felt electrodes by growing Geobacter sulfurreducens biofilms with advection to eliminate external mass transfer limitations. We characterized ion transport limitations by: (i) showing that serially increasing NaCl concentration up to 200mM increased current linearly up to a total of +273% vs. 0mM NaCl under advective conditions; (ii) growing the biofilm with a starting concentration of 200mM NaCl, which led to a maximum current increase of 400% vs. current generation without NaCl, and (iii) showing that un-colonized surface area remained even after steady-state current was reached. After accounting for iR effects, we confirmed that the excess surface area existed despite a non-zero overpotential. The fact that the biofilm was constrained from colonizing and producing further current under these conditions confirmed the biofilms under study here were ion transport-limited. Our work demonstrates that the use of high surface area electrodes may not increase current density when the system design allows ion transport limitations to become dominant. Biotechnol. Bioeng. 2015;112: 858-866. (c) 2014 Wiley Periodicals, Inc. C1 [Harrington, Timothy D.; Babauta, Jerome T.; Davenport, Emily K.; Beyenal, Haluk] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Renslow, Ryan S.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Beyenal, H (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. EM beyenal@wsu.edu FU NSF Career Award [0954186]; U.S. Office of Naval Research (ONR) [N00014-09-1 0090]; NIH [5T32GM008336-24] FX Contract grant sponsor: NSF Career Award; Contract grant number: 0954186; Contract grant sponsor: The U.S. Office of Naval Research (ONR); Contract grant number: N00014-09-1 0090; Contract grant sponsor: NIH; Contract grant number: 5T32GM008336-24 NR 23 TC 2 Z9 2 U1 3 U2 25 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD MAY PY 2015 VL 112 IS 5 BP 858 EP 866 DI 10.1002/bit.25500 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CE5BI UT WOS:000351844400002 PM 25421463 ER PT J AU Mingardon, F Clement, C Hirano, K Nhan, M Luning, EG Chanal, A Mukhopadhyay, A AF Mingardon, Florence Clement, Camille Hirano, Kathleen Nhan, Melissa Luning, Eric G. Chanal, Angelique Mukhopadhyay, Aindrila TI Improving Olefin Tolerance and Production in E. coli Using Native and Evolved AcrB SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE directed evolution; host engineering; olefin production; solvent tolerance ID MULTIDRUG EFFLUX PUMP; ESCHERICHIA-COLI; TRANSPORTER ACRB; SUBSTRATE PATH; MECHANISM; RESISTANCE; MOLECULES; EXPORTER; BACTERIA; SUPPORT AB Microorganisms can be engineered for the production of chemicals utilized in the polymer industry. However many such target compounds inhibit microbial growth and might correspondingly limit production levels. Here, we focus on compounds that are precursors to bioplastics, specifically styrene and representative alpha-olefins; 1-hexene, 1-octene, and 1-nonene. We evaluated the role of the Escherichia coli efflux pump, AcrAB-TolC, in enhancing tolerance towards these olefin compounds. AcrAB-TolC is involved in the tolerance towards all four compounds in E. coli. Both styrene and 1-hexene are highly toxic to E. coli. Styrene is a model plastics precursor with an established route for production in E. coli (McKenna and Nielsen, 2011). Though our data indicates that AcrAB-TolC is important for its optimal production, we observed a strong negative selection against the production of styrene in E. coli. Thus we used 1-hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha-olefin. We focused on optimization of AcrB, the inner membrane domain known to be responsible for substrate binding, and found several mutations (A279T, Q584R, F617L, L822P, F927S, and F1033Y) that resulted in improved tolerance. Several of these mutations could also be combined in a synergistic manner. Our study shows efflux pumps to be an important mechanism in host engineering for olefins, and one that can be further improved using strategies such as directed evolution, to increase tolerance and potentially production. Biotechnol. Bioeng. 2015;112: 879-888. (c) 2015 Wiley Periodicals, Inc. C1 [Mingardon, Florence; Clement, Camille; Chanal, Angelique] Total New Energies Inc, Emeryville, CA 94608 USA. [Hirano, Kathleen; Nhan, Melissa; Mukhopadhyay, Aindrila] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Hirano, Kathleen; Nhan, Melissa; Luning, Eric G.; Mukhopadhyay, Aindrila] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Mukhopadhyay, A (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA. EM amukhopadhyay@lbl.gov FU Lawrence Berkeley National Laboratory; Joint BioEnergy Institute (JBEI) [DE-AC02-05CH11231] FX Contract grant sponsor: Lawrence Berkeley National Laboratory; Contract grant sponsor: Joint BioEnergy Institute (JBEI); Contract grant number: DE-AC02-05CH11231 NR 37 TC 12 Z9 12 U1 7 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD MAY PY 2015 VL 112 IS 5 BP 879 EP 888 DI 10.1002/bit.25511 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA CE5BI UT WOS:000351844400004 PM 25450012 ER PT J AU Kunc, V Case, SW Santos-Villalobos, HJ Simunovic, S AF Kunc, Vlastimil Case, Scott W. Santos-Villalobos, Hector J. Simunovic, Srdjan TI The stiffness tensor for composites with curved discontinuous fibers SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE Mechanical properties; Anisotropy; Modeling; Micro-mechanics ID REINFORCED POLYPROPYLENE; ORIENTATION; LENGTH AB In this paper, we propose a new method for calculating the stiffness tensor for a composite material containing curved discontinuous fibers. We introduce a new concept of configuration for a single curved fiber defined by five dimensionless parameters. An ensemble of curved fibers within a composite material is then described by a configuration probability density function. The proposed stiffness tensor requires three tensors of fourth-order describing the material microstructure and a set of elastic constants. We introduce the concept of configuration averaging and present an analytical method for estimating elastic constants for materials containing curved fibers. We demonstrate that for materials containing only straight fibers, fiber configuration and configuration averaging reduces to standard fiber orientation and orientation averaging. Comparison of stiffness measurements using X-ray digital image correlation against the stiffness calculated with fiber geometry obtained by X-ray tomography shows that accounting for fiber curvature provides better estimate of stiffness. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Kunc, Vlastimil; Santos-Villalobos, Hector J.; Simunovic, Srdjan] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Case, Scott W.] Virginia Polytech Inst & State Univ, Engn Sci & Mech, Blacksburg, VA 24061 USA. RP Kunc, V (reprint author), Oak Ridge Natl Lab, POB 2008,MS6053, Oak Ridge, TN 37831 USA. EM kuncv@ornl.gov; scase@vt.edu; hsantos@ornl.gov; simunovics@ornl.gov RI Kunc, Vlastimil/E-8270-2017 OI Kunc, Vlastimil/0000-0003-4405-7917 FU American Chemistry Council, Plastics Division FX The authors would like to express gratitude to the American Chemistry Council, Plastics Division for supporting research and innovation in this area. NR 21 TC 0 Z9 0 U1 4 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X EI 1878-5840 J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD MAY PY 2015 VL 72 BP 239 EP 248 DI 10.1016/j.compositesa.2014.05.018 PG 10 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA CE6UQ UT WOS:000351974100027 ER PT J AU Cyr, EC Shadid, JN Wildey, T AF Cyr, E. C. Shadid, J. N. Wildey, T. TI Towards efficient backward-in-time adjoint computations using data compression techniques SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING LA English DT Article; Proceedings Paper CT International Conference on Adaptive Modeling and Simulation / ECCOMAS Thematic Conference / IACM Special Interest Conference / ADMOS Conference CY JUN 03-05, 2013 CL Lisbon, PORTUGAL SP ECCOMAS, IACM DE Data compression; Adjoint problem; Error analysis; Navier-Stokes ID POSTERIORI ERROR ESTIMATION; PROPER ORTHOGONAL DECOMPOSITION; FINITE-ELEMENT METHODS; A-POSTERIORI; HEAT-TRANSFER; ALGORITHM AB In the context of a posteriori error estimation for nonlinear time-dependent partial differential equations, the state-of-the-practice is to use adjoint approaches which require the solution of a backward-in-time problem defined by a linearization of the forward problem. One of the major obstacles in the practical application of these approaches is the need to store, or recompute, the forward solution to define the adjoint problem and to evaluate the error representation. This study considers the use of data compression techniques to approximate forward solutions employed in the backward-in-time integration. The development derives an error representation that accounts for the difference between the standard-approach and the compressed approximation of the forward solution. This representation is algorithmically similar to the standard representation and only requires the computation of the quantity of interest for the forward solution and the data-compressed reconstructed solution (i.e. scalar quantities that can be evaluated as the forward problem is integrated). This approach is then compared with existing techniques, such as checkpointing and time-averaged adjoints. Finally, we provide numerical results indicating the potential efficiency of our approach on a transient diffusion-reaction equation and on the Navier-Stokes equations. These results demonstrate memory compression ratios up to 450 x while maintaining reasonable accuracy in the error-estimates. Published by Elsevier B.V. C1 [Cyr, E. C.; Shadid, J. N.; Wildey, T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wildey, T (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tmwilde@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 26 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0045-7825 EI 1879-2138 J9 COMPUT METHOD APPL M JI Comput. Meth. Appl. Mech. Eng. PD MAY 1 PY 2015 VL 288 SI SI BP 24 EP 44 DI 10.1016/j.cma.2014.12.001 PG 21 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA CE8HG UT WOS:000352081900003 ER PT J AU Martin, LB Wolters, R Rutqvist, J Lux, KH Birkholzer, JT AF Martin, Laura Blanco Wolters, Ralf Rutqvist, Jonny Lux, Karl-Heinz Birkholzer, Jens T. TI Comparison of two simulators to investigate thermal-hydraulic-mechanical processes related to nuclear waste isolation in saliferous formations SO COMPUTERS AND GEOTECHNICS LA English DT Article DE Sequential modeling; Coupled processes; Benchmark; Heat-generating nuclear waste; Rock salt; Crushed salt ID ROCK-SALT; COUPLED FLOW; FLUID-FLOW; GEOMECHANICS; RESERVOIR; PERMEABILITY; DEFORMATION; CONVERGENCE; MEDIA AB We investigate the capabilities of two simulators, TOUGH-FLAC and FLAC-TOUGH, to predict the long-term thermal hydraulic mechanical response of a generic salt repository for heat-generating nuclear waste. These simulators are based on sequential coupling and include state-of-the-art knowledge for saliferous materials. Their main difference is the sequential method used. We present a benchmark between LBNL and TU Clausthal. The scenario studied assumes heat and gas generation from the waste packages, and crushed Salt backfill. The comparison of results is very satisfactory, providing increased reliability and confidence in the capabilities of the simulators to evaluate the geological and engineered barriers in the long-term. Published by Elsevier Ltd. C1 [Martin, Laura Blanco; Rutqvist, Jonny; Birkholzer, Jens T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wolters, Ralf; Lux, Karl-Heinz] Clausthal Univ Technol TU Clausthal, Chair Waste Disposal & Geomech, D-38678 Clausthal Zellerfeld, Germany. RP Martin, LB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 74R316C, Berkeley, CA 94720 USA. EM lIblancomartin@lbl.gov; ralf.wolters@tu-clausthal.de; jrutqvist@lbl.gov; karl-heinz.lux@tu-clausthal.de; jtbirkholzer@lbl.gov RI Birkholzer, Jens/C-6783-2011; Rutqvist, Jonny/F-4957-2015; Blanco Martin, Laura/G-1512-2015 OI Birkholzer, Jens/0000-0002-7989-1912; Rutqvist, Jonny/0000-0002-7949-9785; Blanco Martin, Laura/0000-0003-1794-3227 FU Used Fuel Disposition Campaign, Office of Nuclear Energy of the U.S. Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; German Federal Ministry of Education and Research (BMBF) [02S9082A] FX Funding for this work has been provided by the Used Fuel Disposition Campaign, Office of Nuclear Energy of the U.S. Department of Energy, under Contract Number DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory. Funding has also been provided by the German Federal Ministry of Education and Research (BMBF) under Contract Number 02S9082A. Internal review of a draft manuscript by James Houseworth (LBNL) is kindly acknowledged, as well as the constructive comments from two anonymous reviewers. NR 64 TC 4 Z9 4 U1 0 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-352X EI 1873-7633 J9 COMPUT GEOTECH JI Comput. Geotech. PD MAY PY 2015 VL 66 BP 219 EP 229 DI 10.1016/j.compgeo.2015.01.021 PG 11 WC Computer Science, Interdisciplinary Applications; Engineering, Geological; Geosciences, Multidisciplinary SC Computer Science; Engineering; Geology GA CE6XH UT WOS:000351981000018 ER PT J AU Phillips, M Cataneo, RN Chaturvedi, A Kaplan, PD Libardoni, M Mundada, M Patel, U Thrall, KD Zhang, X AF Phillips, Michael Cataneo, Renee N. Chaturvedi, Anirudh Kaplan, Peter D. Libardoni, Mark Mundada, Mayur Patel, Urvish Thrall, Karla D. Zhang, Xiang TI BREATH BIOMARKERS OF WHOLE-BODY GAMMA IRRADIATION IN THE GOTTINGEN MINIPIG SO HEALTH PHYSICS LA English DT Article DE exposure, radiation; radiation dose; radiation effects; radiation, biology ID IONIZING-RADIATION; LIPID-PEROXIDATION; MASS SPECTROMETRY; EXPOSURE; IDENTIFICATION; BIODOSIMETRY; MARKER AB There is widespread interest in the development of tools to estimate radiation exposures. Exhaled breath provides a novel matrix for assessing biomarkers that could be correlated with exposures. The use of exhaled breath for estimating radiation exposure is warranted, as studies have shown that external exposure to ionizing radiation causes oxidative stress that accelerates lipid peroxidation of polyunsaturated fatty acids, liberating alkanes and alkane metabolites that are excreted in the breath as volatile organic compounds (VOCs). As a proof of principle study, small groups (n = 4) of Gottingen minipigs were whole-body irradiated with gamma rays delivered by a Co-60 source at absorbed doses of 0, 0.25, 0.5, 0.75, 1, 1.25, 2, and 4 Gy. Additional groups (n = 4) were treated with lipopolysaccharide (LPS) or granulocyte colony stimulating factor (G-CSF), with and without concurrent Co-60 exposure, at an absorbed dose of 1 Gy. Breath and background air VOC samples were collected on days -3, -2, -1, 0 pre-irradiation, then at 0.25, 24, 48, 72, and 168 h postirradiation. VOCs were analyzed by automated thermal desorption with two-dimensional gas chromatography and time-of-flight mass spectrometry (ATD GCxGC TOF MS). The results show significant changes in 58 breath VOCs post-irradiation, mainly consisting of methylated and other derivatives of alkanes, alkenes, and benzene. Using a multivariate combination of these VOCs, a radiation response function was constructed, which was significantly elevated at 15 min post irradiation and remained elevated throughout the study (to 168 h post irradiation). As a binary test of radiation absorbed doses >= 0.25 Gy, the radiation response function distinguished irradiated animals fromshams (0 Gy) with 83-84% accuracy. A randomly derived radiation response function was robust: When half of the biomarkers were removed, accuracy was 75%. An optimally derived function with two biomarkers was 82% accurate. As a binary test of radiation absorbed doses >= 0.5 Gy, the radiation response function identified irradiated animals with an accuracy of 87% at 15 min post irradiation and 75.5% at 168 h post irradiation. Treatment with LPS and G-CSF did not affect the radiation response function. This proof-of-principle study supports the hypothesis that breath VOCs may be used for estimating radiation exposures. Further studies will be required to validate the sensitivity and specificity of these potential biomarkers. C1 [Phillips, Michael; Cataneo, Renee N.; Chaturvedi, Anirudh; Kaplan, Peter D.; Mundada, Mayur; Patel, Urvish] Menssana Res Inc, Breath Res Lab, Newark, NJ 07103 USA. [Phillips, Michael] New York Med Coll, Dept Med, Valhalla, NY 10595 USA. [Libardoni, Mark] SW Res Inst, San Antonio, TX 78238 USA. [Thrall, Karla D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhang, Xiang] Univ Louisville, Dept Chem, Louisville, KY 40292 USA. RP Phillips, M (reprint author), Menssana Res Inc, Breath Res Lab, 211 Warren St, Newark, NJ 07103 USA. EM mphillips@menssanaresearch.com FU Federal funds from the Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services [HHSO100201000010C] FX Michael Phillips is President and CEO of Menssana Research, Inc. This project was funded with Federal funds from the Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, under Contract No. HHSO100201000010C. NR 31 TC 2 Z9 2 U1 1 U2 9 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAY PY 2015 VL 108 IS 5 BP 538 EP 546 DI 10.1097/HP.0000000000000272 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA CE5PP UT WOS:000351887900006 PM 25811151 ER PT J AU Nagendra, K Tafti, DK AF Nagendra, Krishnamurthy Tafti, Danesh K. TI A sub-pore model for multi-scale reaction-diffusion problems in porous media SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Reaction-diffusion systems; Surface adsorption; Heat and mass diffusion; Knudsen effects; Porous media ID IMMOBILIZED GLUCOSE-ISOMERASE; PACKED-BED REACTORS; NETWORK MODEL; TIME INTEGRATION; LINEAR-SYSTEMS; PARTICLE LEVEL; HEAT-TRANSFER; DEACTIVATION; SIMULATIONS; ADSORPTION AB Applications of reaction-diffusion systems in porous media pose a challenging problem for computational modeling approaches due to their multi-physics and multi-scale nature. The length scales usually span 3-4 orders of magnitude while physical phenomena involved include heat and mass transfer processes, and surface reactions. In this paper, a novel methodology that accounts for all the length scales and physical phenomena involved in a single framework is described. A length scale based dual approach is proposed - the larger pore channels (macro-pores) are resolved using conventional numerical techniques and a novel 'sub-pore' model is used to account for the unresolved pore channels (sub-pores) and the important physics therein. The porous network in the sub-pore system is composed of a fractal-like hierarchical system of straight cylindrical pores. Simplified governing equations for mass and energy transport are solved within the sub-pore system along with a reaction kinetics model to account for surface adsorption. An implicit coupling strategy is used to couple the macro-pore and the sub-pore systems so as to ensure conservation. The developed methodology is then applied to a few test cases and it is established that the proposed framework is necessary for problems where the adsorption time scale is much smaller than (diffusion-limited) or comparable to the diffusion time scale. It is also demonstrated that the framework can be potentially used to model the network of porous channels in its entirety thus significantly reducing computational costs. (C) 2014 Elsevier Ltd. All rights reserved. C1 Natl Energy Technol Lab, Pittsburgh, PA USA. [Tafti, Danesh K.] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA. RP Tafti, DK (reprint author), Virginia Tech, Dept Mech Engn, 213E Goodson Hall,Mail Code 0238, Blacksburg, VA 24061 USA. EM dtafti@exchange.vt.edu OI Krishnamurthy, Nagendra/0000-0002-8047-282X NR 34 TC 0 Z9 0 U1 5 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD MAY PY 2015 VL 84 BP 463 EP 474 DI 10.1016/j.ijheatmasstransfer.2014.12.034 PG 12 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA CE4KH UT WOS:000351799000046 ER PT J AU M'Guil, S Wen, W Ahzi, S Gracio, JJ Davies, RW AF M'Guil, S. Wen, W. Ahzi, S. Gracio, J. J. Davies, R. W. TI Analysis of shear deformation by slip and twinning in low and high/medium stacking fault energy fcc metals using the phi-model SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Crystal plasticity; Shear texture transition; Twinning; Copper; Silver ID CHANNEL ANGULAR EXTRUSION; TEXTURE EVOLUTION; PLASTIC-DEFORMATION; GRAIN-INTERACTION; ZIRCONIUM ALLOYS; MAGNESIUM ALLOYS; ROLLING TEXTURE; SILVER; MICROSTRUCTURE; POLYCRYSTALS AB Experimental tests involving shear stresses allow material to be deformed to very high plastic strain by overcoming localization phenomena. The simple shear texture development, which is also common near the surface of rolled parts, is important to study since it is directly connected to the metal anisotropy. Crystal plasticity models are used to simulate large deformation plasticity and texture evolution. The main insufficiency of most existing models is that they are, in certain cases, unable to predict all type of experimentally observed textures as well as texture transitions. In this paper, we show that the polycrystalline phi-model can be used to compute simple shear crystallographic texture transition for face-centered cubic metals (fcc) at large strains. This model takes into account the grains interaction effects but without the Eshelby inclusion theory. Predicted results are compared to experimental shear textures for medium stacking fault energy (SFE) metals (i.e. copper) and low SFE metals (i.e. silver). We show that the phi-model is able to predict a clear shear texture transition characterizing a range of fcc metals having high/medium to low SFE. The twinning mechanism is included in the phi-model in order to improve the predicted shear textures for low SFE metals. The effect of twinning on the ideal shear texture components is shown and is consistent with experimental results from the literature. (C) 2014 Elsevier Ltd. All rights reserved. C1 [M'Guil, S.; Wen, W.; Ahzi, S.] Univ Strasbourg, CNRS, Icube Lab, Strasbourg, France. [Ahzi, S.; Gracio, J. J.] Univ Aveiro, TEMA, P-3810193 Aveiro, Portugal. [Davies, R. W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP M'Guil, S (reprint author), Univ Strasbourg, CNRS, Icube Lab, Strasbourg, France. EM mguil@unistra.fr RI Group, GAME/B-3464-2014 FU FCT - University of Aveiro [PTDC/EME-TME/100895/2008] FX The authors would like to acknowledge the FCT - University of Aveiro for the financial support of this research (Grants No. PTDC/EME-TME/100895/2008). The authors are grateful to Professor P. Van Houtte for providing his MTM-FHM. Special thanks go to Dr. R. Lebensohn and Dr. C. Tome for their help in providing their VPSC software. We are also grateful to Professor L. Toth for providing us with the experimental results. NR 45 TC 1 Z9 1 U1 3 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD MAY PY 2015 VL 68 BP 132 EP 149 DI 10.1016/j.ijplas.2014.03.020 PG 18 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA CE6QI UT WOS:000351962600008 ER PT J AU Heo, Y Graziano, DJ Guzowski, L Muehleisen, RT AF Heo, Yeonsook Graziano, Diane J. Guzowski, Leah Muehleisen, Ralph T. TI Evaluation of calibration efficacy under different levels of uncertainty SO JOURNAL OF BUILDING PERFORMANCE SIMULATION LA English DT Article DE Bayesian calibration; energy simulation model; uncertainty analysis; energy audit ID BUILDING ENERGY SIMULATION; BAYESIAN CALIBRATION; MODELS; PROGRAMS AB This paper examines how calibration performs under different levels of uncertainty in model input data. It specifically assesses the efficacy of Bayesian calibration to enhance the reliability of EnergyPlus model predictions. A Bayesian approach can be used to update uncertain values of parameters, given measured energy-use data, and to quantify the associated uncertainty. We assess the efficacy of Bayesian calibration under a controlled virtual-reality setup, which enables rigorous validation of the accuracy of calibration results in terms of both calibrated parameter values and model predictions. Case studies demonstrate the performance of Bayesian calibration of base models developed from audit data with differing levels of detail in building design, usage, and operation. C1 [Heo, Yeonsook] Univ Cambridge, Dept Architecture, Cambridge, England. [Graziano, Diane J.; Guzowski, Leah; Muehleisen, Ralph T.] Argonne Natl Lab, Decis & Informat Sci Div, Lemont, IL USA. RP Heo, Y (reprint author), Univ Cambridge, Dept Architecture, Cambridge, England. EM yh305@cam.ac.uk RI Muehleisen, Ralph/O-9890-2014 OI Muehleisen, Ralph/0000-0003-2008-5681 FU US Department of Energy [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy under Contract No. DE-AC02-06CH11357. NR 44 TC 2 Z9 2 U1 2 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1940-1493 EI 1940-1507 J9 J BUILD PERFORM SIMU JI J. Build. Perf. Simul. PD MAY PY 2015 VL 8 IS 3 BP 135 EP 144 DI 10.1080/19401493.2014.896947 PG 10 WC Construction & Building Technology SC Construction & Building Technology GA CE7ML UT WOS:000352025100002 ER PT J AU Banham, D Ye, SY Knights, S Stewart, SM Wilson, M Garzon, F AF Banham, Dustin Ye, Siyu Knights, Shanna Stewart, S. Michael Wilson, Mahlon Garzon, Fernando TI UV-visible spectroscopy method for screening the chemical stability of potential antioxidants for proton exchange membrane fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article DE UV visible spectroscopy; PEMFC durability; Antioxidant; Accelerated stress test ID IONOMER DEGRADATION; NANOPARTICLES; DURABILITY AB A novel method based on UV visible spectroscopy is reported for screening the chemical stability of potential antioxidant additives for proton exchange membrane fuel cells, and the chemical stabilities of three CeOx samples of varying crystallite sizes (6, 13, or 25 nm) are examined. The chemical stabilities predicted by this new screening method are compared to in-situ membrane electrode assembly (MEA) accelerated stress testing, with the results confirming that this rapid and inexpensive method can be used to accurately predict performance impacts of antioxidants. (C) 2015 Elsevier B.V. All rights reserved. C1 [Banham, Dustin; Ye, Siyu; Knights, Shanna] Ballard Power Syst, Burnaby, BC V5J 5J8, Canada. [Stewart, S. Michael; Garzon, Fernando] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM USA. [Wilson, Mahlon] Los Alamos Natl Lab, Sensors & Electrochem Devices, Los Alamos, NM USA. RP Banham, D (reprint author), Ballard Power Syst, 9000 Glenlyon Pkwy, Burnaby, BC V5J 5J8, Canada. EM dustin.banham@ballard.com OI Wilson, Mahlon/0000-0002-5944-2650 FU U.S. Department of Energy, Office of Fuel cell Technologies [84722-001-10]; Natural Sciences and Engineering Research Council of Canada (NSERC) FX We gratefully acknowledge the U.S. Department of Energy (84722-001-10), Office of Fuel cell Technologies, for financial support, and the Natural Sciences and Engineering Research Council of Canada (NSERC) for the scholarship support of DB. The authors also thank Alan Young. Kyoung Bai, and Tommy Cheng for many helpful discussions. NR 14 TC 3 Z9 3 U1 3 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD MAY 1 PY 2015 VL 281 BP 238 EP 242 DI 10.1016/j.jpowsour.2015.02.002 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA CD2SZ UT WOS:000350930600028 ER PT J AU Morley, SM Seiner, B Finn, E Greenwood, L Smith, SC Gregory, S Haney, M Lucas, D Arrigo, L Beacham, T Swearingen, K Friese, J Douglas, M Metz, L AF Morley, Shannon M. Seiner, Brienne Finn, Erin Greenwood, Larry Smith, Steven C. Gregory, Stephanie Haney, Morgan Lucas, Dawn Arrigo, Leah Beacham, Tere Swearingen, Kevin Friese, Judah Douglas, Matthew Metz, Lori TI Integrated separation scheme for measuring a suite of fission and activation products from a fresh mixed fission and activation product sample SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Rapid radiochemical separations; Activation product analysis; Fission product analysis; Gamma spectroscopy; Alpha spectroscopy; D-T generator ID WASTE; PRECONCENTRATION; ACTINIDES; ELEMENTS; COLUMN; NP; PU AB Mixed fission and activation materials resulting from various nuclear processes and events contain a wide range of isotopes for analysis spanning almost the entire periodic table. This work describes the production of a complex synthetic sample containing fission products, activation products, and irradiated soil, and determines the percent chemical recovery of select isotopes through the integrated chemical separation scheme. Based on the results of this experiment, a complex synthetic sample can be prepared with low atom/fission ratios and isotopes of interest accurately and precisely measured following an integrated chemical separation method. C1 [Morley, Shannon M.; Seiner, Brienne; Finn, Erin; Greenwood, Larry; Smith, Steven C.; Gregory, Stephanie; Haney, Morgan; Lucas, Dawn; Arrigo, Leah; Beacham, Tere; Friese, Judah; Douglas, Matthew; Metz, Lori] Pacific NW Natl Lab, Richland, WA 99352 USA. [Swearingen, Kevin] Washington State Univ, Dept Chem, Pullman, WA 99163 USA. RP Morley, SM (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN J4-65, Richland, WA 99352 USA. EM brienne.seiner@pnnl.gov OI Douglas, Matthew/0000-0001-9708-1780; Gregory, Stephanie/0000-0001-9952-0388 FU Office for Defense Nuclear Nonproliferation Research and Development FX The authors would like to acknowledge the staff of the Washington State University Nuclear Radiation Center for their assistance in irradiating the materials used to prepare the complex radiological sample and the Office for Defense Nuclear Nonproliferation Research and Development for funding this work. The authors would also like to thank Mike Cantaloub and Truc Trang-le for their gamma spectroscopy expertise. NR 15 TC 3 Z9 3 U1 2 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2015 VL 304 IS 2 BP 509 EP 515 DI 10.1007/s10967-014-3826-2 PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CE5FX UT WOS:000351857600005 ER PT J AU Jung, HB Yang, JS Um, W AF Jung, Hun Bok Yang, Jung-Seok Um, Wooyong TI Bench-scale electrokinetic remediation for cesium-contaminated sediment at the Hanford Site, USA SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Cesium; Electrokinetic remediation; Hanford site; Cation exchange ID SUBSURFACE SEDIMENTS; SOIL; TECHNOLOGY; MIGRATION; REMOVAL; SAND AB We conducted a laboratory experiment to investigate the efficiency of electrokinetic (EK) remediation method for Hanford sediment (76 % sand and 24 % silt-clay) after artificial contamination with nonradioactive Cs-133 (0.01 M CsNO3) as a surrogate for radioactive 137 Cs. A significant removal of cationic Cs-133 from the sediment occurred from the cathode side (-), whereas the removal was negligible from the anode side (+) during the EK remediation process for 68 days. The experimental results suggest that the EK method can effectively remove radioactive Cs from the surface or subsurface sediment contaminated by radioactive materials in the Hanford Site, Washington, USA. C1 [Jung, Hun Bok; Um, Wooyong] Pacific NW Natl Lab, Richland, WA 99354 USA. [Yang, Jung-Seok] Korea Inst Sci & Technol, Kangnung, South Korea. [Um, Wooyong] Pohang Univ Sci & Technol POSTECH, Div Adv Nucl Engn, Pohang 790784, South Korea. RP Um, W (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,P7-54, Richland, WA 99354 USA. EM wooyong.um@pnnl.gov FU WCU (World Class University); BK21 + programs at the Division of Advanced Nuclear Engineering (DANE) in POSTECH through the National Research Foundation of Korea - Ministry of Education, Science and Technology [R31-30005]; U.S. DOE [DE-AC06-76RLO 1830] FX The project was primarily supported by WCU (World Class University) and BK21 + programs at the Division of Advanced Nuclear Engineering (DANE) in POSTECH through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-30005). The authors would like to thank Steven Baum for ICP-OES and ICP-MS analyses in the Environmental Sciences Laboratory, and Laxmikant Saraf for SEM-EDS analysis in EMSL (Environmental Molecular Sciences Laboratory), a DOE national scientific user facility at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. DOE under contract DE-AC06-76RLO 1830. NR 23 TC 0 Z9 0 U1 4 U2 21 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2015 VL 304 IS 2 BP 615 EP 625 DI 10.1007/s10967-014-3852-0 PG 11 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CE5FX UT WOS:000351857600018 ER PT J AU Liezers, M Fahey, AJ Carman, AJ Eiden, GC AF Liezers, Martin Fahey, Albert J. Carman, April J. Eiden, Gregory C. TI The formation of trinitite-like surrogate nuclear explosion debris (SNED) and extreme thermal fractionation of SRM-612 glass induced by high power CW CO2 laser irradiation SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Trinitite; Nuclear forensics; Elemental fractionation; Inductively coupled plasma mass spectrometry; Laser melting; Nuclear fallout ID LASER-ABLATION; AEROSOL; FALLOUT AB We describe a new approach to the bench top production of surrogate nuclear explosion debris by employing high power continuous wave CO2 laser irradiation. High surface temperatures >2,500 K can be rapidly attained, allowing virtually any combination of materials to be fused into a glassy matrix that can display high levels of elemental fractionation. Examples of the laser fused glasses will be presented and compared to trinitite nuclear explosion glass along with the elemental fractionation effects that were induced in the NIST glass standard SRM-612 by this method. C1 [Liezers, Martin; Carman, April J.; Eiden, Gregory C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Fahey, Albert J.] US Naval Res Lab, Washington, DC 20375 USA. RP Liezers, M (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM martin.liezers@pnnl.gov FU Office of Defense Nuclear Nonproliferation Research and Development with the U.S. Department of Energy's National Nuclear Security Administration [DE-AC05-75RLO1830] FX My thanks to Dr. John McCloy at Washington State University, Pullman for bringing to our attention the CO2 laser Fulgurite article [16] that sparked this line of research. This work was funded by the Office of Defense Nuclear Nonproliferation Research and Development with the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC05-75RLO1830. The views, opinions and findings contained within this paper are those of the authors and should not be construed as an official position, policy or decision of the DOE unless designated by other documentation. NR 27 TC 3 Z9 3 U1 2 U2 17 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2015 VL 304 IS 2 BP 705 EP 715 DI 10.1007/s10967-014-3895-2 PG 11 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA CE5FX UT WOS:000351857600029 ER PT J AU Jager, HI Efroymson, RA Opperman, JJ Kelly, MR AF Jager, Henriette I. Efroymson, Rebecca A. Opperman, Jeff J. Kelly, Michael R. TI Spatial design principles for sustainable hydropower development in river basins SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Freshwater reserve design; Hydroelectric power; Network theory; Optimization; Regulated rivers; River portfolio; Spatial decisions ID FISH PASSAGE BARRIERS; FRESH-WATER; DIADROMOUS FISHES; EXTINCTION RISK; WHITE STURGEON; DAM REMOVAL; CONNECTIVITY; CONSERVATION; BIODIVERSITY; HABITAT AB What is the best way to arrange dams within river basins to benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatial decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should darns be placed along a river? At what spatial scale should decisions be made? The following design principles for increasing ecological sustainability emerged from our review: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design. Published by Elsevier Ltd. C1 [Jager, Henriette I.] Oak Ridge Natl Lab, Div Environm Sci, Energy Water Resource Syst Grp, Oak Ridge, TN 37831 USA. [Efroymson, Rebecca A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Opperman, Jeff J.] Nature Conservancy, Global Freshwater Program, North Dakota, OH USA. [Kelly, Michael R.] Univ Tennessee, Natl Inst Math & Biol Synth, Knoxville, TN USA. RP Jager, HI (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Energy Water Resource Syst Grp, Mail Stop 6038,POB 2008, Oak Ridge, TN 37831 USA. EM jagerhi@ornl.gov; efroymsonra@ornl.gov; jopperman@TNC.org; kelly.1156@osu.edu OI Jager, Henriette/0000-0003-4253-533X; Efroymson, Rebecca/0000-0002-3190-880X FU US Department of Energy's Office of Energy Efficiency and Renewable Energy's Wind and Water Power Technologies Program; Global Freshwater Program of The Nature Conservancy; US Department of Energy [DE-AC05-00OR22725] FX HJ and MK were supported by the US Department of Energy's Office of Energy Efficiency and Renewable Energy's Wind and Water Power Technologies Program. JO's contribution to this research was supported by The Global Freshwater Program of The Nature Conservancy. We thank Chris DeRolph (ORNL) for providing the NHAAP dam data used to assess empirical relationships between stream order and the size and energy generation of US hydropower projects. Valuation concepts grew out of a project funded by ORNL's Laboratory Directed Research and Development Program, which is managed by UT-Battelle, LLC, for the US Department of Energy under Contract DE-AC05-00OR22725. We greatly appreciate collegial reviews by Dr. Charles Coutant, Robert Perlack, Craig Brandt, and Shih-Chieh Kao. Two anonymous reviewers also provided suggestions that improved the manuscript. NR 63 TC 8 Z9 8 U1 12 U2 60 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD MAY PY 2015 VL 45 BP 808 EP 816 DI 10.1016/j.rser.2015.01.067 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA CE6QQ UT WOS:000351963400059 ER PT J AU Erkan, ME Chawla, V Repins, I Scarpulla, MA AF Erkan, Mehmet Eray Chawla, Vardaan Repins, Ingrid Scarpulla, Michael A. TI Interplay between surface preparation and device performance in CZTSSe solar cells: Effects of KCN and NH4OH etching SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE CZTSSe; Grain boundary; KCN etching; NH4OH etching; Surface preparation; Thin film solar cell ID SCANNING PROBE MICROSCOPY; CU(IN,GA)SE-2 THIN-FILMS; GRAIN-BOUNDARIES; ELECTRICAL-PROPERTIES; ELECTRONIC-PROPERTIES; BAND-OFFSET; EFFICIENCY; CU2ZNSNSE4; OPTIMIZATION; DEPOSITION AB Despite the many similarities between Cu2ZnSn(S,Se)(4) (CZTSSe) and Cu(ln,Ga)(S,Se)(2) materials and device architecture, open questions remain about the optimal surface preparation steps for CZTSSe absorbers, including whether differences exist for absorber layers deposited by different methods. In this work, we investigate KCN etching and NH4OH treatment as surface preparation methods for the absorber/CdS interface for two-stage processed CZTSSe and co-evaporated CZTSe absorber layers. Ambient-exposed, thus oxidized and contaminated, thin film absorbers are utilized to examine the effectiveness of these surface preparation methods and to elucidate their effects on device performance. Topography and surface potential images simultaneously obtained by Kelvin probe force microscopy (KPFM) show the existence of an overlayer on the ambient-exposed absorbers. Moreover, KPFM results also demonstrate that although NH4OH treatment removes much of the overlayer from the CZTSSe surface, KCN etching removes the overlayer completely. In addition, differences in the deposited CdS layer and depletion region width result depending on the surface preparation method, with the NH(4)OHtreated solar cells having narrower depletion region. This is reflected in device results in which KCNetched solar cells outperform their NH4OH-treated counterparts due to increases in external quantum efficiency at long wavelengths and in open circuit voltage. KPFM measurements also demonstrate that grain boundaries (GBs) in the KCN-etched two-stage processed CZTSSe thin films are either negatively charged or neutral. On the other hand, KCN etching makes the surface almost equipotential in the coevaporated CZTSe thin film by causing disappearance of positively charged GBs that existed before etching. (C) 2015 Elsevier B.V. All rights reserved. C1 [Erkan, Mehmet Eray; Scarpulla, Michael A.] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA. [Chawla, Vardaan] AQT Solar Inc, Sunnyvale, CA 94086 USA. [Repins, Ingrid] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Scarpulla, Michael A.] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. RP Scarpulla, MA (reprint author), Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA. EM scarpulla@eng.utah.edu FU U.S. Depat Intent of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0001630]; U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; College of Engineering (COE); Office of the Vice President for Research (OVPR); Utah Science Technology and Research (USTAR) initiative of the State of Utah); University of Utah shared facilities of the Micron Technology Foundation Inc.; COE; USTAR initiative of the State of Utah FX The research at the University of Utah was supported in whole by the U.S. Depat Intent of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0001630. The work at NREL was supported by the U.S. Department of Energy under Contract no. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. The authors acknowledge the Utah Nanofab (sponsored by the College of Engineering (COE), Office of the Vice President for Research (OVPR) and the Utah Science Technology and Research (USTAR) initiative of the State of Utah) and University of Utah shared facilities of the Micron Technology Foundation Inc. Microscopy Suite (sponsored by the COE, Health Sciences Center, OVPR and the USTAR initiative of the State of Utah) as well as their staff members for their support. We thank Prof. Feng Liu and Dr. Ye Zhang for solar simulator and quantum efficiency measurements. NR 43 TC 11 Z9 11 U1 2 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD MAY PY 2015 VL 136 BP 78 EP 85 DI 10.1016/j.solmat.2015.01.006 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA CE4LN UT WOS:000351802200011 ER PT J AU Kuciauskas, D Repins, I Kanevce, A Li, JV Dippo, P Beall, CL AF Kuciauskas, Darius Repins, Ingrid Kanevce, Ana Li, Jian V. Dippo, Pat Beall, Carolyn L. TI Time-resolved recombination analysis in kesterite polycrystalline thin films and photovoltaic devices with one-photon and two-photon excitation SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Kesterites; Photoluminescence; Time-resolved photoluminescence; Minority carrier lifetime ID SOLAR-CELLS; VELOCITY; KINETICS AB Minority carrier lifetime, tau(B), is one of the key metrics for polycrystalline solar cell absorbers. Based on different spatial carrier-generation profiles obtained using one-photon and two-photon excitation (1PE and 2PE, respectively), we developed a new approach to determine tau(B) in polycrystalline thin films. By comparing time-resolved photoluminescence data measured with 1PE and 2PE, we extract tau(B) and surface recombination velocity S, and resolve charge separation at the pn junction. For coevaporated kesterite (Cu2ZnSnSe4) absorbers, we find S=(0.8-2.1) x 10(4) cm s(-1) and tau(B)=7.0 +/- 0.5 ns. For corresponding photovoltaic devices, charge separation occurs in <= 2 ns. (C) 2015 Elsevier B.V. All rights reserved. C1 [Kuciauskas, Darius; Repins, Ingrid; Kanevce, Ana; Li, Jian V.; Dippo, Pat; Beall, Carolyn L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kuciauskas, D (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Darius.Kuciauskas@nrel.gov RI Li, Jian/B-1627-2016 FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 36 TC 2 Z9 2 U1 2 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD MAY PY 2015 VL 136 BP 100 EP 105 DI 10.1016/j.solmat.2014.12.038 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA CE4LN UT WOS:000351802200014 ER PT J AU Gu, HY Nagle, N Pienkos, PT Posewitz, MC AF Gu, Huiya Nagle, Nick Pienkos, Philip T. Posewitz, Matthew C. TI Nitrogen recycling from fuel-extracted algal biomass: Residuals as the sole nitrogen source for culturing Scenedesmus acutus SO BIORESOURCE TECHNOLOGY LA English DT Article DE Algal residuals; Yeast extracts; Mixotrophic growth; Nitrogen source; Nutrient recycling ID AMINO-ACID UTILIZATION; LIPID-ACCUMULATION; WASTE-WATER; CHLAMYDOMONAS-REINHARDTII; BIODIESEL PRODUCTION; BIOFUEL PRODUCTION; MICROALGAE; CARBOHYDRATE; CULTIVATION; FEEDSTOCKS AB In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost'' in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Gu, Huiya; Posewitz, Matthew C.] Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. [Nagle, Nick; Pienkos, Philip T.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Posewitz, MC (reprint author), Colorado Sch Mines, Dept Chem & Geochem, 1500 Illinois St, Golden, CO 80401 USA. EM mposewit@mines.edu FU Sustainable Algal Biofuels Consortium - CSM by the State of Colorado Energy Collaboratory; U.S. Department of Energy, Bioenergy Technology Office [DE-EE0003372]; Air Force Office of Scientific Research [FA9550-11-1-0211, FA9550-14-1-0147] FX This material is based upon work supported by the Sustainable Algal Biofuels Consortium funded at CSM by the State of Colorado Energy Collaboratory in support of the U.S. Department of Energy, Bioenergy Technology Office award DE-EE0003372 to the National Renewable Energy Laboratory and Arizona State University. Additional support was provided to H.G. and M.C.P. by the Air Force Office of Scientific Research (Grants FA9550-11-1-0211 and FA9550-14-1-0147). We would like to thank Thomas Dempster and John McGowen at AzCATI (Arizona State University) for graciously providing the SCE0401 and LRB1201 strains, as well as SCE0401 biomass; and also Henri Gerken (AzCATI) for data regarding the phylogeny of the SCE0401 and LRB1201 strains. NR 35 TC 6 Z9 6 U1 4 U2 40 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD MAY PY 2015 VL 184 BP 153 EP 160 DI 10.1016/j.biortech.2014.11.095 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA CD5CS UT WOS:000351106100021 PM 25539998 ER PT J AU Scullin, C Stavila, V Skarstad, A Keasling, JD Simmons, BA Singh, S AF Scullin, Chessa Stavila, Vitalie Skarstad, Anita Keasling, Jay D. Simmons, Blake A. Singh, Seema TI Optimization of renewable pinene production from the conversion of macroalgae Saccharina latissima SO BIORESOURCE TECHNOLOGY LA English DT Article DE Macroalgae; Saccharina latissima; Renewable pinene; Laminarinase; Cellulase ID LAMINARIA-HYPERBOREA; ADVANCED BIOFUELS; ALGAE AB Enzymatic hydrolysis of Saccharina latissima with laminarinase was compared to hydrolysis with different combinations of cellulase and hemicellulase enzyme mixtures. The hemicellulase mixture resulted in similar release of glucose, while the cellulase mixture released 40% more glucose than laminarinase alone. The combination of a laminarinase augmented with a cellulase mixture resulted in a 53% increase of glucose release from S. latissima than laminarinase. Increasing biomass loading above 4% (w/v) reduced the sugar yield. Resulting macroalgae hydrolysates were used as a carbon source for the production of pinene, making use of a novel two plasmid Escherichia coli system. The macroalgal hydrolysates were suitable for the novel microbial production of pinene with no further treatment and/or purification. (C) 2015 Published by Elsevier Ltd. C1 [Scullin, Chessa; Keasling, Jay D.; Simmons, Blake A.; Singh, Seema] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Scullin, Chessa; Stavila, Vitalie; Simmons, Blake A.; Singh, Seema] Sandia Natl Labs, Livermore, CA USA. [Skarstad, Anita] Statoil Res Ctr Trondheim, Trondheim, Norway. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Singh, S (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM csscullin@lbl.gov; vnstavi@sandia.gov; anisk@statoil.com; jdkeasling@lbl.gov; basimmons@lbl.gov; seesing@sandia.gov OI Simmons, Blake/0000-0002-1332-1810 FU Statoil Research Center Trondheim, Trondheim, Norway; Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Borre Tore Borresen, Evy Mellemsaether and Hans Kristian Kotlar for discussions of this work and Douglas Higgins and Jason Lupoi for their reading of the manuscript and Pamela Peralta-Yahya for help with pinene production. This work was supported through a collaborative research grant with Statoil Research Center Trondheim, Trondheim, Norway. The portion of the work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Novozymes for the gift of the enzyme mixtures (CTec2 and HTec2) used in this work. NR 20 TC 3 Z9 3 U1 3 U2 45 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD MAY PY 2015 VL 184 BP 415 EP 420 DI 10.1016/j.biortech.2014.09.105 PG 6 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA CD5CS UT WOS:000351106100053 PM 25318906 ER PT J AU Quinn, JC Davis, R AF Quinn, Jason C. Davis, Ryan TI The potentials and challenges of algae based biofuels: A review of the techno-economic, life cycle, and resource assessment modeling SO BIORESOURCE TECHNOLOGY LA English DT Review DE Life cycle assessment; Techno-economic assessment; Microalgae; Biofuels; Productivity potential ID WATER TREATMENT PLANTS; BIODIESEL PRODUCTION; UNITED-STATES; WASTE-WATER; HYDROTHERMAL LIQUEFACTION; MICROALGAE CULTIVATION; ENVIRONMENTAL IMPACTS; RACEWAY PONDS; ENERGY; COST AB Microalgae biofuel production has been extensively evaluated through resource, economic and life cycle assessments. Resource assessments consistently identify land as non-limiting and highlight the need to consider siting based on combined geographical constraints of land and other critical resources such as water and carbon dioxide. Economic assessments report a selling cost of fuel that ranges between $1.64 and over $30 gal (1) consistent with large variability reported in the life cycle literature, -75 to 534 g CO2-eq MJ (1). Large drivers behind such variability stem from differences in productivity assumptions, pathway technologies, and system boundaries. Productivity represents foundational units in these assessments with current assumed yields in various assessments varying by a factor of 60. A review of the literature in these areas highlights the need for harmonized assessments such that direct comparisons of alternative processing technologies can be made on the metrics of resource requirements, economic feasibility, and environmental impact. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Quinn, Jason C.] Utah State Univ, Mech & Aerosp Engn, Logan, UT 84341 USA. [Davis, Ryan] Natl Renewable Energy Lab, Golden, CO USA. RP Quinn, JC (reprint author), 4130 Old Main Hill, Logan, UT 84322 USA. EM Jason.Quinn@usu.edu FU U.S. Department of Energy, Bioenergy Technologies Office (BETO) [DE-AC36-08-GO28308] FX The authors greatly acknowledge support from Justin Hoffman and Danna Quinn. This work was supported in part by the U.S. Department of Energy, Bioenergy Technologies Office (BETO) under contract number DE-AC36-08-GO28308 to NREL. The National Renewable Energy Laboratory (NREL) is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NR 75 TC 42 Z9 42 U1 10 U2 134 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD MAY PY 2015 VL 184 BP 444 EP 452 DI 10.1016/j.biortech.2014.10.075 PG 9 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA CD5CS UT WOS:000351106100057 PM 25453439 ER PT J AU Papa, G Rodriguez, S George, A Schievano, A Orzi, V Sale, KL Singh, S Adani, F Simmons, BA AF Papa, G. Rodriguez, S. George, A. Schievano, A. Orzi, V. Sale, K. L. Singh, S. Adani, F. Simmons, B. A. TI Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass SO BIORESOURCE TECHNOLOGY LA English DT Article DE Ionic liquid pretreatment; Pressurized hot water pretreatment; Bioethanol; Biomethane; Biomass pretreatment ID IONIC LIQUID PRETREATMENT; BIOGAS PRODUCTION; ANAEROBIC-DIGESTION; DILUTE-ACID; ENZYMATIC DIGESTIBILITY; BIOREFINERY CONCEPT; BIOMASS; WATER; ETHANOL; TECHNOLOGIES AB In this study the efficiency of mild ionic liquid (IL) pretreatment and pressurized hot water (PHW) is evaluated and compared in terms of bioethanol and biomethane yields, with corn stover (CS) and switch-grass (SG) as model bioenergy crops. Both feedstocks pretreated with the IL 1-ethyl-3-methylimidazolium acetate [C(2)C(1)Im][OAc] at 100 degrees C for 3 h exhibited lower glucose yield that those treated with harsher pretreatment conditions previously used. Compared to PHW, IL pretreatment demonstrated higher bioethanol yields; moreover IL pretreatment enhanced biomethane production. Taking into consideration both bioethanol and biomethane productions, results indicated that when using IL pretreatment, the total energy produced per kg of total solids was higher compared to untreated biomasses. Specifically energy produced from CS and SG was +18.6% and +34.5% respectively, as compared to those obtained by hot water treatment, i.e. +2.3% and +23.4% for CS and SG, respectively. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Papa, G.] Univ Calif Berkeley, Emeryville, CA USA. [Schievano, A.; Orzi, V.; Adani, F.] Univ Milan, Grp Ricicla DiSAA, Milan, Italy. [Rodriguez, S.; George, A.; Sale, K. L.; Singh, S.; Simmons, B. A.] Sandia Natl Labs, Livermore, CA USA. [Papa, G.; Rodriguez, S.; George, A.; Sale, K. L.; Singh, S.; Simmons, B. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA. RP Adani, F (reprint author), Univ Milan, Grp Ricicla DiSAA, Via Celoria 20100, Milan, Italy. EM fabrizio.adani@unimi.it; basimmons@lbl.gov OI Adani, Fabrizio/0000-0003-0250-730X; Schievano, Andrea/0000-0003-3458-2654; Simmons, Blake/0000-0002-1332-1810 NR 39 TC 15 Z9 15 U1 9 U2 100 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD MAY PY 2015 VL 183 BP 101 EP 110 DI 10.1016/j.biortech.2015.01.121 PG 10 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA CD5BQ UT WOS:000351102700014 PM 25725408 ER PT J AU Waddell, PG Liu, XG Zhao, T Cole, JM AF Waddell, Paul G. Liu, Xiaogang Zhao, Teng Cole, Jacqueline M. TI Rationalizing the photophysical properties of BODIPY laser dyes via aromaticity and electron-donor-based structural perturbations SO DYES AND PIGMENTS LA English DT Article DE X-ray diffraction; Structure-property relationships; Optoelectronics; Absorption; Fluorescence; DFT ID QUANTUM-CHEMICAL CALCULATIONS; OPTOELECTRONIC PROPERTIES; CIRCULAR-DICHROISM; MOLECULAR-ORIGINS; CRYSTAL-STRUCTURE; COMPLEXES; DENSITY; DESIGN; PHOTODYNAMICS; SPECTROSCOPY AB The absorption and fluorescence properties of six boron dipyrromethene (BODIPY) laser dyes with simple non-aromatic substituents are rationalized by relating them to observable structural perturbations within the molecules of the dyes. An empirical relationship involving the structure and the optical properties is derived using a combination of single-crystal X-ray diffraction data, quantum chemical calculations and electronic constants: i.e. the tendency of the pyrrole bond lengths towards aromaticity and the UV-vis absorption and fluorescence wavelengths correlate with the electron-donor properties of the substituents. The effect of molecular conformation on the solid-state optical properties of the dyes is also discussed. The findings in this study also demonstrate the usefulness and limitations of using crystal structure data to develop structure-property relationships in this class of optical materials, contributing to the growing effort to design optoelectronic materials with tunable properties via molecular engineering. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Waddell, Paul G.; Liu, Xiaogang; Zhao, Teng; Cole, Jacqueline M.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Waddell, Paul G.] Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia. [Cole, Jacqueline M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Cole, JM (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. EM jmc61@cam.ac.uk RI Cole, Jacqueline/C-5991-2008; Waddell, Paul/C-7059-2011; Liu, Xiaogang/H-2189-2011 OI Liu, Xiaogang/0000-0002-2553-2068 FU Singapore Economic Development Board; Fulbright Commission; DOE Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors thank Dr. Sarah Barnett and the rapid access service on the 119 beamline at Diamond Light Source, UK for collecting single-crystal X-ray diffraction data for 2. X.L. is indebted to the Singapore Economic Development Board for a Clean Energy Scholarship. J.M.C. thanks the Fulbright Commission for a UK-US Fulbright Scholar Award; work done at Argonne National Laboratory was supported by DOE Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 50 TC 5 Z9 5 U1 2 U2 40 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0143-7208 EI 1873-3743 J9 DYES PIGMENTS JI Dyes Pigment. PD MAY PY 2015 VL 116 BP 74 EP 81 DI 10.1016/j.dyepig.2015.01.010 PG 8 WC Chemistry, Applied; Engineering, Chemical; Materials Science, Textiles SC Chemistry; Engineering; Materials Science GA CD2VF UT WOS:000350936400010 ER PT J AU Paglieroni, DW Pechard, CT Beer, NR AF Paglieroni, David W. Pechard, Christian T. Beer, N. Reginald TI Change Detection in Constellations of Buried Objects Extracted From Ground-Penetrating Radar Data SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Change detection; change statistic; constellation matching; detection statistic; ground-penetrating radar (GPR) ID LANDMINE DETECTION; NEURAL-NETWORK; SCATTERING PARAMETERS; DIELECTRIC ANOMALIES; MINE DETECTION; GPR DATA; DISCRIMINATION; CLASSIFICATION; ALGORITHMS AB Detection of deliberately buried objects in ground-penetrating radar (GPR) data acquired along a path is a clutter-limited problem. Detection-false alarm rate performance can be improved by replacing the detection statistic with a change statistic that incorporates information from previous path traversals. A constellation matching approach is developed for buried-object change detection in GPR data. Network topologies of buried objects detected in GPR data from previous path traversals are maintained in a constellation database. Localized groups of buried objects newly detected on the latest path traversal are matched to the constellation. Buried objects from the latest path traversal whose locations or strengths cannot be reconciled with the constellation are identified as changes. The system has one component that generates constellation databases offline and another component suitable for change detection in real time. It can tolerate paths with significant translational misalignments. The system uses the following: 1) a customized translational relaxation algorithm for point pattern matching that incorporates detection strength and a probabilistic uncertainty model for buried-object location into the objective function and 2) a change statistic that accounts for the magnitude of change relative to predicted detection strength. A constellation database can typically be generated offline from a single path traversal roughly two orders of magnitude faster than the time typically required for a vehicle to travel the extent of the path. Database sizes are typically four to five orders of magnitude smaller than the data sets of GPR signal scans or focused 3-D GPR images that they were generated from. On bumpy dirt roads buried exclusively with nonmetallic objects at various depths, detection-false alarm rate performance is shown to be significantly better for our change statistics than for our detection statistics. C1 [Paglieroni, David W.; Pechard, Christian T.; Beer, N. Reginald] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Paglieroni, DW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM paglieroni1@llnl.gov; pechard1@llnl.gov; beer2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; JIEDDO FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 with partial funding from JIEDDO. NR 37 TC 1 Z9 1 U1 4 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAY PY 2015 VL 53 IS 5 BP 2426 EP 2439 DI 10.1109/TGRS.2014.2360097 PG 14 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA CD4OO UT WOS:000351063100013 ER PT J AU He, X Lau, AK Sokhansanj, S Lim, CJ Bi, XT Melin, S AF He, X. Lau, A. K. Sokhansanj, S. Lim, C. J. Bi, X. T. Melin, S. TI Quantification of gas emissions from stored softwood chips as solid biofuels SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY LA English DT Article DE Gas chromatography analysis; Volatile organic compounds; Storage; Aerobic; Non-aerobic; Dry matter loss ID VOLATILE ORGANIC-COMPOUNDS; WESTERN RED CEDAR; WOOD PELLETS; CARBON-MONOXIDE; OXYGEN DEPLETION; STORAGE; BIOMASS; TRANSPORTATION; HEADSPACE; RESIDUES AB Western Red Cedar (WRC) is one of the abundant softwood species, which is considered as a good source of biofuel. This paper aims at quantifying gas emissions from stored WRC woodchips and studying the potential health impact during storage and transportation. Experiments were conducted using lab-scale reactors for a range of temperatures under both non-aerobic and aerobic conditions depending on oxygen level. Results from tests using non-aerobic reactors showed that the highest carbon dioxide emission factor of 2.8 g/kg dry matter (DM) was observed at 20 A degrees C for a storage period of 2 months. Although the carbon monoxide emission factor was much lower at 0.03 g/kg DM, it increased with increasing temperatures due to chemical oxidation. Carbon dioxide and carbon monoxide emissions from the aerobic reactors exhibited similar trends as the non-aerobic reactors with respect to the effect of temperature. Total gas emissions were higher from the aerobic reactors compared with those from non-aerobic reactors. Results from the qualitative gas chromatography-mass spectrometry analysis indicated a range of volatile organic compounds was emitted from the stored WRC woodchips. Some of these volatile organic compounds might be associated with the characteristic pungent smell of WRC which could cause odor nuisance to the neighboring community. The total volatile organic compounds concentration was found to be positively correlated with temperature. At the end of the storage period, percent DM loss was below 1 % for both the non-aerobic and aerobic reactors, reaffirming the decay-resistance characteristics of WRC. C1 [He, X.; Lau, A. K.; Sokhansanj, S.; Lim, C. J.; Bi, X. T.] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Melin, S.] Delta Res Corp, Delta, BC V4L 2L5, Canada. RP Lau, AK (reprint author), Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada. EM aklau@chbe.ubc.ca RI Lau, Anthony/J-8519-2015 FU Natural Sciences and Engineering Research Council of Canada [RGPIN 42377-12]; British Columbia Innovation Council/Natural Resources and Applied Sciences Endowment Fund [NRAS]; U.S. Department of Energy, Office of Biomass Program; China Scholarship Council FX The authors gratefully acknowledge the financial support by the Natural Sciences and Engineering Research Council of Canada (Grant number RGPIN 42377-12), British Columbia Innovation Council/Natural Resources and Applied Sciences Endowment Fund (Grant number NRAS), the U.S. Department of Energy, Office of Biomass Program, and the China Scholarship Council. Thanks are also due to Dr. Karen Bartlett for her assistance with the instrument for total VOC emission analysis. NR 35 TC 0 Z9 0 U1 1 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1735-1472 EI 1735-2630 J9 INT J ENVIRON SCI TE JI Int. J. Environ. Sci. Technol. PD MAY PY 2015 VL 12 IS 5 BP 1549 EP 1558 DI 10.1007/s13762-014-0541-z PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA CE0YR UT WOS:000351537800007 ER PT J AU Rishinaramangalam, AK Ul Masabih, SM Fairchild, MN Wright, JB Shima, DM Balakrishnan, G Brener, I Brueck, SRJ Feezell, DF AF Rishinaramangalam, Ashwin K. Ul Masabih, Saadat Mishkat Fairchild, Michael N. Wright, Jeremy B. Shima, Darryl M. Balakrishnan, Ganesh Brener, Igal Brueck, S. R. J. Feezell, Daniel F. TI Controlled Growth of Ordered III-Nitride Core-Shell Nanostructure Arrays for Visible Optoelectronic Devices SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 56th Electronic Materials Conference CY JUN 25-27, 2014 CL Univ Calif Santa Barbara, Santa Barbara, CA SP Amer Elements, Sandia Natl Labs HO Univ Calif Santa Barbara DE Gallium nitride; nonpolar; semipolar; nanostructures; selective area epitaxy; nanowalls; pyramidal nanostripes; LED; MOCVD ID LIGHT-EMITTING-DIODES; LASER-DIODES; WELL STRUCTURES; HIGH-POWER; BLUE AB We demonstrate the growth of ordered arrays of nonpolar core-shell nanowalls and semipolar core-shell pyramidal nanostripes on c-plane (0001) sapphire substrates using selective-area epitaxy and metal organic chemical vapor deposition. The nanostructure arrays are controllably patterned into LED mesa regions, demonstrating a technique to impart secondary lithography features into the arrays. We study the dependence of the nanostructure cores on the epitaxial growth conditions and show that the geometry and morphology are strongly influenced by growth temperature, V/III ratio, and pulse interruption time. We also demonstrate the growth of InGaN quantum well shells on the nanostructures and characterize the structures by using micro-photoluminescence and cross-section scanning tunneling electron microscopy. C1 [Rishinaramangalam, Ashwin K.; Ul Masabih, Saadat Mishkat; Fairchild, Michael N.; Wright, Jeremy B.; Shima, Darryl M.; Balakrishnan, Ganesh; Brueck, S. R. J.; Feezell, Daniel F.] Univ New Mexico, Dept Elect & Comp Engn, Ctr High Technol Mat, Albuquerque, NM 87131 USA. [Wright, Jeremy B.; Brener, Igal] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Rishinaramangalam, AK (reprint author), Univ New Mexico, Dept Elect & Comp Engn, Ctr High Technol Mat, Albuquerque, NM 87131 USA. EM ashwinrk@chtm.unm.edu FU NSF [EEC-0812056]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is supported by the NSF under cooperative agreement EEC-0812056. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to acknowledge Jacqueline Shortridge for helping with SEM sample preparation. NR 38 TC 4 Z9 4 U1 3 U2 48 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD MAY PY 2015 VL 44 IS 5 BP 1255 EP 1262 DI 10.1007/s11664-014-3456-z PG 8 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA CE2RH UT WOS:000351663100001 ER PT J AU Wu, FZ Wang, HH Raghothamachar, B Dudley, M Chung, G Zhang, J Thomas, B Sanchez, EK Mueller, SG Hansen, D Loboda, MJ Zhang, LH Su, D Kisslinger, K Stach, E AF Wu, Fangzhen Wang, Huanhuan Raghothamachar, Balaji Dudley, Michael Chung, Gil Zhang, Jie Thomas, Bernd Sanchez, Edward K. Mueller, Stephan G. Hansen, Darren Loboda, Mark J. Zhang, Lihua Su, Dong Kisslinger, Kim Stach, Eric TI Characterization of V-shaped Defects in 4H-SiC Homoepitaxial Layers SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 56th Electronic Materials Conference CY JUN 25-27, 2014 CL Univ Calif Santa Barbara, Santa Barbara, CA SP Amer Elements, Sandia Natl Labs HO Univ Calif Santa Barbara DE CVD; epitaxial growth; stacking fault; defects; x-ray topography; HRTEM ID STACKING-FAULTS; CARROT DEFECT; GROWTH; DISLOCATIONS; INCLUSIONS; MECHANISM; EPITAXY AB Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V-shaped stacking faults in the epilayer. KOH etching of the V-shaped defects reveals small oval pits connected by a shallow trench which correspond to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V-shaped defects prepared using focused ion beam milling show stacking sequences of (85), (50) and (63) at the faulted region using high resolution TEM. In order to study the formation mechanism of the V-shaped defects, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V-shaped defects. Simulation results of the contrast from the two partial dislocations associated with V-shaped defects in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V-shaped defects, which requires elimination of non-sequential c/4[0001] bilayers from the original structure to create the observed faulted stacking sequence. C1 [Wu, Fangzhen; Wang, Huanhuan; Raghothamachar, Balaji; Dudley, Michael] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11790 USA. [Chung, Gil; Zhang, Jie; Thomas, Bernd; Sanchez, Edward K.; Mueller, Stephan G.; Hansen, Darren; Loboda, Mark J.] Dow Corning Compound Semicond Solut, Midland, MI 48686 USA. [Zhang, Lihua; Su, Dong; Kisslinger, Kim; Stach, Eric] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Wu, FZ (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11790 USA. EM wfz1125@gmail.com; michael.dudley@stonybrook.edu RI Stach, Eric/D-8545-2011; Kisslinger, Kim/F-4485-2014; Su, Dong/A-8233-2013; OI Stach, Eric/0000-0002-3366-2153; Su, Dong/0000-0002-1921-6683; Muller, Stephan/0000-0002-1383-5715 FU Dow Corning; DOE Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported by Dow Corning. Topography experiments were carried out at the Stony Brook Synchrotron Topography Facility, Beamline X-19C, at the National Synchrotron Light Source, Brookhaven National Laboratory (DOE Office of Basic Energy Sciences Contract No. DE-AC02-98CH10886) and Beamline 1-BM at the Advanced Photon Source, Argonne National Laboratory. HRTEM studies were carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory (DOE Office of Basic Energy Sciences Contract No. DE-AC02-98CH10886). NR 18 TC 1 Z9 1 U1 2 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD MAY PY 2015 VL 44 IS 5 BP 1293 EP 1299 DI 10.1007/s11664-014-3536-0 PG 7 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA CE2RH UT WOS:000351663100007 ER PT J AU Janish, MT Kotula, PG Boyce, BL Carter, CB AF Janish, Matthew T. Kotula, Paul G. Boyce, Brad L. Carter, C. Barry TI Observations of fcc and hcp tantalum SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID BETA-TANTALUM; VAPOR-DEPOSITION; PHASE-TRANSITION; THIN-FILMS; ELECTRON-MICROSCOPY; CRYSTAL-STRUCTURE; BCC; MOLYBDENUM; DISLOCATIONS; POTENTIALS AB The metal tantalum has many varied uses including in microelectronics (especially in capacitors) as thin films, in medical applications as an implant material or for surgical instruments, in X-ray lithography for masks, and in high-temperature structural applications. Ta is particularly useful because it is relatively ductile, refractory in nature, and does not readily react with corrosive materials. The body-centered cubic (bcc) crystal structure of pure Ta, also known as the alpha-phase, is the most commonly observed, but Ta is also known to exist in two other allotropes, one tetragonal and the other (much less-well-known) face-centered cubic (fcc). The tetragonal form (beta-Ta) has been produced by various deposition techniques and often occurs mixed with the alpha-phase; the fcc phase has only previously been reported in thin films deposited by thermal evaporation. There have been other reports of 'bcc metals' such as V and Fe existing with an fcc crystal structure when the metal is deposited as a thin film. In the present study, fcc Ta with a = 0.43 nm has been observed using transmission electron microscopy in bulk samples of Ta that have been subjected to quasi-static tensile deformation that was so large as to cause fracture of the material. The fcc phase has a relatively small grain size but appears to be stable at room temperature. It is also shown that relatively large grains (10-20 nm in diameter) of Ta can also exist with an hcp structure with a = 0.304 nm and c = 0.494 nm. C1 [Janish, Matthew T.; Carter, C. Barry] Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA. [Kotula, Paul G.; Boyce, Brad L.] Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87185 USA. [Carter, C. Barry] Univ Connecticut, Dept Chem & Biomol Engn, Storrs, CT 06269 USA. [Carter, C. Barry] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA. [Carter, C. Barry] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. RP Janish, MT (reprint author), Univ Connecticut, Dept Mat Sci & Engn, 97 North Eagleville Rd, Storrs, CT 06269 USA. EM matthew.janish@uconn.edu RI Kotula, Paul/A-7657-2011; Janish, Matthew/M-8625-2016; OI Kotula, Paul/0000-0002-7521-2759; Carter, C Barry/0000-0003-4251-9102 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [FWP 12-013170]; US Department of Energy [DEAC04-94AL85000] FX MTJ would like to acknowledge a GAANN Fellowship from the Department of Education. BLB was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award #FWP 12-013170. The authors thank Lisa M. Lowery for preparing the FIB-cut specimens, Joe Michael for advice on FIB sample preparation and on possible FIB artifacts, Khalid Hattar for helpful discussions and for carefully reviewing the manuscript, and Katie Jung johann for access to the F30 in CINT. This work was performed at Sandia National Laboratories in CINT, the Center for Integrated Nanotechnology, and in the Materials Characterization Department. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DEAC04-94AL85000. NR 55 TC 0 Z9 0 U1 8 U2 36 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD MAY PY 2015 VL 50 IS 10 BP 3706 EP 3715 DI 10.1007/s10853-015-8931-2 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA CD7SZ UT WOS:000351293700018 ER PT J AU Cakmak, E Choo, H Kang, JY Ren, Y AF Cakmak, Ercan Choo, Hahn Kang, Jun-Yun Ren, Yang TI Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID INDUCED MARTENSITIC-TRANSFORMATION; DEFORMATION-INDUCED TRANSFORMATION; NEUTRON-DIFFRACTION; STRAIN-RATE; TRIP STEELS; DISLOCATION-STRUCTURE; TENSILE BEHAVIOR; RATE SENSITIVITY; AXIAL STRESSES; LENGTH CHANGES AB The relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a function of the applied strains. The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation. (C) The Minerals, Metals & Materials Society and ASM International 2015 C1 [Cakmak, Ercan] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Choo, Hahn] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Kang, Jun-Yun] Korea Inst Mat Sci, Ferrous Alloys Grp, Changwondaero 642831, Changwon, South Korea. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Cakmak, E (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM hchoo@utk.edu RI Choo, Hahn/A-5494-2009 OI Choo, Hahn/0000-0002-8006-8907 FU NSF Major Research Instrumentation (MRI) program [DMR.0421219]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-06CH11357]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; International Center for Diffraction Data (ICDD) FX This research was supported in part by the NSF Major Research Instrumentation (MRI) program under contract DMR.0421219. Use of the APS was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. The sample preparation at Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. E.C. and H.C. acknowledge K. An and H. Skorpenske (Oak Ridge National Laboratory) for their help using the VULCAN load frame and D. Fielden (University of Tennessee) for machining the specimens. E.C. is grateful for Y. Wang's help performing the VPSC modeling and for the 2012 and 2013 Ludo Frevel Crystallography Scholarship Awards from the International Center for Diffraction Data (ICDD). NR 65 TC 3 Z9 3 U1 4 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2015 VL 46A IS 5 BP 1860 EP 1877 DI 10.1007/s11661-015-2772-0 PG 18 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CE0VP UT WOS:000351527200006 ER PT J AU Sochalski-Kolbus, LM Payzant, EA Cornwell, PA Watkins, TR Babu, SS Dehoff, RR Lorenz, M Ovchinnikova, O Duty, C AF Sochalski-Kolbus, L. M. Payzant, E. A. Cornwell, P. A. Watkins, T. R. Babu, S. S. Dehoff, R. R. Lorenz, M. Ovchinnikova, O. Duty, C. TI Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and Direct Laser Metal Sintering (vol 46A, pg 1419, 2015) SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Correction C1 [Sochalski-Kolbus, L. M.; Payzant, E. A.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37830 USA. [Sochalski-Kolbus, L. M.; Cornwell, P. A.; Watkins, T. R.; Dehoff, R. R.; Duty, C.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. [Babu, S. S.] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Adv Mfg, Oak Ridge, TN 37830 USA. [Babu, S. S.] Univ Tennessee, Dept Aerosp & Biomed Engn, Knoxville, TN USA. [Dehoff, R. R.; Duty, C.] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Oak Ridge, TN 37830 USA. [Lorenz, M.; Ovchinnikova, O.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. [Lorenz, M.] Natl Phys Lab, Teddington TW11 0LW, Middx, England. RP Sochalski-Kolbus, LM (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, One Bethel Valley Rd,POB 2008,MS 6475, Oak Ridge, TN 37830 USA. RI Payzant, Edward/B-5449-2009; Kolbus, Lindsay/N-9491-2014; Babu, Sudarsanam/D-1694-2010; Watkins, Thomas/D-8750-2016; Dehoff, Ryan/I-6735-2016 OI Payzant, Edward/0000-0002-3447-2060; Kolbus, Lindsay/0000-0003-4405-461X; Babu, Sudarsanam/0000-0002-3531-2579; Watkins, Thomas/0000-0002-2646-1329; Dehoff, Ryan/0000-0001-9456-9633 NR 1 TC 1 Z9 1 U1 7 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2015 VL 46A IS 5 BP 2322 EP 2322 DI 10.1007/s11661-015-2810-y PG 1 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA CE0VP UT WOS:000351527200046 ER PT J AU Looker, Q Amman, M Vetter, K AF Looker, Q. Amman, M. Vetter, K. TI Inter-electrode charge collection in high-purity germanium detectors with amorphous semiconductor contacts SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Gamma-ray detectors; High-parity germanium; Amorphous semiconductor contacts; Segmented radiation detectors; Detectors for imaging ID ORTHOGONAL-STRIP DETECTORS; GE DETECTORS; BLOCKING CONTACTS; SPECTROSCOPY; PERFORMANCE; FABRICATION; CAMERA; PITCH AB High purity germanium (HRGe) radiation detectors with segmented signal readout electrodes combine excellent energy resolution with fine spatial resolution, opening exciting possibilities in radiation imaging applications. Segmenting the electrodes provides the ability to determine the positions of radiation interactions in the detector, but it also brings potential challenges that can inhibit performance. A challenge unique to segmented electrode detectors is collection of charge carriers to the gap between adjacent electrodes rather than to the electrodes themselves, which gives a deficit in the summed energy. While amorphous semiconductor electrical contacts have enabled a simplified fabrication process capable of fine electrode segmentation, the amorphous semiconductor passivation layer between electrodes is prone to inter-electrode charge collection. This article presents a study of the impact of fabrication process parameters on the energy deficit due to inter-electrode charge collection for double-sided strip detectors. Eight double-sided strip HPGe detectors were fabricated with amorphous germanium (a-Ge) and amorphous silicon (a-Si) contacts formed by sputter deposition. Each detector was evaluated for inter-electrode charge collection performance, using as a metric the deficit in the summed signal of two adjacent electrodes. It is demonstrated that both a-Ge and a-Si contacts can be produced with nearly non-existent inter-electrode charge collection when the appropriate combination of sputter gas hydrogen content and gas pressure are selected. (C) 2015 Elsevier B.V. All rights reserved. C1 [Looker, Q.; Amman, M.; Vetter, K.] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Looker, Q.; Vetter, K.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Looker, Q (reprint author), Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM qlooker@lbl.gov FU U.S. Department of Energy, Office of Science [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy, Office of Science, under Contract number DE-AC02-05CH11231. NR 47 TC 0 Z9 0 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2015 VL 781 BP 20 EP 25 DI 10.1016/j.nima.2015.01.069 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CD4ON UT WOS:000351063000004 ER PT J AU Abruzzio, R Buck, B Jaditz, S Kelsey, J Monroe, J Palladino, K AF Abruzzio, Robert Buck, Benjamin Jaditz, Stephen Kelsey, James Monroe, Jocelyn Palladino, Kimberly TI Design of the MiniCLEAN dark matter search veto detector subsystem SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Dark matter detectors; Photon detectors for UV; Visible and IR photons (vacuum); Front-end electronics for detector readout AB This paper describes the design of the active muon veto subsystem for the MiniCLEAN dark matter direct detection experiment at SNOLAB in Sudbury, Ontario, Canada. The water-filled veto is instrumented with 48 PMTs which are read out by front-end electronics to time multiplex 48 photomultiplier channels into 6 digitizer channels and provide an instantaneous hit sum across the subsystem (N-Hit) for the veto trigger. We describe the primary system components: the PMTs, the support structure, the front-end electronics, and the data acquisition system. (C) 2015 Elsevier B.V. All rights reserved. C1 [Jaditz, Stephen] Los Alamos Natl Lab, Los Alamos, NM USA. [Abruzzio, Robert; Buck, Benjamin; Kelsey, James] MIT, Cambridge, MA 02139 USA. [Monroe, Jocelyn] Royal Holloway Univ London, Egham, Surrey, England. [Palladino, Kimberly] SNOLAB, Lively, ON, Canada. RP Buck, B (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM bbuck@mit.edu FU NSF [PHY-0970047]; MIT Bates Research and Engineering Center FX The authors would like to acknowledge support from NSF Grant PHY-0970047 and the MIT Bates Research and Engineering Center. NR 6 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2015 VL 781 BP 78 EP 85 DI 10.1016/j.nima.2015.01.028 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CD4ON UT WOS:000351063000013 ER PT J AU LaFleur, AM Menlove, HO AF LaFleur, Adrienne M. Menlove, Howard O. TI Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Non-destructive assay; Spent fuel verification; Nuclear safeguards; Self-Interrogation Neutron Resonance; Densitometry; Neutron detector AB Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANE and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINIRD ratios to quantify neutron multiplication and/or fissile content The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies. (C) 2015 Elsevier B.V. All rights reserved C1 [LaFleur, Adrienne M.; Menlove, Howard O.] Los Alamos Natl Lab, Nucl Engn & Nonproliferat Div, Los Alamos, NM 87545 USA. RP LaFleur, AM (reprint author), Los Alamos Natl Lab, Nucl Engn & Nonproliferat Div, POB 1663 MS E540, Los Alamos, NM 87545 USA. EM alafleur@lanl.gov FU Department of Energy National Nuclear Security Administration's Office of Nonproliferation and International Security [NA-24]; Program of Technical Assistance (POTAS); Next Generation Safeguards Initiative (NGSI) [NA-241]; International Nuclear Safeguards Engagement Program (INSEP) FX We would like to acknowledge the Department of Energy National Nuclear Security Administration's Office of Nonproliferation and International Security (NA-24) and the Program of Technical Assistance (POTAS) to the IAEA for their support in the development of the SINRD method. The IAEA has provided useful guidance and support for this research. This work was funded under NA-241 Next Generation Safeguards Initiative (NGSI) and International Nuclear Safeguards Engagement Program (INSEP). NR 17 TC 2 Z9 2 U1 3 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2015 VL 781 BP 86 EP 95 DI 10.1016/j.nima.2015.01.029 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CD4ON UT WOS:000351063000014 ER PT J AU DiGiovine, B Henderson, D Holt, RJ Raut, R Rehm, KE Robinson, A Sonnenschein, A Rusev, G Tonchev, AP Ugalde, C AF DiGiovine, B. Henderson, D. Holt, R. J. Raut, R. Rehm, K. E. Robinson, A. Sonnenschein, A. Rusev, G. Tonchev, A. P. Ugalde, C. TI Bubble chambers for experiments in nuclear astrophysics SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Nuclear astrophysics; Gamma ray beam; Bubble chamber ID DARK-MATTER; SEARCH AB A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time reversed processes. Such photodisintegrations allow us to compute the radiative capture cross sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross-sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas targets. Also, the detector is virtually insensitive to the gamma-ray beam itself, thus allowing us to detect only the products of the nuclear reaction of interest. The development and the operation as well as the advantages and disadvantages of the bubble chamber are discussed. (C) 2015 Elsevier B.V All rights reserved. C1 [DiGiovine, B.; Henderson, D.; Holt, R. J.; Rehm, K. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Raut, R.] UGC DAE Consortium Sci Res, Kolkata 700098, India. [Robinson, A.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Sonnenschein, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Rusev, G.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Tonchev, A. P.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Ugalde, C.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RP Ugalde, C (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. EM cugalde@anl.gov OI Rusev, Gencho/0000-0001-7563-1518 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract no. DE-AC02-06CH11357. We want to thank the operating group at HI gamma S for providing the high quality beams. Discussions with Professor Ying K. Wu and Dr. Stepan F. Mikhailov about the source of the background are appreciated. We also thank Sebastian Rehm for writing the Lab-View computer code used in the acquisition of the experimental data. NR 28 TC 2 Z9 2 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2015 VL 781 BP 96 EP 104 DI 10.1016/j.nima.2015.01.060 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CD4ON UT WOS:000351063000015 ER PT J AU Allison, T Anderson, M Androic, D Armstrong, DS Asaturyan, A Averett, T Averill, R Balewski, J Beaufait, J Beminiwattha, RS Benesch, J Benmokhtar, F Bessuille, J Birchall, J Bonnelli, E Bowman, JD Brindza, P Brown, DB Carlini, RD Cates, GD Cavness, B Clark, G Cornejo, JC Dusa, SC Dalton, MM Davis, CA Dean, DC Deconinck, W Diefenbach, J Dow, K Dowd, JF Dunne, JA Dutta, D Duvall, WS Echols, JR Elaasar, M Falk, WR Finelli, KD Finn, JM Gaskell, D Gericke, MTW Grames, J Gray, VM Grimm, K Guo, F Hansknecht, J Harrison, DJ Henderson, E Hoskins, JR Ihloff, E Johnston, K Jones, D Jones, M Jones, R Kargiantoulakis, M Kelsey, J Khan, N King, PM Korkmaz, E Kowalski, S Kubera, A Leacock, J Leckey, JP Lee, AR Lee, JH Lee, L Liang, Y MacEwan, S Mack, D Magee, JA Mahurin, R Mammei, J Martin, JW McCreary, A McDonald, MH McHugh, MJ Medeiros, P Meekins, D Mei, J Michaels, R Micherdzinska, A Mkrtchyan, A Mkrtchyan, H Morgan, N Musson, J Mesick, KE Narayan, A Ndukum, LZ Nelyubin, V Nuruzzaman van Oers, WTH Opper, AK Page, SA Pan, J Paschke, KD Phillips, SK Pitt, ML Poelker, M Rajotte, JF Ramsay, WD Roberts, WR Roche, J Rose, PW Sawatzky, B Seva, T Shabestari, MH Silwal, R Simicevic, N Smith, GR Sobczynski, S Solvignon, P Spayde, DT Stokes, B Storey, DW Subedi, A Subedi, R Suleiman, R Tadevosyan, V Tobias, WA Tvaskis, V Urban, E Waidyawansa, B Wang, P Wells, SP Wood, SA Yang, S Zhamkochyan, S Zielinski, RB AF Allison, T. Anderson, M. Androic, D. Armstrong, D. S. Asaturyan, A. Averett, T. Averill, R. Balewski, J. Beaufait, J. Beminiwattha, R. S. Benesch, J. Benmokhtar, F. Bessuille, J. Birchall, J. Bonnelli, E. Bowman, J. D. Brindza, P. Brown, D. B. Carlini, R. D. Cates, G. D. Cavness, B. Clark, G. Cornejo, J. C. Dusa, S. Covrig Dalton, M. M. Davis, C. A. Dean, D. C. Deconinck, W. Diefenbach, J. Dow, K. Dowd, J. F. Dunne, J. A. Dutta, D. Duvall, W. S. Echols, J. R. Elaasar, M. Falk, W. R. Finelli, K. D. Finn, J. M. Gaskell, D. Gericke, M. T. W. Grames, J. Gray, V. M. Grimm, K. Guo, F. Hansknecht, J. Harrison, D. J. Henderson, E. Hoskins, J. R. Ihloff, E. Johnston, K. Jones, D. Jones, M. Jones, R. Kargiantoulakis, M. Kelsey, J. Khan, N. King, P. M. Korkmaz, E. Kowalski, S. Kubera, A. Leacock, J. Leckey, J. P. Lee, A. R. Lee, J. H. Lee, L. Liang, Y. MacEwan, S. Mack, D. Magee, J. A. Mahurin, R. Mammei, J. Martin, J. W. McCreary, A. McDonald, M. H. McHugh, M. J. Medeiros, P. Meekins, D. Mei, J. Michaels, R. Micherdzinska, A. Mkrtchyan, A. Mkrtchyan, H. Morgan, N. Musson, J. Mesick, K. E. Narayan, A. Ndukum, L. Z. Nelyubin, V. Nuruzzaman van Oers, W. T. H. Opper, A. K. Page, S. A. Pan, J. Paschke, K. D. Phillips, S. K. Pitt, M. L. Poelker, M. Rajotte, J. F. Ramsay, W. D. Roberts, W. R. Roche, J. Rose, P. W. Sawatzky, B. Seva, T. Shabestari, M. H. Silwal, R. Simicevic, N. Smith, G. R. Sobczynski, S. Solvignon, P. Spayde, D. T. Stokes, B. Storey, D. W. Subedi, A. Subedi, R. Suleiman, R. Tadevosyan, V. Tobias, W. A. Tvaskis, V. Urban, E. Waidyawansa, B. Wang, P. Wells, S. P. Wood, S. A. Yang, S. Zhamkochyan, S. Zielinski, R. B. TI The Q(weak) experimental apparatus SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Parity violation; Electron scattering; High luminosity; Liquid hydrogen target; Particle detectors ID DRIFT CHAMBERS; FORM-FACTORS; POLARIZATION; POLARIMETER; READOUT; MOMENT AB The Jefferson Lab experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise (e) over right arrowp asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. The experiment employed 180 mu A of 89% longitudinally polarized electrons whose helicity was reversed 960 times per second. The electrons were accelerated to 1.16 GeV and directed to a beamline with extensive instrumentation to measure helicity-correlated beam properties that can induce false asymmetries. Muller and Compton polarimetry were used to measure the electron beam polarization to better than 1%. The electron beam was incident on a 34.4 cm liquid hydrogen target. After passing through a triple collimator system, scattered electrons between 5.8 degrees and 11.6 degrees were bent in the toroidal magnetic field of a resistive copper-coil magnet. The electrons inside this acceptance were focused onto eight fused silica Cherenkov detectors arrayed symmetrically around the beam axis. A total scattered electron rate of about 7 GHz was incident on the detector array. The detectors were read out in integrating mode by custom-built low-noise pre-amplifiers and 18-bit sampling ADC modules. The momentum transfer Q(2)=0.025 GeV2 was determined using dedicated low-current (similar to 100 pA) measurements with a set of drift chambers before (and a set of drift chambers and trigger scintillation counters after) the toroidal magnet. (C) 2015 Elsevier B.V All rights reserved. C1 [Allison, T.; Beaufait, J.; Benesch, J.; Brindza, P.; Carlini, R. D.; Dusa, S. Covrig; Gaskell, D.; Grames, J.; Hansknecht, J.; Jones, M.; Mack, D.; Medeiros, P.; Meekins, D.; Mei, J.; Michaels, R.; Musson, J.; Poelker, M.; Sawatzky, B.; Smith, G. R.; Solvignon, P.; Suleiman, R.; Wood, S. A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Anderson, M.; Birchall, J.; Falk, W. R.; Gericke, M. T. W.; Lee, L.; MacEwan, S.; Mahurin, R.; Mammei, J.; van Oers, W. T. H.; Page, S. A.; Pan, J.; Ramsay, W. D.; Tvaskis, V.; Wang, P.] Univ Manitoba, Winnipeg, MB R3T 2N2, Canada. [Androic, D.; Seva, T.] Univ Zagreb, HR-10002 Zagreb, Croatia. [Armstrong, D. S.; Averett, T.; Carlini, R. D.; Cornejo, J. C.; Dean, D. C.; Deconinck, W.; Dowd, J. F.; Finn, J. M.; Gray, V. M.; Grimm, K.; Henderson, E.; Hoskins, J. R.; Leckey, J. P.; Lee, J. H.; Magee, J. A.; Rose, P. W.; Yang, S.; Zielinski, R. B.] Coll William & Mary, Williamsburg, VA 23185 USA. [Asaturyan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Zhamkochyan, S.] Yerevan Phys Inst, AI Alikhanyan Natl Sci Lab, Yerevan 0036, Armenia. [Averill, R.; Balewski, J.; Dow, K.; Guo, F.; Ihloff, E.; Kelsey, J.; Kowalski, S.; Rajotte, J. F.; Sobczynski, S.] MIT, Cambridge, MA 02139 USA. [Beminiwattha, R. S.; King, P. M.; Lee, J. H.; Roche, J.; Waidyawansa, B.] Ohio Univ, Athens, OH 45701 USA. [Benmokhtar, F.] Christopher Newport Univ, Newport News, VA 23606 USA. [Bessuille, J.; Clark, G.; Davis, C. A.; Khan, N.; Lee, L.; van Oers, W. T. H.; Ramsay, W. D.; Roberts, W. R.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bonnelli, E.; Duvall, W. S.; Echols, J. R.; Finelli, K. D.; Leacock, J.; Lee, A. R.; Mammei, J.; Morgan, N.; Pitt, M. L.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Bowman, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Brown, D. B.; Dunne, J. A.; Dutta, D.; Narayan, A.; Ndukum, L. Z.; Nuruzzaman; Shabestari, M. H.; Subedi, A.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Cates, G. D.; Dalton, M. M.; Grimm, K.; Jones, D.; Kargiantoulakis, M.; Mammei, J.; Nelyubin, V.; Paschke, K. D.; Silwal, R.; Tobias, W. A.] Univ Virginia, Charlottesville, VA 22903 USA. [Cavness, B.] Angelo State Univ, San Angelo, TX 76909 USA. [Diefenbach, J.; Nuruzzaman] Hampton Univ, Hampton, VA 23668 USA. [Elaasar, M.] Southern Univ New Orleans, New Orleans, LA 70126 USA. [Grimm, K.; Johnston, K.; Simicevic, N.; Wells, S. P.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Harrison, D. J.; Martin, J. W.; McDonald, M. H.; Storey, D. W.; Tvaskis, V.] Univ Winnipeg, Winnipeg, MB R3B 2E9, Canada. [Jones, R.] Univ Connecticut, Storrs, CT 06269 USA. [Korkmaz, E.] Univ No British Columbia, Prince George, BC V2N4Z9, Canada. [Kubera, A.] Kent State Univ, Kent, OH 44240 USA. [Liang, Y.; McHugh, M. J.; Micherdzinska, A.; Mesick, K. E.; Opper, A. K.; Stokes, B.; Subedi, R.] George Washington Univ, Washington, DC 20052 USA. [Phillips, S. K.] Univ New Hampshire, Durham, NH 03824 USA. [McCreary, A.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Spayde, D. T.; Urban, E.] Hendrix Coll, Conway, AR 72032 USA. RP Smith, GR (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM smithg@jlab.org RI Mesick, Katherine/M-3495-2014; Dalton, Mark/B-5380-2016; Anderson, Mitchell/O-4781-2016; Narayan, Amrendra/Q-3243-2016; Androic, Darko/A-7482-2008; Beminiwattha, Rakitha/K-5685-2013; OI Mesick, Katherine/0000-0001-6138-1474; Dalton, Mark/0000-0001-9204-7559; Anderson, Mitchell/0000-0001-5352-325X; Narayan, Amrendra/0000-0003-3814-9559; King, Paul/0000-0002-3448-2306; Beminiwattha, Rakitha/0000-0002-1473-1651; Cornejo, Juan Carlos/0000-0002-0124-3237; Gray, Valerie/0000-0002-4254-4298 FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [AC05-060R23177]; US Department of Energy (DOE) [DE-AC05-060R23177]; Natural Sciences and Engineering Research Council of Canada (NSERC); Canada Foundation for Innovation; National Science Foundation (NSF) [PHY-0320942, PHY-0321197, PHY-0320759, PHY-0320832]; NSF; College of William and Mary, Virginia Tech, George Washington University; Louisiana Tech University; MIT/BATES FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC05-060R23177, under which Jefferson Science Associates, LLC, operates Thomas Jefferson National Accelerator Facility. Construction and operating funding for the experiment was provided through the US Department of Energy (DOE) under contract number DE-AC05-060R23177, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation, and the National Science Foundation (NSF) under grant numbers PHY-0320942, PHY-0321197, PHY-0320759, and PHY-0320832. University matching contributions associated with the NSF grants were received from the College of William and Mary, Virginia Tech, George Washington University, and Louisiana Tech University, We wish to thank the staff of JLab, TRIUMF, and MIT/BATES for their vital support during this challenging experiment. In particular we wish to thank the many technical and operations staff at Jefferson Lab, without whose expertise and support the experiment would not have been possible. We are grateful to A. Kenyon for his skillful guidance of the experiment's installation. We acknowledge helpful contributions from William and Mary students J. Bufkin, C. Caplan, E. Epperson, G. Giovanetti, A. Gvakharia, L.J. Snow, B.P. Walsh, and A. Watson, Virginia Tech students J. Hoffman and J. Walters, Hendrix College students D. Cargill, V. Gammill, K. Garimella, U. Garimella, N. Heiner, E. Holcomb, R. Leonard, T. Pote, G. Trees, S. Webb, and Webb, and University of Manitoba student C. Koop. We are also indebted to PG. Blunden, J. Erler, N.L. Hall, W. Melnitchouk, M.J. Ramsey-Musolf, and A.W. Thomas for many useful discussions. NR 81 TC 5 Z9 5 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2015 VL 781 BP 105 EP 133 DI 10.1016/j.nima.2015.01.023 PG 29 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA CD4ON UT WOS:000351063000016 ER PT J AU Ng, Y Sigdel, T Sarwal, M Lee, S Nicora, C Chiang, W Camp, D AF Ng, Y. Sigdel, T. Sarwal, M. Lee, S. Nicora, C. Chiang, W. Camp, D. TI PERTURBATIONS IN THE URINARY EXOSOME IN TRANSPLANT REJECTION SO PEDIATRIC TRANSPLANTATION LA English DT Meeting Abstract C1 [Ng, Y.; Sigdel, T.; Sarwal, M.] UCSF, San Francisco, CA USA. [Lee, S.] Kyung Hee Univ, Seoul, South Korea. [Nicora, C.; Chiang, W.; Camp, D.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1397-3142 EI 1399-3046 J9 PEDIATR TRANSPLANT JI Pediatr. Transplant. PD MAY PY 2015 VL 19 SU 1 SI SI MA OR20 BP 74 EP 74 PG 1 WC Pediatrics; Transplantation SC Pediatrics; Transplantation GA CE2GP UT WOS:000351633200021 ER PT J AU Huang, EW Yu, DJ Yeh, JW Lee, C An, K Tu, SY AF Huang, E-Wen Yu, Dunji Yeh, Jien-Wei Lee, Chi An, Ke Tu, Shan-Yi TI A study of lattice elasticity from low entropy metals to medium and high entropy alloys SO SCRIPTA MATERIALIA LA English DT Article DE Neutron diffraction; Metal and alloys; Elastic behavior; Microstructure; High entropy alloy ID DEFORMED METALS; ACTIN NETWORKS; DEFORMATION; POLYCRYSTAL; PLASTICITY; MECHANICS; CONSTANTS; SYMMETRY; FORCES; PHASE AB An equal-molar CoCrFeMnNi, face-centered-cubic high-entropy alloy system and a face-centered-cubic stainless steel described as a medium-entropy system, are measured by in situ neutron-diffraction experiments subjected to continuous tension at room and several elevated temperatures, respectively. With spallation neutron, the evolution of multiple diffraction peaks is collected simultaneously for lattice-elasticity study. Temperature variation of elastic stiffness of a single face-centered-cubic-phase Ni and a single face-centered-cubic-phase Fe are compared as low-entropy metals. The CoCrFeMnNi high-entropy alloy shows distinct lattice anisotropy. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Huang, E-Wen; Tu, Shan-Yi] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Yu, Dunji; An, Ke] Oak Ridge Natl Lab, Spallat Neutron Source, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Yeh, Jien-Wei; Lee, Chi] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan. [Tu, Shan-Yi] Natl Cent Univ, Dept Chem & Mat Engn, Jhongli 32001, Taiwan. RP Huang, EW (reprint author), Natl Chiao Tung Univ, Dept Mat Sci & Engn, 1001 Univ Rd, Hsinchu 30010, Taiwan. RI An, Ke/G-5226-2011; Huang, E-Wen/A-5717-2015 OI An, Ke/0000-0002-6093-429X; Huang, E-Wen/0000-0003-4986-0661 FU Ministry of Science and Technology (MOST) - Taiwan Program [101-2221-E-008-039-MY3]; Atomic Energy Council (AEC) Program [10309037L]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Synchrotron Radiation Research Center (NSRRC) Neutron Program FX EWH appreciates the support from Ministry of Science and Technology (MOST) - Taiwan Program 101-2221-E-008-039-MY3 and Atomic Energy Council (AEC) Program 10309037L. Research conducted at ORNL's Spa Ration Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. EWH and his group members very much appreciate the financial support from the National Synchrotron Radiation Research Center (NSRRC) Neutron Program, with Dr. Jason Gardner as NSRRC-Neutron-Program Director. NR 51 TC 9 Z9 9 U1 17 U2 110 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2015 VL 101 BP 32 EP 35 DI 10.1016/j.scriptamat.2015.01.011 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA CD2TV UT WOS:000350932800009 ER PT J AU McCorquodale, P Dorr, MR Hittinger, JAF Colella, P AF McCorquodale, P. Dorr, M. R. Hittinger, J. A. F. Colella, P. TI High-order finite-volume methods for hyperbolic conservation laws on mapped multiblock grids SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Finite-volume method; High-order discretization; Mapped grids; Multiblock; Hyperbolic partial differential equations ID PARTIAL-DIFFERENTIAL EQUATIONS; OVERLAPPING GRIDS; CUBED-SPHERE; INTERPOLATION; INTERFACES; SCHEME; STABILITY AB We present an approach to solving hyperbolic conservation laws by finite-volume methods on mapped multiblock grids, extending the approach of Colella, Dorr, Hittinger, and Martin (2011) [10] for grids with a single mapping. We consider mapped multiblock domains for mappings that are conforming at inter-block boundaries. By using a smooth continuation of the mapping into ghost cells surrounding a block, we reduce the inter-block communication problem to finding an accurate, robust interpolation into these ghost cells from neighboring blocks. We demonstrate fourth-order accuracy for the advection equation for multiblock coordinate systems in two and three dimensions. (C) 2015 Elsevier Inc. All rights reserved. C1 [McCorquodale, P.; Colella, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Dorr, M. R.; Hittinger, J. A. F.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP McCorquodale, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, 1 Cyclotron Rd,Mail Stop 50A1148, Berkeley, CA 94720 USA. EM PWMcCorquodale@lbl.gov; dorr1@llnl.gov; hittinger1@llnl.gov; PColella@lbl.gov FU U.S. Department of Energy by Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231 and by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 42 TC 5 Z9 5 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 1 PY 2015 VL 288 BP 181 EP 195 DI 10.1016/j.jcp.2015.01.006 PG 15 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CD4UL UT WOS:000351079900011 ER PT J AU Tafen, DN AF Tafen, De Nyago TI First-principles-based kinetic Monte Carlo studies of diffusion of hydrogen in Ni-Al and Ni-Fe binary alloys SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; METALS; TRANSITION; NICKEL; SINGLE; IRON AB The diffusion of dilute hydrogen in fcc Ni-Al and Ni-Fe binary alloys was examined using kinetic Monte Carlo method with input kinetic parameters obtained from first-principles density functional theory. The simulation involves the implementation of computationally efficient energy barrier model that describes the configuration dependence of the hydrogen hopping. The predicted hydrogen diffusion coefficients in Ni and Ni89.4Fe10.6 are compared well with the available experimental data. In Ni-Al, the model predicts lower hydrogen diffusivity compared to that in Ni. Overall, diffusion prefactors and the effective activation energies of H in Ni-Fe and Ni-Al are concentration dependent of the alloying element. The changes in their values are the results of the short-range order (nearest-neighbor) effect on the interstitial diffusion of hydrogen in fcc Ni-based alloys. C1 [Tafen, De Nyago] US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. [Tafen, De Nyago] URS Corp, Albany, OR 97321 USA. RP Tafen, DN (reprint author), US DOE, Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA. EM denyago.tafen@contr.netl.doe.gov OI Tafen, De Nyago/0000-0002-4360-9508 FU Cross-Cutting Technologies Program at the National Energy Technology Laboratory; National Energy Technology Laboratory's ongoing research under the RES Contract [DE-FE0004000]; Department of Energy, National Energy Technology Laboratory, an agency of the United States Government; URS Energy &Construction, Inc. FX This work was funded by the Cross-Cutting Technologies Program at the National Energy Technology Laboratory, managed by Susan Maley (Technology Manager) and Charles Miller (Technology Monitor). The research was executed through NETL's Office of Research and Development's Innovative Process Technologies Field Work Proposal. The technical effort was performed in support of the National Energy Technology Laboratory's ongoing research under the RES Contract DE-FE0004000. The author would like to thank D. Alfonso for the fruitful discussions. This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with URS Energy &Construction, Inc. Neither the United States Government nor any agency thereof, nor any of their employees, nor URS Energy & Construction, Inc., nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 28 TC 0 Z9 0 U1 0 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD MAY PY 2015 VL 50 IS 9 BP 3361 EP 3370 DI 10.1007/s10853-015-8885-4 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA CC7SV UT WOS:000350569600007 ER PT J AU Jamali, K AF Jamali, Kamiar TI Achieving reasonable conservatism in nuclear safety analyses SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Nuclear; Safety analysis; Probabilistic risk assessment (PRA); Uncertainty analysis; Reasonable; Conservatism AB In the absence of methods that explicitly account for uncertainties, seeking reasonable conservatism in nuclear safety analyses can quickly lead to extreme conservatism. The rate of divergence to extreme conservatism is often beyond the expert analysts' intuitive feeling, but can be demonstrated mathematically. Too much conservatism in addressing the safety of nuclear facilities is not beneficial to society. Using certain properties of lognormal distributions for representation of input parameter uncertainties, example calculations for the risk and consequence of a fictitious facility accident scenario are presented. Results show that there are large differences between the calculated 95th percentiles and the extreme bounding values derived from using all input variables at their upper-bound estimates. Showing the relationship of the mean values to the key parameters of the output distributions, the paper concludes that the mean is the ideal candidate for representation of the value of an uncertain parameter. The mean value is proposed as the metric that is consistent with the concept of reasonable conservatism in nuclear safety analysis, because its value increases towards higher percentiles of the underlying positively skewed distribution with increasing levels of uncertainty. Insensitivity of the results to the actual underlying distributions is briefly demonstrated. Published by Elsevier Ltd. C1 Natl Nucl Secur Adm, Off Nucl Safety, Safety & Hlth, US DOE, Germantown, MD 20874 USA. RP Jamali, K (reprint author), Natl Nucl Secur Adm, Off Nucl Safety, Safety & Hlth, US DOE, 19901 Germantown Rd, Germantown, MD 20874 USA. EM Kamiar.jamali@nnsa.doe.gov NR 17 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 EI 1879-0836 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD MAY PY 2015 VL 137 BP 112 EP 119 DI 10.1016/j.ress.2015.01.008 PG 8 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA CD0SA UT WOS:000350783000012 ER PT J AU Lee, S Kahng, M Lee, SG AF Lee, Sangkeun Kahng, Minsuk Lee, Sang-goo TI Constructing compact and effective graphs for recommender systems via node and edge aggregations SO EXPERT SYSTEMS WITH APPLICATIONS LA English DT Article DE Graph; Heterogeneity; Recommendation; Aggregation; Random-walk; Ranking ID CONTEXTUAL INFORMATION; RANDOM-WALK AB Exploiting graphs for recommender systems has great potential to flexibly incorporate heterogeneous information for producing better recommendation results. As our baseline approach, we first introduce a naive graph-based recommendation method, which operates with a heterogeneous log-metadata graph constructed from user log and content metadata databases. Although the naive graph-based recommendation method is simple, it allows us to take advantages of heterogeneous information and shows promising flexibility and recommendation accuracy. However, it often leads to extensive processing time due to the sheer size of the graphs constructed from entire user log and content metadata databases. In this paper, we propose node and edge aggregation approaches to constructing compact and effective graphs called 'Factor-Item bipartite graphs' by aggregating nodes and edges of a log-metadata graph. Experimental results using real world datasets indicate that our approach can significantly reduce the size of graphs exploited for recommender systems without sacrificing the recommendation quality. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Lee, Sangkeun] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Kahng, Minsuk] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA. [Lee, Sang-goo] Seoul Natl Univ, Dept Comp Sci & Engn, Seoul 151, South Korea. RP Lee, S (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. EM lees4@ornl.gov; kahng@gatech.edu; sglee@snu.ac.kr FU U.S. Department of Energy [DE-AC05-00OR22725]; National Science Foundation [DGE-1148903]; National Research Foundation of Korea (NRF) grant - Korea Government (MSIP) [20110030812] FX This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.; This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1148903.; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 20110030812). NR 45 TC 1 Z9 1 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0957-4174 EI 1873-6793 J9 EXPERT SYST APPL JI Expert Syst. Appl. PD MAY 1 PY 2015 VL 42 IS 7 BP 3396 EP 3409 DI 10.1016/j.eswa.2014.11.062 PG 14 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic; Operations Research & Management Science SC Computer Science; Engineering; Operations Research & Management Science GA CC2NT UT WOS:000350182600009 ER PT J AU Dahms, RN AF Dahms, Rainer N. TI Gradient Theory simulations of pure fluid interfaces using a generalized expression for influence parameters and a Helmholtz energy equation of state for fundamentally consistent two-phase calculations SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Gradient Theory; Interfacial tension; Influence parameter; Equation of state; Pure fluid; Metastability ID UNDERSTANDING IGNITION PROCESSES; FLAME FRONT PROPAGATION; LARGE-EDDY SIMULATION; SURFACE-TENSION; BINARY-MIXTURES; NONUNIFORM SYSTEM; HIGH-PRESSURE; MOLECULAR THEORY; ENGINES; COMBUSTION AB The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phase components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. The new model preserves the accuracy of previous temperature-dependent expressions, remains well-defined at supercritical temperatures, and is fully suitable for calculations of general multi-component two-phase interfaces. (C) 2015 Published by Elsevier Inc. C1 Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Dahms, RN (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969,MS 9051, Livermore, CA 94551 USA. EM Rndahms@sandia.gov FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy; United States Department of Energy [DE-AC04-94-AL85000] FX This research was funded by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy. Sandia National Laboratories is a mutiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. This research was performed at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. I thank Dr. Eric W. Lemmon of NIST, Boulder, for his assistance and suggestions during the development of the presented framework. NR 78 TC 4 Z9 4 U1 1 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 EI 1095-7103 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD MAY 1 PY 2015 VL 445 BP 48 EP 59 DI 10.1016/j.jcis.2014.12.069 PG 12 WC Chemistry, Physical SC Chemistry GA CC0DT UT WOS:000350006700007 PM 25596368 ER PT J AU Bamgbade, BA Wu, Y Burgess, WA Tapriyal, D Gamwo, IK Baled, HO Enick, RM McHugh, MA AF Bamgbade, Babatunde A. Wu, Yue Burgess, Ward A. Tapriyal, Deepak Gamwo, Isaac K. Baled, Hseen O. Enick, Robert M. McHugh, Mark A. TI Measurements and modeling of high-temperature, high-pressure density for binary mixtures of propane with n-decane and propane with n-eicosane SO JOURNAL OF CHEMICAL THERMODYNAMICS LA English DT Article DE Density; Hydrocarbon mixture; High pressure; HTHP; PC-SAFT; Propane ID EQUATION-OF-STATE; PERTURBED-CHAIN SAFT; MPA; PREDICTION; GASES AB Binary mixture density data are reported for propane (C-3) with n-decane (C-10) and with n-eicosane (C-20) at T = (320 to 525) K and pressures to 265 MPa. The (C-3 + C-10) mixture density data are in good agreement with available literature data to 70 MPa, which is the maximum reported literature pressure. There are no available binary mixture density data to compare to the (C-3 + C-20) mixture density data reported in the present study. The mixture density data are correlated with the Tait equation to facilitate interpolation of the data at different experimental conditions. Equations of state that are suitable for reservoir simulations are used to model the reported data. These models include the Peng-Robinson equation of state (PREoS), a volume-translated PREoS fit to high temperature, high pressure (HTHP) pure component density data, the PC-SAFT EoS, and modifications of the PC-SAFT EoS developed for better representation of HTHP data. The models give superior density predictions for (C-3 + C-10) mixtures compared to (C-3 + C-20) mixtures. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Bamgbade, Babatunde A.; Wu, Yue; Burgess, Ward A.; Tapriyal, Deepak; Gamwo, Isaac K.; Baled, Hseen O.; Enick, Robert M.; McHugh, Mark A.] US DOE, Natl Energy Technol Lab, Off Res & Dev, Pittsburgh, PA 15236 USA. [Bamgbade, Babatunde A.; Wu, Yue; McHugh, Mark A.] Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Richmond, VA 23284 USA. [Tapriyal, Deepak] URS, Pittsburgh, PA USA. [Baled, Hseen O.; Enick, Robert M.] Univ Pittsburgh, Swanson Sch Engn, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. RP Bamgbade, BA (reprint author), VCU, Dept Chem & Life Sci Engn, 601 West Main St, Richmond, VA 23220 USA. EM bamgbadeba@vcu.edu FU Strategic Center for Natural Gas and Oil under RES contract [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's Office of Research and Development support of the Strategic Center for Natural Gas and Oil under RES contract DE-FE0004000. NR 25 TC 3 Z9 3 U1 4 U2 30 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0021-9614 EI 1096-3626 J9 J CHEM THERMODYN JI J. Chem. Thermodyn. PD MAY PY 2015 VL 84 BP 108 EP 117 DI 10.1016/j.jct.2014.12.015 PG 10 WC Thermodynamics; Chemistry, Physical SC Thermodynamics; Chemistry GA CB9OM UT WOS:000349961200014 ER PT J AU Akashi-Ronquest, M Amaudruz, PA Batygov, M Beltran, B Bodmer, M Boulay, MG Broerman, B Buck, B Butcher, A Cai, B Caldwell, T Chen, M Chen, Y Cleveland, B Coakley, K Dering, K Duncan, FA Formaggio, JA Gagnon, R Gastler, D Giuliani, F Gold, M Golovko, VV Gorel, P Graham, K Grace, E Guerrero, N Guiseppe, V Hallin, AL Harvey, P Hearns, C Henning, R Hime, A Hofgartner, J Jaditz, S Jillings, CJ Kachulis, C Kearns, E Kelsey, J Klein, JR Kuzniak, M LaTorre, A Lawson, I Li, O Lidgard, JJ Liimatainen, P Linden, S McFarlane, K McKinsey, DN MacMullin, S Mastbaum, A Mathew, R McDonald, AB Mei, DM Monroe, J Muir, A Nantais, C Nicolics, K Nikkel, JA Noble, T O'Dwyer, E Olsen, K Gann, GDO Ouellet, C Palladino, K Pasuthip, P Perumpilly, G Pollmann, T Rau, P Retiere, F Rielage, K Schnee, R Seibert, S Skensved, P Sonley, T Vazquez-Jauregui, E Veloce, L Walding, J Wang, B Wang, J Ward, M Zhang, C AF Akashi-Ronquest, M. Amaudruz, P. -A. Batygov, M. Beltran, B. Bodmer, M. Boulay, M. G. Broerman, B. Buck, B. Butcher, A. Cai, B. Caldwell, T. Chen, M. Chen, Y. Cleveland, B. Coakley, K. Dering, K. Duncan, F. A. Formaggio, J. A. Gagnon, R. Gastler, D. Giuliani, F. Gold, M. Golovko, V. V. Gorel, P. Graham, K. Grace, E. Guerrero, N. Guiseppe, V. Hallin, A. L. Harvey, P. Hearns, C. Henning, R. Hime, A. Hofgartner, J. Jaditz, S. Jillings, C. J. Kachulis, C. Kearns, E. Kelsey, J. Klein, J. R. Kuzniak, M. LaTorre, A. Lawson, I. Li, O. Lidgard, J. J. Liimatainen, P. Linden, S. McFarlane, K. McKinsey, D. N. MacMullin, S. Mastbaum, A. Mathew, R. McDonald, A. B. Mei, D. -M. Monroe, J. Muir, A. Nantais, C. Nicolics, K. Nikkel, J. A. Noble, T. O'Dwyer, E. Olsen, K. Gann, G. D. Orebi Ouellet, C. Palladino, K. Pasuthip, P. Perumpilly, G. Pollmann, T. Rau, P. Retiere, F. Rielage, K. Schnee, R. Seibert, S. Skensved, P. Sonley, T. Vazquez-Jauregui, E. Veloce, L. Walding, J. Wang, B. Wang, J. Ward, M. Zhang, C. TI Improving photoelectron counting and particle identification in scintillation detectors with Bayesian techniques SO ASTROPARTICLE PHYSICS LA English DT Article DE Dark matter; Neutrino; Pulse-shape discrimination; Liquid argon ID LIQUID ARGON AB Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector. (C) 2014 Elsevier B.V. All rights reserved. C1 [Beltran, B.; Gorel, P.; Hallin, A. L.; Olsen, K.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2R3, Canada. [Gastler, D.; Kachulis, C.; Kearns, E.; Linden, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Gann, G. D. Orebi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Batygov, M.; Graham, K.; McFarlane, K.; Ouellet, C.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Batygov, M.; Cleveland, B.; Duncan, F. A.; Jillings, C. J.] Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. [Akashi-Ronquest, M.; Hime, A.; Rielage, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Buck, B.; Formaggio, J. A.; Guerrero, N.; Jaditz, S.; Kelsey, J.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Coakley, K.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Bodmer, M.; Giuliani, F.; Gold, M.; Wang, J.] Univ New Mexico, Albuquerque, NM 87131 USA. [Henning, R.; MacMullin, S.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Hime, A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Caldwell, T.; Klein, J. R.; LaTorre, A.; Mastbaum, A.; Seibert, S.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Boulay, M. G.; Broerman, B.; Cai, B.; Chen, M.; Dering, K.; Gagnon, R.; Golovko, V. V.; Harvey, P.; Hearns, C.; Kuzniak, M.; Lidgard, J. J.; Mathew, R.; McDonald, A. B.; Nicolics, K.; Noble, T.; O'Dwyer, E.; Pasuthip, P.; Rau, P.; Skensved, P.; Sonley, T.; Veloce, L.; Ward, M.] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada. [Butcher, A.; Grace, E.; Monroe, J.; Nikkel, J. A.; Walding, J.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Cleveland, B.; Duncan, F. A.; Hofgartner, J.; Jillings, C. J.; Lawson, I.; Li, O.; Liimatainen, P.; Nantais, C.; Palladino, K.; Vazquez-Jauregui, E.] SNOLAB Inst, Lively, ON P3Y 1N2, Canada. [Guiseppe, V.; Mei, D. -M.; Perumpilly, G.] Univ S Dakota, Dept Phys, Vermillion, SD 57069 USA. [Chen, Y.; Schnee, R.; Wang, B.; Zhang, C.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Henning, R.; MacMullin, S.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Amaudruz, P. -A.; Muir, A.; Retiere, F.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [McKinsey, D. N.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Caldwell, T (reprint author), Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. EM tcald@hep.upenn.edu RI Kuzniak, Marcin/A-3053-2015; OI Kuzniak, Marcin/0000-0001-9632-9115; Rielage, Keith/0000-0002-7392-7152 FU United States Department of Energy, Office of High Energy Physics; Canadian Foundation for Innovation; Natural Sciences and Engineering Research Council FX This work has in part been supported by the United States Department of Energy, Office of High Energy Physics.; Support for DEAP-1 has been provided by the Canadian Foundation for Innovation and the Natural Sciences and Engineering Research Council. The High Performance Computing Virtual Laboratory (HPCVL) has provided us with CPU time, data storage, and support. We would also like to thank the SNOLAB staff for on-site support. The work of our co-op and summer students, including Christopher Stanford who operated DEAF-1 during the data-taking in this paper, is gratefully acknowledged. NR 22 TC 1 Z9 1 U1 4 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAY PY 2015 VL 65 BP 40 EP 54 DI 10.1016/j.astropartphys.2014.12.006 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB6GK UT WOS:000349725300004 ER PT J AU Newman, JA Abate, A Abdalla, FB Allam, S Allen, SW Ansari, R Bailey, S Barkhouse, WA Beers, TC Blanton, MR Brodwin, M Brownstein, JR Brunner, RJ Kind, MC Cervantes-Cota, JL Cheu, E Chisari, NE Colless, M Comparat, J Coupons, J Cunha, CE de la Macorra, A Dell'Antonio, IP Frye, BL Gawiser, EJ Gehrels, N Grady, K Hagen, A Hall, PB Hearin, AP Hildebrand, H Hirata, CM Ho, S Honscheid, K Huterer, D Ivezic, Z Kneib, JP Kruk, JW Lahav, O Mandelbaum, R Marshall, JL Matthews, DJ Menard, B Miguel, R Moniez, M Moos, HW Moustakas, J Myers, AD Papovich, C Peacock, JA Park, C Rahman, M Rhodes, J Ricol, JS Sadeh, I Slozar, A Schmidt, SJ Stern, DK Tyson, JA von der Linden, A Wechsler, RH Wood-Vasey, WM Zentner, AR AF Newman, Jeffrey A. Abate, Alexandra Abdalla, Filipe B. Allam, Sahar Allen, Steven W. Ansari, Reza Bailey, Stephen Barkhouse, Wayne A. Beers, Timothy C. Blanton, Michael R. Brodwin, Mark Brownstein, Joel R. Brunner, Robert J. Kind, Matias Carrasco Cervantes-Cota, Jorge L. Cheu, Elliott Chisari, Nora Elisa Colless, Matthew Comparat, Johan Coupons, Jean Cunha, Carlos E. de la Macorra, Axel Dell'Antonio, Ian P. Frye, Brenda L. Gawiser, Eric J. Gehrels, Neil Grady, Kevin Hagen, Alex Hall, Patrick B. Hearin, Andew P. Hildebrand, Hendrik Hirata, Christopher M. Ho, Shirley Honscheid, Klaus Huterer, Dragan Ivezic, Zeljko Kneib, Jean-Paul Kruk, Jeffrey W. Lahav, Ofer Mandelbaum, Rachel Marshall, Jennifer L. Matthews, Daniel J. Menard, Brice Miguel, Ramon Moniez, Marc Moos, H. W. Moustakas, John Myers, Adam D. Papovich, Casey Peacock, John A. Park, Changbom Rahman, Mubdi Rhodes, Jason Ricol, Jean-Stephane Sadeh, Iftach Slozar, Anze Schmidt, Samuel J. Stern, Daniel K. Tyson, J. Anthony von der Linden, Anja Wechsler, Risa H. Wood-Vasey, W. M. Zentner, Andrew R. TI Spectroscopic needs for imaging dark energy experiments (vol 63, pg 81, 2015) SO ASTROPARTICLE PHYSICS LA English DT Correction C1 [Newman, Jeffrey A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Newman, Jeffrey A.] Univ Pittsburgh, PITT PACC, Pittsburgh, PA 15260 USA. [Abate, Alexandra] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Abdalla, Filipe B.] UCL, Dept Phys & Astron, Astrophys Grp, London WC1E 6BT, England. [Allam, Sahar] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Allen, Steven W.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Ansari, Reza] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Bailey, Stephen] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Barkhouse, Wayne A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Beers, Timothy C.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Beers, Timothy C.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Blanton, Michael R.] NYU, Dept Phys, New York, NY 10003 USA. [Brodwin, Mark] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Brownstein, Joel R.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Brownstein, Joel R.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Brunner, Robert J.] Inst Nacl Invest Nucl, Mexico City 11801, DF, Mexico. [Kind, Matias Carrasco] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Cervantes-Cota, Jorge L.] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia. [Cheu, Elliott] UAM, CSIC, E-28049 Madrid, Spain. [Chisari, Nora Elisa] Univ Geneva, Astron Observ, CH-1290 Versoix, Switzerland. [Colless, Matthew] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Comparat, Johan] Univ Nacl Autonoma Mexico, Dept Fis Teor, Mexico City, DF, Mexico. [Comparat, Johan] Univ Nacl Autonoma Mexico, IAC, Mexico City, DF, Mexico. [Coupons, Jean] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Cunha, Carlos E.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Cunha, Carlos E.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [de la Macorra, Axel] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Dell'Antonio, Ian P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 2077 USA. [Frye, Brenda L.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gawiser, Eric J.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Gehrels, Neil] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT USA. [Grady, Kevin] Argelander Inst Astron, D-53121 Bonn, Germany. [Hagen, Alex] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Hearin, Andew P.] Carnegie Mellon Univ, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Hildebrand, Hendrik] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Hirata, Christopher M.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Hirata, Christopher M.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Ho, Shirley] EPFL, Observ Sauverny, Astrophys Lab, CH-1290 Versoix, Switzerland. [Honscheid, Klaus] Univ Aix Marseille, LAM, F-13388 Marseille, France. [Honscheid, Klaus] CNRS, UMR7326, F-13388 Marseille, France. [Huterer, Dragan] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Ivezic, Zeljko] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Kneib, Jean-Paul] Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. [Kruk, Jeffrey W.] Siena Coll, Dept Phys & Astron, Loudonville, NY 12211 USA. [Marshall, Jennifer L.; Menard, Brice] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Miguel, Ramon; Moniez, Marc; Moos, H. W.] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Menard, Brice; Moniez, Marc; Moos, H. W.] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea. [Moos, H. W.; Moustakas, John; Myers, Adam D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Papovich, Casey; Peacock, John A.] Lab Phys Subatom & Cosmol Grenoble, F-38026 Grenoble, France. [Park, Changbom; Rahman, Mubdi; Rhodes, Jason; Ricol, Jean-Stephane] Brookhaven Natl Lab, Upton, NY 11973 USA. [Ricol, Jean-Stephane; Sadeh, Iftach; Slozar, Anze; Schmidt, Samuel J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stern, Daniel K.; Tyson, J. Anthony; von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, Andrew R.] ICREA, E-08010 Barcelona, Spain. RP Newman, JA (reprint author), Univ Pittsburgh, Dept Phys & Astron, 3941 OHara St, Pittsburgh, PA 15260 USA. EM janewman@pitt.edu RI Kneib, Jean-Paul/A-7919-2015; Mandelbaum, Rachel/N-8955-2014; EPFL, Physics/O-6514-2016 OI Kneib, Jean-Paul/0000-0002-4616-4989; Mandelbaum, Rachel/0000-0003-2271-1527; NR 1 TC 0 Z9 0 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD MAY PY 2015 VL 65 BP 112 EP 113 DI 10.1016/j.astropartphys.2014.12.008 PG 2 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CB6GK UT WOS:000349725300012 ER PT J AU Chandrana, CK Neal, JA Platts, D Morgan, B Nath, P AF Chandrana, C. K. Neal, J. A. Platts, D. Morgan, B. Nath, P. TI Automatic alignment of multiple magnets into Halbach cylinders SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Permanent magnet assembly; Halbach array; Finite Element Modeling ID PERMANENT-MAGNET; DESIGN; SPECTROSCOPY AB Halbach cylinders have found various applications for their ability to produce strong and homogenous magnetostatic fields. Contrary to their conventional manual fabrication, we introduce a novel approach to automatically align multiple permanent magnets into a Halbach cylinder. The approach uses the magnetic field distribution from a diametrically magnetized cylindrical magnet to simultaneously align multiple magnets. The extent to which the automatic assembly can approximate a Halbach cylinder was analyzed using 3D Finite Element Modeling. Prototypes were built that demonstrated automatic alignment of eight magnets into Halbach cylinders. Automatic alignment eliminates the complexity of manually aligning Halbach cylinders. Published by Elsevier B.V. C1 [Chandrana, C. K.; Neal, J. A.; Platts, D.; Morgan, B.; Nath, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Nath, P (reprint author), Los Alamos Natl Lab, P-21, Los Alamos, NM 87545 USA. EM pulakn@lanl.gov OI Platts, David/0000-0002-4788-1584 FU Los Alamos National Laboratory's Laboratory Directed Research and Development (LDRD) program [20110166ER] FX This work was supported by Los Alamos National Laboratory's Laboratory Directed Research and Development (LDRD) program (Project #20110166ER). NR 10 TC 2 Z9 2 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD MAY 1 PY 2015 VL 381 BP 396 EP 400 DI 10.1016/j.jmmm.2015.01.011 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA CB1BJ UT WOS:000349361100060 ER PT J AU Bhatia, H Wang, B Norgard, G Pascucci, V Bremer, PT AF Bhatia, Harsh Wang, Bei Norgard, Gregory Pascucci, Valerio Bremer, Peer-Timo TI Local, smooth, and consistent Jacobi set simplification SO COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS LA English DT Article DE Jacobi set; Comparison of scalar functions; Simplification; Morse functions; Smoothness ID MORSE-SMALE COMPLEXES; PERSISTENT HOMOLOGY; REEB GRAPHS; SURFACES; COMPUTATION; MAPS AB The relation between two Morse functions defined on a smooth, compact, and orientable 2-manifold can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the two functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces, have shown to be useful in various applications. In practice, unfortunately, functions often contain noise and discretization artifacts, causing their Jacobi set to become unmanageably large and complex. Although there exist techniques to simplify Jacobi sets, they are unsuitable for most applications as they lack fine-grained control over the process, and heavily restrict the type of simplifications possible. This paper introduces the theoretical foundations of a new simplification framework for Jacobi sets. We present a new interpretation of Jacobi set simplification based on the perspective of domain segmentation. Generalizing the cancellation of critical points from scalar functions to Jacobi sets, we focus on simplifications that can be realized by smooth approximations of the corresponding functions, and show how these cancellations imply simultaneous simplification of contiguous subsets of the Jacobi set. Using these extended cancellations as atomic operations, we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications to some user-defined metric. We show that for simply connected domains, our algorithm reduces a given Jacobi set to its minimal configuration, that is, one with no birth-death points (a birth-death point is a specific type of singularity within the Jacobi set where the level sets of the two functions and the Jacobi set have a common normal direction). (C) 2014 Elsevier B.V. All rights reserved. C1 [Bhatia, Harsh; Wang, Bei; Pascucci, Valerio; Bremer, Peer-Timo] Univ Utah, Sci Comp & Imaging SCI Inst, Salt Lake City, UT 84112 USA. [Bhatia, Harsh; Bremer, Peer-Timo] Ctr Appl Sci Comp, Lawrence Livermore Natl Lab, Livermore, CA USA. [Norgard, Gregory] Numerica Corp, Loveland, CO USA. RP Bhatia, H (reprint author), Univ Utah, Sci Comp & Imaging SCI Inst, Salt Lake City, UT 84112 USA. EM hbhatia@sci.utah.edu FU BNSF CISE [ACI-0904631]; NSG [IIS-1045032, ACI-0906379]; DOE/NEUP [120341]; DOE/Codesign [P01180734]; DOE/SciDAC [DESC0007446]; CCMSC [DE-NA0002375, DE-EE0004449]; Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344, LLNL-JRNL-662444] FX We thank Attila Gyulassy for insightful discussions during the early stage of this work. We are also thankful to the anonymous reviewers whose feedback helped us improve this article. This work is supported in part by BNSF CISE ACI-0904631, NSG IIS-1045032, NSF EFT ACI-0906379, DOE/NEUP 120341, DOE/Codesign P01180734, DOE/SciDAC DESC0007446, CCMSC DE-NA0002375 and DE-EE0004449. This work was performed under the auspices of the US Department of Energy (DOE) by Lawrence Livermore National Laboratory (LLNL) under contract DE-AC52-07NA27344. LLNL-JRNL-662444. NR 41 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-7721 EI 1879-081X J9 COMP GEOM-THEOR APPL JI Comput. Geom.-Theory Appl. PD MAY PY 2015 VL 48 IS 4 BP 311 EP 332 DI 10.1016/j.comgeo.2014.10.009 PG 22 WC Mathematics, Applied; Mathematics SC Mathematics GA CA5PK UT WOS:000348960100002 ER PT J AU Miranda, BC Chimentao, RJ Szanyi, J Braga, AH Santos, JBO Gispert-Guirado, F Llorca, J Medina, F AF Miranda, B. C. Chimentao, R. J. Szanyi, J. Braga, A. H. Santos, J. B. O. Gispert-Guirado, F. Llorca, J. Medina, F. TI Influence of copper on nickel-based catalysts in the conversion of glycerol SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Hydrogenolysis; Dehydration; Glycerol; Nickel; Copper ID NI-CU/AL2O3 CATALYSTS; BIMETALLIC CATALYSTS; HYDROGEN-PRODUCTION; ALUMINA CATALYSTS; NI/AL2O3 CATALYST; METHANE; 1,2-PROPANEDIOL; CARBON; DEPOSITION; ETHANOL AB The catalytic transformation of glycerol to value-added compounds was investigated over bimetallic Ni-Cu/gamma-Al2O3 catalysts with Ni/Cu atomic ratios of 8/1, 4/1, 2/1, 1/1, 1/2, 1/4, and 1/8. XPS analysis revealed that the surface composition of the catalyst exhibited progressive enrichment of Cu as its content in the catalyst increased. H-2-chemisorption indicated that the total number of exposed Ni atoms decreased as the Cu content increased. As a result, deep hydrogenolysis to produce CH4 was inhibited by the addition of Cu to the Ni catalyst, yielding higher selectivity toward the dehydration products of glycerol such as hydroxyacetone. FTIR spectra of adsorbed CO reveal that Cu asserts both geometric and electronic effects on the adsorption properties of Ni. The geometrical effect is visualized by the progressive disappearance of the bridge bound adsorbed CO on metallic Ni by the incorporation of Cu. This suggests that the deep hydrogenolysis of glycerol to CH4 formation requires an ensemble of adjacent active Ni atoms. The electronic effect of Cu on Ni is indicated by the red shift of the IR peak of adsorbed CO as the Cu content increases. The electronic interaction between Cu and Ni species was also substantiated by XANES results. HTREM revealed metal particles very well distributed on the support with particle size of 1.5 to 5 nm. The Ni Cu samples were not a total intermetallic alloys. (C) 2014 Elsevier B.V. All rights reserved. C1 [Miranda, B. C.; Chimentao, R. J.; Gispert-Guirado, F.; Medina, F.] Univ Rovira & Virgili, E-43007 Tarragona, Spain. [Miranda, B. C.] Univ Costa Rica, San Jose 2060, Costa Rica. [Szanyi, J.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Braga, A. H.; Santos, J. B. O.] Univ Fed Sao Carlos, Dept Engn Quim, BR-13560 Sao Carlos, SP, Brazil. [Llorca, J.] Univ Politecn Cataluna, Inst Tecn Energet, Barcelona, Spain. [Chimentao, R. J.] Yachay Tech, Sch Chem, Yachay City Knowledge, Urcuqui, Ecuador. RP Chimentao, RJ (reprint author), Univ Rovira & Virgili, E-43007 Tarragona, Spain. EM rchimenton@yachaytech.edu.ec RI Braga, Adriano/C-8606-2016; Medina Cabello, Francesc/F-9370-2015; OI Braga, Adriano/0000-0003-4227-6550; Medina Cabello, Francesc/0000-0002-3111-1542; Llorca, Jordi/0000-0002-7447-9582 FU Universitat Rovira i Virgili (URV); Universidad de Costa Rica (UCR); Ministry of Science and Technology of Spain [JCI-2010-07328]; US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; DOE Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL); US DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX B.C. Miranda gratefully acknowledges the Universitat Rovira i Virgili (URV) and Universidad de Costa Rica (UCR) for the financial support. We also would like to acknowledge European Synchrotron Radiation Facility (ESRF) and Brazilian National Laboratory Light Synchrotron (LNLS) for the user facilities for XRD and XANES measurements, respectively. Thanks for Ministry of Science and Technology of Spain for the financial support for the Juan de la Cierva program (JCI-2010-07328). We also would like to acknowledge Dr. German Castro, Dr. Ivan da Silva and Dr. Alvaro Munoz for the technical support offered at the ESRF (experiment MA-1525). JS gratefully acknowledges the support of this work by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. The research related to the FTIR of adsorption of CO (Proposal 48209) was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830. NR 64 TC 7 Z9 7 U1 11 U2 138 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 EI 1873-3883 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD MAY PY 2015 VL 166 BP 166 EP 180 DI 10.1016/j.apcatb.2014.11.019 PG 15 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA CA2QW UT WOS:000348753400019 ER PT J AU Ruggeri, MP Nova, I Tronconi, E Pihl, JA Toops, TJ Partridge, WP AF Ruggeri, Maria Pia Nova, Isabella Tronconi, Enrico Pihl, Josh A. Toops, Todd J. Partridge, William P. TI In-situ DRIFTS measurements for the mechanistic study of NO oxidation over a commercial Cu-CHA catalyst SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Cu-chabazite; NO oxidation; NH3 SCR mechanism; Nitrates; Nitrosonium ions ID FAST SCR REACTION; NITROGEN-OXIDES; STRUCTURE REFINEMENT; ZEOLITE CATALYSTS; LOW-TEMPERATURE; NH3 SCR; REDUCTION; FTIR; CU-SSZ-13; IDENTIFICATION AB We report a mechanistic DRIFTS in-situ study of NO2, NO + O-2 and NO adsorption on a commercial Cu-CHA catalyst for NH3-SCR of NOx. Both pre-reduced and pre-oxidized catalyst samples were investigated with the aim of clarifying mechanistic aspects of the NO oxidation to NO2 as a preliminary step towards the study of the Standard SCR reaction mechanism at low temperatures. Nitrosonium cations (NO+, N formal oxidation state = +3) were identified as key surface intermediates in the process of NO (+2) oxidation to NO2 (+4) and nitrates (+5). While NO+ and nitrates were formed simultaneously upon catalyst exposure to NO2, nitrates evolved consecutively to NO+ when the catalyst was exposed to NO + O-2, suggesting that nitrite-like species, and not NO2, are formed as the primary products of the NO oxidative activation over Cu-CHA. Upon catalyst exposure to NO only, i.e. in the absence of gaseous O-2, NO+ and then nitrates were formed on a pre-oxidized sample but not on a pre-reduced one, which demonstrates the red-ox nature of the NO oxidation mechanism. The negative effect of H2O on NO+ and nitrates formation was also clearly established. Assuming Cu dimers as the active sites for NO oxidation to NO2, we propose a mechanism which reconciles all the experimental observations. In particular, we show that such a mechanism also explains the observed kinetic effects of H2O, O-2 and NO2 on the NO oxidation activity of the investigated Cu zeolite catalyst. (C) 2014 Elsevier B.V. All rights reserved. C1 [Ruggeri, Maria Pia; Nova, Isabella; Tronconi, Enrico] Politecn Milan, Dipartimento Energia, Lab Catalysis & Catalyt Proc, I-20133 Milan, Italy. [Pihl, Josh A.; Toops, Todd J.; Partridge, William P.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Oak Ridge, TN 37831 USA. RP Tronconi, E (reprint author), Politecn Milan, Dipartimento Energia, Lab Catalysis & Catalyt Proc, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy. EM enrico.tronconi@polimi.it RI nova, isabella/I-2395-2015; Tronconi, Enrico/A-3311-2012; OI nova, isabella/0000-0001-7239-2785; TRONCONI, ENRICO/0000-0002-5472-2696 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX This work is a collaboration between the Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, and Oak Ridge National Laboratory's Fuels, Engines, and Emissions Research Center. This research was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, with Ken Howden and Gurpreet Singh as the Program Managers. NR 44 TC 28 Z9 29 U1 14 U2 158 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 EI 1873-3883 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD MAY PY 2015 VL 166 BP 181 EP 192 DI 10.1016/j.apcatb.2014.10.076 PG 12 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA CA2QW UT WOS:000348753400020 ER PT J AU Mracek, D Koci, P Marek, M Choi, JS Pihl, JA Partridge, WP AF Mracek, David Koci, Petr Marek, Milos Choi, Jae-Soon Pihl, Josh A. Partridge, William P. TI Dynamics of N-2 and N2O peaks during and after the regeneration of lean NOx trap SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE NOx storage catalyst; NOx reduction; N2O formation; N-2 formation; Exhaust gas aftertreatment ID STORAGE-REDUCTION CATALYST; NH3 FORMATION; REDUCING AGENT; FT-IR; H-2; CO; MODEL; PT/BAO/AL2O3; SELECTIVITY; REACTIVITY AB The dynamics and selectivity of N-2 and N2O formation during and after the regeneration of a commercial NOx storage catalyst containing Pt, Pd, Rh, Ba on Ce/Zr, Mg/AI and Al oxides was studied with high-speed FTIR and SpaciMS analyzers. The lean/rich cycling experiments (60s/5 s and 60 s/3 s) were performed in the temperature range 200-400 degrees C, using Hy, CO, and C3H6 individually for the reduction of adsorbed NOx. Isotopically labeled (NO)-N-15 was employed in combination with Ar carrier gas in order to quantify the N-2 product by mass spectrometry. N-2 and N2O products were formed concurrently. The primary peaks appeared immediately after the rich-phase inception, and tailed off with breakthrough of the reductant front (accompanied by NH3 product). Secondary N-2 and N2O peaks appeared at the rich-to-lean transition as a result of reactions between surface-deposited reductants/intermediates (CO, HC, NH3, -NCO) and residual stored NOx. At 200-300 degrees C, up to 30% of N-2 and 50% of N2O products originated from the secondary peaks. The N2O/N-2 selectivity ratio as well as the magnitude of secondary peaks decreased with temperature and duration of the rich phase. Among the three reductants, propene generated secondary N-2 peak up to the highest temperature. The primary N-2 peak exhibited a broadened shoulder aligned with movement of reduction front from the zone where both NOx, and oxygen were stored to the NOx-free zone where only oxygen storage capacity was saturated. N-2 formed in the NOx-free zone originated from reaction of NH3 with stored oxygen, while N2O formation in this zone was very low. (C) 2014 Elsevier B.V. All rights reserved. C1 [Mracek, David; Koci, Petr; Marek, Milos] Inst Chem Technol, Dept Chem Engn, CR-16628 Prague, Czech Republic. [Choi, Jae-Soon; Pihl, Josh A.; Partridge, William P.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Oak Ridge, TN 37831 USA. RP Koci, P (reprint author), Inst Chem Technol, Dept Chem Engn, Tech 5, CR-16628 Prague, Czech Republic. EM petr.koci@vscht.cz; partridgewp@ornl.gov OI Choi, Jae-Soon/0000-0002-8162-4207 FU Czech Ministry of Education [LH 12086]; US Department of Energy (DOE) Vehicle Technologies Office FX This work has been financially supported by the Czech Ministry of Education (Project LH 12086) and the US Department of Energy (DOE) Vehicle Technologies Office (program managers: Gurpreet Singh, Ken Howden and Leo Breton). The co-authors would like to thank Dr. Mi-Young Kim of the ORNL Fuels, Engines and Emissions Research Center for her contributions to the experimental catalyst work. NR 33 TC 7 Z9 7 U1 1 U2 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 EI 1873-3883 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD MAY PY 2015 VL 166 BP 509 EP 517 DI 10.1016/j.apcatb.2014.12.002 PG 9 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA CA2QW UT WOS:000348753400056 ER PT J AU Frank, SM Rebennack, S AF Frank, Stephen M. Rebennack, Steffen TI Optimal design of mixed AC-DC distribution systems for commercial buildings: A Nonconvex Generalized Benders Decomposition approach SO EUROPEAN JOURNAL OF OPERATIONAL RESEARCH LA English DT Article DE Electric power systems; Mixed AC-DC electricity distribution; Global optimization; Nonconvex Generalized Benders; Decomposition (NGBD); Optimal power flow (OPF) ID CONSTRAINED UNIT COMMITMENT; POWER; VOLTAGE; ALGORITHM; PROGRAMS; NETWORK AB Direct current (DC) electricity distribution systems have been proposed as an alternative to traditional, alternating current (AC) distribution systems for commercial buildings. Partial replacement of AC distribution with DC distribution can improve service to DC loads and overall building energy efficiency. This article develops (i) a mixed-integer, nonlinear, nonconvex mathematical programming problem to determine maximally energy efficient designs for mixed AC-DC electricity distribution systems in commercial buildings, and (ii) describes a tailored global optimization algorithm based on Nonconvex Generalized Benders Decomposition. The results of three case studies demonstrate the strength of the decomposition approach compared to state-of-the-art general-purpose global solvers. (C) 2014 Elsevier B.V. All rights reserved. C1 [Frank, Stephen M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Rebennack, Steffen] Colorado Sch Mines, Div Econ & Business, Golden, CO 80401 USA. RP Rebennack, S (reprint author), Colorado Sch Mines, Div Econ & Business, Golden, CO 80401 USA. EM stephen.frank@ieee.org; srebenna@mines.edu FU National Science Foundation [DGE-1057607] FX This article is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant number DGE-1057607. We also thank the anonymous reviewers for their constructive feedback. NR 46 TC 5 Z9 5 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-2217 EI 1872-6860 J9 EUR J OPER RES JI Eur. J. Oper. Res. PD MAY 1 PY 2015 VL 242 IS 3 BP 710 EP 729 DI 10.1016/j.ejor.2014.10.008 PG 20 WC Management; Operations Research & Management Science SC Business & Economics; Operations Research & Management Science GA CA5MU UT WOS:000348953300002 ER PT J AU GopiReddy, LR Tolbert, LM Ozpineci, B AF GopiReddy, Lakshmi Reddy Tolbert, Leon M. Ozpineci, Burak TI Power Cycle Testing of Power Switches: A Literature Survey SO IEEE TRANSACTIONS ON POWER ELECTRONICS LA English DT Article DE Failure mechanisms; lifetime estimation; physics of failure; power cycling; precursor indicators; semiconductor reliability ID IGBT MODULES; HEALTH MANAGEMENT; RELIABILITY; TRACTION; LIFETIME; TECHNOLOGIES; FAILURE; PHYSICS; SYSTEM AB Reliability of power converters and lifetime prediction has been a major topic of research in the last few decades, especially for traction applications. The main failures in high power semiconductors are caused by thermomechanical fatigue. Power cycling and temperature cycling are the two most common thermal acceleration tests used in assessing reliability. The objective of this paper is to study the various power cycling tests found in the literature and to develop generalized steps in planning application specific power cycling tests. A comparison of different tests based on the failures, duration, test circuits, and monitored electrical parameters is presented. C1 [GopiReddy, Lakshmi Reddy; Tolbert, Leon M.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Tolbert, Leon M.] Oak Ridge Natl Lab, Knoxville, TN 37932 USA. [Ozpineci, Burak] Oak Ridge Natl Lab, Power Elect & Elect Machinery Grp, Oak Ridge, TN 37831 USA. [Ozpineci, Burak] Univ Tennessee, Knoxville, TN 37996 USA. RP GopiReddy, LR (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM lgopired@utk.edu; tolbert@utk.edu; burak@ornl.gov OI Ozpineci, Burak/0000-0002-1672-3348; Tolbert, Leon/0000-0002-7285-609X FU Electric Drive Technologies Program of the U.S. Department of Energy (DOE); Engineering Research Center Program of the National Science Foundation; DOE under NSF [EEC-1041877]; CURENT Industry Partnership Program FX This work was supported by the Electric Drive Technologies Program of the U.S. Department of Energy (DOE). This work made use of Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and DOE under NSF Award EEC-1041877 and the CURENT Industry Partnership Program. Recommended for publication by Associate Editor P. de Place Rimmen. NR 56 TC 10 Z9 10 U1 1 U2 28 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8993 EI 1941-0107 J9 IEEE T POWER ELECTR JI IEEE Trans. Power Electron. PD MAY PY 2015 VL 30 IS 5 SI SI BP 2465 EP 2473 DI 10.1109/TPEL.2014.2359015 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA AX5PT UT WOS:000346980000011 ER PT J AU Ream, TS Haag, JR Pontvianne, F Nicora, CD Norbeck, AD Pasa-Tolic, L Pikaard, CS AF Ream, Thomas S. Haag, Jeremy R. Pontvianne, Frederic Nicora, Carrie D. Norbeck, Angela D. Pasa-Tolic, Ljiljana Pikaard, Craig S. TI Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit SO NUCLEIC ACIDS RESEARCH LA English DT Article ID TREACHER-COLLINS-SYNDROME; DIRECTED DNA METHYLATION; TRANSCRIPTION INITIATION; TRYPANOSOMA-BRUCEI; NONCODING RNA; CELL-GROWTH; YEAST; COMPLEX; DIVERSIFICATION; PURIFICATION AB Using affinity purification and mass spectrometry, we identified the subunits of Arabidopsis thaliana multisubunit RNA polymerases I and III (abbreviated as Pol I and Pol III), the first analysis of their physical compositions in plants. In all eukaryotes examined to date, AC40 and AC19 subunits are common to Pol I (a.k.a. Pol A) and Pol III (a.k.a. Pol C) and are encoded by single genes. Surprisingly, A. thaliana and related species express two distinct AC40 paralogs, one of which assembles into Pol I and the other of which assembles into Pol III. Changes at eight amino acid positions correlate with the functional divergence of Pol I- and Pol III-specific AC40 paralogs. Two genes encode homologs of the yeast C53 subunit and either protein can assemble into Pol III. By contrast, only one of two potential C17 variants, and one of two potential C31 variants were detected in Pol III. We introduce a new nomenclature system for plant Pol I and Pol III subunits in which the 12 subunits that are structurally and functionally homologous among Pols I through V are assigned equivalent numbers. C1 [Ream, Thomas S.; Haag, Jeremy R.] Washington Univ, Div Biol & Biomed Sci, St Louis, MO 63130 USA. [Haag, Jeremy R.; Pontvianne, Frederic; Pikaard, Craig S.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. [Haag, Jeremy R.; Pontvianne, Frederic; Pikaard, Craig S.] Indiana Univ, Dept Mol & Cellular Biochem, Bloomington, IN 47405 USA. [Nicora, Carrie D.; Norbeck, Angela D.; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. [Pikaard, Craig S.] Indiana Univ, Howard Hughes Med Inst, Bloomington, IN 47405 USA. RP Pikaard, CS (reprint author), Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. EM cpikaard@indiana.edu OI Pontvianne, frederic/0000-0002-2913-4104 FU National Institutes of Health [GM077590]; Howard Hughes Medical Institute; Gordon and Betty Moore Foundation; National Institutes of Health National Center for Research Resources [RR18522]; United States Department of Energy [DE-AC05-76RL01830] FX National Institutes of Health [GM077590 to C.S.P.]; Howard Hughes Medical Institute [investigator funds to C.S.P.]; Gordon and Betty Moore Foundation [Investigator funds to C.S.P.]; National Institutes of Health National Center for Research Resources [RR18522 to Pacific Northwest National Laboratory]; United States Department of Energy [contract DE-AC05-76RL01830 awarded to Pacific Northwest National Laboratory]. Funding for open access charge: Howard Hughes Medical Institute NR 62 TC 1 Z9 1 U1 2 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD APR 30 PY 2015 VL 43 IS 8 BP 4163 EP 4178 DI 10.1093/nar/gkv247 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA CJ2LV UT WOS:000355317200031 PM 25813043 ER PT J AU Schostag, M Stibal, M Jacobsen, CS Baelum, J Tas, N Elberling, B Jansson, JK Semenchuk, P Prieme, A AF Schostag, Morten Stibal, Marek Jacobsen, Carsten S. Baelum, Jacob Tas, Neslihan Elberling, Bo Jansson, Janet K. Semenchuk, Philipp Prieme, Anders TI Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE permafrost active layer; seasonal variation; bacterial community structure; 16S rRNA gene; Arctic ID SOIL MICROBIAL COMMUNITIES; ARCTIC TUNDRA SOIL; NET CARBON EXCHANGE; RIBOSOMAL-RNA; SP NOV.; CO2 PRODUCTION; THAWING PERMAFROST; SEASONAL-CHANGES; FROZEN SOIL; POND WATER AB The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78 degrees N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10 degrees C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. C1 [Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Elberling, Bo; Semenchuk, Philipp; Prieme, Anders] Univ Copenhagen, Ctr Permafrost, Dept Geosci & Nat Resource Management, Copenhagen, Denmark. [Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.] Geol Survey Denmark & Greenland GEUS, Copenhagen, Denmark. [Schostag, Morten; Prieme, Anders] Univ Copenhagen, Dept Biol, Copenhagen, Denmark. [Jacobsen, Carsten S.] Aarhus Univ, Dept Environm Sci, DK-8000 Aarhus C, Denmark. [Baelum, Jacob] Tech Univ Denmark, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark. [Tas, Neslihan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Berkeley, CA 94720 USA. [Jansson, Janet K.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Semenchuk, Philipp] Univ Tromso, Dept Arctic & Marine Biol, Tromso, Norway. RP Prieme, A (reprint author), Ctr Permafrost, Dept Geosci & Nat Resource Management, Oster Voldgade 10, DK-1350 Copenhagen K, Denmark. EM aprieme@bio.ku.dk RI Elberling, Bo/M-4000-2014; Stibal, Marek/I-3852-2016; Tas, Neslihan/D-1172-2015; Balum, Jacob/I-2353-2013 OI Elberling, Bo/0000-0002-6023-885X; Stibal, Marek/0000-0002-9998-5086; Balum, Jacob/0000-0002-1022-6586 FU Danish National Research Foundation [CENPERM DNRF100] FX This work was possible thanks to funds from the Danish National Research Foundation (CENPERM DNRF100). The authors thank Pia Bach Jacobsen for help and technical support in the laboratory. Karen Cameron is thanked for help with the bioinformatic analyses. NR 89 TC 11 Z9 11 U1 5 U2 44 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD APR 30 PY 2015 VL 6 AR 399 DI 10.3389/fmicb.2015.00399 PG 13 WC Microbiology SC Microbiology GA CI8EP UT WOS:000355002500001 PM 25983731 ER PT J AU Kumar, N Radin, MD Wood, BC Ogitsu, T Siegel, DJ AF Kumar, Nitin Radin, Maxwell D. Wood, Brandon C. Ogitsu, Tadashi Siegel, Donald J. TI Surface-Mediated Solvent Decomposition in Li-Air Batteries: Impact of Peroxide and Superoxide Surface Terminations SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NONAQUEOUS LI-O-2 BATTERIES; DENSITY-FUNCTIONAL THEORY; ORGANIC ELECTROLYTE BATTERY; TOTAL-ENERGY CALCULATIONS; ETHER-BASED ELECTROLYTES; LITHIUM-OXYGEN BATTERY; AUGMENTED-WAVE METHOD; AB-INITIO; CARBONATE ELECTROLYTES; LIQUID ELECTROLYTES AB A viable Li/O-2 battery will require the development of stable electrolytes that do not continuously decompose during cell operation. Recent experiments suggest that reactions occurring at the interface between the liquid electrolyte and the solid lithium peroxide (Li2O2) discharge phase are a major contributor to these instabilities. TO clarify the mechanisms associated With these reactions, a Variety of atomistic simulation techniques; classical Monte Carlo, van der Waals-augmented density functional theory, ab initio molecular dynamics, and various solvation models, are used to Study the initial decomposition of the common electrolyte solvent, dimethoxyethane (DME), on surfaces of Li2O2. Comparisons are made between the two predominant Li2O2 surface charge states by calculating decomposition pathways on peroxide-terminated (O-2(2-)) and superoxide-terminated, (O-2(1-)) facets. For both terminations, DME decomposition, proceeds exothermically via a two-step process comprised of hydrogen abstraction (H-abstraction) followed by nudeophilic attack. In the first step, abstracted H dissociates a surface O-2 dimer, and combines with a dissociated oxygen to form a hydroxide ion (OH-). The remaining surface oxygen then attacks the DME, resulting in a DME fragment that is strongly bound to the-Li2O2 Surface. DME decomposition is predicted to be more exothermic on the peroxide facet; nevertheless, the rate of DME decomposition is faster on the superoxide termination. The impact of solvation (explicit vs implicit) and an applied electric field on the reaction energetics are investigated. Our calculations suggest that surface-mediated electrolyte decomposition should out-phase liquid-phase processes such as solvent auto-oxidation by dissolved O-2. C1 [Kumar, Nitin; Siegel, Donald J.] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Radin, Maxwell D.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Siegel, Donald J.] Univ Michigan, Appl Phys Program, Ann Arbor, MI 48109 USA. [Wood, Brandon C.; Ogitsu, Tadashi] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Siegel, DJ (reprint author), Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. EM djsiege@umich.edu RI Siegel, Donald/B-4048-2013 OI Siegel, Donald/0000-0001-7913-2513 FU U.S. Department of Energy's U.S. China Clean Energy Research Center for Clean Vehicles (CERC-CVC) [DE-PI0000012]; LLNL Laboratory Directed Research and Development [12-ER-053]; U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX This work was supported by the U.S. Department of Energy's U.S. China Clean Energy Research Center for Clean Vehicles (CERC-CVC), Grant No. DE-PI0000012. B.C.W. acknowledges support from the LLNL Laboratory Directed Research and Development Grant 12-ER-053. Computing support came from the LLNL Institutional Computing Grand Challenge program. Part of work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. The authors also thank Dr. Erik Draeger for his assistance with QBox and Dr. Kevin Leung for useful feedback. NR 77 TC 12 Z9 12 U1 4 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2015 VL 119 IS 17 BP 9050 EP 9060 DI 10.1021/acs.jpcc.5b00256 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CH3KX UT WOS:000353930700008 ER PT J AU Kerisit, S Zarzycki, P Rosso, KM AF Kerisit, Sebastien Zarzycki, Piotr Rosso, Kevin M. TI Computational Molecular Simulation of the Oxidative Adsorption of Ferrous Iron at the Hematite (001)-Water Interface SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; GAUSSIAN-BASIS SETS; ELECTRON-TRANSFER; METAL-IONS; AB-INITIO; ATOMISTIC SIMULATION; FE(II) ADSORPTION; FREE-ENERGY; SURFACE-STRUCTURE; WATER INTERFACES AB The interaction of Fe(II) with ferric oxide/oxyhydroxide phases is central to the biogeochemical redox chemistry of iron. Molecular simulation techniques were employed to determine the mechanisms and quantify the rates of Fe(II) oxidative adsorption at the hematite (001)-water interface. Molecular dynamics potential of mean force calculations of Fe(II) adsorbing on the hematite-surface revealed the presence of three free energy minima corresponding. to Fe(II) adsorbed in an outer-sphere complex, a monodentate inner-sphere complex, and a tridentate inner-sphere complex. The free energy barrier for adsorption from the outer-sphere position to the monodentate inner-sphere site was calculated to be similar to the activation enthalpy for water exchange around aqueous Fe(II). Adsorption at both inner-sphere sites Was predicted to be unfavorable unless accompanied, by release of protons. Molecular dynamics umbrella sampling simulations and ab initio cluster calculations were performed to determine the rates of electron transfer from Fe(II) adsorbed as an inner-sphere and outer-sphere complex. The electron transfer rates were calculated to range from 10(-4) to 10(2) s(-1), depending on the adsorption Site and the potential parameter set, and were generally slower than those obtained in the bulk hematite lattice. The most reliable estimate of the rate of electron transfer from Fe(II) adsorbed as an outer-sphere complex to lattice Fe(III) was commensurate with the rate of adsorption as an inner-sphere complex, suggesting that adsorption does not necessarily need to precede oxidation. C1 [Kerisit, Sebastien; Rosso, Kevin M.] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99354 USA. [Zarzycki, Piotr] Polish Acad Sci, Inst Phys Chem, Warsaw, Poland. RP Kerisit, S (reprint author), Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99354 USA. EM sebastien.kerisit@pnnl.gov OI Zarzycki, Piotr/0000-0003-3891-7159 FU Geosciences Research Program in the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; Polish Ministry of Science and Higher Education [MNiSW IP2012059872]; U.S. Department of Energy's Office of Biological and Environmental Research (OBER); DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX The authors acknowledge the two anonymous reviewers for their insightful comments. This research was supported by the Geosciences Research Program in the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. P.Z. also acknowledges the Polish Ministry of Science and Higher Education (Grant MNiSW IP2012059872). The computer simulations were performed in part using the Molecular Science Computing (MSC) facilities in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research (OBER) and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by Battelle Memorial Institute under Contract DE-AC05-76RL01830. NR 92 TC 5 Z9 6 U1 12 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2015 VL 119 IS 17 BP 9242 EP 9252 DI 10.1021/jp512422h PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CH3KX UT WOS:000353930700030 ER PT J AU Yue, YF Rabone, JA Liu, HJ Mahurin, SM Li, MR Wang, HL Lu, ZL Chen, BL Wang, JH Fang, YX Dai, S AF Yue, Yanfeng Rabone, Jeremy A. Liu, Hongjun Mahurin, Shannon M. Li, Man-Rong Wang, Hailong Lu, Zhengliang Chen, Banglin Wang, Jihang Fang, Youxing Dai, Sheng TI A Flexible Metal-Organic Framework: Guest Molecules Controlled Dynamic Gas Adsorption SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RAY-POWDER DIFFRACTION; CARBON-DIOXIDE; COORDINATION POLYMERS; CO2 ADSORPTION; SEPARATION; SORPTION; CRYSTAL; MIL-53; SIMULATION; CAPTURE AB A flexible metal-organic framework (MOF) of [Zn-3(btca)(2)(OH)(2)]center dot(guest)(n) (H(2)btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N-2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highly selective adsorption of CO2/N-2, CO2/Ar, and CO2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. This class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices. C1 [Yue, Yanfeng; Liu, Hongjun; Mahurin, Shannon M.; Fang, Youxing; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Li, Man-Rong] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. [Yue, Yanfeng; Wang, Hailong; Chen, Banglin] Univ Texas San Antonio, Dept Chem, San Antonio, TX 78249 USA. [Lu, Zhengliang] Univ Jinan, Sch Chem & Chem Engn, Jinan 250022, Peoples R China. [Wang, Jihang] Cornell Coll, Dept Chem, Mt Vernon, IA 52314 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Chen, Banglin] King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah 22254, Saudi Arabia. RP Mahurin, SM (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM mahurinsm@ornl.gov; banglin.chen@utsa.edu; dais@ornl.gov RI Li, Man-Rong/D-1697-2012; Chen, Banglin/F-5461-2010; Dai, Sheng/K-8411-2015; Liu, Hongjun /A-2100-2012; fang, youxing/K-1972-2016 OI Li, Man-Rong/0000-0001-8424-9134; Chen, Banglin/0000-0001-8707-8115; Dai, Sheng/0000-0002-8046-3931; Liu, Hongjun /0000-0003-3326-2640; FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geo-sciences, and Biosciences Division; Welch foundation [AX-1730] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geo-sciences, and Biosciences Division. B.C. was supported by the Welch foundation (AX-1730). NR 59 TC 17 Z9 17 U1 11 U2 125 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2015 VL 119 IS 17 BP 9442 EP 9449 DI 10.1021/acs.jpcc.5b02359 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CH3KX UT WOS:000353930700050 ER PT J AU Liu, ZM Destouches, N Vitrant, G Lefkir, Y Epicier, T Vocanson, F Bakhti, S Fang, YG Bandyopadhyay, B Ahmed, M AF Liu, Zeming Destouches, Nathalie Vitrant, Guy Lefkir, Yaya Epicier, Thierry Vocanson, Francis Bakhti, Said Fang, Yigang Bandyopadhyay, Biswajit Ahmed, Musahid TI Understanding the Growth Mechanisms of Ag Nanoparticles Controlled by Plasmon-Induced Charge Transfers in Ag-TiO2 Films SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SILVER NANOPARTICLES; TIO2 FILMS; GOLD NANOPARTICLES; VISIBLE-LIGHT; MULTICOLOR PHOTOCHROMISM; GENERATION; HYDROGEN; TITANIA; SIZE; PHOTOCATALYSIS AB Mesoporous thin films of TiO2 doped with silver can undergo spectacular microstructural modifications upon laser scanning at visible wavelengths through the excitation of a localized surface plasmon resonance in Ag nanoparticles (NPs). The latter can result in competitive physicochemical mechanisms, leading either to the shrinkage or to the growth of NPs depending on the exposure conditions. Contrary to intuition, we provide evidence that the speed of the laser scan controls the size of NPs as follows: low speeds lead to silver oxidation and a decrease in the NP size, whereas high speeds induce rapid temperature rises and a spectacular growth of NPs. Both regimes are separated by a speed threshold that depends on extrinsic and intrinsic parameters such as laser power, beam diameter, and initial size of Ag NPs. We propose here a comprehensive model based on a set of coupled differential equations describing the transformations of silver under laser excitation between the Ag-0, Ag+, and metallic NP states, which provides a convincing physicochemical explanation of the experimental findings. This study constitutes a significant advance in the understanding of oxidationreduction processes involved during laser exposure of metallic NPs and opens new directions to control their growth rate and their final size. C1 [Liu, Zeming; Destouches, Nathalie; Lefkir, Yaya; Vocanson, Francis; Bakhti, Said] Univ St Etienne, Lab Hubert Curien, UMR 5516, Univ Lyon,CNRS, F-42000 St Etienne, France. [Vitrant, Guy] Grenoble INP, Minatec, IMEP LAHC, CNRS UMR 5130, F-38016 Grenoble, France. [Epicier, Thierry] Univ Lyon, INSA Lyon, UMR CNRS 5510, MATEIS, F-69621 Villeurbanne, France. [Fang, Yigang; Bandyopadhyay, Biswajit; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Destouches, N (reprint author), Univ St Etienne, Lab Hubert Curien, UMR 5516, Univ Lyon,CNRS, 18 Rue Pr Lauras, F-42000 St Etienne, France. EM nathalie.destouches@univ-st-etienne.fr; guy.vitrant@minatec.grenoble-inp.fr RI Fang, Yigang/E-1403-2014; Ahmed, Musahid/A-8733-2009 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; France by ANR [PHOTOFLEX 12-NANO-0006, ANR-10-LABX-0075, ANR-11-IDEX-0007] FX N.D. is grateful to Ali Belkacem, from the Chemical Sciences Division (CSD), Berkeley, for fruitful discussions and his support to initiate this joint work. She also thanks Selim Alayoglu and Robert Schoenlein, from the CSD, for their valuable assistance. MA, B.B., Y.F, and N.D.'s work at Berkeley, USA, was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. This work was funded in France by ANR in the framework of project PHOTOFLEX 12-NANO-0006 and programs ANR-10-LABX-0075 and ANR-11-IDEX-0007. We thank CLYM (www.clym.fr) for access to the Jeol 2010F TEM. NR 52 TC 6 Z9 6 U1 7 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2015 VL 119 IS 17 BP 9496 EP 9505 DI 10.1021/acs.jpcc.5b01350 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CH3KX UT WOS:000353930700056 ER PT J AU Spencer, EC Ross, NL Olsen, RE Huang, BY Kolesnikov, AI Woodfield, BF AF Spencer, Elinor C. Ross, Nancy L. Olsen, Rebecca E. Huang, Baiyu Kolesnikov, Alexander I. Woodfield, Brian F. TI Thermodynamic Properties of alpha-Fe2O3 and Fe3O4 Nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NEUTRON-SCATTERING; MAGNETIC-FIELD; HEAT-CAPACITIES; IRON-OXIDES; WATER; SURFACE; HEMATITE; SIZE; MINERALS; DYNAMICS AB The thermodynamic properties of hydrated alpha-Fe2O3 (hematite) and Fe3O4 (magnetite) nanoparticles have been comprehensively assessed. In addition to 9 nm Fe3O4, three alpha-Fe2O3 nanoparticles samples of different sizes (11, 14, and 25 nm) and bulk alpha-Fe2O3 have been evaluated by inelastic neutron scattering methods. The contribution of the two-level magnetic spin flip transition to the heat capacity of the alpha-Fe2O3 particles has been determined. The isochoric heat capacity of the water confined on the surface of these two types of iron oxide particles have been calculated from their INS spectra, and is affected by the chemical composition of the underlying particle. Furthermore, the heat capacity and dynamics of the particle hydration layers appear to be influenced by a complex array of factors including particle size, water coverage, and possibly the magnetic state of the particle itself. C1 [Spencer, Elinor C.; Ross, Nancy L.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. [Olsen, Rebecca E.; Huang, Baiyu; Woodfield, Brian F.] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA. [Kolesnikov, Alexander I.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Ross, NL (reprint author), Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. EM nross@vt.edu RI Kolesnikov, Alexander/I-9015-2012; Huang, Baiyu/N-2739-2016 OI Kolesnikov, Alexander/0000-0003-1940-4649; Huang, Baiyu/0000-0001-9472-2765 FU U.S. Department of Energy, Office of Basic Energy Sciences (DOE-BES) [DE FG03 01ER15237]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX N.L.R. and E.C.S. acknowledge support from the U.S. Department of Energy, Office of Basic Energy Sciences (DOE-BES), Grant DE FG03 01ER15237. The neutron scattering experiments conducted at Oak Ridge National Laboratory's Spa Dation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 41 TC 3 Z9 3 U1 4 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2015 VL 119 IS 17 BP 9609 EP 9616 DI 10.1021/acs.jpcc.5b01481 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CH3KX UT WOS:000353930700069 ER PT J AU LaCount, MD Weingarten, D Hu, N Shaheen, SE van de Lagemaat, J Rumbles, G Walba, DM Lusk, MT AF LaCount, Michael D. Weingarten, Daniel Hu, Nan Shaheen, Sean E. van de Lagemaat, Jao Rumbles, Garry Walba, David M. Lusk, Mark T. TI Energy Pooling Upconversion in Organic Molecular Systems SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID NEAR-INFRARED LIGHT; EXACT EXCHANGE; BROAD-BAND; NANOPARTICLES; EXCITATION; DESIGN; APPROXIMATION; NANOCRYSTALS; LUMINESCENCE; THERAPY AB A combination of molecular quantum electrodynamics, perturbation theory, and ab initio calculations was used to create a computational methodology capable of estimating the rate of three-body singlet upconversion in organic molecular assemblies. The approach was applied to quantify the conditions under which such relaxation rates, known as energy pooling, become meaningful for two test systems stilbene-fluorescein and hexabenzocoronene-oligothiophene. Both exhibit low intramolecular conversion, but intermolecular configurations exist in which pooling efficiency is at least 90% when placed in competition with more conventional relaxation pathways. For stilbene-fluorescein, the results are consistent with data generated in an earlier experimental investigation. Exercising these model systems facilitated the development of a set of design rules for the optimization of energy pooling. C1 [LaCount, Michael D.; Lusk, Mark T.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Weingarten, Daniel; Shaheen, Sean E.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hu, Nan; Walba, David M.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Shaheen, Sean E.] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. [Shaheen, Sean E.] Univ Colorado, Renewable & Sustainable Energy Inst RASEI, Boulder, CO 80309 USA. [van de Lagemaat, Jao; Rumbles, Garry] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lusk, MT (reprint author), Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. EM mlusk@mines.edu RI Shaheen, Sean/M-7893-2013; van de Lagemaat, Jao/J-9431-2012; Walba, David/F-7284-2013; OI Rumbles, Garry/0000-0003-0776-1462 FU NSF SOLAR Grant [CHE-1125937]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; Research Corporation for Science Advancement Scialog Program FX This research is supported by the NSF SOLAR Grant CHE-1125937. All computations were carried out at the Golden Energy Computing Organization, Colorado School of Mines. We are pleased to acknowledge useful discussions with Prof. Gregory Scholes, Princeton University. Sean Shaheen acknowledges support from the Research Corporation for Science Advancement Scialog Program. Jao van de Lagemaat and Garry Rumbles acknowledge support from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 33 TC 4 Z9 4 U1 3 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 30 PY 2015 VL 119 IS 17 BP 4009 EP 4016 DI 10.1021/acs.jpca.5b00509 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CH3KY UT WOS:000353930800014 PM 25793313 ER PT J AU Karamatskos, ET Stockhofe, J Kevrekidis, PG Schmelcher, P AF Karamatskos, E. T. Stockhofe, J. Kevrekidis, P. G. Schmelcher, P. TI Stability and tunneling dynamics of a dark-bright soliton pair in a harmonic trap SO PHYSICAL REVIEW A LA English DT Article ID MATTER-WAVE SOLITONS; COHERENT OSCILLATIONS; DISCRETE SOLITONS; OPTICAL LATTICE; MAGNETIC TRAP; EINSTEIN AB We consider a binary repulsive Bose-Einstein condensate in a harmonic trap in one spatial dimension and investigate particular solutions consisting of two dark-bright solitons. There are two different stationary solutions characterized by the phase difference in the bright component, in-phase and out-of-phase states. We show that above a critical particle number in the bright component, a symmetry-breaking bifurcation of the pitchfork type occurs that leads to a new asymmetric solution whereas the parental branch, i.e., the out-of-phase state, becomes unstable. These three different states support different small amplitude oscillations, characterized by an almost stationary density of the dark component and a tunneling of the bright component between the two dark solitons. Within a suitable effective double-well picture, these can be understood as the characteristic features of a bosonic Josephson junction (BJJ), and we show within a two-mode approach that all characteristic features of the BJJ phase space are recovered. For larger deviations from the stationary states, the simplifying double-well description breaks down due to the feedback of the bright component onto the dark one, causing the solitons to move. In this regime we observe intricate anharmonic and aperiodic dynamics, exhibiting remnants of the BJJ phase space. C1 [Karamatskos, E. T.; Stockhofe, J.; Schmelcher, P.] Univ Hamburg, Zentrum Optische Quantentechnol, D-22761 Hamburg, Germany. [Karamatskos, E. T.; Schmelcher, P.] Hamburg Ctr Ultrafast Imaging, D-22761 Hamburg, Germany. [Kevrekidis, P. G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Kevrekidis, P. G.] Los Alamos Natl Lab, Ctr Nonlinear Studies & Theoret Div, Los Alamos, NM 87544 USA. RP Kevrekidis, PG (reprint author), Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. EM kevrekid@math.umass.edu RI Schmelcher, Peter/D-9592-2014; OI Schmelcher, Peter/0000-0002-2637-0937; Stockhofe, Jan/0000-0002-3586-5616 FU Deutsche Forschungsgemeinschaft; Studienstiftung des deutschen Volkes; US-AFOSR [FA9550-12-1-0332]; U.S. Department of Energy; Deutsche Forschungsgemeinschaft [Schm 885/26-1]; Binational Science Foundation [2010239]; Alexander von Humboldt Foundation; ERC under FP7 [IRSES-605096]; [NSF-DMS-1312856] FX This work has been supported by the excellence cluster 'The Hamburg Centre for Ultrafast Imaging - Structure, Dynamics and Control of Matter at the Atomic Scale' of the Deutsche Forschungsgemeinschaft. J.S. acknowledges support from the Studienstiftung des deutschen Volkes. P.G.K. gratefully acknowledges the support of NSF-DMS-1312856, as well as from the US-AFOSR under Grant No. FA9550-12-1-0332, the Binational Science Foundation under Grant No. 2010239, from the Alexander von Humboldt Foundation and the ERC under FP7, Marie Curie Actions, People, International Research Staff Exchange Scheme (IRSES-605096). P.G.K.'s work at Los Alamos is supported in part by the U.S. Department of Energy. P.S. acknowledges financial support by the Deutsche Forschungsgemeinschaft through the project Schm 885/26-1. NR 68 TC 1 Z9 1 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD APR 30 PY 2015 VL 91 IS 4 AR 043637 DI 10.1103/PhysRevA.91.043637 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CH0AB UT WOS:000353680100018 ER PT J AU Erhart, P Sadigh, B Schleife, A Aberg, D AF Erhart, Paul Sadigh, Babak Schleife, Andre Aberg, Daniel TI First-principles study of codoping in lanthanum bromide SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; NON-PROPORTIONALITY; CE3+; SCINTILLATORS; ENERGIES; SPECTRA; LABR3; PR3+ AB Codoping of Ce-doped LaBr3 with Ba, Ca, or Sr improves the energy resolution that can be achieved by radiation detectors based on these materials. Here, we present a mechanism that rationalizes this enhancement on the basis of first-principles electronic structure calculations and point defect thermodynamics. It is shown that incorporation of Sr creates neutral V-Br-Sr-La complexes that can temporarily trap electrons. As a result, Auger quenching of free carriers is reduced, allowing for a more linear, albeit slower, scintillation light yield response. Experimental Stokes shifts can be related to different Ce-La-Sr-La-V-Br triple complex configurations. Codoping with other alkaline as well as alkaline-earth metals is considered as well. Alkaline elements are found to have extremely small solubilities on the order of 0.1 ppm and below at 1000 K. Among the alkaline-earth metals the lighter dopant atoms prefer interstitial-like positions and create strong scattering centers, which has a detrimental impact on carrier mobilities. Only the heavier alkaline-earth elements (Ca, Sr, Ba) combine matching ionic radii with sufficiently high solubilities. This provides a rationale for the experimental finding that improved scintillator performance is exclusively achieved using Sr, Ca, or Ba. The present mechanism demonstrates that codoping of wide-gap materials can provide an efficient means for managing charge carrier populations under out-of-equilibrium conditions. In the present case dopants are introduced that manipulate not only the concentrations but also the electronic properties of intrinsic defects without introducing additional gap levels. This leads to the availability of shallow electron traps that can temporarily localize charge carriers, effectively deactivating carrier-carrier recombination channels. The principles of this mechanism are therefore not specific to the material considered here but can be adapted for controlling charge carrier populations and recombination in other wide-gap materials. C1 [Erhart, Paul] Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden. [Sadigh, Babak; Aberg, Daniel] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Schleife, Andre] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. RP Erhart, P (reprint author), Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden. EM erhart@chalmers.se; aberg2@llnl.gov RI Erhart, Paul/G-6260-2011 OI Erhart, Paul/0000-0002-2516-6061 FU U.S. Department of Energy [DE-AC52-07NA27344]; National Nuclear Security Administration Office of Nonproliferation Research and Development (NA-22); Laboratory Directed Research and Development Program, at Lawrence Livermore National Laboratory [13-ERD-038]; Knut and Alice Wallenberg Foundation; European Research Council FX We acknowledge fruitful discussions with S. Payne, G. Bizarri, and R. T. Williams. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation Research and Development (NA-22). Specifically, modeling of excited Ce states was supported by the Laboratory Directed Research and Development Program, Project No. 13-ERD-038, at Lawrence Livermore National Laboratory. P.E. acknowledges funding from the Knut and Alice Wallenberg Foundation and the European Research Council in the form of a Marie Curie Career Integration Grant. Computer time allocations by the Swedish National Infrastructure for Computing at NSC (Linkoping) and C3SE (Gothenburg) are acknowledged. NR 44 TC 7 Z9 7 U1 3 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 30 PY 2015 VL 91 IS 16 AR 165206 DI 10.1103/PhysRevB.91.165206 PG 12 WC Physics, Condensed Matter SC Physics GA CH0AW UT WOS:000353682300006 ER PT J AU Cornish, AJ Green, R Gartner, K Mason, S Hegg, EL AF Cornish, Adam J. Green, Robin Gaertner, Katrin Mason, Saundra Hegg, Eric L. TI Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri SO PLOS ONE LA English DT Article ID GERM-SOMA DIFFERENTIATION; LATERAL GENE-TRANSFER; CHLAMYDOMONAS-REINHARDTII; CLOSTRIDIUM-PASTEURIANUM; SHEWANELLA-ONEIDENSIS; IRON HYDROGENASES; FE HYDROGENASE; EXPRESSION; EVOLUTION; PHOTOPRODUCTION AB Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H-2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes. C1 [Cornish, Adam J.; Green, Robin; Gaertner, Katrin; Mason, Saundra; Hegg, Eric L.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Cornish, Adam J.; Green, Robin; Gaertner, Katrin; Mason, Saundra; Hegg, Eric L.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Hegg, EL (reprint author), Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM erichegg@msu.edu FU United States Department of Energy, Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX This work was funded by the United States Department of Energy, Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 60 TC 0 Z9 0 U1 3 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 30 PY 2015 VL 10 IS 4 AR UNSP e0125324 DI 10.1371/journal.pone.0125324 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CH0MA UT WOS:000353713100081 PM 25927230 ER PT J AU Stark, K Scott, DE Tsyusko, O Coughlin, DP Hinton, TG AF Stark, Karolina Scott, David E. Tsyusko, Olga Coughlin, Daniel P. Hinton, Thomas G. TI Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris SO PLOS ONE LA English DT Article ID ADAPTIVE RESPONSE; COMET ASSAY; DNA-DAMAGE; METAMORPHOSIS; IRRADIATION; EXPOSURE; SIZE; FROG; REDISTRIBUTION; CONTAMINANTS AB Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development -embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of Cs-137 at 0.13, 2.4, 21, and 222 mGy d(-1), resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d(-1) and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae. C1 [Stark, Karolina] Stockholm Univ, Dept Ecol Environm & Plant Sci, S-10691 Stockholm, Sweden. [Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. [Tsyusko, Olga] Univ Kentucky, Dept Plant & Soil Sci, Lexington, KY USA. [Hinton, Thomas G.] Inst Radiat Protect & Nucl Safety, Dept Radioecol Environm Modeling & Ecotoxicol, Cadarache, France. RP Stark, K (reprint author), Stockholm Univ, Dept Ecol Environm & Plant Sci, S-10691 Stockholm, Sweden. EM karolina.stark@su.se OI Tsyusko, Olga/0000-0001-8196-1062 FU Savannah River Ecology Laboratory's Education Program; L. Namowitsky's foundation; Swedish Radiation Protection Authority (SSI); U.S. Department of Energy [DE-FC09-96SR18546, FC09-07SR22506] FX This study was financed by the Savannah River Ecology Laboratory's Education Program, the L. Namowitsky's foundation, the Swedish Radiation Protection Authority (SSI), and the U.S. Department of Energy under Award Number DE-FC09-96SR18546 and FC09-07SR22506 to the University of Georgia Research Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 48 TC 1 Z9 1 U1 2 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 30 PY 2015 VL 10 IS 4 AR e0125327 DI 10.1371/journal.pone.0125327 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CH0MA UT WOS:000353713100082 PM 25927361 ER PT J AU Efremenko, Y Abgrall, N Arnquist, IJ Avignone, FT Baldenegro-Barrera, CX Barabash, AS Bertrand, FE Bradley, AW Brudanin, V Busch, M Buuck, M Byram, D Caldwell, AS Chan, YD Christofferson, CD Cuesta, C Detwiler, JA Ejiri, H Elliott, SR Galindo-Uribarri, A Gilliss, T Giovanetti, GK Goett, J Green, MP Gruszko, J Guinn, I Guiseppe, VE Henning, R Hoppe, EW Howard, S Howe, MA Jasinski, BR Keeter, KJ Kidd, MF Konovalov, SI Kouzes, RT LaFerriere, BD Leon, J MacMullin, J Martin, RD Meijer, SJ Mertens, S Orrell, JL O'Shaughnessy, C Poon, AWP Radford, DC Rager, J Rielage, K Robertson, RGH Romero-Romero, E Shanks, B Shirchenko, M Snyder, N Suriano, AM Tedeschi, D Trimble, JE Varner, RL Vasilyev, S Vetter, K Vorren, K White, BR Wilkerson, JF Wiseman, C Xu, W Yakushev, E Yu, CH Yumatov, V Zhitnikov, I AF Efremenko, Yu. Abgrall, N. Arnquist, I. J. Avignone, F. T., III Baldenegro-Barrera, C. X. Barabash, A. S. Bertrand, F. E. Bradley, A. W. Brudanin, V. Busch, M. Buuck, M. Byram, D. Caldwell, A. S. Chan, Y. -D. Christofferson, C. D. Cuesta, C. Detwiler, J. A. Ejiri, H. Elliott, S. R. Galindo-Uribarri, A. Gilliss, T. Giovanetti, G. K. Goett, J. Green, M. P. Gruszko, J. Guinn, I. Guiseppe, V. E. Henning, R. Hoppe, E. W. Howard, S. Howe, M. A. Jasinski, B. R. Keeter, K. J. Kidd, M. F. Konovalov, S. I. Kouzes, R. T. LaFerriere, B. D. Leon, J. MacMullin, J. Martin, R. D. Meijer, S. J. Mertens, S. Orrell, J. L. O'Shaughnessy, C. Poon, A. W. P. Radford, D. C. Rager, J. Rielage, K. Robertson, R. G. H. Romero-Romero, E. Shanks, B. Shirchenko, M. Snyder, N. Suriano, A. M. Tedeschi, D. Trimble, J. E. Varner, R. L. Vasilyev, S. Vetter, K. Vorren, K. White, B. R. Wilkerson, J. F. Wiseman, C. Xu, W. Yakushev, E. Yu, C. -H. Yumatov, V. Zhitnikov, I. CA MAJORANA Collaboration TI Status of the MAJORANA DEMONSTRATOR: A search for neutrinoless double-beta decay SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review DE Neutrinoless double beta decay; germanium detector; Majorana ID DETECTOR AB If neutrinos are Majorana particles, i.e. fermions that are their own antiparticles, then neutrinoless double-beta (0 nu beta beta) decay is possible. In such a process, two neutrons can simultaneously decay into two protons and two electrons without emitting neutrinos. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The Majorana Demonstrator experiment is under construction at the Sanford Underground Research Facility in Lead, SD and will search for the neutrinoless double-beta (0 nu beta beta) decay of the Ge-76 isotope. The goal of the experiment is to demonstrate that it is possible to achieve a sufficiently low background rate in the 4 keV region of interest (ROI) around the 2039 keV Q-value to justify building a tonne-scale experiment. In this paper, we discuss the physics and design of the Majorana Demonstrator, its approach to achieving ultra-low background and the status of the experiment. C1 [Efremenko, Yu.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Abgrall, N.; Bradley, A. W.; Chan, Y. -D.; Mertens, S.; Poon, A. W. P.; Vetter, K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Arnquist, I. J.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Avignone, F. T., III; Guiseppe, V. E.; Tedeschi, D.; Wiseman, C.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Avignone, F. T., III; Baldenegro-Barrera, C. X.; Bertrand, F. E.; Galindo-Uribarri, A.; Green, M. P.; Radford, D. C.; Romero-Romero, E.; Varner, R. L.; White, B. R.; Wilkerson, J. F.; Yu, C. -H.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Barabash, A. S.; Konovalov, S. I.; Yumatov, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Brudanin, V.; Shirchenko, M.; Vasilyev, S.; Yakushev, E.; Zhitnikov, I.] Joint Inst Nucl Res, Dubna, Russia. [Busch, M.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Busch, M.; Gilliss, T.; Giovanetti, G. K.; Henning, R.; Howe, M. A.; MacMullin, J.; Meijer, S. J.; O'Shaughnessy, C.; Rager, J.; Shanks, B.; Trimble, J. E.; Vorren, K.; Wilkerson, J. F.] Triangle Univ Nucl Lab, Durham, NC 27706 USA. [Buuck, M.; Cuesta, C.; Detwiler, J. A.; Gruszko, J.; Guinn, I.; Leon, J.; Robertson, R. G. H.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Buuck, M.; Cuesta, C.; Detwiler, J. A.; Gruszko, J.; Guinn, I.; Leon, J.; Robertson, R. G. H.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Byram, D.; Jasinski, B. R.; Martin, R. D.] Univ S Dakota, Dept Phys, Vermillion, SD 57069 USA. [Caldwell, A. S.; Christofferson, C. D.; Howard, S.; Suriano, A. M.] South Dakota Sch Mines & Technol, Rapid City, SD USA. [Ejiri, H.] Osaka Univ, Res Ctr Nucl Phys, Ibaraki, Osaka, Japan. [Ejiri, H.] Osaka Univ, Dept Phys, Ibaraki, Osaka, Japan. [Elliott, S. R.; Goett, J.; Rielage, K.; Xu, W.] Los Alamos Natl Lab, Los Alamos, NM USA. [Gilliss, T.; Giovanetti, G. K.; Henning, R.; Howe, M. A.; MacMullin, J.; Meijer, S. J.; O'Shaughnessy, C.; Rager, J.; Romero-Romero, E.; Shanks, B.; Trimble, J. E.; Vorren, K.; Wilkerson, J. F.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC USA. [Keeter, K. J.] Black Hills State Univ, Dept Phys, Spearfish, SD 57799 USA. [Kidd, M. F.] Tennessee Technol Univ, Cookeville, TN USA. RP Efremenko, Y (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM yefremen@utk.edu RI Cuesta, Clara/L-5466-2014; Xu, Wenqin/H-7553-2014; Barabash, Alexander/S-8851-2016; OI Cuesta, Clara/0000-0003-1190-7233; Xu, Wenqin/0000-0002-5976-4991; Rielage, Keith/0000-0002-7392-7152 FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics; Particle Astrophysics Program of the National Science Foundation; Russian Foundation for Basic Research FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics. We acknowledge support from the Particle Astrophysics Program of the National Science Foundation. This research uses these US DOE Office of Science User Facilities: the National Energy Research Scientific Computing Center and the Oak Ridge Leadership Computing Facility. We acknowledge support from the Russian Foundation for Basic Research. We thank our hosts and colleagues at the Sanford Underground Research Facility for their support. NR 23 TC 0 Z9 0 U1 1 U2 13 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 30 PY 2015 VL 30 IS 12 AR 1530032 DI 10.1142/S0217751X1530032X PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CH0GS UT WOS:000353698300003 ER PT J AU Perez, K Hailey, CJ Bauer, FE Krivonos, RA Mori, K Baganoff, FK Barriere, NM Boggs, SE Christensen, FE Craig, WW Grefenstette, BW Grindlay, JE Harrison, FA Hong, J Madsen, KK Nynka, M Stern, D Tomsick, JA Wik, DR Zhang, S Zhang, WW Zoglauer, A AF Perez, Kerstin Hailey, Charles J. Bauer, Franz E. Krivonos, Roman A. Mori, Kaya Baganoff, Frederick K. Barriere, Nicolas M. Boggs, Steven E. Christensen, Finn E. Craig, William W. Grefenstette, Brian W. Grindlay, Jonathan E. Harrison, Fiona A. Hong, Jaesub Madsen, Kristin K. Nynka, Melania Stern, Daniel Tomsick, John A. Wik, Daniel R. Zhang, Shuo Zhang, William W. Zoglauer, Andreas TI Extended hard-X-ray emission in the inner few parsecs of the Galaxy SO NATURE LA English DT Article ID XMM-NEWTON OBSERVATIONS; SAGITTARIUS-A-EAST; GALACTIC-CENTER; BLACK-HOLE; MILLISECOND PULSARS; CANDIDATE; RIDGE; SGR; VARIABILITY; LUMINOSITY AB The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems'. Observations of diffuse hardX-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 X 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population'. This could indicate a significantly more massive population of accreting white dwarfs, large populations of lowmass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre. C1 [Perez, Kerstin; Hailey, Charles J.; Mori, Kaya; Nynka, Melania; Zhang, Shuo] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Perez, Kerstin] Haverford Coll, Haverford, PA 19041 USA. [Bauer, Franz E.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Bauer, Franz E.] Millennium Inst Astrophys, Santiago 7820436, Chile. [Bauer, Franz E.] Space Sci Inst, Boulder, CO 80301 USA. [Krivonos, Roman A.; Barriere, Nicolas M.; Boggs, Steven E.; Craig, William W.; Tomsick, John A.; Zoglauer, Andreas] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Baganoff, Frederick K.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Grindlay, Jonathan E.; Hong, Jaesub] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Wik, Daniel R.; Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Perez, K (reprint author), Columbia Univ, Columbia Astrophys Lab, 550 West 120th St,Room 1027, New York, NY 10027 USA. EM kperez1@haverford.edu RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Madsen, Kristin/0000-0003-1252-4891; Krivonos, Roman/0000-0003-2737-5673 FU NASA [NNG08FD60C]; Basal-CATA [PFB-06/2007]; CONICYT-Chile [FONDECYT 1141218, EMBIGGEN Anillo ACT1101]; Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo [IC120009] FX This work was supported by NASA contract no. NNGO8FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). We also than kA. Canipe, J. Dodaro, D. Hong and T.V.T. Luu for assistance with data preparation and analysis. F.E.B. acknowledges support from Basal-CATA PFB-06/2007, CONICYT-Chile (FONDECYT 1141218 and EMBIGGEN Anillo ACT1101), and Project IC120009 "Millennium Institute of Astrophysics (MAS)" funded by the Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo. NR 46 TC 15 Z9 15 U1 1 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD APR 30 PY 2015 VL 520 IS 7549 BP 646 EP U138 DI 10.1038/nature14353 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CH0DQ UT WOS:000353689700043 PM 25925477 ER PT J AU Ju, L Shi, ZW Nair, N Lv, YC Jin, CH Velasco, J Ojeda-Aristizabal, C Bechtel, HA Martin, MC Zettl, A Analytis, J Wang, F AF Ju, Long Shi, Zhiwen Nair, Nityan Lv, Yinchuan Jin, Chenhao Velasco, Jairo, Jr. Ojeda-Aristizabal, Claudia Bechtel, Hans A. Martin, Michael C. Zettl, Alex Analytis, James Wang, Feng TI Topological valley transport at bilayer graphene domain walls SO NATURE LA English DT Article ID ELECTRONIC-STRUCTURE; SPECTROSCOPY; PLASMONS; STATES; PHASE AB Electron valley, a degree of freedom that is analogous to spin, can lead to novel topological phases in bilayer graphene. A tunable bandgap can be induced in bilayer graphene by an external electric field', and such gapped bilayer graphene is predicted to be a topological insulating phase protected by no-valley mixing symmetry, featuring quantum valley Hall effects and chiral edge states'. Observation of such chiral edge states, however, is challenging because inter-valley scattering is induced by atomic-scale defects at real bilayer graphene edges". Recent theoretical work"' has shown that domain walls between AB- and BA-stacked bilayer graphene can support protected chiral edge states of quantum valley Hall insulators. Here we report an experimental observation of ballistic (that is, with no scattering of electrons) conducting channels at bilayer graphene domain walls. We employ near-field infrared nanometre-scale microscopy (nanoscopy)'" to image in situ bilayer graphene layer-stacking domain walls on device substrates, and we fabricate dual-gated field effect transistors based on the domain walls. Unlike single-domain bilayer graphene, which shows gapped insulating behaviour under a vertical electrical field, bilayer graphene domain walls feature one-dimensional valley-polarized conducting channels with a ballistic length of about 400 nanometres at 4 kelvin. Such topologically protected one-dimensional chiral states at bilayer graphene domain walls open up opportunities for exploring unique topological phases and valley physics in graphene. C1 [Ju, Long; Shi, Zhiwen; Nair, Nityan; Lv, Yinchuan; Jin, Chenhao; Velasco, Jairo, Jr.; Ojeda-Aristizabal, Claudia; Zettl, Alex; Analytis, James; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bechtel, Hans A.; Martin, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Zettl, Alex; Analytis, James; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Zettl, Alex; Analytis, James; Wang, Feng] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Zettl, Alex; Analytis, James; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM fengwang76@berkeley.edu RI Shi, Zhiwen/C-4945-2013; Zettl, Alex/O-4925-2016; wang, Feng/I-5727-2015 OI Shi, Zhiwen/0000-0002-3928-2960; Zettl, Alex/0000-0001-6330-136X; FU Office of Basic Energy Science, Department of Energy [DE-SC0003949, DE-AC02-05CH11231]; Office of Naval Research [N00014-13-1-0464]; David and Lucile Packard fellowship; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX We thank Y. Ye and H. Zhu for their help on electron-beam lithography, Y. Zeng and H. Chang for help with device fabrication, and M. Raschke for help with near-field infrared techniques. The optical and electrical measurements were supported by the Office of Basic Energy Science, Department of Energy under contract numbers DE-SC0003949 (Early Career Award), DE-AC02-05CH11231 (Materials Science Division SP2 programme and the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory). Device fabrication was supported by the Office of Naval Research (award N00014-13-1-0464). F.W. acknowledges support from a David and Lucile Packard fellowship. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract number DE-AC02-05CH11231. NR 32 TC 54 Z9 55 U1 23 U2 181 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD APR 30 PY 2015 VL 520 IS 7549 BP 650 EP U356 DI 10.1038/nature14364 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CH0DQ UT WOS:000353689700044 PM 25901686 ER PT J AU Rudin, SP Johnson, DC AF Rudin, Sven P. Johnson, David C. TI Density functional theory calculations of the turbostratically disordered compound [(SnSe)(1+y)](m)(VSe2)(n) SO PHYSICAL REVIEW B LA English DT Article ID 2D BUILDING-BLOCKS; ELECTRICAL-PROPERTIES; COMPOSITE CRYSTALS; X-RAY; FERECRYSTALLINE COMPOUNDS; MULTIDIMENSIONAL SPACE; INORGANIC-COMPOUNDS; SUPERSPACE GROUPS; CHARGE-TRANSFER; MOS2 AB Among composite materials that layer constituent substances of nanoscale thicknesses, [(SnSe)(1+y)](m)(VSe2)(n) emerges as an example where the constituents retain incommensurate lattice structures. Perpendicular to the stacking direction, the system exhibits random translations and random rotations on average, i.e., turbostratic disorder, with local regions showing twelvefold diffraction patterns. Earlier theoretical work on these structures showed that combining density functional theory with an empirical treatment of the van der Waals interaction gave structural parameters in good agreement with experiment, but no attempt was made to examine the relative orientations. Here we approximate the extended system with one extended constituent and one finite constituent, which allows the treatment of all relative orientations on equal footing. The calculations show how the twelvefold periodicity follows from how the ions of the SnSe layer lock in with favored positions relative to the VSe2 layer, and the associated energy scale supports arguments for the overall turbostratic disorder. The success of this approximation in describing the structural parameters of the extended [(SnSe)(1+y)](m)(VSe2)(n) system encourages its use for other properties and for other similar systems with other chemistries. C1 [Rudin, Sven P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Johnson, David C.] Univ Oregon, Dept Chem, Eugene, OR 97403 USA. [Johnson, David C.] Univ Oregon, Inst Mat Sci, Eugene, OR 97403 USA. RP Rudin, SP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. FU U.S. Department of Energy [DE-AC52-06NA25396, LDRD-DR 20140025]; National Science Foundation [DMR-1266217] FX This research is supported by the U.S. Department of Energy under Contract No. DE-AC52-06NA25396 and Grant No. LDRD-DR 20140025. D.C.J. acknowledges support from the National Science Foundation under Grant DMR-1266217. Many thanks go to the E. Chisolm and A. Niklasson for helpful and encouraging discussions. NR 30 TC 1 Z9 1 U1 5 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 30 PY 2015 VL 91 IS 14 AR 144203 DI 10.1103/PhysRevB.91.144203 PG 6 WC Physics, Condensed Matter SC Physics GA CH0AI UT WOS:000353680800003 ER PT J AU Schemm, ER Baumbach, RE Tobash, PH Ronning, F Bauer, ED Kapitulnik, A AF Schemm, E. R. Baumbach, R. E. Tobash, P. H. Ronning, F. Bauer, E. D. Kapitulnik, A. TI Evidence for broken time-reversal symmetry in the superconducting phase of URu2Si2 SO PHYSICAL REVIEW B LA English DT Article ID ORDER; SCATTERING; SYSTEM AB Recent experimental and theoretical interest in the superconducting phase of the heavy-fermion material URu2Si2 has led to a number of proposals in which the superconducting order parameter breaks time-reversal symmetry (TRS). In this study we measure the polar Kerr effect (PKE) as a function of temperature for several high-quality single crystals of URu2Si2. We find an onset of PKE below the superconducting transition that is consistent with a TRS-breaking order parameter. This effect appears to be independent of an additional, possibly extrinsic, PKE generated above the hidden order transition at T-HO = 17.5 K, and contains a structure below T-c suggestive of additional physics within the superconducting state. C1 [Schemm, E. R.; Kapitulnik, A.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Schemm, E. R.; Kapitulnik, A.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Baumbach, R. E.; Tobash, P. H.; Ronning, F.; Bauer, E. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kapitulnik, A.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Kapitulnik, A (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM aharonk@stanford.edu OI Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU U.S. Department of Energy (DOE) Office of Basic Energy Science, Division of Materials Science and Engineering; NSF NSEC through Stanford's Center [0425897]; DOE [AC02-76SF00515] FX Stimulating discussions with Sudip Chakravarty, Pavan Hosur, Steve Kivelson, Joseph Orenstein, Srinivas Raghu, and Chandra Varma are greatly appreciated. Sample preparation and characterization at LANL were supported by the U.S. Department of Energy (DOE) Office of Basic Energy Science, Division of Materials Science and Engineering; Kerr effect measurements at Stanford were supported under DOE Contract No. DE-AC02-76SF00515. Construction of the Sagnac apparatus was partially supported by the NSF NSEC Grant No. 0425897 through Stanford's Center for Probing the Nanoscale. NR 33 TC 20 Z9 20 U1 5 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 30 PY 2015 VL 91 IS 14 AR 140506 DI 10.1103/PhysRevB.91.140506 PG 6 WC Physics, Condensed Matter SC Physics GA CH0AI UT WOS:000353680800001 ER PT J AU Ayangeakaa, AD Zhu, S Janssens, RVF Carpenter, MP Albers, M Alcorta, M Baugher, T Bertone, PF Chiara, CJ Chowdhury, P David, HM Deacon, AN DiGiovine, B Gade, A Hoffman, CR Kondev, FG Lauritsen, T Lister, CJ McCutchan, EA Moerland, DS Nair, C Rogers, AM Seweryniak, D AF Ayangeakaa, A. D. Zhu, S. Janssens, R. V. F. Carpenter, M. P. Albers, M. Alcorta, M. Baugher, T. Bertone, P. F. Chiara, C. J. Chowdhury, P. David, H. M. Deacon, A. N. DiGiovine, B. Gade, A. Hoffman, C. R. Kondev, F. G. Lauritsen, T. Lister, C. J. McCutchan, E. A. Moerland, D. S. Nair, C. Rogers, A. M. Seweryniak, D. TI Role of the nu g(9/2) orbital in the development of collectivity in the A approximate to 60 region: The case of Co-61 SO PHYSICAL REVIEW C LA English DT Article ID SHEARS MECHANISM; SHELL-MODEL; MAGNETIC ROTATION; NUCLEI; BANDS; LIFETIMES; ISOTOPES; STATES; DECAY AB An extensive study of the level structure of Co-61 has been performed following the complex Mg-26(Ca-48, 2 alpha 4np gamma)Co-61 reaction at beam energies of 275, 290, and 320 MeV using Gammasphere and the Fragment Mass Analyzer (FMA). The low-spin structure is discussed within the framework of shell-model calculations using the GXPF1A effective interaction. Two quasirotational bands consisting of stretched-E2 transitions have been established up to spins I = 41/2 and (43/2), and excitation energies of similar to 17 and similar to 20 MeV, respectively. These are interpreted as signature partners built on a neutron nu(g(9/2))(2) configuration coupled to a proton pi p(3/2) state, based on cranked shell model (CSM) calculations and comparisons with observations in neighboring nuclei. In addition, four Delta I = 1 bands were populated to high spin, with the yrast dipole band interpreted as a possible candidate for the shears mechanism, a process seldom observed thus far in this mass region. C1 [Ayangeakaa, A. D.; Zhu, S.; Janssens, R. V. F.; Carpenter, M. P.; Albers, M.; Alcorta, M.; Bertone, P. F.; Chiara, C. J.; David, H. M.; DiGiovine, B.; Hoffman, C. R.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Moerland, D. S.; Nair, C.; Rogers, A. M.; Seweryniak, D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Baugher, T.; Gade, A.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Baugher, T.; Gade, A.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Chiara, C. J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Chowdhury, P.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Deacon, A. N.] Univ Manchester, Schuster Lab, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Moerland, D. S.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. RP Ayangeakaa, AD (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM ayangeakaa@anl.gov RI Gade, Alexandra/A-6850-2008; Alcorta, Martin/G-7107-2011; Ayangeakaa, Akaa/F-3683-2015; Carpenter, Michael/E-4287-2015; Hoffman, Calem/H-4325-2016 OI Gade, Alexandra/0000-0001-8825-0976; Alcorta, Martin/0000-0002-6217-5004; Ayangeakaa, Akaa/0000-0003-1679-3175; Carpenter, Michael/0000-0002-3237-5734; Hoffman, Calem/0000-0001-7141-9827 FU U. S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40834, DE-FG02-08ER41556]; National Science Foundation [PHY-1102511]; United Kingdom Science and Technology Facilities Council (STFC) FX Stimulating discussions with A. O. Macchiavelli about the dipole bands and their interpretation are gratefully acknowledged. This material is based upon work supported by the U. S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-06CH11357, and under Grants No. DE-FG02-94ER40834 and No. DE-FG02-08ER41556, and by the National Science Foundation under Contract No. PHY-1102511, and by the United Kingdom Science and Technology Facilities Council (STFC). This research used resources of ANLs ATLAS facility, which is a DOE Office of Science User Facility. NR 61 TC 2 Z9 2 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD APR 30 PY 2015 VL 91 IS 4 AR 044327 DI 10.1103/PhysRevC.91.044327 PG 15 WC Physics, Nuclear SC Physics GA CH0BB UT WOS:000353682800004 ER PT J AU Krishichayan Bhike, M Tornow, W Rusev, G Tonchev, AP Tsoneva, N Lenske, H AF Krishichayan Bhike, Megha Tornow, W. Rusev, G. Tonchev, A. P. Tsoneva, N. Lenske, H. TI Polarized photon scattering off Cr-52: Determining the parity of J=1 states SO PHYSICAL REVIEW C LA English DT Article ID MAGNETIC DIPOLE EXCITATIONS; N=28 SHELL CLOSURE; NUCLEI; RESONANCE; MODES; SKIN AB The photoresponse of Cr-52 has been investigated in the energy range of 5.0-9.5 MeV using the photon scattering technique at the HI gamma S facility of TUNL to complement previous work with unpolarized bremsstrahlung photon beams at the Darmstadt linear electron accelerator. The unambiguous parity determinations of the observed J = 1 states provides the basis needed to better understand the structure of E1 and M1 excitations. Theoretical calculations using the quasiparticle phonon model incorporating self-consistent energy-density functional theory were performed to investigate the fragmentation pattern of the dipole strength below and around the neutron-emission threshold. These results compare very well with the experimental values. C1 [Krishichayan; Bhike, Megha; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Krishichayan; Bhike, Megha; Tornow, W.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Rusev, G.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Tonchev, A. P.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Tsoneva, N.; Lenske, H.] Univ Giessen, Inst Theoret Phys, D-35392 Giessen, Germany. [Tsoneva, N.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. RP Krishichayan (reprint author), Duke Univ, Dept Phys, Durham, NC 27708 USA. EM krishi@tunl.duke.edu FU U.S. Department of Energy [DE-FG02-97ER41033]; BMBF [05P12RGFTE] FX We are grateful to the HI gamma S staff for providing excellent photon beams during our experiments. This work was supported by U.S. Department of Energy Grant No. DE-FG02-97ER41033 and BMBF Grant No. 05P12RGFTE. NR 41 TC 2 Z9 2 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD APR 30 PY 2015 VL 91 IS 4 AR 044328 DI 10.1103/PhysRevC.91.044328 PG 8 WC Physics, Nuclear SC Physics GA CH0BB UT WOS:000353682800005 ER PT J AU Roy, D Yang, LY Crooker, SA Sinitsyn, NA AF Roy, Dibyendu Yang, Luyi Crooker, Scott A. Sinitsyn, Nikolai A. TI Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems SO SCIENTIFIC REPORTS LA English DT Article ID MAGNETIC-RESONANCE; ATOMIC SPIN; QUANTUM; SEMICONDUCTORS; PROBE; GAS AB Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spin ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using "two-color'' optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable. C1 [Roy, Dibyendu; Sinitsyn, Nikolai A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Roy, Dibyendu] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Yang, Luyi; Crooker, Scott A.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Crooker, SA (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. EM crooker@lanl.gov; nsinitsyn@lanl.gov RI Dibyendu, Roy /E-6903-2017 FU Los Alamos LDRD Program; NSF [DMR-1157490]; State of Florida FX We gratefully acknowledge helpful discussions with Igor Savukov and Darryl Smith, and support from the Los Alamos LDRD Program. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF DMR-1157490 and the State of Florida. NR 37 TC 6 Z9 6 U1 5 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD APR 30 PY 2015 VL 5 AR 9573 DI 10.1038/srep09573 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CH3AF UT WOS:000353897100001 PM 25924953 ER PT J AU Xu, XY Lin, SC Li, QS Zhang, ZL Ivanov, IN Li, Y Wang, WB Gu, BH Zhang, ZY Hsueh, CH Snijders, PC Seal, K AF Xu, Xiaoying Lin, Shih-Che Li, Quanshui Zhang, Zhili Ivanov, Ilia N. Li, Yuan Wang, Wenbin Gu, Baohua Zhang, Zhenyu Hsueh, Chun-Hway Snijders, Paul C. Seal, Katyayani TI Optical Control of Fluorescence through Plasmonic Eigenmode Extinction SO SCIENTIFIC REPORTS LA English DT Article ID METAL-ENHANCED FLUORESCENCE; SILVER-ISLAND FILMS; SELECTIVE PHOTOMODIFICATION; SINGLE-MOLECULE; SURFACE; SCATTERING; EMISSION; SERS AB We introduce the concept of optical control of the fluorescence yield of CdSe quantum dots through plasmon-induced structural changes in random semicontinuous nanostructured gold films. We demonstrate that the wavelength- and polarization dependent coupling between quantum dots and the semicontinuous films, and thus the fluorescent emission spectrum, can be controlled and significantly increased through the optical extinction of a selective band of eigenmodes in the films. This optical method of effecting controlled changes in the metal nanostructure allows for versatile functionality in a single sample and opens a pathway to in situ control over the fluorescence spectrum. C1 [Xu, Xiaoying; Wang, Wenbin; Snijders, Paul C.; Seal, Katyayani] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lin, Shih-Che; Hsueh, Chun-Hway] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 10617, Taiwan. [Li, Quanshui; Zhang, Zhili] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Ivanov, Ilia N.] Oak Ridge Natl Lab, Ctr Nanoscale Mat Sci, Oak Ridge, TN 37831 USA. [Li, Yuan; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Zhang, Zhenyu] Univ Sci & Technol China, Int Ctr Quantum Design Funct Mat ICQD, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Wang, Wenbin; Snijders, Paul C.; Seal, Katyayani] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Snijders, PC (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM snijderspc@ornl.gov; kseal06@gmail.com RI Gu, Baohua/B-9511-2012; OI Gu, Baohua/0000-0002-7299-2956; ivanov, ilia/0000-0002-6726-2502 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division; DOE BES [DE-SC0002136, DE_ER45958]; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL); Scientific User Facilities Division, Office of BES, U.S. DOE; Ministry of Science and Technology, Taiwan [MOST 103-2221-E-002-076-MY3] FX This effort was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division (XX, PCS, KS). WW and ZZ were supported respectively by DOE BES DE-SC0002136 and DE_ER45958. BG and YL were supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC, for the U.S. DOE, and characterized the quantum dots and performed initial fluorescence measurements. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at ORNL by the Scientific User Facilities Division, Office of BES, U.S. DOE (INI). We acknowledge partial funding support from Ministry of Science and Technology, Taiwan under Contract number MOST 103-2221-E-002-076-MY3 (SCL, CH). NR 36 TC 0 Z9 0 U1 2 U2 37 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD APR 30 PY 2015 VL 5 AR 9911 DI 10.1038/srep09911 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CH3BA UT WOS:000353899400001 PM 25927955 ER PT J AU Yue, MY Zhou, BM Jiao, KY Qian, XM Xu, ZW Teng, KY Zhao, LH Wang, JJ Jiao, YN AF Yue, Mengyao Zhou, Baoming Jiao, Kunyan Qian, Xiaoming Xu, Zhiwei Teng, Kunyue Zhao, Lihuan Wang, Jiajun Jiao, Yanan TI Switchable hydrophobic/hydrophilic surface of electrospun poly (L-lactide) membranes obtained by CF4 microwave plasma treatment (vol 327, pg 93, 2015) SO APPLIED SURFACE SCIENCE LA English DT Correction C1 [Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; Qian, Xiaoming; Xu, Zhiwei; Teng, Kunyue; Zhao, Lihuan; Jiao, Yanan] Tianjin Polytech Univ, Minist Educ, Key Lab Adv Braided Composites, Tianjin 300387, Peoples R China. [Wang, Jiajun] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. RP Xu, ZW (reprint author), Tianjin Polytech Univ, Minist Educ, Key Lab Adv Braided Composites, Tianjin 300387, Peoples R China. EM xuzhiwei@tjpu.edu.cn; jjwang@bnl.gov NR 1 TC 0 Z9 0 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD APR 30 PY 2015 VL 335 BP 227 EP 227 DI 10.1016/j.apsusc.2015.01.145 PG 1 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA CE2AG UT WOS:000351614000031 ER PT J AU Ng, S Lin, E Kitov, PI Tjhung, KF Gerlits, OO Deng, L Kasper, B Sood, A Paschal, BM Zhang, P Ling, CC Klassen, JS Noren, CJ Mahal, LK Woods, RJ Coates, L Derda, R AF Ng, Simon Lin, Edith Kitov, Pavel I. Tjhung, Katrina F. Gerlits, Oksana O. Deng, Lu Kasper, Brian Sood, Amika Paschal, Beth M. Zhang, Ping Ling, Chang-Chun Klassen, John S. Noren, Christopher J. Mahal, Lara K. Woods, Robert J. Coates, Leighton Derda, Ratmir TI Genetically Encoded Fragment-Based Discovery of Glycopeptide Ligands for Carbohydrate-Binding Proteins SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DC-SIGN; STRUCTURAL BASIS; CONCANAVALIN-A; LIBRARY; PHAGE; LECTIN; INHIBITORS; PEPTIDES; MIMICRY; GLYCOBIOLOGY AB We describe an approach to accelerate the search for competitive inhibitors for carbohydrate-recognition domains (CRDs). Genetically encoded fragment-based-discovery (GE-FBD) uses selection of phagedisplayed glycopeptides to dock a glycan fragment at the CRD and guide selection of Synergistic peptide motifs adjacent to the CRD. Starting from concanavalin A (ConA), a mannose (Man)-binding protein, as a bait, we narrowed a library of 10(8) glycopeptides to 86 leads that share a consensus motif, Man-WYD. Validation of synthetic leads yielded Man-WYDLF that exhibited 40 50-fold enhancement in affinity over methyl alpha-D-mannopyranoside (MeMan). Lectin array Suggested specificity: Man-WYD derivative bound only to 3 out of 17 proteins-ConA, LcH, and PSA-that bind to Man. An X-ray structure of ConA.:Man-WYD proved that the trimannoside core and Man-WYD exhibit identical CRD docking; but their extra-CRD binding modes are significantly. different. Still, they have comparable affinity and selectivity for various Man-binding proteins. The intriguing observation provides new insight into functional mimicry :of carbohydrates by peptide ligands. GE-FBD may provide an alternative to rapidly search for competitive inhibitors for lectins. C1 [Ng, Simon; Lin, Edith; Kitov, Pavel I.; Tjhung, Katrina F.; Deng, Lu; Klassen, John S.; Derda, Ratmir] Univ Alberta, Dept Chem, Alberta Glyc Ctr, Edmonton, AB T6G 2G2, Canada. [Gerlits, Oksana O.; Coates, Leighton] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Kasper, Brian; Mahal, Lara K.] NYU, Inst Biomed Chem, Dept Chem, New York, NY 10003 USA. [Sood, Amika; Woods, Robert J.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Woods, Robert J.] Natl Univ Ireland, Sch Chem, Galway, Ireland. [Paschal, Beth M.; Noren, Christopher J.] New England Biolabs Inc, Ipswich, MA 01938 USA. [Zhang, Ping; Ling, Chang-Chun] Univ Calgary, Dept Chem, Alberta Glyc Ctr, Calgary, AB T2N 1N4, Canada. RP Derda, R (reprint author), Univ Alberta, Dept Chem, Alberta Glyc Ctr, Edmonton, AB T6G 2G2, Canada. EM ratmir@ualberta.ca OI Coates, Leighton/0000-0003-2342-049X FU Alberta Glycomics Centre; Canada Foundation for Innovation (CFI); National Institutes of Health [R01 GM094919, P41 GM103390]; Science Foundation of Ireland [08/IN.1/B2070]; Alberta Innovates; U.S. Department of Energy (DOE), Office of Biological and Environmental Research (OBER) [DE-AC02-06CH11357] FX We acknowledge financial support from Alberta Glycomics Centre, Canada Foundation for Innovation (CFI). R.J.W. thanks the National Institutes of Health (R01 GM094919 (EUREKA) and P41 GM103390) and the Science Foundation of Ireland (08/IN.1/B2070) for support. S.N., E.L., and K.F.T. thank Alberta Innovates for the fellowship support. We thank Mark Miskolzie, Randy Whittal, Bela Reiz, and Wadim L. Matochko for help with analysis and characterization, and Prof. Todd Lowary for critical review of the paper. X-ray results were derived from work performed at Argonne National Laboratory, Structural Biology Center at the Advanced Photon Source. Argonne is operated by UChicago Argonne, LLC, for the U.S. Department of Energy (DOE), Office of Biological and Environmental Research (OBER), under contract DE-AC02-06CH11357. The OBER supported research at Oak Ridge National Laboratory's Center for Structural Molecular Biology, using facilities supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. NR 35 TC 15 Z9 15 U1 16 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 29 PY 2015 VL 137 IS 16 BP 5248 EP 5251 DI 10.1021/ja511237n PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CH3LF UT WOS:000353931500002 PM 25860443 ER PT J AU Ping, Y Goddard, WA Galli, GA AF Ping, Yuan Goddard, William A., III Galli, Giulia A. TI Energetics and Solvation Effects at the Photoanode/Catalyst Interface: Ohmic Contact versus Schottky Barrier SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID WATER OXIDATION; GAP STATES; CELLS AB The design of optimal interfaces between photoelectrodes and catalysts is a key challenge in building photoelectrochemical cells to split water. Iridium,dioxide (IrO2) is an,efficient catalyst for oxygen evolution, stable in acidic conditions, and hence a good candidate, to be. interfaced with photoanodes. Using first-principles quantum mechanical calculations; we investigated the structural and electronic properties of tungsten trioxide (WO3) surfaces interfaced with an IrO2 thin film. We, built a microacopic model of the interface that exhibits a formation energy lower than the surface energy of the most, stable IrO2 surface, in spite of a large lattice Mismatch, and has to impurity states pinning the Fermi.,level. We found that upon full coverage of WO3 by IrO2, the two oxides form undesirable Ohmic contacts. However, our calculatious predicted that if both oxides are partially exposed to water solvent, the relative position of the absorber conduction band and the catalyst Fermi level favors charge transfer to the catalyst and hence water We propose :that, for oxide photoelectrodes interfaced with IrO2, it is advantageous to form tough interfaces with the catalyst, e.g., by depositing nanoparticles, instead of sharp interfaces with thin films. C1 [Ping, Yuan; Goddard, William A., III] CALTECH, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Ping, Yuan; Goddard, William A., III] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Goddard, William A., III] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. [Galli, Giulia A.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Galli, Giulia A.] Argonne Natl Lab, Lemont, IL 60439 USA. RP Ping, Y (reprint author), CALTECH, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. EM yping@lbl.gov; wag@wag.caltech.edu FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; Argonne National Laboratory under U.S. Department of Energy [DE-AC02-06CH11357] FX We thank Ravishankar Sundararaman, Francois Gygi, Joshua Spurgeon, Alessandro Fortunelli, Hai Xiao, Ding Pan, and Tuan Anh Pham for useful discussions. This paper is based on work performed at the Joint Center for Artificial Photosynthesis, a DOE innovation hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993. G.A.G. acknowledges support from Argonne National Laboratory under U.S. Department of Energy contract DE-AC02-06CH11357. NR 21 TC 13 Z9 13 U1 12 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 29 PY 2015 VL 137 IS 16 BP 5264 EP 5267 DI 10.1021/jacs.5b00798 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CH3LF UT WOS:000353931500006 PM 25867053 ER PT J AU Li, ZJ Zhang, YW Wu, X Huang, L Li, DS Fan, W Han, G AF Li, Zhanjun Zhang, Yuanwei Wu, Xiang Huang, Ling Li, Dongsheng Fan, Wei Han, Gang TI Direct Aqueous-Phase Synthesis of Sub-10 nm "Luminous Pearls" with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HYDROTHERMAL SYNTHESIS; LONG-PERSISTENT; TRAP DEPTH; PHOSPHORS; NANOPARTICLES; NANOPROBES; DEEP; SIZE; RED AB Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs), possessing unique NIR PL properties, have recently emerged as important materials for a wide variety of applications in chemistry and biology for which they must endure high temperature solid-state annealing reactions and subsequent complicated physical post-treatments, Herein,we report, on a first direct aqueous-phase Chemical synthesis route to NIR PLNPs and present their enhanced it vivo renewable NIR PL. Our method leads to monodisperse PLNPs as small - as ca. 8 nm. Such sub-10 nm nanocrystals are readily dispersed and functionalized, and can form stable colloidal solutions in aqueous solution and cell culture medium for biological applications. Under biotissue-penetrable rearlight excitation, we found that such nanocrystals possess superior renewable PL photoluminescence in vitro and in vivo compared to their larger counterparts currently made by existing methods. We believe that this solid-state-reaction-free chemical approach overcomes the current key, roadblock in regard to PLNP development, and thus will pave the way to broad use of these advanced miniature "luminous pearls" in photonics and biophotonics. C1 [Li, Zhanjun; Zhang, Yuanwei; Wu, Xiang; Huang, Ling; Han, Gang] Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Worcester, MA 01605 USA. [Li, Dongsheng] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Phys Sci, Mat Sci, Richland, WA 99352 USA. [Fan, Wei] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA. RP Han, G (reprint author), Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Worcester, MA 01605 USA. EM gang.han@umassmed.edu RI Li, Zhanjun/K-3199-2012 FU National Institutes of Health [R01MH103133]; Human Frontier Science Program; U.S. Department of Energy [DE-AC05-76RL01830] FX This research was supported by the National Institutes of Health R01MH103133, and the Human Frontier Science Program. HR-TEM was done at Pacific Northwest National Laboratory via Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC05-76RL01830 NR 29 TC 44 Z9 44 U1 26 U2 136 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 29 PY 2015 VL 137 IS 16 BP 5304 EP 5307 DI 10.1021/jacs.5b00872 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CH3LF UT WOS:000353931500016 PM 25836338 ER PT J AU Liberman-Martin, AL Bergman, RG Tilley, TD AF Liberman-Martin, Allegro L. Bergman, Robert G. Tilley, T. Don TI Lewis Acidity of Bis(perfluorocatecholato)silane: Aldehyde Hydrosilylation Catalyzed by a Neutral Silicon Compound SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SILYL KETENE ACETALS; B(C6F5)(3)-CATALYZED HYDROSILYLATION; ENANTIOSELECTIVE ADDITION; ORGANOSILANE REDUCTIONS; OLEFIN POLYMERIZATION; CARBONYL-COMPOUNDS; SILANE REDUCTIONS; KINETIC-ANALYSIS; BASE ACTIVATION; MECHANISM AB Bis(perfluorocatecholato)silane Si(cat(F))(2) was prepared, and stoichiometric binding to Lewis bases was demonstrated with fluoride, triethylphosphine oxide, and N,N'-diisopropylbenzamide. The potent Lewis acidity of Si(cat(F))(2) was suggested from catalytic hydrosilylation and silylcyanation reactions with aldehydes. Mechanistic studies of hydrosilylation using an optically active silane substrate, R-(+)-methyl-(1-naphthyl)phenylsilane, proceeded with predominant stereochemical retention at silicon, consistent with a carbonyl activation pathway. The enantiospecificity was dependent on solvent and salt effects, with increasing solvent polarity or addition of NBu4BAr4F leading to a diminished enantiomeric ratio. The medium effects are consistent with an ionic mechanism, wherein hydride transfer occurs prior to silicon-oxygen bond formation. C1 [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; tdtilley@berkeley.edu OI Liberman-Martin, Allegra/0000-0002-8447-905X FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [CHE-0841786]; National Institutes of Health [S10-RR027172] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the National Science Foundation under Award No. CHE-0841786. We also acknowledge the National Institutes of Health for funding of the ChexRay X-ray crystallographic facility (College of Chemistry, University of California, Berkeley) under Grant No. S10-RR027172. We thank Michael Lipschutz for assistance with Xray diffraction and Jigar Patel for Chiral HPLC expertise. NR 47 TC 12 Z9 12 U1 5 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 29 PY 2015 VL 137 IS 16 BP 5328 EP 5331 DI 10.1021/jacs.5b02807 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CH3LF UT WOS:000353931500022 PM 25879515 ER PT J AU Malek, GA Aytug, T Liu, QF Wu, JD AF Malek, Gary A. Aytug, Tolga Liu, Qingfeng Wu, Judy TI Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE transparent conductor; atomic layer deposition; nanostructured glass; plasmonic effect; three-dimensional electrode; aluminum-doped zinc oxide ID SOLAR-CELLS; TIN OXIDE; ELECTRODES AB Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for designing plasmonic 3D transparent conductors. Transformation of the nonconducting 3D structure to a conducting porous surface network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electron-beam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO-coated glass surface along with the in-plane dimensions of the deposited AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to those of untextured two-dimensional AZO-coated glass substrates. In addition, transmittance measurements of the glass samples coated at various AZO thicknesses showed preservation of the transparent nature of each sample, and the AuNPs demonstrated enhanced light scattering as well as light-trapping capabilities. C1 [Malek, Gary A.; Liu, Qingfeng; Wu, Judy] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Aytug, Tolga] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Malek, GA (reprint author), Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. EM gmalek@ku.edu; jwu@ku.edu RI Liu, Qingfeng/K-1782-2016 OI Liu, Qingfeng/0000-0003-2492-8092 FU NASA [NNX13AD42A]; ARO [W911NF-12-1-0412]; NSF [NSF-DMR-1105986, NSF-EPSCoR-0903806]; state of Kansas through the Kansas Technology Enterprise Corporation; Laboratory Directed Research and Development Program of ORNL FX The authors acknowledge support in part by NASA contract no. NNX13AD42A, ARO contract no. W911NF-12-1-0412, and NSF contracts nos. NSF-DMR-1105986 and NSF-EPSCoR-0903806, and matching support from the state of Kansas through the Kansas Technology Enterprise Corporation. The nanostructured glass sample preparation conducted at Oak Ridge National Laboratory (ORNL) was supported by the Laboratory Directed Research and Development Program of ORNL, managed by UT-Battelle, LLC for the U.S. Department of Energy. NR 23 TC 1 Z9 1 U1 6 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD APR 29 PY 2015 VL 7 IS 16 BP 8556 EP 8561 DI 10.1021/acsami.5b00336 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA CH3LD UT WOS:000353931300024 PM 25835062 ER PT J AU Xue, QL Fox, RO AF Xue, Qingluan Fox, Rodney O. TI Computational Modeling of Biomass Thermochemical Conversion in Fluidized Beds: Particle Density Variation and Size Distribution SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID DIRECT QUADRATURE METHOD; FAST PYROLYSIS; HEAT-TRANSFER; CELLULOSE PYROLYSIS; EXPERIMENTAL VALIDATION; TRANSPORTATION FUELS; NUMERICAL-SIMULATION; KINETIC-MODEL; REACTORS; OIL AB The design and scale-up of fluidized-bed reactors is an important step to commercialize viable conversion pathways,(such as fast pyrolysis) for biomass into hydrocarbon interniediates and fuels that lead to "drop-in" replacements for jet fuel, diesel, gasoline, and other petroleum-based products. Detailed information about the particle site distribution (PSD) and particle density evolution throughout the fluidized bed reactor can play a critical role in determining in situ catalyst selectivity, intermediate components, and reactor performance: This work presents an Euler Euler computational fluid dynamics (CFI)) model applied to biomass thermochemical conversion for use in fluidited-bed reactor simulationS.,The complex chemical and physical processes of particle devolatilitation and their interaction with the reacting gas environment are described within a multifluid framework based on the kinetic theory of granular flows. The direct quadtatute method of moments is used to describe the biomass PSD. Continuously varying particle density due to Mass evolving to the gas flow was applied, to describe the evolution of particles' physical properties. The global kinetic model is based on superimposed hernicellulose, cellulose, and lignin reactants: The calculations of the stiff Chemical source terms and convection are decoupled using a time-splitnng method. The CFD Model is applied to simulate the fast pyrolysis of red oak in a laboratory-scale fluidized-bed reactor and validated against experimental data. The simulated product yields at the reactor outlet are presented-and compared with monodisperse results and the experimental measurements. It is demonstrated that our current CFD model is to predict in detail the dynamic particle processes, mixing and segregation, char particle elutriation, and produced gas composition at the reactor outlet needed to optimize the reactor 'operating conditions. C1 [Xue, Qingluan] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Fox, Rodney O.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. RP Xue, QL (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM qxue@anl.gov; rofox@iastate.edu NR 58 TC 2 Z9 2 U1 3 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD APR 29 PY 2015 VL 54 IS 16 BP 4084 EP 4094 DI 10.1021/ie503806p PG 11 WC Engineering, Chemical SC Engineering GA CH3LC UT WOS:000353931200011 ER PT J AU Muhich, CL Weston, KC Arifin, D McDaniel, AH Musgrave, CB Weimer, AW AF Muhich, Christopher L. Weston, Kayla C. Arifin, Darwin McDaniel, Anthony H. Musgrave, Charles B. Weimer, Alan W. TI Extracting Kinetic Information from Complex Gas-Solid Reaction Data SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID SOLAR HYDROGEN-PRODUCTION; WATER-SPLITTING CYCLE; THERMOCHEMICAL PRODUCTION; NONSTOICHIOMETRIC CERIA; BIOMASS GASIFICATION; COBALT FERRITE; REDOX CYCLE; CO2; DISSOCIATION; REDUCTION AB We develop an approach for extracting gas solid kinetic information from convoluted experimental data and demonstrate it on isothermal carbon dioxide splitting at high-temperature using CoFe2O4/Al2O3 (i.e., a "hercynite" cycle based on Co-doped FeAl2O4) active material. The reaction kinetics equations we derive, account for competing side reactions, namely catalytic CO2 splitting on and O-2 oxidation of doped hercynite, in addition to CO2 splitting driven by the oxidation of oxygendeficient doped hercynite. The model also accounts for experimental effects, such as detector dead time and gas Mixing downstream of the reaction chamber, which obscure the intrinsic chemical processes in the raw signal. A second-order surface reaction model in relation to the extent of unreacted material and a 2.4th-order model in relation to CO2 concentration were found to best describe the CO generation of the doped hercynite. Overall, the CO production capacity was found to increase with increasing reduction temperature and CO2 partial pressure, in accordance With previously predicted behavior. The method outlined in this paper is generally applicable to the analysis of other convoluted gas solid kinetics experiments. C1 [Muhich, Christopher L.; Weston, Kayla C.; Arifin, Darwin; Musgrave, Charles B.; Weimer, Alan W.] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. [McDaniel, Anthony H.] Sandia Natl Labs, Livermore, CA 94551 USA. [Musgrave, Charles B.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Weimer, AW (reprint author), Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. EM Alan.Weimer@colorado.edu FU National Science Foundation [CBET-0966201, CBET-1433521]; U.S. Department of Energy; U.S. Department of Energy Fuel Cell Technologies Office; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Al Weimer would like to thank Scott Fogler for many inspirational kinetics and reactor engineering discussions during Scott's consulting visits to Dow Chemical and Adjunct Professor visits to the University of Colorado. Chris Muhich would like the thank Scott Fogler for getting him interested in kinetics and reactor design during his Reaction Engineering Class at the University of Michigan. The authors gratefully acknowledge the National Science Foundation and the U.S. Department of Energy for supporting this research. The work was completed through the National Science Foundation via Grants CBET-0966201 and CBET-1433521 and by the U.S. Department of Energy Fuel Cell Technologies Office. This work was a collaboration between the University of Colorado Boulder and Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 40 TC 10 Z9 10 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD APR 29 PY 2015 VL 54 IS 16 BP 4113 EP 4122 DI 10.1021/ie503894f PG 10 WC Engineering, Chemical SC Engineering GA CH3LC UT WOS:000353931200014 ER PT J AU O'Malley, D Vesselinov, VV Cushman, JH AF O'Malley, Daniel Vesselinov, Velimir V. Cushman, John H. TI Diffusive mixing and Tsallis entropy SO PHYSICAL REVIEW E LA English DT Article ID HETEROGENEOUS AQUIFER; ANOMALOUS DIFFUSION; MACRODISPERSION EXPERIMENT; MASS-TRANSFER; DISPERSION; SITE; STATISTICS; EQUATION; SOLUTE; MOTION AB Brownian motion, the classical diffusive process, maximizes the Boltzmann-Gibbs entropy. The Tsallis q entropy, which is nonadditive, was developed as an alternative to the classical entropy for systems which are nonergodic. A generalization of Brownian motion is provided that maximizes the Tsallis entropy rather than the Boltzmann-Gibbs entropy. This process is driven by a Brownian measure with a random diffusion coefficient. The distribution of this coefficient is derived as a function of q for 1 < q < 3. Applications to transport in porous media are considered. C1 [O'Malley, Daniel; Vesselinov, Velimir V.] Los Alamos Natl Lab, Computat Earth Sci, Los Alamos, NM 87545 USA. [Cushman, John H.] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA. [Cushman, John H.] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA. RP O'Malley, D (reprint author), Los Alamos Natl Lab, Computat Earth Sci, POB 1663, Los Alamos, NM 87545 USA. RI Vesselinov, Velimir/P-4724-2016; OI Vesselinov, Velimir/0000-0002-6222-0530; O'Malley, Daniel/0000-0003-0432-3088 FU Department of Energy, Office of Science through project titled "Integrated Multifaceted Approach to Mathematics at the Interfaces of Data, Models, and Decisions (DiaMonD)"; NSF [EAR1314828] FX D.O. and V.V.V. wish to acknowledge support for this work from the Department of Energy, Office of Science through project titled "Integrated Multifaceted Approach to Mathematics at the Interfaces of Data, Models, and Decisions (DiaMonD)," and J.H.C. wishes to acknowledge support for this work from NSF Grant No. EAR1314828. NR 53 TC 1 Z9 1 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD APR 29 PY 2015 VL 91 IS 4 AR 042143 DI 10.1103/PhysRevE.91.042143 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA CG9LS UT WOS:000353637500005 PM 25974474 ER PT J AU Paul, CD Traore, DAK Olsen, S Devenish, RJ Close, DW Bell, TDM Bradbury, A Wilce, MCJ Prescott, M AF Paul, Craig Don Traore, Daouda A. K. Olsen, Seth Devenish, Rodney J. Close, Devin W. Bell, Toby D. M. Bradbury, Andrew Wilce, Matthew C. J. Prescott, Mark TI X-Ray Crystal Structure and Properties of Phanta, a Weakly Fluorescent Photochromic GFP-Like Protein SO PLOS ONE LA English DT Article ID STATE PROTON-TRANSFER; RED FLUORESCENCE; GREEN; DRONPA; CHROMOPHORE; FRET; VARIANTS; DYNAMICS; CHROMOPROTEINS; ISOMERIZATION AB Phanta is a reversibly photoswitching chromoprotein (Phi(F), 0.003), useful for pcFRET, that was isolated from a mutagenesis screen of the bright green fluorescent eCGP123 (Phi(F), 0.8). We have investigated the contribution of substitutions at positions His193, Thr69 and Gln62, individually and in combination, to the optical properties of Phanta. Single amino acid substitutions at position 193 resulted in proteins with very low Phi(F), indicating the importance of this position in controlling the fluorescence efficiency of the variant proteins. The substitution Thr69Val in Phanta was important for supressing the formation of a protonated chromophore species observed in some His193 substituted variants, whereas the substitution Gln62Met did not significantly contribute to the useful optical properties of Phanta. X-ray crystal structures for Phanta (2.3 angstrom), eCGP123(T69V) (2.0 angstrom) and eCGP123(H193Q) (2.2 angstrom) in their non-photoswitched state were determined, revealing the presence of a cis-coplanar chromophore. We conclude that changes in the hydrogen-bonding network supporting the cis-chromophore, and its contacts with the surrounding protein matrix, are responsible for the low fluorescence emission of eCGP123 variants containing a His193 substitution. C1 [Paul, Craig Don] Univ Med, Dept Neuro & Sensory Physiol, D-37073 Gottingen, Germany. [Traore, Daouda A. K.; Devenish, Rodney J.; Wilce, Matthew C. J.; Prescott, Mark] Monash Univ, Sch Biomed Sci, Dept Biochem & Mol Biol, Clayton, Vic 3800, Australia. [Bell, Toby D. M.] Monash Univ, Sch Chem, Clayton, Vic 3800, Australia. [Close, Devin W.; Bradbury, Andrew] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Olsen, Seth] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. RP Wilce, MCJ (reprint author), Monash Univ, Sch Biomed Sci, Dept Biochem & Mol Biol, Clayton Campus, Clayton, Vic 3800, Australia. EM Matthew.Wilce@monash.edu; Mark.Prescott@monash.edu RI Traore, Daouda/B-5242-2013; Olsen, Seth/A-6157-2010; OI Traore, Daouda/0000-0003-1001-4716; Bradbury, Andrew/0000-0002-5567-8172 FU Monash University FX This work was funded internally by Monash University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 74 TC 1 Z9 1 U1 4 U2 22 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 29 PY 2015 VL 10 IS 4 AR e0123338 DI 10.1371/journal.pone.0123338 PG 23 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CH0LO UT WOS:000353711600039 ER PT J AU Zerrouki, T Petrache, CM Leguillon, R Hauschild, K Korichi, A Lopez-Martens, A Frauendorf, S Ragnarsson, I Hubel, H Neusser-Neffgen, A Al-Khatib, A Bringel, P Burger, A Nenoff, N Schonwasser, G Singh, AK Curien, D Hagemann, GB Herskind, B Sletten, G Fallon, P Gorgen, A Bednarczyk, P AF Zerrouki, T. Petrache, C. M. Leguillon, R. Hauschild, K. Korichi, A. Lopez-Martens, A. Frauendorf, S. Ragnarsson, I. Huebel, H. Neusser-Neffgen, A. Al-Khatib, A. Bringel, P. Buerger, A. Nenoff, N. Schoenwasser, G. Singh, A. K. Curien, D. Hagemann, G. B. Herskind, B. Sletten, G. Fallon, P. Goergen, A. Bednarczyk, P. TI Shape evolution and magnetic rotation in Nd-141 SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID COINCIDENCE DATA SETS; HIGH-SPIN; BANDS; COLLECTIVITY; EXCITATIONS; EUROBALL; NUCLEI AB The high-spin states in Nd-141 were investigated using the Zr-96(Ca-48, 3n) reaction and the EU-ROBALL array. The level scheme has been extended up to an excitation energy of around 16MeV and spin 81/2. Two new bands of dipole transitions and three bands presumably of quadrupole transitions were identified and their connections to low-lying states were established. Cranked Nilsson-Strutinsky and tilted axis cranking calculations are combined in the interpretation of the observed dipole bands. The high-spin bands with assigned quadrupole transitions are interpreted as triaxial bands, while the dipole bands appear in the calculations to exhibit a shape evolution from low-deformation triaxial to spherical shape. They can be classified as magnetic rotation, with transition probabilities that show the characteristic decrease with angular momentum caused by the shears mechanism. C1 [Zerrouki, T.; Petrache, C. M.; Leguillon, R.; Hauschild, K.; Korichi, A.; Lopez-Martens, A.] Univ Paris 11, Ctr Spectrometrie Nucl & Spectrometrie Masse, F-91405 Orsay, France. [Zerrouki, T.; Petrache, C. M.; Leguillon, R.; Hauschild, K.; Korichi, A.; Lopez-Martens, A.] CNRS, IN2P3, F-91405 Orsay, France. [Frauendorf, S.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Ragnarsson, I.] Lund Univ, Div Math Phys, LTH, SE-22100 Lund, Sweden. [Huebel, H.; Neusser-Neffgen, A.; Al-Khatib, A.; Bringel, P.; Buerger, A.; Nenoff, N.; Schoenwasser, G.; Singh, A. K.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Curien, D.] IPHC, DRS, F-67037 Strasbourg, France. [Hagemann, G. B.; Herskind, B.; Sletten, G.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Fallon, P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Goergen, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Bednarczyk, P.] Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. RP Zerrouki, T (reprint author), Univ Paris 11, Ctr Spectrometrie Nucl & Spectrometrie Masse, Bat 104-108, F-91405 Orsay, France. EM petrache@csnsm.in2p3.fr OI Gorgen, Andreas/0000-0003-1916-9941 FU US Department of Energy [DE-FG02-95ER40934]; Swedish Research Council; BMBF, Germany [06 BN 07, 06 BN 109]; EU [HPRI-CT-1999-00078]; Italian National Institute of Nuclear Physics (INFN); Danish Science Foundation; Swedish Science Research Council; DOE [DE-AC03-76SF00098] FX The work was partially supported by US Department of Energy Grant DE-FG02-95ER40934 and by the Swedish Research Council. The work of the Bonn group was supported by BMBF, Germany, under Contracts No. 06 BN 07 and No. 06 BN 109. The EUROBALL was supported by the EU under Contract No. HPRI-CT-1999-00078, by the Italian National Institute of Nuclear Physics (INFN), by the Danish Science Foundation, by the Swedish Science Research Council, and by the DOE under Contract No. DE-AC03-76SF00098. NR 33 TC 3 Z9 4 U1 2 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD APR 29 PY 2015 VL 51 IS 4 AR 50 DI 10.1140/epja/i2015-15050-y PG 21 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CH1NZ UT WOS:000353789800001 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Lauwers, J Luyckx, S Ochesanu, S Rougny, R Van De Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Daci, N Heracleous, N Keaveney, J Lowette, S Maes, M Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Dobur, D Favart, L Gay, APR Grebenyuk, A Leonard, A Mohammadi, A Pernie, L Randle-conde, A Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Zenoni, F Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dildick, S Fagot, A Garcia, G Mccartin, J Rios, AAO Poyraz, D Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Nuttens, C Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alda, WL Alves, GA Brito, L Martins, MC Martins, TD Molina, J Herrera, CM Pol, ME Teles, PR Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, SS Aleksandrov, A Genchev, V Hadjiiska, R Iaydjiev, P Marinov, A Piperov, S Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Chen, M Cheng, T Du, R Jiang, CH Plestina, R Romeo, F Tao, J Wang, Z Asawatangtrakuldee, C Ban, Y Li, Q Liu, S Mao, Y Qian, SJ Wang, D Xu, Z Zou, W Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Bodlak, M Finger, M Finger, M Assran, Y Kamel, AE Mahmoud, MA Radi, A Kadastik, M Murumaa, M Raidal, M Tiko, A Eerola, P Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Busson, P Chapon, E Charlot, C Dahms, T Dalchenko, M Dobrzynski, L Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Naranjo, IN Nguyen, M Ochando, C Ortona, G Paganini, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Veelken, C Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Skovpen, K Van Hove, P Gadrat, S Beauceron, S Beaupere, N Bernet, C Boudoul, G Bouvier, E Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Donckt, MV Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Edelhoff, M Feld, L Heister, A Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Sammet, J Schael, S Schulte, JF Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Reithler, H Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Kunsken, A Lingemann, J Nowack, A Nugent, IM Pooth, O Stahl, A Martin, MA Asin, I Bartosik, N Behr, J Behrens, U Bell, AJ Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dolinska, G Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Garcia, JG Geiser, A Gunnellini, P Hauk, J Hempel, M Jung, H Kalogeropoulos, A Kasemann, M Katsas, P Kieseler, J Kleinwort, C Korol, I Krucker, D Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Roland, B Ron, E Sahin, MO Salfeld-Nebgen, J Saxena, P Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trevino, ADRV Walsh, R Wissing, C Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gorner, M Haller, J Hoffmann, M Hoing, RS Junkes, A Kirschenmann, H Klanner, R Kogler, R Lange, J Lapsien, T Lenz, T Marchesini, I Ott, J Peiffer, T Perieanu, A Pietsch, N Poehlsen, J Poehlsen, T Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sola, V Stadie, H Steinbruck, G Troendle, D Usai, E Vanelderen, L Vanhoefer, A Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Frensch, F Giffels, M Gilbert, A Hartmann, F Hauth, T Husemann, U Katkov, I Kornmayer, A Pardo, PL Mozer, MU Muller, T Muller, T Nurnberg, A Quast, G Rabbertz, K Rocker, S Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Markou, A Markou, C Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Strologas, J Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Makovec, A Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Gupta, R Bhawandeep, U Kalsi, AK Kaur, M Kumar, R Mittal, M Nishu, N Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Selvaggi, G Sharma, A Silvestris, L Venditti, R Verwilligen, P Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Ferretti, R Ferro, F Lo Vetere, M Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Carlin, R Checchia, P Dall'Osso, M Dorigo, T Dosselli, U Galanti, M Gasparini, U Gozzelino, A Lacaprara, S Margoni, M Meneguzzo, AT Montecassiano, F Passaseo, M Pazzini, J Pegoraro, M Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Ventura, S Zotto, P Zucchetta, A Gabusi, M Ratti, SP Re, V Riccardi, C Salvini, P Vitulo, P Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fedi, G Fiori, F Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Organtini, G Paramatti, R Rahatlou, S Rovelli, C Santanastasio, F Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Finco, L Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pacher, L Pastrone, N Pelliecioni, M Angioni, GLP Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Umer, T Zanetti, A Chang, S Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, TJ Ryu, MS Kim, JY Moon, DH Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, KS Park, SK Roh, Y Yoo, HD Choi, M Kim, JH Park, IC Ryu, G Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Yu, I Juodagalvis, A Komaragiri, JR Ali, MABM Linares, EC Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Pineda, AM Krofcheck, D Butler, PH Reucroft, S Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Khurshid, T Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Bargassa, P Silva, CBDE Faccioli, P Parracho, PGF Gallinaro, M Iglesias, LL Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Afanasiev, S Gavrilenko, M Golutvin, I Karjavin, V Konoplyanikov, V Korenkov, V Lanev, A Malakhov, A Matveev, V Mitsyn, VV Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Tikhonenko, E Zarubin, A Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Cifuentes, JAB Cabrillo, IJ Calderon, A Campderros, JD Fernandez, M Gomez, G Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dorney, B Dupont-Sagorin, N Elliott-Peisert, A Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Marrouche, J Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Orsini, L Pape, L Perez, E Petrilli, A Petrucciani, G Pfeiffer, A Pimia, M Piparo, D Plagge, M Racz, A Rolandi, G Rovere, M Sakulin, H Schafer, C Schwick, C Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Tsirou, A Veres, GI Wardle, N Wohri, HK Wollny, H Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Buchmann, MA Casal, B Chanon, N Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Hits, D Hoss, J Lustermann, W Mangano, B Marini, AC Marionneau, M del Arbol, PMR Masciovecchio, M Meister, D Mohr, N Musella, P Nageli, C Nessi-Tedaldi, F Pandolfi, F Pauss, F Perrozzi, L Peruzzi, M Quittnat, M Rebane, L Rossini, M Starodumov, A Takahashi, M Theofilatos, K Wallny, R Weber, HA Amsler, C Canelli, MF Chiochia, V De Cosa, A Hinzmann, A Hreus, T Kilminster, B Lange, C Mejias, BM Ngadiuba, J Pinna, D Robmann, P Ronga, FJ Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Lin, W Lu, YJ Volpe, R Yu, SS Chang, P Chang, YH Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Liu, YF Lu, RS Petrakou, E Tzeng, YM Wilken, R Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Cerci, DS Tali, B Topakli, H Vergili, M Zorbilmez, C Akin, IV Bilin, B Bilmis, S Gamsizkan, H Isildak, B Karapinar, G Ocalan, K Sekmen, S Surat, UE Yalvac, M Zeyrek, M Albayrak, EA Gulmez, E Kaya, M Kaya, O Yetkin, T Cankocak, K Vardarli, FI Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Sakuma, T El Nasr-storey, SS Senkin, S Smith, VJ Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Williams, T Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Dauncey, P Davies, G Della Negra, M Dunne, P Ferguson, W Fulcher, J Futyan, D Hall, G Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Mathias, B Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Tapper, A Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Wu, Z Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Lawson, P Richardson, C Rohlf, J St John, J Sulak, L Alimena, J Berry, E Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Dhingra, N Ferapontov, A Garabedian, A Heintz, U Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Swanson, J Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Rakness, G Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Rikova, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Negrete, MO Shrinivas, A Sumowidagdo, S Wimpenny, S Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Holzner, A Kelley, R Klein, D Letts, J Macneill, I Olivito, D Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Tadel, M Tu, Y Vartak, A Welke, C Wurthwein, F Yagil, A Barge, D Bradmiller-Feld, J Campagnari, C Danielson, T Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Incandela, J Justus, C Mccoll, N Richman, J Stuart, D To, W West, C Yoo, J Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Pierini, M Spiropulu, M Vlimant, JR Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carlson, B Ferguson, T Iiyama, Y Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Krohn, M Lopez, EL Nauenberg, U Smith, JG Stenson, K Wagner, SR Alexander, J Chatterjee, A Chaves, J Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Skinnari, L Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Klima, B Kreis, B Kwan, S Linacre, J Lincoln, D Lipton, R Liu, T Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitbeck, A Whitmore, J Yang, F Acosta, D Avery, P Bortignon, P Bourilkov, D Carver, M Curry, D Das, S De Gruttola, M Di Giovanni, GP Field, RD Fisher, M Furic, IK Hugon, J Konigsberg, J Korytov, A Kypreos, T Low, JF Matchev, K Mei, H Milenovic, P Mitselmakher, G Muniz, L Rinkevicius, A Shchutska, L Snowball, M Sperka, D Yelton, J Zakaria, M Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Silkworth, C Turner, P Varelas, N Bilki, B Clarida, W Dilsiz, K Haytmyradov, M Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Rahmat, R Sen, S Tan, P Tiras, E Wetzel, J Yi, K Anderson, I Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Gritsan, AV Maksimovic, P Martin, C Swartz, M Baringer, P Bean, A Benelli, G Bruner, C Gray, J Kenny, RP Majumder, D Malek, M Murray, M Noonan, D Sanders, S Sekaric, J Stringer, R Wang, Q Wood, JS Chakaberia, I Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Saini, LK Skhirtladze, N Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Belloni, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Mignerey, AC Pedro, K Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Busza, W Cali, IA Chan, M Di Matteo, L Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Sumorok, K Velicanu, D Veverka, J Wyslouch, B Yang, M Zanetti, M Zhukova, V Dahmes, B Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Nourbakhsh, S Pastika, N Rusack, R Singovsky, A Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Suarez, RG Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Meier, F Ratnikov, F Snow, GR Zvada, M Dolen, J Godshalk, A Iashvili, I Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Massironi, A Morse, DM Nash, D Orimoto, T Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Brinkerhoff, A Chan, KM Drozdetskiy, A Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Lynch, S Marinelli, N Musienko, Y Pearson, T Planer, M Ruchti, R Smith, G Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hart, A Hill, C Hughes, R Kotov, K Ling, TY Luo, W Puigh, D Rodenburg, M Winer, BL Wolfe, H Wulsin, HW Driga, O Elmer, P Hardenbrook, J Hebda, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Brownson, E Malik, S Mendez, H Vargas, JER Barnes, VE Benedetti, D Bortoletto, D De Mattia, M Gutay, L Hu, Z Jha, MK Jones, M Jung, K Kress, M Leonardo, N Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Zablocki, J Parashar, N Stupak, J Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Hindrichs, O Khukhunaishvili, A Korjenevski, S Petrillo, G Vishnevskiy, D Ciesielski, R Demortier, L Goulianos, K Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Kaplan, S Lath, A Panwalkar, S Park, M Patel, R Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Krutelyov, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Rose, A Safonov, A Suarez, I Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wood, J Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dasu, S Dodd, L Duric, S Friis, E Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Lazaridis, C Levine, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Taylor, D Vuosalo, C Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C-E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Lauwers, J. Luyckx, S. Ochesanu, S. Rougny, R. Van De Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Daci, N. Heracleous, N. Keaveney, J. Lowette, S. Maes, M. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Dobur, D. Favart, L. Gay, A. P. R. Grebenyuk, A. Leonard, A. Mohammadi, A. Pernie, L. Randle-conde, A. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Zenoni, F. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dildick, S. Fagot, A. Garcia, G. Mccartin, J. Rios, A. A. Ocampo Poyraz, D. Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Nuttens, C. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Correa Martins Junior, M. Dos Reis Martins, T. Molina, J. Mora Herrera, C. Pol, M. E. Rebello Teles, P. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Aleksandrov, A. Genchev, V. Hadjiiska, R. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Cheng, T. Du, R. Jiang, C. H. Plestina, R. Romeo, F. Tao, J. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Xu, Z. Zou, W. Avila, C. Cabrera, A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Bodlak, M. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Eerola, P. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Busson, P. Chapon, E. Charlot, C. Dahms, T. Dalchenko, M. Dobrzynski, L. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Naranjo, I. N. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Veelken, C. Yilmaz, Y. Zabi, A. Agram, J-L. Andrea, J. Aubin, A. Bloch, D. Brom, J-M. Chabert, E. C. Collard, C. Conte, E. Fontaine, J-C Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A-C Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Bernet, C. Boudoul, G. Bouvier, E. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Edelhoff, M. Feld, L. Heister, A. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Sammet, J. Schael, S. Schulte, J. F. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Reithler, H. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Kuensken, A. Lingemann, J. Nowack, A. Nugent, I. M. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behr, J. Behrens, U. Bell, A. J. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dolinska, G. Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Garcia, J. Garay Geiser, A. Gunnellini, P. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Korol, I. Kruecker, D. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I-A Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Roland, B. Ron, E. Sahin, M. Oe Salfeld-Nebgen, J. Saxena, P. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trevino, A. D. R. Vargas Walsh, R. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Junkes, A. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Lapsien, T. Lenz, T. Marchesini, I. Ott, J. Peiffer, T. Perieanu, A. Pietsch, N. Poehlsen, J. Poehlsen, T. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Frensch, F. Giffels, M. Gilbert, A. Hartmann, F. Hauth, T. Husemann, U. Katkov, I. Kornmayer, A. Pardo, P. Lobelle Mozer, M. U. Mueller, T. Mueller, Th. Nuernberg, A. Quast, G. Rabbertz, K. Roecker, S. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Strologas, J. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Makovec, A. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, M. Kumar, R. Mittal, M. Nishu, N. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa Jain, Sh Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Selvaggi, G. Sharma, A. Silvestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Ferretti, R. Ferro, F. Lo Vetere, M. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Carlin, R. Checchia, P. Dall'Osso, M. Dorigo, T. Dosselli, U. Galanti, M. Gasparini, U. Gozzelino, A. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Montecassiano, F. Passaseo, M. Pazzini, J. Pegoraro, M. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Ventura, S. Zotto, P. Zucchetta, A. Gabusi, M. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vitulo, P. Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Santanastasio, F. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Finco, L. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pacher, L. Pastrone, N. Pelliecioni, M. Angioni, G. L. Pinna Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, T. J. Ryu, M. S. Kim, J. Y. Moon, D. H. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. S. Park, S. K. Roh, Y. Yoo, H. D. Choi, M. Kim, J. H. Park, I. C. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Yu, I. Juodagalvis, A. Komaragiri, J. R. Ali, M. A. B. Md Casimiro Linares, E. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Sanchez-Hernandez, A. Carrillo Moreno, S. Vazquez Valencia, F. Pedraza, I. Salazar Ibarguen, H. A. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Reucroft, S. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Bargassa, P. Beirao Da Cruz E Silva, C. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Lloret Iglesias, L. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Gavrilenko, M. Golutvin, I. Karjavin, V. Konoplyanikov, V. Korenkov, V. Lanev, A. Malakhov, A. Matveev, V. Mitsyn, V. V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Tikhonenko, E. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An Andreev, Yu Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Duarte Campderros, J. Fernandez, M. Gomez, G. Graziano, A. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dorney, B. Dupont-Sagorin, N. Elliott-Peisert, A. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Marrouche, J. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Orsini, L. Pape, L. Perez, E. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pimiae, M. Piparo, D. Plagge, M. Racz, A. Rolandi, G. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Tsirou, A. Veres, G. I. Wardle, N. Woehri, H. K. Wollny, H. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Buchmann, M. A. Casal, B. Chanon, N. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Grab, C. Hits, D. Hoss, J. Lustermann, W. Mangano, B. Marini, A. C. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Mohr, N. Musella, P. Naegeli, C. Nessi-Tedaldi, F. Pandolfi, F. Pauss, F. Perrozzi, L. Peruzzi, M. Quittnat, M. Rebane, L. Rossini, M. Starodumov, A. Takahashi, M. Theofilatos, K. Wallny, R. Weber, H. A. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Mejias, B. Millan Ngadiuba, J. Pinna, D. Robmann, P. Ronga, F. J. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Chang, P. Chang, Y. H. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W-S. Liu, Y. F. Lu, R-S. Petrakou, E. Tzeng, Y. M. Wilken, R. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Zorbilmez, C. Akin, I. V. Bilin, B. Bilmis, S. Gamsizkan, H. Isildak, B. Karapinar, G. Ocalan, K. Sekmen, S. Surat, U. E. Yalvac, M. Zeyrek, M. Albayrak, E. A. Gulmez, E. Kaya, M. Kaya, O. Yetkin, T. Cankocak, K. Vardarli, F. I. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. El Nasr-storey, S. Seif Senkin, S. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Dauncey, P. Davies, G. Della Negra, M. Dunne, P. Ferguson, W. Fulcher, J. Futyan, D. Hall, G. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A-M Malik, S. Mathias, B. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Tapper, A. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Wu, Z. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Lawson, P. Richardson, C. Rohlf, J. St John, J. Sulak, L. Alimena, J. Berry, E. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Dhingra, N. Ferapontov, A. Garabedian, A. Heintz, U. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Swanson, J. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Rakness, G. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Rikova, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Negrete, M. Olmedo Shrinivas, A. Sumowidagdo, S. Wimpenny, S. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Holzner, A. Kelley, R. Klein, D. Letts, J. Macneill, I. Olivito, D. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Tu, Y. Vartak, A. Welke, C. Wuerthwein, F. Yagil, A. Barge, D. Bradmiller-Feld, J. Campagnari, C. Danielson, T. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Incandela, J. Justus, C. Mccoll, N. Richman, J. Stuart, D. To, W. West, C. Yoo, J. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Pierini, M. Spiropulu, M. Vlimant, J. R. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Iiyama, Y. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Krohn, M. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Wagner, S. R. Alexander, J. Chatterjee, A. Chaves, J. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Skinnari, L. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kreis, B. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitbeck, A. Whitmore, J. Yang, F. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carver, M. Curry, D. Das, S. De Gruttola, M. Di Giovanni, G. P. Field, R. D. Fisher, M. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Kypreos, T. Low, J. F. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Muniz, L. Rinkevicius, A. Shchutska, L. Snowball, M. Sperka, D. Yelton, J. Zakaria, M. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Gonzalez, I. D. Sandoval Silkworth, C. Turner, P. Varelas, N. Bilki, B. Clarida, W. Dilsiz, K. Haytmyradov, M. Merlo, J-P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Rahmat, R. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Gritsan, A. V. Maksimovic, P. Martin, C. Swartz, M. Baringer, P. Bean, A. Benelli, G. Bruner, C. Gray, J. Kenny, R. P., III Majumder, D. Malek, M. Murray, M. Noonan, D. Sanders, S. Sekaric, J. Stringer, R. Wang, Q. Wood, J. S. Chakaberia, I. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Skhirtladze, N. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Belloni, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Mignerey, A. C. Pedro, K. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y-J. Levin, A. Luckey, P. D. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Sumorok, K. Velicanu, D. Veverka, J. Wyslouch, B. Yang, M. Zanetti, M. Zhukova, V. Dahmes, B. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Nourbakhsh, S. Pastika, N. Rusack, R. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Suarez, R. Gonzalez Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Meier, F. Ratnikov, F. Snow, G. R. Zvada, M. Dolen, J. Godshalk, A. Iashvili, I. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Trocino, D. Wang, R-J Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Brinkerhoff, A. Chan, K. M. Drozdetskiy, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Lynch, S. Marinelli, N. Musienko, Y. Pearson, T. Planer, M. Ruchti, R. Smith, G. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hart, A. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Luo, W. Puigh, D. Rodenburg, M. Winer, B. L. Wolfe, H. Wulsin, H. W. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Brownson, E. Malik, S. Mendez, H. Vargas, J. E. Ramirez Barnes, V. E. Benedetti, D. Bortoletto, D. De Mattia, M. Gutay, L. Hu, Z. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Zablocki, J. Parashar, N. Stupak, J. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Hindrichs, O. Khukhunaishvili, A. Korjenevski, S. Petrillo, G. Vishnevskiy, D. Ciesielski, R. Demortier, L. Goulianos, K. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Kaplan, S. Lath, A. Panwalkar, S. Park, M. Patel, R. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Krutelyov, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Rose, A. Safonov, A. Suarez, I. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wood, J. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dasu, S. Dodd, L. Duric, S. Friis, E. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Lazaridis, C. Levine, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Taylor, D. Vuosalo, C. Woods, N. CA CMS Collaboration TI Measurement of the Z gamma production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID HADRON COLLIDERS; LEP; RECONSTRUCTION; LHC; QCD; CMS AB The cross section for the production of Z gamma in proton-proton collisions at 8 TeV is measured based on data collected by the CMS experiment at the LHC corresponding to an integrated luminosity of 19.5 fb(-1). Events with an oppositely-charged pair of muons or electrons together with an isolated photon are selected. The differential cross section as a function of the photon transverse momentum is measured inclusively and exclusively, where the exclusive selection applies a veto on central jets. The observed cross sections are compatible with the expectations of next-to-next-to-leading-order quantum chromodynamics. Limits on anomalous triple gauge couplings of ZZ gamma and Z gamma gamma are set that improve on previous experimental results obtained with the charged lepton decay modes of the Z boson. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C-E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Favart, D.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Rios, A. A. Ocampo; Poyraz, D.; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Molina, J.; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dogra, S.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Busson, P.; Chapon, E.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J-C; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A-C; Skovpen, K.; Van Hove, P.] Univ Strasbourg, Univ Haute Alsace Mulhouse, CNRS, Inst Pluridisciplinaire Hubert Curien,IN2P3, Strasbourg, France. [Gadrat, S.] Inst Natl Phys Nucl & Phys Particules, CNRS, IN2P3, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Phys Inst 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Kuensken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Kruecker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I-A; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Pardo, P. Lobelle; Mozer, M. U.; Mueller, T.; Mueller, Th.; Nuernberg, A.; Quast, G.; Rabbertz, K.; Roecker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa; Jain, Sh; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Banerjee, S.; Aziz, T.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Da Costa, E. M.; Albergo, S.; Cappello, G.; Chiorboli, M.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Ventura, S.; Zotto, P.; Zucchetta, A.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Carlin, R.; Dall'Osso, M.; Galanti, M.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.] Univ Padua, Padua, Italy. Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Longo, E.; Margaroli, F.; Micheli, F.; Organtini, G.; Rahatlou, S.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliecioni, M.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Finco, L.; Migliore, E.; Monaco, V.; Pacher, L.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.] Kyungpook Natl Univ, Daegu, South Korea. [Kim, T. J.; Ryu, M. S.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Kim, J. Y.; Moon, D. H.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Yoo, H. D.] Seoul Natl Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Komaragiri, J. R.; Ali, M. A. B. Md] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Gavrilenko, M.; Golutvin, I.; Karjavin, V.; Konoplyanikov, V.; Korenkov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Sharma, A.; Masetti, G.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pimiae, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Woehri, H. K.; Wollny, H.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Naegeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Mejias, B. Millan; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W-S.; Liu, Y. F.; Lu, R-S.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Albayrak, E. A.; Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-storey, S. Seif; Senkin, S.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A-M; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St John, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Berry, E.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Silkworth, C.; Turner, P.; Varelas, N.] UIC, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Haytmyradov, M.; Merlo, J-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y-J.; Levin, A.; Luckey, P. D.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R-J; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Malik, S.; Brownson, E.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA. [Ciesielski, R.; Demortier, L.; Goulianos, K.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Rose, A.; Bouhali, O.; Hernandez, A. Castaneda; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C-E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Rabady, D.; Pernie, L.; Genchev, V.; Boudoul, G.; Contardo, D.; Hartmann, F.; Kornmayer, A.; Mohanty, A. K.; Giordano, F.; Gennai, S.; Gerosa, R.; Lucchini, M. T.; Marzocchi, B.; Di Guida, S.; Meola, S.; Paolucci, P.; Ciangottini, D.; Spiezia, A.; Donato, S.; Palla, F.; Micheli, F.; Traczyk, P.; Casasso, S.; Finco, L.; Stickland, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Beluffi, C.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Giammanco, A.] NICPB, Tallinn, Estonia. [Popov, A.; Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Plestina, R.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Finger, M., Jr.; Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Agram, J-L.; Andrea, J.; Conte, E.; Fontaine, J-C] Univ Haute Alsace, Mulhouse, France. [Hempel, M.; Lohmann, W.; Marfin, I.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Karancsi, J.] Univ Debrecen, H-4012 Debrecen, Hungary. [Bhowmik, S.; Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Savoy-Navarro, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Matveev, V.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Azarkin, M.; Dremin, I.; Leonidov, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Dubinin, M.] CALTECH, Pasadena, CA 91125 USA. [Adzic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Gamsizkan, H.] Anadolu Univ, Eskisehir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Ocalan, K.] Necmettin Erbakan Univ, Konya, Turkey. [Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Bouhali, O.] Texas A&M Univ, Doha, Qatar. [Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Da Silveira, Gustavo Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Calderon, Alicia/K-3658-2014; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Novaes, Sergio/D-3532-2012; Della Ricca, Giuseppe/B-6826-2013; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Cakir, Altan/P-1024-2015; Matorras, Francisco/I-4983-2015; Gennai, Simone/P-2880-2015; TUVE', Cristina/P-3933-2015; Dudko, Lev/D-7127-2012; KIM, Tae Jeong/P-7848-2015; Paganoni, Marco/A-4235-2016; de Jesus Damiao, Dilson/G-6218-2012; Calvo Alamillo, Enrique/L-1203-2014; Flix, Josep/G-5414-2012; Cerrada, Marcos/J-6934-2014; Perez-Calero Yzquierdo, Antonio/F-2235-2013; Menasce, Dario Livio/A-2168-2016; Rolandi, Luigi (Gigi)/E-8563-2013; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Marco, Jesus/B-8735-2008; My, Salvatore/I-5160-2015; Benussi, Luigi/O-9684-2014; Lo Vetere, Maurizio/J-5049-2012; Ragazzi, Stefano/D-2463-2009; Grandi, Claudio/B-5654-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Dogra, Sunil /B-5330-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Petrushanko, Sergey/D-6880-2012; Cavallo, Nicola/F-8913-2012; D'Alessandro, Raffaello/F-5897-2015; Montanari, Alessandro/J-2420-2012; Hernandez Calama, Jose Maria/H-9127-2015; VARDARLI, Fuat Ilkehan/B-6360-2013; Manganote, Edmilson/K-8251-2013; ciocci, maria agnese /I-2153-2015; Lokhtin, Igor/D-7004-2012; Bedoya, Cristina/K-8066-2014; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Ogul, Hasan/S-7951-2016; OI Luukka, Panja/0000-0003-2340-4641; Ciulli, Vitaliano/0000-0003-1947-3396; Tonelli, Guido Emilio/0000-0003-2606-9156; Androsov, Konstantin/0000-0003-2694-6542; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Abbiendi, Giovanni/0000-0003-4499-7562; Gonzi, Sandro/0000-0003-4754-645X; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Novaes, Sergio/0000-0003-0471-8549; Della Ricca, Giuseppe/0000-0003-2831-6982; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; Dudko, Lev/0000-0002-4462-3192; KIM, Tae Jeong/0000-0001-8336-2434; Paganoni, Marco/0000-0003-2461-275X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Calvo Alamillo, Enrique/0000-0002-1100-2963; Flix, Josep/0000-0003-2688-8047; Cerrada, Marcos/0000-0003-0112-1691; Perez-Calero Yzquierdo, Antonio/0000-0003-3036-7965; Margaroli, Fabrizio/0000-0002-3869-0153; Landsberg, Greg/0000-0002-4184-9380; Rizzi, Andrea/0000-0002-4543-2718; Tricomi, Alessia Rita/0000-0002-5071-5501; Malik, Sudhir/0000-0002-6356-2655; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Barbieri, Richard/0000-0002-7945-005X; Ghezzi, Alessio/0000-0002-8184-7953; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Staiano, Amedeo/0000-0003-1803-624X; Menasce, Dario Livio/0000-0002-9918-1686; Gerosa, Raffaele/0000-0001-8359-3734; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Costa, Salvatore/0000-0001-9919-0569; Kasemann, Matthias/0000-0002-0429-2448; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Sguazzoni, Giacomo/0000-0002-0791-3350; Casarsa, Massimo/0000-0002-1353-8964; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Marco, Jesus/0000-0001-7914-8494; My, Salvatore/0000-0002-9938-2680; Benussi, Luigi/0000-0002-2363-8889; Lo Vetere, Maurizio/0000-0002-6520-4480; Ragazzi, Stefano/0000-0001-8219-2074; Grandi, Claudio/0000-0001-5998-3070; Rovelli, Tiziano/0000-0002-9746-4842; D'Alessandro, Raffaello/0000-0001-7997-0306; Montanari, Alessandro/0000-0003-2748-6373; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; Bedoya, Cristina/0000-0001-8057-9152; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Ogul, Hasan/0000-0002-5121-2893; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Marzocchi, Badder/0000-0001-6687-6214; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299 FU Austrian Federal Ministry of Science, Research and Economy; Austrian Science Fund; Belgian Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; Brazilian Funding Agency CNPq; Brazilian Funding Agency CAPES; Brazilian Funding Agency FAPERJ; Brazilian Funding Agency FAPESP; Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences, Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Croatian Science Foundation; Research Promotion Foundation, Cyprus; Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6]; European Regional Development Fund, Estonia; Academy of Finland, Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France; Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; Bundesministerium fur Bildung und Forschung, Germany; Deutsche Forschungsgemeinschaft, Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation, Hungary; National Innovation Office, Hungary; Department of Atomic Energy, India; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Science, ICT and Future Planning, Republic of Korea; National Research Foundation (NRF), Republic of Korea; Lithuanian Academy of Sciences; Ministry of Education (Malaysia); University of Malaya (Malaysia); Mexican Funding Agency CINVESTAV; Mexican Funding Agency CONACYT; Mexican Funding Agency SEP; Mexican Funding Agency UASLP-FAI; Ministry of Business, Innovation and Employment, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education; National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of Sciences; Russian Foundation for Basic Research; Ministry of Education, Science and Technological Development of Serbia; Secretaria de Estado de Investigacion, Spain; Desarrollo e Innovacion, Spain; Programa Consolider-Ingenio, Spain; Swiss Funding Agency ETH Board; Swiss Funding Agency ETH Zurich; Swiss Funding Agency PSI; Swiss Funding Agency SNF; Swiss Funding Agency UniZH; Swiss Funding Agency Canton Zurich; Swiss Funding Agency SER; Ministry of Science and Technology, Taipei; Thailand Center of Excellence in Physics; Institute for the Promotion of Teaching Science and Technology of Thailand; Special Task Force for Activating Research; National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; National Academy of Sciences of Ukraine; State Fund for Fundamental Researches, Ukraine; Science and Technology Facilities Council, U.K.; US Department of Energy; US National Science Foundation; Marie-Curie program (European Union); European Research Council (European Union); EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS program of Foundation for Polish Science; European Union, Regional Development Fund; Compagnia di San Paolo (Torino); Consorzio per la Fisica (Trieste); MIUR project (Italy) [20108T4XTM]; Thalis program; Aristeia program; EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses.; Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, U.K.; the US Department of Energy, and the US National Science Foundation.; Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund. NR 42 TC 1 Z9 1 U1 9 U2 46 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD APR 29 PY 2015 IS 4 AR 164 DI 10.1007/JHEP04(2015)164 PG 40 WC Physics, Particles & Fields SC Physics GA CH1YC UT WOS:000353818600001 ER PT J AU Sakai, Y Saito, S Cohen, ML AF Sakai, Yuki Saito, Susumu Cohen, Marvin L. TI Electronic properties of B-C-N ternary kagome lattices SO PHYSICAL REVIEW B LA English DT Article ID HIGH-PRESSURE SYNTHESIS; SUPERHARD CUBIC BC2N; BORON-NITRIDE; ATOMIC ARRANGEMENT; CARBON NANOTUBES; LASER-ABLATION; TOTAL-ENERGY; HETEROSTRUCTURES; PSEUDOPOTENTIALS; SPECTROSCOPY AB We investigate the electronic properties of boron-carbon-nitrogen (B-C-N) analogues of a recently proposed carbon kagome lattice [Chen et al., Phys. Rev. Lett. 113, 085501 (2014)]. The B-C-N kagome lattices are constructed by replacing the carbon zigzag chains of the carbon kagome lattice with boron nitride zigzag chains. We use calculations of phonon dispersion curves to demonstrate the thermodynamic stabilities of the BCN and BC4N kagome lattices. The B-C-N kagome lattices are wide-band gap semiconductors although the band gaps of the BCN and BC4N kagome lattices are increased and reduced, respectively, compared with the carbon case. The reduction of the band gap is found to be caused by a direct to indirect gap transition in the BC4N kagome lattice. C1 [Sakai, Yuki; Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Sakai, Yuki; Saito, Susumu] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Sakai, Yuki] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan. [Saito, Susumu] Tokyo Inst Technol, Int Res Ctr Nanosci & Quantum Phys, Tokyo 1528551, Japan. [Cohen, Marvin L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Sakai, Y (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. FU NSF [DMR-10-1006184]; theory program at the Lawrence Berkeley National Laboratory through the Office of Basic Science, US Department of Energy [DE-AC02-05CH11231]; Japan Society for the Promotion of Science (JSPS) [12J08928]; JSPS [25107005]; Global COE Program of MEXT Japan through the Nanoscience and Quantum Physics Project of the Tokyo Institute of Technology; MEXT Elements Strategy Initiative FX Numerical calculations were partly carried out on the TSUBAME2.0 supercomputer in the Tokyo Institute of Technology. This work was supported by NSF Grant No. DMR-10-1006184, and the theory program at the Lawrence Berkeley National Laboratory through the Office of Basic Science, US Department of Energy under Contract No. DE-AC02-05CH11231. Y.S. acknowledges financial support from Japan Society for the Promotion of Science (JSPS), 12J08928. S.S. acknowledges the financial support by a Grant-in-Aid for Scientific Research from JSPS (No. 25107005), Global COE Program of MEXT Japan through the Nanoscience and Quantum Physics Project of the Tokyo Institute of Technology, and MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy. We thank Yuanping Chen and Shengbai Zhang for useful discussions. NR 76 TC 0 Z9 0 U1 10 U2 57 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 29 PY 2015 VL 91 IS 16 AR 165434 DI 10.1103/PhysRevB.91.165434 PG 6 WC Physics, Condensed Matter SC Physics GA CG9LG UT WOS:000353636000008 ER PT J AU Englert, C Low, I Spannowsky, M AF Englert, Christoph Low, Ian Spannowsky, Michael TI On-shell interference effects in Higgs boson final states SO PHYSICAL REVIEW D LA English DT Article ID ULTRA HEAVY FERMIONS; STANDARD MODEL; 2-LOOP RENORMALIZATION; GAUGE-INVARIANCE; WEAK-INTERACTIONS; W PRODUCTION; LHC; OBSERVABLES; LINESHAPE; WIDTH AB Top quark loops in Higgs production via gluon fusion at large invariant final state masses can induce important interference effects in searches for additional Higgs bosons as predicted in, e.g., Higgs portal scenarios and the minimal supersymmetric Standard Model when the heavy scalar is broad or the final state resolution is poor. Currently, the limit setting as performed by both ATLAS and CMS is based on injecting a heavy Higgs-like signal neglecting interference effects. In this paper, we perform a study of such "on-shell" interference effects in pp -> ZZ and find that they lead to a less than or similar to O(30%) width scheme-dependent modification of the signal strength. Including the continuum contributions to obtain, e.g., the full pp -> ZZ -> 4l final state, this modification is reduced to the 10% level in the considered intermediate mass range. C1 [Englert, Christoph] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland. [Low, Ian] Argonne Natl Lab, High Energy Phys Div, Argonne, IL 60439 USA. [Low, Ian] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Spannowsky, Michael] Univ Durham, Dept Phys, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. RP Englert, C (reprint author), Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland. EM christoph.englert@glasgow.ac.uk; ilow@northwestern.edu; michael.spannowsky@durham.ac.uk FU Institute for Particle Physics Phenomenology Associateship program; U.S. Department of Energy [DE-AC02-06CH11357, DE-SC0010143]; European Commission through the HiggsTools Initial Training Network [PITN-GA-2012-316704] FX We thank Nikolas Kauer and Claire O'Brien for discussions related to their publication [49]. C. E. is supported by the Institute for Particle Physics Phenomenology Associateship program. I. L. is supported in part by the U.S. Department of Energy under Contracts No. DE-AC02-06CH11357 and No. DE-SC0010143. M. S. is supported in part by the European Commission through the HiggsTools Initial Training Network PITN-GA-2012-316704. NR 78 TC 11 Z9 11 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR 29 PY 2015 VL 91 IS 7 AR 074029 DI 10.1103/PhysRevD.91.074029 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CG9LK UT WOS:000353636500004 ER PT J AU Massari, A Izaguirre, E Essig, R Albert, A Bloom, E Gomez-Vargas, GA AF Massari, Andrea Izaguirre, Eder Essig, Rouven Albert, Andrea Bloom, Elliott Gomez-Vargas, German Arturo TI Strong optimized conservative Fermi-LAT constraints on dark matter models from the inclusive photon spectrum SO PHYSICAL REVIEW D LA English DT Article ID LARGE-AREA TELESCOPE; UNIVERSAL DENSITY PROFILE; COSMIC-RAY POSITRON; DWARF GALAXIES; HALO; EMISSION; MILKY; ANNIHILATION; BUBBLES; SIGNAL AB We set conservative, robust constraints on the annihilation and decay of dark matter into various Standard Model final states under various assumptions about the distribution of the dark matter in the Milky Way halo. We use the inclusive photon spectrum observed by the Fermi Gamma-ray Space Telescope through its main instrument, the Large Area Telescope. We use simulated data to first find the "optimal" regions of interest in the.-ray sky, where the expected dark matter signal is largest compared with the expected astrophysical foregrounds. We then require the predicted dark matter signal to be less than the observed photon counts in the a priori optimal regions. This yields a very conservative constraint as we do not attempt to model or subtract astrophysical foregrounds. The resulting limits are competitive with other existing limits and, for some final states with cuspy dark-matter distributions in the Galactic Center region, disfavor the typical cross section required during freeze-out for a weakly interacting massive particle to obtain the observed relic abundance. C1 [Massari, Andrea; Essig, Rouven] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Izaguirre, Eder] Perimeter Inst Theoret Phys, Waterloo, ON N2L 6B9, Canada. [Albert, Andrea; Bloom, Elliott] Stanford Univ, KIPAC, SLAC, Stanford, CA 94305 USA. [Gomez-Vargas, German Arturo] Pontificia Univ Catolica Chile, Inst Fis, Santiago, Chile. [Gomez-Vargas, German Arturo] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. RP Massari, A (reprint author), SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. EM andrea.massari@stonybrook.edu; eizaguirre@perimeterinstitute.ca; rouven.essig@stonybrook.edu FU Department of Energy (DOE) Early Career research program [DESC0008061]; Sloan Foundation Research Fellowship; Government of Canada through Industry Canada; Province of Ontario through the Ministry of Research and Innovation; Ministry of Research and Innovation-ERA (Early Research Awards) program; C.N. Yang Institute for Theoretical Physics (Stony Brook University); NSF [PHY1316617]; Conicyt Anillo [ACT1102]; Spanish MINECO's Consolider-Ingenio Programme [MultiDark CSD2009-00064]; MINECO [FPA2012-34694]; National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX We thank Luca Baldini, Philippe Bruel, Seth Digel, Miguel Sanchez-Conde, and David Thompson for reading the manuscript and providing valuable comments, Neelima Sehgal for providing the photon spectra for the various dark matter annihilation and decay final states, Warit Mitthumsiri for his work on the MC simulations, and Eric Charles, Ilias Cholis, Tongyan Lin, Michele Papucci, and Gabrijela Zaharijas for helpful correspondence or discussion. We also thank all the members of the Fermi-LAT collaboration who provided valuable comments and assistance, including Alessandro Cuoco, Alex Drlica-Wagner, Gudlaugur Johannesson, Philipp Mertsch, Igor Moskalenko, and Matthew Wood. R. E. is supported by the Department of Energy (DOE) Early Career research program DESC0008061 and by a Sloan Foundation Research Fellowship. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation. E. I. is partly supported by the Ministry of Research and Innovation-ERA (Early Research Awards) program. A. M. is supported by the C.N. Yang Institute for Theoretical Physics (Stony Brook University) and NSF Grant No. PHY1316617. The work of G. A. G. V. was supported by Conicyt Anillo Grant No. ACT1102. G. A. G. V. is thankful for the support of the Spanish MINECO's Consolider-Ingenio 2010 Programme under Grant MultiDark CSD2009-00064 and also the partial support by MINECO under Grant No. FPA2012-34694. The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 106 TC 6 Z9 6 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR 29 PY 2015 VL 91 IS 8 AR 083539 DI 10.1103/PhysRevD.91.083539 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CG9LO UT WOS:000353637000003 ER PT J AU Hopkins, LFB Meezan, NB Le Pape, S Divol, L Mackinnon, AJ Ho, DD Hohenberger, M Jones, OS Kyrala, G Milovich, JL Pak, A Ralph, JE Ross, JS Benedetti, LR Biener, J Bionta, R Bond, E Bradley, D Caggiano, J Callahan, D Cerjan, C Church, J Clark, D Doppner, T Dylla-Spears, R Eckart, M Edgell, D Field, J Fittinghoff, DN Johnson, MG Grim, G Guler, N Haan, S Hamza, A Hartouni, EP Hatarik, R Herrmann, HW Hinkel, D Hoover, D Huang, H Izumi, N Khan, S Kozioziemski, B Kroll, J Ma, T MacPhee, A McNaney, J Merrill, F Moody, J Nikroo, A Patel, P Robey, HF Rygg, JR Sater, J Sayre, D Schneider, M Sepke, S Stadermann, M Stoeffl, W Thomas, C Town, RPJ Volegov, PL Wild, C Wilde, C Woerner, E Yeamans, C Yoxall, B Kilkenny, J Landen, OL Hsing, W Edwards, MJ AF Hopkins, L. F. Berzak Meezan, N. B. Le Pape, S. Divol, L. Mackinnon, A. J. Ho, D. D. Hohenberger, M. Jones, O. S. Kyrala, G. Milovich, J. L. Pak, A. Ralph, J. E. Ross, J. S. Benedetti, L. R. Biener, J. Bionta, R. Bond, E. Bradley, D. Caggiano, J. Callahan, D. Cerjan, C. Church, J. Clark, D. Doeppner, T. Dylla-Spears, R. Eckart, M. Edgell, D. Field, J. Fittinghoff, D. N. Johnson, M. Gatu Grim, G. Guler, N. Haan, S. Hamza, A. Hartouni, E. P. Hatarik, R. Herrmann, H. W. Hinkel, D. Hoover, D. Huang, H. Izumi, N. Khan, S. Kozioziemski, B. Kroll, J. Ma, T. MacPhee, A. McNaney, J. Merrill, F. Moody, J. Nikroo, A. Patel, P. Robey, H. F. Rygg, J. R. Sater, J. Sayre, D. Schneider, M. Sepke, S. Stadermann, M. Stoeffl, W. Thomas, C. Town, R. P. J. Volegov, P. L. Wild, C. Wilde, C. Woerner, E. Yeamans, C. Yoxall, B. Kilkenny, J. Landen, O. L. Hsing, W. Edwards, M. J. TI First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL-IGNITION-FACILITY; TARGETS; DRIVE AB Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (alpha similar to 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 x 10(15) neutrons, with 20% calculated alpha heating at convergence similar to 27x. C1 [Hopkins, L. F. Berzak; Meezan, N. B.; Le Pape, S.; Divol, L.; Mackinnon, A. J.; Ho, D. D.; Jones, O. S.; Milovich, J. L.; Pak, A.; Ralph, J. E.; Ross, J. S.; Benedetti, L. R.; Biener, J.; Bionta, R.; Bond, E.; Bradley, D.; Caggiano, J.; Callahan, D.; Cerjan, C.; Church, J.; Clark, D.; Doeppner, T.; Dylla-Spears, R.; Eckart, M.; Field, J.; Fittinghoff, D. N.; Haan, S.; Hamza, A.; Hartouni, E. P.; Hatarik, R.; Hinkel, D.; Izumi, N.; Khan, S.; Kozioziemski, B.; Kroll, J.; Ma, T.; MacPhee, A.; McNaney, J.; Moody, J.; Patel, P.; Robey, H. F.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M.; Sepke, S.; Stadermann, M.; Stoeffl, W.; Thomas, C.; Town, R. P. J.; Yeamans, C.; Yoxall, B.; Landen, O. L.; Hsing, W.; Edwards, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hohenberger, M.; Edgell, D.] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA. [Kyrala, G.; Grim, G.; Guler, N.; Herrmann, H. W.; Merrill, F.; Volegov, P. L.; Wilde, C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Johnson, M. Gatu] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Hoover, D.; Huang, H.; Nikroo, A.; Kilkenny, J.] Gen Atom, San Diego, CA 93286 USA. [Wild, C.; Woerner, E.] Diamond Mat GMBH, Freiburg, Germany. RP Hopkins, LFB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI lepape, sebastien/J-3010-2015; MacKinnon, Andrew/P-7239-2014; IZUMI, Nobuhiko/J-8487-2016; Patel, Pravesh/E-1400-2011 OI MacKinnon, Andrew/0000-0002-4380-2906; IZUMI, Nobuhiko/0000-0003-1114-597X; FU U.S. Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank the NIF operations, laser, target fabrication, and diagnostic teams for their efforts during these experiments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 42 TC 22 Z9 22 U1 6 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 29 PY 2015 VL 114 IS 17 AR 175001 DI 10.1103/PhysRevLett.114.175001 PG 5 WC Physics, Multidisciplinary SC Physics GA CG9LV UT WOS:000353637900006 ER PT J AU Lees, JP Poireau, V Tisserand, V Grauges, E Palano, A Eigen, G Stugu, B Brown, DN Kerth, LT Kolomensky, YG Lee, MJ Lynch, G Koch, H Schroeder, T Hearty, C Mattison, TS McKenna, JA So, RY Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Lankford, AJ Dey, B Gary, JW Long, O Campagnari, C Sevilla, MF Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Lockman, WS Vazquez, WP Schumm, BA Seiden, A Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Miyashita, TS Ongmongkolkul, P Porter, FC Rohrken, M Andreassen, R Huard, Z Meadows, BT Pushpawela, BG Sokoloff, MD Sun, L Bloom, PC Ford, WT Gaz, A Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Bernard, D Verderi, M Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Piemontese, L Santoro, V Calcaterra, A De Sangro, R Finocchiaro, G Martellotti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Adametz, A Uwer, U Lacker, HM Mallik, U Chen, C Cochran, J Prell, S Ahmed, H Gritsan, AV Arnaud, N Davier, M Derkach, D Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Stocchi, A Wormser, G Lange, DJ Wright, DM Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Cowan, G Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Schubert, KR Barlow, RJ Lafferty, GD Cenci, R Hamilton, B Jawahery, A Roberts, DA Cowan, R Sciolla, G Cheaib, R Patel, PM Robertson, SH Neri, N Palombo, F Cremaldi, L Godang, R Sonnek, P Summers, DJ Simard, M Taras, P De Nardo, G Onorato, G Sciacca, C Martinelli, M Raven, G Jessop, CP LoSecco, JM Honscheid, K Kass, R Feltresi, E Margoni, M Morandin, M Posocco, M Rotondo, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Leruste, P Marchiori, G Ocariz, J Biasini, M Manoni, E Pacetti, S Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Chrzaszcz, M Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Perez, A Rizzo, G Walsh, JJ Pegna, DL Olsen, J Smith, AJS Anulli, F Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Pilloni, A Piredda, G Bunger, C Dittrich, S Grunberg, O Hess, M Leddig, T Voss, C Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S Vasseur, G Aston, D Bard, DJ Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Ebert, M Field, RC Fulsom, BG Graham, MT Hast, C Innes, WR Kim, P Leith, DWGS Lindemann, D Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wisniewski, WJ Wulsin, HW Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Puccio, EMT Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Spanier, SM Ritchie, JL Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F De Mori, F Filippi, A Gamba, D Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Villanueva-Perez, P Albert, J Banerjee, S Beaulieu, A Bernlochner, FU Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Lueck, T Nugent, IM Roney, JM Sobie, RJ Tasneem, N Gershon, TJ Harrison, PF Latham, TE Band, HR Dasu, S Pan, Y Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Grauges, E. Palano, A. Eigen, G. Stugu, B. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lee, M. J. Lynch, G. Koch, H. Schroeder, T. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Lankford, A. J. Dey, B. Gary, J. W. Long, O. Campagnari, C. Sevilla, M. Franco Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Lockman, W. S. Vazquez, W. Panduro Schumm, B. A. Seiden, A. Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Miyashita, T. S. Ongmongkolkul, P. Porter, F. C. Roerken, M. Andreassen, R. Huard, Z. Meadows, B. T. Pushpawela, B. G. Sokoloff, M. D. Sun, L. Bloom, P. C. Ford, W. T. Gaz, A. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Bernard, D. Verderi, M. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Piemontese, L. Santoro, V. Calcaterra, A. De Sangro, R. Finocchiaro, G. Martellotti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Vetere, M. Lo Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Adametz, A. Uwer, U. Lacker, H. M. Mallik, U. Chen, C. Cochran, J. Prell, S. Ahmed, H. Gritsan, A. V. Arnaud, N. Davier, M. Derkach, D. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Cowan, G. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Schubert, K. R. Barlow, R. J. Lafferty, G. D. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Cowan, R. Sciolla, G. Cheaib, R. Patel, P. M. Robertson, S. H. Neri, N. Palombo, F. Cremaldi, L. Godang, R. Sonnek, P. Summers, D. J. Simard, M. Taras, P. De Nardo, G. Onorato, G. Sciacca, C. Martinelli, M. Raven, G. Jessop, C. P. LoSecco, J. M. Honscheid, K. Kass, R. Feltresi, E. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Leruste, Ph. Marchiori, G. Ocariz, J. Biasini, M. Manoni, E. Pacetti, S. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Chrzaszcz, M. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Perez, A. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Olsen, J. Smith, A. J. S. Anulli, F. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Pilloni, A. Piredda, G. Buenger, C. Dittrich, S. Grunberg, O. Hess, M. Leddig, T. Voss, C. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. Vasseur, G. Aston, D. Bard, D. J. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Ebert, M. Field, R. C. Fulsom, B. G. Graham, M. T. Hast, C. Innes, W. R. Kim, P. Leith, D. W. G. S. Lindemann, D. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wisniewski, W. J. Wulsin, H. W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Puccio, E. M. T. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Spanier, S. M. Ritchie, J. L. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. De Mori, F. Filippi, A. Gamba, D. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Villanueva-Perez, P. Albert, J. Banerjee, Sw. Beaulieu, A. Bernlochner, F. U. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Lueck, T. Nugent, I. M. Roney, J. M. Sobie, R. J. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Wu, S. L. TI Search for Long-Lived Particles in e(+)e(-) Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID BABAR DETECTOR; PHYSICS AB We present a search for a neutral, long-lived particle L that is produced in e(+)e(-)collisions and decays at a significant distance from the e(+)e(-) interaction point into various flavor combinations of two oppositely charged tracks. The analysis uses an e(+)e(-) data sample with a luminosity of 489.1 fb(-1) collected by the BABAR detector at the Upsilon(4S), Upsilon(3S), and Upsilon(2S) resonances and just below the Upsilon(4S). Fitting the two-track mass distribution in search of a signal peak, we do not observe a significant signal, and set 90% confidence level upper limits on the product of the L production cross section, branching fraction, and reconstruction efficiency for six possible two-body L decay modes as a function of the L mass. The efficiency is given for each final state as a function of the mass, lifetime, and transverse momentum of the candidate, allowing application of the upper limits to any production model. In addition, upper limits are provided on the branching fraction B(B -> XsL), where X-s is a strange hadronic system. C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, CNRS IN2P3, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Experimentalphys, D-44780 Bochum, Germany. [Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] SB RAS, Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Blinov, V. E.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Blinov, V. E.; Onuchin, A. P.] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia. [Lankford, A. J.] Univ Calif Irvine, Irvine, CA 92697 USA. [Dey, B.; Gary, J. W.; Long, O.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Sevilla, M. Franco; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Lockman, W. S.; Vazquez, W. Panduro; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Roerken, M.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.; Adametz, A.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Sci Terra, I-44122 Ferrara, Italy. [Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Vetere, M. Lo; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Vetere, M. Lo; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Adametz, A.; Uwer, U.] Heidelberg Univ, Phys Inst, D-69120 Heidelberg, Germany. [Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Prell, S.] Iowa State Univ, Ames, IA 50011 USA. [Ahmed, H.] Jazan Univ, Dept Phys, Jazan 22822, Saudi Arabia. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Cowan, R.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cheaib, R.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Neri, N.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Phys Particules, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Martinelli, M.; Raven, G.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Feltresi, E.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Feltresi, E.; Margoni, M.; Simi, G.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, IN2P3 CNRS, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Biasini, M.; Pacetti, S.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.] INFN, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Giorgi, M. A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Pilloni, A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.; Pilloni, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Dittrich, S.; Grunberg, O.; Hess, M.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Vasseur, G.] CEA, SPP, F-91191 Gif Sur Yvette, France. [Aston, D.; Bard, D. J.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Lindemann, D.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Wulsin, H. W.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; De Mori, F.; Gamba, D.] Univ Torino, Dipartimento Fis, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.; Albert, J.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Banerjee, Sw.; Beaulieu, A.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Lees, JP (reprint author), Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, CNRS IN2P3, F-74941 Annecy Le Vieux, France. RI Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Calcaterra, Alessandro/P-5260-2015; Kravchenko, Evgeniy/F-5457-2015; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Kolomensky, Yury/I-3510-2015; Martinez Vidal, F*/L-7563-2014; Oyanguren, Arantza/K-6454-2014; Monge, Maria Roberta/G-9127-2012; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Forti, Francesco/H-3035-2011; Patrignani, Claudia/C-5223-2009; Morandin, Mauro/A-3308-2016 OI Raven, Gerhard/0000-0002-2897-5323; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Calcaterra, Alessandro/0000-0003-2670-4826; Lanceri, Livio/0000-0001-8220-3095; Sciacca, Crisostomo/0000-0002-8412-4072; Ebert, Marcus/0000-0002-3014-1512; FORD, WILLIAM/0000-0001-8703-6943; De Mori, Francesca/0000-0002-3951-272X; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Kolomensky, Yury/0000-0001-8496-9975; Martinez Vidal, F*/0000-0001-6841-6035; Oyanguren, Arantza/0000-0002-8240-7300; Monge, Maria Roberta/0000-0003-1633-3195; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Forti, Francesco/0000-0001-6535-7965; Patrignani, Claudia/0000-0002-5882-1747; Morandin, Mauro/0000-0003-4708-4240 FU SLAC; DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MINECO (Spain); STFC (United Kingdom); BSF (USA-Israel); Marie Curie EIF (European Union); A. P. Sloan Foundation (USA) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II2 colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom), BSF (USA-Israel). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation (USA). NR 34 TC 4 Z9 4 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 29 PY 2015 VL 114 IS 17 AR 171801 DI 10.1103/PhysRevLett.114.171801 PG 7 WC Physics, Multidisciplinary SC Physics GA CG9LV UT WOS:000353637900003 ER PT J AU Mueed, MA Kamburov, D Liu, Y Shayegan, M Pfeiffer, LN West, KW Baldwin, KW Winkler, R AF Mueed, M. A. Kamburov, D. Liu, Yang Shayegan, M. Pfeiffer, L. N. West, K. W. Baldwin, K. W. Winkler, R. TI Composite Fermions with a Warped Fermi Contour SO PHYSICAL REVIEW LETTERS LA English DT Article ID 2-DIMENSIONAL ELECTRON-GAS; SURFACE ACOUSTIC-WAVES; MAGNETORESISTANCE OSCILLATIONS; MAGNETIC-FIELD; LANDAU-LEVEL; TRANSPORT; SUPERLATTICES; POTENTIALS; MODULATION; ANISOTROPY AB Via measurements of commensurability features near the Landau filling factor nu = 1/2, we probe the shape of the Fermi contour for hole-flux composite fermions confined to a wide GaAs quantum well. The data reveal that the composite fermions are strongly influenced by the characteristics of the Landau level in which they are formed. In particular, their Fermi contour is warped when their Landau level originates from a hole band with significant warping. C1 [Mueed, M. A.; Kamburov, D.; Liu, Yang; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Winkler, R.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Winkler, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Mueed, MA (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. FU DOE BES [DE-AC02-06CH11357]; Gordon and Betty Moore Foundation [GBMF4420]; Keck Foundation; NSF [DMR-1305691, ECCS-1508925, MRSEC DMR-1420541, DMR-1310199, DMR-1157490]; State of Florida; DOE FX We acknowledge support through the DOE BES (DEFG02-00-ER45841) for measurements, and the Gordon and Betty Moore Foundation (Grant No. GBMF4420), Keck Foundation, and the NSF (DMR-1305691, ECCS-1508925 and MRSEC DMR-1420541) for sample fabrication and the NSF (Grant DMR-1310199) for calculations. Work at Argonne was supported by DOE BES (DE-AC02-06CH11357). Our work was partly performed at the National High Magnetic Field Laboratory (NHMFL), which is supported by NSF (DMR-1157490), the State of Florida, and the DOE. We thank S. Hannahs, T. Murphy, J. Park, G. Jones, and A. Suslov at NHMFL for valuable technical support and J. K. Jain for illuminating discussions. NR 41 TC 5 Z9 5 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 29 PY 2015 VL 114 IS 17 AR 176805 DI 10.1103/PhysRevLett.114.176805 PG 5 WC Physics, Multidisciplinary SC Physics GA CG9LV UT WOS:000353637900007 PM 25978251 ER PT J AU Ivanyushenkov, Y Harkay, K Abliz, M Boon, L Borland, M Capatina, D Collins, J Decker, G Dejus, R Dooling, J Doose, C Emery, L Fuerst, J Gagliano, J Hasse, Q Jaski, M Kasa, M Kim, SH Kustom, R Lang, JC Liu, J Moog, E Robinson, D Sajaev, V Schroeder, K Sereno, N Shiroyanagi, Y Skiadopoulos, D Smith, M Sun, X Trakhtenberg, E Vasserman, I Vella, A Xiao, A Xu, J Zholents, A Gluskin, E Lev, V Mezentsev, N Syrovatin, V Tsukanov, V Makarov, A Pfotenhauer, J Potratz, D AF Ivanyushenkov, Y. Harkay, K. Abliz, M. Boon, L. Borland, M. Capatina, D. Collins, J. Decker, G. Dejus, R. Dooling, J. Doose, C. Emery, L. Fuerst, J. Gagliano, J. Hasse, Q. Jaski, M. Kasa, M. Kim, S. H. Kustom, R. Lang, J. C. Liu, J. Moog, E. Robinson, D. Sajaev, V. Schroeder, K. Sereno, N. Shiroyanagi, Y. Skiadopoulos, D. Smith, M. Sun, X. Trakhtenberg, E. Vasserman, I. Vella, A. Xiao, A. Xu, J. Zholents, A. Gluskin, E. Lev, V. Mezentsev, N. Syrovatin, V. Tsukanov, V. Makarov, A. Pfotenhauer, J. Potratz, D. TI Development and operating experience of a short-period superconducting undulator at the Advanced Photon Source SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID LIGHT-SOURCE; APS; DESIGN AB A decade-long effort at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL) on development of superconducting undulators culminated in December 2012 with the installation of the first superconducting undulator "SCU0" into Sector 6 of the APS storage ring. The device was commissioned in January 2013 and has been in user operation since. This paper presents the magnetic and cryogenic design of the SCU0 together with the results of stand-alone cold tests. The initial commissioning and characterization of SCU0 as well as its operating experience in the APS storage ring are described. C1 [Ivanyushenkov, Y.; Harkay, K.; Abliz, M.; Boon, L.; Borland, M.; Capatina, D.; Collins, J.; Decker, G.; Dejus, R.; Dooling, J.; Doose, C.; Emery, L.; Fuerst, J.; Gagliano, J.; Hasse, Q.; Jaski, M.; Kasa, M.; Kim, S. H.; Kustom, R.; Lang, J. C.; Liu, J.; Moog, E.; Robinson, D.; Sajaev, V.; Schroeder, K.; Sereno, N.; Shiroyanagi, Y.; Skiadopoulos, D.; Smith, M.; Sun, X.; Trakhtenberg, E.; Vasserman, I.; Vella, A.; Xiao, A.; Xu, J.; Zholents, A.; Gluskin, E.] Argonne Natl Lab, APS, Argonne, IL 60439 USA. [Lev, V.; Mezentsev, N.; Syrovatin, V.; Tsukanov, V.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Makarov, A.] FNAL, Batavia, IL 60510 USA. [Pfotenhauer, J.; Potratz, D.] Univ Wisconsin, Madison, WI 53706 USA. RP Ivanyushenkov, Y (reprint author), Argonne Natl Lab, APS, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yury@aps.anl.gov FU U.S. Department of Energy, Office of Science [DE-ACO2-O6CH11357]; National Science Foundation [PHY-1307300] FX The authors acknowledge the long-term continuous support of the APS management. We also thank the APS staff for many valuable contributions. This work was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-ACO2-O6CH11357. Work by L. Boon and A. Vella was partially supported by the National Science Foundation under Grant No. PHY-1307300. NR 34 TC 8 Z9 8 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD APR 29 PY 2015 VL 18 IS 4 AR 040703 DI 10.1103/PhysRevSTAB.18.040703 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CG9MA UT WOS:000353638400001 ER PT J AU Li, Q Chen, G Ma, TP Zhu, J N'Diaye, AT Sun, L Gu, T Huo, Y Liang, JH Li, RW Won, C Ding, HF Qiu, ZQ Wu, YZ AF Li, Q. Chen, G. Ma, T. P. Zhu, J. N'Diaye, A. T. Sun, L. Gu, T. Huo, Y. Liang, J. H. Li, R. W. Won, C. Ding, H. F. Qiu, Z. Q. Wu, Y. Z. TI Activation of antiferromagnetic domain switching in exchange-coupled Fe/CoO/MgO(001) systems SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIZATION REVERSAL; WALL-MOTION; FILMS; BIAS AB In contrast to the extensive study of domain reversal in ferromagnetic materials, the domain switching process in antiferromagnets is much less studied due to the difficulty of probing antiferromagnetic spins. Using a combination of hysteresis loop, Kerr microscope, and x-ray magnetic linear dichroism measurements, we investigated the antiferromagnetic (AFM) domain switching process in single crystalline Fe/CoO bilayers on MgO(001). We demonstrate that the CoO AFM switching is a Kolmogorov-Avrami process in which the thermal activation energy creates AFM domain nucleation centers which further expand by domain wall propagation. From the temperature-and thickness-dependent measurements, we are able to retrieve quantitatively the important parameter of the CoO AFM activation energy, which is shown to increase linearly with CoO thickness. C1 [Li, Q.; Ma, T. P.; Zhu, J.; Sun, L.; Gu, T.; Huo, Y.; Liang, J. H.; Wu, Y. Z.] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Li, Q.; Ma, T. P.; Zhu, J.; Sun, L.; Gu, T.; Liang, J. H.; Wu, Y. Z.] Fudan Univ, Collaborat Innovat Ctr Adv Microstruct, Shanghai 200433, Peoples R China. [Chen, G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, NCEM, Berkeley, CA 94720 USA. [N'Diaye, A. T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Li, R. W.] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Magnet Mat & Devices, Ningbo 315201, Zhejiang, Peoples R China. [Won, C.] Kyung Hee Univ, Dept Phys, Seoul 130701, South Korea. [Ding, H. F.] Nanjing Univ, Dept Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Ding, H. F.] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Qiu, Z. Q.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Li, Q (reprint author), Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. EM qiu@berkeley.edu; wuyizheng@fudan.edu.cn RI Chen, Gong/H-3074-2015; Wu, yizheng/P-2395-2014; Ding, haifeng/B-4221-2010; Foundry, Molecular/G-9968-2014; Qiu, Zi Qiang/O-4421-2016; Xia, YuQing/C-9724-2017 OI Wu, yizheng/0000-0002-9289-1271; Ding, haifeng/0000-0001-7524-0779; Qiu, Zi Qiang/0000-0003-0680-0714; FU National Key Basic Research Program of China [2015CB921401, 3172011CB921801]; National Science Foundation of China [11274074, 11434003, 11474066]; National Science Foundation [DMR-1210167]; National Research Foundation of Korea Grant - Korean Government [2012R1A1A2007524]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Key Basic Research Program of China (Grants No. 2015CB921401 and No. 3172011CB921801), the National Science Foundation of China (Grants No. 11274074, No. 11434003, and No. 11474066), the National Science Foundation (Grant No. DMR-1210167), and a National Research Foundation of Korea Grant funded by the Korean Government (Grant No. 2012R1A1A2007524). XMLD measurements were performed at the Advanced Light Source, Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 33 TC 2 Z9 2 U1 15 U2 61 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 29 PY 2015 VL 91 IS 13 AR 134428 DI 10.1103/PhysRevB.91.134428 PG 5 WC Physics, Condensed Matter SC Physics GA CG9LB UT WOS:000353635500003 ER PT J AU Nam, HJ Kim, I Bowie, JU Kim, S AF Nam, Hyun-Jun Kim, Inhae Bowie, James U. Kim, Sanguk TI Metazoans evolved by taking domains from soluble proteins to expand intercellular communication network SO Scientific Reports LA English DT Article ID LEUCINE-RICH REPEAT; MEMBRANE-PROTEINS; METABOLIC NETWORKS; SIGNALING NETWORK; I-DOMAIN; EVOLUTION; FAMILIES; ORIGIN; PREDICTION; ADHESION AB A central question in animal evolution is how multicellular animals evolved from unicellular ancestors. We hypothesize that membrane proteins must be key players in the development of multicellularity because they are well positioned to form the cell-cell contacts and to provide the intercellular communication required for the creation of complex organisms. Here we find that a major mechanism for the necessary increase in membrane protein complexity in the transition from non-metazoan to metazoan life was the new incorporation of domains from soluble proteins. The membrane proteins that have incorporated soluble domains in metazoans are enriched in many of the functions unique to multicellular organisms such as cell-cell adhesion, signaling, immune defense and developmental processes. They also show enhanced protein-protein interaction (PPI) network complexity and centrality, suggesting an important role in the cellular diversification found in complex organisms. Our results expose an evolutionary mechanism that contributed to the development of higher life forms. C1 [Nam, Hyun-Jun; Kim, Sanguk] Pohang Univ Sci & Technol, Sch Interdisciplinary Biosci & Bioengn, Pohang 790784, South Korea. [Kim, Inhae; Kim, Sanguk] Pohang Univ Sci & Technol, Dept Life Sci, Pohang 790784, South Korea. [Bowie, James U.] Univ Calif Los Angeles, Inst Mol Biol, UCLA DOE Inst Genom & Prote, Dept Chem & Biochem, Los Angeles, CA 90095 USA. RP Kim, S (reprint author), Pohang Univ Sci & Technol, Sch Interdisciplinary Biosci & Bioengn, Pohang 790784, South Korea. EM sukim@postech.ac.kr FU Korean National Research Foundation grants [2013018606]; Pohang University of Science and Technology (POSTECH) Basic Science Research Institute (BSRI) grant; National Institutes of Health (NIH) [RO1 GM063919] FX We thank Prof. James U. Bowie and SBI members for helpful discussion throughout the entire project. This work was supported in part by Korean National Research Foundation grants (2013018606), a Pohang University of Science and Technology (POSTECH) Basic Science Research Institute (BSRI) grant and National Institutes of Health (NIH) Grant RO1 GM063919. NR 57 TC 1 Z9 1 U1 5 U2 11 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD APR 29 PY 2015 VL 5 AR 9576 DI 10.1038/srep09576 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG9FP UT WOS:000353620500001 PM 25923201 ER PT J AU Nomura, Y Sanches, F Weinberg, SJ AF Nomura, Yasunori Sanches, Fabio Weinberg, Sean J. TI Relativeness in quantum gravity: limitations and frame dependence of semiclassical descriptions SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Black Holes in String Theory; Models of Quantum Gravity; Black Holes ID BLACK-HOLE EVAPORATION; PARTICLE CREATION; ENTROPY; COMPLEMENTARITY; THERMODYNAMICS; RADIATION AB Consistency between quantum mechanical and general relativistic views of the world is a longstanding problem, which becomes particularly prominent in black hole physics. We develop a coherent picture addressing this issue by studying the quantum mechanics of an evolving black hole. After interpreting the Bekenstein-Hawking entropy as the entropy representing the degrees of freedom that are coarse-grained to obtain a semiclassical description from the microscopic theory of quantum gravity, we discuss the properties these degrees of freedom exhibit when viewed from the semiclassical standpoint. We are led to the conclusion that they show features which we call extreme relativeness and spacetime-matter duality - a nontrivial reference frame dependence of their spacetime distribution and the dual roles they play as the "constituents" of spacetime and as thermal radiation. We describe black hole formation and evaporation processes in distant and infalling reference frames, showing that these two properties allow us to avoid the arguments for firewalls and to make the existence of the black hole interior consistent with unitary evolution in the sense of complementarity. Our analysis provides a concrete answer to how information can be preserved at the quantum level throughout the evolution of a black hole, and gives a basic picture of how general coordinate transformations may work at the level of full quantum gravity beyond the approximation of semiclassical theory. C1 [Nomura, Yasunori] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Nomura, Y (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. EM ynomura@berkeley.edu; fabios@berkeley.edu; sjweinberg@berkeley.edu OI Nomura, Yasunori/0000-0002-1497-1479 FU National Science Foundation (NSF) [1066293]; Department of Energy (DOE) National Nuclear Security Administration Stewardship Science Graduate Fellowship; Office of Science, Office of High Energy and Nuclear Physics, of the U.S. DOE [DE-AC02-05CH11231]; NSF [PHY-1214644] FX We would like to thank Raphael Bousso, Ben Freivogel, Daniel Harlow, Juan Maldacena, Donald Marolf, Joseph Polchinski, Douglas Stanford, Jaime Varela, Erik Verlinde, Herman Verlinde, and I-Sheng Yang for various conversations during our exploration of this subject. Y.N. thanks the Aspen Center for Physics and the National Science Foundation (NSF) Grant # 1066293 for hospitality during his visit in which a part of this work was carried out. F.S. thanks the Department of Energy (DOE) National Nuclear Security Administration Stewardship Science Graduate Fellowship for financial support. This work was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the U.S. DOE under Contract DE-AC02-05CH11231, and in part by the NSF under grant PHY-1214644. NR 47 TC 5 Z9 5 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD APR 28 PY 2015 IS 4 AR 158 DI 10.1007/JHEP04(2015)158 PG 43 WC Physics, Particles & Fields SC Physics GA CL3MT UT WOS:000356854700005 ER PT J AU Colangelo, G Passemar, E Stoffer, P AF Colangelo, Gilberto Passemar, Emilie Stoffer, Peter TI A dispersive treatment of Kl4 decays SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID CHIRAL PERTURBATION-THEORY; PI-PI-SCATTERING; FORM-FACTORS; ONE-LOOP; ISOSPIN BREAKING; K SCATTERING; K-L4 DECAYS; KE4 DECAY; SYMMETRY; PHASES AB K-l4 decays have several features of interest: they allow an accurate measurement of pi pi-scattering lengths; they provide the best source for the determination of some low-energy constants of chi PT; one form factor is directly related to the chiral anomaly, which can be measured here. We present a dispersive treatment of K-l4 decays that provides a resummation of pi pi- and K pi-rescattering effects. The free parameters of the dispersion relation are fitted to the data of the high-statistics experimentsE865 and NA48/2. The matching to chi PT at NLO and NNLO enables us to determine the LECs L-1(r), L-2(r) and L-3(r). With recently published data from NA48/2, the LEC L-9(r) can be determined as well. In contrast to a pure chiral treatment, the dispersion relation describes the observed curvature of one of the form factors, which we understand as a rescattering effect beyond NNLO. C1 [Colangelo, Gilberto; Stoffer, Peter] Univ Bern, Inst Theoret Phys, Albert Einstein Ctr Fundamental Phys, CH-3012 Bern, Switzerland. [Passemar, Emilie] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Passemar, Emilie] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA. [Passemar, Emilie] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. [Stoffer, Peter] Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theory, D-53115 Bonn, Germany. [Stoffer, Peter] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany. RP Colangelo, G (reprint author), Univ Bern, Inst Theoret Phys, Albert Einstein Ctr Fundamental Phys, Sidlerstr 5, CH-3012 Bern, Switzerland. EM stoffer@itp.unibe.ch FU Swiss National Science Foundation; DFG [CRC 16]; U.S. Department of Energy [DEAC05-06OR23177] FX We cordially thank Brigitte Bloch-Devaux, Stefan Pislak, Peter Truol and Andries van der Schaaf for providing additional data from the NA48/2 and E865 experiments and for many helpful discussions on the experiments and the data analysis. We are grateful to Hans Bijnens and Ilaria Jemos for their support with the two-loop implementation of the form factors. We thank Jorg Gasser, Bastian Kubis, Stefan Lanz and Heiri Leutwyler for many interesting and valuable discussions and Gerhard Ecker for useful comments on the manuscript. PS thanks the Swiss National Science Foundation for a mobility grant. EP and PS are grateful to the Los Alamos National Laboratory, where part of this work was carried out. Financial support by the Swiss National Science Foundation, the DFG (CRC 16, "Subnuclear Structure of Matter") and the U.S. Department of Energy (contract DEAC05-06OR23177) is gratefully acknowledged. NR 50 TC 5 Z9 5 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD APR 28 PY 2015 VL 75 IS 4 AR 172 DI 10.1140/epjc/s10052-015-3357-1 PG 65 WC Physics, Particles & Fields SC Physics GA CJ7JX UT WOS:000355672300005 ER PT J AU Beckwith, CR Edwards, MJ Lawes, M Shi, L Butt, JN Richardson, DJ Clarke, TA AF Beckwith, Christopher R. Edwards, Marcus J. Lawes, Matthew Shi, Liang Butt, Julea N. Richardson, David J. Clarke, Thomas A. TI Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE class 1 cytochrome; MtoD; Sideroxydans lithotrophicus ES-1; iron oxidation ID IRON-OXIDIZING BACTERIA; THIOBACILLUS-FERROOXIDANS; ENVIRONMENT; METABOLISMS; SYSTEM AB The autotrophic Sideroxydans lithotrophicus ES-1 can grow by coupling the oxidation of ferrous iron to the reduction of oxygen. Soluble ferrous iron is oxidized at the surface of the cell by an MtoAB porin-cytochrome complex that functions as an electron conduit through the outer membrane. Electrons are then transported to the cytoplasmic membrane where they are used to generate proton motive force (PMF) (for ATP synthesis) and NADH for autotrophic processes such as carbon fixation. As part of the mtoAB gene cluster, S. lithotrophicus also contains the gene mtoD that is proposed to encode a cytochrome c protein. We isolated mtoD from a Shewanella oneidensis expression system where the mtoD gene was expressed on a pBAD plasmid vector. Biochemical, biophysical, and crystallographic characterization of the purified MtoD revealed it as an 11 kDa monomeric protein containing a single heme. Sequence and structural alignment indicated that MtoD belonged to the class-1 cytochrome c family and had a similar fold to ferricytochrome c552 family, however the MtoD heme is bis-histidine coordinated and is substantially more exposed than the hemes of other family members. The reduction potential of the MtoD heme at pH 7 was +155 mV vs. Standard Hydrogen Electrode, which is approximately 100 mV lower than that of mitochondrial cytochrome c. Consideration of the properties of MtoD in the context of the potential respiratory partners identified from the genome suggests that MtoD could associate to multiple electron transfer partners as the primary periplasmic electron shuttle. C1 [Beckwith, Christopher R.; Edwards, Marcus J.; Lawes, Matthew; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.] Univ E Anglia, Sch Biol Sci, Ctr Mol & Struct Biochem, Norwich NR4 7TJ, Norfolk, England. [Beckwith, Christopher R.; Edwards, Marcus J.; Lawes, Matthew; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.] Univ E Anglia, Sch Chem, Norwich NR4 7TJ, Norfolk, England. [Shi, Liang] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Clarke, TA (reprint author), Univ E Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England. EM tom.clarke@uea.ac.uk RI clarke, tom/D-1837-2009; Butt, Julea/E-2133-2011 OI clarke, tom/0000-0002-6234-1914; Butt, Julea/0000-0002-9624-5226 FU Biotechnology and Biological Sciences Research Council [BB/K009885/1, BB/L023733/1]; DTP studentship; U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER) through the Subsurface Biogeochemical Research (SBR) program; DOE [DE-AC05-76RLO1830] FX This research was supported by the Biotechnology and Biological Sciences Research Council (BB/K009885/1, BB/L023733/1) and a DTP studentship to ML. the U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER) through the Subsurface Biogeochemical Research (SBR) program, and is a contribution of Pacific Northwest National Laboratory (PNNL) SBR SPA. PNNL is operated for DOE by Battelle under contract DE-AC05-76RLO1830. We are grateful to Prof. Jim Fredrickson and John Zachara for useful discussion. NR 28 TC 7 Z9 8 U1 4 U2 24 PU FRONTIERS RESEARCH FOUNDATION PI LAUSANNE PA PO BOX 110, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD APR 28 PY 2015 VL 6 AR 332 DI 10.3389/fmicb.2015.00332 PG 8 WC Microbiology SC Microbiology GA CI6SK UT WOS:000354891400001 PM 25972843 ER PT J AU Shen, Y Desseaux, S Aden, B Lokitz, BS Kilbey, SM Li, ZB Klok, HA AF Shen, Yong Desseaux, Solenne Aden, Bethany Lokitz, Bradley S. Kilbey, S. Michael, II Li, Zhibo Klok, Harm-Anton TI Shape-Persistent, Thermoresponsive Polypeptide Brushes Prepared by Vapor Deposition Surface-Initiated Ring-Opening Polymerization of alpha-Amino Acid N-Carboxyanhydrides SO MACROMOLECULES LA English DT Article ID TRANSFER RADICAL POLYMERIZATION; CONFORMATIONAL TRANSITION; ANTIBACTERIAL SURFACES; TETHERED POLYPEPTIDE; SILICA NANOPARTICLES; BIOCONJUGATION; TEMPERATURE; PERMANENT; ADHESION; DENSITY AB Surface-grafting thermoresponsive polymers allows the preparation of thin polymer brush coatings with surface properties that can be manipulated by variation of temperature. In most instances, thermoresponsive polymer brushes are produced using polymers that dehydrate and collapse above a certain temperature. This report presents the preparation and properties of polymer brushes that show thermoresponsive surface properties, yet are shape-persistent in that they do not undergo main chain collapse. The polymer brushes presented here are obtained via vapor deposition surface-initiated ring-opening polymerization (SI-ROP) of gamma-di- or tri(ethylene glycol)-modified glutamic acid N-carboxyanhydrides. Vapor deposition SI-ROP of gamma-di- or tri(ethylene glycol)-modified l- or d-glutamic acid N-carboxyanhydrides affords helical surface-tethered polymer chains that do not show any changes in secondary structure between 10 and 70 degrees C. QCM-D experiments, however, revealed significant dehydration of poly(gamma-(2-(2-methoxyethoxy)ethyl)-l-glutamate) (poly(L-EG(2)-Glu)) brushes upon heating from 10 to 40 degrees C. At the same time, AFM and ellipsometry studies did not reveal significant variations in film thickness over this temperature range, which is consistent with the shape-persistent nature of these polypeptide brushes and indicates that the thermoresponsiveness of the films is primarily due to hydration and dehydration of the oligo(ethylene glycol) side chains. The results presented here illustrate the potential of surface-initiated NCA ring-opening polymerization to generate densely grafted assemblies of polymer chains that possess well-defined secondary structures and tunable surface properties. These polypeptide brushes complement their conformationally unordered counterparts that can be generated via surface-initiated polymerization of vinyl-type monomers and represent another step forward to biomimetic surfaces and interfaces. C1 [Shen, Yong; Li, Zhibo] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci BNLMS, Beijing 100190, Peoples R China. [Desseaux, Solenne; Klok, Harm-Anton] Ecole Polytech Fed Lausanne, Inst Mat, CH-1015 Lausanne, Switzerland. [Desseaux, Solenne; Klok, Harm-Anton] Ecole Polytech Fed Lausanne, Inst Sci & Ingn Chim, Lab Polymeres, CH-1015 Lausanne, Switzerland. [Aden, Bethany; Kilbey, S. Michael, II] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Aden, Bethany; Kilbey, S. Michael, II] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Lokitz, Bradley S.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Li, ZB (reprint author), Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci BNLMS, Beijing 100190, Peoples R China. EM zbli@iccas.ac.cn; harm-anton.klok@epfl.ch RI Lokitz, Bradley/Q-2430-2015 OI Lokitz, Bradley/0000-0002-1229-6078 FU Sino-Swiss Science and Technology Cooperation [EG41-092011]; Chinese Academy of Sciences; National Science Foundation [1133320] FX This work was financially supported by the Sino-Swiss Science and Technology Cooperation (project EG41-092011) as well as the Chinese Academy of Sciences (Visiting Professorship for Senior International Scientists to H.-A.K.). B.A. and S.M.K. gratefully acknowledge support from the National Science Foundation (Award No. 1133320). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 36 TC 9 Z9 9 U1 10 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD APR 28 PY 2015 VL 48 IS 8 BP 2399 EP 2406 DI 10.1021/acs.macromol.5b00017 PG 8 WC Polymer Science SC Polymer Science GA CH2OP UT WOS:000353864800007 ER PT J AU Killops, KL Brucks, SD Rutkowski, KL Freyer, JL Jiang, YV Valdes, ER Campos, LM AF Killops, Kato L. Brucks, Spencer D. Rutkowski, Kourtney L. Freyer, Jessica L. Jiang, Yivan Valdes, Erica R. Campos, Luis M. TI Synthesis of Robust Surface-Charged Nanoparticles Based on Cyclopropenium Ions SO MACROMOLECULES LA English DT Article ID POTENT DELIVERY-SYSTEM; EMULSION POLYMERIZATION; BLOCK-COPOLYMERS; LATEX-PARTICLES; CHIRAL CYCLOPROPENIMINES; AMPHIPHILIC BLOCK; CELLULAR UPTAKE; STYRENE; DESIGN; SIRNA AB We investigate synthetic strategies of cationic slit-face-charged nanoparticles using cyclopropenium-based (CP) monomers and block copolyelectrolytes (BCPEs) via surfactant-free emulsion polymerization. The monomers and BCPEs themselves were found to stabilize oil-in-water emulsions. With these systems, the hydrodynamic diameters of the resultant particles can be reliably tuned from 30 to 100 nm, simply by varying the amount of CP monomer added. As CP is a remarkably stable carbocation, the nanoparticles retain their charge over a Wide pH range. Furthermore, we found that the nanoparticle interior can be covalently functionalized with fluorescent dyes. The ability to easily synthesize sub-100 nm surface-charged particles with narrow polydispersity in one-pot can lead to applications as additives, gene-delivery vectors, and chromatographic separation, among others. Here, we demonstrate the versatility of,CP-based monomers and BCPEs for the synthesis of surface- charged nanoparticles and the modulation of synthetic parameters to tune nanoparticle size and surface functionality. C1 [Killops, Kato L.; Valdes, Erica R.] US Army Edgewood Chem Biol Ctr, Aberdeen Proving Ground, MD 21010 USA. [Brucks, Spencer D.; Freyer, Jessica L.; Jiang, Yivan; Campos, Luis M.] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Rutkowski, Kourtney L.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. RP Campos, LM (reprint author), Columbia Univ, Dept Chem, New York, NY 10027 USA. EM lcampos@columbia.edu FU Army Research Office [W911NF-14-0137]; National Science Foundation (CAREER) [DMR-1351293]; ACS Petroleum Research Fund [54471-DNI7]; 3M Non-Tenured Faculty Award FX This work was supported in part by the Army Research Office (W911NF-14-0137), National Science Foundation (CAREER, DMR-1351293), ACS Petroleum Research Fund (54471-DNI7), and 3M Non-Tenured Faculty Award. K.L.K. thanks the Department of the Army Basic Research Program and the Edgewood Chemical Biological Center. K.L.R. thanks the Minority Undergraduate Summer Internship Program (MUSIP) for the opportunity to conduct research at ECBC. Y.J. thanks the Columbia Amgen Scholars Program and the Columbia Science Research Fellows. NR 45 TC 4 Z9 4 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD APR 28 PY 2015 VL 48 IS 8 BP 2519 EP 2525 DI 10.1021/acs.macromol.5b00403 PG 7 WC Polymer Science SC Polymer Science GA CH2OP UT WOS:000353864800021 ER PT J AU Kulasinski, K Guyer, R Keten, S Derome, D Carmeliet, J AF Kulasinski, Karol Guyer, Robert Keten, Sinan Derome, Dominique Carmeliet, Jan TI Impact of Moisture Adsorption on Structure and Physical Properties of Amorphous Biopolymers SO MACROMOLECULES LA English DT Article ID GROMOS FORCE-FIELD; SYNCHROTRON X-RAY; PLANT-CELL WALLS; MOLECULAR-DYNAMICS; NORWAY SPRUCE; CONFORMATIONAL-ANALYSIS; FIBER DIFFRACTION; YOUNGS MODULUS; MASS-TRANSFER; BOUND WATER AB The interaction of water with many biopolymers is known to rearrange their internal structure, make therm moisture sensitive, and influence their physical properties. We study amorphous cellulose and hemicellulose, two hydrophilic biopolymers, using molecular dynamics simulations, and we analyze their structural and physical properties over the full range of moisture content. We find a quasi-linear dependence of volumetric strain on moisture content, and a linear scaling between volumetric strain and porosity, showing that swelling is directly related to the space created by adsorbed water molecules. The interaction of water with the polymer structure results in a weakening of the mechanical properties, leading to rubber-like behavior at high moisture content. Weakening is caused by a decrease in the number of hydrogen bonds that follow exponential scaling. Breaking of the hydrogen bonds system is found to control not only the mechanical response but also the evolution of porosity and the volumetric strain. C1 [Kulasinski, Karol; Carmeliet, Jan] Swiss Fed Univ Technol Zurich, Chair Bldg Phys, CH-8093 Zurich, Switzerland. [Guyer, Robert] Los Alamos Natl Lab, Solid Earth Geophys Grp, Los Alamos, NM 87545 USA. [Guyer, Robert] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Keten, Sinan] Northwestern Univ, Dept Mech Engn, Dept Civil & Environm Engn, Evanston, IL 60208 USA. [Derome, Dominique; Carmeliet, Jan] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Multiscale Studies Bldg Phys, CH-8600 Dubendorf, Switzerland. RP Kulasinski, K (reprint author), Swiss Fed Univ Technol Zurich, Chair Bldg Phys, Stefano Franscini Pl 5, CH-8093 Zurich, Switzerland. EM kulasinski@arch.ethz.ch RI Keten, Sinan/F-4080-2010; Kulasinski, Karol/R-6709-2016 OI Kulasinski, Karol/0000-0002-7704-7048 NR 49 TC 14 Z9 14 U1 4 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD APR 28 PY 2015 VL 48 IS 8 BP 2793 EP 2800 DI 10.1021/acs.macromol.5b00248 PG 8 WC Polymer Science SC Polymer Science GA CH2OP UT WOS:000353864800049 ER PT J AU Cantor, M Nordberg, H Smirnova, T Hess, M Tringe, S Dubchak, I AF Cantor, Michael Nordberg, Henrik Smirnova, Tatyana Hess, Matthias Tringe, Susannah Dubchak, Inna TI Elviz - exploration of metagenome assemblies with an interactive visualization tool SO BMC BIOINFORMATICS LA English DT Article ID MICROBIAL COMMUNITY; FUNCTIONAL-ANALYSIS; ANALYSIS SYSTEM; DIVERSITY; IMG/M AB Background: Metagenomics, the sequencing of DNA collected from an entire microbial community, enables the study of natural microbial consortia in their native habitats. Metagenomics studies produce huge volumes of data, including both the sequences themselves and metadata describing their abundance, assembly, predicted functional characteristics and environmental parameters. The ability to explore these data visually is critically important to meaningful biological interpretation. Current genomics applications cannot effectively integrate sequence data, assembly metadata, and annotation to support both genome and community-level inquiry. Results: Elviz (Environmental Laboratory Visualization) is an interactive web-based tool for the visual exploration of assembled metagenomes and their complex metadata. Elviz allows scientists to navigate metagenome assemblies across multiple dimensions and scales, plotting parameters such as GC content, relative abundance, phylogenetic affiliation and assembled contig length. Furthermore Elviz enables interactive exploration using real-time plot navigation, search, filters, axis selection, and the ability to drill from a whole-community profile down to individual gene annotations. Thus scientists engage in a rapid feedback loop of visual pattern identification, hypothesis generation, and hypothesis testing. Conclusions: Compared to the current alternative of generating a succession of static figures, Elviz can greatly accelerate the speed of metagenome analysis. Elviz can be used to explore both user-submitted datasets and numerous metagenome studies publicly available at the Joint Genome Institute (JGI). Elviz is freely available at http://genome.jgi.doe.gov/viz and runs on most current web-browsers. C1 [Cantor, Michael; Nordberg, Henrik; Smirnova, Tatyana; Tringe, Susannah; Dubchak, Inna] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Hess, Matthias] Univ Calif Davis, Davis, CA 95616 USA. RP Cantor, M (reprint author), Joint Genome Inst, Dept Energy, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. EM mncantor@lbl.gov; henrik.p.nordberg@gmail.com OI Tringe, Susannah/0000-0001-6479-8427 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. (DE-AC02-05CH11231). NR 24 TC 4 Z9 4 U1 3 U2 15 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD APR 28 PY 2015 VL 16 AR 130 DI 10.1186/s12859-015-0566-4 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA CI1QB UT WOS:000354518100001 PM 25928663 ER PT J AU Shuster, JR Chen, LJ Hesse, M Argall, MR Daughton, W Torbert, RB Bessho, N AF Shuster, J. R. Chen, L. -J. Hesse, M. Argall, M. R. Daughton, W. Torbert, R. B. Bessho, N. TI Spatiotemporal evolution of electron characteristics in the electron diffusion region of magnetic reconnection: Implications for acceleration and heating SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE magnetic reconnection; electron diffusion region ID COLLISIONLESS RECONNECTION; X-LINE AB Based on particle-in-cell simulations of collisionless magnetic reconnection, the spatiotemporal evolution of electron velocity distributions in the electron diffusion region (EDR) is reported to illustrate how electrons are accelerated and heated. Approximately when the reconnection rate maximizes, electron distributions in the vicinity of the X line exhibit triangular structures with discrete striations and a temperature (T-e) twice that of the inflow region. T-e increases as the meandering EDR populations mix with inflowing electrons. As the distance from the X line increases within the electron outflow jet, the discrete populations swirl into arcs and gyrotropize by the end of the jet with T-e about 3 times that of the X line. Two dominant processes increase T-e and produce the spatially and temporally evolving EDR distributions: (1) electric field acceleration preferential to electrons which meander in the EDR for longer times and (2) cyclotron turning by the magnetic field normal to the reconnection layer. C1 [Shuster, J. R.; Argall, M. R.; Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Chen, L. -J.; Hesse, M.; Bessho, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Shuster, JR (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. EM jrf63@wildcats.unh.edu RI Daughton, William/L-9661-2013; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU NSF [PHY-0903923, AGS-1202537]; NASA [NNX11AH03G]; Theory and Modeling Program of the Magnetospheric Multiscale mission FX The work at UNH was supported in part by NSF grants PHY-0903923 and AGS-1202537, and NASA grant NNX11AH03G, and at NASA GSFC by the Theory and Modeling Program of the Magnetospheric Multiscale mission. The simulation data are available upon request from the authors. The authors would like to thank S. Wang for the test particle tracing tools used in this study. NR 20 TC 18 Z9 18 U1 2 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2015 VL 42 IS 8 BP 2586 EP 2593 DI 10.1002/2015GL063601 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CI2FN UT WOS:000354560800004 ER PT J AU Pyle, ML Koper, KD Euler, GG Burlacu, R AF Pyle, Moira L. Koper, Keith D. Euler, Garrett G. Burlacu, Relu TI Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE microseisms; array analysis ID AMBIENT SEISMIC NOISE; GENERATION; EARTH AB We investigate source locations of P wave microseisms within a narrow frequency band (0.67-1.33Hz) that is significantly higher than the classic microseism band (0.05-0.3Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement with previous observations in the double-frequency (DF) microseism band (0.1-0.3Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods. C1 [Pyle, Moira L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Koper, Keith D.; Burlacu, Relu] Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA. [Euler, Garrett G.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Pyle, ML (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM pyle4@llnl.gov RI Pyle, Moira/L-3642-2016; OI Pyle, Moira/0000-0003-1081-0966; Euler, Garrett/0000-0002-9762-1246 FU US National Science Foundation [EAR-0848132, EAR-0951558]; Lawrence Livermore National Laboratory [DE-AC52-06NA25946]; Los Alamos National Laboratory [DE-AC52-06NA25396] FX Seismic data from ASAR, ILAR, and YKA are freely available through the IRIS DMC. Data from CMAR and KSRS are from the NEIC and international agreements prohibit their public release. Data for Figure 3a are available from the IFREMER (French Research Institute for Exploitation of the Sea) ftp site (http://tinyurl.com/iowagaftp/iowaga/SISMO). We would like to thank two anonymous reviewers for their thoughtful and constructive comments. This research was supported by the US National Science Foundation under grants EAR-0848132 and EAR-0951558. Additional work was performed at Lawrence Livermore National Laboratory under award number DE-AC52-06NA25946 and at Los Alamos National Laboratory under DE-AC52-06NA25396. Figures were made using Generic Mapping Tools (GMT) [Wessel and Smith, 1991]. NR 39 TC 2 Z9 2 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2015 VL 42 IS 8 BP 2700 EP 2708 DI 10.1002/2015GL063530 PG 9 WC Geosciences, Multidisciplinary SC Geology GA CI2FN UT WOS:000354560800018 ER PT J AU Campbell, JE Whelan, ME Seibt, U Smith, SJ Berry, JA Hilton, TW AF Campbell, J. E. Whelan, M. E. Seibt, U. Smith, S. J. Berry, J. A. Hilton, T. W. TI Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE carbonyl sulfide; carbon cycle; anthropogenic source; ice core; firn air; air monitoring ID SOUTHERN GREAT-PLAINS; GROWING-SEASON; GLOBAL SOURCES; GAS-EXCHANGE; CO2; DIOXIDE; CLIMATE; MODEL; SINKS; CS2 AB Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a current anthropogenic source that is only one third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. Furthermore, changes in the anthropogenic source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production. C1 [Campbell, J. E.; Whelan, M. E.; Hilton, T. W.] Univ Calif, Sierra Nevada Res Inst, Merced, CA 95343 USA. [Seibt, U.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. [Smith, S. J.] PNNL, Joint Global Change Res Inst, College Pk, MD USA. [Berry, J. A.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. RP Campbell, JE (reprint author), Univ Calif, Sierra Nevada Res Inst, Merced, CA 95343 USA. EM ecampbell3@ucmerced.edu OI Hilton, Timothy/0000-0001-9575-9850 FU U.S. Department of Energy, Office of Science, and Office of Terrestrial Ecosystem Sciences FX This work was supported by the U.S. Department of Energy, Office of Science, and Office of Terrestrial Ecosystem Sciences. Requests for data used in this paper can be directed to Elliott Campbell (ecampbell3@ucmerced.edu). NR 43 TC 20 Z9 20 U1 4 U2 31 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2015 VL 42 IS 8 BP 3004 EP 3010 DI 10.1002/2015GL063445 PG 7 WC Geosciences, Multidisciplinary SC Geology GA CI2FN UT WOS:000354560800055 ER PT J AU Kulkarni, G Nandasiri, M Zelenyuk, A Beranek, J Madaan, N Devaraj, A Shutthanandan, V Thevuthasan, S Varga, T AF Kulkarni, Gourihar Nandasiri, Manjula Zelenyuk, Alla Beranek, Josef Madaan, Nitesh Devaraj, Arun Shutthanandan, Vaithiyalingam Thevuthasan, Suntharampillai Varga, Tamas TI Effects of crystallographic properties on the ice nucleation properties of volcanic ash particles SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE ice nucleation; volcanic ash; mineral dust; ice clouds; surface analysis ID MINERAL DUST PARTICLES; PINATUBO ERUPTION; NUCLEI; EYJAFJALLAJOKULL; WATER; MORPHOLOGY; COATINGS; MOBILITY; CLIMATE; AEROSOL AB Specific chemical and physical properties of volcanic ash particles that could affect their ability to induce ice formation are poorly understood. In this study, the ice nucleating properties of size-selected volcanic ash and mineral dust particles in relation to their surface chemistry and crystalline structure at temperatures ranging from -30 to -38 degrees C were investigated in deposition mode. Ice nucleation efficiency of dust particles was higher compared to ash particles at all temperature and relative humidity conditions. Particle characterization analysis shows that surface elemental composition of ash and dust particles was similar; however, the structural properties of ash samples were different. C1 [Kulkarni, Gourihar] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Nandasiri, Manjula; Madaan, Nitesh; Devaraj, Arun; Shutthanandan, Vaithiyalingam; Varga, Tamas] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Zelenyuk, Alla; Beranek, Josef] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Thevuthasan, Suntharampillai] Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar. RP Kulkarni, G (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM Gourihar.Kulkarni@pnnl.gov FU Office of Science of the U.S. Department of Energy (DOE) as part of the Atmospheric System Research Program; Laboratory Directed Research and Development program of PNNL as a part of Chemical Imaging Initiative; U.S. DOE by Battelle Memorial Institute [DE-AC05-76RL0 1830] FX The work was supported by the Office of Science of the U.S. Department of Energy (DOE) as part of the Atmospheric System Research Program. We are grateful for the technical support provided by D. Nelson. We thank A. Laskin for the use of the Newark Superla sieves. We thank P. Alpert, K. Zhang, S. Burrows, M. Ovchinnikov, and J. Fast for many helpful discussions. XRD analysis, XPS analysis, and SEM imaging was performed in Environmental Molecular Sciences Laboratory, which is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington, and was supported by the Laboratory Directed Research and Development program of PNNL as a part of Chemical Imaging Initiative. The ice nucleation research was performed at the Atmospheric Measurement Laboratory, an atmospheric sciences laboratory at PNNL. Data supporting sections 2.1, 3.1, and 4 are available in the supporting information and also available upon request from the contact author. PNNL is operated by the U.S. DOE by Battelle Memorial Institute under contract DE-AC05-76RL0 1830. NR 50 TC 5 Z9 5 U1 6 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 28 PY 2015 VL 42 IS 8 BP 3048 EP 3055 DI 10.1002/2015GL063270 PG 8 WC Geosciences, Multidisciplinary SC Geology GA CI2FN UT WOS:000354560800061 ER PT J AU Garcia, GA Tang, XF Gil, JF Nahon, L Ward, M Batut, S Fittschen, C Taatjes, CA Osborn, DL Loison, JC AF Garcia, Gustavo A. Tang, Xiaofeng Gil, Jean-Francois Nahon, Laurent Ward, Michael Batut, Sebastien Fittschen, Christa Taatjes, Craig A. Osborn, David L. Loison, Jean-Christophe TI Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID PHOTOIONIZATION CROSS-SECTION; HIGH-RESOLUTION; RADIATION; DYNAMICS; SPECTRA; RANGE; IONIZATION AB We present a microwave discharge flow tube coupled with a double imaging electron/ion coincidence device and vacuum ultraviolet (VUV) synchrotron radiation. The system has been applied to the study of the photoelectron spectroscopy of the well-known radicals OH and OD. The coincidence imaging scheme provides a high selectivity and yields the spectra of the pure radicals, removing the ever-present contributions from excess reactants, background, or secondary products, and therefore obviating the need for a prior knowledge of all possible byproducts. The photoelectron spectra encompassing the X-3 Sigma(-) ground state of the OH+ and OD+ cations have been extracted and the vibrational constants compared satisfactorily to existing literature values. Future advantages of this approach include measurement of high resolution VUV spectroscopy of radicals, their absolute photoionization cross section, and species/isomer identification in chemical reactions as a function of time. (C) 2015 AIP Publishing LLC. C1 [Garcia, Gustavo A.; Tang, Xiaofeng; Gil, Jean-Francois; Nahon, Laurent] St Aubin, LOrme Merisiers, Synchrotron SOLEIL, BP 48, F-91192 Gif Sur Yvette, France. [Ward, Michael; Batut, Sebastien; Fittschen, Christa] Univ Lille 1, PC2A, CNRS, UMR,USTL 8522, F-59655 Villeneuve Dascq, France. [Taatjes, Craig A.; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Loison, Jean-Christophe] Univ Bordeaux 1, ISM, CNRS, F-33405 Talence, France. RP Garcia, GA (reprint author), St Aubin, LOrme Merisiers, Synchrotron SOLEIL, BP 48, F-91192 Gif Sur Yvette, France. RI Fittschen, Christa/G-6410-2010; OI Fittschen, Christa/0000-0003-0932-432X; Garcia, Gustavo/0000-0003-2915-2553 FU French Agence Nationale de la Recherche (ANR) [ANR-12-BS08-0020-02]; Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy; National Nuclear Security Administration [DE-AC04-94-AL85000] FX The research described in this work has received financial support from the French Agence Nationale de la Recherche (ANR) under Grant No. ANR-12-BS08-0020-02 (project SYNCHROKIN). We acknowledge the contribution of V. Khamaganov in the early stages of the conception and construction of the double skimmer chamber and flow reactor. G.A.G. thanks B. Gans for helpful discussions. We are grateful to the general SOLEIL staff for running the facility under Proposal No. 99140082. D.L.O. and C.A.T. are supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94-AL85000. NR 49 TC 8 Z9 8 U1 9 U2 43 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2015 VL 142 IS 16 AR 164201 DI 10.1063/1.4918634 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CH2CO UT WOS:000353832500013 PM 25933756 ER PT J AU Jankunas, J Jachymski, K Hapka, M Osterwalder, A AF Jankunas, Justin Jachymski, Krzysztof Hapka, Michal Osterwalder, Andreas TI Observation of orbiting resonances in He(S-3(1)) + NH3 Penning ionization SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID PENNING IONIZATION; HELIUM-ATOMS; COLLISIONS; MOLECULES; TEMPERATURES; SCATTERING; STATE; BEAMS AB Resonances are among the clearest quantum mechanical signatures of scattering processes. Previously, shape resonances and Feshbach resonances have been observed in inelastic and reactive collisions involving atoms or diatomic molecules. Structure in the integral cross section has been observed in a handful of elastic collisions involving polyatomic molecules. The present paper presents the observation of shape resonances in the reactive scattering of a polyatomic molecule, NH3. A merged-beam study of the gas phase He(S-3(1)) + NH3 Penning ionization reaction dynamics is described in the collision energy range 3.3 mu eV < E-coll < 10 meV. In this energy range, the reaction rate is governed by long-range attraction. Peaks in the integral cross section are observed at collision energies of 1.8 meV and 7.3 meV and are assigned to l = 15,16 and l = 20,21 partial wave resonances, respectively. The experimental results are well reproduced by theoretical calculations with the short-range reaction probability P-sr = 0.035. No clear signature of the orbiting resonances is visible in the branching ratio between NH3+ and NH2+ formation. (C) 2015 AIP Publishing LLC. C1 [Jankunas, Justin; Osterwalder, Andreas] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland. [Jachymski, Krzysztof] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland. [Hapka, Michal] Univ Warsaw, Fac Chem, PL-02093 Warsaw, Poland. RP Jankunas, J (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. EM andreas.osterwalder@epfl.ch OI Jachymski, Krzysztof/0000-0002-9080-0989 FU Swiss National Science Foundation [PP0022-119081]; EPFL; Foundation for Polish Science International PhD Projects Programme; EU European Regional Development Fund; project "Towards Advanced Functional Materials and Novel Devices: Joint UW and WUT International PhD Programme"; Polish Ministry of Science and Higher Education [N204 248440] FX We thank Dr. Piotr Zuchowski for useful discussions. Support from the Swiss National Science Foundation (Grant No. PP0022-119081) and EPFL is acknowledged. K.J. was supported by the Foundation for Polish Science International PhD Projects Programme co-financed by the EU European Regional Development Fund. M.H. was supported by the project "Towards Advanced Functional Materials and Novel Devices: Joint UW and WUT International PhD Programme," operated within the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund and by the Polish Ministry of Science and Higher Education (Grant No. N204 248440). NR 43 TC 18 Z9 18 U1 1 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2015 VL 142 IS 16 AR 164305 DI 10.1063/1.4919369 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CH2CO UT WOS:000353832500019 PM 25933762 ER PT J AU Rodriguez-Cantano, R Gonzalez-Lezana, T Prosmiti, R Delgado-Barrio, G Villarreal, P Jellinek, J AF Rodriguez-Cantano, Rocio Gonzalez-Lezana, Tomas Prosmiti, Rita Delgado-Barrio, Gerardo Villarreal, Pablo Jellinek, Julius TI Reactive scattering calculations for Rb-87+(RbHe)-Rb-87 -> Rb-2((3)Sigma(+)(u), v) plus He from ultralow to intermediate energies SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID HELIUM NANODROPLETS; ULTRACOLD MOLECULES; SPECTROSCOPY; ATOMS; SURFACE; CLUSTERS; RB-2; PHOTOASSOCIATION; COMPLEXES; CHEMISTRY AB We investigate atom-diatom reactive collisions, as a preliminary step, in order to assess the possibility of forming Rb-2 molecules in their lowest triplet electronic state by cold collisions of rubidium atoms on the surface of helium nanodroplets. A simple model related to the well-known Rosen treatment of linear triatomic molecules [N. Rosen, J. Chem. Phys. 1, 319 (1933)] in relative coordinates is used, allowing to estimate reactive probabilities for different values of the total angular momentum. The best available full dimensional potential energy surface [Guillon et al., J. Chem. Phys. 136, 174307 (2012)] is employed through the calculations. Noticeable values of the probabilities in the ultracold regime, which numerically fulfill the Wigner threshold law, support the feasibility of the process. The rubidium dimer is mainly produced at high vibrational states, and the reactivity is more efficient for a bosonic helium partner than when the fermion species is considered. (C) 2015 AIP Publishing LLC. C1 [Rodriguez-Cantano, Rocio; Gonzalez-Lezana, Tomas; Prosmiti, Rita; Delgado-Barrio, Gerardo; Villarreal, Pablo] IFF CSIC, Inst Fis Fundamental, Madrid 28006, Spain. [Jellinek, Julius] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Villarreal, P (reprint author), IFF CSIC, Inst Fis Fundamental, Serrano 123, Madrid 28006, Spain. EM p.villarreal@csic.es RI Villarreal, Pablo/K-2397-2014 FU MICINN [FIS2011-29596-C02-01]; Spanish program JAE-PREDOC [JAE-Pre-2010-01277]; Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy [DE-AC02-06CH11357] FX We thank Centro de Calculo (IFF, CSIC), Centro Tecnico de Informatica (CTI, CSIC), and Centro de Supercomputacion de Galicia (CESGA) for the allocation of computer time. This work has been supported by MICINN Grant No. FIS2011-29596-C02-01. R.R.-C. acknowledges to the Spanish program JAE-PREDOC, Grant No. JAE-Pre-2010-01277. J.J. was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy under Contract No. DE-AC02-06CH11357. The aid of COST Action CM1002 (CODECS) is also appreciated. NR 47 TC 2 Z9 2 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2015 VL 142 IS 16 AR 164304 DI 10.1063/1.4919062 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CH2CO UT WOS:000353832500018 PM 25933761 ER PT J AU Santana, JA Krogel, JT Kim, J Kent, PRC Reboredo, FA AF Santana, Juan A. Krogel, Jaron T. Kim, Jeongnim Kent, Paul R. C. Reboredo, Fernando A. TI Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TRANSITION-METAL OXIDES; ELECTRONIC-STRUCTURE; OXYGEN VACANCY; 1ST-PRINCIPLES CALCULATIONS; STOCHASTIC METHOD; WAVE-FUNCTIONS; POINT-DEFECTS; BASIS-SET; ENERGY AB We have applied the many-body ab initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure and the energetics of the oxygen vacancy, zinc interstitial, and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory (DFT) approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O-2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy as a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV. (C) 2015 AIP Publishing LLC. C1 [Santana, Juan A.; Krogel, Jaron T.; Kim, Jeongnim; Reboredo, Fernando A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Kent, Paul R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kent, Paul R. C.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Santana, JA (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM reboredofa@ornl.gov RI Kent, Paul/A-6756-2008; OI Kent, Paul/0000-0001-5539-4017; Santana, Juan A./0000-0003-2349-6312; Krogel, Jaron/0000-0002-1859-181X FU Materials Sciences and Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX We thank H. Dixit and L. Shulenburger for providing access to pseudopotential datasets and A. Zunger for helpful discussions and pointing us to the measurements in Refs. 107 and 108. The work was supported by the Materials Sciences and Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy. Paul R. C. Kent was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Computational resources were provided by the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 115 TC 9 Z9 9 U1 8 U2 40 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2015 VL 142 IS 16 AR 164705 DI 10.1063/1.4919242 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CH2CO UT WOS:000353832500039 PM 25933782 ER PT J AU Bahadur, J Sen, D Mazumder, S Santoro, G Yu, S Roth, SV Melnichenko, YB AF Bahadur, J. Sen, D. Mazumder, S. Santoro, G. Yu, S. Roth, S. V. Melnichenko, Y. B. TI Colloidal Nanoparticle Interaction Transition during Solvent Evaporation Investigated by in-Situ Small-Angle X-ray Scattering SO LANGMUIR LA English DT Article ID SPRAY DEPOSITION; DROPLETS; PARTICLES; SURFACE; MODEL; RING; FLOW AB In-situ scanning small-angle X-ray scattering (SAXS) experiments have been performed to probe the,drying of a single suspended droplet of silica colloids. It has been demonstrated that the formation of a nanoparticle shell during drying can be confirmed just by measuring the temporal evolution of the spatial transmission profile across the drying droplet. The shrinkage of the droplet stops once the shell is formed. The temporal dependence Of the shell thickness and droplet radius has been estimated by quautitative analysis of the functionality of the transmission profiles. It is' revealed that the position of the correlation peak originating from interactions between silica nanoparticles evolves linearly during the initial stage of drying and exhibits sigmoidal growth behavior in later stages. The interaction between colloidal particles, in different drying stages has been investigated We provide,experimental confirmation of the transition from repulsive interaction to a capillary driven short-range,attraction,during shell formation. The present work demonstrates that in situ scanning SAXS on,a suspended droplet is an invaluable technique for monitoring the dynamic self organization of colloids as it probes the drying of complex,fluids without the interference of a substrate. C1 [Bahadur, J.; Sen, D.; Mazumder, S.] Bhabha Atom Res Ctr, Div Solid State Phys, Bombay 400085, Maharashtra, India. [Bahadur, J.; Melnichenko, Y. B.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Santoro, G.; Yu, S.; Roth, S. V.] Deutsch Elektronen Synchrotron DESY, Photon Sci, D-22607 Hamburg, Germany. RP Bahadur, J (reprint author), Bhabha Atom Res Ctr, Div Solid State Phys, Bombay 400085, Maharashtra, India. EM jbahadur@barc.gov.in RI Yu, Shun/C-3332-2013; Sen, Debasis/K-6391-2015; Santoro, Gonzalo/J-2518-2012 OI Yu, Shun/0000-0002-9663-7705; Sen, Debasis/0000-0002-9080-0866; Santoro, Gonzalo/0000-0003-4751-2209 FU Department of Science and Technology (DST), India [I-20110533]; Knut and Alice Wallenberg Foundation FX J.B. and D.S. thankfully acknowledge the Department of Science and Technology (DST), India for providing financial support (I-20110533) for the experiment at PETRA III through the Saha Institute of Nuclear Physics (SINP), Kolkata, India. This work was carried out at the P03 beamline of light source PETRA III at DESY. DESY is a member of the Helmholtz Association (HGF). S.Y. acknowledges the kind financial support of the Knut and Alice Wallenberg Foundation. NR 37 TC 5 Z9 5 U1 6 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 28 PY 2015 VL 31 IS 16 BP 4612 EP 4618 DI 10.1021/la504769k PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CH2OJ UT WOS:000353864200004 PM 25839830 ER PT J AU Martinez, I Stegen, JC Maldonado-Gomez, MX Eren, AM Siba, PM Greenhill, AR Walter, J AF Martinez, Ines Stegen, James C. Maldonado-Gomez, Maria X. Eren, A. Murat Siba, Peter M. Greenhill, Andrew R. Walter, Jens TI The Gut Microbiota of Rural Papua New Guineans: Composition, Diversity Patterns, and Ecological Processes SO CELL REPORTS LA English DT Article ID INTESTINAL MICROBIOTA; MULTIPLE-SCLEROSIS; ASSEMBLY PROCESSES; CHILDREN; DISEASE; DIET; CONSEQUENCES; IMPROVEMENTS; ENTEROTYPES; METABOLISM AB Although recent research revealed an impact of westernization on diversity and composition of the human gut microbiota, the exact consequences on metacommunity characteristics are insufficiently understood, and the underlying ecological mechanisms have not been elucidated. Here, we have compared the fecal microbiota of adults from two non-industrialized regions in Papua New Guinea (PNG) with that of United States (US) residents. Papua New Guineans harbor communities with greater bacterial diversity, lower inter-individual variation, vastly different abundance profiles, and bacterial lineages undetectable in US residents. A quantification of the ecological processes that govern community assembly identified bacterial dispersal as the dominant process that shapes the microbiome in PNG but not in the US. These findings suggest that the microbiome alterations detected in industrialized societies might arise from modern lifestyle factors limiting bacterial dispersal, which has implications for human health and the development of strategies aimed to redress the impact of westernization. C1 [Martinez, Ines; Walter, Jens] Univ Alberta, Dept Agr Food & Nutrit Sci, Edmonton, AB T6G 2E1, Canada. [Martinez, Ines; Maldonado-Gomez, Maria X.; Walter, Jens] Univ Nebraska, Dept Food Sci & Technol, Lincoln, NE 68583 USA. [Stegen, James C.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Eren, A. Murat] Marine Biol Lab, Josephine Bay Paul Ctr Comparat Mol Biol & Evolut, Woods Hole, MA 02543 USA. [Siba, Peter M.; Greenhill, Andrew R.] Papua New Guinea Inst Med Res, Goroka 441, Eastern Highlan, Papua N Guinea. [Greenhill, Andrew R.] Federat Univ Australia, Sch Appl & Biomed Sci, Churchill, Vic 3842, Australia. [Walter, Jens] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E1, Canada. RP Greenhill, AR (reprint author), Papua New Guinea Inst Med Res, Goroka 441, Eastern Highlan, Papua N Guinea. EM andrew.greenhill@federation.edu.au; jwalter1@ualberta.ca RI Stegen, James/Q-3078-2016 OI Stegen, James/0000-0001-9135-7424 FU BioGaia AB; US Department of Energy [DE-AC05-76RL01830] FX We are thankful to the participants of this study. We thank Rebecca Sehuko for sample collection, Carlton Guwada for specimen handling, Malcon research team for assisting with sampling logistics, and Pamela Toliman and Rebecca Ford for logistical assistance. This study was partly funded by BioGaia AB. BioGaia had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. A portion of this research is part of the Microbiomes in Transition Initiative at Pacific Northwest National Laboratory (PNNL). This research was conducted under the Laboratory Directed Research and Development Program at PNNL, a multi-program national laboratory operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830. NR 60 TC 61 Z9 63 U1 14 U2 49 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 2211-1247 J9 CELL REP JI Cell Reports PD APR 28 PY 2015 VL 11 IS 4 BP 527 EP 538 DI 10.1016/j.celrep.2015.03.049 PG 12 WC Cell Biology SC Cell Biology GA CH3BZ UT WOS:000353902600004 PM 25892234 ER PT J AU Sharma, R Sawvel, AM Barton, B Dong, AG Buonsanti, R Llordes, A Schaible, E Axnanda, S Liu, Z Urban, JJ Nordlund, D Kisielowski, C Milliron, DJ AF Sharma, Richa Sawvel, April M. Barton, Bastian Dong, Angang Buonsanti, Raffaella Llordes, Anna Schaible, Eric Axnanda, Stephanus Liu, Zhi Urban, Jeffrey J. Nordlund, Dennis Kisielowski, Christian Milliron, Delia J. TI Nanocrystal Superlattice Embedded within an Inorganic Semiconducting Matrix by in Situ Ligand Exchange: Fabrication and Morphology SO CHEMISTRY OF MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; ATOMIC LAYER DEPOSITION; LIQUID-AIR INTERFACE; COLLOIDAL NANOCRYSTALS; SURFACE LIGANDS; PBSE; FILMS; NANOCOMPOSITES; COMPOSITES; CONVERSION C1 [Sharma, Richa; Sawvel, April M.; Barton, Bastian; Dong, Angang; Buonsanti, Raffaella; Llordes, Anna; Urban, Jeffrey J.; Kisielowski, Christian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Schaible, Eric; Axnanda, Stephanus; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Nordlund, Dennis] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. [Milliron, Delia J.] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA. RP Milliron, DJ (reprint author), Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA. EM milliron@che.utexas.edu RI Milliron, Delia/D-6002-2012; Liu, Zhi/B-3642-2009; Llordes, Anna/H-2370-2015; Foundry, Molecular/G-9968-2014; Barton, Bastian/H-9268-2016; Nordlund, Dennis/A-8902-2008; OI Liu, Zhi/0000-0002-8973-6561; Llordes, Anna/0000-0003-4169-9156; Nordlund, Dennis/0000-0001-9524-6908; Dong, Angang/0000-0002-9677-8778 FU Office of Science, Office of Basic Energy Sciences, U.S. DOE [DE-AC02-05CH11231]; DOE Early Career Research Program grant; DOE ARPA-E grant; Welch Foundation [F-1848] FX Work was performed in part at the Molecular Foundry, Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, U.S. DOE, under DE-AC02-05CH11231. R.S., R.B., and A.D. were supported by a DOE Early Career Research Program grant, and A.L. was supported by a DOE ARPA-E grant, both to D.J.M. Support also provided by the Welch Foundation (F-1848). NR 32 TC 1 Z9 1 U1 9 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD APR 28 PY 2015 VL 27 IS 8 BP 2755 EP 2758 DI 10.1021/cm504716s PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CH2OZ UT WOS:000353865800004 ER PT J AU Wang, JJ Zhou, H Nanda, J Braun, PV AF Wang, Junjie Zhou, Hui Nanda, Jagjit Braun, Paul V. TI Three-Dimensionally Mesostructured Fe2O3 Electrodes with Good Rate Performance and Reduced Voltage Hysteresis SO CHEMISTRY OF MATERIALS LA English DT Article ID LITHIUM-ION BATTERIES; IRON-OXIDES; CONVERSION REACTIONS; RATE CAPABILITIES; ENERGY-STORAGE; ANODE MATERIAL; PARTICLE-SIZE; ALPHA-FE2O3; NANOPARTICLES; INTERCALATION AB Ni scaffolded mesostructured 3D Fe2O3 electrodes were fabricated by colloidal templating and puled electrodeposition. The scaffold provided short pathways for both lithium ions and electrons in the active phase, enabling fast kinetics and thus a high power density. The scaffold also resulted in a reduced voltage hysteresis. The electrode showed a reversible capacity of similar to 1000 mAh g(-1) at 0.2 A g(-1) (similar to 0.2 C) for about 20 cycles, and at a current density of 20 A g(-1). (similar to 20 C), the deliverable capacity was about 450 mAh g(-1). The room-temperature voltage hysteresis at 0.1 A g(-1) (similar to 0.1 C) was 0.62 V, which is significantly smaller than that normally reported in the literature. The hysteresis further reduced to 0.42 V at 45 degrees C. Potentiostatic electrochemical impedance spectroscopy (PEIS) studies indicated that the small voltage hysteresis may be clue to a reduction in the Li2O/Fe interfacial area in the electrode during cycling relative to conventional conversion systems. C1 [Wang, Junjie; Braun, Paul V.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Zhou, Hui; Nanda, Jagjit] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Nanda, Jagjit] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Nanda, J (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM nandaj@ornl.gov; pbraun@illinois.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-07ER46471]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory for the U.S. Department of Energy FX This research is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award # DE-FG02-07ER46471, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign (J.W. and P.V.B.), and the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy (H.Z. and J.N.). The authors are deeply thankful to Dr. Richard T. Haasch for XPS measurements and Bo Huang for TEM measurements. NR 54 TC 16 Z9 16 U1 6 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD APR 28 PY 2015 VL 27 IS 8 BP 2803 EP 2811 DI 10.1021/cm504365s PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA CH2OZ UT WOS:000353865800012 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, P Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, M Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urbaan, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K De Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Wemans, AD Doan, TKO Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gandrajula, RP Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Navarro, JEG Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebck, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-Zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, OM King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le, BT Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leone, S Leonhardt, K Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, T Kataoka, MM Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A Andrade, LMD Ramos, JM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjoernmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moraes, A Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayan, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rammes, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schefer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, DJ Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, LJ Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T Spurlock, B Denis, RDS Staerz, S Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PC Van der Geer, R Van der Graaf, H Van Der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, M Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A Nedden, MZ Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, P. Arce, A. T. H. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. De Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Vivie De Regie, J. B. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gandrajula, R. P. Gao, J. Gao, Y. S. Garay Walls, F. M. Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Pinto Firmino Da Costa, J. Goncalves Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstroem, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Gupta, S. Gutierrez, P. Gutierrez Ortiz, N. G. Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hagebck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Quiles, A. Irles Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Rozas, A. Juste Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. M. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Koenig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le, B. T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leone, S. Leonhardt, K. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, T. Kataoka, M. Maeno Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Andrade Filho, L. Manhaes de Ramos, J. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Moraes, A. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayan, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Garcia, E. Oliver Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Garzon, G. Otero y Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rammes, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Adam, E. Romero Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, D. J. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, L. J. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Den Wollenberg, W. Van Der Deijl, P. C. Van der Geer, R. Van der Graaf, H. Van Der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. Nedden, M. zur Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Observation of top-quark pair production in association with a photon and measurement of the t(t)over-bar gamma production cross section in pp collisions at root s=7 TeV using the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID PARTON DISTRIBUTIONS; HADRON COLLIDERS; MONTE-CARLO; LHC AB A search is performed for top-quark pairs (t (t) over bar) produced together with a photon (gamma) with transverse energy greater than 20 GeV using a sample of t (t) over bar candidate events in final states with jets, missing transverse momentum, and one isolated electron or muon. The data set used corresponds to an integrated luminosity of 4.59 fb(-1) of proton-proton collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. In total, 140 and 222 t (t) over bar gamma candidate events are observed in the electron and muon channels, to be compared to the expectation of 79 +/- 26 and 120 +/- 39 non-t (t) over bar gamma background events, respectively. The production of t (t) over bar gamma events is observed with a significance of 5.3 standard deviations away from the null hypothesis. The t (t) over bar gamma production cross section times the branching ratio (BR) of the single-lepton decay channel is measured in a fiducial kinematic region within the ATLAS acceptance. The measured value is sigma(fid)(t (t) over bar gamma) x BR = 63 +/- 8(stat)(-13)(+17) (syst) +/- 1(lumi) fb per lepton flavor, in good agreement with the leading-order theoretical calculation normalized to the next-to-leading-order theoretical prediction of 48 +/- 10 fb. C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Yilmaz, M.] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Kataoka, M. Maeno; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Le Menedeu, E.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Pages, A. Pacheco; Aranda, C. Padilla; Bueso, X. Portell; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Cirkovic, P.; Dimitrievska, A.; Krstic, J.; Mamuzic, J.; Marjanovic, M.; Popovic, D. S.; Schune, Ph.; Sijacki, D. J.; Simic, L. J.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin dit; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Radescu, V.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Radescu, V.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, D-10099 Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Arik, M.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstroem, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hagebck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Velz, T.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA USA. [Coutinho, Y. Amaral; Caloba, L. P.; Donadelli, M.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Andrade Filho, L. Manhaes de] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Rei UFSJ, Sao Joao Del Rei, Brazil. [Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahal, G.; Rauscher, F.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. [Chitan, A.] Polytech Univ, Bucharest, Romania. [Chitan, A.] West Univ Timisoara, Timisoara, Romania. [Garzon, G. Otero y; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; Cree, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Scheirich, D.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavevdish Lab, Cambridge, England. [Bellerive, A.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Messina, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rave, T. C.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, K.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Ma, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Milan, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Raymond, M.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Rajagopalan, S.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Rajagopalan, S.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dortmund, Inst Kern & Teilchenphys, D-44221 Dortmund, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Garay Walls, F. M.; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amoroso, S.; Annovi, A.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Redelbach, A.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alexandre, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nikolics, K.; O'Brien, B. J.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sbarra, C.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Milan, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, GE-380086 Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Mazini, R.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35390 Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Gutierrez Ortiz, N. G.; Kar, D.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Rados, P.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Annovi, A.; Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Radeka, V.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Stolte, P.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Le, B. T.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Djuvsland, J. I.; Dunford, M.; Hanke, P.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Heidelberg, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Gandrajula, R. P.; Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Annovi, A.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Topilin, N. D.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Milan, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Davison, P.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Blum, W.; Buescher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Huelsing, T. A.; Ji, W.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Qureshi, A.; Radloff, P.; Robinson, J. E. M.; Schwanenberger, C.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Randle-Conde, A. S.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Hu, X.; Levin, D.; Liu, L.; Long, J. D.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Rangel-Smith, C.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Perini, L.; Pizio, C.; Rangel-Smith, C.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Takubo, Y.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rebuzzi, D. M.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Will, J. Z.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; De Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, Milan, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; Dao, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, A. C.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gabrielli, A.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gabrielli, A.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; Van der Geer, R.; Van der Graaf, H.; Van Der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, Budker Inst Nucl Phys, SB, Novosibirsk, Russia. [Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Malyshev, V. M.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Rammes, M.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Vivie De Regie, J. B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Rohne, O.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Milan, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Ospanov, R.; Saxon, J.; Schaefer, D.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Milan, Italy. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Araque, P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Wemans, A. Do Valle; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particula, P-1000 Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Wemans, A. Do Valle; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Amorim, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Fis, Caparica, Portugal. [Amorim, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Guenther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Leitner, R.; Pleskot, V.; Reznicek, P.; Rybar, M.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Monzani, S.; Camillocci, E. Solfaroli; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sezione Roma Tor Vergata, Rome, Italy. [Aielli, G.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Mazzaferro, L.; Paolozzi, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Pinto Firmino Da Costa, J. Goncalves; Grabas, H. M. X.; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mal, P.; Mansoulie, B.; Martinez, H.; Meric, N.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.; Tsionou, D.; Vranjes, N.; Xiao, M.] CEA Saclay, Commissariat Energie Atom & Energies Alternat, DSM IRFU, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Sadrozinski, H. F-W.; Salamanna, G.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Ravenscroft, T.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dep Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjoelin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Rammensee, M.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Rammensee, M.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, K.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Rammensee, M.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, C.; Wang, S. M.; Weng, Z.; Zhang, L.] Acad Sin, Inst Phys, Taipei, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Nomidis, I.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Akimoto, G.; Aloisio, A.; Alonso, A.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. Manjarres; Palacino, G.; Ragusa, F.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Farrell, S.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Readioff, N. P.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Annovi, A.; Antonov, A.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Radhakrishnan, S. K.; Shaw, K.; Soualah, R.] INFN Gruppo Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Quayle, W. B.; Radhakrishnan, S. K.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Aloisio, A.; Brazzale, S. F.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Read, A. L.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Annovi, A.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, IFIC, Valencia, Spain. [Aloisio, A.; Annovi, A.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Loh, C. W.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada. [Albert, J.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Annovi, A.; Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rao, K.] Ctr Calcul Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Davies, E.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anisenkov, A. V.; Bobrovnikov, V. S.; Kazanin, V. F.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Apolle, R.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Chen, L.] Aix Marseille Univ, CPPM, Marseille, France. [Conventi, F.; Della Pietra, M.] CNRS, IN2P3, Marseille, France. [Corriveau, F.; McPherson, R. A.; Sobie, R.; Teuscher, R. J.] Univ Napoli Parthenope, Naples, Italy. [Castillo, L. R. Flores] St Petersburg State Polytechn Univ, Dept Phys, St Petersburg, Russia. [Greenwood, Z. D.; Sawyer, L.] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Ilchenko, Y.; Onyisi, P. U. E.] ICREA, Barcelona, Spain. [Jejelava, J.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jenni, P.] Ilia State Univ, Inst Theoret Phys, Tbilisi, GA USA. [Khubua, J.] CERN, Geneva, Switzerland. [Kono, T.] GTU, Tbilisi, GA USA. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Li, B.] Acad Sin, Inst Phys, Taipei, Taiwan. [Li, Y.] Univ Paris 11, LAL, Orsay, France. [Li, Y.] CNRS, IN2P3, Orsay, France. [Lin, S. C.] Acad Sin, Acad Sin Grid Comp, Inst Phys, Taipei, Taiwan. [Liu, K.] UPMC, Lab Phys Nucl & Hautes Energ, Paris, France. [Liu, K.] Univ Paris Diderot, Paris, France. [Shi, L.] CNRS, IN2P3, Paris, France. [Mal, P.; Shi, L.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Messina, A.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys, Dolgoprudnyi, Russia. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Technol State Univ, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC USA. [Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Smirnova, L. N.] M Lomonosov Moscow State Univ, Fac Phys, Moscow, Russia. [Tikhomirov, V. O.; Turchikhin, S.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Xu, L.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France. RI Joergensen, Morten/E-6847-2015; Cavalli-Sforza, Matteo/H-7102-2015; Marti-Garcia, Salvador/F-3085-2011; Boyko, Igor/J-3659-2013; Tripiana, Martin/H-3404-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Carquin, Edson/G-5221-2015; Moraes, Arthur/F-6478-2010; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Costa, Maria Jose/H-5962-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Peleganchuk, Sergey/J-6722-2014; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Garcia, Jose /H-6339-2015; Ippolito, Valerio/L-1435-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Staroba, Pavel/G-8850-2014; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Mindur, Bartosz/A-2253-2017; Gutierrez, Phillip/C-1161-2011; Fabbri, Laura/H-3442-2012; Gerbaudo, Davide/J-4536-2012; Vranjes Milosavljevic, Marija/F-9847-2016; Perrino, Roberto/B-4633-2010; SULIN, VLADIMIR/N-2793-2015; Nechaeva, Polina/N-1148-2015; Vykydal, Zdenek/H-6426-2016; Olshevskiy, Alexander/I-1580-2016; Snesarev, Andrey/H-5090-2013; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Villa, Mauro/C-9883-2009; Solfaroli Camillocci, Elena/J-1596-2012; BESSON, NATHALIE/L-6250-2015; Vanadia, Marco/K-5870-2016; Carvalho, Joao/M-4060-2013; White, Ryan/E-2979-2015; Mashinistov, Ruslan/M-8356-2015; Buttar, Craig/D-3706-2011; Smirnova, Oxana/A-4401-2013; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Aguilar Saavedra, Juan Antonio/F-1256-2016; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Pacheco Pages, Andres/C-5353-2011; Tassi, Enrico/K-3958-2015; Ciubancan, Liviu Mihai/L-2412-2015; Zhukov, Konstantin/M-6027-2015; Shmeleva, Alevtina/M-6199-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; De, Kaushik/N-1953-2013; Cortes Gonzalez, Arely/I-1034-2015; Di Domenico, Antonio/G-6301-2011; Della Pietra, Massimo/J-5008-2012; Bosman, Martine/J-9917-2014; Petrucci, Fabrizio/G-8348-2012; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Doyle, Anthony/C-5889-2009; Brooks, William/C-8636-2013; Vanyashin, Aleksandr/H-7796-2013; spagnolo, stefania/A-6359-2012 OI Joergensen, Morten/0000-0002-6790-9361; Boyko, Igor/0000-0002-3355-4662; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Carquin, Edson/0000-0002-7863-1166; Moraes, Arthur/0000-0002-5157-5686; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Ippolito, Valerio/0000-0001-5126-1620; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Fabbri, Laura/0000-0002-4002-8353; Gerbaudo, Davide/0000-0002-4463-0878; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Perrino, Roberto/0000-0002-5764-7337; SULIN, VLADIMIR/0000-0003-3943-2495; Vykydal, Zdenek/0000-0003-2329-0672; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Villa, Mauro/0000-0002-9181-8048; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Vanadia, Marco/0000-0003-2684-276X; Carvalho, Joao/0000-0002-3015-7821; White, Ryan/0000-0003-3589-5900; Mashinistov, Ruslan/0000-0001-7925-4676; Smirnova, Oxana/0000-0003-2517-531X; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Pacheco Pages, Andres/0000-0001-8210-1734; Ciubancan, Liviu Mihai/0000-0003-1837-2841; Tikhomirov, Vladimir/0000-0002-9634-0581; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; De, Kaushik/0000-0002-5647-4489; Di Domenico, Antonio/0000-0001-8078-2759; Della Pietra, Massimo/0000-0003-4446-3368; Bosman, Martine/0000-0002-7290-643X; Petrucci, Fabrizio/0000-0002-5278-2206; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; Doyle, Anthony/0000-0001-6322-6195; Brooks, William/0000-0001-6161-3570; Vanyashin, Aleksandr/0000-0002-0367-5666; spagnolo, stefania/0000-0001-7482-6348 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET, European Union; ERC, European Union; NSRF, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; NSRF, Greece; RGC, China; Hong Kong SAR, China; ISF, Israel; MINERVA, Israel; GIF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; NCN, Poland; GRICES, Portugal; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 74 TC 3 Z9 3 U1 9 U2 80 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD APR 28 PY 2015 VL 91 IS 7 AR 072007 DI 10.1103/PhysRevD.91.072007 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CG8GO UT WOS:000353545500001 ER PT J AU Gustafson, J Abe, K Haga, Y Hayato, Y Ikeda, M Iyogi, K Kameda, J Kishimoto, Y Miura, M Moriyama, S Nakahata, M Nakajima, T Nakano, Y Nakayama, S Orii, A Sekiya, H Shiozawa, M Takeda, A Tanaka, H Tomura, T Wendell, RA Irvine, T Kajita, T Kametani, I Kaneyuki, K Nishimura, Y Richard, E Okumura, K Labarga, L Fernandez, P Berkman, S Tanaka, HA Tobayama, S Kearns, E Raaf, JL Stone, JL Sulak, LR Goldhaber, M Carminati, G Kropp, WR Mine, S Weatherly, P Renshaw, A Smy, MB Sobel, HW Takhistov, V Ganezer, KS Hartfiel, BL Hill, J Hong, N Kim, JY Lim, IT Akiri, T Himmel, A Scholberg, K Walter, CW Wongjirad, T Ishizuka, T Tasaka, S Jang, JS Learned, JG Matsuno, S Smith, SN Hasegawa, T Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Oyama, Y Sakashita, K Sekiguchi, T Tsukamoto, T Suzuki, AT Takeuchi, Y Yano, T Hirota, S Huang, K Ieki, K Kikawa, T Minamino, A Nakaya, T Suzuki, K Takahashi, S Fukuda, Y Choi, K Itow, Y Mitsuka, G Suzuki, T Mijakowski, P Hignight, J Imber, J Jung, CK Palomino, JL Yanagisawa, C Ishino, H Kayano, T Kibayashi, A Koshio, Y Mori, T Sakuda, M Kuno, Y Tacik, R Kim, SB Okazawa, H Choi, Y Nishijima, K Koshiba, M Suda, Y Yokoyama, YTM Yokoyama, M Bronner, C Martens, K Marti, L Suzuki, Y Vagins, MR Martin, JF de Perio, P Konaka, A Wilking, MJ Chen, S Zhang, Y Wilkes, RJ AF Gustafson, J. Abe, K. Haga, Y. Hayato, Y. Ikeda, M. Iyogi, K. Kameda, J. Kishimoto, Y. Miura, M. Moriyama, S. Nakahata, M. Nakajima, T. Nakano, Y. Nakayama, S. Orii, A. Sekiya, H. Shiozawa, M. Takeda, A. Tanaka, H. Tomura, T. Wendell, R. A. Irvine, T. Kajita, T. Kametani, I. Kaneyuki, K. Nishimura, Y. Richard, E. Okumura, K. Labarga, L. Fernandez, P. Berkman, S. Tanaka, H. A. Tobayama, S. Kearns, E. Raaf, J. L. Stone, J. L. Sulak, L. R. Goldhaber, M. Carminati, G. Kropp, W. R. Mine, S. Weatherly, P. Renshaw, A. Smy, M. B. Sobel, H. W. Takhistov, V. Ganezer, K. S. Hartfiel, B. L. Hill, J. Hong, N. Kim, J. Y. Lim, I. T. Akiri, T. Himmel, A. Scholberg, K. Walter, C. W. Wongjirad, T. Ishizuka, T. Tasaka, S. Jang, J. S. Learned, J. G. Matsuno, S. Smith, S. N. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Oyama, Y. Sakashita, K. Sekiguchi, T. Tsukamoto, T. Suzuki, A. T. Takeuchi, Y. Yano, T. Hirota, S. Huang, K. Ieki, K. Kikawa, T. Minamino, A. Nakaya, T. Suzuki, K. Takahashi, S. Fukuda, Y. Choi, K. Itow, Y. Mitsuka, G. Suzuki, T. Mijakowski, P. Hignight, J. Imber, J. Jung, C. K. Palomino, J. L. Yanagisawa, C. Ishino, H. Kayano, T. Kibayashi, A. Koshio, Y. Mori, T. Sakuda, M. Kuno, Y. Tacik, R. Kim, S. B. Okazawa, H. Choi, Y. Nishijima, K. Koshiba, M. Suda, Y. Totsuka, Y. Yokoyama, M. Bronner, C. Martens, K. Marti, Ll. Suzuki, Y. Vagins, M. R. Martin, J. F. de Perio, P. Konaka, A. Wilking, M. J. Chen, S. Zhang, Y. Wilkes, R. J. CA Collaboration, SK TI Search for dinucleon decay into pions at Super-Kamiokande SO PHYSICAL REVIEW D LA English DT Article ID NUCLEON DECAY; BARYON ASYMMETRY; CP-INVARIANCE; DETECTOR; SCATTERING; VIOLATION; UNIVERSE AB A search for dinucleon decay into pions with the Super-Kamiokande detector has been performed with an exposure of 282.1 kiloton-years. Dinucleon decay is a process that violates baryon number by two units. We present the first search for dinucleon decay to pions in a large water-Cherenkov detector. The modes O-16(pp) -> C-14 pi(+)pi(+), O-16(pn) -> N-14 pi(+)pi(0), and O-16(nn) -> O-14 pi(0)pi(0) are investigated. No significant excess in the Super-Kamiokande data has been found, so a lower limit on the lifetime of the process per oxygen nucleus is determined. These limits are tau(pp ->pi+pi+) > 7.22 x 10(31) years, tau(pn ->pi+pi 0) > 1.70 x 10(32) years, and tau(nn ->pi 0 pi 0) > 4.04 x 10(32) years. The lower limits on each mode are about 2 orders of magnitude better than previous limits from searches for dinucleon decay in iron. C1 [Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tanaka, H.; Tomura, T.; Wendell, R. A.; Okumura, K.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Kamioka, Gifu 5061205, Japan. [Irvine, T.; Kajita, T.; Kametani, I.; Kaneyuki, K.; Nishimura, Y.; Richard, E.] Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Kashiwa, Chiba 2778582, Japan. [Labarga, L.; Fernandez, P.] Univ Autonoma Madrid, Dept Theoret Phys, E-28049 Madrid, Spain. [Gustafson, J.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Berkman, S.; Tanaka, H. A.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Carminati, G.; Kropp, W. R.; Mine, S.; Weatherly, P.; Renshaw, A.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Vagins, M. R.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Kim, J. Y.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. [Hong, N.; Lim, I. T.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Akiri, T.; Himmel, A.; Scholberg, K.; Walter, C. W.; Wongjirad, T.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Ishizuka, T.] Fukuoka Inst Technol, Jr Coll, Fukuoka, Fukuoka 8110295, Japan. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu, Gifu 5011193, Japan. [Jang, J. S.] Gwangju Inst Sci & Technol, GIST Coll, Gwangju 500712, South Korea. [Learned, J. G.; Matsuno, S.; Smith, S. N.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.] High Energy Accelerator Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Suzuki, A. T.; Takeuchi, Y.; Yano, T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Hirota, S.; Huang, K.; Ieki, K.; Kikawa, T.; Minamino, A.; Nakaya, T.; Suzuki, K.; Takahashi, S.] Kyoto Univ, Dept Phys, Kyoto, Kyoto 6068502, Japan. [Fukuda, Y.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Choi, K.; Itow, Y.; Mitsuka, G.; Suzuki, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648602, Japan. [Hignight, J.; Imber, J.; Jung, C. K.; Palomino, J. L.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.] Okayama Univ, Dept Phys, Okayama, Okayama 7008530, Japan. [Kuno, Y.] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Tacik, R.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Kim, S. B.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Okazawa, H.] Shizuoka Univ Welf, Dept Informat Social Welf, Yaizu, Shizuoka 4258611, Japan. [Choi, Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Nishijima, K.] Tokai Univ, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. [Koshiba, M.; Suda, Y.; Totsuka, Y.] Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan. [Abe, K.; Haga, Y.; Hayato, Y.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tomura, T.; Wendell, R. A.; Kajita, T.; Kaneyuki, K.; Okumura, K.; Kearns, E.; Stone, J. L.; Smy, M. B.; Sobel, H. W.; Scholberg, K.; Walter, C. W.; Nakamura, K.; Takeuchi, Y.; Nakaya, T.; Yokoyama, M.; Bronner, C.; Martens, K.; Marti, Ll.; Suzuki, Y.; Vagins, M. R.] Univ Tokyo, Univ WPI, Kavli Inst Phys & Math, Todai Inst Adv Study, Kashiwa, Chiba 2778582, Japan. [Martin, J. F.; de Perio, P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Konaka, A.; Wilking, M. J.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Chen, S.; Zhang, Y.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Mijakowski, P.] Natl Ctr Nucl Res, PL-00681 Warsaw, Poland. RP Gustafson, J (reprint author), Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Kamioka, Gifu 5061205, Japan. RI Yokoyama, Masashi/A-4458-2011; Yokoyama, Yukihiro/I-7379-2014; Ishino, Hirokazu/C-1994-2015; Kibayashi, Atsuko/K-7327-2015; Koshio, Yusuke/C-2847-2015; Nakano, Yuuki/S-2684-2016 OI Yokoyama, Masashi/0000-0003-2742-0251; Ishino, Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505; FU Japanese Ministry of Education, Culture, Sports, Science and Technology; United States Department of Energy; U.S. National Science Foundation; Research Foundation of Korea; Korean Ministry of Science and Technology; National Science Foundation of China; European Union [284518, GA-2011-289442]; National Science and Engineering Research Council (NSERC) of Canada; Scinet and West-grid consortia of Compute Canada FX We gratefully acknowledge the cooperation of the Kamioka Mining and Smelting Company. The Super-Kamiokande experiment has been built and operated from funding by the Japanese Ministry of Education, Culture, Sports, Science and Technology, the United States Department of Energy, and the U.S. National Science Foundation. This work was partially supported by the Research Foundation of Korea (BK21 and KNRC), the Korean Ministry of Science and Technology, the National Science Foundation of China, the European Union FP7 (DS laguna-lbno PN-284518 and ITN invisibles GA-2011-289442), the National Science and Engineering Research Council (NSERC) of Canada, and the Scinet and West-grid consortia of Compute Canada. NR 40 TC 6 Z9 6 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR 28 PY 2015 VL 91 IS 7 AR 072009 DI 10.1103/PhysRevD.91.072009 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CG8GO UT WOS:000353545500002 ER PT J AU Le, TT Nguyen, KH Jeon, JR Francis, AJ Chang, YS AF Thao Thanh Le Khanh-Hoang Nguyen Jeon, Jong-Rok Francis, Arokiasamy J. Chang, Yoon-Seok TI Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Aroclor 1248; Bimetallic nanoparticles Pd/nFe; Dechlorination; Nano-bio treatment; Nanotoxicity ID PERSISTENT ORGANOCHLORINE COMPOUNDS; NANOSCALE ZEROVALENT IRON; REDUCTIVE DECHLORINATION; IMPACTED SEDIMENT; MIXED CULTURE; PCB CONGENERS; AROCLOR 1242; DEGRADATION; NANOPARTICLES; DEHALOCOCCOIDES AB The persistence of polychlorinated biphenyl (PCB) Aroclor 1248 in soils and sediments is a major concern because of its toxicity and presence at high concentrations. In this study, we developed an integrated remediation system for PCBs using chemical catalysis and biodegradation. The dechlorination of Aroclor 1248 was achieved by treatment with bimetallic nanoparticles Pd/nFe under anoxic conditions. Among the 32 PCB congeners of Aroclor 1248 examined, our process dechlorinated 99%, 92%, 84%, and 28% of tri-, tetra-, penta-, and hexachlorinated biphenyls, respectively. The resulting biphenyl was biodegraded rapidly by Burkholderia xenovorans LB400. Benzoic acid was detected as an intermediate during the biodegradation process. The toxicity of the residual PCBs after nano-bio treatment was evaluated in terms of toxic equivalent values which decreased from 33.8 x 10(-5) mu g g(-1) to 9.5 x 10(-5) mu g g(-1). The residual PCBs also had low cytotoxicity toward Escherichia coil as demonstrated by lower reactive oxygen species levels, lower glutathione peroxidase activity, and a reduced number of dead bacteria. (C) 2015 Elsevier B.V. All rights reserved. C1 [Thao Thanh Le; Khanh-Hoang Nguyen; Chang, Yoon-Seok] POSTECH, Sch Environm Sci & Engn, Pohang 790784, South Korea. [Jeon, Jong-Rok] LG Chem Res Pk, Corp R&D, Taejon 305380, South Korea. [Francis, Arokiasamy J.] POSTECH, Div Adv Nucl Engn, Pohang 790784, South Korea. [Francis, Arokiasamy J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Chang, YS (reprint author), Pohang Univ Sci & Technol POSTECH, Sch Environm Sci & Engn, Pohang 790784, South Korea. EM yschang@postech.ac.kr OI Nguyen, Khanh Hoang/0000-0003-4512-5213 FU National Research Foundation of Korea (NRF) grant - Korea government (MEST) [2011-0028723]; "The GAIA Project" by Korea Ministry of Environment [RE201402059] FX This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0028723) and "The GAIA Project" by Korea Ministry of Environment(RE201402059). NR 40 TC 4 Z9 4 U1 6 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 EI 1873-3336 J9 J HAZARD MATER JI J. Hazard. Mater. PD APR 28 PY 2015 VL 287 BP 335 EP 341 DI 10.1016/j.jhazmat.2015.02.001 PG 7 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA CG2FG UT WOS:000353089700039 PM 25679799 ER PT J AU Qi, B Siopsis, G AF Qi, Bing Siopsis, George TI Loss-tolerant position-based quantum cryptography SO PHYSICAL REVIEW A LA English DT Article ID KEY DISTRIBUTION; UNCONDITIONAL SECURITY; STATE AB Position-based quantum cryptography (PBQC) allows a party to use its geographical location as its only credential to implement various cryptographic protocols. Such a protocol may lead to important applications in practice. Although it has been shown that any PBQC protocol is breakable if the adversaries pre-share an arbitrarily large entangled state, the security of PBQC in the bounded-quantum-storage model is still an open question. In this paper, we study the performance of various PBQC protocols over a lossy channel under the assumption that no entanglement is pre-shared between adversaries. By introducing the decoy state idea, we show that an extended Bennett-Brassard-1984-type PBQC protocol implemented with a weak coherent source and realistic single-photon detectors can tolerate an overall loss (including both the channel loss and the detection efficiency) of 13 dB if the intrinsic quantum bit error rate is 1%. We also study a few continuous variable PBQC protocols and show that they suffer from a 3-dB loss limitation. C1 [Qi, Bing] Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA. [Qi, Bing; Siopsis, George] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Qi, B (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA. EM qib1@ornl.gov; siopsis@tennessee.edu RI Qi, Bing/J-5028-2014 OI Qi, Bing/0000-0001-7723-8998 FU U.S. Department of Energy [DE-AC05-00OR22725]; laboratory directed research and development program; U.S. Department of Energy Cybersecurity for Energy Delivery Systems (CEDS) program FX We would like to thank Ryan Bennink, Hoi-Kwong Lo, and Pavel Lougovski for very helpful discussions. This work was performed at Oak Ridge National Laboratory, operated by UT-Battelle for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. B.Q. acknowledges support from the laboratory directed research and development program and the U.S. Department of Energy Cybersecurity for Energy Delivery Systems (CEDS) program. NR 33 TC 5 Z9 5 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD APR 28 PY 2015 VL 91 IS 4 AR 042337 DI 10.1103/PhysRevA.91.042337 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CG8FU UT WOS:000353543500003 ER PT J AU Yang, F Dames, C AF Yang, Fan Dames, Chris TI Heating-frequency-dependent thermal conductivity: An analytical solution from diffusive to ballistic regime and its relevance to phonon scattering measurements SO PHYSICAL REVIEW B LA English DT Article ID TIME-DOMAIN THERMOREFLECTANCE; THERMOELECTRIC PERFORMANCE; SECOND SOUND; THIN-FILMS; HELIUM II; TRANSPORT; NANOWIRES; ALLOYS; TEMPERATURES; CRYSTALS AB The heating-frequency dependence of the apparent thermal conductivity in a semi-infinite body with periodic planar surface heating is explained by an analytical solution to the Boltzmann transport equation. This solution is obtained using a two-flux model and gray mean free time approximation and verified numerically with a lattice Boltzmann method and numerical results from the literature. Extending the gray solution to the nongray regime leads to an integral transform and accumulation-function representation of the phonon scattering spectrum, where the natural variable is mean free time rather than mean free path, as often used in previous work. The derivation leads to an approximate cutoff conduction similar in spirit to that of Koh and Cahill [Phys. Rev. B 76, 075207 (2007)] except that the most appropriate criterion involves the heater frequency rather than thermal diffusion length. The nongray calculations are consistent with Koh and Cahill's experimental observation that the apparent thermal conductivity shows a stronger heater-frequency dependence in a SiGe alloy than in natural Si. Finally these results are demonstrated using a virtual experiment, which fits the phase lag between surface temperature and heat flux to obtain the apparent thermal conductivity and accumulation function. C1 [Dames, Chris] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Dames, C (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM cdames@berkeley.edu RI Yang, Fan/K-1553-2015 OI Yang, Fan/0000-0002-8461-7790 FU National Science Foundation (NSF) CAREER award [CBET 1055317]; Defense Advanced Research Projects Agency (DARPA)/Defense Sciences Office (DSO) Nano-Materials for Power (NMP) program [W911NF-08-C-0058] FX This work is supported in part by a National Science Foundation (NSF) CAREER award (Grant No. CBET 1055317) and by the Defense Advanced Research Projects Agency (DARPA)/Defense Sciences Office (DSO) Nano-Materials for Power (NMP) program (W911NF-08-C-0058). We thank Jonathan Malen, Zhaojie Wang, and Vivek Mishra for helpful discussions. NR 61 TC 6 Z9 6 U1 3 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 28 PY 2015 VL 91 IS 16 AR 165311 DI 10.1103/PhysRevB.91.165311 PG 14 WC Physics, Condensed Matter SC Physics GA CG8GG UT WOS:000353544700002 ER PT J AU Adare, A Aidala, C Ajitanand, NN Akiba, Y Akimoto, R Al-Ta'ani, H Alexander, J Angerami, A Aoki, K Apadula, N Aramaki, Y Asano, H Aschenauer, EC Atomssa, ET Awes, TC Azmoun, B Babintsev, V Bai, M Bannier, B Barish, KN Bassalleck, B Bathe, S Baublis, V Baumgart, S Bazilevsky, A Belmont, R Berdnikov, A Berdnikov, Y Bing, X Blau, DS Bok, JS Boyle, K Brooks, ML Buesching, H Bumazhnov, V Butsyk, S Campbell, S Castera, P Chen, CH Chi, CY Chiu, M Choi, IJ Choi, JB Choi, S Choudhury, RK Christiansen, P Chujo, T Chvala, O Cianciolo, V Citron, Z Cole, BA Connors, M Csanad, M Csorgo, T Dairaku, S Datta, A Daugherity, MS David, G Denisov, A Deshpande, A Desmond, EJ Dharmawardane, KV Dietzsch, O Ding, L Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Durham, JM Durum, A D'Orazio, L Edwards, S Efremenko, YV Engelmore, T Enokizono, A Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Frantz, JE Franz, A Frawley, AD Fukao, Y Fusayasu, T Gainey, K Gal, C Garishvili, A Garishvili, I Glenn, A Gong, X Gonin, M Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Guo, L Gustafsson, HA Hachiya, T Haggerty, JS Hahn, KI Hamagaki, H Hanks, J Hashimoto, K Haslum, E Hayano, R He, X Hemmick, TK Hester, T Hill, JC Hollis, RS Homma, K Hong, B Horaguchi, T Hori, Y Huang, S Ichihara, T Iinuma, H Ikeda, Y Imrek, J Inaba, M Iordanova, A Isenhower, D Issah, M Ivanishchev, D Jacak, BV Javani, M Jia, J Jiang, X Johnson, BM Joo, KS Jouan, D Jumper, DS Kamin, J Kaneti, S Kang, BH Kang, JH Kang, JS Kapustinsky, J Karatsu, K Kasai, M Kawall, D Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kim, BI Kim, C Kim, DJ Kim, EJ Kim, HJ Kim, KB Kim, YJ Kim, YK Kinney, E Kiss, A Kistenev, E Klatsky, J Kleinjan, D Kline, P Komatsu, Y Komkov, B Koster, J Kotchetkov, D Kotov, D Kral, A Krizek, F Kunde, GJ Kurita, K Kurosawa, M Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Lebedev, A Lee, B Lee, DM Lee, J Lee, KB Lee, KS Lee, SH Lee, SR Leitch, MJ Leite, MAL Leitgab, M Lewis, B Lim, SH Levy, LAL Liu, MX Love, B Maguire, CF Makdisi, YI Makek, M Manion, A Manko, VI Mannel, E Masumoto, S McCumber, M McGaughey, PL McGlinchey, D McKinney, C Mendoza, M Meredith, B Miake, Y Mibe, T Mignerey, AC Milov, A Mishra, DK Mitchell, JT Miyachi, Y Miyasaka, S Mohanty, AK Moon, HJ Morrison, DP Motschwiller, S Moukhanova, TV Murakami, T Murata, J Nagae, T Nagamiya, S Nagle, JL Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, KR Nakamura, T Nakano, K Nattrass, C Nederlof, A Nihashi, M Nouicer, R Novitzky, N Nyanin, AS O'Brien, E Ogilvie, CA Okada, K Oskarsson, A Ouchida, M Ozawa, K Pak, R Pantuev, V Papavassiliou, V Park, BH Park, IH Park, SK Pate, SF Patel, L Pei, H Peng, JC Pereira, H Peressounko, DY Petti, R Pinkenburg, C Pisani, RP Proissl, M Purschke, ML Qu, H Rak, J Ravinovich, I Read, KF Reynolds, D Riabov, V Riabov, Y Richardson, E Riveli, N Roach, D Roche, G Rolnick, SD Rosati, M Sahlmueller, B Saito, N Sakaguchi, T Samsonov, V Sano, M Sarsour, M Sawada, S Sedgwick, K Seidl, R Sen, A Seto, R Sharma, D Shein, I Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Sim, KS Singh, BK Singh, CP Singh, V Slunecka, M Soltz, RA Sondheim, WE Sorensen, SP Soumya, M Sourikova, IV Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Sukhanov, A Sun, J Sziklai, J Takagui, EM Takahara, A Taketani, A Tanaka, Y Taneja, S Tanida, K Tannenbaum, MJ Tarafdar, S Taranenko, A Tennant, E Themann, H Todoroki, T Tomasek, L Tomasek, M Torii, H Towell, RS Tserruya, I Tsuchimoto, Y Tsuji, T Vale, C van Hecke, HW Vargyas, M Vazquez-Zambrano, E Veicht, A Velkovska, J Vertesi, R Virius, M Vossen, A Vrba, V Vznuzdaev, E Wang, XR Watanabe, D Watanabe, K Watanabe, Y Watanabe, YS Wei, F Wei, R Whitaker, S White, SN Winter, D Wolin, S Woody, CL Wysocki, M Yamaguchi, YL Yang, R Yanovich, A Ying, J Yokkaichi, S You, Z Younus, I Yushmanov, IE Zajc, WA Zelenski, A AF Adare, A. Aidala, C. Ajitanand, N. N. Akiba, Y. Akimoto, R. Al-Ta'ani, H. Alexander, J. Angerami, A. Aoki, K. Apadula, N. Aramaki, Y. Asano, H. Aschenauer, E. C. Atomssa, E. T. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Bannier, B. Barish, K. N. Bassalleck, B. Bathe, S. Baublis, V. Baumgart, S. Bazilevsky, A. Belmont, R. Berdnikov, A. Berdnikov, Y. Bing, X. Blau, D. S. Bok, J. S. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Butsyk, S. Campbell, S. Castera, P. Chen, C. -H. Chi, C. Y. Chiu, M. Choi, I. J. Choi, J. B. Choi, S. Choudhury, R. K. Christiansen, P. Chujo, T. Chvala, O. Cianciolo, V. Citron, Z. Cole, B. A. Connors, M. Csanad, M. Csoergo, T. Dairaku, S. Datta, A. Daugherity, M. S. David, G. Denisov, A. Deshpande, A. Desmond, E. J. Dharmawardane, K. V. Dietzsch, O. Ding, L. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Durham, J. M. Durum, A. D'Orazio, L. Edwards, S. Efremenko, Y. V. Engelmore, T. Enokizono, A. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M. Finger, M., Jr. Fleuret, F. Fokin, S. L. Frantz, J. E. Franz, A. Frawley, A. D. Fukao, Y. Fusayasu, T. Gainey, K. Gal, C. Garishvili, A. Garishvili, I. Glenn, A. Gong, X. Gonin, M. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Guo, L. Gustafsson, H. -A. Hachiya, T. Haggerty, J. S. Hahn, K. I. Hamagaki, H. Hanks, J. Hashimoto, K. Haslum, E. Hayano, R. He, X. Hemmick, T. K. Hester, T. Hill, J. C. Hollis, R. S. Homma, K. Hong, B. Horaguchi, T. Hori, Y. Huang, S. Ichihara, T. Iinuma, H. Ikeda, Y. Imrek, J. Inaba, M. Iordanova, A. Isenhower, D. Issah, M. Ivanishchev, D. Jacak, B. V. Javani, M. Jia, J. Jiang, X. Johnson, B. M. Joo, K. S. Jouan, D. Jumper, D. S. Kamin, J. Kaneti, S. Kang, B. H. Kang, J. H. Kang, J. S. Kapustinsky, J. Karatsu, K. Kasai, M. Kawall, D. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kim, B. I. Kim, C. Kim, D. J. Kim, E. -J. Kim, H. J. Kim, K. -B. Kim, Y. -J. Kim, Y. K. Kinney, E. Kiss, A. Kistenev, E. Klatsky, J. Kleinjan, D. Kline, P. Komatsu, Y. Komkov, B. Koster, J. Kotchetkov, D. Kotov, D. Kral, A. Krizek, F. Kunde, G. J. Kurita, K. Kurosawa, M. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Lebedev, A. Lee, B. Lee, D. M. Lee, J. Lee, K. B. Lee, K. S. Lee, S. H. Lee, S. R. Leitch, M. J. Leite, M. A. L. Leitgab, M. Lewis, B. Lim, S. H. Levy, L. A. Linden Liu, M. X. Love, B. Maguire, C. F. Makdisi, Y. I. Makek, M. Manion, A. Manko, V. I. Mannel, E. Masumoto, S. McCumber, M. McGaughey, P. L. McGlinchey, D. McKinney, C. Mendoza, M. Meredith, B. Miake, Y. Mibe, T. Mignerey, A. C. Milov, A. Mishra, D. K. Mitchell, J. T. Miyachi, Y. Miyasaka, S. Mohanty, A. K. Moon, H. J. Morrison, D. P. Motschwiller, S. Moukhanova, T. V. Murakami, T. Murata, J. Nagae, T. Nagamiya, S. Nagle, J. L. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, K. R. Nakamura, T. Nakano, K. Nattrass, C. Nederlof, A. Nihashi, M. Nouicer, R. Novitzky, N. Nyanin, A. S. O'Brien, E. Ogilvie, C. A. Okada, K. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Pantuev, V. Papavassiliou, V. Park, B. H. Park, I. H. Park, S. K. Pate, S. F. Patel, L. Pei, H. Peng, J. -C. Pereira, H. Peressounko, D. Yu. Petti, R. Pinkenburg, C. Pisani, R. P. Proissl, M. Purschke, M. L. Qu, H. Rak, J. Ravinovich, I. Read, K. F. Reynolds, D. Riabov, V. Riabov, Y. Richardson, E. Riveli, N. Roach, D. Roche, G. Rolnick, S. D. Rosati, M. Sahlmueller, B. Saito, N. Sakaguchi, T. Samsonov, V. Sano, M. Sarsour, M. Sawada, S. Sedgwick, K. Seidl, R. Sen, A. Seto, R. Sharma, D. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Slunecka, M. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Soumya, M. Sourikova, I. V. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Sukhanov, A. Sun, J. Sziklai, J. Takagui, E. M. Takahara, A. Taketani, A. Tanaka, Y. Taneja, S. Tanida, K. Tannenbaum, M. J. Tarafdar, S. Taranenko, A. Tennant, E. Themann, H. Todoroki, T. Tomasek, L. Tomasek, M. Torii, H. Towell, R. S. Tserruya, I. Tsuchimoto, Y. Tsuji, T. Vale, C. van Hecke, H. W. Vargyas, M. Vazquez-Zambrano, E. Veicht, A. Velkovska, J. Vertesi, R. Virius, M. Vossen, A. Vrba, V. Vznuzdaev, E. Wang, X. R. Watanabe, D. Watanabe, K. Watanabe, Y. Watanabe, Y. S. Wei, F. Wei, R. Whitaker, S. White, S. N. Winter, D. Wolin, S. Woody, C. L. Wysocki, M. Yamaguchi, Y. L. Yang, R. Yanovich, A. Ying, J. Yokkaichi, S. You, Z. Younus, I. Yushmanov, I. E. Zajc, W. A. Zelenski, A. CA PHENIX Collaboration TI Heavy-quark production and elliptic flow in Au plus Au collisions at root(NN)-N-S=62.4 GeV SO PHYSICAL REVIEW C LA English DT Article ID PROTON-PROTON COLLISIONS; HADRON BLIND DETECTOR; PHENIX EXPERIMENT; CROSS-SECTION; CERN ISR; SINGLE; MATTER; ENERGIES; MOMENTUM AB We present measurements of electrons and positrons from the semileptonic decays of heavy-flavor hadrons at midrapidity (vertical bar gamma vertical bar < 0.35) in Au + Au collisions at root(NN)-N-S = 62.4 GeV. The data were collected in 2010 by the PHENIX experiment that included the new hadron-blind detector. The invariant yield of electrons from heavy-flavor decays is measured as a function of transverse momentum in the range 1 < p(T)(e) < 5 GeV/c. The invariant yield per binary collision is slightly enhanced above the p + p reference in Au + Au 0%-20%, 20%-40%, and 40%-60% centralities at a comparable level. At this low beam energy this may be a result of the interplay between initial-state Cronin effects, final-state flow, and energy loss in medium. The v(2) of electrons from heavy-flavor decays is nonzero when averaged between 1.3 < p(T)(e) < 2.5 GeV/c for 0%-40% centrality collisions at root(NN)-N-S = 62.4 GeV. For 20%-40% centrality collisions, the v(2) at root(NN)-N-S = 62.4 GeV is smaller than that for heavy-flavor decays at root(NN)-N-S = 200 GeV. The v2 of the electrons from heavy-flavor decay at the lower beam energy is also smaller than v(2) for pions. Both results indicate that the heavy quarks interact with the medium formed in these collisions, but they may not be at the same level of thermalization with the medium as observed at root(NN)-N-S = 200 GeV. C1 [Daugherity, M. S.; Gainey, K.; Isenhower, D.; Qu, H.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Grau, N.] Augustana Coll, Dept Phys, Sioux Falls, SD 57197 USA. [Singh, B. K.; Singh, C. P.; Singh, V.; Tarafdar, S.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Mishra, D. K.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bathe, S.] CUNY, Baruch Coll, New York, NY 10010 USA. [Bai, M.; Drees, K. A.; Edwards, S.; Makdisi, Y. I.; Zelenski, A.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Aschenauer, E. C.; Azmoun, B.; Bazilevsky, A.; Buesching, H.; Chiu, M.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Jia, J.; Johnson, B. M.; Kistenev, E.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; Vale, C.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Chvala, O.; Eyser, K. O.; Hester, T.; Hollis, R. S.; Iordanova, A.; Kleinjan, D.; Mendoza, M.; Rolnick, S. D.; Sedgwick, K.; Seto, R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M.; Finger, M., Jr.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague 1, Czech Republic. [Choi, J. B.; Kim, E. -J.; Kim, K. -B.; Lee, S. R.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Akimoto, R.; Aramaki, Y.; Gunji, T.; Hamagaki, H.; Hayano, R.; Hori, Y.; Komatsu, Y.; Masumoto, S.; Ozawa, K.; Takahara, A.; Tsuchimoto, Y.; Tsuji, T.; Watanabe, Y. S.; Yamaguchi, Y. L.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Adare, A.; Kinney, E.; Levy, L. A. Linden; McCumber, M.; McGlinchey, D.; Nagle, J. L.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Angerami, A.; Chi, C. Y.; Cole, B. A.; Engelmore, T.; Hanks, J.; Lai, Y. S.; Mannel, E.; Vazquez-Zambrano, E.; Veicht, A.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Angerami, A.; Chi, C. Y.; Cole, B. A.; Engelmore, T.; Hanks, J.; Lai, Y. S.; Mannel, E.; Vazquez-Zambrano, E.; Veicht, A.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Kral, A.; Tomasek, M.; Virius, M.; Vrba, V.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Pereira, H.] CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. [Imrek, J.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Vargyas, M.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Hahn, K. I.; Lee, J.; Park, I. H.] Ewha Womans Univ, Seoul 120750, South Korea. [Frawley, A. D.; Klatsky, J.; McGlinchey, D.] Florida State Univ, Tallahassee, FL 32306 USA. [He, X.; Javani, M.; Patel, L.; Sarsour, M.; Sen, A.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Kang, B. H.; Kang, J. S.; Kim, Y. K.; Lee, B.; Park, B. H.] Hanyang Univ, Seoul 133792, South Korea. [Homma, K.; Kijima, K. M.; Nakamiya, Y.; Nihashi, M.; Ouchida, M.; Shigaki, K.; Sugitate, T.; Torii, H.; Watanabe, D.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Denisov, A.; Durum, A.; Shein, I.; Yanovich, A.] State Res Ctr Russian Fed, Inst High Energy Phys, IHEP Protvino, Protvino 142281, Russia. [Choi, I. J.; Perdekamp, M. Grosse; Jumper, D. S.; Kim, Y. -J.; Leitgab, M.; McKinney, C.; Meredith, B.; Vossen, A.; Wolin, S.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Pantuev, V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Tomasek, L.; Tomasek, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Ding, L.; Dion, A.; Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Silva, C. L.; Wei, F.; Whitaker, S.] Iowa State Univ, Ames, IA 50011 USA. [Kim, D. J.; Krizek, F.; Novitzky, N.; Rak, J.] Helsinki Inst Phys, FI-40014 Jyvaskyla, Finland. [Kim, D. J.; Krizek, F.; Novitzky, N.; Rak, J.] Univ Jyvaskyla, FI-40014 Jyvaskyla, Finland. [Iinuma, H.; Mibe, T.; Nagamiya, S.; Saito, N.; Sawada, S.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hong, B.; Kim, B. I.; Kim, C.; Lee, K. B.; Lee, K. S.; Park, S. K.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Blau, D. S.; Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Yushmanov, I. E.] Russian Res Ctr, Kurashov Inst, Moscow 123098, Russia. [Asano, H.; Dairaku, S.; Karatsu, K.; Murakami, T.; Nagae, T.; Nakamura, K. R.; Shoji, K.] Kyoto Univ, Kyoto 6068502, Japan. [Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Younus, I.] Lahore Univ Management Sci, Dept Phys, Lahore, Pakistan. [Garishvili, I.; Glenn, A.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Aidala, C.; Brooks, M. L.; Durham, J. M.; Guo, L.; Jiang, X.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Sondheim, W. E.; van Hecke, H. W.; You, Z.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Roche, G.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63177 Clermont Ferrand, France. [Christiansen, P.; Gustafsson, H. -A.; Haslum, E.; Oskarsson, A.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [D'Orazio, L.; Mignerey, A. C.; Richardson, E.] Univ Maryland, College Pk, MD 20742 USA. [Datta, A.; Kawall, D.; Stepanov, M.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Aidala, C.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Fadem, B.; Motschwiller, S.; Nederlof, A.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Moon, H. J.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Riabov, V.; Samsonov, V.; Taranenko, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst, MEPhI, Moscow 115409, Russia. [Bassalleck, B.; Butsyk, S.; Fields, D. E.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Ta'ani, H.; Bok, J. S.; Dharmawardane, K. V.; Kyle, G. S.; Papavassiliou, V.; Pate, S. F.; Tennant, E.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Bing, X.; Frantz, J. E.; Kotchetkov, D.; Riveli, N.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Awes, T. C.; Cianciolo, V.; Efremenko, Y. V.; Enokizono, A.; Read, K. F.; Silvermyr, D.; Stankus, P. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jouan, D.] Univ Paris 11, CNRS, IN2P3, IPN Orsay, F-91406 Orsay, France. [Baublis, V.; Ivanishchev, D.; Khanzadeev, A.; Komkov, B.; Kotov, D.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Regio, Russia. [Akiba, Y.; Aoki, K.; Aramaki, Y.; Asano, H.; Baumgart, S.; Dairaku, S.; Fukao, Y.; Goto, Y.; Hachiya, T.; Hashimoto, K.; Ichihara, T.; Ikeda, Y.; Karatsu, K.; Kasai, M.; Kurita, K.; Kurosawa, M.; Miyachi, Y.; Miyasaka, S.; Murakami, T.; Murata, J.; Nagamiya, S.; Nakagawa, I.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nihashi, M.; Ouchida, M.; Seidl, R.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Todoroki, T.; Watanabe, Y.; Yamaguchi, Y. L.; Yokkaichi, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bathe, S.; Boyle, K.; Deshpande, A.; Goto, Y.; Ichihara, T.; Kawall, D.; Nakagawa, I.; Nouicer, R.; Okada, K.; Seidl, R.; Taketani, A.; Tanida, K.; Watanabe, Y.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Hashimoto, K.; Kasai, M.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.; Kotov, D.; Riabov, Y.] St Petersburg State Polytech Univ, St Petersburg 195251, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Choi, S.; Tanida, K.] Seoul Natl Univ, Dept Phys & Astron, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Gong, X.; Jia, J.; Lacey, R.; Reynolds, D.; Soumya, M.; Taranenko, A.; Wei, R.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Apadula, N.; Atomssa, E. T.; Bannier, B.; Campbell, S.; Castera, P.; Chen, C. -H.; Citron, Z.; Connors, M.; Deshpande, A.; Dion, A.; Drees, A.; Durham, J. M.; Gal, C.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; Kaneti, S.; Kline, P.; Lee, S. H.; Lewis, B.; Manion, A.; Petti, R.; Proissl, M.; Sahlmueller, B.; Sun, J.; Taneja, S.; Themann, H.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Garishvili, A.; Nattrass, C.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Miyachi, Y.; Miyasaka, S.; Nakano, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Horaguchi, T.; Ikeda, Y.; Inaba, M.; Miake, Y.; Sano, M.; Shimomura, M.; Todoroki, T.; Watanabe, K.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Belmont, R.; Greene, S. V.; Huang, S.; Issah, M.; Love, B.; Maguire, C. F.; Roach, D.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Makek, M.; Milov, A.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Csoergo, T.; Nagy, M. I.; Ster, A.; Sziklai, J.; Vertesi, R.] Hungarian Acad Sci, Wigner Res Ctr Phys, Inst Nucl & Particle Phys, H-1525 Budapest, Hungary. [Bok, J. S.; Kang, J. H.; Kim, H. J.; Kwon, Y.; Lim, S. H.] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Makek, M.] Univ Zagreb, Fac Sci, Dept Phys, HR-10002 Zagreb, Croatia. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM morrison@bnl.gov; jamie.nagle@colorado.edu RI Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sen, Abhisek/J-1157-2016; Gu, Yi/B-6101-2016; Nattrass, Christine/J-6752-2016; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017 OI Hayano, Ryugo/0000-0002-1214-7806; Sen, Abhisek/0000-0003-1192-3938; Gu, Yi/0000-0003-4467-697X; Nattrass, Christine/0000-0002-8768-6468; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315 FU Office of Nuclear Physics in the Office of Science of the Department of Energy (U.S.A); National Science Foundation (U.S.A); Abilene Christian University Research Council (U.S.A); Research Foundation of SUNY (U.S.A); College of Arts and Sciences, Vanderbilt University (U.S.A); Ministry of Education, Culture, Sports, Science, and Technology (Japan); Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (Brazil); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (P. R. China); Croatian Science Foundation (Croatia); Ministry of Science, Education, and Sports (Croatia); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique (France); Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung (Germany); Deutscher Akademischer Austausch Dienst (Germany); Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund, OTKA (Hungary); Karoly Robert University College (Hungary); Department of Atomic Energy (India); Department of Science and Technology (India); Israel Science Foundation (Israel); National Research Foundation of Korea of the Ministry of Science, ICT, and Future Planning (Korea); Physics Department, Lahore University of Management Sciences (Pakistan); Ministry of Education and Science (Russia); Russian Academy of Sciences (Russia); Federal Agency of Atomic Energy (Russia); VR (Sweden); Wallenberg Foundation (Sweden); U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; Hungarian American Enterprise Scholarship Fund; US-Israel Binational Science Foundation; Commissariat a l'Energie Atomique (France) FX We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil), Natural Science Foundation of China (P. R. China), Croatian Science Foundation and Ministry of Science, Education, and Sports (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat a l'Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France), Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA, Karoly Robert University College (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation of Korea of the Ministry of Science, ICT, and Future Planning (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, and the US-Israel Binational Science Foundation. NR 55 TC 11 Z9 11 U1 7 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD APR 28 PY 2015 VL 91 IS 4 AR 044907 DI 10.1103/PhysRevC.91.044907 PG 19 WC Physics, Nuclear SC Physics GA CG8GL UT WOS:000353545200001 ER PT J AU Aartsen, MG Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Anderson, T Arguelles, C Arlen, TC Auffenberg, J Bai, X Barwick, SW Baum, V Bay, R Beatty, JJ Tjus, JB Becker, KH BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bos, F Boser, D Botner, O Brayeur, L Bretz, HP Brown, AM Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Christy, B Clark, K Classen, L Clevermann, F Coenders, S Cowen, DF Silva, AHC Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C Dembinski, H De Ridder, S Desiati, P de Vries, KD de With, M De Young, T Diaz-Velez, JC Dumm, JP Dunkman, M Eagan, R Eberhardt, B Ehrhardt, T Eichmann, B Eisch, J Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Felde, J Filimonov, K Finley, C Fischer-Wasels, T Flis, S Frantzen, K Fuchs, T Gaisser, TK Gaior, R Gallagher, J Gerhardt, L Gier, D Gladstone, L Glueenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Goodman, JA Gora, D Grant, D Gretskov, P Groh, JC Gross, A Ha, C Haack, C Ismail, AH Hallen, P Hallgren, A Halzen, F Hanson, K Hebecker, D Heereman, D Heinen, D Helbing, K Hellauer, R Hellwig, D Hickford, S Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huang, F Huelsnitz, W Hulth, PO Hultqvist, K Ishihara, A Jacobi, E Jacobsen, J Japaridze, GS Jero, K Jurkovic, M Kaminsky, B Kappes, A Karg, T Karle, A Kauer, M Keivani, A Kelley, JL Kheirandish, A Kiryluk, J Klas, J Klein, SR Kohne, JH Kohnen, G Kolanoski, H Koob, A Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Kriesten, A Krings, K Kroll, G Kroll, M Kunnen, J Kurahashi, N Kuwabara, T Labare, M Lanfranchi, JL Larsen, DT Larson, MJ Lesiak-Bzdak, M Leuermann, M Lunemann, J Madsen, J Maggi, G Maruyama, R Mase, K Matis, HS Maunu, R McNally, F Meagher, K Medici, M Meli, A Meures, T Miarecki, S Middell, E Middlemas, E Milke, N Miller, J Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Niederhausen, H Nowicki, SC Nygren, DR Obertacke, A Olivas, A Omairat, A O'Murchadha, A Palczewski, T Paul, L Penek, O Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Putz, J Quinnan, M Radel, L Rameez, M Rawlins, K Redl, P Rees, I Reimann, R Relich, M Resconi, E Rhode, W Richman, M Riedel, B Robertson, S Rodrigues, JP Rongen, M Rott, C Ruhe, T Ruzybayev, B Ryckbosch, D Saba, SM Sander, HG Sandroos, J Santander, M Sarkar, S Schatto, K Scheriau, F Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Sestayo, Y Seunarine, S Shanidze, R Smith, MWE Soldin, D Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stanisha, NA Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Strotjohann, NL Sullivan, GW Taavola, H Taboada, I Tamburro, A Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Tosi, D Tselengidou, M Unger, E Usner, M Vallecorsa, S van Eijndhoven, N Vandenbroucke, J van Santen, J Vanheule, S Vehring, M Voge, M Vraeghe, M Walck, C Wallraff, M Weaver, C Wellons, M Wendt, C Westerhoff, S Whelan, BJ Whitehorn, N Wichary, C Wiebe, K Wiebusch, CH Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Xu, Y Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Ziemann, J Zoll, M AF Aartsen, M. G. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Anderson, T. Arguelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Tjus, J. Becker Becker, K. -H. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bos, F. Boeser, D. Botner, O. Brayeur, L. Bretz, H. -P. Brown, A. M. Buzinsky, N. Casey, J. Casier, M. Cheung, E. Chirkin, D. Christov, A. Christy, B. Clark, K. Classen, L. Clevermann, F. Coenders, S. Cowen, D. F. Silva, A. H. Cruz Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. Dembinski, H. De Ridder, S. Desiati, P. de Vries, K. D. de With, M. De Young, T. Diaz-Velez, J. C. Dumm, J. P. Dunkman, M. Eagan, R. Eberhardt, B. Ehrhardt, T. Eichmann, B. Eisch, J. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Felde, J. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Frantzen, K. Fuchs, T. Gaisser, T. K. Gaior, R. Gallagher, J. Gerhardt, L. Gier, D. Gladstone, L. Glueenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Goodman, J. A. Gora, D. Grant, D. Gretskov, P. Groh, J. C. Gross, A. Ha, C. Haack, C. Ismail, A. Haj Hallen, P. Hallgren, A. Halzen, F. Hanson, K. Hebecker, D. Heereman, D. Heinen, D. Helbing, K. Hellauer, R. Hellwig, D. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huang, F. Huelsnitz, W. Hulth, P. O. Hultqvist, K. Ishihara, A. Jacobi, E. Jacobsen, J. Japaridze, G. S. Jero, K. Jurkovic, M. Kaminsky, B. Kappes, A. Karg, T. Karle, A. Kauer, M. Keivani, A. Kelley, J. L. Kheirandish, A. Kiryluk, J. Klaes, J. Klein, S. R. Kohne, J. -H. Kohnen, G. Kolanoski, H. Koob, A. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Kriesten, A. Krings, K. Kroll, G. Kroll, M. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Lanfranchi, J. L. Larsen, D. T. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Luenemann, J. Madsen, J. Maggi, G. Maruyama, R. Mase, K. Matis, H. S. Maunu, R. McNally, F. Meagher, K. Medici, M. Meli, A. Meures, T. Miarecki, S. Middell, E. Middlemas, E. Milke, N. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Obertacke, A. Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Paul, L. Penek, O. Pepper, J. A. de los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Puetz, J. Quinnan, M. Radel, L. Rameez, M. Rawlins, K. Redl, P. Rees, I. Reimann, R. Relich, M. Resconi, E. Rhode, W. Richman, M. Riedel, B. Robertson, S. Rodrigues, J. P. Rongen, M. Rott, C. Ruhe, T. Ruzybayev, B. Ryckbosch, D. Saba, S. M. Sander, H. -G. Sandroos, J. Santander, M. Sarkar, S. Schatto, K. Scheriau, F. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Sestayo, Y. Seunarine, S. Shanidze, R. Smith, M. W. E. Soldin, D. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stanisha, N. A. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Stroem, R. Strotjohann, N. L. Sullivan, G. W. Taavola, H. Taboada, I. Tamburro, A. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Tosi, D. Tselengidou, M. Unger, E. Usner, M. Vallecorsa, S. van Eijndhoven, N. Vandenbroucke, J. van Santen, J. Vanheule, S. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallraff, M. Weaver, Ch. Wellons, M. Wendt, C. Westerhoff, S. Whelan, B. J. Whitehorn, N. Wichary, C. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Xu, Y. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Ziemann, J. Zoll, M. TI Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube SO PHYSICAL REVIEW LETTERS LA English DT Article ID COSMIC-RAYS; ACCELERATION; ENERGIES; AMANDA; FLUX AB A diffuse flux of astrophysical neutrinos above 100 TeV has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to 35 TeV and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for showerlike events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the (f(e) : f(mu) : f(tau))(circle plus) approximate to (1 : 1 : 1)(circle plus) flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sources. Limits are placed on nonstandard flavor compositions that cannot be produced by averaged neutrino oscillations but could arise in exotic physics scenarios. A maximally tracklike composition of (0 : 1 : 0)(circle plus) is excluded at 3.3 sigma, and a purely showerlike composition of (1 : 0 : 0)(circle plus) is excluded at 2.3 sigma. C1 [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Hellwig, D.; Koob, A.; Kriesten, A.; Leuermann, M.; Paul, L.; Penek, O.; Puetz, J.; Radel, L.; Reimann, R.; Rongen, M.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wichary, C.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Whelan, B. J.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [de With, M.; Fadiran, O.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Bos, F.; Ehrhardt, T.; Eichmann, B.; Fedynitch, A.; Kroll, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Homeier, A.; Schulte, L.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Aguilar, J. A.; Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.; Pinat, E.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; Golup, G.; Kunnen, J.; Maggi, G.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Gaior, R.; Ishihara, A.; Kuwabara, T.; Mase, K.; Relich, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Cheung, E.; Christy, B.; Felde, J.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Koskinen, D. J.; Larson, M. J.; Medici, M.; Sandroos, J.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Clevermann, F.; Frantzen, K.; Fuchs, T.; Kohne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [de Andre, J. P. A. M.; De Young, T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Buzinsky, N.; Grant, D.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Larsen, D. T.; McNally, F.; Middlemas, E.; Morse, R.; Rees, I.; Rodrigues, J. P.; Santander, M.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Ahlers, M.; Arguelles, C.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Eisch, J.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Larsen, D. T.; McNally, F.; Middlemas, E.; Morse, R.; Rees, I.; Rodrigues, J. P.; Santander, M.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Santen, J.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Baum, V.; Boeser, D.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bernhard, A.; Coenders, S.; Gross, A.; Jurkovic, M.; Krings, K.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Kurahashi, N.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xu, Y.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Clark, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Anderson, T.; Arlen, T. C.; Cowen, D. F.; Dunkman, M.; Eagan, R.; Groh, J. C.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Quinnan, M.; Smith, M. W. E.; Stanisha, N. A.; Tesic, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; de los Heros, C. Perez; Stroem, R.; Taavola, H.; Unger, E.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Glueenkamp, T.; Gora, D.; Jacobi, E.; Kaminsky, B.; Karg, T.; Kowalski, M.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. RP Binder, G (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM gabinder@berkeley.edu RI Maruyama, Reina/A-1064-2013; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Tjus, Julia/G-8145-2012; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Wiebusch, Christopher/G-6490-2012; OI Maruyama, Reina/0000-0003-2794-512X; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Wiebusch, Christopher/0000-0002-6418-3008; Ter-Antonyan, Samvel/0000-0002-5788-1369; Perez de los Heros, Carlos/0000-0002-2084-5866; Strotjohann, Nora Linn/0000-0002-4667-6730; Dembinski, Hans/0000-0003-3337-3850; Arguelles Delgado, Carlos/0000-0003-4186-4182 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; WestGrid; Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF); Marsden Fund, New Zealand FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin-Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF) NR 69 TC 50 Z9 50 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 28 PY 2015 VL 114 IS 17 AR 171102 DI 10.1103/PhysRevLett.114.171102 PG 8 WC Physics, Multidisciplinary SC Physics GA CG8HD UT WOS:000353547100004 PM 25978221 ER PT J AU Okada, JT Sit, PHL Watanabe, Y Barbiellini, B Ishikawa, T Wang, YJ Itou, M Sakurai, Y Bansil, A Ishikawa, R Hamaishi, M Paradis, PF Kimura, K Ishikawa, T Nanao, S AF Okada, J. T. Sit, P. H. -L. Watanabe, Y. Barbiellini, B. Ishikawa, T. Wang, Y. J. Itou, M. Sakurai, Y. Bansil, A. Ishikawa, R. Hamaishi, M. Paradis, P. -F. Kimura, K. Ishikawa, T. Nanao, S. TI Visualizing the Mixed Bonding Properties of Liquid Boron with High-Resolution X-Ray Compton Scattering SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOLECULAR-DYNAMICS; WANNIER FUNCTIONS; SUPERCONDUCTIVITY; 1ST-PRINCIPLES AB Bonding characteristics of liquid boron at 2500 K are studied by using high-resolution Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Covalent bond pairs are clearly shown to dominate in liquid boron along with the coexistence of diffuse pairs. Our study reveals the complex bonding pattern of liquid boron and gives insight into the unusual properties of this high-temperature liquid. C1 [Okada, J. T.; Ishikawa, T.; Paradis, P. -F.; Nanao, S.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Tsukuba, Ibaraki 3058505, Japan. [Okada, J. T.] JST, PRESTO, Kawaguchi, Saitama 3320012, Japan. [Okada, J. T.; Ishikawa, T.] Grad Univ Adv Studies SOKENDAI, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Sit, P. H. -L.] City Univ Hong Kong Kowloon, Sch Energy & Environm, Hong Kong, Hong Kong, Peoples R China. [Watanabe, Y.; Ishikawa, R.; Hamaishi, M.; Nanao, S.] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan. [Barbiellini, B.; Wang, Y. J.; Bansil, A.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Itou, M.; Sakurai, Y.] Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan. [Kimura, K.] Univ Tokyo, Dept Adv Mat Sci, Kashiwa, Chiba 2778561, Japan. [Ishikawa, T.] RIKEN SPring 8 Ctr, Sayo, Hyogo 6795148, Japan. [Wang, Y. J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Okada, JT (reprint author), Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Tsukuba, Ibaraki 3058505, Japan. RI Barbiellini, Bernardo/K-3619-2015; OKADA, Junpei/F-4689-2016; Ishikawa, Tetsuya/I-4775-2012; OI Barbiellini, Bernardo/0000-0002-3309-1362; Ishikawa, Tetsuya/0000-0002-6906-9909; SIT, Patrick /0000-0002-7437-4764; Ishikawa, Ryo/0000-0001-5801-0971 FU JST; PRESTO; MEXT of Japan [16206062, 26709057]; U.S. Department of Energy, Office of Science, Basic Energy Sciences at Princeton University [DEFG02-06ER46344]; U.S. Department of Energy, Office of Science, Basic Energy Sciences at Northeastern University [DEFG02-07ER46352, DE-SC0007091 (CMCSN)] FX We acknowledge important discussions with S. Kaprzyk. Compton profile measurements were performed with the approval of JASRI (Proposal No. 2007B1235). The work at JAXA was supported by JST, PRESTO, and Grants-in-Aid for Scientific Research KAKENHI from MEXT of Japan under Contracts No. 16206062 and No. 26709057. The work was supported by the Start-up Grant No. 7200397 at the City University of Hong Kong, the U.S. Department of Energy, Office of Science, Basic Energy Sciences Grants No. DEFG02-06ER46344 at Princeton University and No. DEFG02-07ER46352 and No. DE-SC0007091 (CMCSN) at Northeastern University, and benefited from the allocation of time at NERSC and NU's Advanced Scientific Computation Center. NR 35 TC 4 Z9 4 U1 3 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 28 PY 2015 VL 114 IS 17 AR 177401 DI 10.1103/PhysRevLett.114.177401 PG 5 WC Physics, Multidisciplinary SC Physics GA CG8HD UT WOS:000353547100015 PM 25978262 ER PT J AU Xiao, BP Alberty, L Belomestnykh, S Ben-Zvi, I Calaga, R Cullen, C Capatina, O Hammons, L Li, ZH Marques, C Skaritka, J Verdu-Andres, S Wu, Q AF Xiao, Binping Alberty, Luis Belomestnykh, Sergey Ben-Zvi, Ilan Calaga, Rama Cullen, Chris Capatina, Ofelia Hammons, Lee Li, Zenghai Marques, Carlos Skaritka, John Verdu-Andres, Silvia Wu, Qiong TI Design, prototyping, and testing of a compact superconducting double quarter wave crab cavity SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID RF DEFLECTOR; BEAM; SEPARATOR; CHOPPER; LINAC AB We proposed a novel design for a compact superconducting crab cavity with a double quarter wave (DQWCC) shape. After fabrication and surface treatments, this niobium proof-of-principle cavity was tested cryogenically in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service in the Large Hadron Collider luminosity upgrade. The cavity's electromagnetic properties are well suited for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the required 3.34 MV for a crab cavity in the future High Luminosity LHC. In this paper, we present the design, prototyping, and results from testing the DQWCC. C1 [Xiao, Binping; Belomestnykh, Sergey; Ben-Zvi, Ilan; Cullen, Chris; Hammons, Lee; Marques, Carlos; Skaritka, John; Verdu-Andres, Silvia; Wu, Qiong] Brookhaven Natl Lab, Upton, NY 11973 USA. [Belomestnykh, Sergey; Ben-Zvi, Ilan] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Alberty, Luis; Calaga, Rama; Capatina, Ofelia] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Li, Zenghai] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Xiao, BP (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU U.S. DOE through Brookhaven Science Associates, LLC under U.S. LHC Accelerator Research Program (LARP) [DE-AC02-98CH10886]; EU FP7 HiLumi LHC Grant [284404]; U.S. DOE [DE-AC02-05CH11231] FX The authors would like to acknowledge Niowave, Inc., for fabricating this cavity. The authors thank S. Gerbick, M. P. Kelly, R. C. Murphy, P. N. Ostroumov, and T. C. Reid at ANL for the surface treatments, and BNL's D. Beavis, P. P. Cirnigliaro, C. Degen, H. Dorr, A. Etkin, R. C. Karol, R. Kellermann, E. T. Lessard, G. T. McIntyre, J. Moore, S. P. Pontieri, R. Porqueddu, T. Seda, L. P. Snydstrup, T. Tallerico, R. Than, and J. E. Tuozzolo at BNL for help with the cryogenic setup and tests. The work partly was supported by the U.S. DOE through Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. LHC Accelerator Research Program (LARP), and by the EU FP7 HiLumi LHC Grant Agreement No. 284404. This research used the resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231. NR 56 TC 3 Z9 3 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD APR 28 PY 2015 VL 18 IS 4 AR 041004 DI 10.1103/PhysRevSTAB.18.041004 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA CG8HL UT WOS:000353547900001 ER PT J AU Bernardi, M Vigil-Fowler, D Ong, CS Neaton, JB Louie, SG AF Bernardi, Marco Vigil-Fowler, Derek Ong, Chin Shen Neaton, Jeffrey B. Louie, Steven G. TI Ab initio study of hot electrons in GaAs SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE hot carriers; semiconductors; GaAs; ultrafast; electron-phonon scattering ID LUMINESCENCE SPECTROSCOPY; SCATTERING RATES; QUASI-PARTICLE; SEMICONDUCTORS; TRANSPORT; MODEL; GAS AB Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Gamma, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. C1 [Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B.; Louie, Steven G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bernardi, Marco; Vigil-Fowler, Derek; Neaton, Jeffrey B.; Louie, Steven G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Neaton, Jeffrey B.] Univ Calif Berkeley, Dept Phys, Kavli Inst Energy Nanosci, Berkeley, CA 94720 USA. RP Louie, SG (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM sglouie@berkeley.edu RI Neaton, Jeffrey/F-8578-2015; Foundry, Molecular/G-9968-2014 OI Neaton, Jeffrey/0000-0001-7585-6135; FU Scientific Discovery through Advanced Computing (SciDAC) Program on Excited State Phenomena in Energy Materials - US Department of Energy, Offices of Basic Energy Sciences and Advanced Scientific Computing Research [DE-AC02-05CH11231]; National Science Foundation [DMR 10-1006184]; Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Scientific Discovery through Advanced Computing (SciDAC) Program on Excited State Phenomena in Energy Materials funded by US Department of Energy, Offices of Basic Energy Sciences and Advanced Scientific Computing Research Contract DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory, which provided for algorithm and code developments and simulations, and National Science Foundation Grant DMR 10-1006184, which provided for basic theory and formalism. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, US Department of Energy Contract DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science, US Department of Energy. NR 38 TC 19 Z9 19 U1 2 U2 22 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 28 PY 2015 VL 112 IS 17 BP 5291 EP 5296 DI 10.1073/pnas.1419446112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG8JR UT WOS:000353554000032 PM 25870287 ER PT J AU Gupta, R Taguchi, T Lassalle-Kaiser, B Bominaar, EL Yano, J Hendrich, MP Borovik, AS AF Gupta, Rupal Taguchi, Taketo Lassalle-Kaiser, Benedikt Bominaar, Emile L. Yano, Junko Hendrich, Michael P. Borovik, A. S. TI High-spin Mn-oxo complexes and their relevance to the oxygen-evolving complex within photosystem II SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE metal-oxo complexes; water oxidation; inorganic chemistry; photosynthesis; oxygen-evolving complex ID X-RAY-ABSORPTION; WATER OXIDATION; ELECTRONIC-STRUCTURE; STRUCTURAL MODELS; STATE; SPECTROSCOPY; REACTIVITY; PARAMETERS; CORE; O-17 AB The structural and electronic properties of a series of manganese complexes with terminal oxido ligands are described. The complexes span three different oxidation states at the manganese center (III-V), have similar molecular structures, and contain intramolecular hydrogen-bonding networks surrounding the Mn-oxo unit. Structural studies using X-ray absorption methods indicated that each complex is mononuclear and that oxidation occurs at the manganese centers, which is also supported by electron paramagnetic resonance (EPR) studies. This gives a high-spin Mn-V-oxo complex and not a Mn-IV-oxy radical as the most oxidized species. In addition, the EPR findings demonstrated that the Fermi contact term could experimentally substantiate the oxidation states at the manganese centers and the covalency in the metal-ligand bonding. Oxygen-17-labeled samples were used to determine spin density within the Mn-oxo unit, with the greatest delocalization occurring within the Mn-V-oxo species (0.45 spins on the oxido ligand). The experimental results coupled with density functional theory studies show a large amount of covalency within the Mn-oxo bonds. Finally, these results are examined within the context of possible mechanisms associated with photosynthetic water oxidation; specifically, the possible identity of the proposed high valent Mn-oxo species that is postulated to form during turnover is discussed. C1 [Gupta, Rupal; Bominaar, Emile L.; Hendrich, Michael P.] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. [Taguchi, Taketo; Borovik, A. S.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Lassalle-Kaiser, Benedikt; Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Borovik, AS (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. EM aborovik@uci.edu FU National Institutes of Health [GM50781, GM77387]; Office of Science, Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences, and Biosciences, Department of Energy (DOE) [DE-AC02-05CH11231]; National Science Foundation [CHE1126268] FX Acknowledgments are made to the National Institutes of Health (GM50781 to A.S.B. and GM77387 to M.P.H.) and the Office of Science, Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences, and Biosciences, Department of Energy (DOE) under Contract DE-AC02-05CH11231 (to J.Y.) for financial support. Portions of this research were carried out at Stanford Synchrotron Radiation Lightsource operated by the DOE, OBES. M.P.H. recognizes National Science Foundation CHE1126268 for the purchase of the EPR spectrometer. NR 34 TC 27 Z9 27 U1 8 U2 81 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 28 PY 2015 VL 112 IS 17 BP 5319 EP 5324 DI 10.1073/pnas.1422800112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG8JR UT WOS:000353554000037 PM 25852147 ER PT J AU Conway, JM Perelson, AS AF Conway, Jessica M. Perelson, Alan S. TI Post-treatment control of HIV infection SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE HIV latency; immune exhaustion; HIV viral rebound; mathematical modeling ID CD4(+) T-CELLS; ANTIRETROVIRAL THERAPY; LATENT RESERVOIR; HIV-1-INFECTED PATIENTS; VIRAL REPLICATION; LIFE-SPAN; IN-VIVO; VIREMIA; DYNAMICS; DECAY AB Antiretroviral therapy (ART) for HIV is not a cure. However, recent studies suggest that ART, initiated early during primary infection, may induce post-treatment control (PTC) of HIV infection with HIV RNA maintained at <50 copies per mL. We investigate the hypothesis that ART initiated early during primary infection permits PTC by limiting the size of the latent reservoir, which, if small enough at treatment termination, may allow the adaptive immune response to prevent viral rebound (VR) and control infection. We use a mathematical model of within host HIV dynamics to capture interactions among target cells, productively infected cells, latently infected cells, virus, and cytotoxic T lymphocytes (CTLs). Analysis of our model reveals a range in CTL response strengths where a patient may show either VR or PTC, depending on the size of the latent reservoir at treatment termination. Below this range, patients will always rebound, whereas above this range, patients are predicted to behave like elite controllers. Using data on latent reservoir sizes in patients treated during primary infection, we also predict population-level VR times for noncontrollers consistent with observations. C1 [Conway, Jessica M.] Penn State Univ, Dept Math, University Pk, PA 16802 USA. [Conway, Jessica M.; Perelson, Alan S.] Los Alamos Natl Lab, Theoret Biol & Biophys, Los Alamos, NM 87545 USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys, POB 1663, Los Alamos, NM 87545 USA. EM asp@lanl.gov FU US Department of Energy [DE-AC52-06NA25396]; National Institutes of Health [R01-AI028433, R01-OD011095, UM1-AI100645] FX We thank Rustom Antia, Rob J. de Boer, John Mellors, George Shaw, Jonathan Li, and Laurent Hocqueloux for comments and discussions that helped improve this manuscript. This work was performed under the auspices of US Department of Energy Contract DE-AC52-06NA25396 and supported by National Institutes of Health Grants R01-AI028433, R01-OD011095, and UM1-AI100645. NR 71 TC 21 Z9 21 U1 1 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 28 PY 2015 VL 112 IS 17 BP 5467 EP 5472 DI 10.1073/pnas.1419162112 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG8JR UT WOS:000353554000062 PM 25870266 ER PT J AU Xiong, W Morgan, JA Ungerer, J Wang, B Maness, PC Yu, JP AF Xiong, Wei Morgan, John A. Ungerer, Justin Wang, Bo Maness, Pin-Ching Yu, Jianping TI The plasticity of cyanobacterial metabolism supports direct CO2 conversion to ethylene SO NATURE PLANTS LA English DT Article ID TRICARBOXYLIC-ACID CYCLE; SP PCC 6803; SYNECHOCYSTIS; SUCCINATE; FLUX; PHOTOSYNTHESIS; DEHYDROGENASE; TRANSPORT; PLANTS AB The cyanobacterial tricarboxylic acid (TCA) cycle functions in both in biosynthesis and energy generation. However, it has until recently been generally considered to be incomplete(1,2) with limited flux(3,4), and few attempts have been made to draw carbon from the cycle for biotechnological purposes. We demonstrated that ethylene can be sustainably and efficiently produced from the TCA cycle of the recombinant cyanobacterium Synechocystis 6803 expressing the Pseudomonas ethyleneforming enzyme (Efe)(5). A new strain with a modified ribosome binding site upstream of the efe gene diverts 10% of fixed carbon to ethylene and shows increased photosynthetic activities. The highest specific ethylene production rate reached 718 +/- 19 mu l l(-1) h(-1) per A(730 nm). Experimental and computational analyses based on kinetic C-13-isotope tracer and liquid chromatography coupled with mass spectrometry (LC-MS) demonstrated that the TCA metabolism is activated by the ethylene forming reaction, resulting in a predominantly cyclic architecture. The outcome significantly enhanced flux through the remodelled TCA cycle (37% of total fixed carbon) compared with a complete, but bifurcated and low-flux (13% of total fixed carbon) TCA cycle in the wild type. Global carbon flux is redirected towards the engineered ethylene pathway. The remarkable metabolic network plasticity of this cyanobacterium is manifested by the enhancement of photosynthetic activity and redistribution of carbon flux, enabling efficient ethylene production from the TCA cycle. C1 [Xiong, Wei; Ungerer, Justin; Wang, Bo; Maness, Pin-Ching; Yu, Jianping] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Morgan, John A.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. RP Yu, JP (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM jianping.yu@nrel.gov FU National Renewable Energy Laboratory Director's Fellowship; DOE Energy Efficiency and Renewable Energy (EERE) BioEnergy Technologies Office; EERE Fuel Cell Technologies Office; DOE Office of Science BER grant [DE-SC0008628] FX This work is supported by the National Renewable Energy Laboratory Director's Fellowship (W.X.), and the DOE Energy Efficiency and Renewable Energy (EERE) BioEnergy Technologies Office (J.Y., B.W.), EERE Fuel Cell Technologies Office (P.C.M.), and DOE Office of Science BER grant DE-SC0008628 (J.A.M.). We are grateful to Jamey D. Young of Vanderbilt University for providing software and technical assistance on 13C metabolic modelling, and to Maria Ghirardi, Carrie Eckert and William Michener for helpful discussion or assistance with LC-MS equipment. NR 30 TC 18 Z9 18 U1 8 U2 26 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2055-026X EI 2055-0278 J9 NAT PLANTS JI Nat. Plants PD APR 27 PY 2015 VL 1 IS 5 AR 15053 DI 10.1038/NPLANTS.2015.53 PG 6 WC Plant Sciences SC Plant Sciences GA CV6RW UT WOS:000364399000001 ER PT J AU Parker, DSN Kaiser, RI Bandyopadhyay, B Kostko, O Troy, TP Ahmed, M AF Parker, Dorian S. N. Kaiser, Ralf I. Bandyopadhyay, Biswajit Kostko, Oleg Troy, Tyler P. Ahmed, Musahid TI Unexpected Chemistry from the Reaction of Naphthyl and Acetylene at Combustion-Like Temperatures SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE combustion; gas-phase chemistry; mass spectrometry; polycyclic aromatic hydrocarbons; radicals ID POLYCYCLIC AROMATIC-HYDROCARBONS; VUV PHOTOIONIZATION; SOOT FORMATION; FLAMES; MECHANISM; RADICALS; C6H5 AB The hydrogen abstraction/acetylene addition HACA) mechanism has long been viewed as a key route to aromatic ring growth of polycyclic aromatic hydrocarbons PAHs) in combustion systems. However, doubt has been drawn on the ubiquity of the mechanism by recent electronic structure calculations which predict that the HACA mechanism starting from the naphthyl radical preferentially forms acenaphthylene, thereby blocking cyclization to a third sixmembered ring. Here, by probing the products formed in the reaction of 1-and 2-naphthyl radicals in excess acetylene under combustion-like conditions with the help of photoionization mass spectrometry, we provide experimental evidence that this reaction produces 1-and 2-ethynylnaphthalenes C12H8), acenaphthylene C12H8) and diethynylnaphthalenes C14H8). Importantly, neither phenanthrene nor anthracene C14H10) was found, which indicates that the HACA mechanism does not lead to cyclization of the third aromatic ring as expected but rather undergoes ethynyl substitution reactions instead. C1 [Parker, Dorian S. N.; Kaiser, Ralf I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. [Bandyopadhyay, Biswajit; Kostko, Oleg; Troy, Tyler P.; Ahmed, Musahid] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Kaiser, RI (reprint author), Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. EM ralfk@hawaii.edu; mahmed@lbl.gov RI Kostko, Oleg/B-3822-2009; Ahmed, Musahid/A-8733-2009 OI Kostko, Oleg/0000-0003-2068-4991; FU US Department of Energy, Basic Energy Sciences [DE-FG02-03ER15411]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy through the Chemical Sciences Division [DE-AC02-05CH11231] FX This work was supported by the US Department of Energy, Basic Energy Sciences (DE-FG02-03ER15411) to the University of Hawaii. The authors M.A., B.B., O.K., and T.P.T., and the Advanced Light Source are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the Chemical Sciences Division. NR 30 TC 9 Z9 9 U1 4 U2 30 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD APR 27 PY 2015 VL 54 IS 18 BP 5421 EP 5424 DI 10.1002/anie.201411987 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CH7BW UT WOS:000354191600027 PM 25752687 ER PT J AU Zhang, N Gao, ZQ Liu, YG Li, D AF Zhang, Ning Gao, Zhiqiu Liu, Yangang Li, Dan TI Sensitivity of a global climate model to the critical Richardson number in the boundary layer parameterization SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE boundary layer processes; global climate models ID COMMUNITY ATMOSPHERE MODEL; SIMULATIONS; STABILITY; CONVECTION; FRAMEWORK; GCM AB The critical bulk Richardson number (Ri(cr)) is an important parameter in planetary boundary layer (PBL) parameterization schemes used in many climate models. This paper examines the sensitivity of a global climate model, the Beijing Climate Center atmospheric general circulation model, to Ri(cr). The results show that the simulated global average of PBL height increases nearly linearly with Ri(cr), with a change of about 114m for a change of 0.5 in Ri(cr). The surface sensible (latent) heat flux decreases (increases) as Ri(cr) increases. The influence of Ri(cr) on surface air temperature and specific humidity is not significant. The increasing Ri(cr) may affect the location of the Westerly Belt in the Southern Hemisphere. Further diagnosis reveals that changes in Ri(cr) affect stratiform and convective precipitations differently. Increasing Ri(cr) leads to an increase in the stratiform precipitation but a decrease in the convective precipitation. Significant changes of convective precipitation occur over the Intertropical Convergence Zone, while changes of stratiform precipitation mostly appear over arid land such as North Africa and Middle East. C1 [Zhang, Ning] Nanjing Univ, Inst Climate & Global Change Res, Nanjing 210008, Jiangsu, Peoples R China. [Zhang, Ning] Nanjing Univ, Sch Atmospher Sci, Nanjing 210008, Jiangsu, Peoples R China. [Zhang, Ning] Jiangsu Collaborat Innovat Ctr Climate Change, Nanjing, Jiangsu, Peoples R China. [Gao, Zhiqiu] Chinese Acad Sci, Inst Atmospher Phys, Lab Atmospher Phys & Chem, Beijing, Peoples R China. [Liu, Yangang] Brookhaven Natl Lab, Biol Environm & Climate Sci Dept, Upton, NY 11973 USA. [Li, Dan] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. RP Gao, ZQ (reprint author), Chinese Acad Sci, Inst Atmospher Phys, Lab Atmospher Phys & Chem, Beijing, Peoples R China. EM zgao@mail.iap.ac.cn RI Li, Dan /G-5794-2015; Liu, Yangang/H-6154-2011 FU the National Basic Research Program of China [2011CB952002]; China Meteorological Administration [GYHY201006024]; National Natural Science Foundation of China [41375014]; U.S. Department of Energy's Earth Modeling Program (ESM) via the FASTER project; Atmospheric System Research program FX This paper is supported by the National Basic Research Program of China (2011CB952002), China Meteorological Administration (GYHY201006024), and the National Natural Science Foundation of China (41375014). Yangang Liu is supported by the U.S. Department of Energy's Earth Modeling Program (ESM) via the FASTER project (www.bnl.gov/faster) and Atmospheric System Research program.. The authors are particularly grateful to three anonymous reviewers for their careful review and valuable comments, which led to substantial improvement of this manuscript. The data and code (in FORTRAN language) used in this paper can be obtained from the first author. NR 24 TC 0 Z9 0 U1 4 U2 17 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3310 EP 3328 DI 10.1002/2014JD022015 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100019 ER PT J AU Fan, JW Liu, YC Xu, KM North, K Collis, S Dong, XQ Zhang, GJ Chen, Q Kollias, P Ghan, SJ AF Fan, Jiwen Liu, Yi-Chin Xu, Kuan-Man North, Kirk Collis, Scott Dong, Xiquan Zhang, Guang J. Chen, Qian Kollias, Pavlos Ghan, Steven J. TI Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE cumulus parameterization; scale aware; deep convection; cloud-resolving models; bin and bulk microphysics ID MESOSCALE MODEL MM5; PART I; CUMULUS ENSEMBLES; EXPLICIT SIMULATION; RESOLVING MODELS; SQUALL LINE; MASS FLUX; SENSITIVITY; PRECIPITATION; INTENSITY AB The ultimate goal of this study is to improve the representation of convective transport by cumulus parameterization for mesoscale and climate models. As Part 1 of the study, we perform extensive evaluations of cloud-resolving simulations of a squall line and mesoscale convective complexes in midlatitude continent and tropical regions using the Weather Research and Forecasting model with spectral bin microphysics (SBM) and with two double-moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation and vertical velocity of convective cores than MOR and MY2 and therefore will be used for analysis of scale dependence of eddy transport in Part 2. The common features of the simulations for all convective systems are (1) the model tends to overestimate convection intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed convection intensity well; (2) the model greatly overestimates Z(e) in convective cores, especially for the weak updraft velocity; and (3) the model performs better for midlatitude convective systems than the tropical system. The modeled mass fluxes of the midlatitude systems are not sensitive to microphysics schemes but are very sensitive for the tropical case indicating strong microphysics modification to convection. Cloud microphysical measurements of rain, snow, and graupel in convective cores will be critically important to further elucidate issues within cloud microphysics schemes. C1 [Fan, Jiwen; Liu, Yi-Chin; Kollias, Pavlos; Ghan, Steven J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Liu, Yi-Chin] Air Resources Board, Sacramento, CA USA. [Xu, Kuan-Man] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [North, Kirk] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada. [Collis, Scott] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Dong, Xiquan] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58201 USA. [Zhang, Guang J.] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92103 USA. [Chen, Qian] Nanjing Univ Informat Sci & Technol, China Meteorol Adm, Key Lab Aerosol Cloud Precipitat, Nanjing, Jiangsu, Peoples R China. RP Fan, JW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Jiwen.fan@pnnl.gov RI Fan, Jiwen/E-9138-2011; Ghan, Steven/H-4301-2011; Measurement, Global/C-4698-2015; Xu, Kuan-Man/B-7557-2013; OI Ghan, Steven/0000-0001-8355-8699; Xu, Kuan-Man/0000-0001-7851-2629; Dong, Xiquan/0000-0002-3359-6117; North, Kirk/0000-0002-1938-4046 FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy Office of Advanced Scientific Computing Research; Office of Biological and Environmental Research; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]; Department of Energy, Office of Science, Office of Biological and Environmental Research (BER) [DE-AC02-06CH11357]; ARM Program; NASA Modeling, Analysis and Prediction program; DOE ASR [DE-SC0008468] FX Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. Argonne National Laboratory's (ANL) work was supported by the Department of Energy, Office of Science, Office of Biological and Environmental Research (BER), under contract DE-AC02-06CH11357 as part of the ARM Program. Kuan-Man Xu was supported by NASA Modeling, Analysis and Prediction program. Xiquan Dong was supported by DOE ASR project with award number DE-SC0008468 at University of North Dakota. The modeling data can be obtained by contacting Jiwen Fan (Jiwen.Fan@pnnl.gov). NARR reanalysis data were from the NOAA/OAR/ESRL Colorado, at the website http://www.esrl.noaa.gov/psd/. NCEP FNL Operational Model Global Tropospheric Analyses were obtained by National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce (2000), http://dx.doi.org/10.5065/D6M043C6. CPOL radar data and derived products were provided by Peter May at the Centre for Australian Weather and Climate Research and the Australian Bureau of Meteorology; 3-D multi-Doppler wind field from the MC3E were provided by Kirk North at McGill University, Canada; 3-D dual-Doppler wind field from the TWP-ICE were developed by Scott Collis at Argonne National Laboratory. Aircraft measurement and NEXRAD radar were provide by Xiquan Dong at University of North Dakota; ABRFC precipitation data were download from ARM Data Archive, http://www.archive.arm.gov/armlogin/login.jsp. NR 81 TC 8 Z9 8 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3485 EP 3509 DI 10.1002/2014JD022142 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100028 ER PT J AU Liu, YC Fan, JW Zhang, GJ Xu, KM Ghan, SJ AF Liu, Yi-Chin Fan, Jiwen Zhang, Guang J. Xu, Kuan-Man Ghan, Steven J. TI Improving representation of convective transport for scale-aware parameterization: 2. Analysis of cloud-resolving model simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE cumulus parameterization; scale aware; cloud-resolving model; eddy transport; top-hat approach ID BULK MICROPHYSICS PARAMETERIZATION; SCHUBERT CUMULUS PARAMETERIZATION; PART II; EXPLICIT SIMULATION; ENSEMBLE MODEL; AGGREGATION; STATISTICS; DOWNDRAFTS AB Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the midlatitude continental and the tropical regions are conducted and evaluated, we examine the scale dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and improve the representation of convective transport across all scales by proposing a new formulation that more accurately represents the CRM-calculated eddy flux. CRM results show that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. As for the eddy transport of water vapor, updraft eddy flux is a major contributor to total eddy flux in the lower and middle troposphere. However, downdraft eddy transport can be as large as updraft eddy transport in the lower atmosphere especially at the mature stage of midlatitude continental convection. We show that the single-updraft approach significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. We find that using as few as three updrafts can account for the internal variability of updrafts well. Based on the evaluation with the CRM simulated data, we recommend a simplified eddy transport formulation that considers three updrafts and one downdraft. Such formulation is similar to the conventional one but much more accurately represents CRM-simulated eddy flux across all grid scales. C1 [Liu, Yi-Chin; Fan, Jiwen; Ghan, Steven J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhang, Guang J.] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92103 USA. [Xu, Kuan-Man] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Fan, JW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jiwen.fan@pnnl.gov RI Fan, Jiwen/E-9138-2011; Ghan, Steven/H-4301-2011; Measurement, Global/C-4698-2015; Xu, Kuan-Man/B-7557-2013 OI Ghan, Steven/0000-0001-8355-8699; Xu, Kuan-Man/0000-0001-7851-2629 FU Scientific Discovery through Advanced Computing program - U.S. Department of Energy Office of Advanced Scientific Computing Research; Office of Biological and Environmental Research; DOE by Battelle Memorial Institute [DE-AC06-76RLO 1830]; NASA Modeling, Analysis and Prediction Program FX Support for this work was provided through Scientific Discovery through Advanced Computing program funded by the U.S. Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. Kuan-Man Xu was supported by the NASA Modeling, Analysis and Prediction Program. The authors would like to thank Heng Xiao, Kyo-Sun Lim, and Zhe Feng from PNNL for their valuable discussion. The data used in this study were produced by the Pacific Northwest National Laboratory (PNNL) and are stored on PNNL Olympus. They will be available upon request by contacting the corresponding author. NR 36 TC 7 Z9 7 U1 3 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 27 PY 2015 VL 120 IS 8 BP 3510 EP 3532 DI 10.1002/2014JD022145 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CI5UU UT WOS:000354826100029 ER PT J AU Lou, SS Diz-Munoz, A Weiner, OD Fletcher, DA Theriot, JA AF Lou, Sunny S. Diz-Munoz, Alba Weiner, Orion D. Fletcher, Daniel A. Theriot, Julie A. TI Myosin light chain kinase regulates cell polarization independently of membrane tension or Rho kinase SO JOURNAL OF CELL BIOLOGY LA English DT Article ID MIGRATING CELLS; LEADING-EDGE; ADHESION DYNAMICS; ACTIN DYNAMICS; MOTILE CELLS; PROTRUSION; POLARITY; IIA; SHAPE; ZEBRAFISH AB Cells polarize to a single front and rear to achieve rapid actin-based motility, but the mechanisms preventing the formation of multiple fronts are unclear. We developed embryonic zebrafish keratocytes as a model system for investigating establishment of a single axis. We observed that, although keratocytes from 2 d postfertilization (dpf) embryos resembled canonical fan-shaped keratocytes, keratocytes from 4 dpf embryos often formed multiple protrusions despite unchanged membrane tension. Using genomic, genetic, and pharmacological approaches, we determined that the multiple-protrusion phenotype was primarily due to increased myosin light chain kinase (MLCK) expression. MLCK activity influences cell polarity by increasing myosin accumulation in lamellipodia, which locally decreases protrusion lifetime, limiting lamellipodial size and allowing for multiple protrusions to coexist within the context of membrane tension limiting protrusion globally. In contrast, Rho kinase (ROCK) regulates myosin accumulation at the cell rear and does not determine protrusion size. These results suggest a novel MLCK-specific mechanism for controlling cell polarity via regulation of myosin activity in protrusions. C1 [Lou, Sunny S.] Stanford Univ, Sch Med, Dept Chem & Syst Biol, Stanford, CA 94305 USA. [Theriot, Julie A.] Stanford Univ, Sch Med, Dept Biochem, Stanford, CA 94305 USA. [Theriot, Julie A.] Stanford Univ, Sch Med, Howard Hughes Med Inst, Stanford, CA 94305 USA. [Diz-Munoz, Alba; Fletcher, Daniel A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Diz-Munoz, Alba; Fletcher, Daniel A.] Univ Calif Berkeley, Biophys Program, Berkeley, CA 94720 USA. [Diz-Munoz, Alba; Weiner, Orion D.] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94158 USA. [Diz-Munoz, Alba; Weiner, Orion D.] Univ Calif San Francisco, Dept Biochem, San Francisco, CA 94158 USA. [Fletcher, Daniel A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Theriot, JA (reprint author), Stanford Univ, Sch Med, Dept Biochem, Stanford, CA 94305 USA. EM theriot@stanford.edu FU National Center for Research Resources [1S10OD01227601]; Stanford Medical Scientist Training Program National Institutes of Health (NIH) [T32GM007365]; Damon Runyon Cancer Research Foundation; NIH [GM084040, GM074751]; Howard Hughes Medical Institute FX RNA sequencing was performed at the Stanford Functional Genomics Facility Use of the OMX 3D SIM microscope was provided through the Stanford Cell Sciences Imaging Facility and partially funded by award no. 1S10OD01227601 from the National Center for Research Resources. This work was supported by the Stanford Medical Scientist Training Program National Institutes of Health (NIH) T32GM007365 (to S.S. Lou), the Damon Runyon Cancer Research Foundation (to A. Diz-Munoz), NIH GM084040 (to O.D. Weiner), NIH GM074751 (to D.A Fletcher), and the Howard Hughes Medical Institute (to J.A. Theriot) NR 57 TC 10 Z9 10 U1 2 U2 11 PU ROCKEFELLER UNIV PRESS PI NEW YORK PA 950 THIRD AVE, 2ND FLR, NEW YORK, NY 10022 USA SN 0021-9525 EI 1540-8140 J9 J CELL BIOL JI J. Cell Biol. PD APR 27 PY 2015 VL 209 IS 2 BP 275 EP 288 DI 10.1083/jcb.201409001 PG 14 WC Cell Biology SC Cell Biology GA CH4OM UT WOS:000354012800012 PM 25918227 ER PT J AU Fill, JM Waldron, JL Welch, SM Gibbons, JW Bennett, SH Mousseau, TA AF Fill, Jennifer M. Waldron, Jayme L. Welch, Shane M. Gibbons, J. Whitfield Bennett, Stephen H. Mousseau, Timothy A. TI Using Multiscale Spatial Models to Assess Potential Surrogate Habitat for an Imperiled Reptile SO PLOS ONE LA English DT Article ID HOME-RANGE SIZE; BANDWIDTH SELECTION; MOVEMENT PATTERNS; FOREST STRUCTURE; RATTLESNAKES; SCALE; VULNERABILITY; SPECIFICITY; HIBERNACULA; ATTRIBUTES AB In evaluating conservation and management options for species, practitioners might consider surrogate habitats at multiple scales when estimating available habitat or modeling species' potential distributions based on suitable habitats, especially when native environments are rare. Species' dependence on surrogates likely increases as optimal habitat is degraded and lost due to anthropogenic landscape change, and thus surrogate habitats may be vital for an imperiled species' survival in highly modified landscapes. We used spatial habitat models to examine a potential surrogate habitat for an imperiled ambush predator (eastern diamondback rattlesnake, Crotalus adamanteus; EDB) at two scales. The EDB is an apex predator indigenous to imperiled longleaf pine ecosystems (Pinus palustris) of the southeastern United States. Loss of native open-canopy pine savannas and woodlands has been suggested as the principal cause of the species' extensive decline. We examined EDB habitat selection in the Coastal Plain tidewater region to evaluate the role of marsh as a potential surrogate habitat and to further quantify the species' habitat requirements at two scales: home range (HR) and within the home range (WHR). We studied EDBs using radiotelemetry and employed an information-theoretic approach and logistic regression to model habitat selection as use vs. availability. We failed to detect a positive association with marsh as a surrogate habitat at the HR scale; rather, EDBs exhibited significantly negative associations with all landscape patches except pine savanna. Within home range selection was characterized by a negative association with forest and a positive association with ground cover, which suggests that EDBs may use surrogate habitats of similar structure, including marsh, within their home ranges. While our HR analysis did not support tidal marsh as a surrogate habitat, marsh may still provide resources for EDBs at smaller scales. C1 [Fill, Jennifer M.; Mousseau, Timothy A.] Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA. [Waldron, Jayme L.; Welch, Shane M.] Marshall Univ, Dept Biol Sci, Huntington, WV USA. [Gibbons, J. Whitfield] Savannah River Ecol Lab, Aiken, SC USA. [Bennett, Stephen H.] South Carolina Dept Nat Resources, Columbia, SC USA. RP Fill, JM (reprint author), Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA. EM jenna999@gmail.com FU South Carolina Department of Natural Resources; National Science Foundation [NSF DGE-0929297]; University of South Carolina (sc.edu); Snake Advisory Group (snaketag.org); Riverbanks Zoo FX Funding for this project was provided by the South Carolina Department of Natural Resources (www.dnr.sc.gov) to SHB. The National Science Foundation (www.nsf.gov) awarded NSF DGE-0929297 to JMF, who also received the Presidential Fellowship from the University of South Carolina (sc.edu). The Snake Advisory Group (snaketag.org) awarded the Dana Payne Grant to JMF, and Riverbanks Zoo provided assistance from their Conservation Support Fund to JLW (www.riverbanks.org). NR 65 TC 0 Z9 0 U1 3 U2 18 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 27 PY 2015 VL 10 IS 4 AR e0123307 DI 10.1371/journal.pone.0123307 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CG9SB UT WOS:000353659100020 PM 25915926 ER PT J AU Das, S Demarteau, M Roelofs, A AF Das, Saptarshi Demarteau, Marcellinus Roelofs, Andreas TI Nb-doped single crystalline MoS2 field effect transistor SO APPLIED PHYSICS LETTERS LA English DT Article ID MULTILAYER MOS2; CONTACTS; METAL; FETS AB We report on the demonstration of a p-type, single crystalline, few layer MoS2 field effect transistor (FET) using Niobium (Nb) as the dopant. The doping concentration was extracted and determined to be similar to 3 x 10(19)/cm(3). We also report on bilayer Nb-doped MoS2 FETs with ambipolar conduction. We found that the current ON-OFF ratio of the Nb-doped MoS2 FETs changes significantly as a function of the flake thickness. We attribute this experimental observation to bulk-type electrostatic effect in ultra-thin MoS2 crystals. We provide detailed analytical modeling in support of our claims. Finally, we show that in the presence of heavy doping, even ultra-thin 2D-semiconductors cannot be fully depleted and may behave as a 3D material when used in transistor geometry. Our findings provide important insights into the doping constraints of 2D materials, in general. (C) 2015 AIP Publishing LLC. C1 [Das, Saptarshi; Roelofs, Andreas] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Das, Saptarshi; Demarteau, Marcellinus] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Das, S (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM das.sapt@gmail.com RI Roelofs, Andreas/H-1742-2011 OI Roelofs, Andreas/0000-0003-4141-3082 FU DOE Office of High Energy Physics under DoE [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The work of Saptarshi Das was supported by the DOE Office of High Energy Physics under DoE Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 21 TC 11 Z9 11 U1 10 U2 92 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2015 VL 106 IS 17 AR 173506 DI 10.1063/1.4919565 PG 5 WC Physics, Applied SC Physics GA CH2ES UT WOS:000353839100062 ER PT J AU Lee, D Seo, J Zhu, X Cole, JM Su, HB AF Lee, Dongwook Seo, Jiwon Zhu, Xi Cole, Jacqueline M. Su, Haibin TI Magnetism in graphene oxide induced by epoxy groups SO APPLIED PHYSICS LETTERS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; GRAPHITE OXIDE; PROTON IRRADIATION; ZIGZAG EDGES; BASIS-SET; FERROMAGNETISM; SUPERCAPACITOR; NANORIBBONS AB We have engineered magnetism in graphene oxide. Our approach transforms graphene into a magnetic insulator while maintaining graphene's structure. Fourier transform infrared spectroscopy spectra reveal that graphene oxide has various chemical groups (including epoxy, ketone, hydroxyl, and C-O groups) on its surface. Destroying the epoxy group with heat treatment or chemical treatment diminishes magnetism in the material. Local density approximation calculation results well reproduce the magnetic moments obtained from experiments, and these results indicate that the unpaired spin induced by the presence of epoxy groups is the origin of the magnetism. The calculation results also explain the magnetic properties, which are generated by the interaction between separated magnetic regions and domains. Our results demonstrate tunable magnetism in graphene oxide based on controlling the epoxy group with heat or chemical treatment. (C) 2015 AIP Publishing LLC. C1 [Lee, Dongwook; Cole, Jacqueline M.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Lee, Dongwook] Nanyang Technol Univ, Div Phys & Appl Phys, Singapore 637371, Singapore. [Seo, Jiwon] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Seo, Jiwon] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Seo, Jiwon] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea. [Zhu, Xi; Su, Haibin] Nanyang Technol Univ, Sch Mat Sci & Engn, Div Mat Sci, Singapore 639798, Singapore. [Cole, Jacqueline M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Lee, D (reprint author), Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. EM dongwookleedl324@gmail.com; jiwonseo@yonsei.ac.kr RI Cole, Jacqueline/C-5991-2008; Zhu, Xi/M-4512-2013; OI Su, Haibin/0000-0001-9760-6567 FU National Research Foundation of President Post-doctoral fellowship Program [NRF-2013R1A6A3A060443]; Ministry of Education, Singapore, through a Tier-2 grant [2013-T2-2-049]; Fulbright commission; DOE office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the National Research Foundation of President Post-doctoral fellowship Program (NRF-2013R1A6A3A060443). The work at Nanyang Technological University was supported by Ministry of Education, Singapore, through a Tier-2 grant (2013-T2-2-049). J.M.C. thanks the Fulbright commission for a UK-U.S. Fulbright Scholar Award hosted by Argonne National Laboratory where work done was supported by DOE office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 42 TC 7 Z9 7 U1 5 U2 64 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2015 VL 106 IS 17 AR 172402 DI 10.1063/1.4919529 PG 5 WC Physics, Applied SC Physics GA CH2ES UT WOS:000353839100033 ER PT J AU Saleh, AA Brown, DW Pereloma, EV Clausen, B Davies, CHJ Tome, CN Gazder, AA AF Saleh, Ahmed A. Brown, Donald W. Pereloma, Elena V. Clausen, Bjorn Davies, Christopher H. J. Tome, Carlos N. Gazder, Azdiar A. TI An in-situ neutron diffraction study of a multi-phase transformation and twinning-induced plasticity steel during cyclic loading SO APPLIED PHYSICS LETTERS LA English DT Article ID MARTENSITIC-TRANSFORMATION; ALPHA'-MARTENSITE; TRIP/TWIP STEELS; ORIENTATION; STRESS; DEFORMATION; CRYSTALS AB In-situ neutron diffraction during cyclic tension-compression loading (similar to+3.5% to -2.8%) of a 17Mn-3Al-2Si-1Ni-0.06C steel that exhibits concurrent transformation and twinning -induced plasticity effects indicated a significant contribution of intragranular back stresses to the observed Bauschinger effect. Rietveld analysis revealed a higher rate of martensitic transformation during tension compared to compression. Throughout cycling, alpha'-martensite exhibited the highest phase strains such that it bears an increasing portion of the macroscopic load as its weight fraction evolves. On the other hand, the epsilon-martensite strain remained compressive as it accommodated most of the internal strains caused by the shape misfit associated with the gamma ->epsilon and/or epsilon ->alpha' transformations. (C) 2015 AIP Publishing LLC. C1 [Saleh, Ahmed A.; Pereloma, Elena V.] Univ Wollongong, Sch Mech Mat & Mech Engn, Wollongong, NSW 2522, Australia. [Brown, Donald W.; Clausen, Bjorn; Tome, Carlos N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pereloma, Elena V.; Gazder, Azdiar A.] Univ Wollongong, Electron Microscopy Ctr, Wollongong, NSW 2500, Australia. [Davies, Christopher H. J.] Monash Univ, Dept Mech & Aerosp Engn, Clayton, Vic 3800, Australia. RP Saleh, AA (reprint author), Univ Wollongong, Sch Mech Mat & Mech Engn, Wollongong, NSW 2522, Australia. EM asaleh@uow.edu.au RI Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X FU Australian Research Council-Discovery Project [DP130101882]; Commonwealth of Australia under the International Science Linkages program; U.S. DOE [FWP 06SCPE401, W-7405-ENG-36, DE-AC52-06NA25396] FX This work was funded by the Australian Research Council-Discovery Project (No. DP130101882). Professor D. B. Santos (UFMG, Brazil) is thanked for the as-cast steel. The access to major research facilities program is supported by the Commonwealth of Australia under the International Science Linkages program. C.N.T. was fully supported by the U.S. DOE Project No. FWP 06SCPE401 under U.S. DOE Contract No. W-7405-ENG-36. This work has benefited from the use of LANSCE which is funded by the U.S. DOE. LANL is operated by Los Alamos National Security LLC under U.S. DOE Contract No. DE-AC52-06NA25396. NR 23 TC 2 Z9 2 U1 6 U2 30 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2015 VL 106 IS 17 AR 171911 DI 10.1063/1.4919455 PG 5 WC Physics, Applied SC Physics GA CH2ES UT WOS:000353839100026 ER PT J AU Liu, XJ Mulkerin, B He, LY Hu, H AF Liu, Xia-Ji Mulkerin, Brendan He, Lianyi Hu, Hui TI Equation of state and contact of a strongly interacting Bose gas in the normal state SO PHYSICAL REVIEW A LA English DT Article ID CORRELATED FERMI GAS; SYSTEM; SUPERCONDUCTIVITY; TEMPERATURES; CROSSOVER; BEHAVIOR; BCS AB We theoretically investigate the equation of state and Tan's contact of a nondegenerate three-dimensional Bose gas near a broad Feshbach resonance, within the framework of large-N expansion. Our results agree with the path-integral Monte Carlo simulations in the weak-coupling limit and recover the second-order virial expansion predictions at strong interactions and high temperatures. At resonance, we find that the chemical potential and energy are significantly enhanced by the strong repulsion, while the entropy does not change significantly. With increasing temperature, the two-body contact initially increases and then decreases like T-1 at large temperature, and therefore exhibits a peak structure at about 4T(c0), where T-c0 is the Bose-Einstein condensation temperature of an ideal, noninteracting Bose gas. These results may be experimentally examined with a nondegenerate unitary Bose gas, where the three-body recombination rate is substantially reduced. In particular, the nonmonotonic temperature dependence of the two-body contact could be inferred from the momentum distribution measurement. C1 [Liu, Xia-Ji; Mulkerin, Brendan; Hu, Hui] Swinburne Univ Technol, Ctr Quantum & Opt Sci, Melbourne, Vic 3122, Australia. [He, Lianyi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Liu, XJ (reprint author), Swinburne Univ Technol, Ctr Quantum & Opt Sci, Melbourne, Vic 3122, Australia. RI He, Lianyi/G-5110-2010; HU, Hui/C-6878-2009; Liu, Xia-Ji/C-6888-2009 OI He, Lianyi/0000-0002-9965-0446; HU, Hui/0000-0002-1541-1756; Liu, Xia-Ji/0000-0003-4158-5474 FU ARC [FT140100003, DP140100637, FT130100815, DP140103231]; National Key Basic Research Special Foundation of China (NKBRSFC-China) [2011CB921502]; US Department of Energy Nuclear Physics Office [DOE-AC02-05CH11231] FX X.-J.L. and H.H. acknowledge the support from the ARC Discovery Projects (Grants No. FT140100003, No. DP140100637, No. FT130100815, and No. DP140103231) and the National Key Basic Research Special Foundation of China (NKBRSFC-China) (Grant No. 2011CB921502). L.H. was supported by the US Department of Energy Nuclear Physics Office (Contract No. DOE-AC02-05CH11231). NR 67 TC 5 Z9 5 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD APR 27 PY 2015 VL 91 IS 4 AR 043631 DI 10.1103/PhysRevA.91.043631 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA CG7BG UT WOS:000353456500011 ER PT J AU Benseman, TM Koshelev, AE Vlasko-Vlasov, V Hao, Y Kwok, WK Welp, U Keiser, C Gross, B Lange, M Kolle, D Kleiner, R Minami, H Watanabe, C Kadowaki, K AF Benseman, T. M. Koshelev, A. E. Vlasko-Vlasov, V. Hao, Y. Kwok, W. -K. Welp, U. Keiser, C. Gross, B. Lange, M. Koelle, D. Kleiner, R. Minami, H. Watanabe, C. Kadowaki, K. TI Current Filamentation in Large Bi2Sr2CaCu2O8+delta Mesa Devices Observed via Luminescent and Scanning Laser Thermal Microscopy SO Physical Review Applied LA English DT Article ID THZ RADIATION; RESOLUTION; STABILITY; SUPERCONDUCTORS; CONDUCTIVITY; SYSTEM; FILMS AB We study the self-heating of a large stack of Bi2Sr2CaCu2O8+delta intrinsic Josephson junctions, of a configuration designed for terahertz generation. We find good qualitative agreement between direct thermoluminescent measurements of the device surface temperature and low-temperature scanning laser microscopy images. In particular, the two techniques both reveal a mode of thermal instability through the asymmetric nucleation of a small hot spot near a corner or edge of the sample. This behavior conforms with a theoretical stability analysis, and the radius of the hot spot is in excellent agreement with theoretical predictions, as is its growth with increasing bias current and bath temperature. Narrow hot spots may offer a possible means of enhancing the terahertz emission power from this type of device. C1 [Benseman, T. M.; Koshelev, A. E.; Vlasko-Vlasov, V.; Hao, Y.; Kwok, W. -K.; Welp, U.] Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. [Benseman, T. M.; Hao, Y.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Keiser, C.] Univ No Iowa, Cedar Falls, IA 50614 USA. [Gross, B.; Lange, M.; Koelle, D.; Kleiner, R.] Univ Tubingen, Inst Phys, D-72076 Tubingen, Germany. [Gross, B.; Lange, M.; Koelle, D.; Kleiner, R.] Univ Tubingen, Ctr Collect Quantum Phenomena LISA, D-72076 Tubingen, Germany. [Minami, H.; Watanabe, C.; Kadowaki, K.] Univ Tsukuba, Inst Mat Sci, Tsukuba, Ibaraki 3058753, Japan. RP Benseman, TM (reprint author), Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. EM welp@anl.gov RI Koelle, Dieter/E-5111-2011; Koshelev, Alexei/K-3971-2013 OI Koshelev, Alexei/0000-0002-1167-5906 FU Department of Energy, Office of Basic Energy Sciences [DEAC02-06CH11357]; Deutsche Forschungsgemeinschaft [KL 930/13-1]; Japanese Society for the Promotion of Science FX This research is supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DEAC02-06CH11357, by the Deutsche Forschungsgemeinschaft (Project KL 930/13-1), and by the Japanese Society for the Promotion of Science. NR 45 TC 3 Z9 3 U1 4 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2331-7019 J9 PHYS REV APPL JI Phys. Rev. Appl. PD APR 27 PY 2015 VL 3 IS 4 AR 044017 DI 10.1103/PhysRevApplied.3.044017 PG 7 WC Physics, Applied SC Physics GA CG7AX UT WOS:000353455500001 ER PT J AU Marincel, DM Zhang, HR Britson, J Belianinov, A Jesse, S Kalinin, SV Chen, LQ Rainforth, WM Reaney, IM Randall, CA Trolier-McKinstry, S AF Marincel, D. M. Zhang, H. R. Britson, J. Belianinov, A. Jesse, S. Kalinin, S. V. Chen, L. Q. Rainforth, W. M. Reaney, I. M. Randall, C. A. Trolier-McKinstry, S. TI Domain pinning near a single-grain boundary in tetragonal and rhombohedral lead zirconate titanate films SO PHYSICAL REVIEW B LA English DT Article ID BARIUM-TITANATE; THIN-FILMS; SWITCHING DYNAMICS; X-RAY; CERAMICS; EVOLUTION; SIZE; FERROELECTRICS; ORIENTATION; SIMULATION AB The interaction of grain boundaries with ferroelectric domain walls strongly influences the extrinsic contribution to piezoelectric activity in PbZr1-x, TixO3 (PZT), ubiquitous in modern transducers and actuators. However, the fundamental understanding of these phenomena has been limited by complex mechanisms originating from the interplay of atomic-level domain wall pinning, collective domain wall dynamics, and emergent mesoscopic behavior. This contribution utilizes engineered grain boundaries created by depositing epitaxial PZT films with various Zr:Ti ratios onto 24 degrees tilt SrTiO3 bicrystals. The nonlinear piezoelectric response and surface domain structure across the boundary are investigated using piezoresponse force microscopy while the cross-sectional domain structure is studied using transmission electron microscopy. The grain boundary reduces domain wall motion over a width of 800 +/- 70 nm for PZT 45:55 and 450 +/- 30 nm for PZT 52:48. Phase field modeling provides an understanding of the elastic and electric fields associated with the grain boundary and local domain configurations. This study demonstrates that complex mesoscopic behaviors can be explored to complement atomic-level pictures of the material system. C1 [Marincel, D. M.; Britson, J.; Chen, L. Q.; Randall, C. A.; Trolier-McKinstry, S.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Marincel, D. M.; Britson, J.; Chen, L. Q.; Randall, C. A.; Trolier-McKinstry, S.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Zhang, H. R.; Rainforth, W. M.; Reaney, I. M.] Univ Sheffield, Dept Mat Sci & Engn, Sheffield S1 3JD, S Yorkshire, England. [Belianinov, A.; Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Trolier-McKinstry, S (reprint author), N-227 Millennium Sci Complex, University Pk, PA 16802 USA. EM stmckinstry@psu.edu RI Zhang, Huairuo/M-9428-2014; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; OI Zhang, Huairuo/0000-0002-1984-1200; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Trolier-McKinstry, Susan/0000-0002-7267-9281; Rainforth, William/0000-0003-3898-0318; Belianinov, Alex/0000-0002-3975-4112 FU National Science Foundation [DMR-1005771, OCI-0821527]; Engineering and Physical Sciences Research Council [EP/I038934/1]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy, Office of Basic Energy Sciences, Division ofMaterials Sciences and Engineering [FG02-07ER46417] FX Support for this work was provided in part by the National Science Foundation Grant No. DMR-1005771 (D.M. and S.T.M.). H.R.Z., I.R., and W.M.R. would like to acknowledge funding from the Engineering and Physical Sciences Research Council Grant No. EP/I038934/1. Band excitation piezoresponse force microscopy was conducted at the Center for Nanophase Materials Sciences under user proposal CNMS2011-022, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The theoretical component of this work at the Pennsylvania State University was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division ofMaterials Sciences and Engineering under Award No. FG02-07ER46417 ( J.B. and L.Q.C.). Calculations at the Pennsylvania State University were performed on the Cyberstar Linux Cluster funded by the National Science Foundation through Grant No. OCI-0821527. NR 57 TC 3 Z9 3 U1 4 U2 57 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 27 PY 2015 VL 91 IS 13 AR 134113 DI 10.1103/PhysRevB.91.134113 PG 12 WC Physics, Condensed Matter SC Physics GA CG7BQ UT WOS:000353457500002 ER PT J AU Parshall, D Pintschovius, L Niedziela, JL Castellan, JP Lamago, D Mittal, R Wolf, T Reznik, D AF Parshall, D. Pintschovius, L. Niedziela, J. L. Castellan, J. -P. Lamago, D. Mittal, R. Wolf, Th. Reznik, D. TI Close correlation between magnetic properties and the soft phonon mode of the structural transition in BaFe2As2 and SrFe2As2 SO PHYSICAL REVIEW B LA English DT Article ID PNICTIDE SUPERCONDUCTORS; IRON; ANISOTROPY; ORDER AB Parent compounds of Fe-based superconductors undergo a structural phase transition from a tetragonal to an orthorhombic structure. We investigated the temperature dependence of the frequencies of TA phonons that extrapolate to the shear vibrational mode at the zone center, which corresponds to the orthorhombic deformation of the crystal structure at low temperatures in BaFe2As2 and SrFe2As2. We found that acoustic phonons at small wave vectors soften gradually towards the transition from high temperatures, tracking the increase of the size of slowly fluctuating magnetic domains. On cooling below the transition to base temperature the phonons harden, following the square of the magnetic moment (which we find is proportional to the anisotropy gap). Our results provide evidence for close correlation between magnetic and phonon properties in Fe-based superconductors. C1 [Parshall, D.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Pintschovius, L.; Castellan, J. -P.; Lamago, D.; Wolf, Th.] Karlsruhe Inst Technol, Inst Festkorperphys, D-76021 Karlsruhe, Germany. [Niedziela, J. L.] Oak Ridge Natl Lab, Instrument & Source Div, Oak Ridge, TN 37831 USA. [Castellan, J. -P.] CEA Saclay, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France. [Mittal, R.] Bhabha Atom Res Ctr, Div Solid State Phys, Mumbai 400085, Maharashtra, India. [Reznik, D.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Parshall, D (reprint author), NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM parshall@nist.gov FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy, Office of Basic Energy Sciences, Office of Science [DE-SC0006939] FX The research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. D.P. and D.R. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Office of Science, under Contract No. DE-SC0006939. The authors thank A. Alatas for valuable discussions. NR 27 TC 6 Z9 6 U1 2 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 27 PY 2015 VL 91 IS 13 AR 134426 DI 10.1103/PhysRevB.91.134426 PG 6 WC Physics, Condensed Matter SC Physics GA CG7BQ UT WOS:000353457500004 ER PT J AU Vasseur, R Parameswaran, SA Moore, JE AF Vasseur, R. Parameswaran, S. A. Moore, J. E. TI Quantum revivals and many-body localization SO PHYSICAL REVIEW B LA English DT Article ID ANDERSON LOCALIZATION; STATISTICAL-MECHANICS; THERMALIZATION; SYSTEM; TRANSPORT; MODEL AB We show that the magnetization of a single "qubit" spin weakly coupled to an otherwise isolated disordered spin chain exhibits periodic revivals in the localized regime, and retains an imprint of its initial magnetization at infinite time. We demonstrate that the revival rate is strongly suppressed upon adding interactions after a time scale corresponding to the onset of the dephasing that distinguishes many-body localized phases from Anderson insulators. In contrast, the ergodic phase acts as a bath for the qubit, with no revivals visible on the time scales studied. The suppression of quantum revivals of local observables provides a quantitative, experimentally observable alternative to entanglement growth as a measure of the "nonergodic but dephasing" nature of many-body localized systems. C1 [Vasseur, R.; Moore, J. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Vasseur, R.; Moore, J. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Parameswaran, S. A.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Vasseur, R (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU Simons Foundation; UC Irvine startup funds; Quantum Materials program of LBNL; NSF [DMR-1206515] FX We thank E. Altman, B. Bauer, E. Demler, V. Oganesyan, A. C. Potter, R. Vosk, M. Zaletel, and especially J. Bardarson, S. Gopalakrishnan, and R. Nandkishore for insightful discussions and comments on the manuscript, and Mandy Muller for assistance preparing the figures. We acknowledge support from the Simons Foundation (S.A.P. and J.E.M.), UC Irvine startup funds (S.A.P.), the Quantum Materials program of LBNL (R.V.) and NSF Grant No. DMR-1206515 (J.E.M.). NR 57 TC 33 Z9 33 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 27 PY 2015 VL 91 IS 14 AR 140202 DI 10.1103/PhysRevB.91.140202 PG 5 WC Physics, Condensed Matter SC Physics GA CG7BV UT WOS:000353458100001 ER PT J AU Hinohara, N Kortelainen, M Nazarewicz, W Olsen, E AF Hinohara, Nobuo Kortelainen, Markus Nazarewicz, Witold Olsen, Erik TI Complex-energy approach to sum rules within nuclear density functional theory SO PHYSICAL REVIEW C LA English DT Article ID RANDOM-PHASE-APPROXIMATION; GIANT-RESONANCES; COLLECTIVE EXCITATIONS; SKYRMES INTERACTION; LINEAR-RESPONSE; MEAN-FIELD; PARAMETRIZATION; TEMPERATURE; STATES; ZERO AB Background: The linear response of the nucleus to an external field contains unique information about the effective interaction, the correlations governing the behavior of the many-body system, and the properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or the nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. Purpose: To establish an efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random-phase approximation (QRPA). Methods: To compute sum rules, we carry out contour integration of the response function in the complex-energy plane. We benchmark our results against the conventional matrix formulation of the QRPA theory, the Thouless theorem for the energy-weighted sum rule, and the dielectric theorem for the inverse-energy-weighted sum rule. Results: We derive the sum-rule expressions from the contour integration of the complex-energy FAM. We demonstrate that calculated sum-rule values agree with those obtained from the matrix formulation of the QRPA. We also discuss the applicability of both the Thouless theorem about the energy-weighted sum rule and the dielectric theorem for the inverse-energy-weighted sum rule to nuclear density functional theory in cases when the EDF is not based on a Hamiltonian. Conclusions: The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. The FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and the external field cannot be used. C1 [Hinohara, Nobuo] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. [Hinohara, Nobuo] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Hinohara, Nobuo] Joint Inst Nucl Phys & Applicat, Oak Ridge, TN 37831 USA. [Kortelainen, Markus] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Kortelainen, Markus] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland. [Nazarewicz, Witold] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Nazarewicz, Witold] Michigan State Univ, NSCL FRIB Lab, E Lansing, MI 48824 USA. [Nazarewicz, Witold] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Nazarewicz, Witold] Univ Warsaw, Fac Phys, Inst Theoret Phys, PL-02093 Warsaw, Poland. [Olsen, Erik] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Hinohara, N (reprint author), Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. OI Hinohara, Nobuo/0000-0001-9562-0189 FU US Department of Energy, Office of Science, Office of Nuclear Physics [DE-FG02-96ER40963, DE-SC0008511]; NNSA's Stewardship Science Academic Alliances Program [DE-NA0001820;]; Academy of Finland under the Centre of Excellence Programme (Nuclear and Accelerator Based Physics Programme at JYFL); FIDIPRO Programme FX Useful discussions with J. Dobaczewski and T. Nakatsukasa are gratefully acknowledged. This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under Awards No. DE-FG02-96ER40963 (University of Tennessee) and No. DE-SC0008511 (NUCLEI SciDAC Collaboration); by the NNSA's Stewardship Science Academic Alliances Program under Award No. DE-NA0001820; by the Academy of Finland under the Centre of Excellence Programme 2012-2017 (Nuclear and Accelerator Based Physics Programme at JYFL); and the FIDIPRO Programme. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) Program. A part of the calculation was performed with the resources of the High Performance Computing Center, Institute for Cyber-Enabled Research, Michigan State University. NR 69 TC 8 Z9 8 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD APR 27 PY 2015 VL 91 IS 4 AR 044323 DI 10.1103/PhysRevC.91.044323 PG 10 WC Physics, Nuclear SC Physics GA CG7CV UT WOS:000353460700001 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Agnew, JP Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Borysova, M Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Das, A Davies, G de Jong, SJ De la Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, A Evdokimov, VN Faure, A Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garbincius, PH Garcia-Bellido, A Garcia-Gonzalez, JA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Gogota, O Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De la Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Holzbauer, JL Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kaur, M Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Madar, R Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Savitskyi, M Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Simak, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Agnew, J. P. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Borysova, M. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Das, A. Davies, G. de Jong, S. J. De la Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, A. Evdokimov, V. N. Faure, A. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garbincius, P. H. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Gogota, O. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De la Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Holzbauer, J. L. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kaur, M. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Savitskyi, M. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Measurement of the forward-backward asymmetry in Lambda(0)(b) and (Lambda)over-bar(b)(0) baryon production in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID CROSS-SECTION; DETECTOR AB We measure the forward-backward asymmetry in the production of Lambda(0)(b) and (Lambda) over bar (0)(b) baryons as a function of rapidity in p (p) over bar collisions at root s = 1.96 TeV using 10.4 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron collider. The asymmetry is determined by the preference of Lambda(0)(b) or (Lambda) over bar (0)(b) particles to be produced in the direction of the beam protons or antiprotons, respectively. The measured asymmetry integrated over rapidity y in the range 0.1 < vertical bar y vertical bar < 2.0 is A = 0.04 +/- 0.07(stat) +/- 0.02(syst). C1 [Hensel, C.; Maciel, A. K. A.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont Ferrand, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Faure, A.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst 3A, Aachen, Germany. [Bernhard, R.; Madar, R.] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. [Brandt, O.; Mansour, J.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kaur, M.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Heredia-De la Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] Inst Catalana Rec & Estud Avancats, Barcelona, Spain. [Juste, A.] Inst Fis Altes Energies, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Borysova, M.; Gogota, O.; Savitskyi, M.] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Agnew, J. P.; Deterre, C.; Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Peters, Y.; Petridis, K.; Price, D.; Schwanenberger, C.; Shaw, S.; Soeldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Blessing, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Garbincius, P. H.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Herner, K.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; de Sa, R. Lopes; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Evdokimov, A.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Williams, M. R. J.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Holzbauer, J. L.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Haley, J.; Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Das, A.; Ilchenko, Y.; Kehoe, R.; Liu, H.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Bandurin, D. V.; Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Sharyy, Viatcheslav/F-9057-2014; Dudko, Lev/D-7127-2012; Merkin, Mikhail/D-6809-2012; Gutierrez, Phillip/C-1161-2011; Li, Liang/O-1107-2015 OI Sharyy, Viatcheslav/0000-0002-7161-2616; Dudko, Lev/0000-0002-4462-3192; Li, Liang/0000-0001-6411-6107 FU Department of Energy (United States of America); National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission (France); National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation (Russia); National Research Center "Kurchatov Institute" of the Russian Federation (Russia); Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology (Brazil); Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy (India); Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council (United Kingdom); Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research) (Germany); Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences (China); National Natural Science Foundation of China (China); Ministry of Education and Science of Ukraine (Ukraine) FX We would like to thank W. K. Lai and A. K. Leibovich for providing predictions of the heavy quark recombination model for the D0 kinematic range, and J. L. Rosner for useful discussions. We thank the staffs at Fermilab and collaborating institutions and acknowledge support from the Department of Energy and National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation, National Research Center "Kurchatov Institute" of the Russian Federation, and Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine). NR 16 TC 2 Z9 2 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD APR 27 PY 2015 VL 91 IS 7 AR 072008 DI 10.1103/PhysRevD.91.072008 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CG7CY UT WOS:000353461000001 ER PT J AU Pang, LG Hatta, Y Wang, XN Xiao, BW AF Pang, Long-Gang Hatta, Yoshitaka Wang, Xin-Nian Xiao, Bo-Wen TI Analytical and numerical Gubser solutions of the second-order hydrodynamics SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-ION COLLISIONS AB Evolution of quark-gluon plasma near equilibrium can be described by the second-order relativistic viscous hydrodynamic equations. Consistent and analytically verifiable numerical solutions are critical for phenomenological studies of the collective behavior of quark-gluon plasma in high-energy heavy-ion collisions. A novel analytical solution based on the conformal Gubser flow that is a boost-invariant solution with transverse fluid velocity is presented. Because of the nonlinear nature of the equation, the analytical solution is nonperturbative and exhibits features that are rather distinct from solutions to usual linear hydrodynamic equations. It is used to verify with high precision the numerical solution with a newly developed state-of-the-art (3+1)-dimensional second-order viscous hydro code (CLVisc). The perfect agreement between the analytical and numerical solutions demonstrates the reliability of the numerical simulations with the second-order viscous corrections. This lays the foundation for future phenomenological studies that allow one to gain access to the second-order transport coefficients. C1 [Pang, Long-Gang; Wang, Xin-Nian; Xiao, Bo-Wen] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Pang, Long-Gang; Wang, Xin-Nian; Xiao, Bo-Wen] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Hatta, Yoshitaka] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Pang, LG (reprint author), Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. OI Wang, Xin-Nian/0000-0002-9734-9967 FU NSFC [11221504]; China MOST [2014DFG02050]; U.S. DOE [DE-AC02-05CH11231] FX This work is supported by the NSFC under Grant No. 11221504, China MOST under Grant No. 2014DFG02050, U.S. DOE under Contract No. DE-AC02-05CH11231, and within the framework of the JET Collaboration. We thank J. Noronha for comments and discussions. NR 37 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR 27 PY 2015 VL 91 IS 7 AR 074027 DI 10.1103/PhysRevD.91.074027 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA CG7CY UT WOS:000353461000002 ER PT J AU Marthe, J Meillot, E Jeandel, G Enguehard, F Ilavsky, J AF Marthe, J. Meillot, E. Jeandel, G. Enguehard, F. Ilavsky, J. TI Explorations and 3D models of Atmospheric and Suspension Plasma Spraying coating microstructure SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Thermal plasma spraying; Microstructure; 3D modeling; Coating; Suspension ID SCATTERING AB Plasma-spraying processing provides material with typical and complex microstructure. For simulating the mechanical, electrical, optical... properties of such materials, it is necessary to determine the numerical representation of the microstructure. Some techniques, like micro-tomography, give directly an image of the porosity. Although such methods are convenient, they don't allow modifications of the obtained structure, especially in order to observe the influence of the porosity parameters on the material properties. This work investigates the microstructure of Atmospheric Plasma Spraying (APS) and Suspension Plasma Spraying (SPS) coatings thanks to several analysis techniques such as Scanning Electron Microscopy, image analysis, Hg porosimetry or Ultra Small Angle X-ray Scattering (USAXS). From the obtained different results, a flexible 3D representation of each coating is computed. (C) 2014 Elsevier B.V. All rights reserved. C1 [Marthe, J.; Meillot, E.] CEA DAM, F-37260 Le Ripault, Monts, France. [Jeandel, G.] LEMTA, F-54504 Vandoeuvre Les Nancy, France. [Enguehard, F.] Ecole Cent Paris, Lab EM2C, UPR ECP CNRS 288, F-92295 Chatenay Malabry, France. [Ilavsky, J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Meillot, E (reprint author), CEA DAM, F-37260 Le Ripault, Monts, France. EM erick.meillot@cea.fr RI Ilavsky, Jan/D-4521-2013 OI Ilavsky, Jan/0000-0003-1982-8900 FU National Science Foundation/Department of Energy [NSF/CHE-0822838]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-0822838. The use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No DE-AC02-06CH11357. NR 12 TC 2 Z9 2 U1 0 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD APR 25 PY 2015 VL 268 BP 266 EP 271 DI 10.1016/j.surfcoat.2014.07.042 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA CH0TM UT WOS:000353735300039 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alex, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antosb, J Anulli, F Aoki, M Bell, LA Apollec, R Arabidze, G Aracena, I Arai, Y Araquea, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arrati, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalosa, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, A Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castellib, A Gimenez, VC Castro, NF Catastinia, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetinb, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventia, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Co